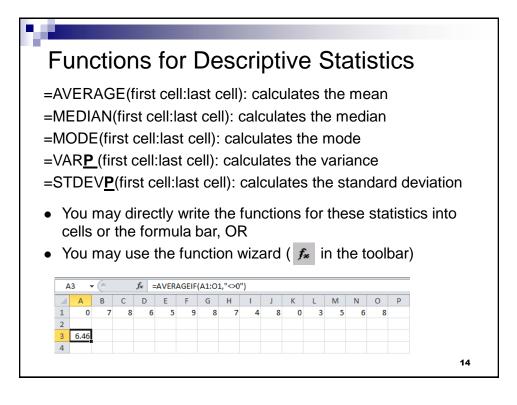
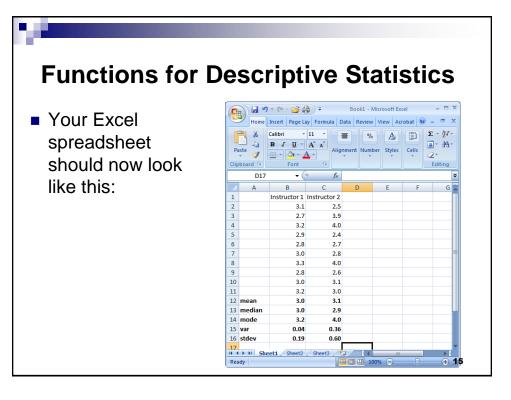
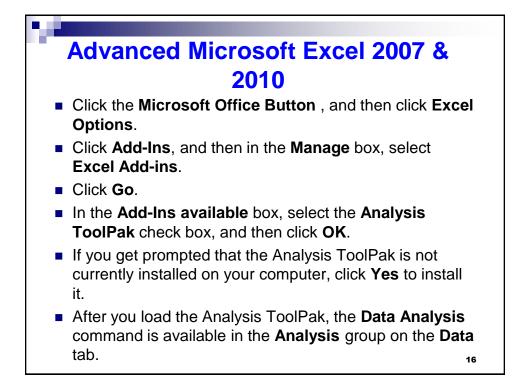
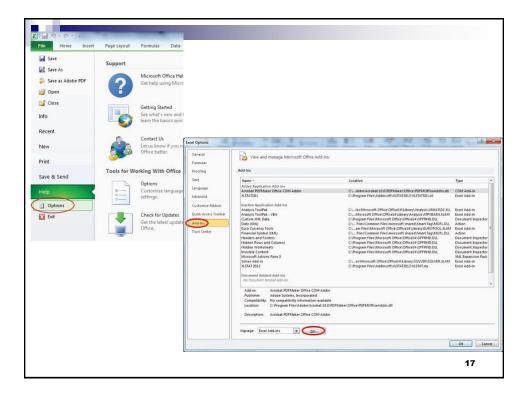


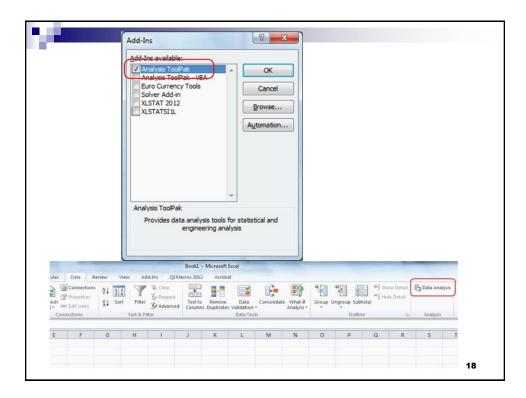
- A **cell** is the intersection between a column and a row.
- Each cell is named for the column letter and row number that intersect to make it.
- For example, **B2** is used to refer to the cell in column B and row 2.
 - B10:B20 is used to refer to the range of cells in column B and rows 10 through 20.

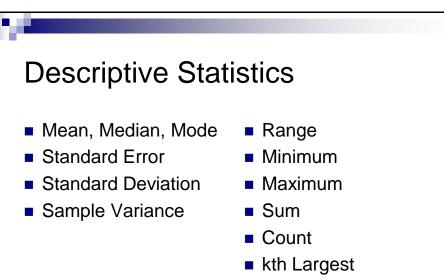


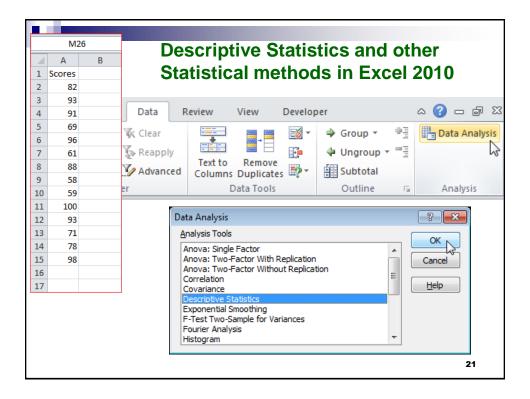




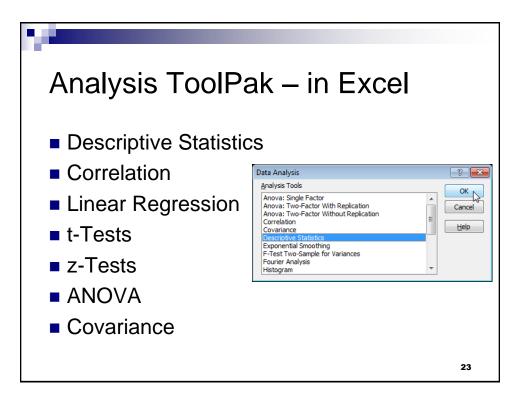

- The input for a function can be either:
 - □ A set of numbers (e.g., "=AVERAGE(2, 3, 4, 5)")
 - This tells Excel to calculate the average of these numbers.
 - A reference to cell (s) (e.g., "=AVERAGE(B1:B18) or "=AVERAGE (B1, B2, B3, B4, B5, B6, B7, B8)"
 - This tells Excel to calculate the average of the data that appear in all the cells from B1 to B8.
 - You can either type these cell references in by hand or by clicking and dragging with your mouse to select the cells.

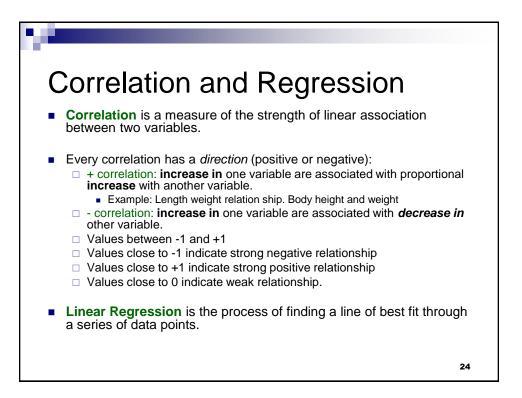


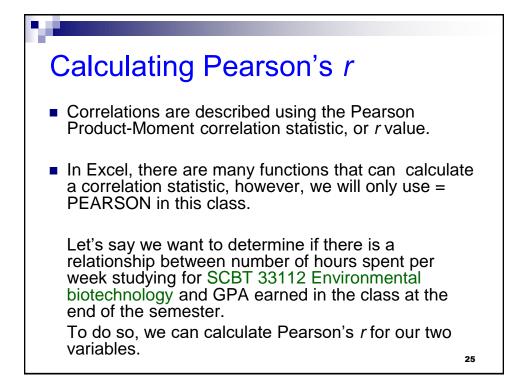


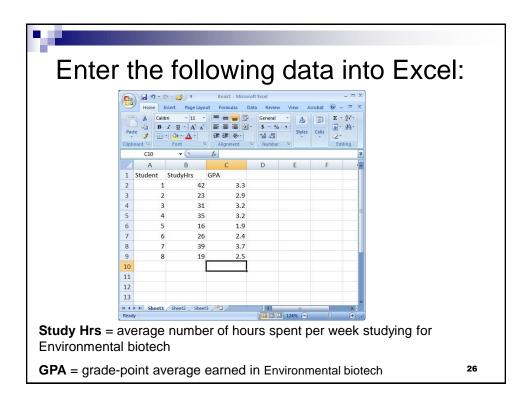


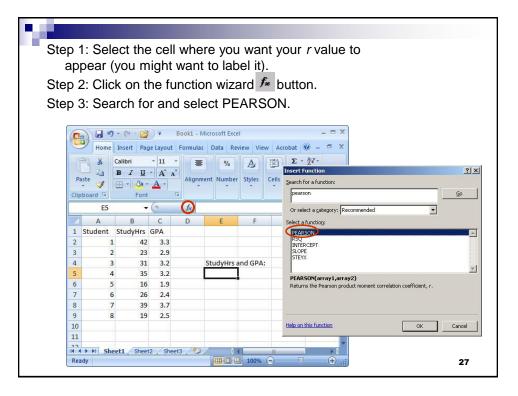
Descriptive Statistics and other Statistical methods in Excel

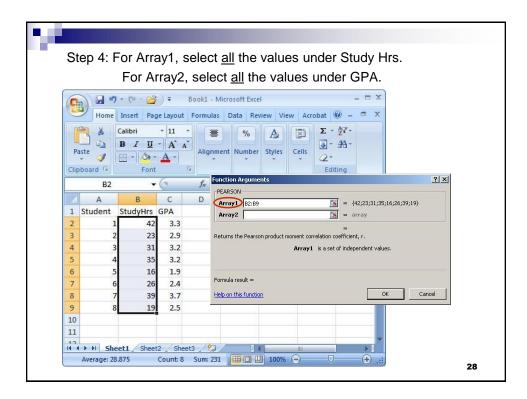

 Descriptive Statistics and other Statistical methods : Tools → Data Analysis→ Statistical method.

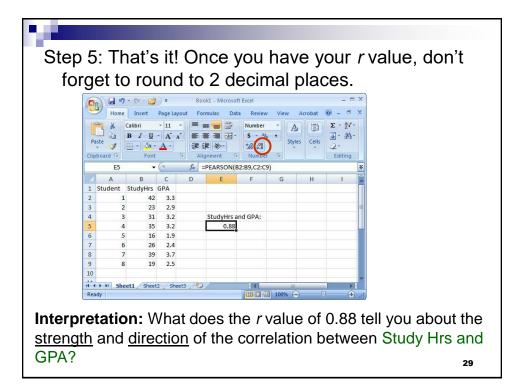


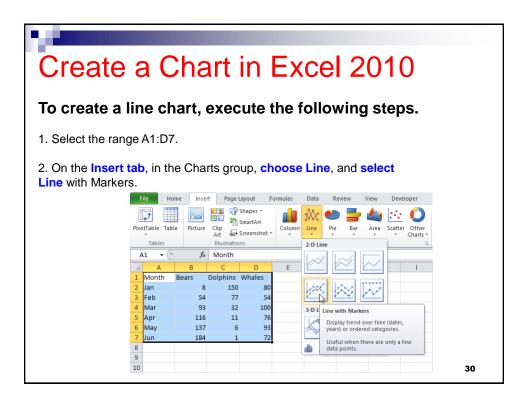

kth Smallest

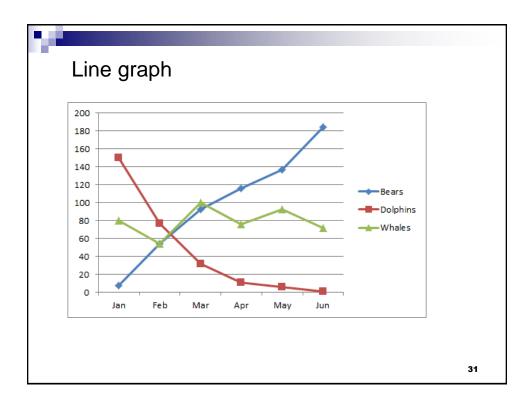


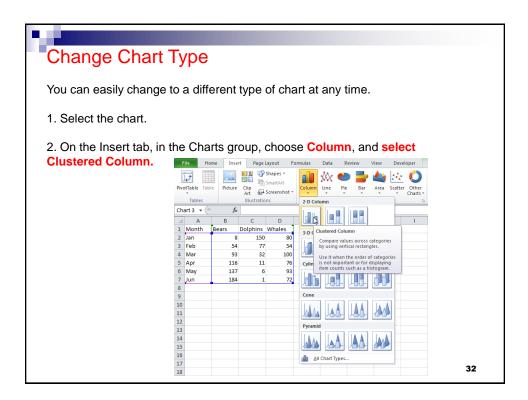

Descriptive Statistics				? ×				
Input								
Input Range:	\$A\$2:\$A\$15			ОК				
Grouped By:	Columns Rows			elp				
Labels in first row	0 -		<u> </u>	<u>cip</u>				
Output options								
Output Range:	\$C\$1	1		L2	8	▼ (
New Worksheet Ply:				Α	В	С	D	E
New Workbook			1	Scores		Column	1	
			2	82				
Summary statistics			3	93		Mean	81.21428571	
Confidence Level for Mean:	95	%	4	91		Standard Error	4.045318243	
Kth Largest:	1		5	69		Median	85	
Kth Smallest:	1		6	96		Mode	93	
			7	61		Standard Deviation	15.13619489	
			8	88		Sample Variance	229.1043956	
			9	58		Kurtosis	-1.426053506	
			10	59		Skewness	-0.402108004	
			11	100		Range	42	
			12	93		Minimum	58	
			13	71		Maximum	100	
			14	78		Sum	1137	
			15	98		Count	14	
			16					
			17					22

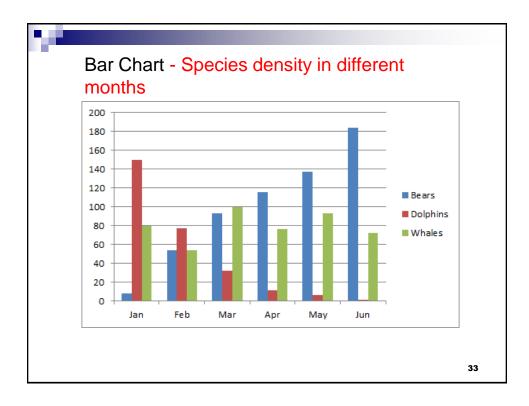


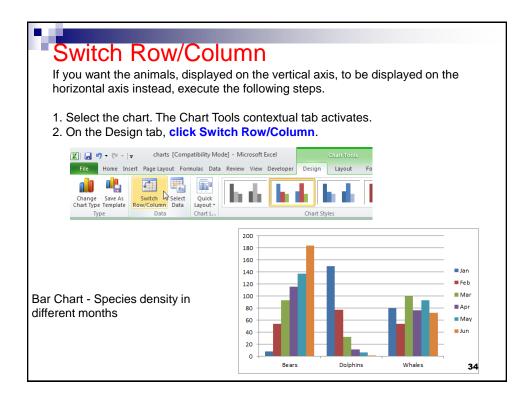


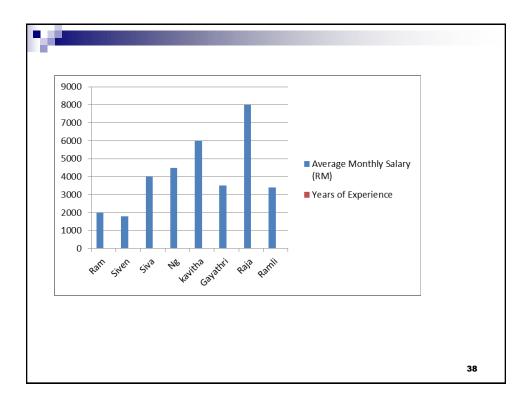


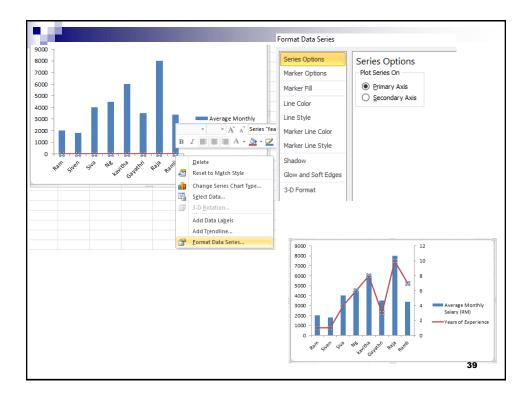


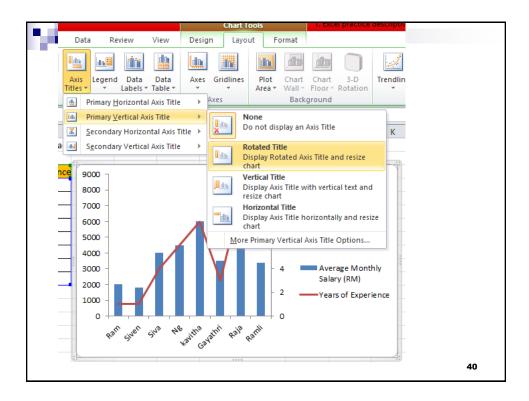


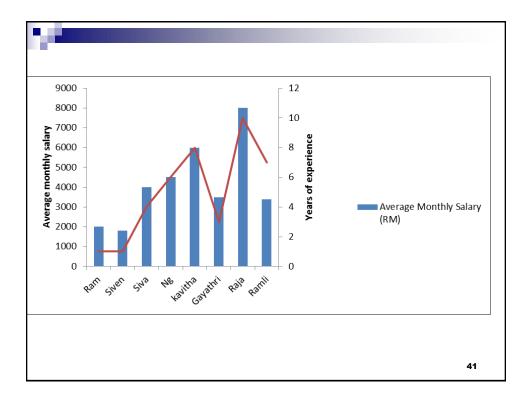


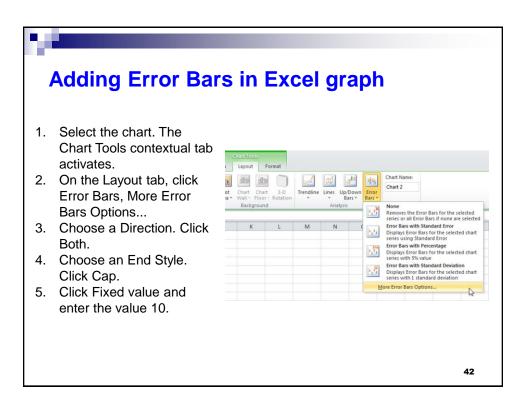


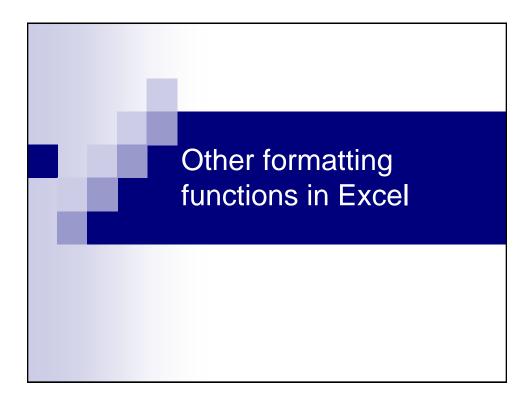


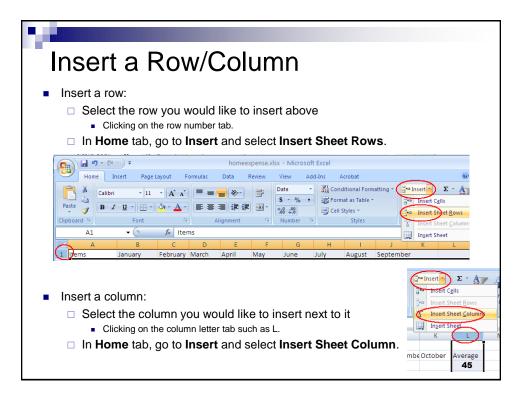


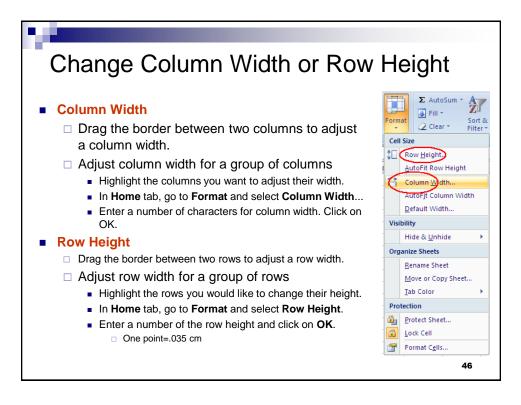

Add Chart Title				
To add a chart title, exec	ute the follo	wing steps.		
1. Select the chart. The C	Chart Tools	contextual tab	activates.	
2. On the Layout tab, clic	ck Chart Title	e, Above Chart		
ompatibility Mode] - Microsoft Excel	Developer Design	Chart Tools		
Chat Axis Legend Data Data Titler - Labels - Table - None Do not display a chart Title	Axes Gridlines Axes	t Chart Chart 3-D	Trendline Lines	
Centered Overlay Title Overlay centered Title on chart without resizing chart Above Chart Display Title at top of chart area and resize chart More Title Options		200 180 160 140 120 100 80 60 40 0	Population	Jan Feb Mar Apr May Jun 35
		Bears	Dolphins	Whales

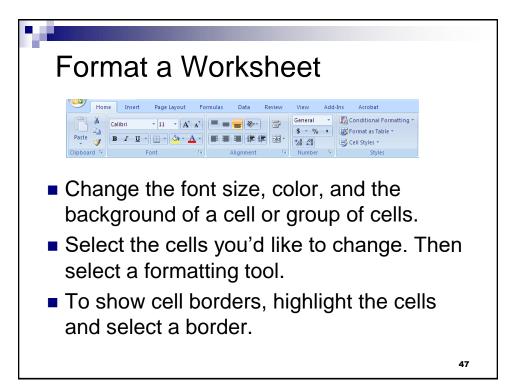

Legend Position By default, the legend appears to the right of the chart. To move the legend to the bottom of the chart, 1. Select the chart. The Chart Tools contextual tab activates. 2. On the Layout tab, click Legend, Show Legend at Bottom. ompatibility Mode] - Microsoft Excel ormulas Data Review View Developer Design Layout Format Chart Aas Legend Data Data Axes Gridlines Piot Chart Chart 3-D Area's Wall - Floor Rotation None None None Turn off Legend E Show Legend at Right Show Legend and align right J K L M Show Legend at Top Show Legend and top align Population angn Show Legend at Left Show Legend and align left 200 E da left Show Legend at Bottom Show Legend and align bottom 150 h Dottom Overlay Legend at Right Ownerlay Legend at Right The chart without resizing Image: State of the chart without resizing More Legend at left of the chart without resizing More Legend at Out More Legend at Control out 100 50 0 Dolphins Bears Whales ∎Jan ■Feb ■Mar ■Apr ■May ■Jun 36

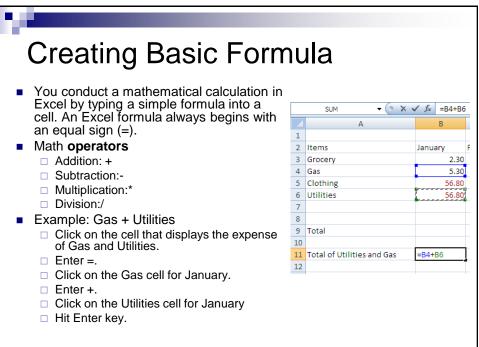

N		
C	creating t	wo axis in a graph
K	🖬 🚽 🤆 🖓	1. Excel practice descriptive st
	File Home	Insert Page Layout Formulas Data Review View
[1	🖂 🔡 🕡 看 斗 🚺 k 🍉 불 🔌 🗠
Piv	otTable Table	Picture Clip Shapes SmartArt Screenshot Column Line Pie Bar Area Scat
	Tables	Illustrations 2-D Column
	A3	▼fx Programs
	А	
1		Monthly salary of biotech Post gradua 3-D Column
2		
3	Programs	Average Monthl Years of Experience
4	Ram	
5	Siven	1800 Cylinder
6	Siva	4000
7	Ng	4500
8	kavitha	6000
9	Gayathri	3500 Cone
10	Raja	8000
11	Ramli	3400
12		37

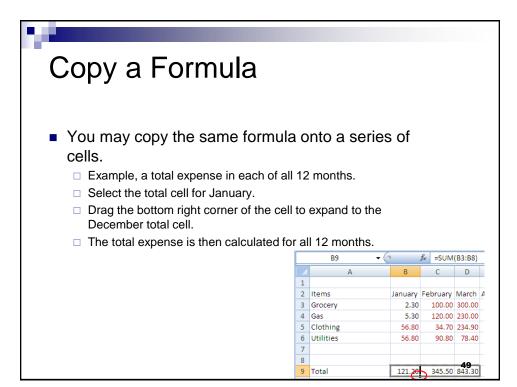


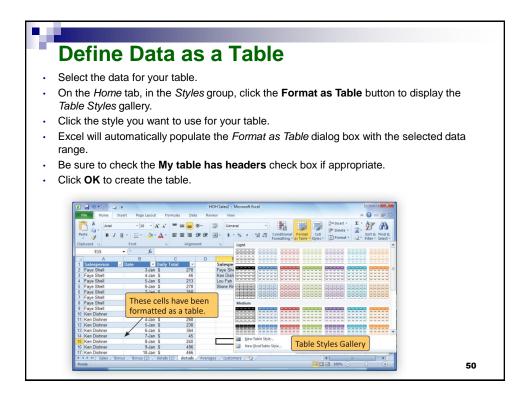


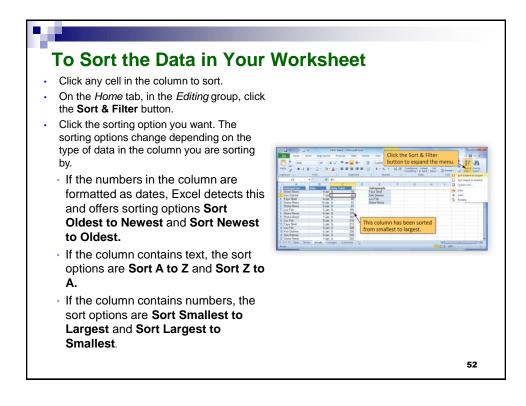


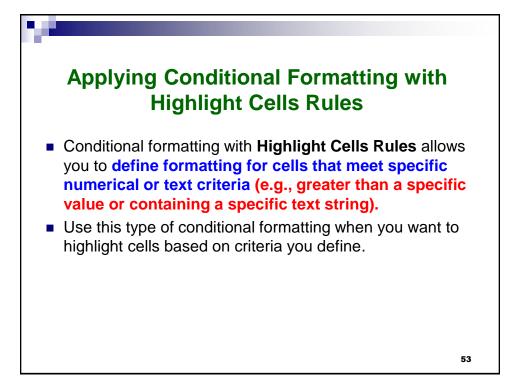


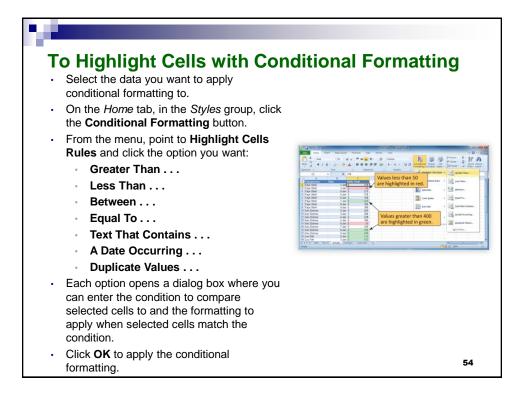

Format Error Bars			? 🔀	
Vertical Error Bars Line Color Line Style Shadow Glow and Soft Edges	Vertical Error Bars Display Direction	10 5.0 1.0	%	If you have SD values select custom and specify the values by selecting reference cell
	Standard gror Qustom:	Specify <u>Value</u>	Close	Error Bars

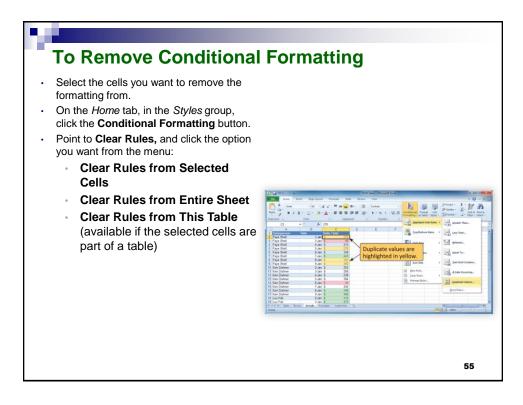


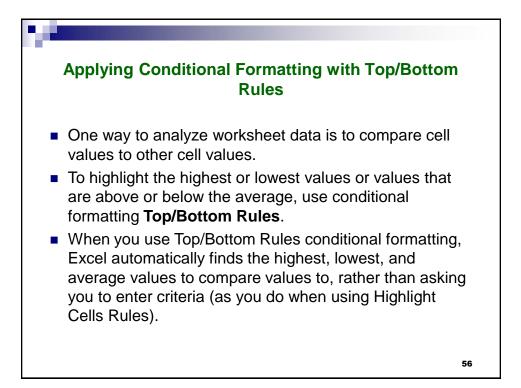


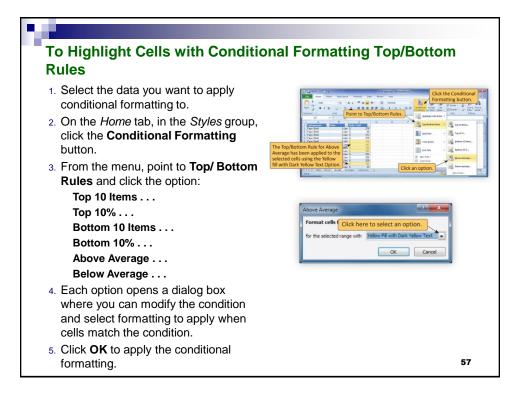


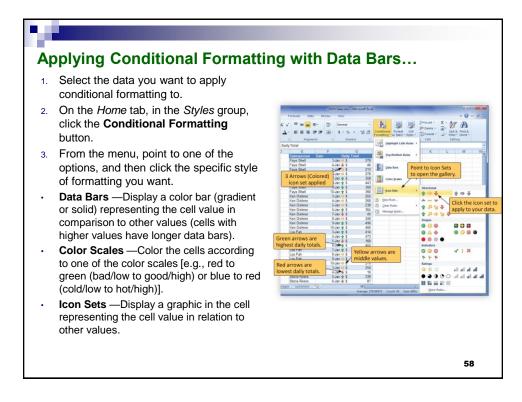


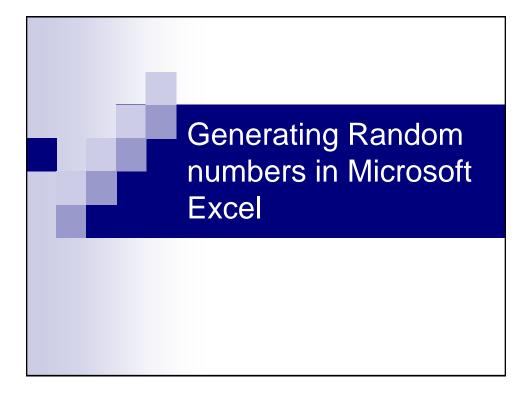


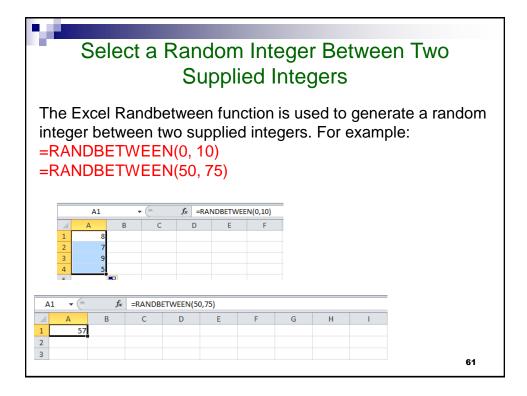


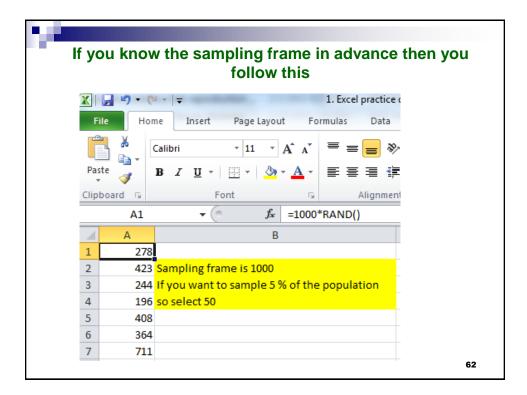

Tak		- T -	4 - 1	Darr			Tal				
10/	Add a	aio	tai	KOW	/ tC	a	l al	DIE	;		
On the Ta	hle Tool	s Desiar	₂tah i	n the T	ahle .	Style (Ontio	ns a	rour	`	
click the T		0				Juji C	opuo	no g	loop	,	
			007.								
In the Tota	al row at	the bott	om of	the tab	le, cli	ck the	e colu	mn	whe	re	
you want	to add a	total									
Click the a	arrow, ar	nd select	t the fı	unction	you v	vant to	o use				
K	- F	HOH Sales2 - Micro	soft Excel								
File Home In			ata Review	View D	esian						
Table Name: ITA Sun	Total Row C	heck Box	I V Heade	Pour Eint	Column	-					
	ove Duplicates		Total F		Column						
		Export Refresh	and and a second								
	vert to Range				ed Columns						
Properties	Tools	External Table Da	sta	Table Style Option	15		Table Styl	=			
	• (* fx		-		-	-		1 1			
A A	В	C	D	E	F	G	Н	1			
	JAN	FEB 💌	MAR 💌								
4 SALES STAFE				TOTAL							
4 SALES STAFF 5 Ken Dishner	\$ 3,200										
		\$ 2,800	\$ 3,000	\$ 9,000							
5 Ken Dishner 6 Lou Faah 7 Stone Rivers	\$ 3,200 \$ 5,700 \$ 4,800	\$ 2,800 \$ 6,800 \$ 5,300	\$ 3,000 \$ 5,900 \$ 5,500	\$ 9,000 \$ 18,400 \$ 15,600							
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell	\$ 3,200 \$ 5,700	\$ 2,800 \$ 6,800 \$ 5,300	\$ 3,000 \$ 5,900 \$ 5,500	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400							
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400	\$ 2,800 \$ 6,800 \$ 5,300	\$ 3,000 \$ 5,900 \$ 5,500	\$ 9,000 \$ 18,400 \$ 15,600	•						
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10	\$ 3,200 \$ 5,700 \$ 4,800	\$ 2,800 \$ 6,800 \$ 5,300	\$ 3,000 \$ 5,900 \$ 5,500	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400	•	otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 Most Sales in Jan	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900	\$ 3,000 \$ 5,900 \$ 5,500 \$ 2,100	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400		otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 Most Sales in Jan 12 Most Sales In Feb	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 * Click th	\$ 3,000 \$ 5,900 \$ 5,500 \$ 2,100 e arrow t	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t		otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 Most Sales in Jan 12 Most Sales in Jan 13 Most Sales in March	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 * Click th	\$ 3,000 \$ 5,900 \$ 5,500 \$ 2,100	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t		otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Fave Shell 9 Total 10 11 11 Most Sales in Jan 12 Most Sales in Feb 13 Most Sales in March 14	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers Max Min Sum	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 * Click th	\$ 3,000 \$ 5,900 \$ 5,500 \$ 2,100 e arrow t	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t		otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 Most Sales in Jan 12 Most Sales in Fab 13 Most Sales in March 14 15	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Count Max Min Sum StdDev	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 * Click th	\$ 3,000 \$ 5,900 \$ 5,500 \$ 2,100 e arrow t	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t		otal Rov	v				
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Fave Shell 9 Total 10 11 11 Most Sales in Jan 12 Most Sales in Feb 13 Most Sales in March 14	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers Max Min Sum StdDev Var	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 * Click th	s 3,000 s 5,900 s 5,500 s 2,100 e arrow t vailable fi	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t		otal Rov	v	1			
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 Most Sales in Jan 12 Most Sales in Feb 13 Most Sales in March 14 15	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers Max Min Sum StdDev Var	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 Click the list of a	s 3,000 s 5,900 s 5,500 s 2,100 e arrow t vailable fi	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t							
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 11 Most Sales in Jan 12 Most Sales in Feb 13 Most Sales in March 14 15 15 16 16 ₩ 17 Nales / Bonu	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers Max Min Sum StdDev Var	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 Click the list of a	s 3,000 s 5,900 s 5,500 s 2,100 e arrow t vailable fi	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t							
5 Ken Dishner 6 Lou Faah 7 Stone Rivers 8 Faye Shell 9 Total 10 11 11 Most Sales in Jan 12 Most Sales in Feb 13 Most Sales in March 14 15 15 16 16 ₩ 17 Nales / Bonu	\$ 3,200 \$ 5,700 \$ 4,800 \$ 2,400 None Average Count Count Numbers Max Min Sum StdDev Var	\$ 2,800 \$ 6,800 \$ 5,300 \$ 1,900 Click the list of a	s 3,000 s 5,900 s 5,500 s 2,100 e arrow t vailable fi	\$ 9,000 \$ 18,400 \$ 15,600 \$ 6,400 \$ 49,400 o expand t							51

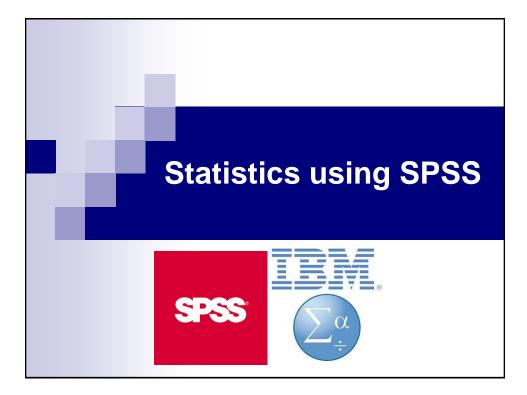


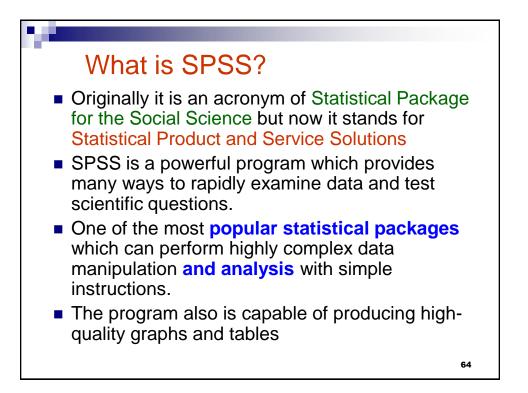


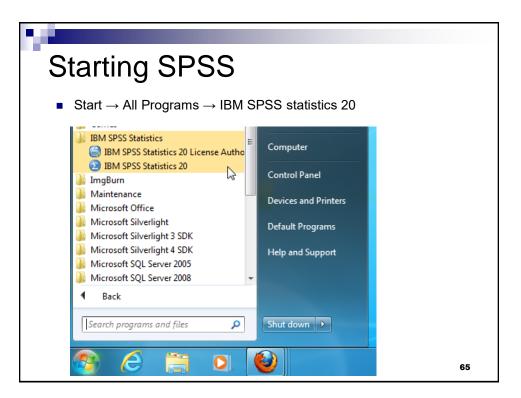




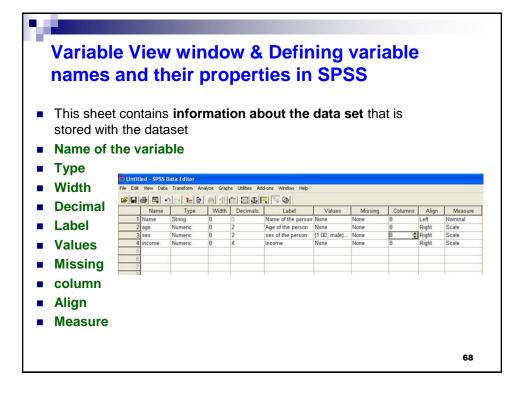




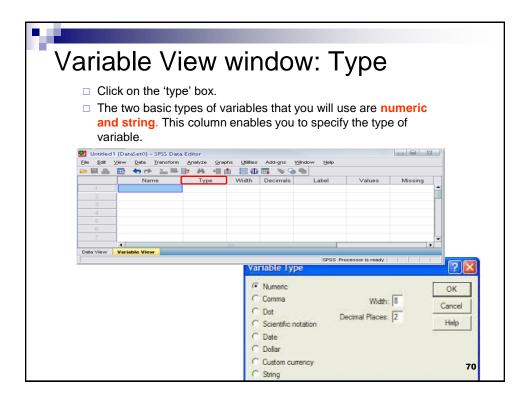



Select a Random Decimal Value Between 0 and 1 If you want to generate a random decimal value between 0 and 1, simply use the Excel Rand function in any cell of your worksheet: =RAND() This function will generate a different random decimal, between 0 and 1 and every time your worksheet re calculates. A1 + (0 fx =RAND() В 0.494127 0.752404 0.161495 0.727912 0.871228 0.14971 0.355125 60

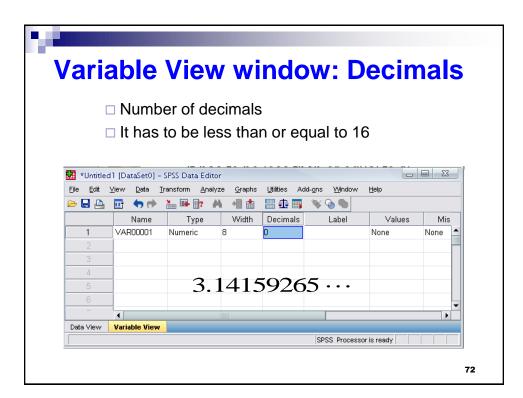
Data E	-dito	r						
			dienlave	the cont	onte of the	workin	ig dataset.	
							es in colu	
	in rows	-	SHEELIU	innat that	contains	variabi		inins and
 There a 		•	the wind	0\W				
				•	ihle when	you firs	st open the	Data
		contains				you me		Dulu
		one is Va		-				
		w (Data Vie		•				
🛄 Data E						-		
-		Iransform Ar				al		
1:	2 24 22		T DK 20.01					
	var	var	Var	var	var	var	<u> </u>	
1								
3								
5								
7				-				
8								
10								
12								
13			•					
(Dat	a View 🗸 🗸	ariable View /		•				66

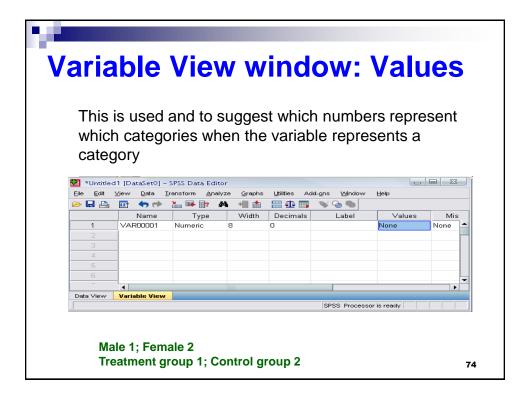

Data and Variable View

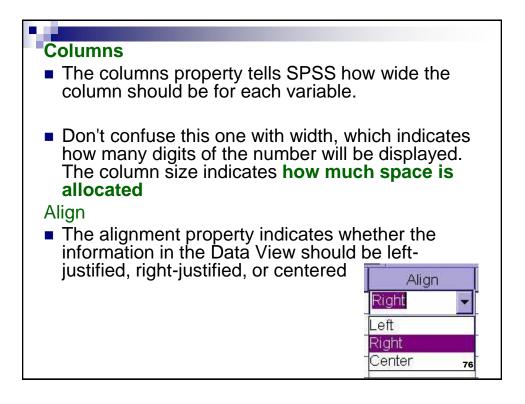
Data View:

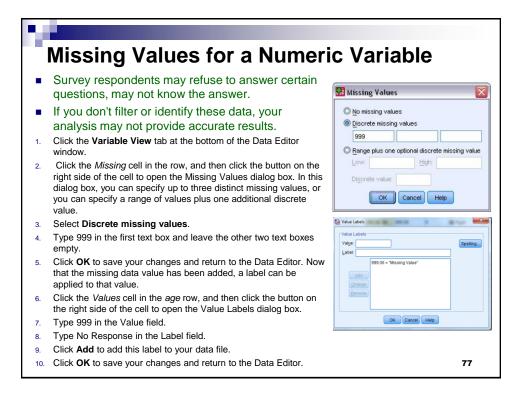

 Allows you to entering the data and examine your actual data.

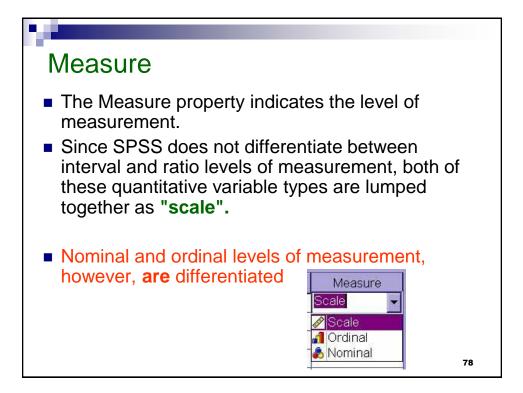
Variable View:

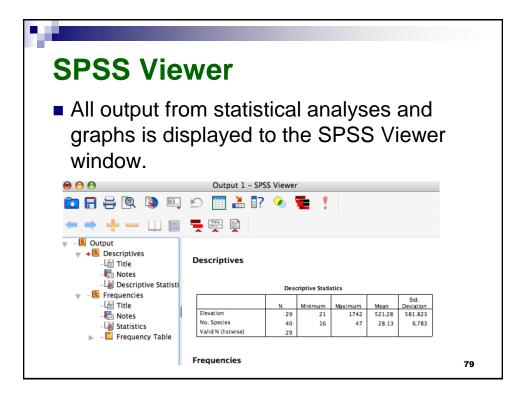

- Variable view is for Naming and define the variables
- Is it a string or numeric variable?
- Are there labels for it? In Variable view, you can add labels to variables so your results will be easier to understand.

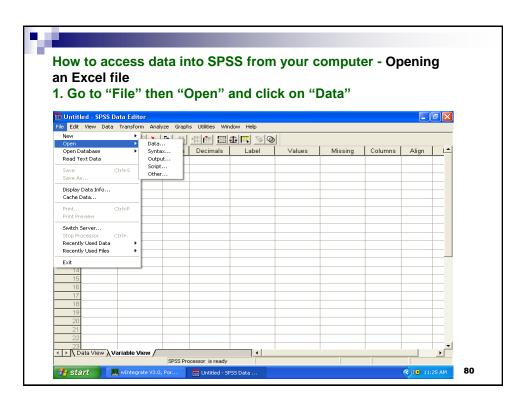

Nam	e					
mu □ V	st be al ′ariable r o be less	naracter phabetion names m than 64 re NOT a	c ust be chara	e uniq cters	ue, ar	
Eile Edit	II [DataSet0] - SPSS Data ⊻iew Data Transform		es Add- <u>o</u> ns W	indow <u>H</u> elp		
😕 🖬 🔔	📴 🗢 🖶 🐂	📴 🗛 📲 📩 🚟 🤅	🏥 🥅 👒 🌝 I			
	Name	Type Width	Decimals	Label	Values	Missing
2						
3	-					
4						
5	_					
6	_					
	1					
Data View	Variable View					
				SPSS Pr	ocessor is ready	6
						69


la l	riak	ole \	/iew	w	ind	ow:	Wid	th	
			you to						
-			PSS wi	II allo	ow to b	pe ente	red for	the	
V	variabl	e							
i	🖸 Untitled 1	[DataSet0] - S	PSS Data Editor						23
	Eile Edit	<u>∨</u> iew <u>D</u> ata <u>T</u>	ransform <u>A</u> nalyz	e <u>G</u> raphs	<u>U</u> tilities Ad	id-ons Window	Help		
	🖻 🖩 🛓	📴 🕈 🖻	<u>} =]? A</u>	1	🔚 🤁 📑	🐳 💊 🌑			
		Name	Type	Width	Decimals	Label	Values	Missing	С
	1	<u> </u>							A
	2								100
	3								
	4								
	5								
									-
	-	4							•
	Data View	Variable View							
						SPS	S Processor is read	ly	




varia		e vie	wν	vina	low: La	
	can s	necify th	a date	aile of th	ne variable	
	can s	pecity til				
Variable	labels en	itered in Var	iable Vie	w		
	Editor					
<u><u>File</u> <u>E</u>dit</u>	<u>V</u> iew <u>D</u> ata	a <u>T</u> ransform <u>A</u> r	nalyze <u>G</u> rapi	hs <u>U</u> tilities <u>W</u> ir	ndow <u>H</u> elp	
🖻 🖻	🕘 🖳	• • • • •	= [? //	画画 圕	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Name	Type	Width	Decimals	Label	
1	age	Numeric	8	0	Respondent's Age	1
2	marital	Numeric	8	0	Marital Status	1
3	income	Numeric	8	2	Household Income	1
4	sex	String	8	0	Gender	1
5						
6						
7						
8	Į					
9						
10						
11						
12						
13						
14						
15	1					-1
) ata View λ	/ariable View /		4		




Defining the val	ue labels
Click the cell in the values coluValue 1 for male and 2 for fema	
*Untitled1 [DataSet0] - SPSS Data Editor Ele Edit View Deta Iransform Analyze Graphs Utilities Add-ons Window Help Image: State Base State Base State Base State Stat	Value Labels
B Image: Constraint of the second s	OK Cancel Help

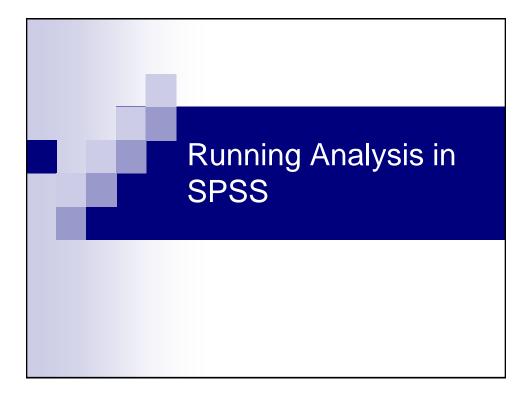
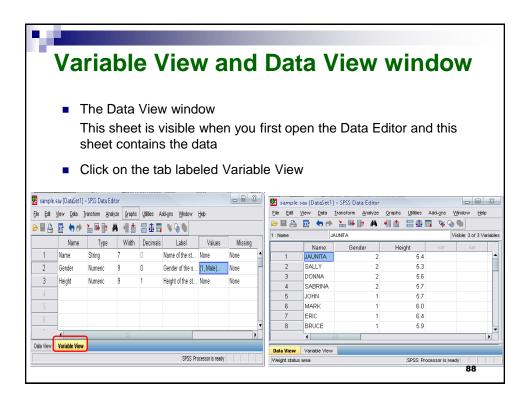


Image: Constraint of the second se		Values	Missing	Columns	Align
n File	Label	Values	Missing	Columns	Align
			? 🔀 –		
ok in: 🗀 aacrao04	•	🗢 🖻 💣 🛙			
admission data admission data2					
name: admission data2			Open		
of type: Excel (* xis)		-	Paste		
in star (ma)			Cancel		
		1			
SPSS Processor is ready					
SP33 Processor is ready					-
	admission data2 financial aid analysis	name: admission data2 s of type: Excel (*.xla)	name: admission data2	name: admission data2	name: admission data2 name: admission data2 paste Cancel

5. Choose the				eet that y	our data	is in. (Y	ou can o	only	
choose one v 6. Click "OK"		et at a	a time)						
🛅 Untitled - SPSS Dat	a Editor								a 🗙
File Edit View Data T	ransform Analyz	e Graph	s Utilities Win	dow Help					
288 9 9	~ 🗉 🔚	2 44	■ 首 〓 !	1 6 30					
Name		Width	Decimals	Label	Values	Missing	Columns	Align	
1									
2									
3									<u> </u>
4				0					\vdash
6		Open	ing Excel Data	i Source					
7		G:\aa	crao04\admissio	n data2.xls					
8									
9		Г В	ead variable nam	es from the first row	of data.				
10		Ard and		1	-	_			
11		work	sneet: admissio	n data [A1:T2921]		-			\vdash
13		Rang	e:						
14									
15		- I	OK	Cancel	Help				
16									
17									
18									\vdash
20									<u> </u>
20									\vdash
22									
23									
▲ ► \ Data View \ Vari	able View /	SPSS Pro		1					82

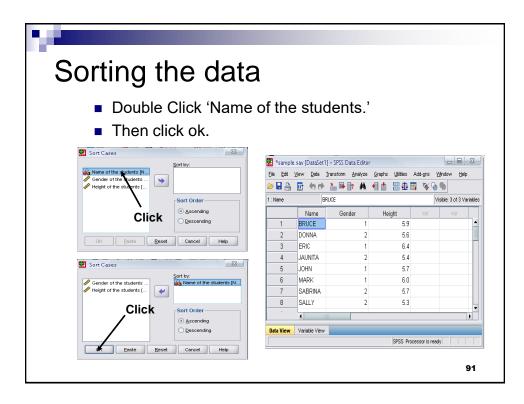
li	f you l	ook at t	he bottom left, you	'll se Viev		s for D a	ata V	/iew ar	nd Vari	able
Untitl	led - SPSS	Data Editor								
Edit	View Data	a Transform	Analyze Graphs Utilities Window	Help						
	a 🔍		🏪 🛛 🛤 📲 📺 🎟 🕮	. 😽	0					
id		0	517956							
	id	common a	home cit	s	t zip	citizens	scho	applied	totinaid	
1	0517956		Arlington		1 02474	CILIZENS	CAS	applied		BS/OPE
	0539002		Revere		1 02151		CAS	1	-	BS/OPE
	0602013		Amesbury		1 01913		CAS	1		BS/ECC
	0603824		Woodbury	D N			CAS	0	-	BS/OPE
	0618436		Concord		1 01742		CAS	0		BS/OPE
-	0637003		Revere		1 02151		SSO	1		BSBA/A
	0651833		Framingham		1 01701		CAS	1		BEAVINT
	0669238		Seekonk		1 02771		CAS	0	0	BS/VISI
9	0708485	0	Brighton	N	1 02135		SSO	1	4200	BSBA/A
10	0711997	0	Salem	N	03079		SSO	1	0	BSBA/II
11	0715175	1	Cali				CAS	0	0	BS/OPE
12	0715502	0	Colchester	C	06415		CAS	1	2000	BS/PRIN
13	0717060	0	Suffield	C	06078		CAS	1	0	BS/PUE
14	0722368	0	Cambridge	N	1 02139	SENEGAL	SSO	0	0	BSBA/C
15	0726376	0	West Redding	C	06896		CAS	1	0	BS/OPE
16	0730401	0	Revere	N	1 02151		CAS	1	2000	BS/BRC
17	0737318	0	Revere	N	1 02151		SSO	0	0	BSBA/C
	0737640	-	Taunton		1 02780		CAS	1		BS/POL
	0738036	0	Canton		1 02021		CAS	1		BS/POL
	0739190	-	South Boston		1 02127		CAS	1		BS/CRIN
21	0746951	1	Berkeley Height		J 07922		CAS	0		BS/ELE
PI\D	ata View 🖌	Variable View			100405		0.00	4	2000	DO ODE
	A		SPSS Processor is ready							

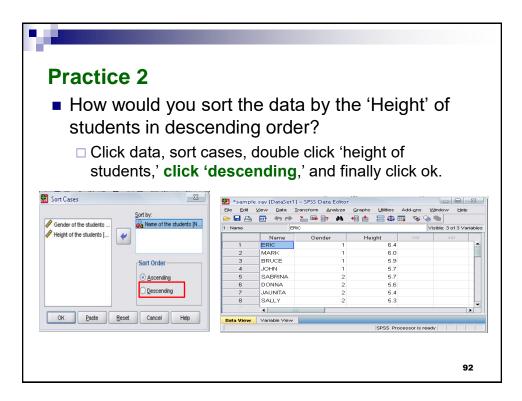
ile Edit	sav - Data E	ditor				2	
ile Edit	⊻iew <u>D</u> ata	Iransform An	alyze <u>G</u> raphs	Utilities Add	l- <u>o</u> ns <u>W</u> indow	Help	The second second second
20 : age		40					To view value Labels
	age	marital	address	income	inccat	car 👗	
1	55	Marital s	status 12	72.00	3.00	36.	
2	56	0	29	153.00	4.00	76.	You can use the Value Labels
3	28	1	9	28.00	2.00	13.	Tou can use the value Labels
4	24	1	4	26.00	2.00	12.	button on the toolbar
5	25	0	2	23.00	1.00	11.	button on the toolbal
6	45	1	9	76.00	4.00	37.	
7	42	0	19	40.00	2.00	19.	
8	35	0	15	57.00	3.00	28.	
9	46	0	26	24.00	1.00	12.	
10	34	1	0	89.00	4.00	46. 35, ❤	
Louis	o.sav - Data t View Data		Analyze Graph	ns Utilities A	dd-ons Windo	w Help	
Louis	t ⊻iew <u>D</u> ata	Editor		ns <u>U</u> tilities A	dd-gns <u>W</u> indo		
Eile Edit	t <u>V</u> iew <u>D</u> ata e	Iransform (w <u>H</u> elp	
Eile Edit	t ⊻iew <u>D</u> ata	Iransform <u>6</u> 40 marital	address	ns Utilities A income 72.00	dd- <u>o</u> ns <u>W</u> indo inccat \$50 - \$74		
Eile Edit	t <u>Y</u> iew Data e age 55	Iransform <u>4</u> 40 marital 5 Married	address	income	inccat	w Help	
Eile Edit 20 : age	t <u>Vi</u> ew <u>D</u> ata e age 55 2 56	Iransform 4 40 marital 5 Married 6 Unmarried	address 12 29	income 72.00	inccat \$50 - \$74	w Help car	
Eile Edit 20 : age 1 2	t <u>Vi</u> ew <u>D</u> ata e age 55 2 56 3 2 2	Iransform 4 40 marital 5 Married 6 Unmarried 8 Married	address 12 29 9	income 72.00 153.00	inccat \$50 - \$74 \$75+	w <u>H</u> elp <u>car</u> 36. 76.	Descriptive value labels are
Eile Edit 20 : age 1 2 3	t <u>Vi</u> ew <u>D</u> ata e age 55 2 56 3 2 2 4 2 2 4 2 4	Iransform 4 40 marital 5 Married 6 Unmarried 8 Married 4 Married	address 12 29 9 4	income 72.00 153.00 28.00	inccat \$50 - \$74 \$75+ \$25 - \$49	w <u>H</u> elp car 36. 76. 13.	Descriptive value labels are
Eile Edit 20 : age 1 2 3 4	t <u>View D</u> ata e <u>age</u> 55 56 2 56 2 2 4 2 4 2 4 2 4 2 5 2 2 4 2 5 5 5 5 5	Iransform & 40 marital 5 Married 5 Unmarried 8 Married 4 Married 5 Unmarried	address 12 29 9 4 2	income 72.00 153.00 28.00 26.00	inccat \$50 - \$74 \$75+ \$25 - \$49 \$25 - \$49	w <u>H</u> elp <u>саг</u> <u>36.</u> 76. 13. 12.	Descriptive value labels are now displayed to make it easier
Eile Edit 20 : age 1 2 3 4 5	t <u>View D</u> ata e <u>age</u> 55 56 2 56 2 2 4 2 4 2 4 2 4 2 5 2 2 4 2 5 5 5 5 5	Iransform (40 marital 5 Married 6 Unmarried 8 Married 4 Married 5 Unmarried 5 Unmarried 5 Married	address 12 29 9 4 2 9	income 72.00 153.00 28.00 26.00 23.00	inccat \$50 - \$74 \$75+ \$25 - \$49 \$25 - \$49 Under \$25	w Help car 36. 76. 13. 12. 11.	Descriptive value labels are
Eile Edit 20 : age 1 2 3 4 5	t <u>Yjew D</u> ata e <u>age</u> 55 56 1 26 1 26 1 24 5 25 5 45 1 42	Iransform (40 5 Married 6 Unmarried 8 Married 4 Married 5 Unmarried 5 Unmarried 9 Married 9 Narried	address 12 29 9 4 2 9 9 19	income 72.00 153.00 28.00 26.00 23.00 76.00	inccat \$50 - \$74 \$75+ \$25 - \$49 \$25 - \$49 Under \$25 \$75+	w Help Car 36. 76. 13. 12. 11. 37.	Descriptive value labels are now displayed to make it easier
Eile Edit 20 : age 1 2 3 4 5 6 7	t <u>yjew Data</u> e <u>age</u> 555 56 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Iransform 6 40 7 5 Married 6 Unmarried 8 Married 5 Unmarried 9 Unmarried 9 Unmarried	address 12 29 9 4 2 9 4 2 9 19 19	income 72.00 153.00 28.00 26.00 23.00 76.00 40.00	inccat \$50 - \$74 \$75 - \$74 \$25 - \$49 \$25 - \$49 Under \$25 \$75+ \$25 - \$49	w Help Car 36. 76. 13. 12. 11. 37. 19.	Descriptive value labels are now displayed to make it easier

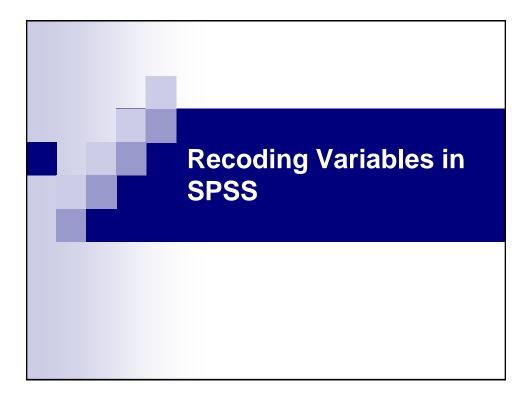

Practice 1

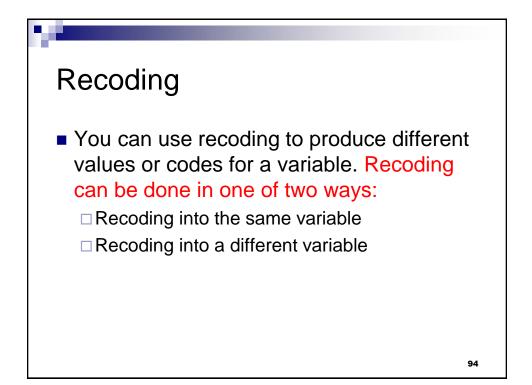
How would you put the following information into SPSS?

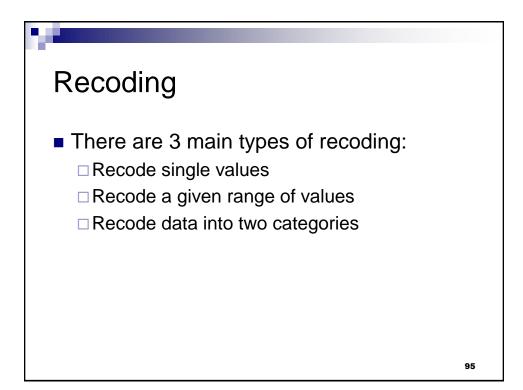
Name	Gender	Height
JAUNITA	2	5.4
SALLY	2	5.3
DONNA	2	5.6
SABRINA	2	5.7
JOHN	1	5.7
MARK	1	6
ERIC	1	6.4
BRUCE	1	5.9

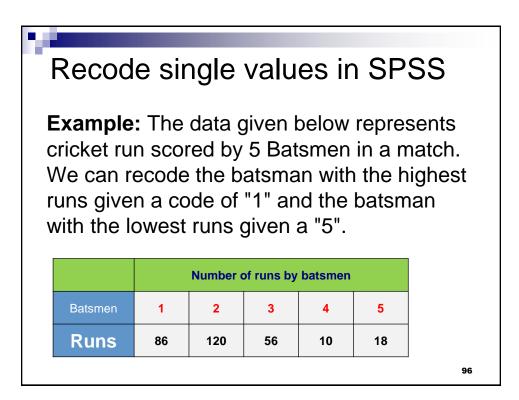

Value = 1 represents Male and Value = 2 represents Female

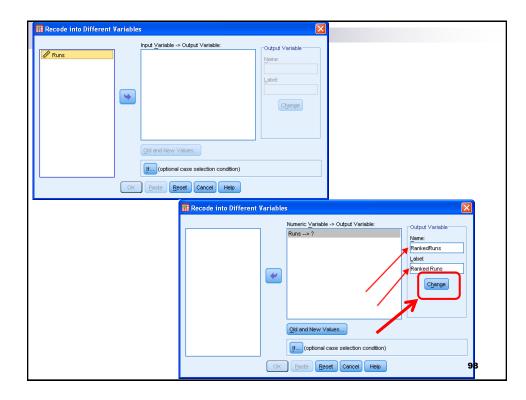

Sample.sav [DataSet] - SPSS Data Editor Image: Sample.sav [DataSet] - SPSS Data Editor Image: String To Set			(0				\ \		
Name Type Width Decimals Label Values Missing 1 Name String 7 0 Name of the st None None 2 Gender Numeric 9 0 Gender of the st (1, Male) None 3 Height Numeric 9 1 Height of the st None 4 6 Click • • • 5 Click • • • 0 Deta View Variable View • •	Eile Edit y	av [DataSet1] - ⊻iew <u>D</u> ata <u>I</u> r	SPSS Data Ed	itor yze <u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>W</u> indow			3
1 Name String 7 0 Name of the st None None 2 Gender Numeric 9 0 Gender of the s (1, Male) None 3 Height Numeric 9 1 Height of the st None None 4 1 Height Numeric 9 1 Height of the st None 4 5 Click Value SPSS Processor is ready Value Labels Value Labels Value Labels Spelling Spelling Spelling Spelling Labels Image Image Image Image Image Image		📴 🗢 🖻		M 📲 📩	🔡 🏚 📰	🛛 👻 🌚 🛸			
2 Gender Numeric 9 0 Gender of the s [1, Male] None 3 Height Numeric 9 1 Height of the st None 4 5 6 Click Data View Variable View SPSS Processor is ready SPSS Processor is ready Value Labels Value Labels Value Labels Value Labels 2 - Female* Remove			21						
3 Height Numeric 9 1 Height of the st None 4 5 Click Image: Click <t< td=""><td></td><td>_</td><td>•</td><td></td><td></td><td></td><td></td><td>None</td><td>-</td></t<>		_	•					None	-
4 6 6 Click Data View Variable View SPSS Processor is ready Value Labels	-		Numeric	-				_	
5 6 Click Data View Variable View SPSS Processor is ready SPSS Pro	3	Height	Numeric	9	1	Height of the st	None	None	
Click Deta View SPSS Processor is ready Value Labels Value Labels Value Labels Value Labels Value = Processor is ready Processor is ready Processor is ready Processor is ready Processor is ready Processor is ready Processor is ready Processor is ready Processor is ready Pro	4								
Data View Variable View SPSS Processor is ready Value Labels Value Labels Value Labels Value Labels Value : Label: Label: Change 2 = Temale*	5								
Data View Variable View SPSS Processor is ready Value Labels Value Termade** Premade**	6				CI	ICK 🔨			-
SPSS Processor is ready	-	•		388	-				
Value Labels	Data View	Variable View							
Value Labels Value: Spelling Label: Change 2 = "Female" Benove						SPSS Pro	cessor is ready		
		ŝ	Value Labels - Value: Label: Add Change	2 = "Female"	Cancel				

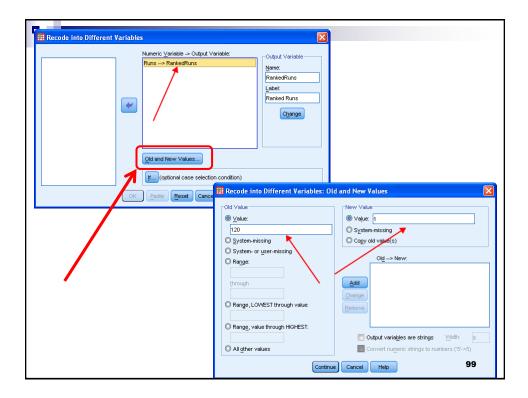


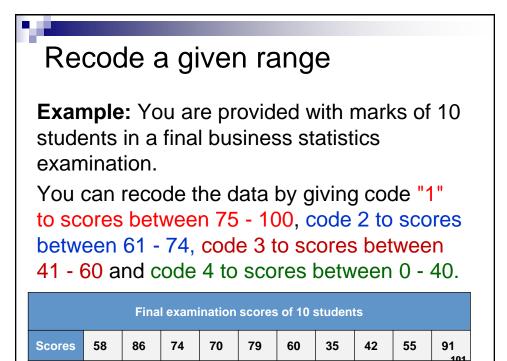

	S	orting	g th	e data	l			
sample.s	av [DataSet1] -		-				. 8	X
File Edit)	_/iew <u>D</u> ata <u>⊺</u> i	ansform <u>A</u> na	alyze <u>G</u> ra	phs <u>U</u> tilities A	dd-ons Window	Help		
ے 📕 🤁	📴 🔶 👼	1. 14 1 ?	A 📲	📩 🗏 🕀 📰	🛯 🐨 💊 🖜			
	Name	Түре	Wic		Label	Values	Missing	
1	Name	String	7	0	Name of the st		None	
2	Gender	Numeric	9	0	Gender of the s	{1, Male}	None	
3	Height	Numeric	9	1	Height of the st		None	
4								
5	Clic							
6		ĸ						
- /	1							
Data view	Variable View							
					SPSS Pr	ocessor is ready		
	ple.sav [DataSe							
Eile Eo	lit ⊻iew <u>D</u> ata	<u>T</u> ransform	Analyze		Add-ons Window			
Elle Ed	lit ⊻iew <u>D</u> ata	Iransform	Analyze	Graphs Utilities	Add-ons Window	Helb		
Eile Eo	alit ⊻lew Data La III ← t	Iransform	Analyze	1 💼 🔛 💷	Add-ons Window	Help of 3 Variables		
Eile Eo 1 : Name	dit ⊻jew Data Da III ← € Name	Iransform	Analyze	Height	Add-ons Window	Helb		
Elle Ed	alit ⊻lew Data La III ← t	Iransform	Analyze	1 💼 🔛 💷	Add-gns Window	Help of 3 Variables		
Elle Ed	iit ⊻iew Data Parit ← t Name JAUNITA	Iransform	Analyze	Height 5.4	Add-gns VyIndow Visible: 3 Var v	Help of 3 Variables		
Elle Ed 	tt View Data the Mame UAUNITA SALLY DONNA SABRINA	Iransform	Analyze	Height 5.4 5.3 5.6 5.7	Add-gns Window Solution Visible: 3 Var	Help of 3 Variables		
Ele Ex 2007 1: Name 1: Name 1 2 3 4 5	itt View Data it	Iransform	Analyze 2 2 2 2 2 1	Height 5.4 5.3 5.6 5.7 5.7 5.7	Add-gns Window Visible: 3 Var	Help of 3 Variables		
Ele Ex Ele Ex 1 : Name 1 : Name 1 : 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	itt View Data	Iransform	Analyze 2 2 2 2 1 1 1	Height 6.4 5.3 5.6 5.7 5.7 6.0	Add-gns Window Visible: 3	Help of 3 Variables		
Ele Ex Ele Ex 1 : Name 1 : Name 1 : 0 1 : 0 1 : 0 0 1 : 0 0 0 0 0 0 0 0 0 0 0 0 0 0	itt View Data	Iransform	Analyze Ana	Height 5.4 5.3 5.6 5.7 5.7 6.0 6.0 6.4	Add-gns <u>Vi</u> fedow Solution Visible: 3 Var	Help of 3 Variables		
Ele Ex Ele Ex 1 : Name 1 : Name 1 : 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	itt View Data	Iransform	Analyze 2 2 2 2 1 1 1	Height 6.4 5.3 5.6 5.7 5.7 6.0	Add-gns <u>Vi</u> fedow Solution Visible: 3 Var	Help of 3 Variables		


	L		_						
orung	j u	ne data	a						
		1.4	0	•	_				
ICK Data	a' ar	d then clic	k Sort	Case	S				
🚰 sample.s	av [Da	taSet1] – SPSS Da	ata Editor						
<u>File E</u> dit <u>y</u>	<u>V</u> iew	Data <u>T</u> ransform	<u>A</u> nalyze	<u>G</u> raphs	Utilities	Add- <u>o</u> ns	Window	<u>H</u> elp	
🕞 📕 🔔	 ;	IV Define <u>∨</u> ariable	Properties		1	🎫 😵 (۵ 🍋		
1 : Name		🔚 Copy Data Prop	erties				Visible: 3 d	of 3 Variables	
		New Custom At	tri <u>b</u> ute		ht	var	Va	ar	Ĩ
1		🗟 D <u>e</u> fine Dates			5.4			^	
2	SAL	🔡 Define <u>M</u> ultiple F	Response Se	ts	5.3				
3	-	🚦 Identify D <u>u</u> plicat	e Cases		5.6				
4	SAE	원 Sort Cases			5.7				
5	JOH.	🗾 _ Sort Varia <u>b</u> les			5.7				
6	MAH	Tra <u>n</u> spose			6.0				
7	BRU	Restructure			6.4 5.9				
0	╶╼╼┥	Mer <u>q</u> e Files		•	5.9				
	•	Aggregate							-
Data View	Varia	🔚 Copy <u>D</u> ataset							
Sort Cases					SEPSS Pr	ocessor is r	ready		

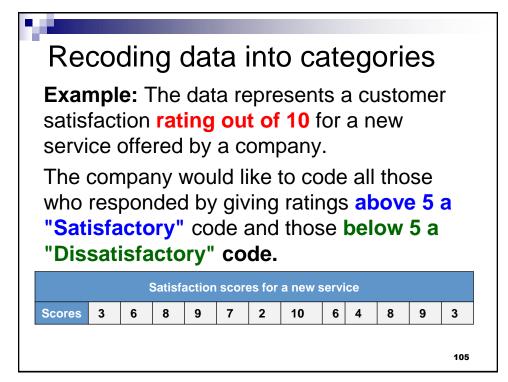


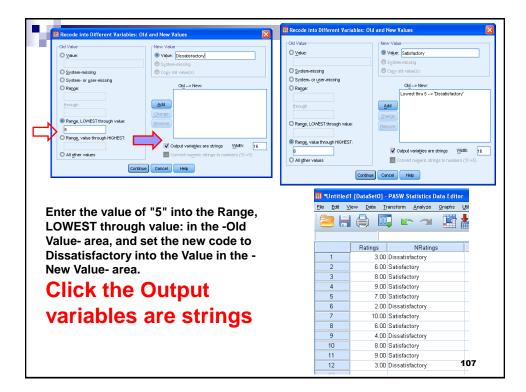


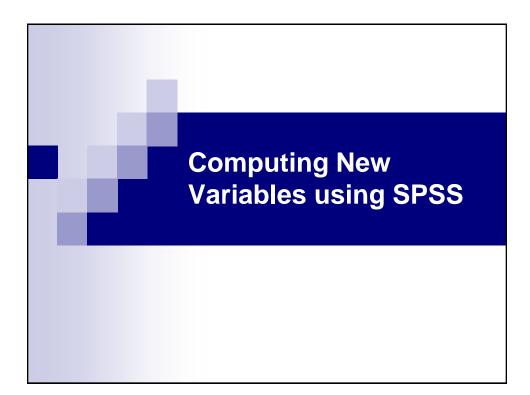


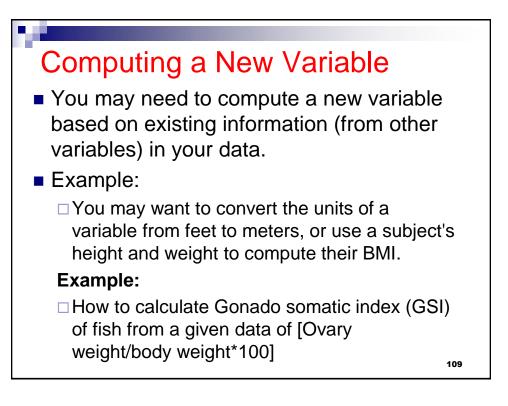


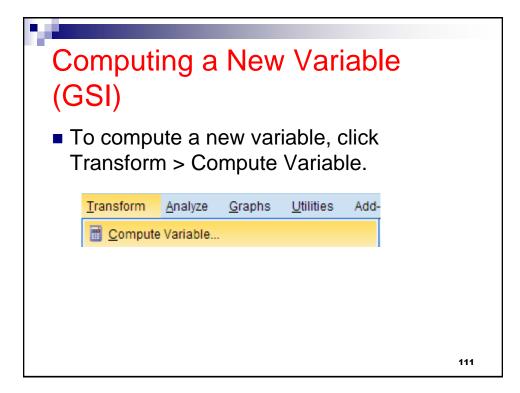
Untitled1	[DataSet0]	PASW Sta	tistics Data Edi	itor	
<u>F</u> ile <u>E</u> dit ⊻i	ew <u>D</u> ata <u>T</u>	ransform <u>A</u>	<u>A</u> nalyze <u>G</u> raphs	Utilities	
🔄 🔒		, r			
	Runs	var	var	var	
1	86.00				
2	120.00				Click on Transform > Recode Into
3	56.00				Different Variables.
4	10.00				
5	18.00				aSet0] - PASW Statistics Data Editor
6					<u>D</u> ata <u>Transform</u> <u>A</u> nalyze <u>G</u> raphs <u>U</u> tilities Add- <u>o</u> ns
					Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variables Shift Values within Cases Image: Compute Variables Shift Values Image: Recode into Different Variables Image: Values Variables 1200 Image: Recode into Different Variables Image: Values Values Variables 1201 Image: Recode into Different Variables Image: Values V
					97
					57

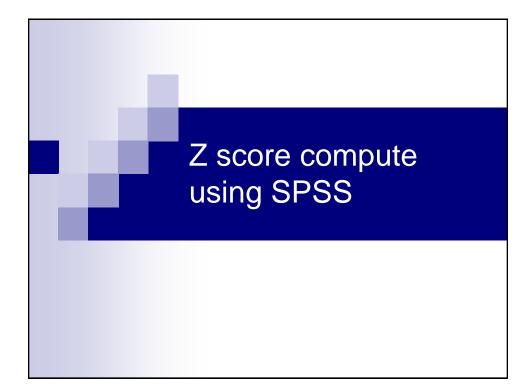

	New Value		
lo ⊻alue:	Ø ∀aļue:	1	
	System-missing		
System-missing	Copy old value(s)		
O System- or user-missing	Old> New:		
O Range:	120> 1		
through	Add 86> 2 56> 3		
in ough	56> 3 Change 18> 4		
Range, LOWEST through value:	Remove 10> 5		
	Lane of the second seco		
Range, value through HIGHEST:			
		8	
◯ All other values	Convert numeric strings to numbers ('5'->5)		
Ga	ntinue Cancel Help		
		Runs	RankedRuns
		86.00	2.00
		120.00	1.00
		56.00	3.00
		10.00	5.00

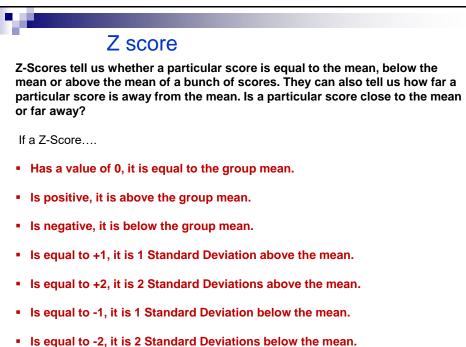

🔢 *Untitled1 [DataSet0] - PASW Statistics Da Edit View Data Transform Analyze File Click on Transform > **Recode Into Different Variables** Scores var 1 58.00 aSet0] - PASW Statistics Data Editor 2 86.00 Data Transform Analyze Graphs Utilities Add-ons 3 74.00 📑 Compute Variable... Ë 4 70.00 🔀 Count Values within Cases... 5 79.00 6 60.00 Shift Values... luns 7 35.00 🔤 Recode into Same Variables... 86. 8 42.00 🔤 Recode into Different Variables.. 120. 9 55.00 Matomatic Recode... 56. 10 91.00 📴 Visual Binning.. 10. 🛃 Rank Cases... 18. 🚔 Date and Time Wizard... 102

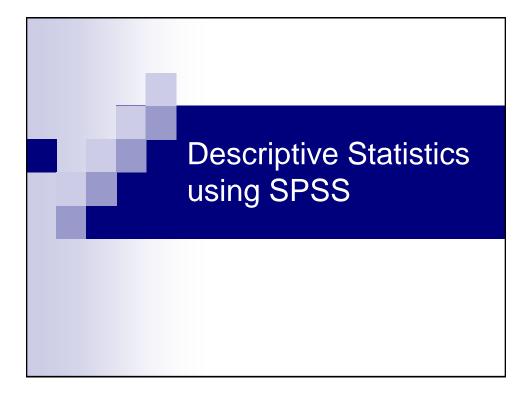

Recode into Different V	ariables	×	
	Numeric Variable -> Output Varial Scores -> ?	Variante Name: NScores Label: New Scores Change	
	CK Paste Reset Cancel	ndition)	New Value Value: Value: Cogy old value(s) Old> New: Add Change Remove Codput variables are strings Width: 8 Convert numeric strings to numbers (5->5)

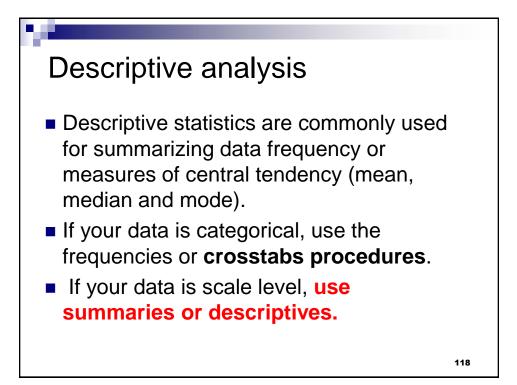

Recode into Different Variables: Old and New Values			
Cold Value			
© ⊻alue: © Value:			
System-missing			
© System-missing © Copy old value(s)			
O System- or user-missing Old> New:			
© Range: 75 thru 100> 1			
61 thru 74> 2 through 61 thru 76> 3			
through Add 41 thru 60> 3 Change 0 thru 40> 4			
Range, LOWEST through value: Remove			
Range, value through HIGHEST:	The theory of the second	1 [DataSot0] - D	ASW Statistics D
Output variables are strings Width: 8	Page 1		
All <u>ather values</u> Convert numeric strings to numbers ('5'->5)	<u>F</u> ile Edit ⊻	jew <u>D</u> ata <u>T</u> ran	nsform <u>A</u> nalyze
Continue Cancel Help		🖨 🛄	
1			
		Scores	NScores
	1	58.00	3.00
	2	86.00	1.00
	3	74.00	2.00
	4	70.00	2.00
	5	79.00	1.00
	6	60.00	3.00
	7	35.00	4.00
	8	42.00	3.00
	9	55.00	3.00
	10	91.00	10400

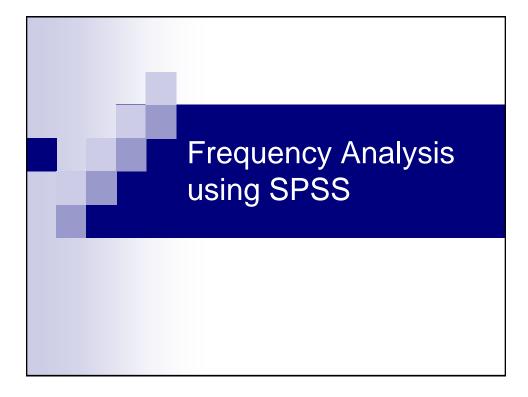

	1 [DataSet0] - P jew <u>D</u> ata <u>T</u> rar	ASW Statistics Insform <u>A</u> nalyze	 Click on Transform > Recode Into Different Variable
	Ratings	var	III Recode into Different Variables
1	3.00		Numeric Variable -> Output Variable:
2	6.00		Ratings> ? Name:
3	8.00		NRatings Labet:
4	9.00		New Ratings
5	7.00		Chenge
6	2.00		
7	10.00		Old and New Values
8	6.00		If (optional case selection condition)
9	4.00		
10	8.00		OK Paste Reset Cancel Help
11	9.00		
12	3.00		Name the output variable of "NRatings"
			and label of "New Ratings"




\sim_{c}	mnu	ite GS	21			
	nnpu		J			
	_					
				‱ ⊒∥∥		E
	SNO	totallength	totalweight	ovaryweight	fecundity	
	1	13.20	38.46	5.99	31148	
	2	12.50	35.71	4.77	24327	
	3	13.20	40.90	5.41	33001	
	4	12.40	36.84	5.74	35014	
	5	13.00	40.73	3.11	19904	
	6	12.80	38.90	4.35	23925	
	7	12.70	39.50	3.93	27117	
	8	13.60	49.56	4.54	25424	
	9	13.30	50.80	3.52	21120	
	10	12.90	37.37	4.83	29946	
	11	13.10	38.89	3.67	17983	
	12	12.90	34.03	4.56	22800	
	13	13.00	35.27	3.07	14429	
	14	13.70	41.55	3.97	19850	
	15	12.80	36.38	1.27	6477	
	16	13.00	36.10	2.54	13462	
	17	12.70	33.22	1.26	6426	
	18	13.50	46.67	5.47	26803	
	19	13.00	35.65	1.36	7208	
	20	12.70	35.54	.60	3120	
	21	18.30	121.91	5.02	30120	
	22	18.20	111.93	3.29	19082	
	23	19.20	137.19	1.76	9504	
-						

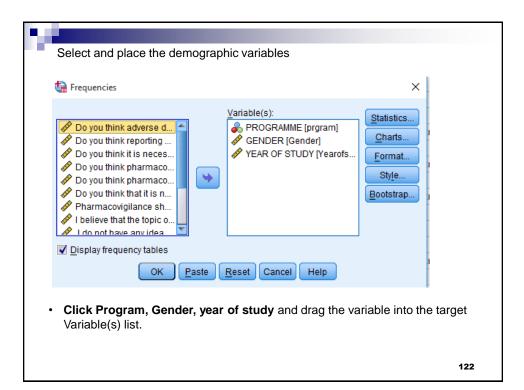

I 0 . I 0 .	Compute Variable Target Variable: GSI Type & Label Set Serial Number (SNO) Set Total weight of the f Total weight of the f Total weight of the o The number of eggs	Image: Contract of the second seco	
© String Width: 8	(optional case sele	I 0 . I 0 . Date Arithmetic Date Creation Date Creation Example Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable Image: Compute Variable	

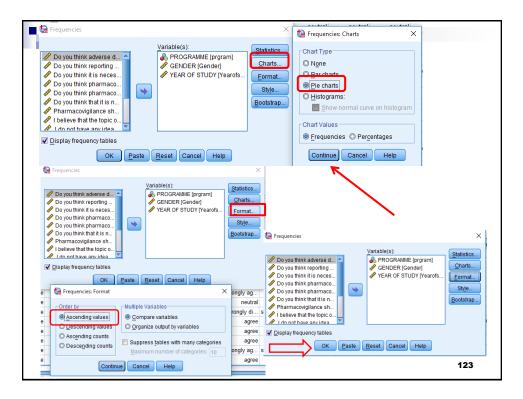

SNO	totallength	totalweight	ovaryweight	fecundity	GSI	
1	13.20	38.46	5.99	31148	15.57	
2	12.50	35.71	4.77	24327	13.36	
3	13.20	40.90	5.41	33001	13.23	
4	12.40	36.84	5.74	35014	15.58	
5	13.00	40.73	3.11	19904	7.64	
6	12.80	38.90	4.35	23925	11.18	
7	12.70	39.50	3.93	27117	9.95	
8	13.60	49.56	4.54	25424	9.16	
9	13.30	50.80	3.52	21120	6.93	
10	12.90	37.37	4.83	29946	12.92	
11	13.10	38.89	3.67	17983	9.44	
12	12.90	34.03	4.56	22800	13.40	
13	13.00	35.27	3.07	14429	8.70	
14	13.70	41.55	3.97	19850	9.55	
15	12.80	36.38	1.27	6477	3.49	
16	13.00	36.10	2.54	13462	7.04	
17	12.70	33.22	1.26	6426	3.79	
18	13.50	46.67	5.47	26803	11.72	
19	13.00	35.65	1.36	7208	3.81	
20	12.70	35.54	.60	3120	1.69	
21	18.30	121.91	5.02	30120	4.12	
22	18.20	111.93	3.29	19082	2.94	
23	19.20	137.19	1.76	9504	1.28	1



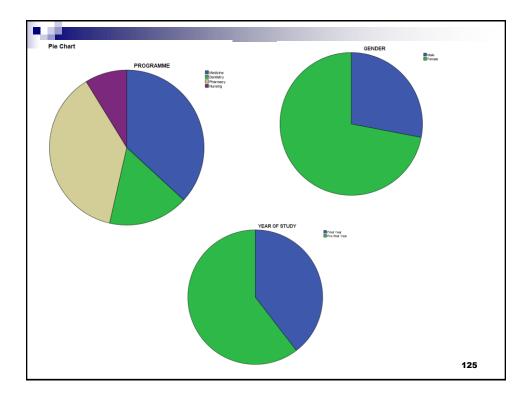
nalyze Direct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilities	Add- <u>o</u> ns <u>V</u>	In the Data View	of the Data Edit
Reports	> 31		window, the z-sco	ores will be add
Descriptive Statistics	Frequen	cies	as a new variable	, O
Ta <u>b</u> les Co <u>m</u> pare Means	Descript		Ztotalweight) with case having a z-s	
General Linear Model			Ztotallength	Ztotalweight
Generalized Linear Mo	dels b	bs	-1.40667	-1.46442
-	Ratio		-1.74226	-1.56476
Mixed Models	P-P Plot	5	-1.40667	-1.37540
Correlate	•		-1.79021	-1.52353
Regression	Q-Q Plot		-1.50256	-1.38160
Loglinear	2 MIDDLE C	TAUF	-1.59844	-1.44837
			-1.64638	-1.42648
Descriptives		×	-1.21491	-1.05943
			-1.35873	-1.01418
•	Variable(s):	Options	-1.55050	-1.50419
Serial Number [SNO]	Total length of the		-1.45462	-1.44873
Gol 🗸	Total weight of the	H	-1.55050	-1.62606
	The number of eq		-1.50256	-1.58081
•			-1.16697	-1.35168
			-1.59844	-1.54031
			-1.50256	-1.55053
			-1.64638	-1.65561
Save standardized values as	variables		-1.26285	-1.16487
			-1.50256	-1.56695
OK Paste	e <u>R</u> eset Cancel H	elp	-1.64638	-1.57096
			1.03835	1.58035
			.99040	1.21622
			1.46982	2.13786

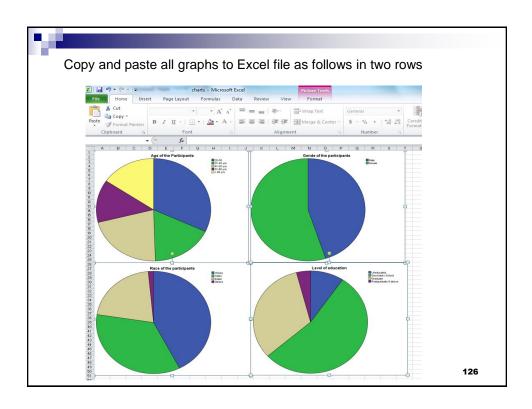
Frequency analysis

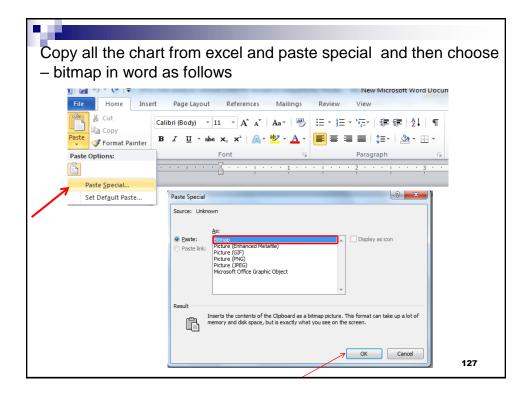

Frequency analysis is a descriptive statistical method that shows the number of occurrences of each and each category of variables and response chosen by the respondents.

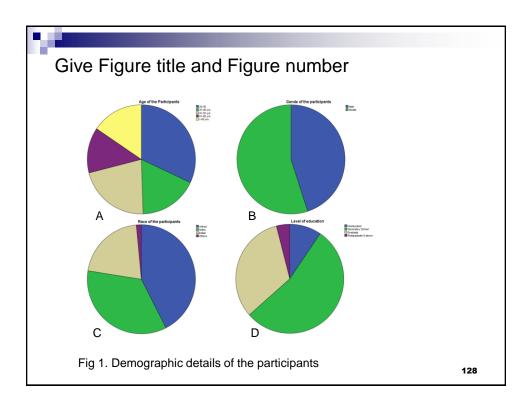

Consider the following variables

- Program
- Gender
- Year of study

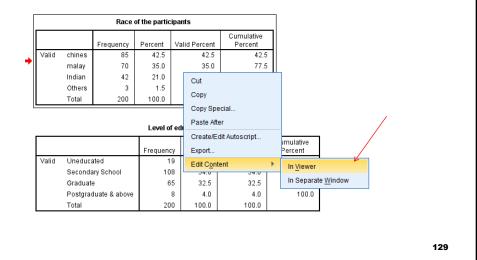

ile <u>E</u>	dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze D	irect <u>M</u> arketing	Graphs
2				~	*	R.
		prgram	Gender	Yearofstudy	Question16	Question17
1		Medicine	Male	Final Year	strongly ag	strongly ag
2		Medicine	Male	Final Year	agree	agree
3		Medicine	Male	Final Year	neutral	agree
4		Medicine	Male	Final Year	strongly ag	disagree
5		Medicine	Male	Final Year	agree	agree
6		Medicine	Male	Final Year	strongly ag	strongly ag
7		Medicine	Male	Final Year	strongly ag	agree
8		Medicine	Male	Final Year	strongly ag	strongly ag
9		Medicine	Male	Final Year	neutral	neutral
10		Medicine	Male	Final Year	strongly ag	strongly ag
11		Medicine	Male	Final Year	strongly ag	disagree
12		Medicine	Male	Final Year	strongly ag	disagree
13		Medicine	Male	Final Year	strongly ag	strongly ag
14		Medicine	Male	Final Year	strongly ag	strongly ag
15		Medicine	Male	Final Year	strongly ag	strongly ag
16		Medicine	Male	Final Year	strongly ag	strongly ag
17		Medicine	Male	Final Year	strongly ag	strongly ag
18		Medicine	Male	Final Year	strongly ag	strongly ag
19		Medicine	Male	Final Year	strongly ag	agree
20		Medicine	Male	Final Year	strongly ag	agree
21		Medicine	Female	Final Year	agree	agree
22		Medicine	Female	Final Year	strongly ag	strongly ag
23		Medicine	Female	Final Year	strongly ag	agree

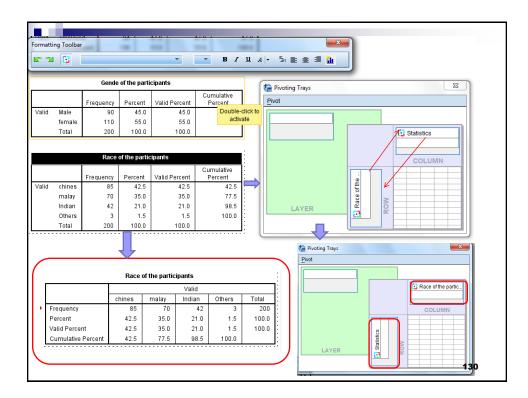

			hoose: tive Statist	ics > Fr	equencies				
<u>F</u> ile <u>E</u> dit	View	<u>D</u> ata	<u>T</u> ransform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add-	ons <u>W</u> indov
a 🖛				Repo	rts	•	- ×		7 📖
				D <u>e</u> sc	riptive Statistics	•	123 Frequ	lencies.	
			1	Ta <u>b</u> le	S	•	Desc	riptives.	
	prgr		Gender	Com	pare Means	•	A Explo	re	ion19
1	Me	dicine	Male	<u>G</u> ene	ral Linear Model	*	Cross		y ag
2	Me	dicine	Male	Gene	rali <u>z</u> ed Linear Mode	els 🕨 🕨			agree
3	Me	dicine	Male	Mixed	Models	*		- Analys	is agree
4	Me	dicine	Male	Corre	late		Matio		agree
5	Me	dicine	Male	Regr	ession	*	🙍 <u>Р</u> -Р Р	lots	neutral
6	Me	dicine	Male	Loglin	near		🛃 <u>Q</u> -Q F	Plots	neutral
7	Me	dicine	Male		al Networks		e	agree	neutral
8	Me	dicine	Male	Class	—		. strongly	y ag	strongly ag
9	Me	dicine	Male		nsion Reduction		l r	neutral	neutral
10	Me	dicine	Male	_			. strongly	y ag	neutral
11	Me	dicine	Male	Sc <u>a</u> le			e strongly	y ag	agree
									121

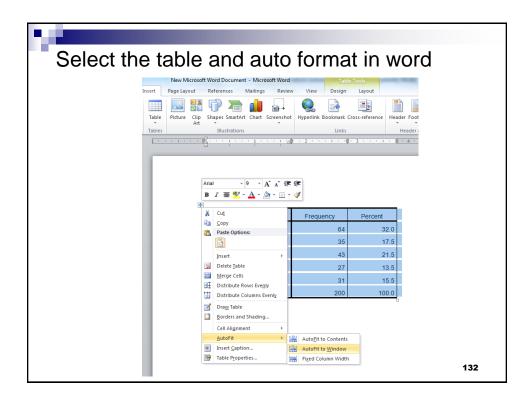




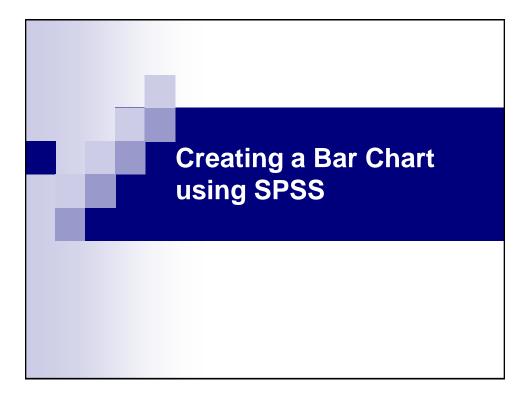
	uencies											
		Statist	ics									
		PROGRAMME	GENDE	YEAR OF R STUDY			_		YEAF	R OF STUDY		
N	Valid	364			64			le-click to ctivate	Frequency	Percent	Valid Percent	Cumulat Percer
	Missing	0		0	0		/alid	Final Year	144	39.6	39.6	
								Pre-final Yea Total	r 220 364	60.4 100.0	60.4 100.0	1
Mallat	Manuffacture a				Pe			•	No m	nissii	ng val	ues
		P	ROGRAMME					_				
		Frequency	Percent	Valid Percent	Cum Pe	ercer	it	•	No m	nissii	ng val	ues
Valid	Medicine Dentistry	134	36.8 16.8	36.8 16.8			36.8 53.6				ta set	
	Pharmacy		37.6	37.6			91.2					
	Nursing	32	8.8	8.8			00.0	•	Prog	rami	me,	
	Total	364	100.0	100.0							year o	f
	Total							-		, joi,		
	Total											
	Totai		GENDER						study			
	Totai			Valid Percent	Cumula				(freq	ueno	tribution cy and	
Valid	Male			Valid Percent 28.0					-	ueno		
Valid		Frequency	Percent		Perce	ent	.0		(freq	ueno		







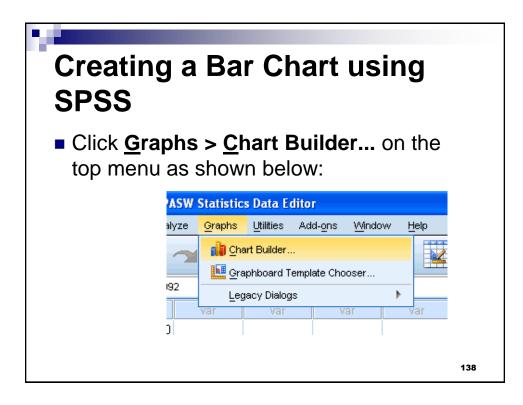
If you want to rearrange the column and row items, Try Pivot Table.. Select the table – Right click – Edit Content – In Viewer.



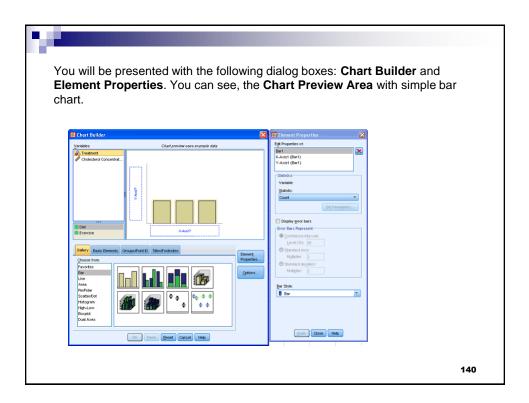
	Edit	a	nd	fc	orm	nat	ttir	ng	ta	ble	Э							
	CopyPastCleaDele	e in e r forr	excel natti	l file ng a	s foll	ows	put											
Fil	e Home Inse	t Page L	ayout F	ormulas	Data R	eview V	fiew											a 🕜 🗆 🖻
Past	Cut Copy ~ te Format Painter Clipboard	Arial B Z U	• 9 • 🔛 • Font	∗ A* ∧ <u>⊗</u> ∗ <u>A</u>		<mark>=</mark> ≫·* ≡ ≇ ≇ € Aligr	📑 Wra E 💽 Mer	ap Text rge & Cent				onditional Fermatting + as Styl	able - Styl	ell Insert	Delete Fo	ormat	Σ AutoSum *	Sort & Find & Filter * Select *
	A2 -	(*	f_{x}														🦢 Clear Eo	mats
1	A B	C Age of the P	D articipants	E	F	G	Н	1	J	K	L	M	N	0	Р		<u>C</u> lear Co Clear Co	
2	1	Frequency	Percent	Valid Percent	Cumulativ e Percent												Clear Hy	
3	Valid 20-30	64	32.0	32.0													Remove	Hyperlinks
4	31-40 yrs	35	17.5	17.5		_			X 🖬 🤊	- Cu - -	-	-	-					
5	41-50 yrs 51-60 yrs	43 27	21.5 13.5	21.5 13.5					File	Home	Insert	Page Layout	Formul	n s				
6 7	> 60 yrs	31	13.5	13.5						Cut	Calib	ri	- 11 -	A A				
	Total	200	100.0	100.0					Pacte	Сору т	в	IU-	2 - 20	- A -				
8																		
8							L			Format Pair	nter G	Font		- 6				
8							L	-,	Clipt		incer .			5				
8	:						L	-,	Clipt	Diard Diard A	⊊ ▼(*	Font fx B	С	5				
8	-						L	;	Clipt	Doard	⊊ ▼(*	Font fx B Frequency	C	5				
8							L	-,	Clipt Clipt 1 Age o 2 20-30 3 31-40	Doard D17 A f the parti	⊊ ▼(*	Font fx B Frequency	C Perci 64 35	ent 32.0 17.5				
8							L	-,	Clipt 1 Age o 2 20-30 3 31-40 4 41-50	Dooard D17 A f the parti yrs yrs	⊊ ▼(*	Font fx B Frequency	C Perci 64 35 43	ent 32.0 17.5 21.5				
8							L	•	Clipt Clipt 1 Age o 2 20-30 3 31-40	A A f the parti yrs yrs yrs	⊊ ▼(*	Font fr B Frequency	C Perci 64 35 43 27	ent 32.0 17.5				
8							L	,	Clipt 1 Age o 2 20-30 3 31-40 4 41-50 5 51-60	A A f the parti yrs yrs yrs	⊊ ▼(*	Font fx B Frequency	C Perci 64 35 43 27 31	ent 32.0 17.5 21.5 13.5				131

Layo	Plain Tables		ailings R	eview View	w Design	Layout		A Shading	•	-				
								H Borders	Pen Color	Draw Table Borders	Eraser			
	Built-In								Didw					
					u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u u		-		Create New Style fr	om Formatt	ing		_	(¥ 📄
								6	Properties Name:		Style2			
								4	Style <u>type</u> : Style <u>b</u> ased on: Formatting	\longrightarrow	Table			
								2	Agply formatting to Calibri (Body)); • 11 •	Whole table	Automatic	_	
								20		√2 pt	B I ∐ → Automatic		No Color	• =
									East	Jan 7	Feb 7	Mar 5	Tota 19	
							•		West South	6 8	4 7	7	17 24	
	國 <u>M</u> odify	Table Style					•		Total	21	18	21	60	
	Clear													
≯	Mew Ta	ble Style					.:		Line spacing: s After: 0 pt, Pri Based on: Table	prity: 100				
									Only in this docu	ment 🔘 Ne	ew documents based	on this template		
									Format *				OK	Cancel

APA (American Psychological Association) style formatti table				
Age of the participants	Frequency	Percent		
Age of the participants	(requerie)	1 010011		
20-30		64 32.0		
• • •				
20-30		64 32.0		
0-30 11-40 yrs 11-50 yrs		64 32.0 35 17.5		
20-30 31-40 yrs		64 32.0 35 17.5 43 21.5		

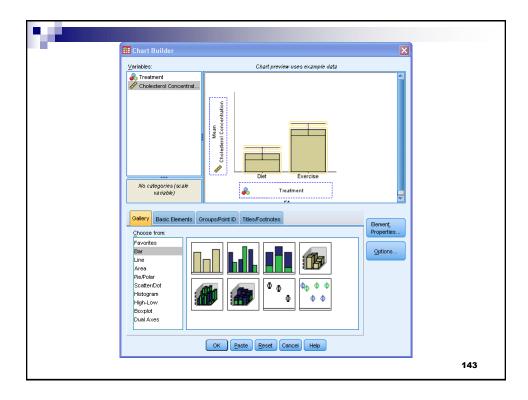

Bar chart

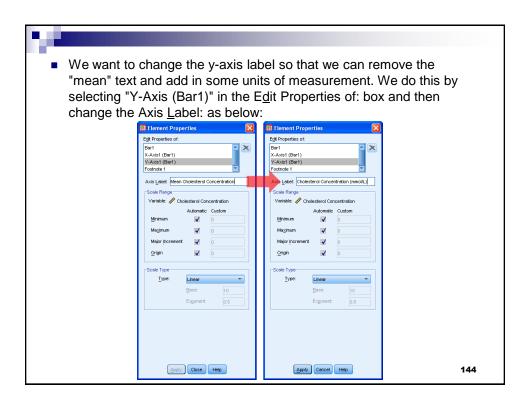
- A bar chart is helpful in graphically describing (visualizing) your data. It will often be used in addition to inferential statistics.
- For example, a bar chart can be appropriate if you are analysing your data using an independent-samples t-test, paired-samples t-test (dependent t-test), one-way ANOVA or repeated measures ANOVA

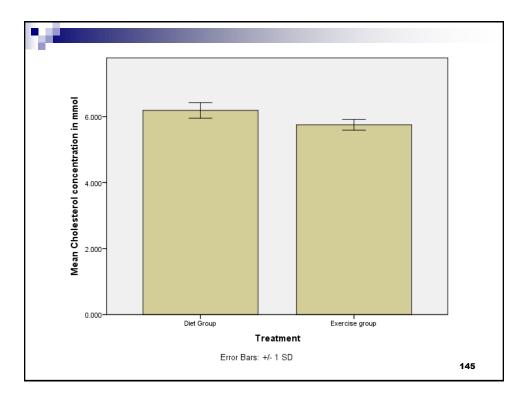

Example

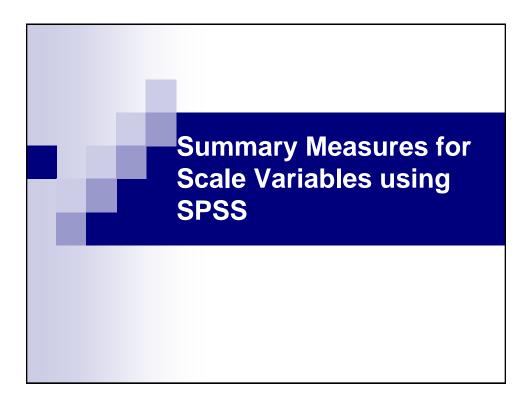
The concentration of cholesterol (a type of fat) in the blood is associated with the risk of developing heart disease, such that higher concentrations of cholesterol indicate a higher level of risk and lower concentrations indicate a lower level of risk. If you lower the concentration of cholesterol in the blood, your risk for developing heart disease can be reduced. Being overweight and/or physically inactive increases the concentration of cholesterol in your blood. Both exercise and weight loss can reduce cholesterol concentration. However, it is not known whether exercise or weight loss is best for lowering blood cholesterol concentration.

A random sample of inactive male individuals that were classified as overweight were recruited to investigate whether an exercise or weight loss intervention is more effective in lowering cholesterol levels. This sample was split into two groups: one group underwent an "exercise training programme" (labelled "exercise" in the bar chart), and the other group undertook a "calorie-controlled diet" (labelled "diet" in the bar chart). In order to determine which treatment programme was more effective, the mean cholesterol concentrations were compared between the two groups at the end of the treatment programmes. The dependent variable was Cholesterol Concentration, and the independent variable, Treatment, which consisted of these two groups: "exercise" and "diet"


ł					
Under the Gallery Tab (Gallery), select the Bar option and the simple bar chart icon (top-left icon).					
Drag-and-drop this icon into the Chart Preview Area .					
🔡 Chart Builder	X	III Chart Builder	X		
Variables:	Chart preview uses example data	⊻ariables:	Chart preview uses example data		
Treatment Cholesterol Concentrat	Drag a Gallery chart here to use it as your starting	🔗 Treatment 🎤 Cholesterol Concentrat	Drag a Gallery chart here to use it as your starting		
	point		point		
	OR		OR		
	Click on the Basic Elements tab to build a chart element by element		Click on the Basic Elements tab to build a chart element by element		
Diet Exercise		Diet Exercise			
	roups/Point ID Titles/Footnotes Element	Gallery Basic Elements G	roups/Point D Titles/Footnotes Element		
Choose from: Favorites	Properties	Choose from: Favorites	Properties		
Bar Line Area Pie/Polar		Bar Line Area			
Scatter/Dot		Pie/Polar Scatter/Dot			
Histogram High-Low	$\Phi \Phi \Phi \Phi \Phi \Phi \Phi \Phi \Phi \Phi $	Histogram High-Low			
Boxplot Dual Axes		Boxplot Dual Axes			
	OK Paste Reset Cancel Help		OK Pasto Reset Cancel Help		
			139		



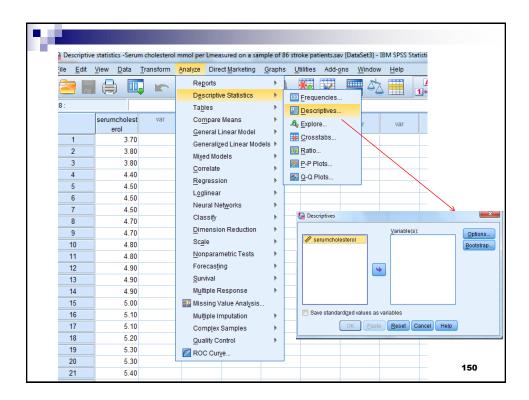

Transfer the independent variable, Treatment, into the "X-Axis?" box and the dependent (outcome) variable, Cholesterol Concentration, into the "Y-Axis?" box within the Preview Chart Area by drag-and-dropping the variables from the Variables: box. 🔢 Chart Builder Veriables: Treatment Cholesterol Concentrat... Chart preview uses example data Mean Cholesterol Concentration ø No categories (scale variable) ŝ Treatment Gallery Basic Elements Groups/Point ID Titles/Foo Element Propertie Choose from Favorite Bar Options.. bar Line Area Pie/Polar Scatter/Dot Histogram High-Low Boxplot 日夕 Φ_Φ Φ Φ Φ Φ φφ Dual Axes

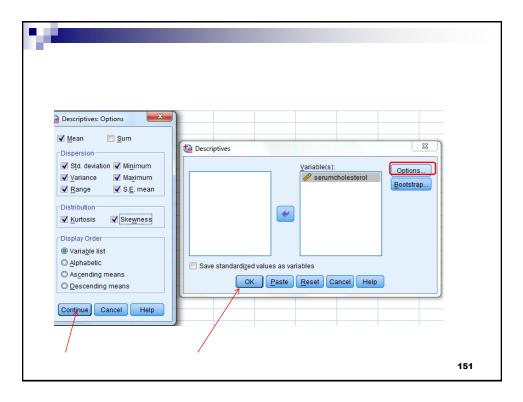

OK Paste Reset Cancel Help

Ideally, we want to be able to show a measure of the spread of the data. In this case, we wish to have error bars that represent ± 1 standard deviations. To do this, we tick the Dispay error bars checkbox and then, under the -Error Bars Represent- area, we check the Standard deviation box, and in the Multiplier:, enter "1". 🔢 Element Prop Edit Properties of Bar1 × parı X-Axis1 (Bar1) Y-Axis1 (Bar1) tatist Variable: 🔗 Cholesterol Concentration Statistic . Mean 🖌 Display <u>e</u>rror bars Error Bars Represen O Confidence intervals Standard error Multiplier: Bar Style Bar • Click apply Apply Cancel Help 142

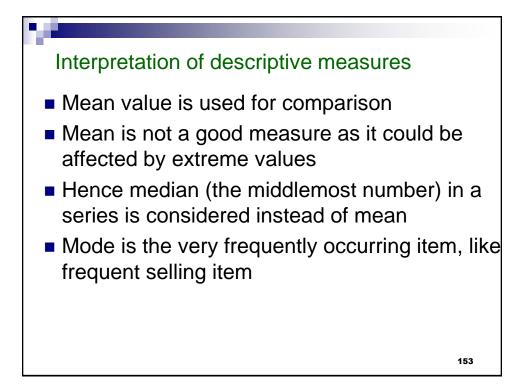
Descriptive statistics: Summary Measures

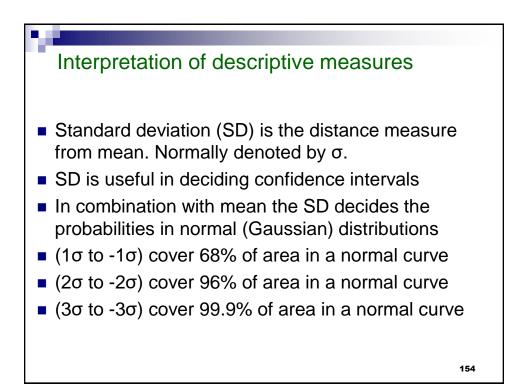
A study was conducted to determine the serum cholesterol (mmol/L) measured on a sample of 86 stroke patients and the results are given in the below table.

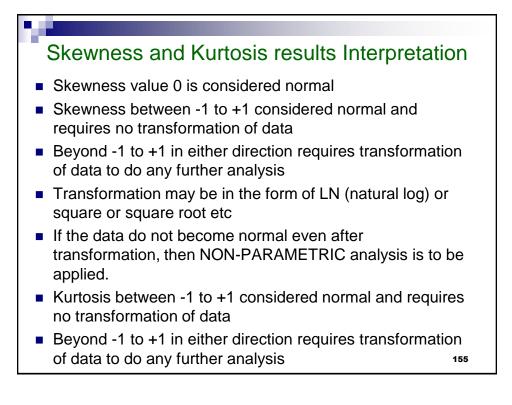

8.7	7.6	7.0	6.4	6.1	5.6	5.4	4.8	3.7
8.9	7.6	7.0	6.5	6.1	5.6	5.4	4.9	3.8
9.3	7.6	7.1	6.5	6.1	5.7	5.5	4.9	3.8
9.5	7.7	7.1	6.6	6.2	5.7	5.5	4.9	4.4
10.2	7.8	7.2	6.7	6.3	5.7	5.5	5.0	4.5
10.4	7.8	7.3	6.7	6.3	5.8	5.6	5.1	4.5
	7.8	7.4	6.8	6.4	5.8	5.6	5.1	4.5
	8.2	7.4	6.8	6.4	5.9	5.6	5.2	4.7
	8.3	7.5	7.0	6.4	6.0	5.6	5.3	4.7
	8.6	7.5	7.0	6.4	6.1	5.6	5.3	4.8

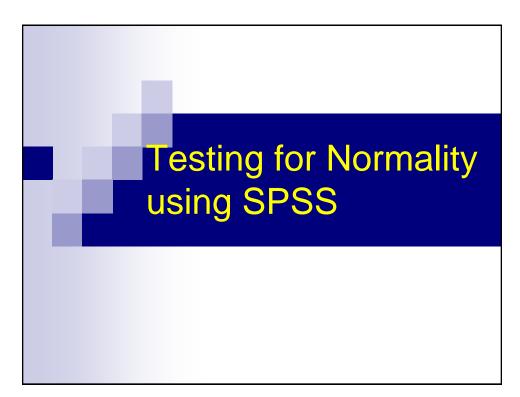

Descriptive Statistics

Descriptive measures describe the properties, distribution, dispersion and pattern of data

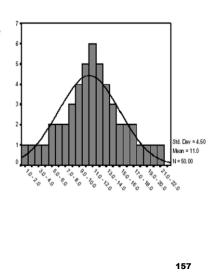

- Mean Gives central value
- Median Gives middle number
- Mode Gives high frequency number
- Standard deviation with upper and lower limits to mean
- Skewness and Kurtosis Give the nature of frequency curve
- Maximum and Minimum gives the range of values


10																	
•	Fr	nter	th	o d	ata												
							_										
•	CI	ick	AN	IAL	YZ.	Е·	– Des	scri	ptiv	/e	sta	tis	stic	S			
							asured on a sar										
<u>F</u> ile	Edit	View Da	ta <u>T</u> ra	ansform	Analyz	e Dire	ect <u>M</u> arketing	Graphs	Utilities	Add-	ons <u>W</u> i	ndow	<u>H</u> elp				
			<u> 10.</u>			17c		- AA	*	2		5					
									<u> </u>			-6		1			
28 :																	
		serumcho erol	olest	var		var	var	var	v	ar	var		var				
1		3	3.70														
2		3	3.80														
3			3.80														
4			4.40											_			
5			4.50											_			
6			4.50						_					_			
7			4.50											_			
8			4.70 4.70		_				_					-			
10			4.80		-				_					-			
11			4.80						_					-			
12			4 90											-			
13		4	4.90		_									-			
14	_	4	4.90											-			
15	1	5	5.00														
16	;	5	5.10														
17	·	Ę	5.10														
18	1	Ę	5.20														
19	1	ŧ	5.30														
20			5.30														
21			5.40											_			
22			5.40		_									_			
23			5.50													1	49



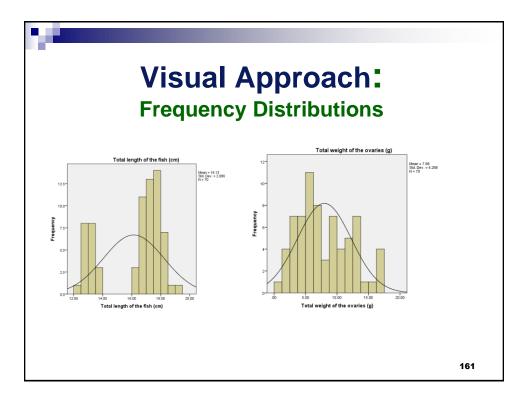


			Descriptive S	Statistics			
	Ν	Range	Minimum	Maximum	Mean	Std. Deviation	Variance
serumcholesterol	86	6.70	3.70	10.40	6.3407	1.39978	1.959
Valid N (listwise)	86						



Normality

- The concept of normality is central to statistics. Normality refers to the 'shape' of the distribution of data. Consider a histogram of values for one variable.
- By drawing a line across the 'tops' of the bars in the histogram, we are able to see the 'shape' of the data.
- When the 'shape' forms a 'bell' shape, we generally call this a normal curve.
- The figure is approximately normally distributed.
- For data to be normal, they must have the form of a bell curve


- As	sess	sing) Normali	ity	[,] Visuall	y and	d S	Statis	stica	ally
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Direct Marketing	Graph	ns <u>U</u> tilities Add- <u>o</u> ns	Window Help	1			-
<u></u>			Reports	•		N	A		ARC	
			Descriptive Statistics	•	123 Frequencies		A			
			Tables	•	Descriptives					
	SNO	totallength	Compare Means			var	var	var	var	var
1	1	13.2	General Linear Model		A Explore			Î		
2	2	12.5	— Generalized Linear Mod	els ▶	Crosstabs					
3	3	13.2			🔽 <u>R</u> atio					
4	4	12.4	Correlate	•	P-P Plots					
5	5	13.0		•	🛃 Q-Q Plots					23
6	6	12.8	 Loglinear	•	23925.00			Verieble (e):		
7	7	12.7	 Neural Networks	•	27117.00	Number [SNO]		<u>V</u> ariable(s):		Statistics
8	8	13.6	Classify	•		ngth of the fi				Charts
9	9	13.3	Dimension Reduction			eight of the fi				Format
10	10	12.9	Scale		· · ·	eight of the o	•			Bootstrap
11	11	13.1	- Noncometrie Teste		1000.00	mber of eggs				()
12	12	12.9			22800.00					
13	13 14	13.0 13.7	Survival		14429.00 19850.00					
14 15	14	13.7	Multiple Response					l		
15	15	12.0			3462.00	frequency tables				
17	10	12.7	Multiple Imputation	•	6426.00	ОК	aste 🛛	Reset Cano	el Help	
18	18	13.5		•	6803.00			_		
10	10	13.0	· · ·	•	7208.00					
20	20	12.7			3120.00					
21	21	18.3			30120.00			-		-

Statistical Approach Image: statistic Image: statis	Frequencies Variable(s) Serial Number (SNO) Variable(s) Total regist of the 1. Longer Longer Cock Paste Reset Cancel Hep	Visual Approach
		159

	Statistics											
			9	Statistics								
			length of fish (cm)	Total weight of the fish (g)	Total weight of the ovaries (g)	The number of eggs produced each female						
Ν	Valid	70		70	70	70						
	Missing			0	0	0	0					
Mean			16.1341	78.5963	7.9787	36804.6143						
Std. De	viation		2.08587	27.40759	4.26769	19152.37256						
Skewn	ess		737	444	.379	.662						
Std. Err	Std. Error of Skewness		.287	.287	.287	.287						
Kurtosi	s		-1.091	914	660	.064						
Std. Err	ror of Kurtosis		.566	.566	.566	.566						

Skewness and kurtosis values between –1.0 and +1.0 is considered normal

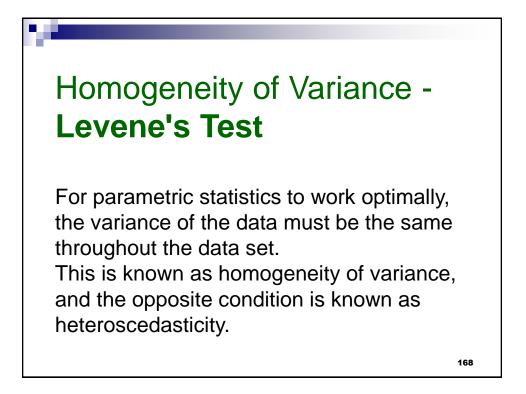
A positive skewness value indicates positive (right) skew; a negative value indicates negative (left) skew.

	Analyz	ze >	-	different I ptive Statis			plore		he		as
<u>F</u> ile <u>E</u>	<u>E</u> dit <u>V</u> iew	<u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> n	s <u>W</u> indow	<u>H</u> elp			
24 :				Re <u>p</u> orts D <u>e</u> scriptive Stati Compare Means			Frequencies				
	0	ourse	Time	General Linear I			Descriptives		ar		
1		2.00	56.0	Generalized Lin		a) _	Explore	6			
2		1.00	68.0	Mixed Models			<u>Crosstabs</u>	·			
3		2.00	45.0	Correlate		, I 🛛	Ratio				
4		3.00	25.0	Regression		, 1	P-P Plots				
5		2.00	63.0	Loglinear		<u>ا</u>	Q-Q Plots				
6		3.00	14.0	Classify		•					
7		2.00	25.0	Dimension Red	uction	•					
8		3.00	88.0	Scale		•					
9		1.00	45.0	Nonparametric	Tests	•					
10		1.00	38.0	Forecasting							
11		2.00	55.0	Survival							
12		3.00	49.0	Multiple Respon	ISA						
13		2.00	25.0	Bimulation		·					
14				Quality Control							
15						-					162
16				Z ROC Curve							102

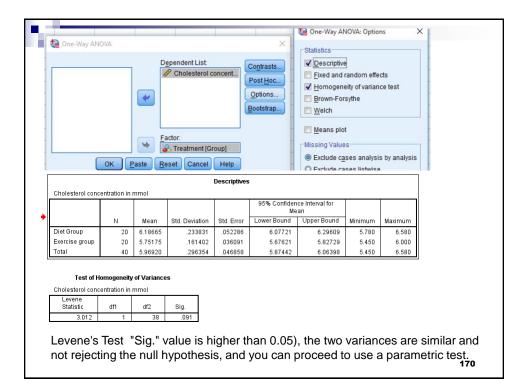
You will be presented with the Explore dialog	gue box, as shown below:
Explore	
Both O Statistics O Plots OK Paste Reset Cancel Help	Explore Explore Explore Explore Options
Transfer the variable that needs to be tested for normality into the Dependent List: Transfer the Time variable into the Dependent List: box.	Factor List ↓ Label <u>C</u> ases by: ↓ Label <u>C</u> ases by: ● <u>Both</u> O Statistics O Plots OK Paste Reset Cancel Help 163

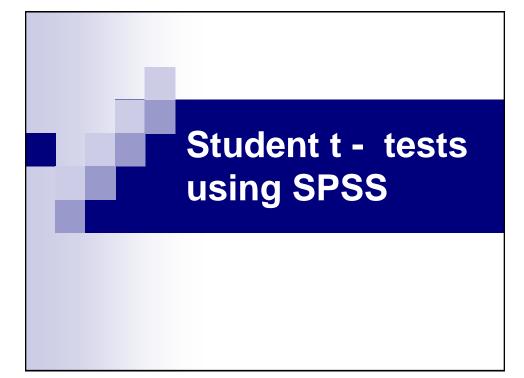
[Optional] If you need to establish if you each level of your independent variable variable to the Factor List: box	e, you need to add your independent
In this example, we transfer the Course You will be presented with the following	
Explore ×	Explore ×
Course Course	Dependent List Plots Plots Plots Options Eador List Course Label <u>Cases by:</u> Display @ <u>Both</u> © St <u>atistics</u> © Plots OK <u>Paste</u> Reset Cancel Help
Click the Statistics Button.	
	164

<u> </u>		
	ta 🛛	Explore
Click the Statistics Button. You will be presented with the Explore: Statistics dialogue box, as shown below:	Course	Dependent List Time Piots Piots Piots Label <u>C</u> ases by: tics O Piots
Check descriptives		Explore: Plots Boxplots Descriptive
Click the SPSS Plots Button		Eactor levels together Dependents together None None Normality plots with tests
Change the options so tha are presented with this scr	•	None Power estimation Transformed Power. Natural log Untransformed Continue Cancel Help
		165


enap	iro-Wilk	lest of	NOrm Tests of N					
	Course	Kolma	ogorov-Smir	nov ^a	8	Shapiro-Wilk		
		Statistic	df	Sig.	Statistic	df	Sig.	
Time	Beginner	.177	10	.200*	.964	10	.827	
	Intermediate	.166	10	.200*	.969	10	.882	
	Advanced	.151	10	.200*	.965	10	.837	
a. L	illiefors Significar	nce Correctio	n					
	-							
The ab		und of the true	e significand ents the	e resul				vn tests of normality, ro-Wilk Test .
The ab namely We car	ove table the Koli see fror nced" Co	e prese mogor m the a	e significand ents the ov-Sn above f	e resul nirnov table tl	r Test a hat for	and th the "E	e Sha Seginr	

Kolmogorov-Smirnov D test


- · Kolmogorov-Smirnov D test is a test of normality for large samples.
- This test is similar to a chi-square test for goodness-of-fit, testing to see if the observed data fit a normal distribution.
- If the results are significant, then the null hypothesis of no difference between the observed data distribution and a normal distribution is rejected


Shapiro-Wilks W test

Shapiro-Wilks W test is considered by some authors to be the best test of normality (Zar 1999). Shapiro-Wilks W is limited to "small" data sets up to n = 2000.

	DataSet2] - IBM : View Data	Transform	Analyze Direct Marketing	<u>G</u> raphs	Utilities	Add-ons Wi	ndow <u>H</u> el	р								o x
	🖨 🗖		Reports Descriptive Statistics	۲ ۲	1 👬		4	 		-						
			Tables	+											Visible: 2	of 2 Variables
	Group	Cholesterol	Compare Means	•	Means.			var	var	var	var	var	var	var	var	var
1	1.00	6.123	General Linear Model	•		imple T Test										4
2	1.00	6.000	Generalized Linear Mo	dels ▶		ndent-Samples	TTest									
3	1.00	6.580	Mixed Models	+		Samples T Tes										
4	1.00	6.250	Correlate	+			L									
5	1.00	6.420	Regression	+	One-Wa	ay ANOVA										
6	1.00	6.000	Loglinear	+												
7	1.00	5.990	Neural Networks	+												
8 9	1.00	6.130 6.180	Classify	+												
9	1.00	6.180	Dimension Reduction	+	<u> </u>											
11	1.00	6.540	Scale	+												- 1
12	1.00	6.520	Nonparametric Tests	+												
13	1.00	6.230	Forecasting	+												
14	1.00	6.280	Survival	•									One-Way	ANOVA:	Options	
15	1.00	6.450	Multiple Do	e-Way AN							×	_				
16	1.00	6.250	Missing1	- vray All							~		atistics-			
17	1.00	5.880	Multiple				Deper	ndent List	-	G			Descrip	tive		
18	1.00	5.990	Complex					holester			ntrasts	-	1		m offecte	
19	1.00	5.780	🖶 Simulatic				~ 0	nonobient			st <u>H</u> oc	-	-	nd randoi		
20	1.00	5.890	Quality C										Homog	eneity of	variance	test
21	2.00	5.450	🖉 ROC Cui			+					otions		Brown-	orsythe		
22	2.00	5.550	IBM SPS							Bo	otstrap		Welch			
23	2.00	5.800														
	4											- 0	Means	olot		
ata View	Variable View		-				Factor	:								
ne-Way ANC	WA					`) 🔒 Tr	reatment	[Group]				ssing Va			
		2 📀		1	ок	Paste	Reset	Cance	Hel	•		0	Exclude	c <u>a</u> ses a	nalysis b	y analysis
<u>م</u> ا	0 (ی 🗧	S 📴		UK	Paste	Reset	Carice	Hel Hel	P		6	Exclude			

t test

One-sample t-tests:

- Used to compare one sample mean to a population mean or some other known value.
- □ Average birth weight of new born baby
- You hear that the average person sleeps 8 hours a day. You think college students sleep less. You ask 100 college students how long they sleep on an average a day.
- □ You get the data and the mean of sleeping hrs is 6.5 hours.

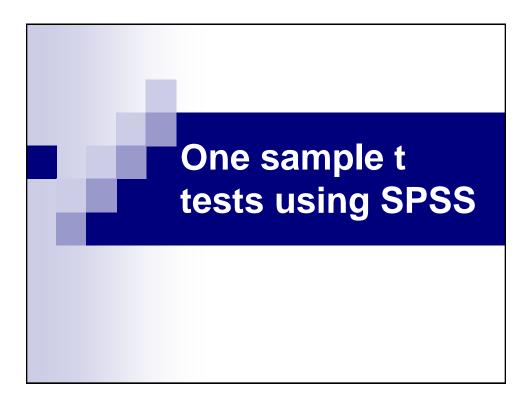
Compare two (or more) sample means to each other

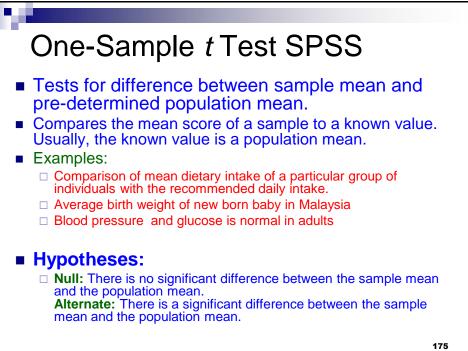
Two general research strategies:

- Two completely separate (independent) samples
 - Example: Hemoglobin levels in male and female is same or not?
 - Body fat content in pig fed with two different diets

Two related (dependent) samples

• measure the size of tumor for cancer patient's before and after a treatment

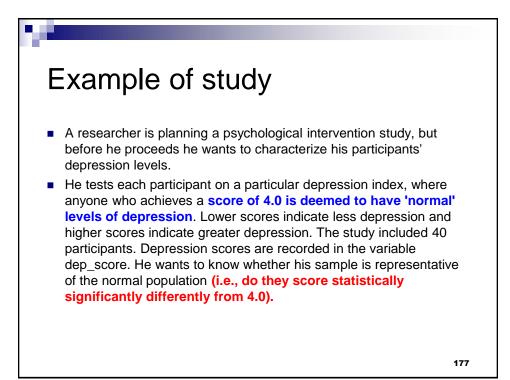

Reporting Significance

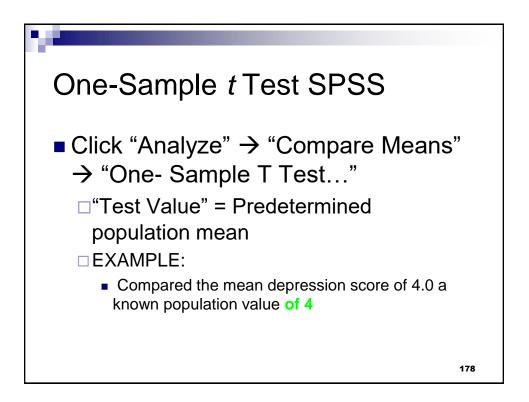

Report p values as being less than .05, .01, or .001.

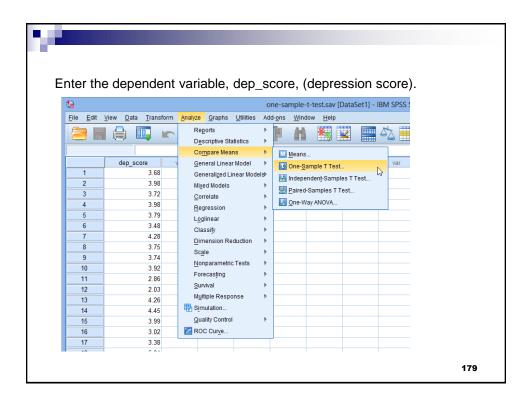
If a result is not significant, report p as being greater than $.05 \ (p > .05)$

Here are some examples...

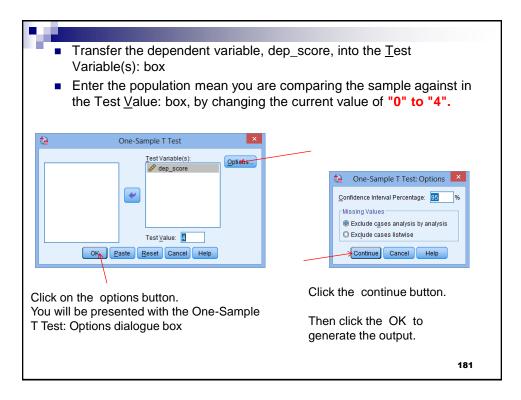
if <i>p</i> = .017	report <i>p</i> < .05	We conclude that group means are significantly different	
if <i>p</i> = .005	report <i>p</i> < .01	We conclude that group means are significantly different	
lf <i>p</i> = .24	report $p > .05$	We conclude that group means are NOT significantly different	
			173


One-Sample t Test


Assumption #1: Your dependent variable should be measured at the interval or ratio level (i.e., continuous).


Assumption #2: The data are independent (i.e., not correlated/related), which means that there is no relationship between the observations.

Assumption #3: There should be no significant outliers.


Assumption #4: Your **dependent variable** should be **approximately** normally distributed.

You will be presented with the One-Sample dialogue box, as shown below:	e T Test
Test <u>V</u> alue: 0 OK Paste Reset Cancel Help	180

		ne-Sample		Std. Error	
	N	Mean	Std. Deviation	Mean	
dep_score	40	3.7225	.73709	.11654	
	•		core <mark>(3.72</mark> llation 'no	± 0.74) w	/as

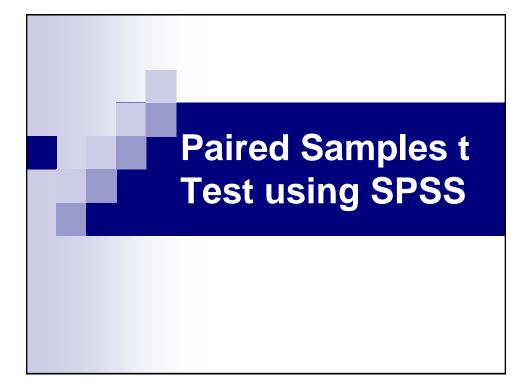
One-sample t-test

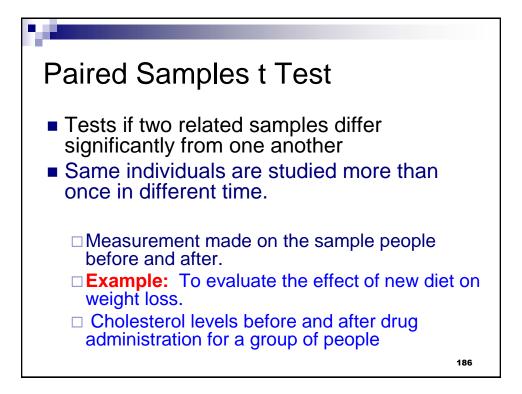
			One-Sam	ole Test		
			Т	est Value = 4		
				Mean	95% Confidence Differ	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
dep_score	-2.381	39	.022	27750	5132	0418

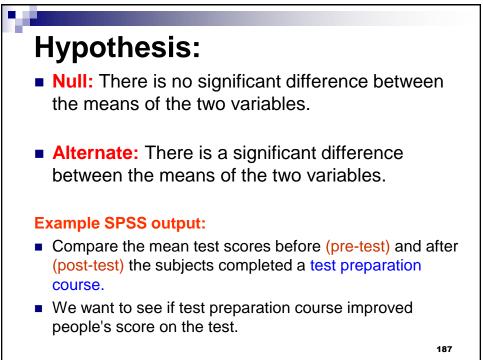
Interpretation:

You are presented with the observed *t*-value ("t" column), the degrees of freedom ("df"), and the statistical significance (*p*-value) ("Sig. (2-tailed)".

In this example, p < .05 (it is p = .022).

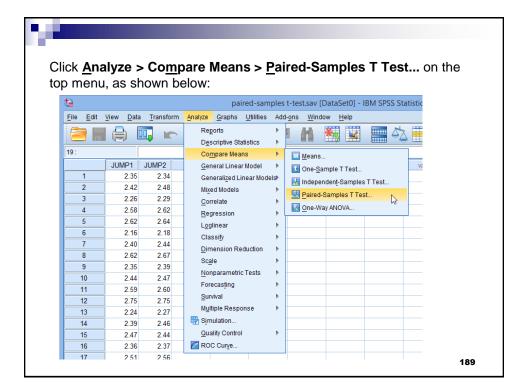

Therefore, it can be concluded that the population means are statistically significantly different.

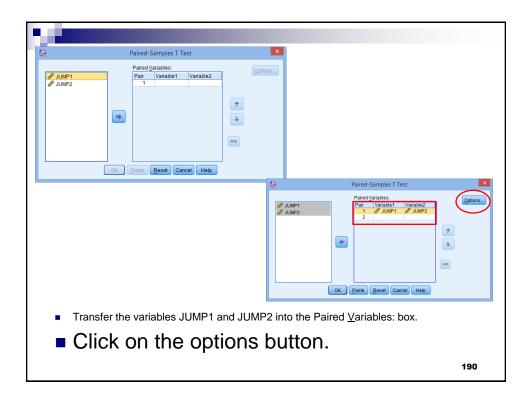

If p > .05, the difference between the sample-estimated population mean and the comparison population mean would not be statistically significantly different.

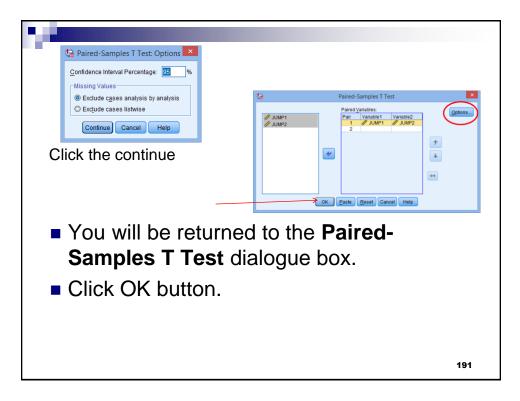

183

Writing in the manuscript

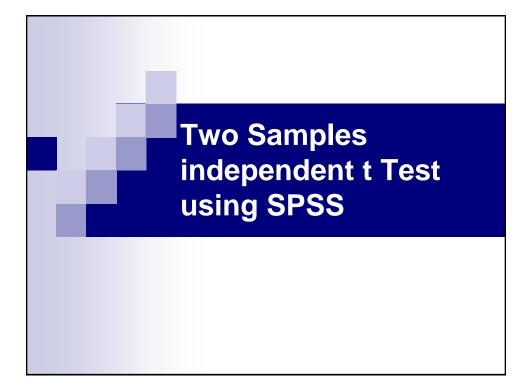
- A one-sample t-test was run to determine whether depression score in recruited subjects was different to normal, defined as a depression score of 4.0.
- Mean depression score (3.73 ± 0.74) was lower than the normal depression score of 4.0, a statistically significant difference of 0.28 (95% CI, 0.04 to 0.51), t(39) = -2.831, p = .022.

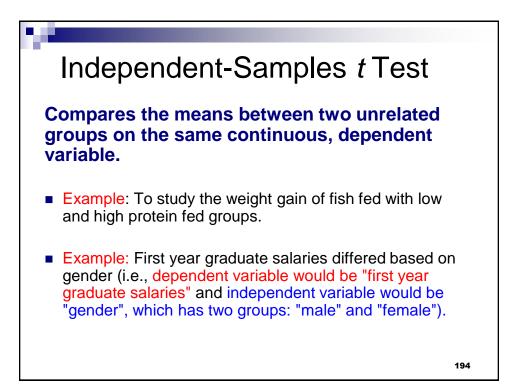




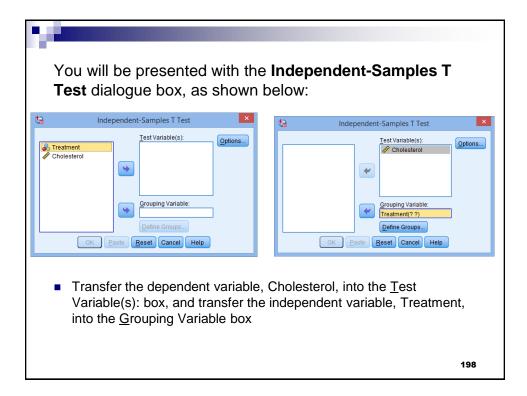


Example


- A group of Sports Science students (*n* = 20) are selected from the population to investigate whether a 12-week plyometric-training programme improves their standing long jump performance.
- In order to test whether this training improves performance, the students are tested for their long jump performance before they undertake a plyometric-training programme and then again at the end of the programme (i.e., the dependent variable is "standing long jump performance", and the two related groups are the standing long jump values "before" and "after" the 12week plyometric-training programme).



			Mean	N	Std. Dev	iation	l. Error lean]			
	Pair 1	JUMP1 JUMP2	2.4815 2.5155	20 20		6135 5982	.03608 .03574				
					aired Sarr	nies Test		_			
					d Differenc	-					
					Error	-	ference				
ir1 JUMP1-	JUMP2	Mean 03400	Std. Deviation .03185		ean .00712	Lower 0489		/pper 01909	t -4,773	df 19	Sig. (2-tailed) .000
lue, $\vec{p} =$	repo signi	rt the ficanc	statistic	s in th In ou	ne foll r case	owing f e this w	orma ould l	be: <i>t</i> (1	9) = -4	4.773,	edom) = <i>t-</i> p < 0.000 e can



Independent Satisfier Sati	ample Data (Data are
Experimental (Caff)	Control (No Caffeine)
12	21
14	18
10	14
8	20
16	11
5	19
3	8
9	12
11	13
	15
N ₁ =9, M ₁ =9.778, SD ₁ =4.1164	N ₂ =10, M ₂ =15.1, SD ₂ =4.2805

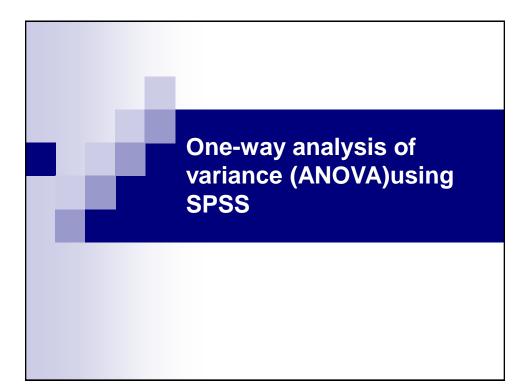
Study Example

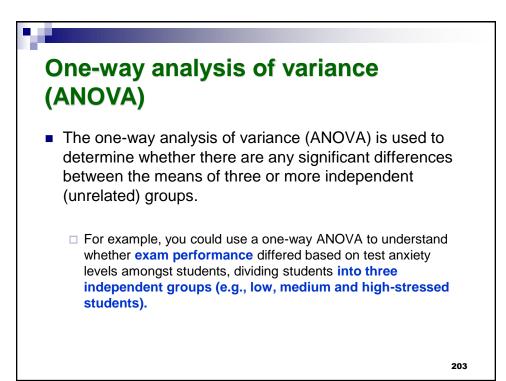
- The concentration of cholesterol in the blood is associated with the risk of developing heart disease, such that higher concentrations of cholesterol indicate a higher level of risk, and lower concentrations indicate a lower level of risk.
- If you lower the concentration of cholesterol in the blood, your risk of developing heart disease can be reduced. Being overweight and/or physically inactive increases the concentration of cholesterol in your blood.
- Both exercise and weight loss can reduce cholesterol concentration. However, it is not known whether exercise or weight loss is best for lowering cholesterol concentration.
- Investigated whether an exercise or weight loss intervention is more effective in lowering cholesterol levels.
- The researcher recruited a random sample of inactive males that were classified as overweight.
- This sample was then randomly split into two groups:
 - Group 1 underwent a calorie-controlled diet and
 - Group 2 undertook the exercise-training programme.
- In order to determine which treatment programme was more effective, the mean cholesterol concentrations were compared between the two groups at the end of the treatment programmes.

Τe	est	Proc	edure	in SPSS	
			t on the to	Means > Independen <u>t</u> - op menu, as shown below: noles t-test.sav (DataSet01 - IBM SPSS Stati	
		View Data Transform		Add-ons Window Help	
			Reports Descriptive Statistics	1 M 🕺 🖬 🛋	
	19 : Cholester	rol	Compare Means	Means	
		Treatment	<u>G</u> eneral Linear Model →	One-Sample T Test	
	1	Diet group	Generalized Linear Models	Independent-Samples Titest	
	2	Diet group	Mixed Models 🕨 🕨	Paired-Samples T Test	
	3	Diet group	Correlate >	One-Way ANOVA	
	5	Diet group Diet group	Regression •		
	6	Diet group	L <u>o</u> glinear 🕨		
	7	Diet group	Classify 🕨		
	8	Diet group	Dimension Reduction		
	9	Diet group	Scale >		
	10	Diet group	Nonparametric Tests		
	11	Diet group	Forecasting >		
	12	Diet group	<u>S</u> urvival ►		
	13	Diet group	Multiple Response 🕨		
	14	Diet group	Bimulation		
	15	Diet group	Quality Control		
	16	Diet group	ROC Curve		
	17	Diet group	6.24	41	97
	18	Diet aroun	6.01		

	ine the groups (treatments). Click on the Define
Groups button.	d with the Define Creame dialegue have as shown
rou will be presented	d with the Define Groups dialogue box, as shown
Delow.	
🔄 Define Groups 🔀	ta Define Groups
<u>Use specified values</u>	I Use specified values
Group 1:	Group <u>1</u> : 1
Group <u>2</u> :	Group <u>2</u> : 2
Continue Cancel Help	Continue Cancel Help
Enter 1 into the G	roup <u>1</u> : box and enter 2 into the Group <u>2</u> : box.
	e labelled the Diet Treatment group as 1 and the
	ũ i
Exercise Treatm	ent group as 2.
Click the continue	

Independent-Samples T Test: Confidence Interval Percentage: Missing Values Exclude cases analysis by analysis Exclude cases listwise Continue Cancel Help	Independent-Samples T Test
 Click the continue You will be returned Samples T Test of Click the Ok button 	ed to the Independent- dialogue box.

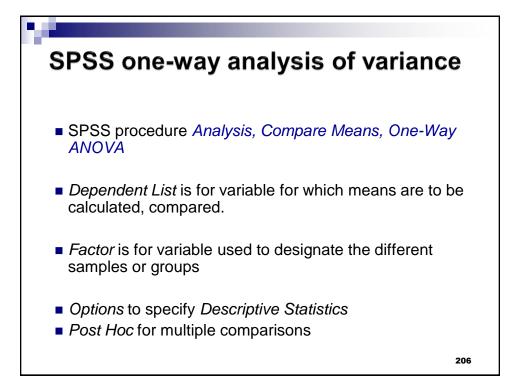

		Group Statis	sucs		
	Group	N	Mean	Std. Deviation	Std. Error Mean
Cholesterol	Diet	20	6.1450	.51959	.11618
Concentration	Exercise	20	5.7950	.38179	.08537
	Inde	pendent San	nples Test	Cholesterol	Concentration
				Equal variances assumed	Equal variances not assumed
Levene's Test for Equality	F			.314	
of Variances					
of Variances	Sig.			.579	


t-test for Equality of	t		2.428	2.428
Means	df		38	34.886
	Sig. (2-tailed)		.020	.021
			-	
	Mean Difference		.35000	.35000
	Std. Error Difference		.14418	.14418
	95% Confidence Interval	Lower	.05813	.05727
	of the Difference			.64273
		Upper	.64187	.64273

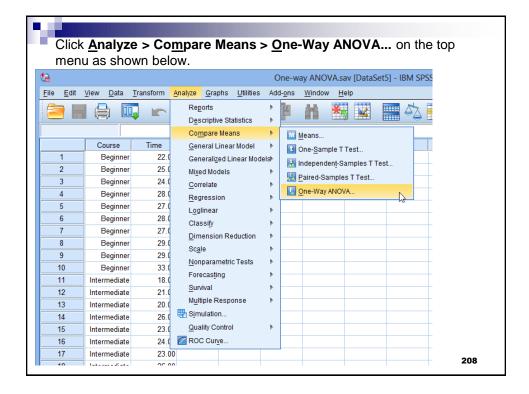
Group means are significantly different because the value in the "Sig. (2-tailed)" row is less than 0.05.

Interpretation:

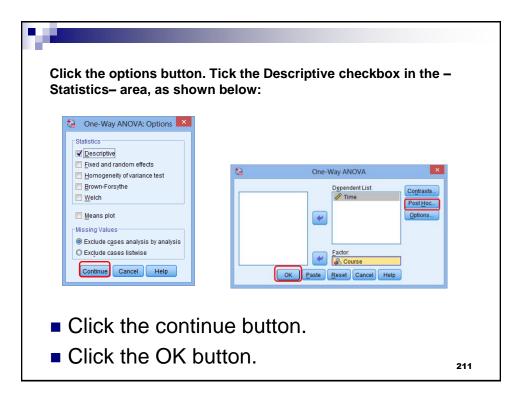
This study found that significantly lower cholesterol concentrations (5.80 \pm 0.38 mmol/L) at the end of an exercise-training programme compared to after a calorie-controlled diet (6.15 \pm 0.52 mmol/L), *t*(38) = 2.428, *p* = 0.020. **201**



Assumptions • Assumption #1: Your dependent variable should be measured at the interval or ratio level (i.e., they are continuous). Examples of variables that meet this criterion include revision time (measured in hours), intelligence (measured using IQ score), exam performance (measured from 0 to 100), weight (measured in kg). Assumption #2: Your independent variable should consist of two or more categorical, independent groups Assumption #3: You should have independence of observations, which means that there is no relationship between the observations in each group or between the groups themselves. Assumption #4: There should be no significant outliers. **Assumption #5:** Your **dependent variable** should be **approximately** normally distributed for each category of the independent variable.


Example

- A manager wants to raise the productivity at his company by increasing the speed at which his employees can use a particular spreadsheet program. As he does not have the skills in-house, he employs an external agency which provides training in this spreadsheet program.
- They offer 3 courses: a beginner, intermediate and advanced course. He is not sure which course is needed for the type of work they do at his company, so he sends 10 employees on the beginner course, 10 on the intermediate and 10 on the advanced course. When they all return from the training, he gives them a problem to solve using the spreadsheet program, and times how long it takes them to complete the problem. He then compares the three courses (beginner, intermediate, advanced) to see if there are any differences in the average time it took to complete the problem.


Steps

- In SPSS, enter the groups for analysis by creating a grouping variable called Course (i.e., the independent variable), and give the beginners course a value of "1", the intermediate course a value of "2" and the advanced course a value of "3".
- Time to complete the set problem was entered under the variable name Time (i.e., the dependent variable).

ŧ.	One-Way ANC	AVC	×			
Course	Depende	Cancel Help	<u>loc</u>			
				_		
	the depender	•	,		ent List: bo	x
	the depender independent v	variable (Cou	rse) into th		ent List: bo	x
	•	•	rse) into th	e <u>F</u> actor:		x

Tick the <u>T</u> ukey checkbox as shown below:	
ta One-Way ANOVA: Post Hoc Multiple Comparisons	
Equal Variances Assumed Softer Softer Softe	
Click the continue button. 210	

De	scr	iptiv	ves t	abl	е			
		•		Descriptive				
Time					95% Confiden	ce Interval for		
					Me			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Beginner	10	27.2000	3.04777	.96379	25.0198	29.3802	22.00	33.00
Intermediate	10	23.6000	3.30656	1.04563	21.2346	25.9654	18.00	29.00
Advanced	10	23.4000	3.23866	1.02415	21.0832	25.7168	18.00	29.00
Total	30	24.7333	3.56161	.65026	23.4034	26.0633	18.00	33.00

The descriptives table provides some very useful descriptive statistics, including the mean, standard deviation for the **dependent variable (Time)** for each separate group (Beginners, Intermediate and Advanced).

Time		ANOVA			
	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	91.467	2	45.733	4.467	.021
Within Groups	276.400	27	10.237		└────┤
Total	367.867	29			
Statistically si	ignificance le	evel is 0.	etween our 021 (p = .02 tistically sig	1), whic	h is below

		Multiple	e Compariso	ns		
Dependent Va	riable: Time					
Tukey HSD						
		Mean Difference (l-			95% Confid	ence Interval
(I) Course	(J) Course	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Beginner	Intermediate	3.60000	1.43088	.046	.0523	7.1477
	Advanced	3.80000	1.43088	.034	.2523	7.3477
Intermediate	Beginner	-3.60000*	1.43088	.046	-7.1477	0523
	Advanced	.20000	1.43088	.989	-3.3477	3.7477
Advanced	Beginner	-3.80000*	1.43088	.034	-7.3477	2523
	Intermediate	20000	1.43088	.989	-3.7477	3.3477

- Multiple Comparisons, shows that, there is a significant difference in time to complete the problem between the group that took the beginner course and the intermediate course (p = 0.046), as well as between the beginner course and advanced course (p = 0.034).
- There were no differences between the groups that took the intermediate and advanced course (p = 0.989).

Interpretation and reporting

	Sum of Squares	df	Mean Square	F	Sig.
Between Groups	91.467	2	45.733	4.467	.021
Within Groups	276.400	27	10.237		
Total	367.867	29			

Dependent Variable: Time

Tukey HSD						
		Mean Difference (l-			95% Confide	ence Interval
(I) Course	(J) Course	J)	Std. Error	Sig.	Lower Bound	Upper Bound
Beginner	Intermediate	3.60000	1.43088	.046	.0523	7.1477
	Advanced	3.80000	1.43088	.034	.2523	7.3477
Intermediate	Beginner	-3.60000	1.43088	.046	-7.1477	0523
	Advanced	.20000	1.43088	.989	-3.3477	3.7477
Advanced	Beginner	-3.80000	1.43088	.034	-7.3477	2523
	Intermediate	20000	1.43088	.989	-3.7477	3.3477

*. The mean difference is significant at the 0.05 level.

There was a statistically significant difference between groups as determined by one-way ANOVA (F(2,27) = 4.467, p = .021). A Tukey post hoc test revealed that the time to complete the problem was statistically significantly lower after taking the intermediate (23.6 ± 3.3 min, p = .046) and advanced (23.4 ± 3.2 min, p = .034) course compared to the beginners course (27.2 ± 3.0 min). There were no statistically significant differences between the intermediate and advanced groups (p = .989).

215

Example

Effect of dietary protein levels on final body weight (g) of catfish fed for 30 days T1- 30% protein; T2 - 35%, T3 - 40%; T4-45%.

Treatment 1	Treatment 2	Treatment 3	Treatment 4
60 g	50	48	47
67	52	49	67
42	43	50	54
67	67	55	67
56	67	56	68
62	59	61	65
64	67	61	65
59	64	60	56
72	63	59	60
71	65	64	65

Two-way ANOVA in SPSS

The two-way ANOVA compares the mean differences between groups that have been split on two independent variables (called factors).

The primary purpose of a two-way ANOVA is to understand if there is an **interaction between the two independent variables on the dependent variable**.

Example:

Two-way ANOVA is used to understand whether there is an interaction between gender and educational level on test anxiety amongst university students, where gender (males/females) and education level (undergraduate/postgraduate) are independent variables, and test anxiety is dependent variable

Example: 2

To determine whether there is an interaction between **physical activity level and gender** on **blood cholesterol concentration** in children, where **physical activity (low/moderate/high)** and **gender** (male/female) are independent variables, and cholesterol concentration is dependent variable.

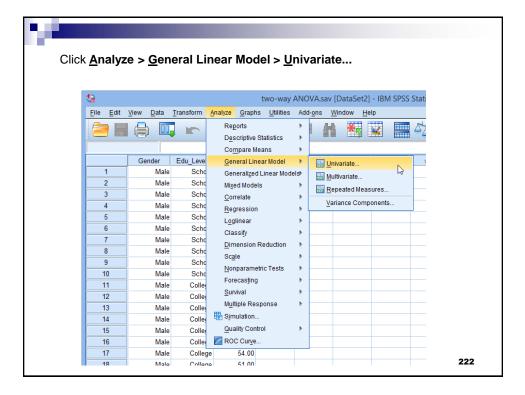
219

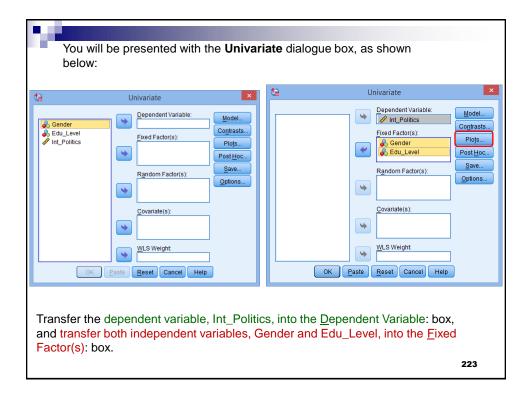
Example

A researcher was interested in whether an individual's interest in politics was influenced by their level of education and gender. They recruited a random sample of participants to their study and asked them about their interest in politics, which they scored from **0 to 100**, with higher scores indicating a greater interest in politics.

The researcher then divided the participants by **gender** (Male/Female) and then again by level of education (School/College/University).

The **dependent variable** is **"interest in politics"**, and the **two independent variables** are **"gender" and "education"**.


Two-way ANOVA in SPSS


 Enter the two independent variables, and label them Gende and Edu_Level.

Ľ.

- For Gender, we code "males" as 1 and "females" as 2, and for Edu_Level, we code "school" as 1, "college" as 2 and "university" as 3.
- The participants' interest in politics – the dependent variable – enter under the variable name, Int_Politics.

		Gender	Edu_Level	Int_Politics	var	
er	1	Male	School	34.00		
	2	Male	School	35.00		
_	3	Male	School	32.00		
S	4	Male	School	35.00		
	5	Male	School	40.00		
	6	Male	School	40.00		
	7	Male	School	37.00		
	8	Male	School	33.00		
	9	Male	School	34.00		
	10	Male	School	28.00		
	11	Male	College	49.00		
,	12	Male	College	50.00		
	13	Male	College	47 00		

Dependent Variable: Image:	shown below		Univariate	: Profile P	lots dialogue box, as Univariate: Profile Plots	×
WLS Weight		Int_Politics Fixed Factor(s): Gender Edu_Level Random Factor(s):	Plots Post Hoc Save	Gender Edu_Level	Separate Lines:	
					Continue Cancel Help	

t)	Univariate: Profile Plots	×	Univariate: Profile Plots
Eactors: Gender Edu_Level	Horizontal Axis: Edu_Level Separate Lines: Gender Separate Plots: Add Change Remove	Plots	der _Level Separate Lines:

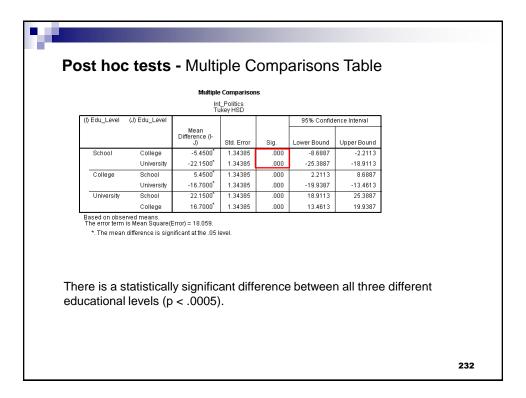
Univariate: Post Hoc Multiple Com	parisons for Observed Mea	 Univariate: Pos 	t Hoc Multiple (Comparisons for Observed Mea
Bonferroni Tukey Tj Sidak Tukeys-b D Scheffe Duncan C	Post Hoc Tests for: //aller-Duncan ype (/Type II Error Ratio: 100 uungtt control Category: Last T	Bonferroni Sidak Sidak R-E-G-W-F	ssumed S-N-K Tukey Tukey's-b Duncan Hochberg's GT2	
R-E-G-W-Q Gabriel	2-sided ⊚ < Control ⊚ > Control	Equal Variances N	-	
Equal Variances Not Assumed Tamhane's T2 🔲 Dunnett's T3 📕 G	amas Hawali 🔳 Dunnatta C	Ta <u>m</u> hane's T2		Games-Howell Dunnett's C
Continue) Cance			Continue	ancel Help

Click the continue button to return to the Click the options button. This will present you with the Univaria as shown below:	-
Univariate X	Estimated Marginal Means <u>F</u> actor(s) and Factor Interactions: Display <u>M</u> eans for:
Int_Politics Contrasts Fixed Factor(s): Plots Edu_Level Post Hoc Random Factor(s): Save Options. Options.	(OVERALL) Gender Edu_Level Gender*Edu_Level Compare main effects Confidence interval adjustment: LSD(none)
Covariate(s):	Display Display Descriptive statistics Descri
WLS Weight	Estimates of effect size Spread vs. level plot Observed power Residual plot Parameter estimates Lack of fit
OK Paste Reset Cancel Help	Contrast coefficient matrix General estimable function
	Continue Cancel Help
	227

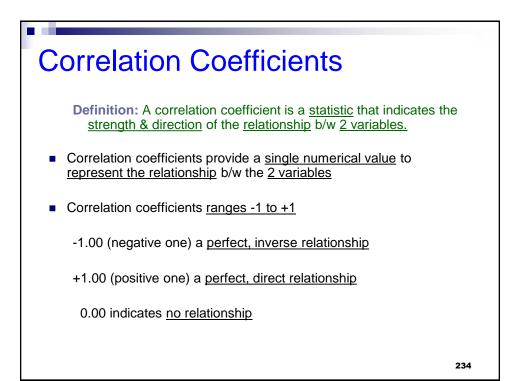
Transfer Gender , Edu_Level and Ge <u>Factor(s)</u> and Factor Interactions: box box. In the –Display– area, tick the <u>D</u> escrip presented with the following screen:	into the Display <u>M</u> eans for:
Liniuscipto Options	Estimated Marginal Means
Univariate: Options Estimated Marginal Means Estimated Marginal Means Edu_tevel Gender Edu_Level GenderEdu_Level Compare main effects Confidence Interval adjustment: (ESD(none) (ESD(none))	Factor(s) and Factor Interactions: Display Means for: (OVERALL) Gender Gender Edu_Level Gender*Edu_Level Gender*Edu_Level Gender*Edu_Level Gender*Edu_Level Compare main effects Confidence interval adjustment: LSD(none) V
Display Displ	Display Dis
Significance legel: 05 Confidence intervals are 95.0% Continue Cancel Help	Significance level: 05 Confidence intervals are 95.0% Continue Cancel Help 228

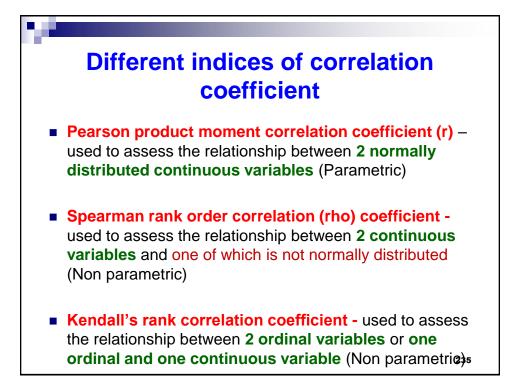
Click the continue button to return to the Click the OK button to generate the output	-
Estimated Marginal Means Factor(s) and Factor Interactions: OVERALL) Gender Edu_Level Gender*Edu_Level Gender*Edu_Level Comfidence Interval adjustment. LSD(none) V Display Descriptive statistics Homogeneity tests	Univariate
Contrast coefficient matrix Contrast coefficient matrix	WLS Weight WLS Weight OK Paste Reset Cancel Help
	229

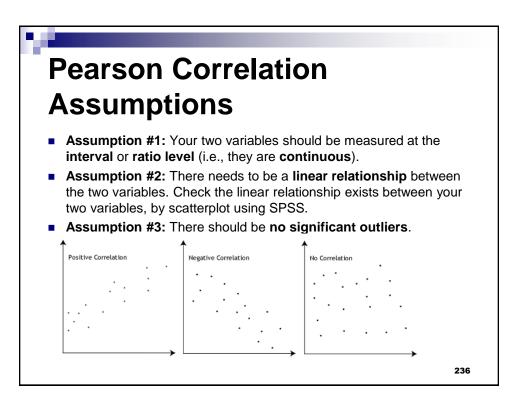
		scriptive Sta	nusucs		Plot of the results
epende ender	nt Variable:Int_ Edu_Level	Politics Mean	Std. Deviation	N	
ale	School	38.2000	4.18463	10	The plot of the mean "interest in
ano	College	44.1000	4.26745	10	
	University	64.1000	3.07137	10	politics" score for each combination of
	Total	48.8000	11.87841	30	groups of "Gender" and "Edu_level" are
emale	School	39.6000	3.27278	10	plotted in a line graph, as shown below:
onnaid	College	44.6000	3.27278	10	
	University	58.0000	6.46357	10	Estimated Marginal Means of Int Politics
	Total	47 4000	9.05767	30	Gandar
otal	School	38,9000	3.72615	20	65.00 P Male
	College	44.3500	3,71023	20	Female
	University	61.0500	5.83524	20	60.00-
	Total	48.1000	10.49649	60	
					Stool School College University

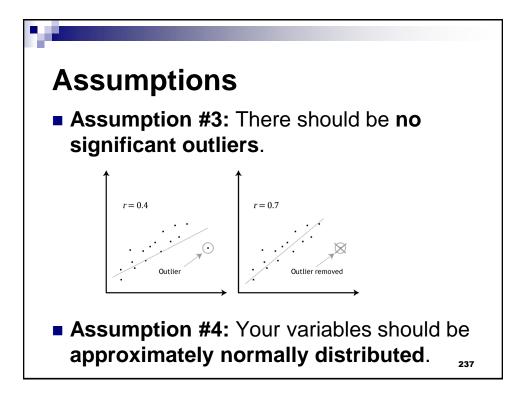

S	atistical signific			ay ANOVA ects Effects		
	Dependent Variable:Int	t_Politics				
	Source	Type III Sum of Squares	df	Mean Square	F	Sig.
	Corrected Model	5525.200ª	5	1105.040	61.190	.000
	Intercept	138816.600	1	138816.600	7686.727	.000
	Gender	29.400	1	29.400	1.628	.207
	Edu_Level	5328.100	2	2664.050	147.517	.000
	Gender * Edu_Level	167.700	2	83.850	4.643	.014
	Error	975.200	54	18.059		
	Total	145317.000	60			
	Corrected Total	6500.400	59			

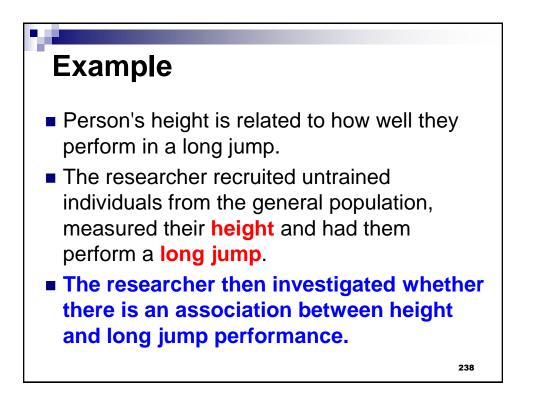

a. R Squared = .850 (Adjusted R Squared = .836)

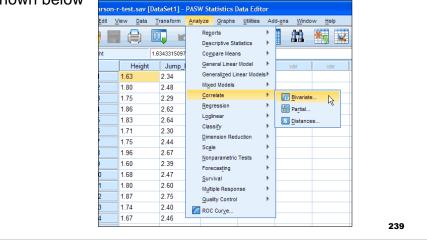

-

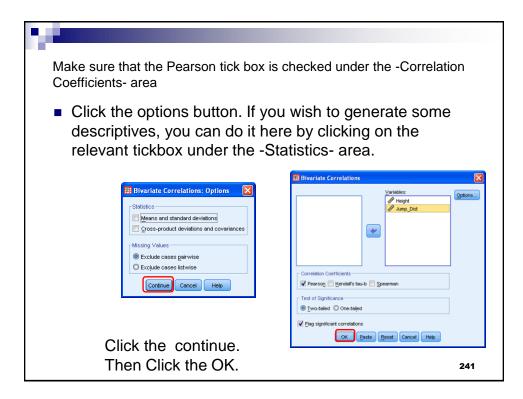

> Our independent variables (the "Gender" and "Edu_Level" rows) and their interaction (the "Gender*Edu_Level" row) have a statistically significant effect on the dependent variable, "interest in politics".

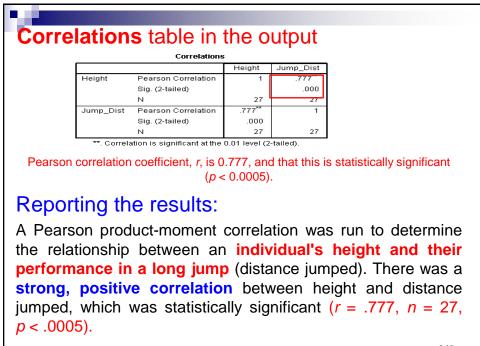

- See from the "Sig." column that we have a statistically significant interaction at the p = .014 level.
- There was no statistically significant difference in mean interest in politics between males and females (p = .207), but there were statistically significant differences between educational levels (p < .0005).





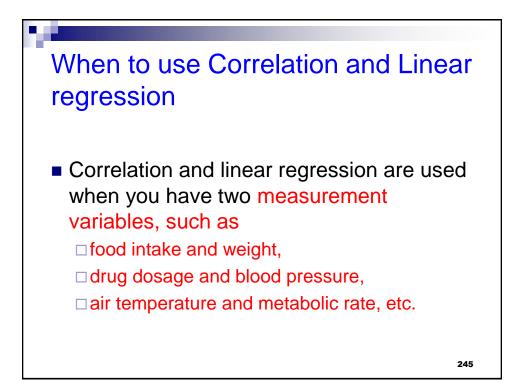


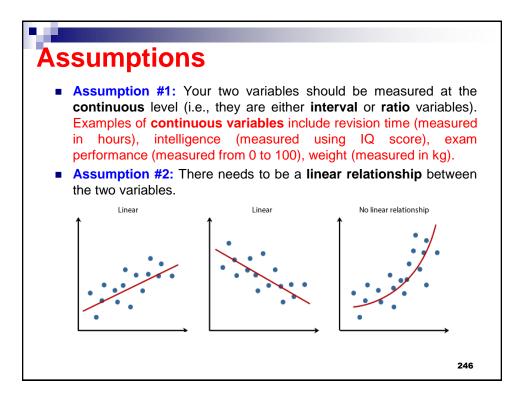

In SPSS, enter the two variables

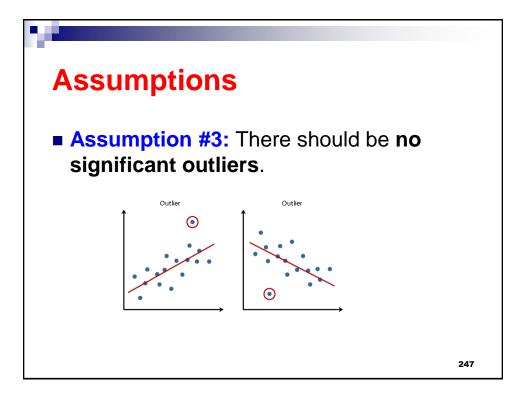

Height (i.e., the person's height) and JumpDist (i.e., long jump distance).

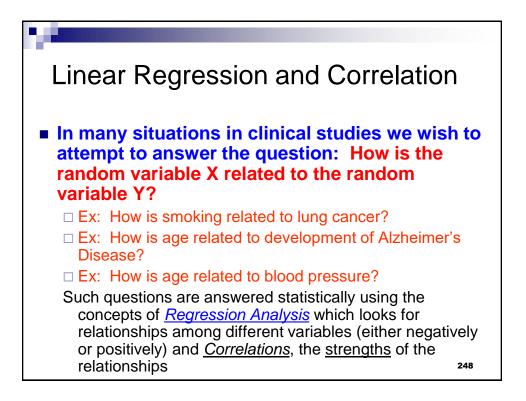
Click <u>Analyze > Correlate > Bivariate...</u> on the menu system as shown below

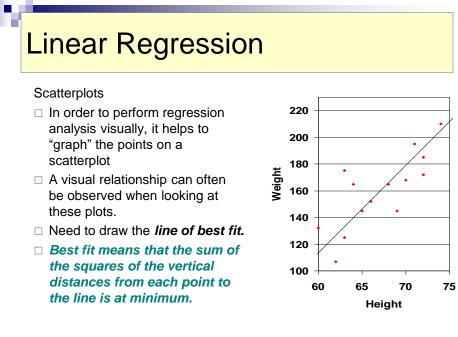
Bivariate Correlations Variables: Imp_Dist Imp_Dist <th># Bivariate Correlations Variables: Variables: Petrop: Correlation Coefficients Pearson Variables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Veriables: Marcine Pearson Veriables: East Reset Cancel Help Dist into the Variables: box</th>	# Bivariate Correlations Variables: Variables: Petrop: Correlation Coefficients Pearson Variables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Pearson Veriables: Veriables: Marcine Pearson Veriables: East Reset Cancel Help Dist into the Variables: box
---	---

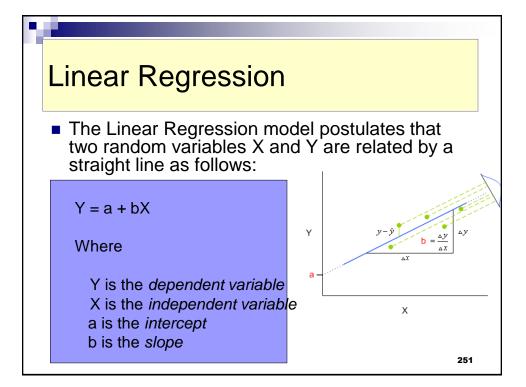


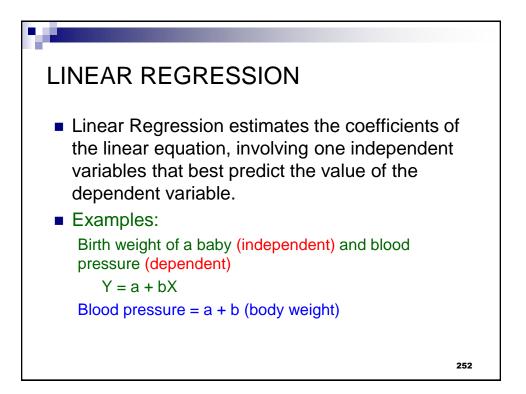


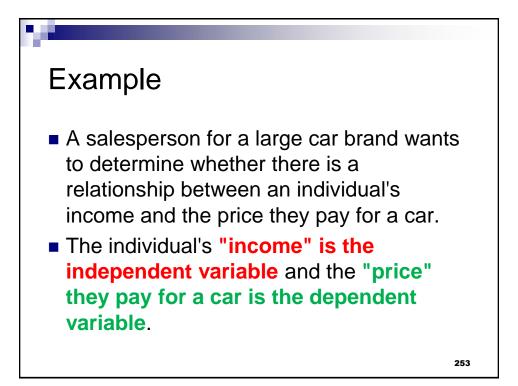


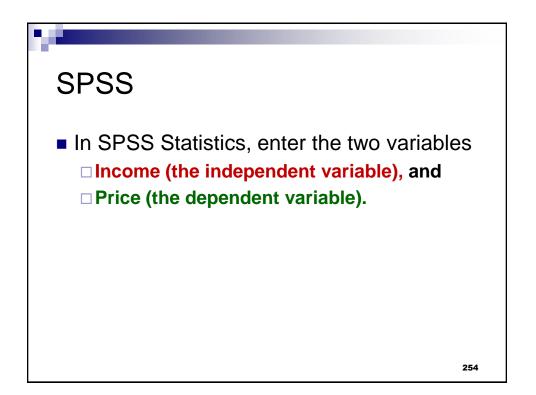

Regression Analysis

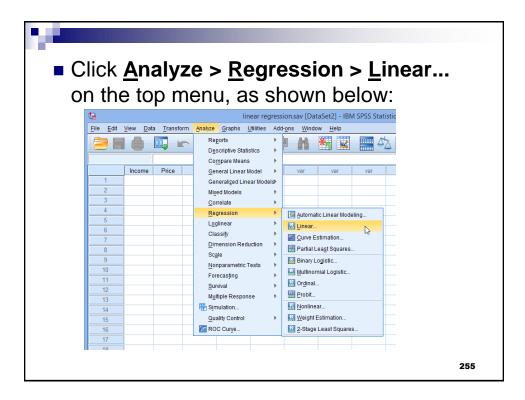

Regression Analysis is the estimation of the linear relationship between a dependent variable and one or more independent variables or covariates.

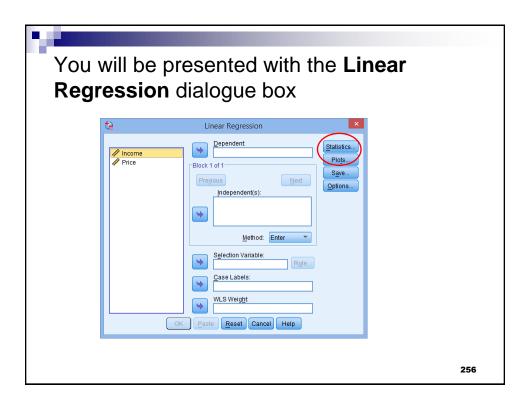







249	


Is there a relationship between				nship between age a blood pressure?	Ind
wing length and tail length in songbirds?			Age (yr)	Systolic blood pressure mm hg	
			30	108	
Wing length cm	Tail length cm		30	110	
10.4	7.4		30	106	
			40	125	
10.8	7.6	_	40	120	
11.1	7.9		40	118	
10.2	7.2		40	119	
10.3	7.4		50	132	
10.2	7.1	-	50	137	
		_	50	134	
10.7	7.4		60	148	
10.5	7.2		60	151	
10.8	7.8		60	146	
11.2	7.7		60	147	
		_	60	144	
10.6	7.8		70	162	
11.4	8.3		70	156	
			70	164	
			70	158	250
			70	159	

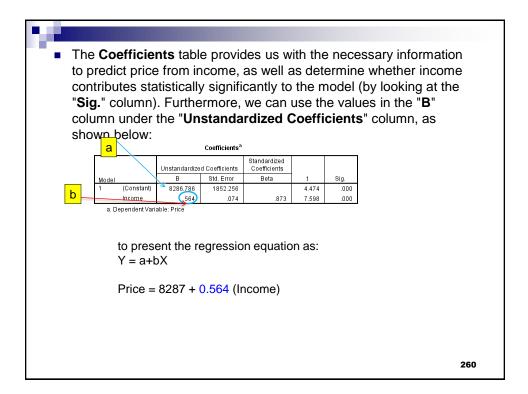


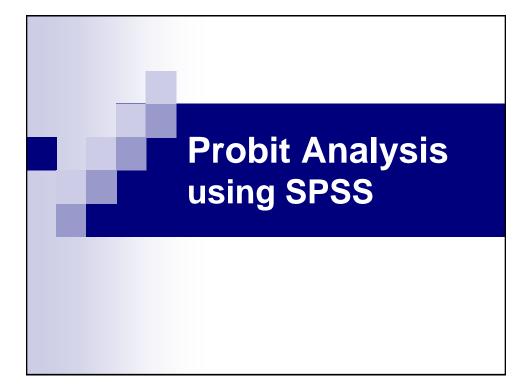
Transfer the independent variable, Income, into the Independent(s): box and the dependent variable, Price, into the <u>D</u>ependent: box.

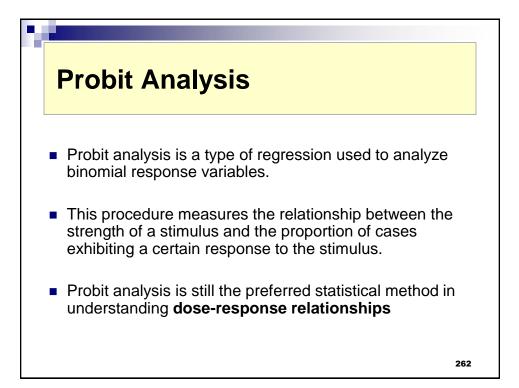
Linear Regression	Linear Regression: Statistics
✓ Income ✓ Price Statistics Block 1 of 1 Plots Plots Previous Next Options Independent(s): ✓ Income Options Method: Enter ✓	Regression Coefficients If Continue If Estimatee If R squared change Cancel If Cogridence intervals If Bestrations East and partial correlations If Cognationce matrix If Bart and partial correlations Help Residuals If Outliers outside: If If If If Duthers outside: If Istandard deviations If If
Selection Variable: Ruie. Case Labels: WLS Weight OK Paste Reset Cancel Help	Click the OK button.

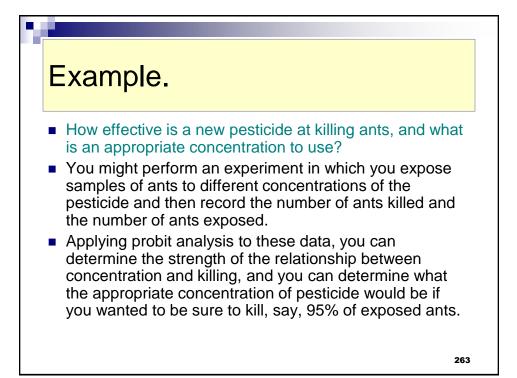
	 The first table of interest is the Model Summary table, as shown below: 							
			Model S	ummary				
	Model	R	R Square	Adjusted R Square	Std. Error of the Estimate			
	1	.873 ^a	.762	.749	874.779			
 The (the correction) The the text 	Model R R Square Square the Estimate							
						258		

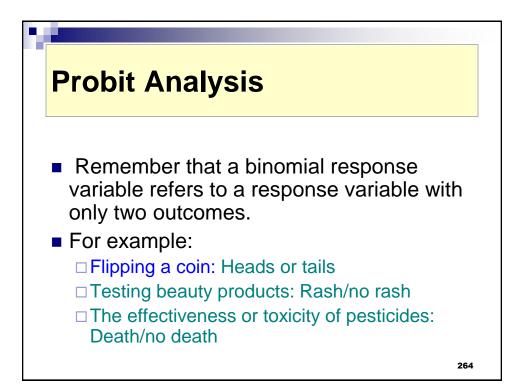
The next table is the **ANOVA** table, which reports how well the regression equation fits the data (i.e., predicts the dependent variable) and is shown below:

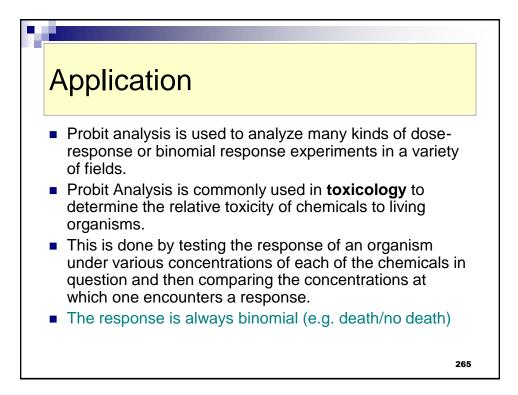

ANOVA^a

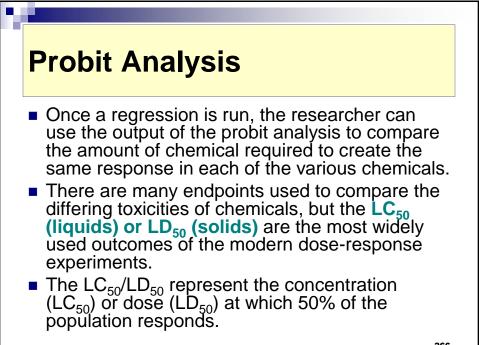

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	44182633.37	1	44182633.37	57.737	.000 ^b
	Residual	13774291.07	18	765238.393		
	Total	57956924.44	19			

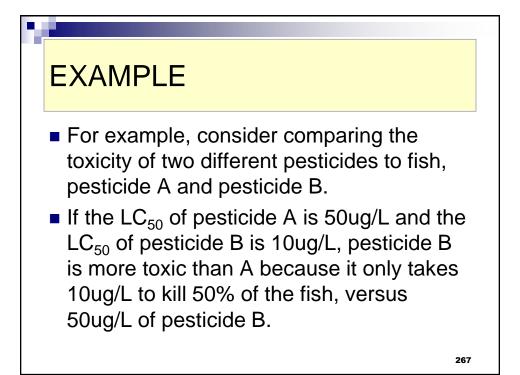

a. Dependent Variable: Price


b. Predictors: (Constant), Income

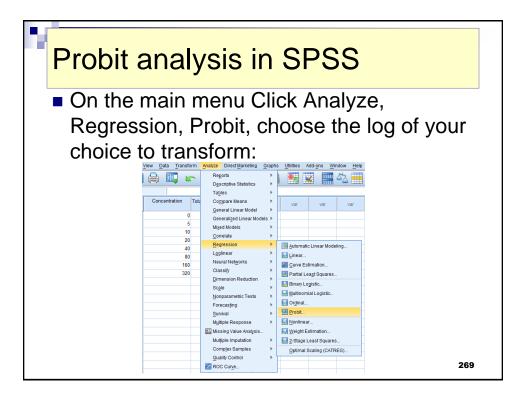

- This table indicates that the regression model predicts the dependent variable significantly well.
- How do we know this?
- Look at the "Regression" row and go to the "Sig." column. This indicates the statistical significance of the regression model that was run. Here, p < 0.0005, which is less than 0.05, and indicates that, overall, the regression model statistically significantly predicts the outcome variable (i.e., it is a good fit for the data).</p>

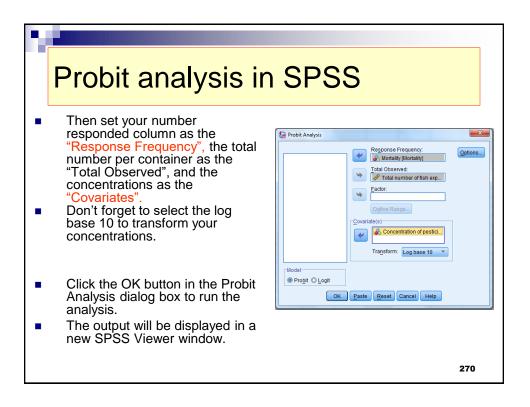


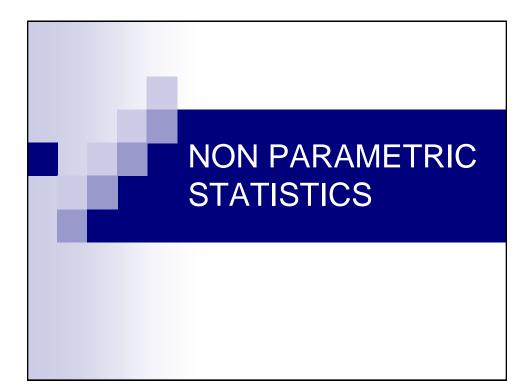


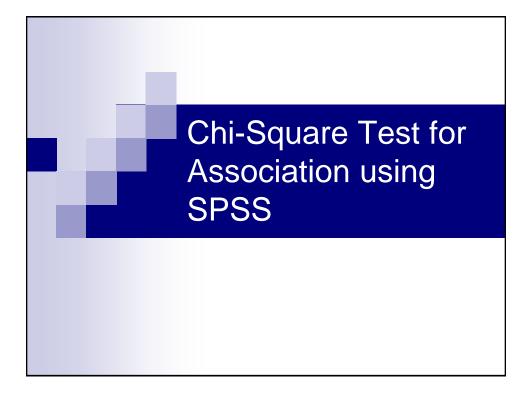


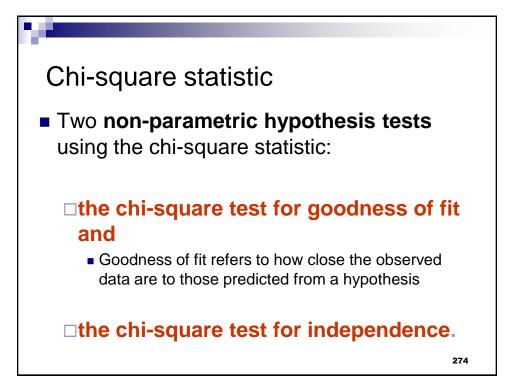










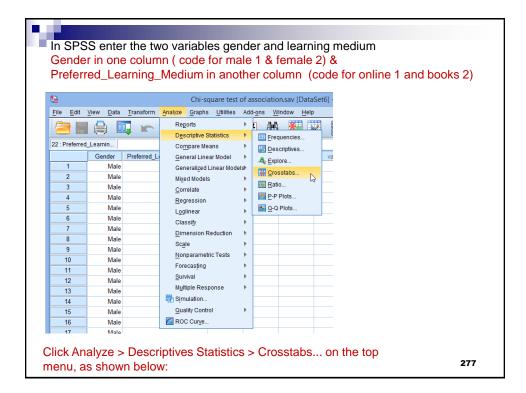


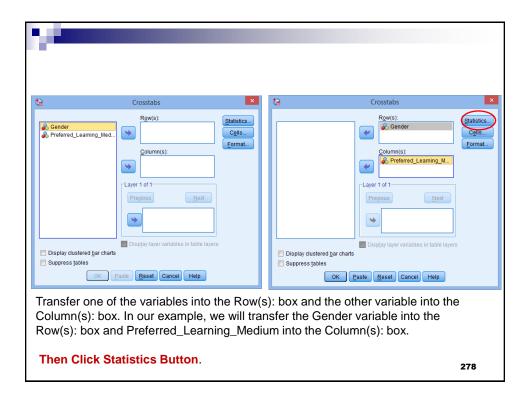
-		0.50	Confidor	Conf	idence Limits	050 Confidence	e Limits for log(C	anaantration of
		357	e connuer	pesticide mg/L	contration of	35 le Connidence	pesticide mg/L)*	
			mate	Lower Bound	Upper Bound	Estimate	Lower Bound	Upper Bound
	PROBIT .010		3.522	1.417	6.107	.547	.151	.786
	.020		4.635	2.047	7.636	.666	.311	.883
	.030		5.516	2.583	8.807	.742	.412	.945
	.040		6.288	3.075	9.810	.798	.488	.992
	.050		6.994	3.541	10.715	.845	.549	1.030
	.060		7.658	3.993	11.555	.884	.601	1.063
	.070		8.292	4.434	12.349	.919	.647	1.092
	.080		8.904	4.869	13.109	.950	.687	1.118
	.090		9.499 10.082	5.301 5.730	13.845 14.562	.978 1.004	.724	1.141
	.100		10.082	5./30	14.562	1.004	./58	1.163
	.150		12.904	7.889	17.999 21.389	1.111	1.006	1.255
	.200		18.575	12.503	21.389	1.196	1.000	1.330
	.200		21.604	15.043	28.659	1.335	1.177	1.457
	.350		24.850	17.783	32.781	1.335	1.250	1.516
	.400		28.381	20.752	37.400	1.453	1.317	1.573
	.400		32.273	23.989	42.678	1.509	1.380	1.630
$LC_{50} = 36.624 \text{ mg/L}$.500		36.624	27.539	48.823	1.564	1.440	1.689
	.550		41.562	31,469	56.112	1.619	1.498	1.749
with 95 %	.600		47.262	35.871	64.934	1.675	1.555	1.812
confidence interval	.650		53.977	40.884	75.855	1.732	1.612	1.880
confidence interval	.700		62.087	46.720	89.752	1.793	1.670	1,953
of 27.539 – 48.823	.750		72.212	53,724	108.082	1.859	1.730	2.034
01 27.339 - 40.023	.800		85.442	62.498	133.502	1.932	1.796	2.125
	.850		103.951	74.220	171.530	2.017	1.871	2.234
	.900)	133.039	91.682	236.304	2.124	1.962	2.373
	.910)	141.208	96.420	255.481	2.150	1.984	2.407
	.920		150.651	101.820	278.147	2.178	2.008	2.444
	.930)	161.766	108.080	305.477	2.209	2.034	2.485
	.940	1	175.151	115.494	339.285	2.243	2.063	2.531
	.950	1	191.774	124.530	382.562	2.283	2.095	2.583
	.960		213.330	135.999	440.689	2.329	2.134	2.644
	.970		243.180	151.477	524.661	2.386	2.180	2.720
	.980)	289.422	174.682	662.056	2.462	2.242	2.821
	.990)	380.797	218.382	956.548	2.581	2.339	2.981
	a. Logarithm	ı base = 10.						271

Chi-Square Test for Association using SPSS The chi-square test for independence, also called Pearson's chi-square test or the chi-square test of

association, is used to discover if there is a relationship between two categorical variables.

Assumptions:


Assumption #1: Your two variables should be measured at an ordinal or nominal level (i.e., categorical data).


Assumption #2: Your two variable should consist of two or more categorical, independent groups. Example independent variables that meet this criterion include gender (2 groups: Males and Females), profession (e.g., 5 groups: surgeon,

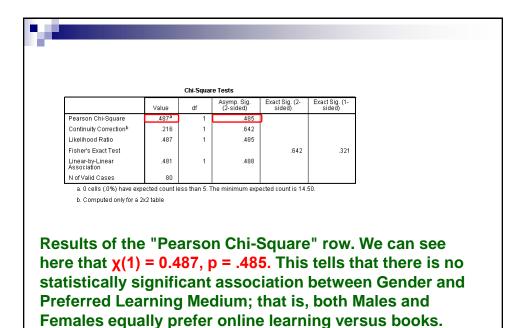
doctor, nurse, dentist, therapist), and so forth.

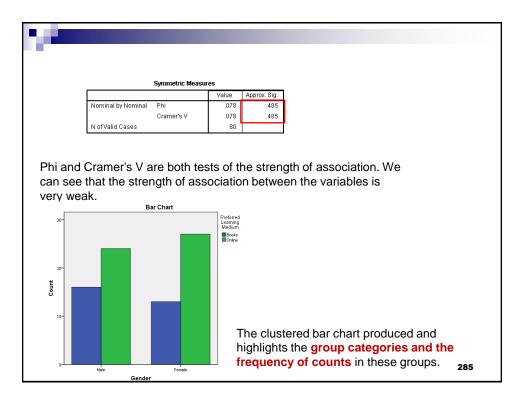
275

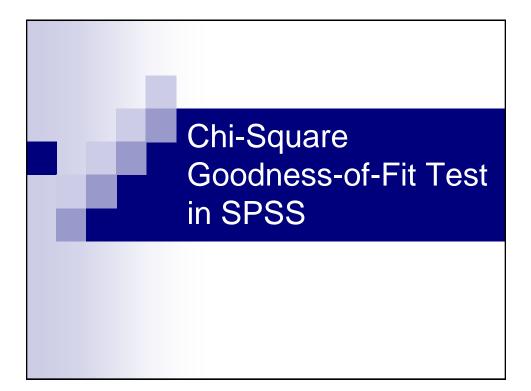
<text><text>

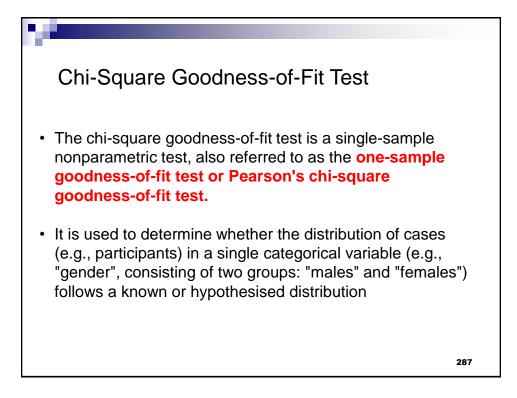
Click Statistics Button.	
	ct the Chi-square and Phi and ner's V options, as shown below:
Nominal by Interval Kappa Eta Risk McNemar Cochr <u>a</u> n's and Mantel-Haenszel statistics Test common odds ratio equals:	Crosstabs: Statistics Chi-square Correlations Nominal Contingency coefficient Contingency coefficient Contingency coefficient Contingency coefficient Correlations Correlations Correlations Correlations Correlations Continal Somma Somma Somers' d Kendall's tau-b Kendall's tau-b Kend
Click the Continue Button.	Nominal by Interval Eta Noternaria Cochran's and Mantel-Haenszel statistics Test common odds ratio equals: Continue Cancel Help 279

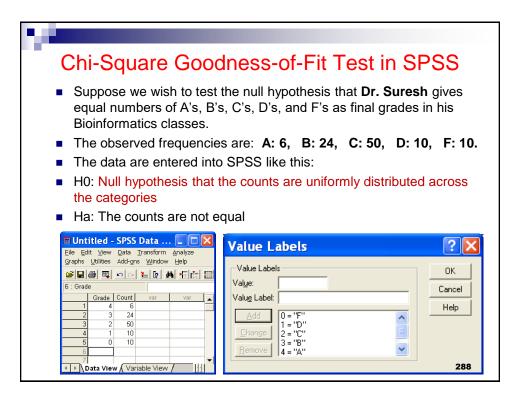
Crosstabs Gender Gender Preferred_Learning_Med. Column(s): Column(s): Display clustered bar charts Display layer varia Suppress tables	X Statistics Cells Eormat	Counts Counts Expected Hide sma Less than Percentages Row Column Total Noninteger W © Round cel Truncate of	Residuals Unstandardized Adjusted standardized Veights
OK Paste Reset Can	cel Help	O No adjust	Continue Cancel Help

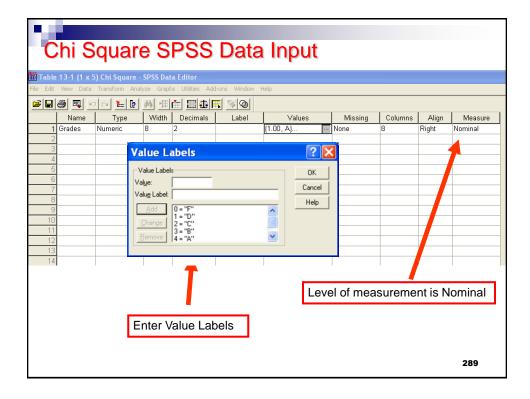

Select Observed from the – Counts – a and Total from the – Percentages– are Crosstabs: Cell Display	
Expected Adjust p-values (Bonferroni method) Hide small counts	Crosstabs
Less than 5 Percentages Q column Q column Q fotal I fotal Noninteger Weights © Round cell counts © Truncate cell counts © Truncate cell counts © No adjustments Continue Cancel Help	Row(s): Statistics Cells Cells Column(s): Preferred Learning M Layer 1 of 1 Pregious Layer 1 of 1 Pregious Display clustered bar charts Display clustered bar charts OK Paste Reset Cancel Help
	281

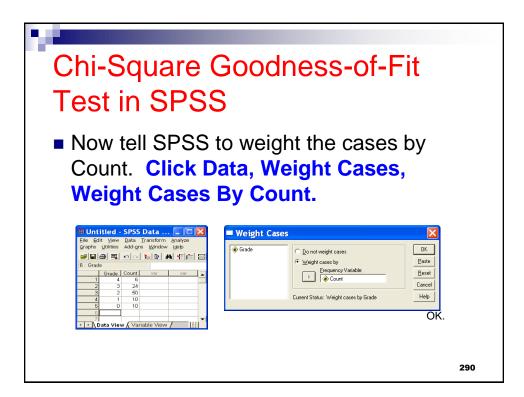

	Ð	×
Crosstabs: Table Format Row Order Continue Continue Cancel Help This option allows you to change the order of the values to either ascending or descending.	Gender	Statistics Celis Eormat.
Once you Continue	have made your choice, click the Button.	
	2	82

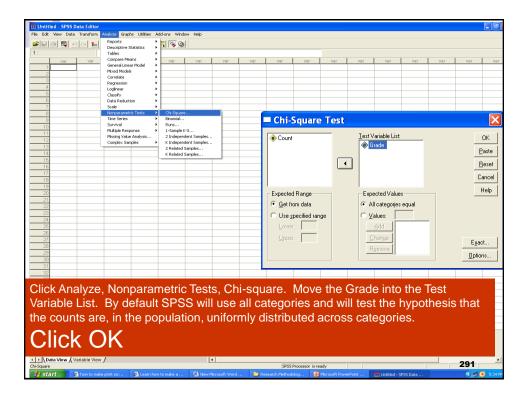

The Crosstabulation Table (Gender*Preferred Learning Medium
Crosstabulation)

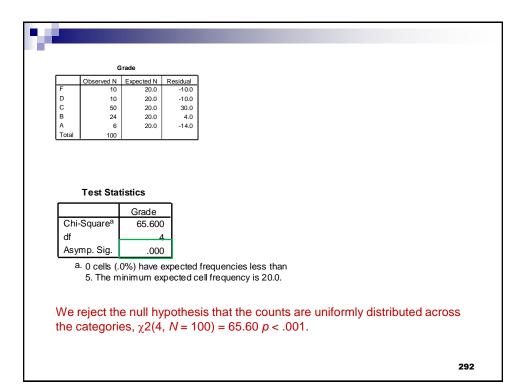

			Preferred Lear	Preferred Learning Medium		
			Books	Online	Total	
Gender	Male	Count	16	24	40	
		% within Gender	40.0%	60.0%	100.0%	
		% within Preferred Learning Medium	55.2%	47.1%	50.0%	
		% of Total	20.0%	30.0%	50.09	
	Female	Count	13	27	4	
		% within Gender	32.5%	67.5%	100.09	
		% within Preferred Learning Medium	44.8%	52.9%	50.09	
		% of Total	16.3%	33.8%	50.09	
Total		Count	29	51	8	
		% within Gender	36.3%	63.8%	100.09	
		% within Preferred Learning Medium	100.0%	100.0%	100.0%	
		% of Total	36.3%	63.8%	100.09	

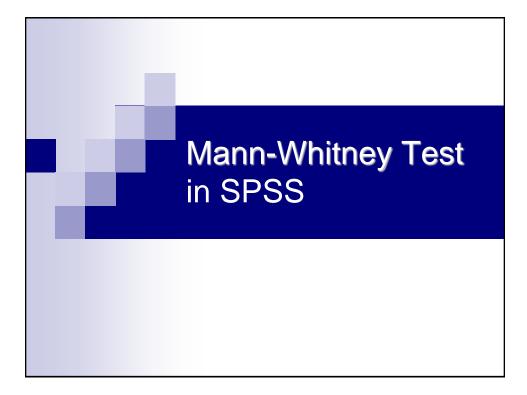

This table tells you both males and females prefer to learn using online materials versus books.

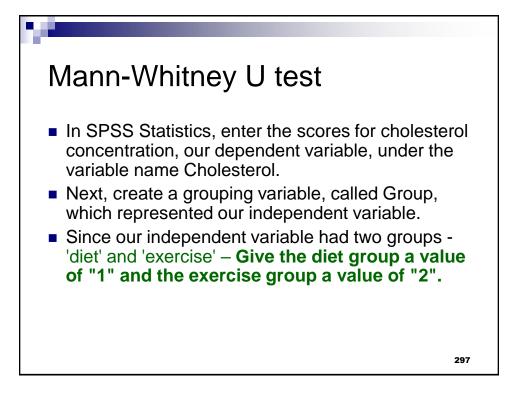


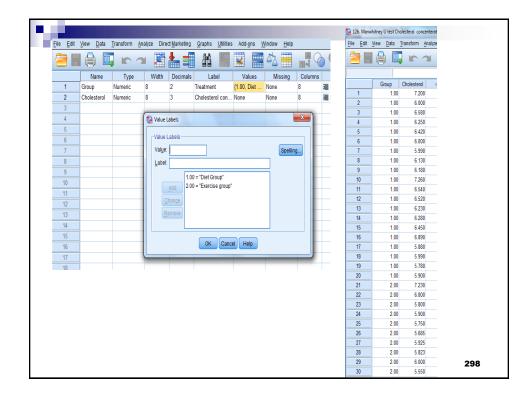









Mann-Whitney U test


- The Mann-Whitney U test is used to compare differences between two independent groups when the dependent variable is either ordinal or continuous, but not normally distributed.
 - For example, you could use the Mann-Whitney U test to understand whether salaries, measured on a continuous scale, differed based on educational level (i.e., your dependent variable would be "salary" and your independent variable would be "educational level", which has two groups: "high school" and "university").

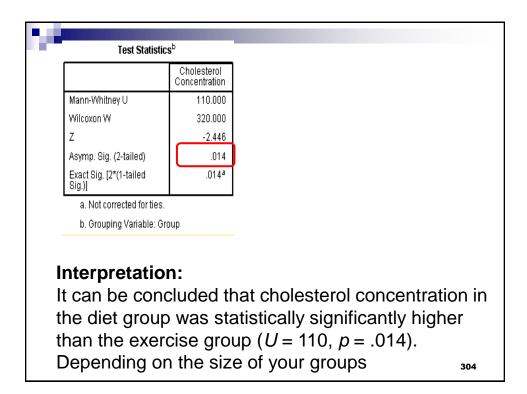
Assumptions

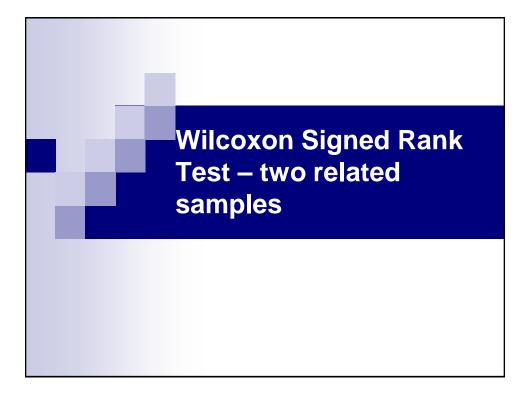
- Assumption #1: Your dependent variable should be measured at the ordinal or continuous level. Examples of ordinal variables include Likert items (e.g., a 7-point scale from "strongly agree" through to "strongly disagree"). Examples of continuous variables include revision time (measured in hours),exam performance (measured from 0 to 100), weight (measured in kg).
- Assumption #2: Your independent variable should consist of two categorical, independent groups. Example gender (2 groups: male or female), employment status (2 groups: employed or unemployed), smoker (2 groups: yes or no), and so forth.
- Assumption #3: Independence of observations, which means that there is no relationship between the observations in each group or between the groups themselves.
 - □ For example, there must be different participants in each group with no participant being in more than one group.
- Assumption #4: A Mann-Whitney U test can be used when your two variables are not normally distributed

Example The concentration of cholesterol in the blood is associated with the risk of developing heart disease, such that higher concentrations of cholesterol indicate a higher level of risk, and lower concentrations indicate a lower level of risk. If you lower the concentration of cholesterol in the blood, your risk for developing heart disease can be reduced. Being overweight and/or physically inactive increases the concentration of cholesterol in your blood. Both exercise and weight loss can reduce cholesterol concentration. However, it is not known whether exercise or weight loss is best for lowering cholesterol concentration. Therefore, a researcher decided to investigate whether an exercise or weight loss intervention was more effective in lowering cholesterol levels. The researcher recruited a random sample of inactive males that were classified as overweight. This sample was then randomly split into two groups: Group 1 underwent a calorie-controlled diet (i.e., the 'diet' group) and Group 2 undertook an exercise-training programme (i.e., the 'exercise' group). In order to determine which treatment programme was more effective, cholesterol concentrations were compared between the two groups at the end of the treatment programmes.

					Mann	Whitney U	T	
Analyze <u>G</u> raphs <u>U</u> tilitie:	s Add-	<u>o</u> ns <u>W</u> indow <u>H</u> e	lp					
Reports Descriptive Statistics) 	H 🕺		4				
Compare Means General Linear Model		r var	var	var	var	var		
Generalized Linear Model	· · ·	i vai	vdi	Vdi	vdi	vdi		
Mixed Models	deisr							
<u>C</u> orrelate								
.(Regression								
Loglinoor								
Classifi								
Dimension Reduction								
(Scale								
i.q =		A One Sample						
	•							
Survival	•	A Independent Sa						
Multiple Response		A Related Sample						
Simulation	ļ	Legacy Dialogs	•	Chi-s	quare			
Quality Control				0/1 Binon	nial			
ROC Curve	, i			Magnetic Runs				
.00				<u> 1</u> -San	nple K-S			
1.00				2 Inde	pendent Sam	ples		
.00				K Inde	pendent Sam	iples		
1.00				📉 2 Rela	ated Samples			
.00				K Rel	ated Samples			
1.00								
							2	9

ta Two-Indeper	ndent-Samples Tests	X	
Image: Constraint of the second s	Test Variable List:	Options	
	Kolmogorov-Smirnov Z		
Moses extreme reactions	_		
OK Paste	Reset Cancel Help		


Two-Independent-Samples Tests	ta Two Independent Samp ×
Test Variable List Cholesterol	Group <u>1</u> : Group <u>2</u> : Continue Cancel Help Two Independent Samp × Group <u>1</u> : 1 Group <u>2</u> : 2 Continue Cancel Help
OK Paste Reset Cancel Help	301

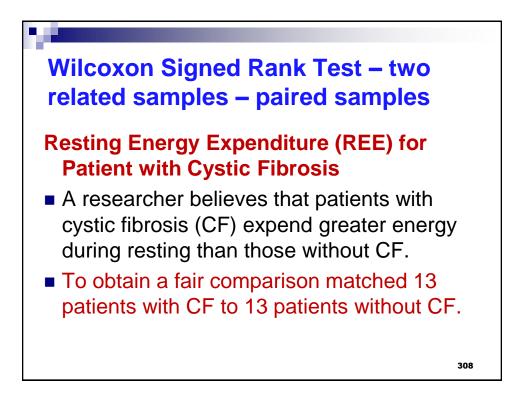

ta Two-Independent-Sam ×	ta Two-Independent-Samples Tests
Statistics Image: Continue Image: Continue Image: Continue Cancel Help	Test Variable List Cholesterol Cholesterol Cholesterol Couping Variable: Group(1 2) Define Groups Test Type Mann-Whitney U Kolmogorov-Smirnov Z Moges extreme reactions Wald-Wolfowitz runs OK Paste Reset Cancel Help
	302

			Descriptive S	Statistics				
							Percentiles	
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th
Cholesterol Concentration	40	5.9700	.48368	5.20	7.70	5.6250	5.9000	6.2000
Group	40	1.50	.506	1	2	1.00	1.50	2.00

Mann-Whitney Test

	Ra	inks		
	Group	Ν	Mean Rank	Sum of Ranks
Cholesterol	Diet	20	25.00	500.00
Concentration	Exercise	20	16.00	320.00
	Total	40		

Wilcoxon signed-ranks test


- The Wilcoxon signed-rank test is the nonparametric test equivalent to the dependent ttest (paired sample t test)
- Wilcoxon signed-rank test does not assume normality in the data, it can be used when this assumption has been violated and the use of the dependent t-test is inappropriate.
- It is used to compare two sets of scores that come from the same participants
- To test difference between paired data

Wilcoxon signed-ranks test - Assumptions

Assumption #1: Dependent variable should be measured at the ordinal or continuous level.

Assumption #2: Independent variable should consist of two categorical, "related groups" or "matched pairs". "Related groups" indicates that the same subjects are present in both groups. Same subjects in each group is because each subject has been measured on two occasions on the same dependent variable.

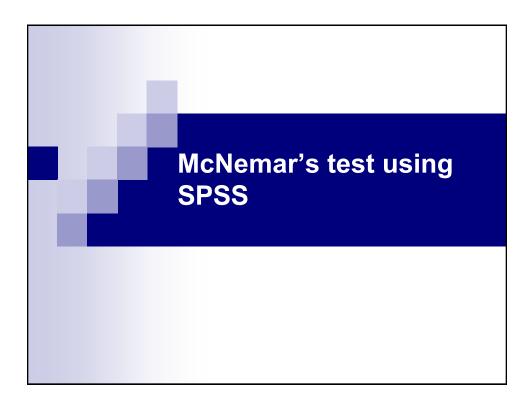
Assumption #3: The distribution of the differences between the two related groups needs to be symmetrical in shape

N									
Example: Wilcoxon Signed Rank Test									
Eile Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window Help									
🔄 🖩 🖨 🛄 🖛 🛥	š 🛓 🗐	H 📰 🔛	- A		6				
	/idth Decimals		lues Missing	Columns Align	Measure	Role			
1 CF Numeric 8		sting Energy None	None	8 🖷 Right	Scale	> Input			
2 Healthy Numeric 8	2 Re	sting Energy None	None	8 🚟 Right	🔗 Scale	🔪 Input			
	t View Dete	Transform Analy	Dir						
<u>File</u>	t <u>V</u> iew <u>D</u> ata	Transform Analy	ze Dir						
24 :			Go to						
	CF	Healthy	var						
1	1153.00	996.00							
2	1132.00	1080.00							
3	1165.00	1182.00							
4	1460.00	1452.00							
5	1634.00	1162.00							
6	1493.00	1619.00							
7	1358.00	1140.00							
8	1453.00	1123.00							
9	1185.00	1113.00							
10	1824.00	1463.00							
10	1793.00	1632.00							
12	1930.00	1614.00							
13	2075.00	1836.00							
14	2075.00	1050.00				309			
14						303			

	_														
е	Edit	View	<u>D</u> ata	Transform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raph	-	Utilities Add-o	ns <u>W</u> indov	_	<u>H</u> elp			_
			h 🔟		Rep	orts	•		*, 🗹		۱	1	A 🖉 (A46	
_		N=		▼	Des	criptive Statistics	•			•	9 🗆			• •	
2					Ta <u>b</u>	les	•		1				10		-
		_	CF	Healthy		npare Means	•		var	var		var	var	var	
	1	_	1153.00	996.0	Gen	eral Linear Model	•								
	2		1132.00	1080.0	Gen	eralized Linear Mo	dels 🕨								
	3		1165.00	1182.0	Mi <u>x</u> e	d Models	•								
	4		1460.00	1452.0	Con	relate					_				
	5		1634.00	1162.0	Reg	ression	•								
	6		1493.00	1619.0	Log	linear	•				-				
	7		1358.00	1140.0	Neu	ral Net <u>w</u> orks	•								
	8	_	1453.00	1123.0	Clas	sify					-				
	9		1185.00	1113.0	Dim	ension Reduction	•				-				
	0		1824.00	1463.0	Sca	le	•				-				
	1		1793.00	1632.0	Non	parametric Tests			One Sample.						
	2		1930.00	1614.0		casting	•	- 1	Independent						
	3		2075.00	1836.0	Surv	•	•		· · ·						
	4 5	-			-	iple Response			Related Sam						
	6				-	sing Value Analysis			Legacy Dialog	js	•	<u> </u>	square		
	7	-				iple Imputation		-			\vdash	0/1 Bind	mial		
	8					nplex Samples					\vdash	🔤 <u>R</u> un	S		
	9					lity Control					\vdash	🚺 <u>1</u> -Sa	ample K-S		
	20										\vdash	2 In	dependent Sa	mples	
	1					Curve					\vdash		dependent Sa		
	2	-			-						\vdash				
	3				-		-				+	_	alated Sample		
	.5											🔣 K R	elated <u>S</u> ample	9S	

Two-Related-Samples Tests	Test Pairs: Exact Pair Variable1 Variable1 Variable2 2 Pair 3 Pair 3 Pair 4 Pair	
		311

Expenditure (REE) for NORMAL Patient - Positive Ranks 2 ^b 3.50 7.00 Resting Energy Expenditure (REE) for Ties 0 ^o Patient with Cystic 10	-								
Resting Energy Negative Ranks 11 ^a 7.64 84.00 Expenditure (REE) for Positive Ranks 2 ^b 3.50 7.00 Resting Energy Ties 0 ^o 13 14 14 14 14 14 15	Ranks								
Expenditure (REE) for NORMAL Patient - Positive Ranks Resting Energy Expenditure (REE) for Ties Patient with Cystic Total 13 a. Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis b. Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a			N	Mean Rank	Sum of Ranks				
NORMAL Patient - Positive Ranks 2 ^b 3.50 7.00 Resting Energy O° 0° 13 0° Patient with Cystic Total 13 13 13 a. Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis b. Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ³ Compatient with Cystic Fibrosis Compatient with Cystic Fibrosis Test Statistics ³ Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Zestenditure (REE) for Patient with Cystic Fibrosis Zestenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Zestenditure (REE) for Disting Energy Expenditure (Resting Energy	Negative Ranks	11 ^a	7.64	84.00				
Expenditure (REE) for Ties 0° Patient with Cystic Total 13 a. Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis b. Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a	NORMAL Patient -	Positive Ranks	2 ^b	3.50	7.00				
Aperindue (NEL) for total 13 a. Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis b. Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics^a	Resting Energy	Tion	0°						
Fibrosis Total 13 a. Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for NORMAL Patient < Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for NORMAL = Patient with Cystic Fibrosis = Constant with Cystic Fibrosis = Constant with Cystic = Resting			-						
Expenditure (REE) for Patient with Cystic Fibrosis b. Resting Energy Expenditure (REE) for NORMAL Patient > Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a Resting Energy Expenditure (REE) for NORMAL Patient - Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Z Asymp. Sig. (2-tailed) a. Wilcoxon Signed Ranks Test	Fibrosis	Total	13						
Expenditure (REE) for Patient with Cystic Fibrosis c. Resting Energy Expenditure (REE) for NORMAL Patient = Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a Resting Expenditure (REE) for NORMAL Patient Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Z Asymp. Sig. (2-tailed) a. Wilcoxon Signed Ranks Test				it < Resting En	ergy				
Expenditure (REE) for Patient with Cystic Fibrosis Test Statistics ^a Resting Energy Expenditure (REE) for NORMAL Patient- Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Z Asymp. Sig. (2-tailed) 002 a. Wilcoxon Signed Ranks Test				it > Resting En	ergy				
Resting Energy Expenditure (REE) for NORMAL Patient - Resting Energy Expenditure (REE) for Patient with Cystic Fibrosis Z Asymp. Sig. (2-tailed) Question a. Wilcoxon Signed Ranks Test				t = Resting En	ergy				
Z 2.561 ^b Asymp. Sig. (2-tailed) 0.07	Те	st Statistics ^a							
	Asymp. Sig. (2	2-tailed)	re r - r th sol ^b						
b. Based on positive ranks.		-							
	D. Based o	in positive ranks.							

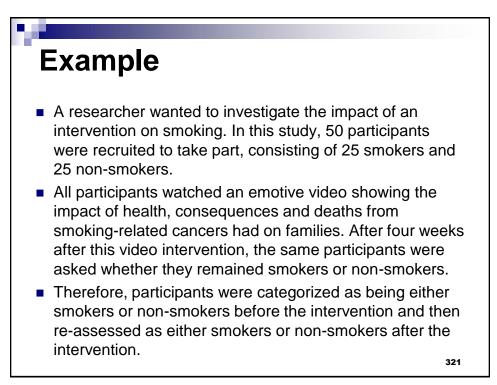

- A researcher is interested in finding methods to reduce lower back pain in individuals without having to use drugs.
- The researcher thinks that having acupuncture in the lower back might reduce back pain.
- To investigate this, the researcher recruits 25 participants to their study. At the beginning of the study, the researcher asks the participants to rate their back pain on a scale of 1 to 10, with 10 indicating the greatest level of pain.
- After 4 weeks of twice weekly acupuncture, the participants are asked again to indicate their level of back pain on a scale of 1 to 10, with 10 indicating the greatest level of pain.
- The researcher wishes to understand whether the participants' pain levels changed after they had undergone the acupuncture, so a Wilcoxon signed-rank test is run.

t)						Wilcoxon sig	gned-	rank t	est.sav [Da	taSet7] - IBN	1 SPSS Stat	istics Data I	Editor
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew [<u>D</u> ata <u>T</u> ran	sform	<u>A</u> nalyze	<u>G</u> raphs <u>U</u> tilities	s Ade	d- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp			
6	Reports Descriptive Statistics						+ +	2	H 🕺		4	▲ 1∜	
29 : I	Pain_Sc	ore_Pre			Com	pare Means							
		Pain_	Score_Pre	Pair	Gen	eral Linear Model		ır	var	var	var	var	var
	1				Gen	erali <u>z</u> ed Linear Mo	dels>						
	2				Mixe	d Models							
	3				Corr	elate							
	4				Reg	ression							
	5			_	L <u>o</u> gi	inear							
	6	_			Clas	sify							
	7	1			<u>D</u> im	Dimension Reduction							
	8				Sc <u>a</u> l	e							
	9	1			Non	parametric Tests	- F		One Sample.				
	10				Fore	casting			ndependent	Samples			
	12				Surv	ival	•		Related Sam				
	13				M <u>u</u> lti	ple Response			egacy Dialo		Chi-s		
	14				🐺 S <u>i</u> m	ulation			-cgucy Dialo	,yo ,			-
	15	1			<u>Q</u> ua	ity Control					0/1 Bino		
	16			1	ROC	Curve					Runs		
	17											mple K-S	
	18											lependent Sar	
	19										K Ind	lependent Sa	mples
	20										📉 2 Re	lated Sample	s
	21										🔣 K Re	lated <u>S</u> ample	s
	22												

ta Two-Related-Sample	es Tests
Pain_Score_Pre Pain_Score_Post Pair Variable1 Test Type Vilcoxon Sign McNemar Marginal Homog	Variable2 Options
OK Paste Reset C	ance Help
	OK Paste Reset Cancel Help 315

Q.	Two-Related-Samples Tests	×	
Pain_Score_Pre	Test Type ✓ Wilcoxon Sign McNemar Marginal Homogeneity	∲	
	OK Paste Reset Cancel Help		316

			Descript	tive Statistics	:				
							Percentiles		
	N	Mean	Std. Deviation	Minimum	Maximum	25th	50th (Median)	75th	
Pain_Score_Pre	25	5.4400	1.78139	2.00	9.00	4.0000	5.0000	6.5000	
Pain_Score_Post	25	5.1600	1.57268	2.00	8.00	4.0000	5.0000	6.0000	
Ranks									
			N	Mean Rank	Sum of Ran	ks			
Pain_Score_Post Pain_Score_Pre	t- 1	Negative Rar	iks 11ª	8.00	88.	00			
ram_ocore_rre		Positive Rank		8.00	32.	00			
	-	Ties	10°						
		Total	25						
a. Pain_Score									
b. Pain_Score									
c. Pain_Score_									
	Test St	atistics ^b		Tho	roculter	showod	that a 4 wee	ak	
		Pa	ain_Score_				ncture treatr	'	
			Post-				e a statistic		
		Pa	ain_Score_ Pre					-	
Z				-		•	lower back	•	
Z -1.807ª									
Asymp. Si	ig. (2-taile	ed)	.071				= 0.071). The		
a. Basi	ed on pos	sitive ranl	KS.				rating is 5.0	, 111	
b. Wilcoxon Signed Ranks Test									

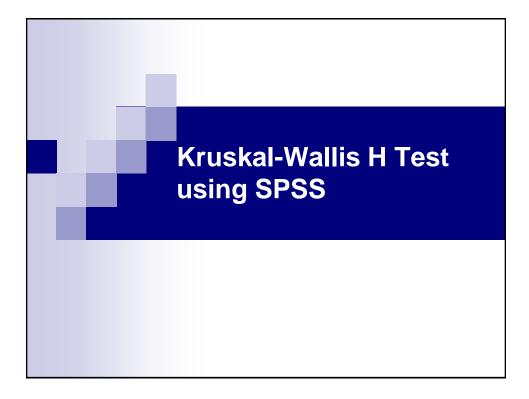


- This test is used to determine if there are differences on a dichotomous dependent variable between two related groups.
- It can be considered to be similar to the paired-samples t-test, but for a dichotomous rather than a continuous dependent variable

319

Assumptions

- Assumption #1: Will have one categorical dependent variable with two categories (i.e., a dichotomous variable) and one categorical independent variable with two related groups. Examples of dichotomous variables include exam performance (two groups: "pass" and "fail"), preferred choice of cereal brand (two groups: "brand A" and "brand B")
- Assumption #2: The two groups of your dependent variable must be mutually exclusive. This means that no groups can overlap. In other words, a participant can only be in one of the two groups; they cannot be in both groups at the same time.
- Assumption #3: The cases (e.g., participants) are a random sample from the population of interest.


File	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>A</u> n	alyze Dire	ct <u>M</u> arketing	<u>G</u> raphs <u>U</u> tilities Add- <u>o</u> ns <u>W</u> indow <u>H</u> elp
					▙ॾ	11 📖 🖾 📰 🖧 📰 📲 🍲 🧠
		Name	Туре	Width	Decimals	Label Values
	1	Before	Numeric	8	2	Smoking of participants before interventional video {.00, Nosmo No
	2	After	Numeric	8	2	Smoking of participants after 4 weeks of interventional video {.00, Nosmo No
	3					
	4					
	5				t	Value Labels
	6]				
	7					Value Labels
	8]				Value: .00 Spelling
	9					Label: Nosmokers
	10					
	11					
	12					
	13	[Change
	14					Remove
	15					
	16	1				
	17					OK Cancel Help
	18	I			<u> </u>	
	10	1				
						322

t)								1	McNem	ar tes	st.sav [Dat	aSet5] - IBN	A SPSS Stati	stic
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	Ad	d- <u>o</u> ns	<u>W</u> indow	Н	elp					
6	i in			Re <u>p</u> orts D <u>e</u> scriptive Statistics		9	h 🏽	5				▲ 14	0	4
54 :				Compare Means	•									
		Before	After	<u>G</u> eneral Linear Model	•	ar	var		var		var	var	var	
	1	Non-Smoker	Non-Smoke	Generalized Linear Mode	ls⊳									
	2	Non-Smoker	Non-Smoke	Mixed Models	•									
	3	Non-Smoker	Non-Smoke	Correlate										
	4	Non-Smoker	Non-Smoke	Regression										
	5	Non-Smoker	Non-Smoke	Loglinear										
	6	Non-Smoker		Classify										
	7	Non-Smoker		Dimension Reduction										
	8	Non-Smoker	Non-Smoke	Scale										
	9	Non-Smoker	Non-Smoke	Nonparametric Tests			0				1			
	10	Non-Smoker		Forecasting			<u>O</u> ne Samp							
	11	Non-Smoker		Survival			ndepende							
	12	Non-Smoker		Multiple Response			Related S	ampl	les					
	13	Non-Smoker				1	egacy Di	alogs	в	•	🔀 <u>C</u> hi-s	quare		
	14	Non-Smoker		Simulation							0/1 Binor	nial		
	15	Non-Smoker		Quality Control	•						Runs			
	16	Non-Smoker		ROC Cur <u>v</u> e								mple K-S		
	17	Non-Smoker												
	18	Non-Smoker										ependent San		
	19	Non-Smoker										ependent Sar		
	20	Non-Smoker									2 Re <u>l</u>	ated Samples	s 🔓	
	21	Non-Smoker									🔣 K Rel	ated <u>S</u> amples	S ^{INS}	
	22	Non-Smoker	Non-Smoke	r l										

Individua	l scores fo	r each par	ticipant		Tota	l count da	ta (freque	ncies)	
ta				t)					
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform A	nalyze <u>G</u> rap	<u>F</u> ile	Edit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze <u>G</u> raj	phs
			∽ 📱	6				-	
				21:1	Before				
	Before	After	var			Before	After	Freq	
1	Non-Smoker	Non-Smoker			1	Non-Smoker	Non-Smoker	20	
2	Non-Smoker	Non-Smoker			2	Non-Smoker	Smoker	5	
3	Non-Smoker	Non-Smoker			3	Smoker	Non-Smoker	16	
4	Non-Smoker	Non-Smoker			4	Smoker	Smoker	9	
5	Non-Smoker	Non-Smoker			5				
6	Non-Smoker	Non-Smoker			6				
7	Non-Smoker	Non-Smoker			7				
8	Non-Smoker	Non-Smoker			8				
9	Non-Smoker	Non-Smoker			9				
10	Non-Smoker	Non-Smoker			10	1			
11	Non-Smoker	Non-Smoker							
12	Non-Smoker	Non-Smoker							
13	Non-Smoker	Non-Smoker							
14	Non-Smoker	Non-Smoker							
15	Non-Smoker	Non-Smoker							

ta Two-Related-Sam	ples Tests	×		
	4	Options,		
	t a	Two-Relate	d-Samples Tests	×
	Sefore	Test Typ	Variable1 Variable2	Options) → ↔
		OK Paste !	Reset Cancel Help	325

В	efore &	After		-
		After		
Before	Non-S	moker	Smoker	
Non-Smoker		20	5	
Smoker		16	9	
N		Delote	e & After 50	
N		Delote		
Exact Sig. (2-1	ailed)		.027 ^b	
a. McNema	ar Test			
b. Binomia	l distrib	ution us	sed.	
the dangers of	f smokir Inificant	ng. An ex differen	act McNen	art in an intervention designed to warn about ar's test determined that there was a oportion of non-smokers pre- and post-

Kruskal-Wallis H Test using SPSS The Kruskal-Wallis H test is a rank-based nonparametric test that can be used to determine if there are statistically significant differences between two or more groups of an independent variable on a continuous or ordinal dependent variable. It is considered the nonparametric alternative to the one-way ANOVA, • and an extension of the Mann-Whitney U test to allow the comparison of more than two independent groups. Example, to understand whether exam performance, measured on a . continuous scale from 0-100, differed based on test anxiety levels (i.e., your dependent variable would be "exam performance" and your independent variable would be "test anxiety level", which has three independent groups: students with "low", "medium" and "high" test anxiety levels). 328

Assumptions

- Assumption #1: Dependent variable should be measured at the ordinal or continuous level (i.e., interval or ratio).
- Assumption #2: Independent variable should consist of two or more categorical, independent groups. Kruskal-Wallis H test is used when you have three or more categorical, independent groups.
 - Example physical activity level (e.g., four groups: sedentary, low, moderate and high), profession (e.g., five groups: surgeon, doctor, nurse, dentist, therapist),
- Assumption #3: You should have independence of observations, which means that there is no relationship between the observations in each group or between the groups themselves.

329

Example

- A medical researcher has heard anecdotal evidence that certain anti-depressive drugs can have the positive side effect of lowering neurological pain in those individuals with chronic, neurological back pain, when administered in doses lower than those prescribed for depression.
- The medical researcher would like to investigate this anecdotal evidence with a study. The researcher identifies 3 well-known, anti-depressive drugs which might have this positive side effect, and labels them Drug A, Drug B and Drug C.
- The researcher then recruits a group of 60 individuals with a similar level of back pain and randomly assigns them to one of three groups Drug A, Drug B or Drug C treatment groups and prescribes the relevant drug for a 4 week period. At the end of the 4 week period, the researcher asks the participants to rate their back pain on a scale of 1 to 10, with 10 indicating the greatest level of pain. The researcher wants to compare the levels of pain experienced by the different groups at the end of the drug treatment period.

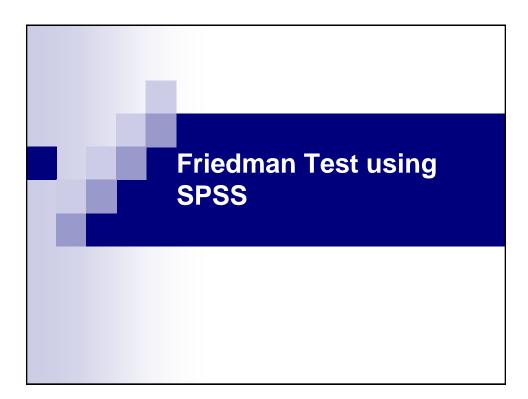
ile Edit View Data Transform	Kruskal-Wallis Analyze Graphs Utilities Adv		indow Help		S STATISTICS L	Jala Editor	
					\$ 1	 1 ଲ	
31 : Drug_Treatment	Co <u>m</u> pare Means						
Drug_Treatment_Group	<u>G</u> eneral Linear Model 🔹 🕨	var	var	var	var	var	var
1	Generalized Linear Models)						
2	Mixed Models 🔹 🕨						
3	Correlate •						
4	Regression •						
5	Loglinear 🕨						
6	Classify 🕨 🕨						
8	Dimension Reduction						
9	Sc <u>a</u> le 🕨						
10	Nonparametric Tests	🛕 <u>O</u> ne	Sample				
11	Forecasting •	Å Inde	pendent Sam	nples			
12	Survival >	/ <u>R</u> el	ated Samples				
13	Multiple Response 🕨	Leg	acy Dialogs	*	🔀 Chi-squa	are	
14	Simulation				0/1 Binomial		
15	Quality Control				Runs		_
16	ROC Curve				1-Sample	e K-S	
17						ndent Samples	
18						ndent Samples	
20							s 🖓 –
20					2 Related		-
22					🔣 K Relate	d <u>S</u> amples	

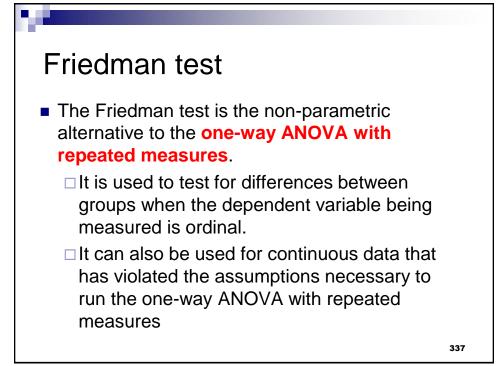
Image: Test Variable List Pain_Score Image: Pain_Score Image: Strupping Variable: Image: Define Range: De

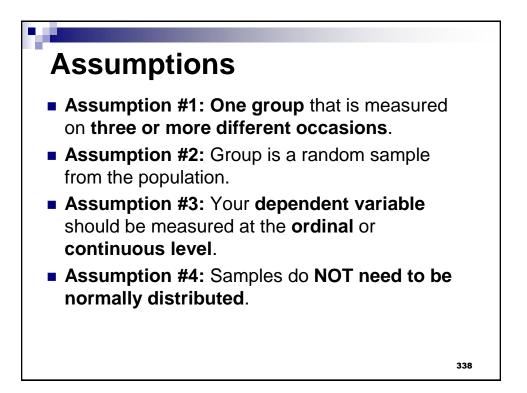
Several Independent Sa 🗙	🔄 Several Independent Sa 🗙
Range for Grouping Variable	Range for Grouping Variable
Mi <u>n</u> imum:	Mi <u>n</u> imum: 1
Maximum:	Ma <u>x</u> imum: <mark>3</mark>
Continue Cancel Help	Continue Cancel Help
ta Tests	for Several Independent Samples
	Test Variable List Options.
	Grouping Variable: Drug_Treatment_Group(13)
-Test Type	Define Range
Jondhere-Ter	Paste Reset Cancel Help 333

Tests for Several Independent Samples Test Variable List Image: Image: <th>Click options</th> <th></th>	Click options	
	Test for Several independent Samples	Statistics Descriptive Quartiles Missing Values Exclude cases test-by-test Exclude cases listwise

	Ranks		
	Drug Treatment Group	N	Mean Rank
Pain_Score	Drug A	20	35.33
	Drug B	20	34.83
	Drug C	20	21.35
	Total	60	

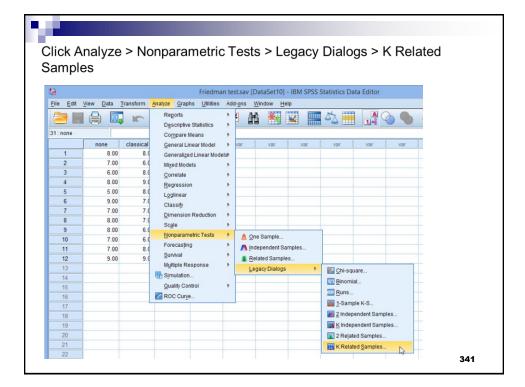

Interpretation:

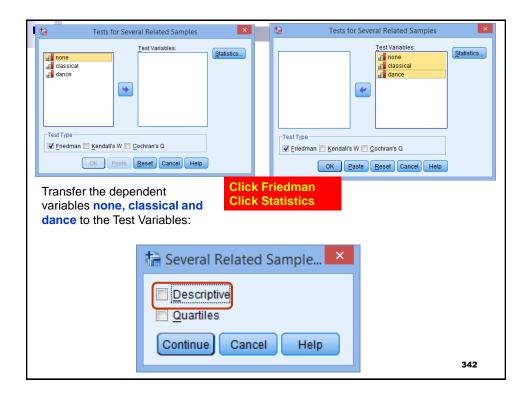

Pain_Score								
8.520								
2								
.014								


Test Statistics^{a,b}

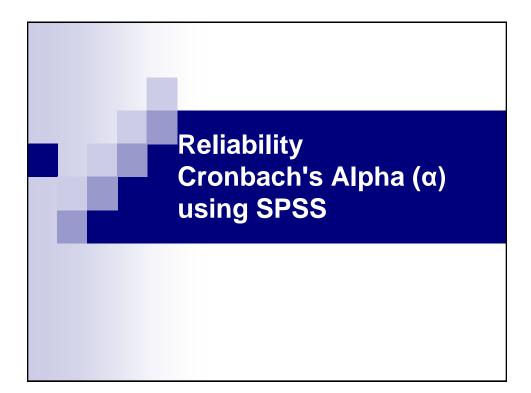
a. Kruskal Wallis Test

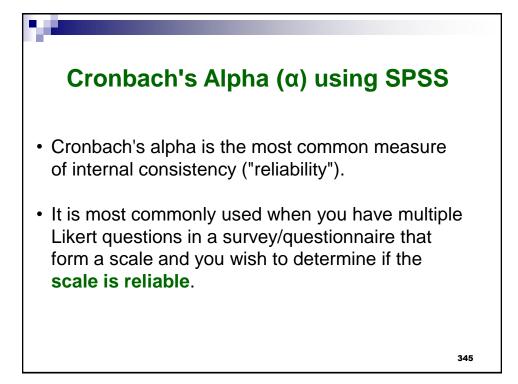
b. Grouping Variable: Drug Treatment Group A Kruskal-Wallis test showed that there was a statistically significant difference in pain score between the different drug treatments, $\chi^2(2) = 8.520$, p = 0.014, with a mean rank pain score of 35.33 for Drug A, 34.83 for Drug B and 21.35 for Drug C.

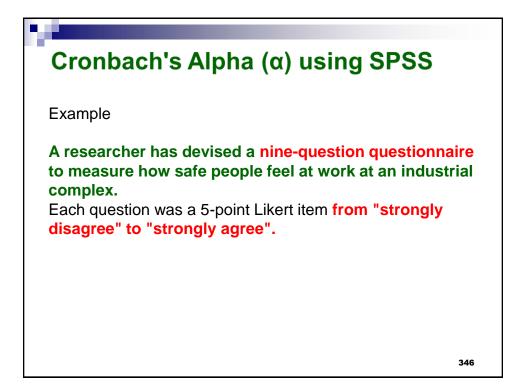




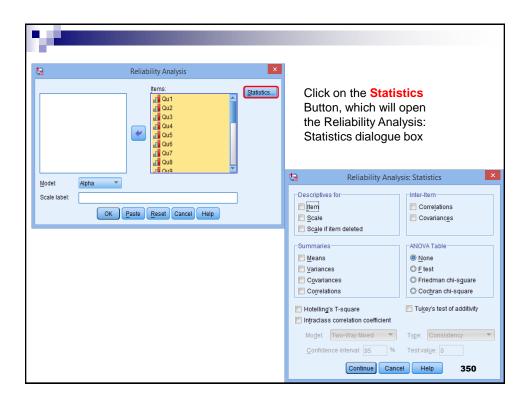
Example

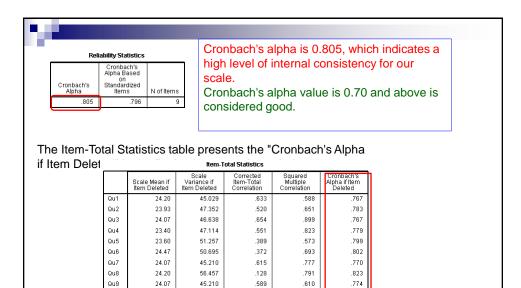

- A researcher wants to examine whether music has an effect on the perceived psychological effort required to perform an exercise session.
- The dependent variable is "perceived effort to perform exercise" and the independent variable is "music type", which consists of three groups: "no music", "classical music" and "dance music".
- To test whether music has an effect on the perceived psychological effort required to perform an exercise session, the researcher recruited 12 runners who each ran three times on a treadmill for 30 minutes.
- For consistency, the treadmill speed was the same for all three runs. In a random order, each subject ran: (a) listening to no music at all; (b) listening to classical music; and (c) listening to dance music.
- At the end of each run, subjects were asked to record how hard the running session felt on a scale of 1 to 10, with 1 being easy and 10 extremely hard


				_
	none	classical	dance	
1	8.00	8.00	7.00	
2	7.00	6.00	6.00	
3	6.00	8.00	6.00	
4	8.00	9.00	7.00	
5	5.00	8.00	5.00	
6	9.00	7.00	7.00	
7	7.00	7.00	7.00	
8	8.00	7.00	7.00	
9	8.00	6.00	8.00	
10	7.00	6.00	6.00	
11	7.00	8.00	6.00	
12	9.00	9.00	6.00	
10	Í			

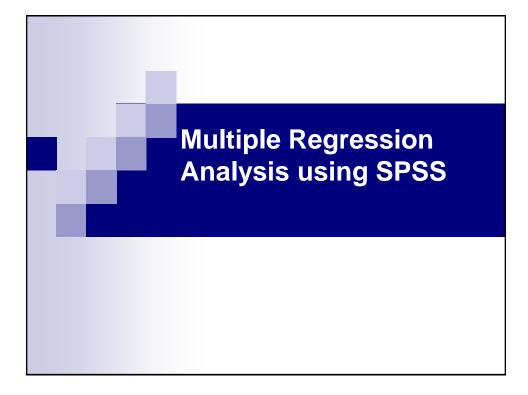


_	Rank	s						
ta Tests for Several Related Samples	. M	lean Rank						
Test Variables:	none	2.38						
di classical	classical	2.17						
	dance	1.46						
	Test Stat	istics ^a						
Test Type	Ν	12						
OK Paste Reset Cancel Help	Chi-Square	7.600						
	df	2						
	Asymp. Sig.	.022						
a. Friedman Test								
We can see that there is an overall statistically significant difference between the mean ranks of the related groups. Reporting: There was a statistically significant difference in perceived effort depending o which type of music was listened to whilst running, $\chi^2(2) = 7.600$, $p = 0.0223$								



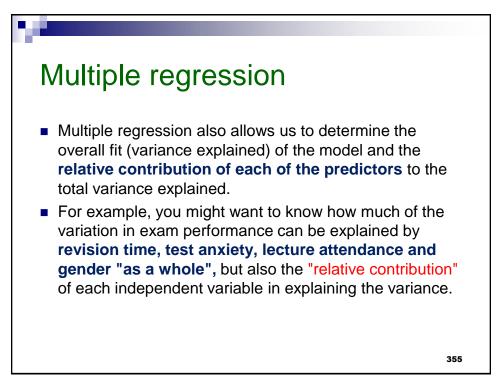

2																						
	Ent	er	the	e res	sul	lts	of th	ne ni	ine	que	stio	ns. (Quest	ions	labe	el as	Qu	1 thr	ough	ı to		
	Qu									•									Ũ			
Eile Edit View	v Data Transfor	m Ana	alyze Dire	ct <u>Marketing</u>	Graphs	Utilies	Add-ons V	ijindow <u>H</u> elp														
🖹 H (b 🗓 r			<u>*</u> 1	H		2	42 🔳														
	Name Ty	pe	Width	Decimals	La	ibel	Values	Missing	Columns	Align	Meas											
1 Qu				2			None	None	8	遭 Right	Unknown											
2 Qu 3 Qu				2			None None		8	理 Right 週 Right	Unknown Unknown											
4 Qu				2			None		8	遭 Right	Unknown											
5 Qu				2			None		8	邇 Right	Unknown											
6 Qu 7 Qu				2			None None		8	置 Right 置 Right	Unknown Unknown											
8 Qu			*	2			None		8	Right	Unknown											
9 Qu	9 Numeri	c -	8	2		-	None	None	8	邇 Right	Unknown											
10												"Untitled3	[DataSet4] - IBM S	PSS Statistics D	lata Editor						-	
11				- 1	🚱 Va	alue Labels					<u>×</u>)	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u>	ansform <u>A</u> n	alyze Direct M	arketing <u>G</u> ra	aphs <u>U</u> tilities	Add- <u>o</u> ns <u>1</u>	<u>ll</u> indow <u>H</u> elp			
13					rVa	alue Labels						👝 L		10	. 🖼 🖡	-	40 📰		M 111			BC.
14					V	alge: 5				Spelin				LC D	· •	-	II 🖴	🛎 🗖	°0 📖	ાનં પ્		
15					L L	abel: Stron	gly disagree			_	-	21:Qu8										
17							1.00 = "Stro	ingly Agree"		1			Qu1	Qu2	Qu3	Qu4	Qu5	Qu6	Qu7	Qu8	Qug	var
18						Add	2.00 = "Agr 3.00 = "Nue					1	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
19 20						Change						2	2.00	2.00	1.00	1.00	2.00	1.00	2.00	2.00	1.00	
20						Remove						3	3.00	3.00	1.00	1.00	3.00	1.00	2.00	2.00	1.00	
22												4	4.00	4.00	1.00	1.00	4.00	1.00	2.00	2.00	2.00	
23 24							0	K Cancel	Help			5	3.00	3.00	2.00	2.00	3.00	2.00	3.00	3.00	2.00	
24						-	_	_	_	_		6	4.00	4.00	2.00	2.00	4.00	2.00	3.00	3.00	2.00	
												7	5.00	5.00	2.00	2.00	5.00	2.00	3.00	3.00	3.00	
												8	3.00	3.00	3.00	3.00	3.00	3.00	1.00	1.00	3.00	
												9	4.00	4.00	3.00	3.00	4.00	3.00	1.00	1.00	3.00	
												10	5.00	5.00	3.00	3.00	5.00	3.00	2.00	2.00	4.00	
												11	1.00	1.00	1.00	1.00	1.00	1.00	2.00	2.00	4.00	
												12	2.00	2.00	1.00	1.00	2.00	1.00	2.00	2.00	4.00	
												13	3.00	3.00	1.00	1.00	3.00	1.00	3.00	3.00	4.00	
												14	4.00	4.00	5.00	5.00	4.00	5.00	3.00	3.00	3.00	
												15	3.00	3.00	5.00	5.00	3.00	5.00	3.00	3.00	5.00	
												16	5.00	5.00	5.00	5.00	5.00	5.00	1.00	1.00	347	
												47									0.00	

s showr		> Reliability Anal			the ton	menu		
	I DEIUW.		ly Ol	0 011		mona,		
D								_
t a						M SPSS Stati	istics Data Ed	ito
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	Add	- <u>o</u> ns <u>W</u> in	dow <u>H</u> elp			
2 6	🖨 🛄 🖛	Reports Descriptive Statistics	* *		*5 🖬		1	A ⊫Ĵ
31 : Qu1	5	Co <u>m</u> pare Means						
	Qu1 Qu2	General Linear Model		Qu5	Qu6	Qu7	Qu8	
1	3	Generalized Linear Mod	lels⊳	4	4	4	4	
2	6	Mixed Models		2	3	3	3	
3	5	<u>C</u> orrelate		3	3	2	3	
4	4	 Regression		5	6	5	6	
5	4	L <u>o</u> glinear		5	6	5	6	
6	6	Classify		3	3	2	3	
7	6	Dimension Reduction		2	3	4	4	
8	5	Sc <u>a</u> le	•		bility Analysis	N	5	
9	6	Nonparametric Tests	•		imensional Sca	ling (ALSCAL)	3	
10 11	6	Forecasting		3			- 4	
11 12	6	Survival		3	4	4	2	
12	6	Multiple Response		3	2	2	2	
13	6	Simulation		2	3	4	3	
14	5	Quality Control		3	4	4		
16	4	ROC Curve		4		4	4	
17	6	6 3	3	3	3	2	3	
18	6	3 2	3	2	3	4	3	

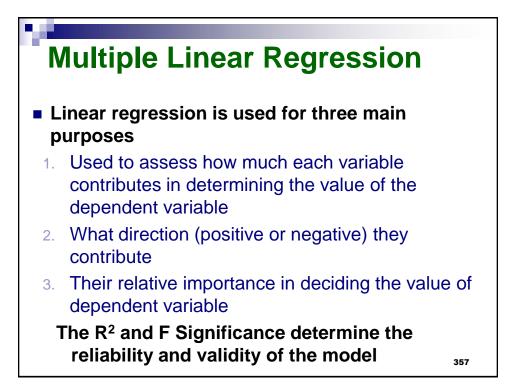


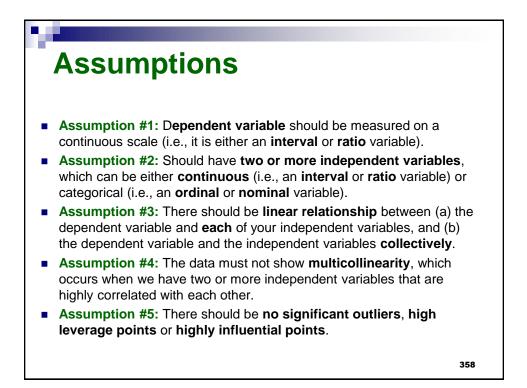
Select the Item, Scale and Scale if Descriptives for– area, and the Co area, as shown below:	rrelations option in the –Inter-Item–
Reliability Analysis: Statistics	Click Continue. This will return you to the Reliability Analysis dialogue box.
Descriptives for Inter-Item Image: tem Correlations Scale Covariances Summaries ANOVA Table Means Etest Covariances Etest Correlations Etest Covariances Order and chi-square Hotelling's T-square Tuge's test of additivity Infractass correlation coefficient Tyge: Consistency Tyge Modet: Two-Way Mixed Tyge Confidence interval: 95 Continue Cancel	Reliability Analysis Items: Items:
	Click OK to generate the output.
	351

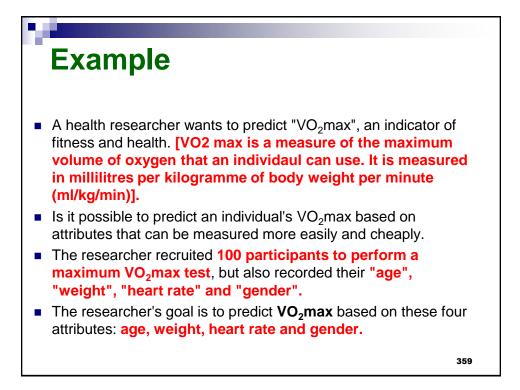
Each column presents the value that Cronbach's alpha would be if that particular item was deleted from the scale. **Except question 8,** would result in a lower Cronbach's alpha.

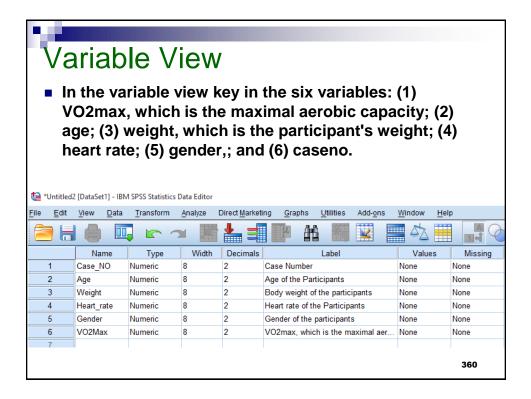


Multiple regression

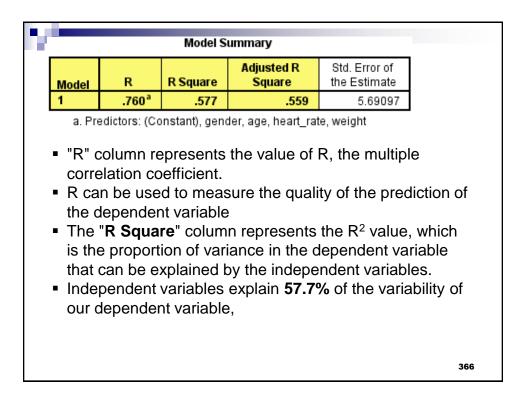

- Multiple regression is an extension of simple linear regression. It is used when we want to predict the value of a variable based on the value of two or more other variables.
- The variable we want to predict is called the dependent variable (or sometimes, the outcome, target or criterion variable).
- The variables we are using to predict the value of the dependent variable are called the independent variables (or predictor, explanatory variables).


Examples:


- The exam performance can be predicted based on revision time, test anxiety, lecture attendance and gender.
- The daily cigarette consumption can be predicted based on smoking duration, age when started smoking, smoker type, income and gender.



Various types of Regression analysis Linear Regression **Stepwise Regression** Group-wise Regression Hierarchical Regression Logistic Regression Regression with dummy Variable Regression with moderating variable **Non-Linear Regression** 356



Click	Analyz	$rac{1}{2}$	egression >	1 i	near			
	-inary 2	6 <i>-</i> N	standard mul			av [DataSet3]] - IBM SP	SS Sta
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities	s Ad	l- <u>o</u> ns <u>W</u> ind	ow <u>H</u> elp		
a F			Re <u>p</u> orts D <u>e</u> scriptive Statistics	> >	2 M	* 🖬	- 4	
40 : age	28		Compare Means					
	caseno	age	<u>G</u> eneral Linear Model		gender	VO2max	var	
1	1	2	Generalized Linear Mo	dels>	Male	55.79		
2	2	6	Mixed Models		Female	35.00		
3	3	3	Correlate		Male	42.93		
4	4	2	Regression		Automa	itic Linear Mode	lina	1
5	5	2	Loglinear		Linear			
6	6	2	Classify				2	
7	7	2	Dimension Reduction			stimation		
8	8	2	Scale		🔣 Partial I	Lea <u>s</u> t Squares		-
9	9	2	– Nonparametric Tests		🚹 Binary l	_ogistic		
10	10	2	Forecasting	•	🔛 <u>M</u> ultino	mial Logistic		
11	11	3	Survival		🕌 Or <u>d</u> inal			
12	12	- 4	Multiple Response		🔠 <u>P</u> robit			
13	13	2	Simulation			ar		-
14	14		Quality Control	•	_	Estimation		
15	15	2						
16	16	2	ROC Curve	100		Least Squares	i	
17	17		56.18	163	Male	47.23		+
18	18	3	86 13	156	Male	45.06		36

t a	Linear Regression	×
 ✓ caseno ✓ age ✓ weight ✓ heart_rate ✓ gender 	Block 1 of 1 Previous Independent(s): Weight Heart_rate Independer Selection Variable: Case Labels: WLS Weight:	tatistics Plots Save Options

	Linear Regression: Statistics ×
Select Confidence	Regression Coefficients Model fit Estimates R squared change Confidence intervals Descriptives Level(%): 95 Part and partial correlations Covariance matrix Collinearity diagnostics
intervals in the – Regression Coefficients – area leaving the Level(%): option at "95".	 Durbin-Watson Casewise diagnostics Outliers outside: 3 standard deviations All cases
	Continue Cancel Help

Caseno Age Weight A heart_rate gender Independent(s): Indepe

Ē			ANOVA^a			
	Model	Sum of Squares	df	Mean Square	F	Sig. 🦊
Г	1 Regression	4196.483	4	1049.121	32.393	.000 ^b
	Residual	3076.778	95	32.387		
L	Total	7273.261	99			
	a. Dependent Varial	ole: VO2max				
	b. Predictors: (Cons	tant), gender, age	, heart_rate	, weight		
⊢ (4	, 95) = 32.393, p <	.0005				

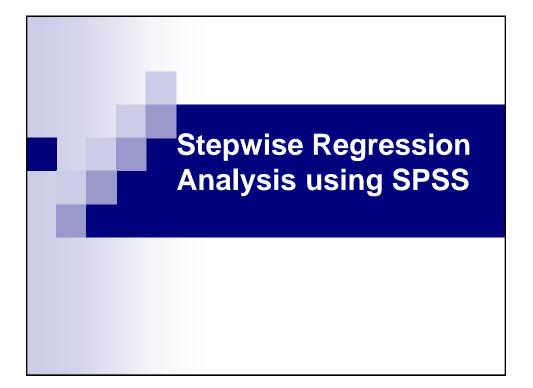
				Coefficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confider	ice Interval for B
Mode	el	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	87.830	6.385		13.756	.000	75.155	100.506
	age	165	.063	176	-2.633	.010	290	041
	weight	385	.043	677	-8.877	.000	471	299
	heart_rate	118	.032	252	-3.667	.000	182	054
	gender	13.208	1.344	.748	9.824	.000	10.539	15.877

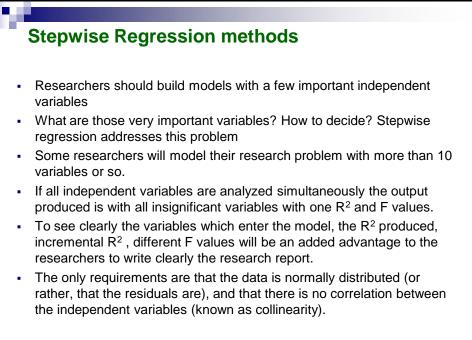
a. Dependent Variable: VO2max

The equation to predict VO2max from age, weight, heart_rate, gender, is:

Predicted VO2max = 87.83 - (0.165 x age) - (0.385 x weight) - (0.118 x heart_rate) + (13.208 x gender)

- Unstandardized coefficients indicate how much the dependent variable varies with an independent variable when all other independent variables are held constant. Consider the effect of age in this example.
- The unstandardized coefficient, for age is equal to -0.165.
- Each one year increase in age, there is a decrease in VO2max of **0.165** ml/min/kg.
- The standardized coefficients indicate which independent variable contributes maximum to dependent variable. They rank the independent variables. Age comes first followed by weight, heart rate and so on.


				Coefficients ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			95.0% Confiden	ice Interval for B
Model		В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	87.830	6.385		13.756	.000	75.155	100.506
	age	165	.063	176	-2.633	.010	290	041
	weight	385	.043	677	-8.877	.000	471	299
	heart_rate	118	.032	252	-3.667	.000	182	054
	gender	13.208	1.344	.748	9.824	.000	10.539	15.877


a. Dependent Variable: VO2max

- This table provides the statistical significance of each of the independent variables.
- This tests whether the unstandardized (or standardized) coefficients are equal to 0 (zero) in the population.
- p < .05, you can conclude that the coefficients are statistically significantly different to 0 (zero).

Report

A multiple regression was run to predict VO2max from gender, age, weight and heart rate. These variables statistically significantly predicted VO2max, F(4, 95) = 32.393, p < .0005, R2 = .577. All four variables added statistically significantly to the prediction, p < .05.

e <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Analyze Direct Mar	keting <u>G</u> raphs	<u>U</u> tilities A	dd- <u>o</u> ns <u>W</u> indo
)			- 🔛 🏪 =	1 4	1 * 5	ž 🔤 🖉
)1 : gender						
	caseno	age	heart_rate	weight	gender	VO2max
1	1	27	191	67.9	1.00	55.4
2	2	63	115	47.6	2.00	35.0
3	3	36	159	87.4	1.00	42.9
4	4	48	83	86.3	1.00	28.6
5	5	24	133	100.1	1.00	40.2
6	6	29	115	75.3	2.00	33.8
7	7	24	174	78.8	1.00	43.3
8	8	27	111	76.1	2.00	30.2
9	9	25	136	94.3	1.00	40.0
10	10	33	103	77.4	1.00	36.9
11	11	30	157	87.3	1.00	44.1
12	12	25	109	74.4	2.00	38.0
13	13	25	111	75.6	2.00	33.9
14	14	36	142	61.8	2.00	44.7
15	15	23	106	111.8	1.00	31.0
16	16	29	101	83.2	2.00	34.7
17	17	37	176	54.8	1.00	47.9
18	18	30	161	86.9	1 00	45.9

ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities A	\dd- <u>o</u> ns <u>W</u> in	dow <u>H</u> e
🔁 H			Re <u>p</u> o D <u>e</u> so	orts rriptive Statistics	*	*5		\$ <u>}</u>
01 : gender			Table	es	•			
	caseno	age	Com	pare Means	•	gender	VO2max	var
1	1	27	Gene	eral Linear Model	•	1.00	55.4	
2	2	63	Gene	eralized Linear Mode	ls 🕨	2.00	35.0	
3	3	36	Mixed	d Models	•	1.00	42.9	
4	4	48	Corre	elate	*	1.00	28.6	
5	5	24	Regr	ession	•	Automati	c Linear Modeli	00
6	6	29	Logli	near	*	Linear		
7	7	24	Neur	al Networks	•		stimation	
8	8	27	Clas	sify	•			_
9	9	25	Dime	ension Reduction	*		ea <u>s</u> t Squares	
10	10	33	Scale	9	•	👪 Binary Lo	ogistic	
11	11	30	None	arametric Tests		R Multinom	nial Logistic	
12	12	25		casting	•	🔣 Or <u>d</u> inal		
13	13	25	Survi		•	Probit		-
14	14	36	-	ole Response	•	Nonlinea	ar	
15 16	15	23 29		ng Value Analysis			stimation	
	16			ple Imputation	•		Least Squares.	
17	17	37	Mulu	ne imputation		Z-Stage	Least Squares.	

Case Labels:	Case Number [caseno] Age [age] Weight of the participants [heart Gender [gender]	WLS Weight	Statistics Plots Save Options Style Bootstrap
--------------	---	------------	--

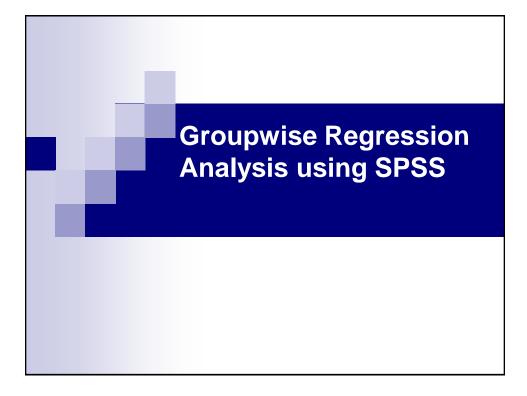
Model	R	R Squa		ljusted R Square	Std. Error of the Estimate	
1	.831*	a .69	90	.687	4	4.7506
a. Predi	ctors: (Co	nstant), He	art Rate o	of the particip	ants	
			ANOVA ª			
Model		Sum of Squares	df	Mean Square	F	Sig.
1 Re	gression	4928.968	1	4928.968	218.400	.000 ^t
Re	sidual	2211.712	98	22.568		
Total		7140.680	99			
a. Depende	ent Variable: \	/02max				
b. Predictor	s: (Constant)	, Heart Rate of t	he participa	nts		

375

			Coefficie	ents ^a				
		Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
Mode	el	В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	11.631	2.216		5.249	.000		
	Heart Rate of the participants	.226	.015	.831	14.778	.000	1.000	1.00

a. Dependent Variable: VO2max

Excluded Variables^a


						Co	llinearity Sta	tistics
Model	I	Beta In	t	Sig.	Partial Correlation	Tolerance	VIF	Minimum Tolerance
1	Age	040 ^b	691	.491	070	.938	1.066	.938
	Weight of the participants	023 ^b	378	.706	038	.892	1.121	.892
	Gender	068 ^b	-1.136	.259	115	.883	1.133	.883

a. Dependent Variable: VO2max

b. Predictors in the Model: (Constant), Heart Rate of the participants

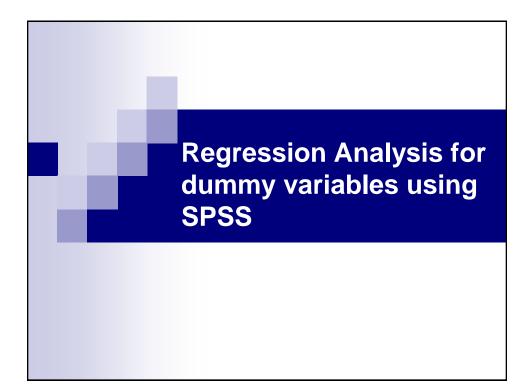
Collinearity Diagnostics^a

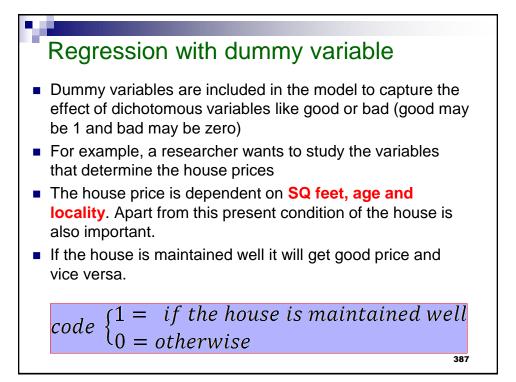
				Variance	Proportions
Model	Dimension	Eigenvalue	Condition Index	(Constant)	Heart Rate of the participants
1	1	1.977	1.000	.01	.01
	2	.023	9.221	.99	.99

Group-wise Regression In Previous example VO2Max we have two groups of participants male and female. It is interesting to find and present results separately to know more about the independent variables in male and female rather than giving results in general. Sometimes we will compare groups separately to get more insight. For example young age group how is it different from other age groups. We have to run regression two times

*Multiple	regression evers	ico vo2mav cav	[DataSet9] - IBM SPSS St	atistics Data Editor		
	-					
ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	<u>T</u> ransform	Analyze Direct Mar		_	dd- <u>o</u> ns <u>W</u> indow
a 6			× 📓 🏪 :			
01 : gender						
	caseno	age	heart rate	weight	gender	VO2max
1	1	27		67.9	1.00	55.4
2	2	63	115	47.6	2.00	35.0
3	3	36	159	87.4	1.00	42.9
4	4	48	83	86.3	1.00	28.6
5	5	24	133	100.1	1.00	40.2
6	6	29	115	75.3	2.00	33.8
7	7	24	174	78.8	1.00	43.3
8	8	27	111	76.1	2.00	30.2
9	9	25	136	94.3	1.00	40.0
10	10	33	103	77.4	1.00	36.9
11	11	30	157	87.3	1.00	44.1
12	12	25	109	74.4	2.00	38.0
13	13	25	111	75.6	2.00	33.9
14	14	36	142	61.8	2.00	44.7
15	15	23	106	111.8	1.00	31.0
16	16	29	101	83.2	2.00	34.7
17	17	37	176	54.8	1.00	47.9
18	18	30	161	86.9	1 00	45.9

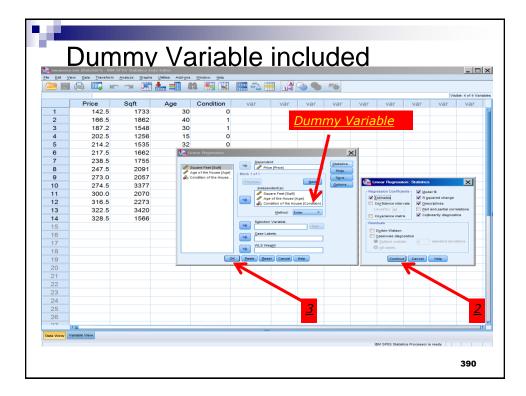
_		-		-	-	IBM SPSS Statistics D					
ile <u>E</u>	dit	View	<u>D</u> ata	Transform	<u>A</u> nalyze	Direct <u>M</u> arketing	<u>G</u> raphs	<u>U</u> tilities	Add-ons	s <u>W</u> in	dow <u>H</u> e
	H		Ū.		Repo		•	*.	4		SZ 🧰
01:ge	ndor				-	riptive Statistics					
UT.ge	liuei				Ta <u>b</u> le		•			-	
		case		age		pare Means	•	gender		2max	var
1			1	27	Gene	eral Linear Model	•	1.0	-	55.4	
2			2	63	Gene	eralized Linear Model	ls 🕨	2.0		35.0	
3			3	36	Mixed	dModels	•	1.0	-	42.9	
4			4	48	Corre	elate	•	1.0	0	28.6	
5			5	24	Regr	ession	•	Automa	- atic Linea	ar Modeli	na
6			6	29	Logli	near	*	Linear.			
7			7	24	Neur	al Networks	•				
8			8	27	Clas	—	•	Curve E	Estimatio	n	
9			9	25		ension Reduction		🚠 Partial	Lea <u>s</u> t Sq	uares	
10			10	33	_		, , , , , , , , , , , , , , , , , , ,	🔛 Binary	Logistic		
11			11	30	Sc <u>a</u> le			🔛 Multino	mial Loo	istic	
12			12	25		arametric Tests	P	Crdinal	-		
13			13	25		casting	•				
14			14	36	<u>S</u> urvi	val	•	Probit			
15			15	23	M <u>u</u> ltij	ole Response	•	Monline Nonline	ear		
16			16	29	월 Missi	ng Value Analysis		🔣 Weight	Estimati	on	
17			17	37	Multij	ole Imputation	•	2-Stag	e Least S	quares.	

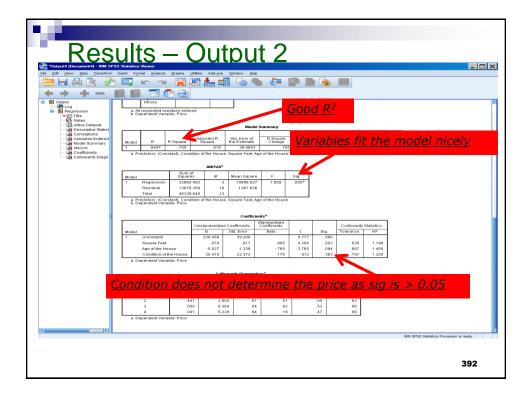

🙀 Linear Regression	×
	Statistics Plots Save Options Style Bootstrap
Selection Variable: gender=1 Case Labels: WLS Weight OK Paste Reset Cancel Help	Linear Regression: Set Rule × Define Selection Rule gender Value: equal to Continue Cancel Help
04.7	
	381

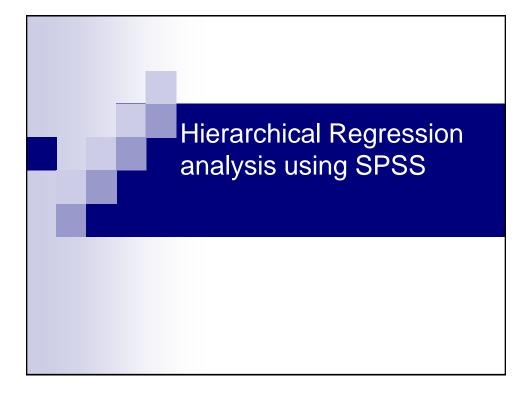

	Descrip	tive Statis	stics ^a				Descript	ve Statist	ics ^a		
		Mean	Std. [Deviation	N	1		Mean	Std. Dev	iation	Ν
V02max		45.898		8.3473	62	VO2max		39.903	7	4314	38
Age		30.90		7.796	62	Age		31.92		9.802	38
Heart Rate o participants	fthe	149.65		30.822	62	Heart Rate o participants	fthe	127.76	2	7.004	38
Weight of the	e participants	83.334		15.0221	62	Weight of the	participants	72.295	12	1932	38
a Selecting	only cases for w	nich Gend	er= Ma	ale		a. Selecting	only cases for wh	ch Gende	r= Fema	le	
		orrelations ^a									
	·	literations		Heart Rate of the	Weight of the						
		V02max	Age	participants	participants						
Pearson Correlation	V02max	1.000	327	.823	587						
	Age	327	1.000	325	.002						
	Heart Rate of the participants	.823	325	1.000	577						
	Weight of the participant	587	.002	577	1.000						
Sig. (1-tailed)	V02max		.005	.000	.000						
	Age	.005		.005	.493			orrelations ^a			
	Heart Rate of the participants	.000	.005		.000					Heart Rate of	
	Weight of the participant		.493	.000				V02max	Age	the participants	Weight of participa
V	VO2max	62	62	62	62	Pearson Correlation	V02max	1.000	120	.777	- participa
	Age	62	62	62	62	Fealson Conelation	Age	120	1.000	133	
	Heart Rate of the participants	62	62	62	62		Heart Rate of the				
	Weight of the participant	62	62	62	62		participants	.777	133	1.000	
a Selecting only case	es for which Gender = Mai		02	1 02	02		Weight of the participan	s224	301	372	1.
rooming only tabl	Mar					Sig. (1-tailed)	V02max		.236	.000	
							Age	.236		.213	
							Heart Rate of the participants	.000	.213		
							Weight of the participan	s .088	.033	.011	
						N	V02max	38	38	38	
							Age	38	38	38	
							Heart Rate of the participants	38	38	38	
							Weight of the participan	s 38	38	38	
						a. Selecting only case	es for which Gender = Fer	nale			

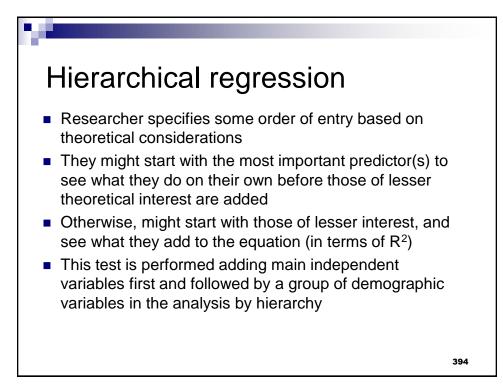
	variables Er	tered/Removed ^a	-				
Model	Variables Entered	Variables Removed	Method				
1	Heart Rate of the participants		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).				
2	Age, Weight of the participants ^c		Enter			tered/Removed	ab
a. Depe	ndent Variable: V	02max					
	ls are based only		ch Gender =	Model	Variables Entered	Variables Removed	Method
	quested variables	entered.		1	Heart Rate of the participants		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).
				2	Age, Weight of the participants ^c		Enter
				a. Depe	endent Variable: V	02max	
				b. Mode Fem	els are based only ale	on cases for wh	iich Gender =
				c. All re	quested variables	entered	

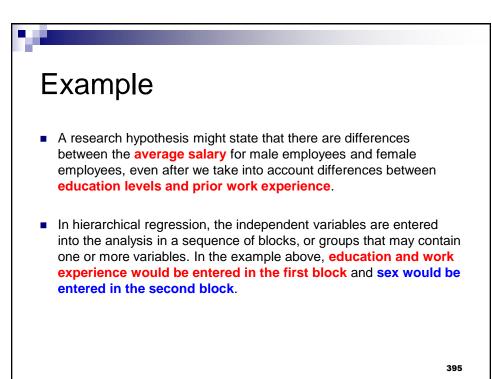
			lodel Sum	mary										Model Su	immary					
Model	R Gender = Male (Selected		Square	Adjusted Squar			Error of stimate			Mode		R Gender Femal (Select	e ed)	R Square	ŝ	usted R Square	_		Frror of stimate	
1	.82	23 ^a	.678		.672		4.7787			1			777 ^a	.603		.51	- 1		4.7462	
2	.84	40 ^b	.706		.691		4.6421			2			780 ^b	.608			73		4.8535	
b. Pred	ictors: (Cons ictors: (Cons articipants					Age, W	eight of			b. Pr	edicto			Heart Rate Heart Rate				Age, We	eight of	
				ANOVA ^{a,b}										Sum of						
				ANOVA						_	Mode			Squares	df	Mean Sq		F	Sig.	
Model			m of Jares	df		n Squar		:	Sig.		1	Regres: Residu: Total		1232.416 810.954 2043.370	1 36 37	1232 22	.416 .527	54.710	.000	le.
1 F	Regression	3	000.505	3	1	000.16	8 46	.414	.000)°	2	Regres	sion	1242.465	37	414	.155	17.58	.000	d
F	Residual	1	249.844	58		21.54	9					Residua	al	800.905	34	23	.556			
т	otal	4	250.350	61								Total ependent Va		2043.370	37					
	cting only ca: lictors: (Cons				ts, Age	, Heart	Rate of th	ie parti	cipants		c. Pr	edictors: (C	onstant), H	which Gender leart Rate of th leart Rate of th	e participa		/eight	of the parti	cipants	
			Coefficie	ents ^{a,b}											Standard					
		Linstandar	Ized Coefficients	Standardized Coefficients			Collinearity	Itatistics	Mo	del			Unstandar	dized Coefficients Std. Error	Beta		t	Sig.	Collinearity Tolerance	VIF
Madel		8	Std. Error	Beta	t	Sig.	Tolerance	VIF	1	(Cons			12.55	3.771		3	.340	.002		
1 (Con Hear	stant) 1 Rate of the	12.53			4.135	.000				Peart	Rate of t ipants	he	.21	4 .025		.777 7	.397	.000	1.000	1.000
	cipants stanti	.22		.823	11.231	.000	1.000	1.000	2	(Cons Heart	stant) Rate of t	ha	7.73				.790	.435		
Hear	Rate of the	.18		675	7.104	.000	.562	1,779		partici			.22				.709	.000	.796	1.257
partic Age	cipants	-11		107	-1.379	.173	.843	1.185		Age Weigt	nt of the s	articipants	.00			.011	.097	.924 .530	.839 .736	1.191 1.358
	ht of the participants	10		197	-2.194	.032	.628	1.591		Dependent	Variable	V02max								
	t Variable: VO2max inly cases for which Ge	ender= Male							b.1	Selecting or	nlycases	i for which Ge	nder= Fem	ale						
																			384	

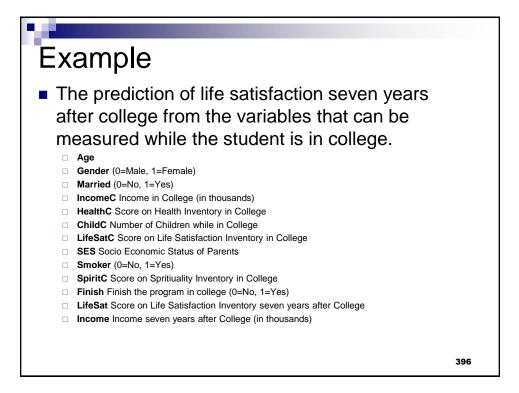

					Exclud	led Varial	oles ^a							
									Co	linearity Stat	istics			
Model	1			Beta In	t	Sig.	Part Correl		Tolerance	VIF	Minimur Toleran			
1	Age			066 ^b	851	.398		110	.894	1.118		894		
	Weight	t of the parti	icipants	167 ^b	-1.904	.062		241	.667	1.500		.667		
a. De	ependent \	/ariable: VO	2max											
b. Pre	edictors in	the Model:	(Constant),	Heart Rate	e of the partic	ipants								
								Exc	luded Variab	les ^a				
												Col	linearity Stat	istics
			Mod	del			Beta In	t	Sig.	Partia Correlat		lerance	VIF	Minimun Toleranc
			1	Age			017 ^b	158		-	.027	.982	1.018	
				Weig	ht of the parti	cipants	.075 ^b	.65	5 .517		.110	.862	1.160	
				Predictors i Diagnostics ^a	Variance P		i), Heart Rat	te of the pa	articipants					
	Dimonolog	Figenvalue	Collinearity	/ Diagnostics ^a	Variance P Heart Rate of the	roportions	Weight of the	te of the pa	articipants					
	Dimension 1	Eigenvalue 1.980	Collinearity Condition Index 1.000	/ Diagnostics ^a (Constant) .01	Variance Pr Heart Rate of the participants .01			e of the p	articipants					
	1 2	1.980	Collinearity Condition Index 1.000 9.891	(Constant) .01 .99	b Variance Pi Heart Rate of the participants .01 .99	Age	Weight of the participants		articipants					
1	1	1.980	Collinearity Condition Index 1.000	/ Diagnostics ^a (Constant) .01	Variance Pr Heart Rate of the participants .01	roportions	Weight of the participants .00 .02		articipants					
	1 2 1 2 3	1.980 .020 3.884 .068 .044	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants		rticipants			b		
2	1 2 1 2	1.980 .020 3.884 .068 .044 .004	Collinearity Condition Index 1.000 9.891 1.000 7.561	(Constant) (Constant) .01 .99 .00 .00	Variance Pr Heart Rate of participants .01 .99 .00 .19	Age .00 .27	Weight of the participants .00 .02		rticipants	Collinearity	/ Diagnostics ^a		e Proportions	
! a. Deper	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02 .25	-		Condition	-	Varianc Heart Rate (the		
a. Deper	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004 : V02max	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02	-			/Diagnostics ^a (Constant) .01	Varianc Heart Rate the participant	of	
! a. Deper	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004 : V02max	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02 .25 <u>Model</u> 1	Dimensio 1	n Eigenvalue 1.979 .021	Condition Index 1.000 9.693	(Constant) .01 .99	Varianc Heart Rate in the participant	of Age D1 99	participants
2 a. Depen	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004 : V02max	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02 .25	Dimensio 1 2 1	n Eigenvalue 1.979 .021 3.868	Condition Index 1.000 9.693 1.000	(Constant) .01 .99 .00	Varianc Heart Rate the participant .1	of Age 01 99 00 .00	.00
2 a. Depen	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004 : V02max	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02 .25 <u>Model</u> 1	Dimensio 1	n Eigenvalue 1.979 .021	Condition Index 1.000 9.693	(Constant) .01 .99	Varianc Heart Rate the participant .1 .1	of Age D1 99	participants
! a. Deper	1 2 1 2 3 4 ndent Variable	1.980 .020 3.884 .068 .044 .004 : V02max	Collinearity Condition Index 1.000 9.891 1.000 7.561 9.369 33.218	(Constant) (Constant) .01 .99 .00 .00 .00	b Variance Pi Heart Rate of the participants .01 .99 .00 .19 .03	Age .00 .27 .40	Weight of the participants .00 .02 .25 <u>Model</u> 1 2	Dimensio 1 2	n Eigenvalue 1.979 .021 3.868 .081 .047	Condition Index 1.000 9.693 1.000 6.928	(Constant) .01 .99 .00 .00	Varianc Heart Rate i the participant .! .!	of Age 01 99 00 .00 05 .64	participants .00




-	i 🖨 🛄 🖛		Utilities Add-ons		s 🗰 📲	0	ARG					
	Price	Sqft	Age	Condition var	var	var	var	var	var	var	var	var
1	142.5	1733	30		Veri	Vol	Ven	Val	Vell	Vell	Ven	Var
2	166.5	1862	40	1								
3	187.2	1548	30	1								
4	202.5	1256	15	0								
5	214.2	1535	32	0			mm	1/2	inhle			
6	217.5	1662	38	1		Du	шпу	Vdi	<u>iable</u>	1		
7	238.5	1755	27	0								
8	247.5	2091	30	1								
9	273.0	2057	26	0								
10	274.5	3377	35	0								
11	300.0	2070	18	0								
12	316.5	2273	17	1								
13	322.5	3420	40	1								
14	328.5	1566	12	0								
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												


S	SPS:	S wo	orks	she	et a	nd	d	ata	2			
									~			
		Analyze Graphs U		indow <u>H</u> elp								
2	🚔 📖 🖬	Reports Descriptive Statisti	.; 🔳 🛍	*.			A	÷				
		SPSS Statistics Data Edi	tor									>
	ew Data Transform	Analyze Graphs Utilit Reports P		w Help	42 🗰 🔒	A 📀 🌑	ARC					
		Descriptive Statistics Compare Means		TS 🕺 🛗		ia 🥗 👅						ible: 4 of 4 Variable
	Price	Compare Means P General Linear Model	je Co	ndition	var va	r var	var	var	var	var	var	Var Var
1	142.5	Correlate Begression			vai va	i vai	Val	Vai	Vai	vai	vai	Vai
2	166.5	Classify M		ear Modeling	_							
3	187.2	Dimension Reduction Scale	Curve Estimat	ion								
4	202.5	Nonparametric Tests										
5	214.2	Forecasting Mutiple Response										
6	217.5	Quality Control		patre								
7	238.5	ROC Curge	Probit									
8	247.5	Amos 19	Nonlinear									
9	273.0	2057	Weight Estima 2-Stage Least									
10	274.5	3377	hid 2-Stage Least	Squares								
11	300.0	2070	18	0								
12	316.5	2273	17	1								
13	322.5	3420	40	1								
14	328.5	1566	12	0								
15												
16												
17												
18												
20												
21												
22												
23												
24												
26												
20												




	SS Statistics Viewer			-					
Ele Edit View Bate Transform	jnsert Pormat Analyze	Graphs Utilite		a <u>W</u> indow	<u>Heb</u>	- 21		N.	and a second
Cohert Cohert	Price	ISE EFF OUTS R .05) POUT(. IN Sqft Age Co ers\ravindr escriptive Stati Mean 245.100	ANOVA C 10) ndition an\Desk stics SH. Devis 59.7	top\NEW	SPSS\twoanov		orrela	tion Coeffic	<u>cients</u>
	Square Feet Age of the House Condition of the House	2014.64 27.86 43		143 264 514	14 14 14				
1				Correlation	s		·		
				Price	Square Feet	Age of the House	Condition of the House		
	Pearson Correlation	Price Square Feet		1.000	.520	374	032		
		Age of the Hou		374	.406	1.000	.450		
	Circ. of Arthrophy.	Condition of th	e House	032	.178	.450	1.000		
	Sig. (1-tailed)	Price Square Feet		.028		.094	.456		
		Age of the Hou		.094	.075		053		
	N	Condition of th Price	e House	.456	.271	.053	. 14		
		Square Feet		14	14	14	14		
		Age of the Hau		14	14	14	14		
		Condition of th	e House	14	14	14	14		
		ntered Remov							
	Model Variables Entered	Variable	9	hod					

1	16			incomec	healthc	childc	lifesatc	ses	smoke	spiritc	finish	lifesat7	income7
		0	0	0	38	0	17	17	1	30	1	22	
	28	1	0	0	38	0	16	21	1	39	1	20	
3	3 16 . 1 16 52 1 39 40 0 30 1											42	
4	23	1	0	6	51	0	22	31	0	60	1	48	
5	18	0	1	7	52	0	25	38	0	32	0		
6	30	0	1	25	43	2	53	36	1	39	0	33	
7	19	0	1	19	55	0	28	41	0	51	1	33	
8	19	1	0	0	52	2	17	52	0	35	1	21	
9	34	0	0	29	60	2	20	56	0	23	1	26	
10	16	1	0	0	53	0	21	27	0	29	0	37	
11	25	1	0	3	39	0	18	34	1	61	1	40	
12	16	1	1	1	42	0	31	29	1	58	1	35	
13	16		0	0	43	0	15	28	1	39	1	32	
14	16	0	1	18	54	1	34	38	0	40	0	37	
15	16	1	0	0	52	0	20	38	0	27	1	35	
16	32	1	1	26	54 46	1	39 17	37	0	30 36	. 1	47	
17	19	1	1	10	46	2	48	25 53	0	36 43	1	26 42	
10	24	0	0	10	55	2	40	36	0	43	1	42	
20	24	1	1	11	52	1	39	41	0	32	1	42	
 To examine the prediction of life satisfaction seven years after college in several stages. In the first stage, he/she enters demographic variables that the individual has little or no control over, age, gender, and socio-economic status of parents. In the second block variables are entered that the individual has at 													

Hierarchical regression analysis satisfaction of students.sav [DataSet5] - IBM SPSS Statistics Data Editor Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window Help *, Reports Þ 52 曲 4 F Descriptive Statistics ۴ Tables Þ subject age Compare Means Þ comec healthc childc li 1 General Linear Model 0 38 0 Þ 2 0 38 0 Generalized Linear Models 🕨 3 16 52 1 Mixed Models Þ 4 6 51 0 Correlate Þ 5 Regression Þ Automatic Linear Modeling.. 6 L<u>o</u>glinear Þ Linear... 7 Neural Networks • Curve Estimation... 8 Classify Þ 🔣 Partial Least Squares... 9 Dimension Reduction ۴ 0 10 🔢 Binary Logistic... ۴ Scale 11 1 🔛 Multinomial Logistic... Þ Nonparametric Tests 2 12 🔛 Or<u>d</u>inal... Þ Forecasting 3 13 🕌 Probit... Þ Survival 14 4 Nonlinear... Multiple Response Þ 15 5 🟭 Missing Value Analysis... Weight Estimation... 16 Multiple Imputation Þ 2-Stage Least Squares... 17 Comp<u>l</u>ex Samples Þ 18 8 Optimal Scaling (CATREG).. 19 Quality Control ۴ 9 17 52 0 20 ROC Curve... 57 1 398

Subject [subject] Age of the students [Sex of the students [Income in College (Coll	Dependent. Score on Life Satisfaction Inv Block 3 of 3 Pregious Independent(s): Score on Sprifuality Inventor Finish the program in colleg	Statistics Plots Save Options Bootstrap	23 29 61 58 39 40	1 0 1 1 1 0	26 37 40 35 32 37
Score on Life Satisf Socio Economic Sta Somoking (smoke) Score on Sprifuality Finish the program i Income seven year OK	Finish the program in colleg Method: Enter Selection Variable: Rule Case Labels: WLS Weight Paste Reset Cancel Help	Cogression C Estimates Cogression C Estimates Cogriden Level(%): Cogarian -Residuals Durbin-W Casewis @ Qutilers @ Qutilers @ Qutilers @ Qutilers @ Qutilers @ All case	Coefficients 2 ce intervals 95 2 ce matrix 2 dason e diagnostics outside: 3	Model fit R squared cha Descriptives Part and partia Collinearity dia	al correlations
l <mark>ick next</mark> ransfer Smoki	ender, and socio-econo ng, having children, be n and spirituality.	omic statu	•	ents. Th	

Descriptive Statistics Mean Std. Deviation Ν Score on Life Satisfaction 33.44 8.286 16 Inventory seven years after College 21.50 Age of the students 5.785 16 Sex of the students .56 .512 16 Socio Economic Status of 35.94 11.162 16 Parents Variables Entered/Removed Marital stutus .38 .500 16 Variables Entered Variables Removed
 Variables
 Variables

 todel
 Entered
 Removed

 Socio
 Economic
 E

 Status of
 Parents, Sex
 ofthe

 ofthe
 students, Age
 ofthe

 students, Age
 ofthe
 students, Marital stutus,
 E

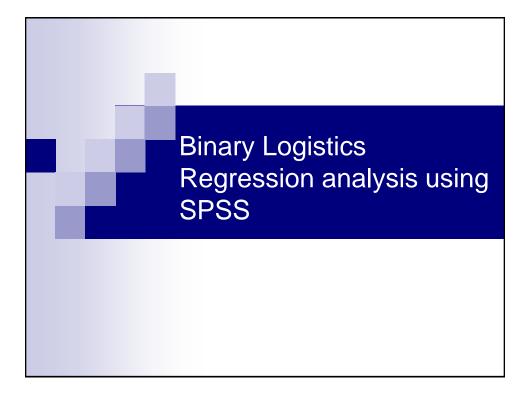
 Smoking,
 Number of
 Children
 while in

 College^b
 Score on
 E

 Sprituality
 Inventory in
 college,

 Finish the
 program in
 college

 a. Dependent Variable: Score on Life
 Saffaction inventory seven years after


 College
 Finish the
 program in

 College
 Score on Life
 Saffaction inventory seven years after

 College
 All requested variables entered.
 Score on Life
 Method Model Number of Children while .63 .885 16 Enter in College Smoking .31 .479 16 Score on Spritiuality 41.06 12.272 16 Inventory in College 2 Enter Finish the program in .75 .447 16 college Enter 3 b. All requested variables entered. 400

					Model Surr	mary					
							Ch	ange Statisti	s		
Model	R	R Square	Adjusted R Square		rror of stimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.346 ^a	.120	100		8.692	.120	.544	3	12	.661	
2	.683 ^b	.466	.111		7.814	.347	1.949	3	9	.192	
3	.845°	.714	.387		6.490	.247	3.024	2	7	.113	
c. Pre	edictors: (Co		n College o Economic Stat I College , Score							oking,	
ANOVA®											
	Model		Sum of Squares	df	Mean Square	F	Sig.				
	1	Regression	123.398	3	41.133	.544	.661 ^b				
		Residual	906.539	12	75.545						
		Total	1029.938	15							
	2	Regression	480.368	6	80.061	1.311	.343°				
		Residual Total	549.569 1029.938	9 15	61.063						
	3	Regression	735.119	8	91.890	2.182	.160 ^d				
	5	Residual	294,818	7	42.117	2.102	.100				
		Total	1029.938	15							
	a. De	pendent Varial	le: Score on Life S	atisfaction	Inventory seven	years after Co	lege				
		dictors: (Cons he students	tant), Socio Econo	mic Status	of Parents, Sex	of the students	, Age				
			tant), Socio Econor arital stutus, Smok				Age				
			tant), Socio Econo arital stutus, Smok								

	I			Coefficie	ents ^a				
Demographic Va	ariable	s coefficients	Unstandardize	d Coefficients	Standardized Coefficients			Collinearity	Statistics
	Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
		(Constant)	29.134	10.772		2.705	.019		
	11	Age of the students	132	.406	092	324	.751	.913	1.09
	11	Sex of the students	4.507	4.456	.279	1.012	.332	.966	1.03
		Socio Economic Status of Parents	.128	.207	.172	.617	.549	.939	1.06
	2	(Constant)	20.997	13.773		1.525	.162		
		Age of the students	.365	.427	.255	.855	.415	.668	1.49
		Sex of the students	5.959	4.223	.368	1.411	.192	.870	1.15
bles coefficient	S	Socio Economic Status of Parents	.080	.387	.108	.208	.840	.219	4.57
		Marital stutus	9.376	4.659	.566	2.013	.075	.750	1.33
		Number of Children while in College	-4.732	4.102	505	-1.153	.278	.309	3.23
		Smoking	-7.014	6.152	405	-1.140	.284	.469	2.13
	3	(Constant)	14.574	11.735		1.242	.254		
		Age of the students	.459	.369	.320	1.243	.254	.616	1.62
		Sex of the students	5.137	3.523	.318	1.458	.188	.862	1.16
		Socio Economic Status of Parents	.114	.392	.154	.291	.779	.146	6.83
		Marital stutus	4.538	4.342	.274	1.045	.331	.596	1.67
		Number of Children while in College	-4.819	4.980	515	968	.365	.145	6.91
		Smoking	-7.857	5.708	454	-1.377	.211	.376	2.65
		Score on Spritiuality Inventory in College	.298	.179	.441	1.664	.140	.583	1.71
		Finish the program in college	-8.598	5.297	464	-1.623	.149	.500	1.99

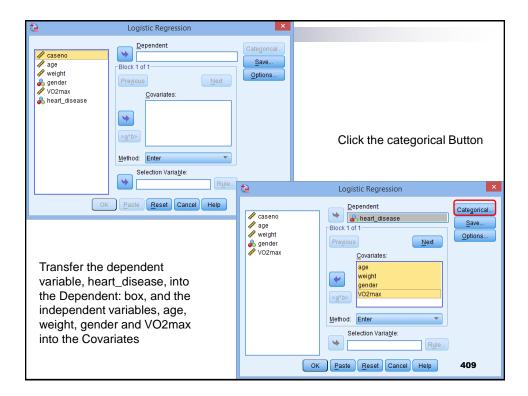
Binary Logistics Regression analysis

 A binomial logistic regression (often referred to simply as logistic regression), predicts the probability that an observation falls into one of two categories of a dichotomous dependent variable based on one or more independent variables that can be either continuous or categorical.

- Exam performance can be predicted based on revision time, test anxiety and lecture attendance (i.e., where the dependent variable is "exam performance", measured on a dichotomous scale – "passed" or "failed" – and you have three independent variables: "revision time", "test anxiety" and "lecture attendance").
- Drug use can be predicted based on prior criminal convictions, drug use amongst friends, income, age and gender (i.e., where the dependent variable is "drug use", measured on a dichotomous scale "yes" or "no" and you have five independent variables: "prior criminal convictions", "drug use amongst friends", "income", "age" and "gender").

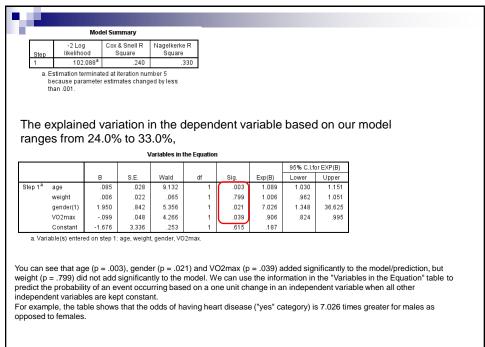
405

Assumptions

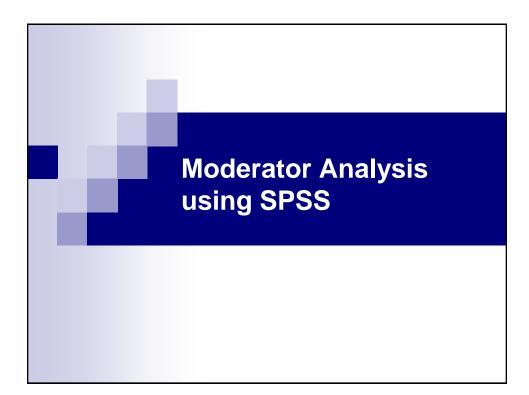

- Assumption #1: Dependent variable should be measured on a dichotomous scale. Examples of dichotomous variables include gender (two groups: "males" and "females"), presence of heart disease (two groups: "yes" and "no"), body composition (two groups: "obese" or "not obese")
- Assumption #2: One or more independent variables, which can be either continuous (i.e., an interval or ratio variable) or categorical (i.e., an ordinal or nominal variable).
- Assumption #3: Independence of observations and the dependent variable should have mutually exclusive and exhaustive categories.
- Assumption #4: There needs to be a linear relationship between any continuous independent variables and the logit transformation of the dependent variable.

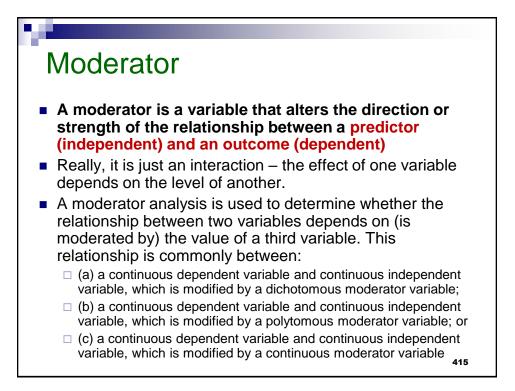
Example

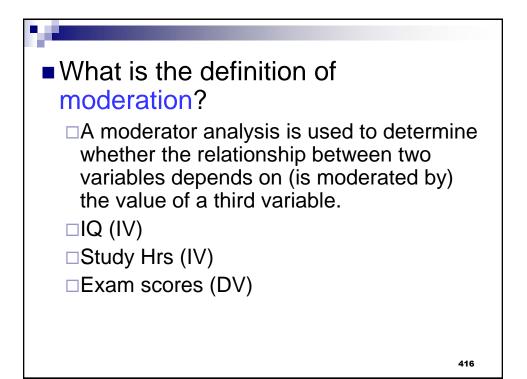
Ľ.

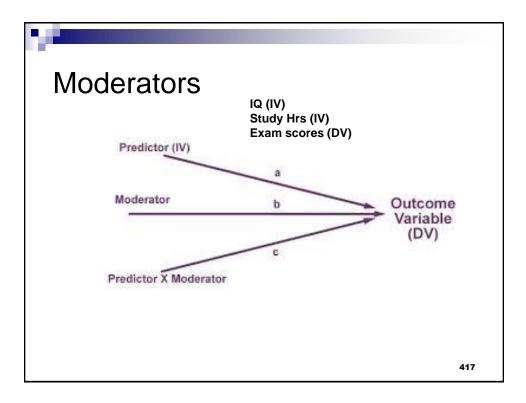

- A health researcher wants to be able to predict whether the "incidence of heart disease" can be predicted based on "age", "weight", "gender" and "VO₂max" (i.e., where VO₂max refers to maximal aerobic capacity, an indicator of fitness and health).
- The researcher recruited 100 participants to perform a maximum VO₂max test as well as he recorded their age, weight and gender. The participants were also evaluated for the presence of heart disease (Yes or No).
- There are six variables:
 - (1) Heart_disease, which is whether the participant has heart disease: "yes" or "no" (i.e., the dependent variable);
 - (2) VO2max, which is the maximal aerobic capacity;
 - (3) age, which is the participant's age;
 - (4) weight, which is the participant's weight (technically, it is their 'mass'); and
 - (5) gender, which is the participant's gender (i.e., the independent variables); and
 - (6) Caseno, which is the case number.

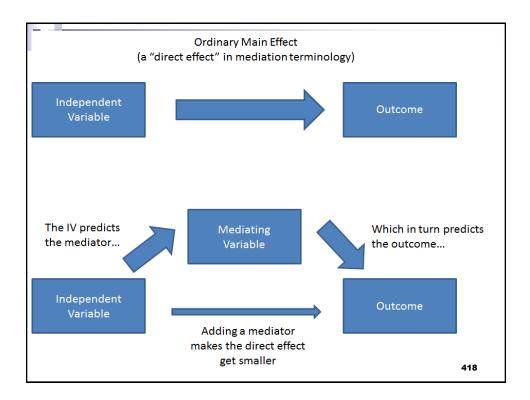
	Analy			~~~	~	lan	. D:				aiotio
JIICK	Analy	ze	> <u>r</u> e	gres	53	SION	> DI	na	y	LC	ogistic
							logistic r	egressio	on.sav	[Data	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> rans	sform 🧕	Analyze Graphs	s <u>U</u> tilities	Ad	d- <u>o</u> ns <u>W</u> in	dow <u>H</u> elp				
2			Re <u>p</u> orts Descriptive \$	Statistics	*	h 4	*,		5		
			Compare Me	eans							
	caseno	age	General Line	ear Model	•	/O2max	heart_disease	v	ar	Va	
1	1	5	Generalized	Linear Mode	Ist-	55.79	1	lo			
2	2	7	Mixed Model	s		35.00	1	lo			
3	3	4	Correlate			42.93	Y	es			
4	4	3	Regression			Autor	atic Linear Mode	lina			
5	5	- 1	Loglinear		۲	Linea					
6	6	1	Classify								
7	7		Dimension F	Reduction			Estimation				
8	8		Scale				l Lea <u>s</u> t Squares.				
9	9		Nonparame	tric Tests		🔛 Binary	Logistic	2			
10	10	- 1	Forecasting			Multin	omial Logistic	-0			
11	11	4	Survival			🔣 Ordina	al				
12	12	-	Multiple Res	ponse		Probit			_		
13	13	- 1	Simulation		ĺ.		iear		_		
14	14	4	Quality Cont				it Estimation				
15	15		ROC Curve		1		ie Least Square:				
16	16	- 1			_						
17	17	47		Male	-	47.23		es			
18	18	40		Male		45.06		lo lo			
10	10	16	87 30	Mak		FE 101	'	10			40

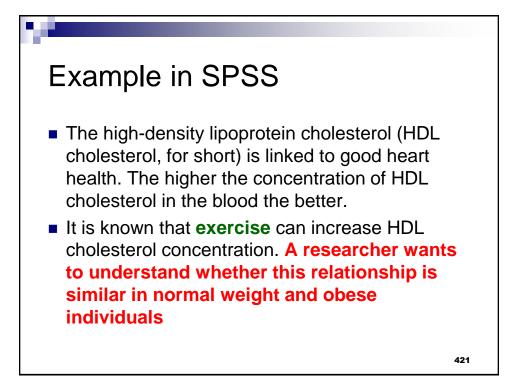



Logistic Regression: Define Categorical Variab Covariates: Categorical Covariates: Categorical Covariates: Categorical Covariates: Contrast: Contras		
In the –Change Contrast– area, change the Reference Category: from the Last option to the First option. Then, click the button, as shown below:	Covariates:	gistic Regression: Define Categorical Variables Categorical Covariates: gender(Indicator(first)) Change Contrast Contrast Contrast Reference Category: © Last @ First Continue Cancel Help 410


ta Sta	Logistic Regression: Options ×	
	Classification plots □ Correlations of estimates Hosmer-Lemeshow goodness-of-fit □ Iteration history Casewise listing of residuals ☑ Cl for exp(B): 95 % Quttiers outside 2 std. dev. All cases	
	Maximum Iterations: 20 Conserve memory for complex analyses or large datasets nclude constant in model Continue Cancel	
		- 41 [,]



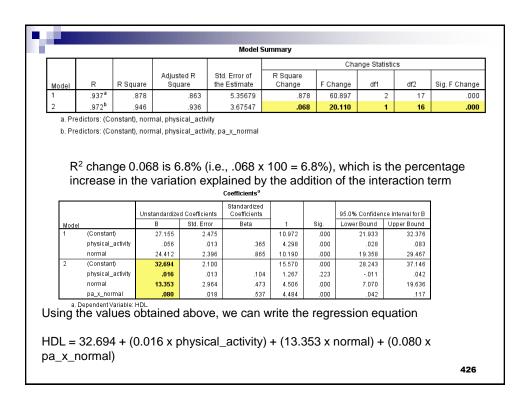

Report			\ \	/ariables in t	he Equation	1				
•								95% C.I.fc	or EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
	Step 1 age	.085	.028	9.132	1	.003	1.089	1.030	1.151	
	weight	.006	.022	.065	1	.799	1.006	.962	1.051	
	gender(1)	1.950	.842	5.356	1	.021	7.026	1.348	36.625	
	VO2max	099 -1.676	.048	4.266	1	.039 .615	.906	.824	.995	
	Constant a. Variable(s) ente		3.336		1	.015	.187			
heart disea	explained	33.0%) (Nag	elker	ko R ²) of th	ne var	iance	in he	
disease. M than female	ales were 7 es.		mes r	nore l	ikely	to exh	nibit h	eart c	liseas	



The relationship between HDL cholesterol and amount of exercise performed per week is different for normal weight and obese participants (i.e., the continuous dependent variable is "HDL cholesterol", the continuous independent variable is "amount of exercise performed per week" and the dichotomous moderator variable is "body composition", consisting of two groups: "normal weight" and "obese")?

419

Example The relationship between salary and years of education is moderated by gender (i.e., the continuous dependent variable is "salary", the continuous independent variable is "years of education" and the dichotomous moderator variable is "gender", which consists of two groups: "males" and "females"). If it is, gender (i.e., the dichotomous moderator variable) moderates the relationship between the years of education and salary.



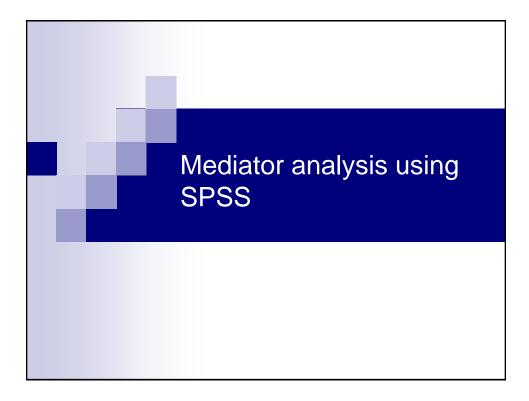

	<u>A</u> nalyze > <u>R</u> eg	ression > <u>L</u> inear	•			
•			mcc-cc	nt-dich.sav [[DataSet1] - IBM SPS	
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata <u>T</u> ransform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities A	dd- <u>o</u> ns	<u>W</u> indow <u>H</u> elp)	
		Re <u>p</u> orts D <u>e</u> scriptive Statistics	2			
21:		Co <u>m</u> pare Means	_		10	
	body_composition pl	_		obese	pa_x_normal	
1	Normal Normal	Generalized Linear Models	Nee.	No No	1.00	
2	Normal	Mixed Models	N.	No	53.00	
4	Normal	<u>C</u> orrelate	Tes	INO	55.00	
5	Normal	<u>R</u> egression	📃 🖂 🗛	utomatic Linear	Modeling	
6	Normal	L <u>o</u> glinear P		near	0	
7	Normal	Classi <u>f</u> y I	<u></u> <u>C</u>	urve Estimation		
8	Normal	Dimension Reduction	R P	artial Lea <u>s</u> t Squ	ares 0	
9	Normal	Sc <u>a</u> le)	B	nary Logistic	0	
10	Normal	Nonparametric Tests		ultinomial Logis	tic 0	
11	Obese	Forecasting		rdinal	0	
12	Obese	<u>S</u> urvival		-	0	
13	Obese	Multiple Response		robit	0	
14	Obese	🖶 S <u>i</u> mulation		onlinear	0	
15	Obese	Quality Control		eight Estimation	v	
16	Obese	ROC Cur <u>v</u> e	<u>2</u> ·	Stage Least Sq	uares 0	
17	Obese	178 35.00	No	Yes	.00	

Image: Save Save Image: Save Options Image: Save Options	body_composition	Linear Regression	Statistics Plojs	
Case Labels: WLS Weight	<pre></pre>	Independent(s):		
	ОК	Case Labels:		

ta Linear Regression	×
body_composition physical_activity normal obese paobese paobese paobese Selection Variable: Case Labels:	
WLS Weight	ta Linear Regression
OK Paste Reset Cancel Help	body_composition physical_addwity normal pa_x_onormal pa_x_onormal Method: Enter v Selection Variable: Selection Variable: Sele

Linear Regression: Statistics	Linear Regression: Save × Predicted Values Constandardized Unstandardized Unstandardized Standardized Standardized Adjusted Studentized S.E. of mean gredictions Distances Influence Statistics Digeta(s) V Everage values Diffit Prediction Intervals Standardized DiFit
	Coefficient statistics Create ogefficient statistics Create a new dataset Dataset name: Create a new data file File

Mediator Study_Hrs Exam_scor... IQ Is there an association of the 6.00 35.00 122.00 7.00 39.00 124.00 5.00 45.00 118.00 independent variable with the 2.00 66.00 117.00 3.00 119.00 46 00 mediator? 2.00 59.00 112.00 2.00 60.00 109.00 4.00 52.00 104.00 Exam Score (DV) 3.00 46.00 120.00 4.00 48.00 107.00 1.00 58.00 105.00 IQ scores (Predictor variable 6.00 45.00 124.00 7.00 39.00 116.00 or Independent Variable) 6.00 35.00 121 00 4.00 38.00 125.00 Weekly study hrs (Mediator) 428

tinear Regression		×
Weekly study Hrs [St	Dependent Final Exam Scores [Exam_sc] Block 1 of 1 Previous Independent(s): Method: Enter	Statistics Plots Save Options Style Bootstrap
	Selection Variable: Case Labels: WLS Weight:	Regression Coefficients Estimates Confidence intervals Level(%): 95
ОК	Paste Reset Cancel Help	Coveriance matrix Collinearity diagnostics
		Durbin-Watson Casewise diagnostics @ Outliers outside: 3 standard deviations All cases Continue Cancel Help 429

Model Summary										
	Change Statistics									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.634ª	.402	.356	7.80947	.402	8.735	1	13	.01	

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	532.758	1	532.758	8.735	.011 ^b
	Residual	792.842	13	60.988		
	Total	1325.600	14			

a. Dependent Variable: Final Exam Scores

b. Predictors: (Constant), IQ scores

Coefficients^a

		Unstandardize	d Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	148.028	34.106		4.340	.001
	IQ scores	866	.293	634	-2.956	.011

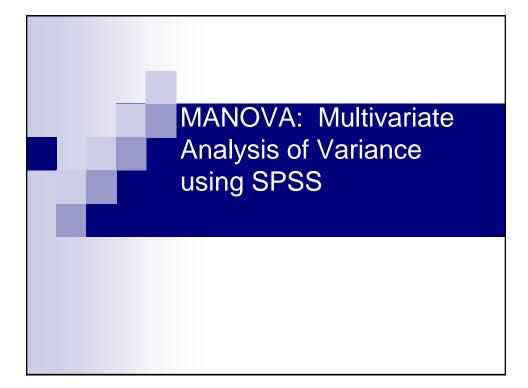
a. Dependent Variable: Final Exam Scores

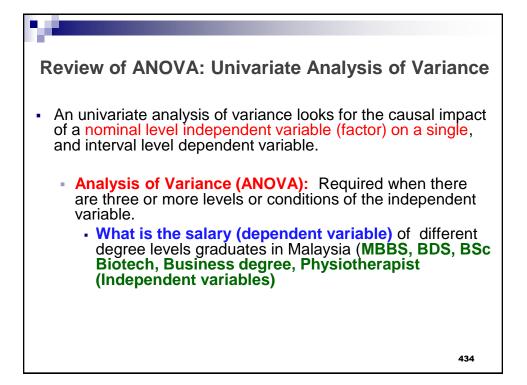
Linear Regression		×		
💑 Weekly study Hrs [St 🖋 ΙΩ scores [ΙΩ]	Dependent Image: Selection Variable: Method: Election Variable: Case Labels:	Statistics Plots Save Options Style Bootstrap	🙀 Linear Regression: Statisti	65 X
ОК	WLS Weight: Paste Reset Cancel Help		Regression Coefficients	 ✓ Model fit ✓ R squared change ✓ Descriptives
			Level(%): 95	Part and partial correlations Collinearity diagnostics
			 Casewise diagnostics Outliers outside: All cases 	3 standard deviations
			Continue	Cancel Help 431

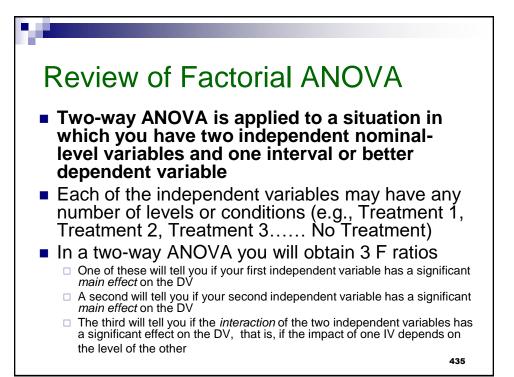
Model Summary									
Change Statistics									
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change
1	.855 ^a	.732	.687	5.44381	.732	16.365	2	12	.0

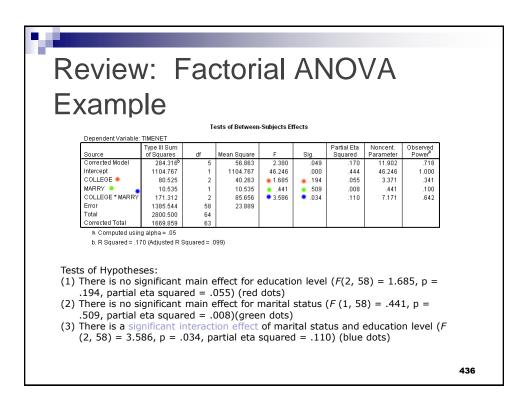
ANOVAª

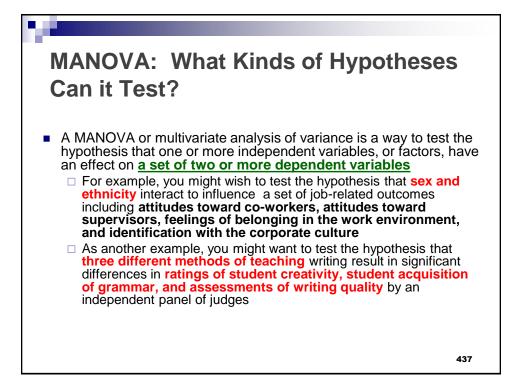
Mod	el	Sum of Squares	df	Mean Square	F	Sig.
1	Regression	969.980	2	484.990	16.365	.000 ^b
	Residual	355.620	12	29.635		
	Total	1325.600	14			

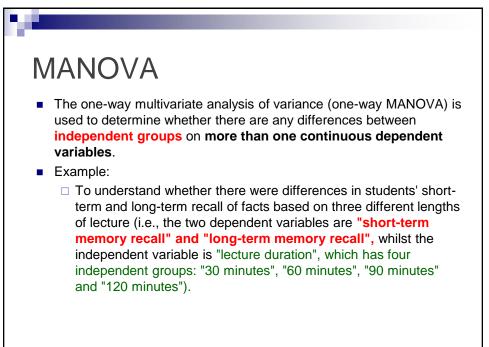

a. Dependent Variable: Final Exam Scores

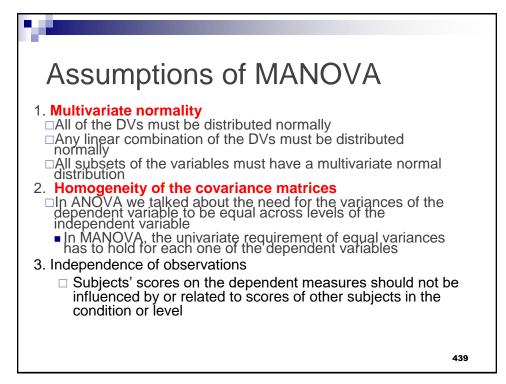

b. Predictors: (Constant), Weekly study Hrs, IQ scores

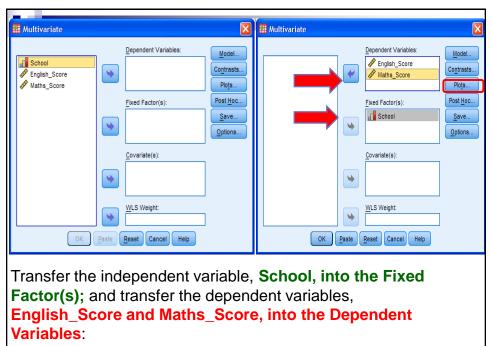

Coefficients^a


		Unstandardized Coefficients		Standardized Coefficients		
Model	I	В	Std. Error	Beta	t	Sig.
1	(Constant)	100.498	26.802		3.750	.003
	IQ scores	334	.247	245	-1.355	.200
	Weekly study Hrs	-3.446	.897	694	-3.841	.002
a. De	pendent Variable: Fina	al Exam Scores				


The study hrs is a mediator variable. When we add mediator variable and the strength or direction of IV and DV decreases 432

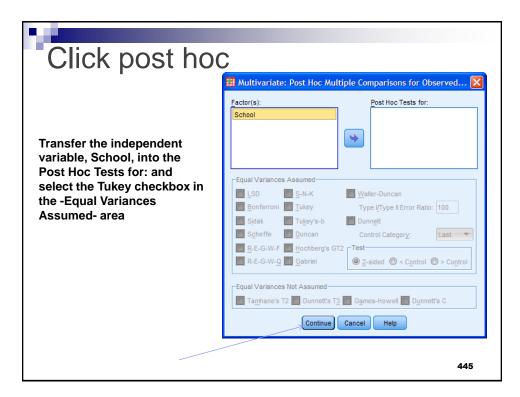






Example – MANOVA in SPSS

The students at a higher secondary school come from three different primary schools. The school Principal wanted to know whether there were academic differences between the students from the three different primary schools.


The principal randomly selected 20 students from School A, 20 students from School B and 20 students from School C, and measured their academic performance as assessed by the marks they received in English and Maths exams. We have two dependent variables were "English score" and "Maths score", whilst the independent variable was "School", which consisted of three categories: "School A", "School B" and "School C".

		eneral Linea ate.	r
DataSet0] - PASW	Statistics Data Editor		
Data Transform	<u>Analyze</u> <u>G</u> raphs <u>U</u> tilities Add-	<u>o</u> ns <u>W</u> indow <u>H</u> elp	
65.00	Reports Descriptive Statistics Compare Means		
ender Maths	General Linear Model	Univariate /ar	
Male	Generalized Linear Models 🕨	6IM Multivariate	
Male	Mixed Models	Repeated Measures	
Male	Correlate	Variance Components	
Male	Regression	vanance components	
Male	L <u>o</u> glinear ► Classify ►		
Male	Dimension Reduction		
Male	Scale		
Male	Nonparametric Tests		
Male	Forecasting •		
Male	Survival 🕨		
Male			
Male	Quality Control		
Male	ROC Curve		
Male	02.00 00.00		441

Hultivariate: Profile Plots	Hultivariate: Profile Plots
Factors: Horizontal Axis:	Factors: School
Separate Lines:	Separate Lines:
Separate Plots:	Separate Plots:
Plots: Add Change Remove	Plots: <u>A</u> dd <u>Change</u> <u>Remove</u>
Continue Cancel Help	Continue ancel Help
Transfer the independent variable, Schoo Horizontal Axis	I, into the
	Click Add
	445
	443

Click Add. You will see that "School" has been added to th	e Plots
III Multivariate: Profile Plots	
Factors: School Separate Lines: Separate Plots: Plots: Add Change Remove School Horizontal Axis:	
	444

Multivariate: Post Hoc Multiple Comparisons for Observed.	. 🗙
School School	
Equal Variances Assumed LSD School LSD Solution Mailer-Duncan Bonferroni Titkey Type I/Type II Error Ratio: Sidak Tukey's-b Dunnett Scheffe Duncan Control Category: Last	Multivariate Dependent Variables: Maths_Score Maths_Score Pots Fixed Factor(s): Save Options Covariate(s):
Equal Variances Not Assumed Equal Variances Not Assumed	•
🔲 Tamhane's T2 💭 Dunnett's T3 💭 Games-Howell 💭 Dunnett's C	WLS Weight:
Continue Cancel Help	OK Paste Reset Cancel Hep
	446

Factor(s) and Factor Interactions: Display Means for: (OVERALL) School School Image: Compare main effects Confidence Interval adjustment: Confidence Interval adjustment: LSD(none) Image: Compare main effects Display Image: Compare main effects Confidence Interval adjustment: LSD(none) Image: Descriptive statistics Transformation matrix Image: Descriptive statistics Spreed power Image: Descriptive statistics Spreed power Image: Descriptive statistice Spresed power <t< th=""><th>sy Means for: ool gepare main effects dence interval adjustment: none)</th></t<>	sy Means for: ool gepare main effects dence interval adjustment: none)
Usplay Display Descriptive statistics Transformation matrix Estimates of effect size Homogeneity tests Observed power Spread vs. level plot Parameter estimates Residual plot SSCP matrices Lack of fit	
	fit estimable function
	atistics, Estimate

		[)escrij	otive Statis	tics					
		Schoo)I	Mean	Std. Deviation	N				
English	n_Score	Schoo	A I	75.6000	8.22960		20			
		Schoo	IВ	62.7000	9.10234		20			
		Schoo	IC	61.5500	7.14124		20			
		Total		66.6167	10.30401		60			
Maths_	Score	Schoo	I A I	43.9000	8.46603	+	20			
		Schoo	IВ	40.7500	8.16201		20			
		Schoo	IC I	30.7500	7.71789		20			
		Total		38.4667	9.78145		60			
			•		Multivariat	e Tests ^d				
Effect			Value	F	Hypothesis df	Error df	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
	Pillai's Tra	c.o.	.98	9 2435.089	a 2.000	56.000	.000	.989	4870.177	1.000
Intercept	Filiars fra	Le l								
Intercept	Wilks' Lam		.01	1 2435.089	a 2.000	56.000	.000	.989	4870.177	1.000
Intercept		ibda				56.000 56.000	.000 .000		4870.177 4870.177	1.000 1.000
Intercept	Wilks' Lam	ibda Trace	.01	7 2435.089	a 2.000			.989		
	Wilks' Lam Hotelling's	ibda Trace est Root	.01 86.96	7 2435.089 7 2435.089	a 2.000 a 2.000	56.000	.000	.989 .989	4870.177	1.000
	Wilks' Lam Hotelling's Roy's Larg	ibda Trace est Root ce	.01 86.96 86.96	7 2435.089 7 2435.089 6 12.68	a 2.000 a 2.000 1 4.000	56.000 56.000	.000. .000.	.989 .989 .308	4870.177 4870.177	1.000 1.000
Intercept School	Wilks' Lam Hotelling's Roy's Larg Pillai's Trai	ibda Trace est Root ce ibda	.01 86.96 86.96 .61	7 2435.089 7 2435.089 6 12.68 0 13.735	a 2.000 a 2.000 1 4.000 a 4.000	56.000 56.000 114.000	.000 .000 .000		4870.177 4870.177 50.724	1.000 1.000 1.000

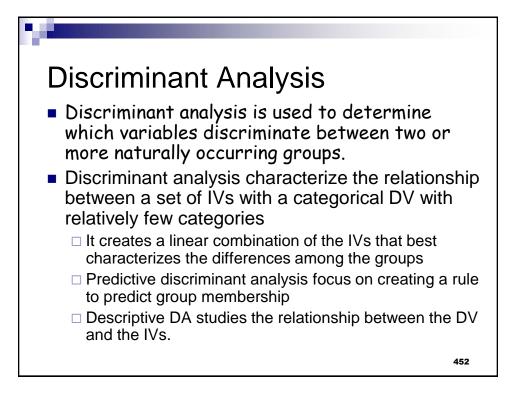
had attended (p < .0005).

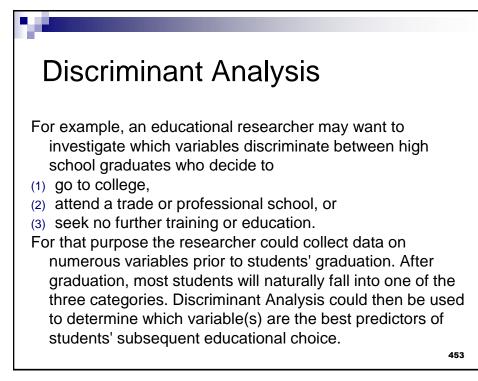
			Tests o	of Between-Subje	ects Effects				
Source	Dependent Variable	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared	Noncent. Parameter	Observed Power ^b
Corrected Model	English_Score	2434.233 ^a	2	1217.117	18.114	.000	.389	36.228	1.000
	Maths_Score	1885.633°	2	942.817	14.295	.000	.334	28.591	.998
Intercept	English_Score	266266.817	1	266266.817	3962.769	.000	.986	3962.769	1.000
	Maths_Score	88781.067	1	88781.067	1346.134	.000	.959	1346.134	1.000
School	English_Score	2434.233	2	1217.117	18.114	.000	.389	36.228	1.000
	Maths_Score	1885.633	2	942.817	14.295	.000	.334	28.591	.998
Error	English_Score	3829.950	57	67.192					
	Maths_Score	3759.300	57	65.953					
Total	English_Score	272531.000	60						
	Maths_Score	94426.000	60						
Corrected Total	English_Score	6264.183	59						
	Maths_Score	5644.933	59						

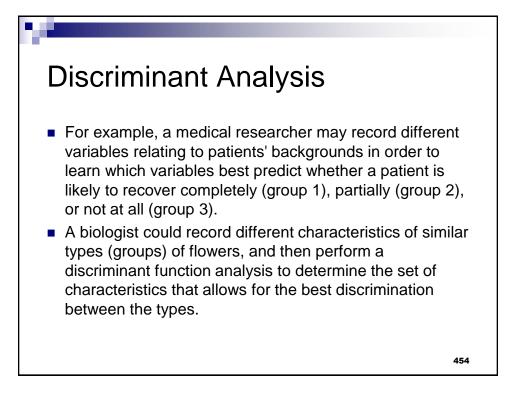
a. R Squared = .389 (Adjusted R Squared = .367)

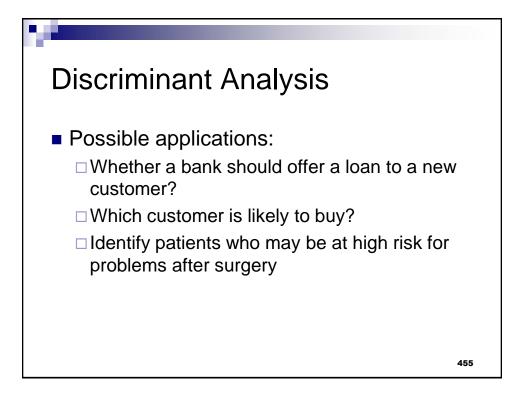
b. Computed using alpha = .05

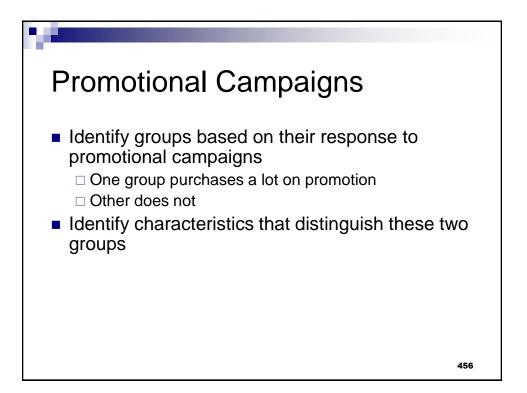

c. R Squared = .334 (Adjusted R Squared = .311)

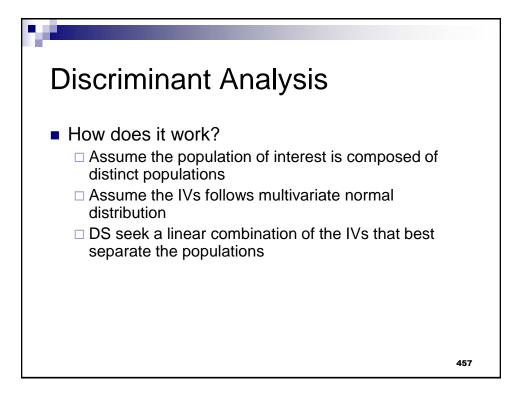

 The prior schooling has a statistically significant effect on both English (F (2, 57) = 18.11; p < .0005; partial η2 = .39) and Maths scores (F (2, 57) = 14.30; p < .0005; partial η2 = .33).

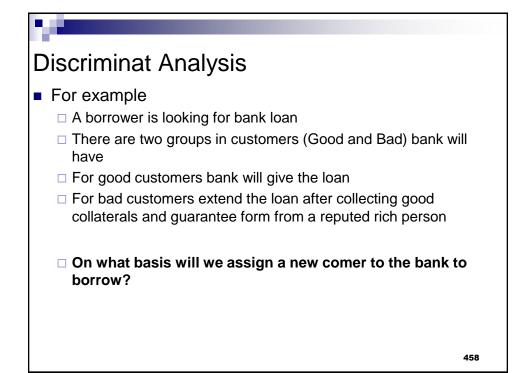

449

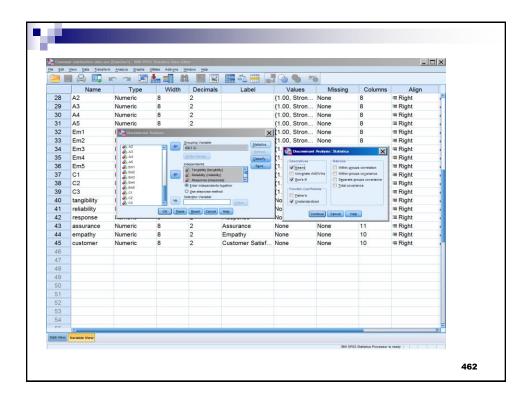

Dependent Variable	(I) School	(J) School			(95% Confide	ence Interval
			Mean Difference (I- J)	Std. Error	Sig.	Lower Bound	Upper Bound
English_Score	School A	School B	12.9000*	2.59214	.000	6.6622	19.1378
		School C	14.0500*	2.59214	.000	7.8122	20.2878
	School B	School A	-12.9000*	2.59214	.000	-19.1378	-6.6622
		School C	1.1500	2.59214	.897	-5.0878	7.3878
	School C	School A	-14.0500*	2.59214	.000	-20.2878	-7.8122
		School B	-1.1500	2.59214	.897	-7.3878	5.0878
Maths_Score	School A	School B	3.1500	2.56812	.443	-3.0300	9.3300
		School C	13.1500*	2.56812	.000	6.9700	19.3300
	School B	School A	-3.1500	2.56812	.443	-9.3300	3.0300
		School C	10.0000*	2.56812	.001	3.8200	16.1800
	School C	School A	-13.1500*	2.56812	.000	-19.3300	-6.9700
		School B	-10.0000*	2.56812	.001	-16.1800	-3.8200
Based on observed m The error term is Mea *. The mean differe	in Square(Eri		level.				
The mean sco	roc for E	nalich wa	ro statistics	lly cignifi	contly d	ifforont bot	woon Sch


 Mean maths scores were statistically significantly different between School A and School C (p < .0005), and School B and School C (p = .001), but not between School A and School B (p = .443).

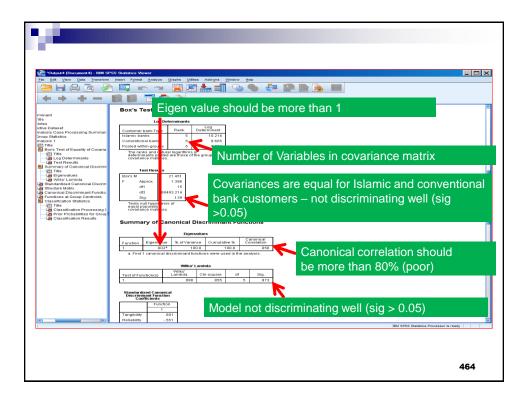


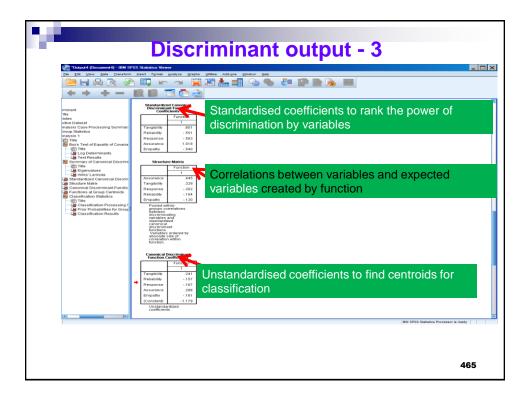


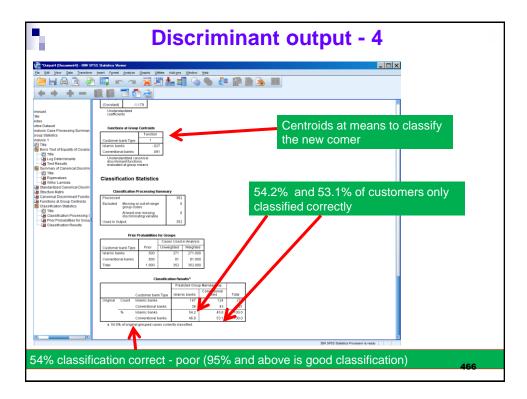



Discriminant analysis

- Computing the centroids is the main objective of discriminant analysis
- We will use the customer satisfaction data file
- There are two groups
- If a new customer is to be assigned in either Islamic banking or conventional banking group how well it discriminates
- What are the centroids? What is the function it forms? Let us test.


1	5	9	


Discriminant analysis Image: Section of the section	D '		- A.			10 A 10		
Control contro control contrel control control control control control control	Dis	scri	mii	nant :	anal	VSIS		
Image: Constraint of the second sec						,		
Image: Second								
Name Profile Width Decimals Label Values Missing Columns Align 28 A2 (1.00, Stron None 8 # Right 20 A3 genese 2 (1.00, Stron None 8 # Right 30 A4 genese 2 (1.00, Stron None 8 # Right 31 A5 genese 1 B Technologie 1 8 # Right 32 Em1 reserved (1.00, Stron None 8 # Right 33 Em2 Em1 reserved (1.00, Stron None 8 # Right 34 Em3 generved (1.00, Stron None 8 # Right 35 Em4 generved 2 (1.00, Stron None 8 # Right 36 Cars	stomer satisfaction data.sav [DataSet1] - IBM SPSS S	tatistics Data Edito	r					
Name Countries Vidth Decimals Label Values Missing Columns Align 28 A2 {1.00, Stron None 8 = Right 30 A4 Grand 2 {1.00, Stron None 8 = Right 31 A5 Grand B1_reduc Coder {1.00, Stron None 8 = Right 32 Em1 grand B1_reduc Coder {1.00, Stron None 8 = Right 33 Em2 grand 10.0, Stron None 8 = Right 34 Em3 grand 2 {1.00, Stron None 8 = Right 35 Em4 grand 2 {1.00, Stron None 8 = Right 36 Em5 rumeric 2 {1.00, Stron None 8 = Right 37 C1 Numeric 2 {1.00, Stron None 8 = Right 38 C2 Numeric 2 Tangibility None 8 = Righ		ies Add-ons Win						
Name general care trice Vision Column Vision Column Program 28 A2 general care trice 2 {1.00, Stron, None 8 # Right 29 A3 general care trice {1.00, Stron, None 8 # Right 31 A5 general care trice {1.00, Stron, None 8 # Right 32 Em1 general care trice {1.00, Stron, None 8 # Right 32 Em1 general care trice {1.00, Stron, None 8 # Right 34 Em2 trice trice {1.00, Stron, None 8 # Right 34 Em3 general trice trice 2 {1.00, Stron, None 8 # Right 35 Em4 general trice trice 2 {1.00, Stron, None 8 # Right 36 Em5 real trice trice 2 {1.00, Stron, None 8 # Right 37 C1 Numeric 8 2 Right Minet <td< th=""><th></th><th></th><th></th><th></th><th>3 🕗 🌑 🐴</th><th>6</th><th></th><th></th></td<>					3 🕗 🌑 🐴	6		
28 A2 grante 2 {1.00, Stron None 8 = Right 30 A4 Grady 2 {1.00, Stron None 8 = Right 30 A4 Grady 1 0.0, Stron None 8 = Right 31 A5 English 1 0.0, Stron None 8 = Right 32 Em1 grady 1 0.0, Stron None 8 = Right 33 Em2 grady 2 (1.00, Stron None 8 = Right 34 Em3 grady 2 (1.00, Stron None 8 = Right 35 Em4 grady 2 (1.00, Stron None 8 = Right 36 C2 Numeric 8 2 (1.00, Stron None 8 = Right 37 C1 Numeric 8 2 (1.00, Stron None 8 = Right 38 C2 Numeric 8 2 Tangibility None 8 = Right 39 C3 Numeric 8 2		width	Decimals	Label	Values	Missing	Columns	Align
29 A3 Byressim 2 {1.00, Stron, None 8 # Right 30 A4 Green Stree Colored {1.00, Stron, None 8 # Right 31 A5 Right # Stree Colored {1.00, Stron, None 8 # Right 32 Em1 # Stree Colored {1.00, Stron, None 8 # Right 33 Em2 # Stree Colored {1.00, Stron, None 8 # Right 34 Em3 gree Colored 2 {1.00, Stron, None 8 # Right 35 Em4 Gree Stree Colored 2 {1.00, Stron, None 8 # Right 36 Em5 Fruitement 2 {1.00, Stron, None 8 # Right 37 C1 Numeric 8 2 {1.00, Stron, None 8 # Right 39 C3 Numeric 8 2 Tangibility None 8 # Right 40 tangibility Numeric 2 Relability </td <td>A2 gorrelate</td> <td>•</td> <td></td> <td></td> <td>{1.00, Stron</td> <td>None</td> <td></td> <td>≡ Right</td>	A2 gorrelate	•			{1.00, Stron	None		≡ Right
30 A4 general Restore 1 (1.00, Stron None 8 # rcight 31 A5 specarate: training tradit trainit training trainit tradin training tradinit training t	A3 Regression				{1.00, Stron	None	8	≡ Right
31 A5 response 1					{1.00, Stron	None	8	≡ Right
32 Em1 Bysenance (1.00, Stron None 8 ≅ Right 33 Em2 game formation If years water (1.00, Stron None 8 ≅ Right 34 Em3 game formation If years water (1.00, Stron None 8 ≅ Right 35 Em4 game formation 2 (1.00, Stron None 8 ≅ Right 36 Em5 rutinetic 8 2 (1.00, Stron None 8 ≅ Right 37 C1 Numeric 8 2 (1.00, Stron None 8 ≅ Right 38 C2 Numeric 8 2 (1.00, Stron None 8 ≅ Right 39 C3 Numeric 8 2 (1.00, Stron None 8 ≅ Right 40 tangibility Numeric 8 2 Relability None 13 ≅ Right 41 relability Numeric 8 2 Response None 13 ≅ Right	A5 Sogle	Hierarchinal			{1.00, Stron	None	8	≡ Right
33 Em2 Unitary Instrumentation If Spectro weak of the second					{1.00, Stron	None	8	≡ Right
36 Em5 Em5 2 (1.0.) Stork None 8 # Right 36 Em5 Numeric 0 2 (1.0.) Stork None 8 # Right 37 C1 Numeric 8 2 (1.0.) Stork None 8 # Right 38 C2 Numeric 8 2 (1.0.) Stork None 8 # Right 38 C2 Numeric 8 2 (1.0.) Stork None 8 # Right 39 C3 Numeric 8 2 (1.0.) Stork None 8 # Right 40 tanjbility Numeric 8 2 Tangibility None 8 # Right 41 reliability Numeric 8 2 Reliability None 13 # Right 42 response Numeric 8 2 Response None 10 # Right 43 assurance Numeric 8 2 Customer Satisf None None 10 # Right 44 empathy Numeric 8 2 Customer Satisf None None 10 # Right 45 customer Numeric 8		Nearest Nei	phbor		{1.00, Stron	None	8	≡ Right
35 Em4 Amment 2 {1.00, Stron None 8 # Right 36 Em5 reument 0 2 {1.00, Stron None 8 # Right 37 C1 Numeric 8 2 {1.00, Stron None 8 # Right 38 C2 Numeric 8 2 {1.00, Stron None 8 # Right 39 C3 Numeric 8 2 {1.00, Stron None 8 # Right 40 tangibility Numeric 8 2 Tangibility None None 13 # Right 41 response Numeric 8 2 Response None 10 # Right 43 assurance Numeric 8 2 Empathy None None 11 # Right 43 assurance Numeric 8 2 Empathy None 10 # Right 44 empathy Numeric 8 <t< td=""><td></td><td>•</td><td>2</td><td></td><td>{1.00, Stron</td><td>None</td><td>8</td><td>≡ Right</td></t<>		•	2		{1.00, Stron	None	8	≡ Right
36 Em5 wurmenc of 2 {{1.00, Stron None 8 # Right 37 C1 Numeric 8 2 {{1.00, Stron None 8 # Right 38 C2 Numeric 8 2 {{1.00, Stron None 8 # Right 39 C3 Numeric 8 2 {{1.00, Stron None 8 # Right 40 tanjbility Numeric 8 2 Tangibility None 8 # Right 41 reliability Numeric 8 2 Reliability None None 13 # Right 42 response Numeric 8 2 Response None 10 # Right 43 assurance Numeric 8 2 Customer Satisf None 10 # Right 44 empathy Numeric 8 2 Customer Satisf None 10 # Right 46			2		{1.00, Stron	None	8	≡ Right
38 C2 Numeric 8 2 (1.00, Stron None 8 # Right 39 C3 Numeric 8 2 {1.00, Stron None 8 # Right 39 C3 Numeric 8 2 Tangibility None 8 # Right 40 tangibility Numeric 8 2 Tangibility None 13 # Right 41 reliability Numeric 8 2 Reliability None None 13 # Right 42 response Numeric 8 2 Response None 10 # Right 43 assurance Numeric 8 2 Customer Satisf None None 10 # Right 44 empathy Numeric 8 2 Customer Satisf None 10 # Right 46 <	Em5 inumeric	0	2		{1.00, Stron	None	8	≡ Right
39 C3 Numeric 8 2 (1.00, Stron None 8 = Right 40 tangibility Numeric 8 2 Tangibility None 13 = Right 41 relability None None 13 = Right 42 response Numeric 8 2 Response None None 13 = Right 43 assurance Numeric 8 2 Response None None 10 = Right 44 empathy Numeric 8 2 Empathy None None 10 = Right 45 customer Numeric 8 2 Customer Satisf None None 10 = Right 46 <td>C1 Numeric</td> <td>8</td> <td>2</td> <td></td> <td>{1.00, Stron</td> <td>None</td> <td>8</td> <td>≡ Right</td>	C1 Numeric	8	2		{1.00, Stron	None	8	≡ Right
40 tangibility Numeric 8 2 Tangibility None None 13 Image: Constraint of the state of the	C2 Numeric	8	2		{1.00, Stron	None	8	≡ Right
41 reliability Numeric 8 2 Reliability None None 13 Right 42 response Numeric 8 2 Response None None 10 Right 43 assurance Numeric 8 2 Assurance None None 10 Right 44 empathy Numeric 8 2 Empathy None None 10 Right 45 customer Numeric 8 2 Customer Satisf None None 10 Right 46 Right 49	C3 Numeric	8	2		{1.00, Stron	None	8	≡ Right
42 response Numeric 8 2 Response None 10 Image: Constraint of the state of the s	tangibility Numeric	8	2	Tangibility	None	None	13	≡ Right
43 assurance Numeric 8 2 Assurance None None 11 Image: Constraint of the constraint of t	reliability Numeric	8	2	Reliability	None	None	13	≡ Right
44 empathy Numeric 8 2 Empathy None None 10 # Right 45 customer Numeric 8 2 Customer Satisf None 10 # Right 46 47 48	response Numeric	8	2	Response	None	None	10	≔ Right
45 customer Numeric 8 2 Customer Satisf None 10 ■ Right 46 47 48 48 49 49 49 49 49 49 40	assurance Numeric	8	2	Assurance	None	None	11	≡ Right
46 47 48 49 49 50 51	empathy Numeric	8	2	Empathy	None	None	10	≡ Right
47 48 49 50 51	customer Numeric	8	2	Customer Satisf	None	None	10	≡ Right
48 49 50 51	3							
49 50 51	7							
50 51	3							
51								
52								
	2							
53	3							
54	1							
ee 4								


		D	isc	rimi	inant	ana	lysis	5		
		(DataSet1) - IBM SPSS							_ 🗆	×
The For 7	vew gata granstorm	n Analyze Graphs Ut		inoow jeep	🔤 🐴 🧮 🔒		6			-
-	Name	Type	Width	Decimals	Label	Values	Missing	Columns	Align	
28	A2	Numeric	8	2	Luboi	{1.00, Stron		8	≡ Right	
29	A3	Numeric	8	2		{1.00, Stron		8	≡ Right	
30	A4	Numeric	8	2		{1.00, Stron		8	≡ Right	
31	A5	Numeric	8	2		{1.00, Stron	None	8	≡ Right	
32	Em1	Discriminant Ar	alysis		×	1100 Stron	Mono	8	≡ Right	
33	Em2	1		Prouping Variable:		1.(Discriminan	t Analysis: 🗙	8	≡ Right	
34	Em3	Gender [Q1]		09(? ?)	Statistics	1.(Minimum: 1		8	≡ Right	
35	Em4	Age [Q2]		Define Range	Çlassify	[1.(Maximum: 2		8	≡ Right	
36	Em5	Education Level	[04]	idependents:	Save_	[1.(Continue Ca	Incel Help	8	≡ Right	
37	C1	Bo you have bar				[1.00, Stron	None	8	≡ Right	•
38	C2	Employment Stat	19	Enter independents	topether	[1.00, Stron	None	8	≡ Right	•
39	C3	How often you o Religion (Q11)	pe	Use stepwise metho		[1.00, Stron	None	8	≡ Right	•
40	tangibility	1 Å T1		election Variable:	Value	None	None	13	≡ Right	•
41	reliability	1	OK Paste	Reset Cancel	Help	None	None	13	≡ Right	•
42	response	L	-	_		None	None	10	≡ Right	•
43	assurance	Numeric	8	2	Assurance	None	None	11	≡ Right	•
44	empathy	Numeric	8	2	Empathy	None	None	10	≡ Right	
45	customer	Numeric	8	2	Customer Satisf	None	None	10	≡ Right	1
46										
47										
48										
49										
50										
51										
52										
53	-									
54										

File Edit View Data Transform	PSS Statistics Mewer I Insert Format Analyze	Granha 114	ties Add -	ne Window M	eb.			_ [
	insert rormat Analyze	00500 000	Res A00- <u>0</u>	-	•	120		
					-	BF 18		
+ - + -								
iminant	Discriminant							
'itle Votes	[DataSet1] C:\Us	ers\ravin	dran\Des	ktop\NEW SPS:	S\Customer	satisfact	ion data.sav	
ctive Dataset Inalysis Case Processing Summary	Analysis	Case Proces	sing Summa	sy				
proup Statistics analysis 1	Unweighted Cases Valid		N	Percent 100.0				
Title Box's Test of Equality of Covaria	Excluded Missing	r out-of-range		0 .0				
Title	group čo At least p	tes ne missing		0 .0				
- C Test Results	discrimin	ating variable		0 .0				
Summary of Canonical Discrimi	range gro least one	sing or out-of- up codes and missing ating variable	i at	0.0				
- Control Eigenvalues	discrimin Total	ating variable		0.0				
Standardized Canonical Discrin	Total		1	100.0				
Canonical Discriminant Functio								
Functions at Group Centroids Classification Statistics			Group Sta	tistics				
Classification Processing S	Customer bank Type		Mean	Std. Deviation	Valid N () Unweighted	Stwise) Weighted	-	
Prior Probabilities for Group	Islamic banks	Tangibility	18.6125	3.43313	271	271.000	1	
-Lag Classification Results		Reliability Response	18.1993	3.54194 3.57842	271	271.000		
		Assurance	18.1919	3.53293	271	271.000		
		Empathy	18.1956	3.46123	271	271.000		
	Conventional banks	Tangibility Reliability	18.7407 18.1235	2.88868	81	81.000		
		Response	17.8395	3.16408	81	81.000		
		Assurance	18.3704	2.95992	81	81.000		
	Total	Empathy Tangibility	18.1481 18.6420	3.02122 3.31228	81	81.000	-	
		Reliability	18.1818	3.50513	352	352.000		
		Response	17.9034	3.49326	352	352.000		
		Assurance Empathy	18.2330	3.40642 3.36100	352 352	352.000 352.000		
	·	-,,					1	
	Analysis 1							
	Bauda Base							
	Box's Test of E	quality o	of Covar	iance Matri	ces			

Discriminant analysis (Interpretation)

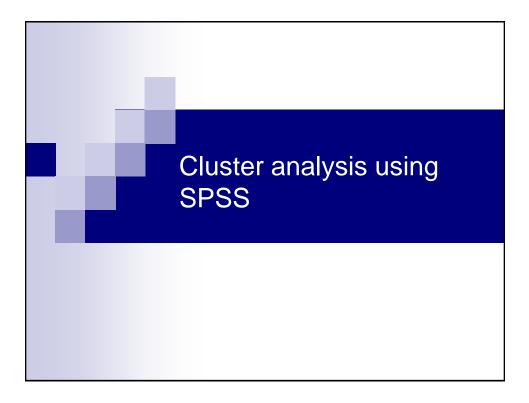
•1. Box's M – Compares the covariance matrices Sig (p value) should be less than 0.05 to confirm that covariance matrices are different

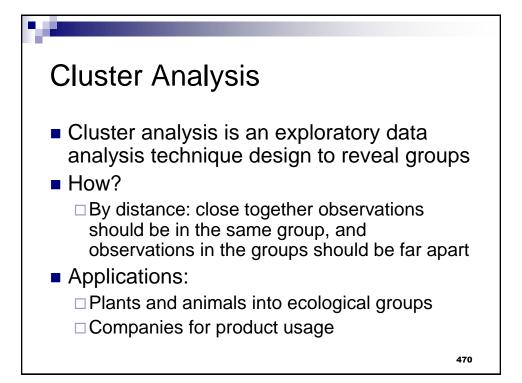
•2. The Eigen Value explains the power of discrimination. It should be more than 1

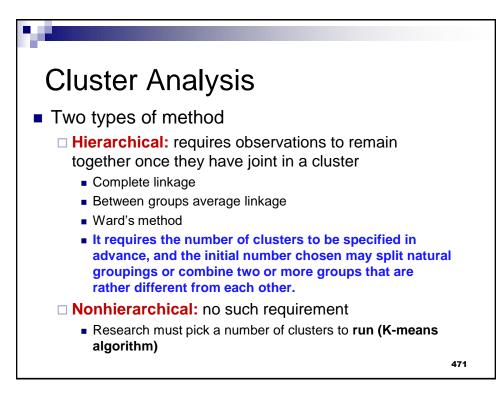
•3. The canonical correlation should be more than 80%

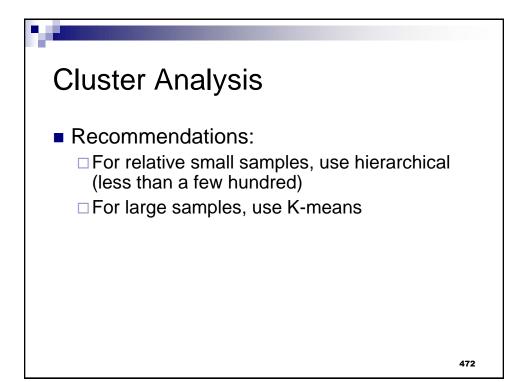
4.Wilk's Lambda is like 1-R². The Chi – square should be significant to prove that the function discriminates well

467

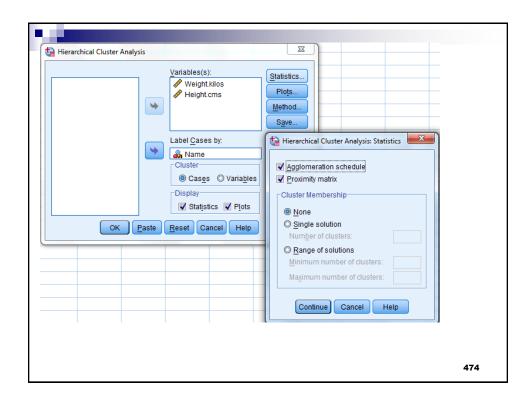

Discriminant analysis (Interpretation)


•5. The Standardized canonical discriminant function coefficients can be used to rank the variables from best discriminator to worst discriminator


•6. The structure matrix gives the correlations between variables and expected variables produced by the discriminant function.


•7. The unstandardized coefficients form the function and also useful to find centroids

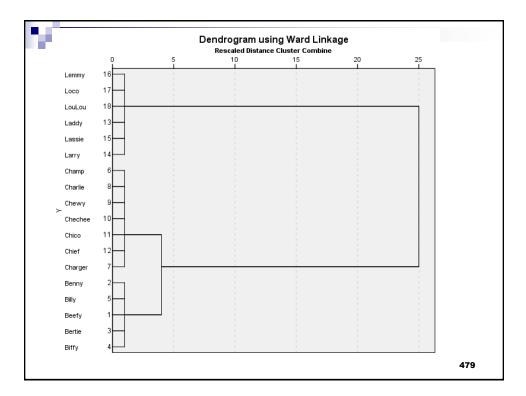
•8. Centroids average will help in classifying the new comers



Hierarchical Cluster analysis – Example - Dogs species weight and height

File	Edit	View Data	Transform Analyz	e Direct Marketing
8			🚺 🖛 🛥	🖹 🕌 🗐
18 :				
		Name	Weight.kilos	Height.cms
	1	Beefy	11.31	33.79
	2	Benny	9.34	34.38
	3	Bertie	10.79	40.86
	4	Biffy	11.04	37.07
	5	Billy	9.74	33.77
	6	Champ	2.94	22.98
	7	Charger	2.99	16.2
	8	Charlie	2.66	22.38
	9	Chewy	2.32	19.68
	10	Chechee	2.82	20.11
	11	Chico	2.34	18.78
	12	Chief	3.12	20.92
	13	Laddy	29.57	61.65
	14	Larry	29.64	59.03
	15	Lassie	28.59	62.9
	16	Lemmy	33.03	60.69
	17	Loco	32.83	60.26
	18	LouLou	31.23	61.34

<u>V</u> iew <u>D</u> ata	Transform	<u>A</u> nalyze	Direct Marketing	Graph	s <u>U</u> tilitie	s Add	- <u>o</u> ns <u>W</u>	indow
		Reg	orts		*			47
		D <u>e</u> s	criptive Statistics	•				-9
		Tab	les					
Name	Weight.ki	Cor	npare Means			var	var	
Beefy		Ger	eral Linear Model					
Benny		Ger	eralized Linear Mod	dels ▶				
Bertie		Mixe	d Models					
Biffy		Cor	relate					
Billy		Reg	ression					
Champ		Log	linear					
Charger		Neu	ral Networks					
Charlie		Cla	sitv		NO TWO	Step Clu	ietor	-
Chewy		Dim	ension Reduction			eans Cli		
Chechee		Sca						
Chico		_	parametric Tests				Cluster	
Chief		-	casting		🔀 Tre	Ð		
Laddy		Sun		í.	M Dis	criminan	t	
Larry		-	iple Response	,	📕 <u>N</u> ea	arest Nei	ghbor	
Lassie		-	sing Value Analysis	,				
Lemmy								
Loco			iple Imputation					
LouLou			nplex Samples					
		-	lity Control					_
		RO	Curve					

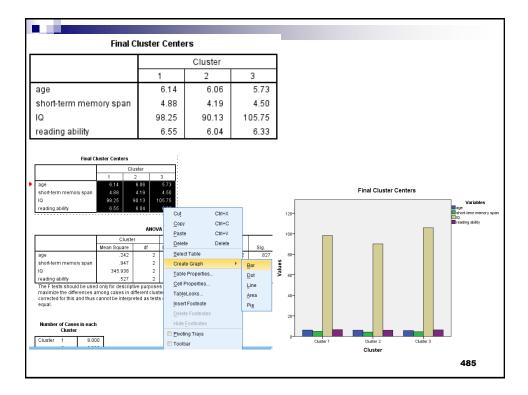


Hierarchical Cluster Analysis	Hierarchical Cluster Analysi
OK Paste Reset Cancel Help	Continue Cancel Help

Measure	d: Ward's method 🔹 🔻	
Interval:	Squared Euclidean distance	
	Power: 2 - Root 2 -	
O Counts:	Chi-squared measure	
© <u>B</u> inary:	Squared Euclidean distance	
	Present 1 Absent 0	
-Transform V: Standardize		
	Continue Cancel Help	

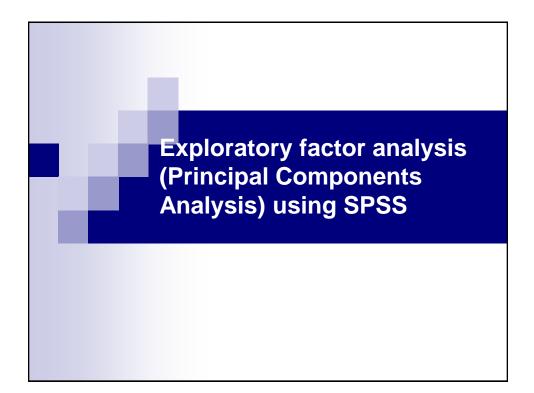
	1'Beefv	2 Benny	3 Bertie	4'Biffy	5 Billy	6'Champ	7:Charger	8 Charlie	Squared El 9:Chewy	uclidean Distan 10 Chechee	e 11:Chico	12 Chief	131.addv	141 anv	151 assie	16'Lemmy	171.000	181 out ou
Case 1:Beefv	1:Beety 000	2:Benny 4 229	3:Berbe 50.255	4:Bimy 10.831	5:Billy 2.465	6:Champ 186.913	7:Charger 378 279	205 011	9:Chewy 279.912	10:Chechee 259 223	11:Chico 305.761	12:Chief 232.713	13:Laddy 1111.838	14:Larry 973.047	15:Lassie 1150.654	16:Lemmy 1195.368	1/:Loco 1163.771	18:LouLou 1155 809
2.Benny	4.229	.000	44.093	10.126	.532	170.920	370.471	188.622	265.370	246.143	292.360	219,860	1155.089	1019.713	1188.522	1253.432	1221.554	1206.014
3.Bertie	50.255	44.093	.000	14.427	51.371	381.317	668.462	407.607	520.333	494.083	558.929	456.432	786.577	685.471	806.134	887.847	862.122	837.224
4:Biffy	10.831	10.126	14.427	.000	12.580	264.138	499.942	286.021	378.451	355.210	410.214	323.549	949.505	828.202	979.331	1041.465	1012.580	996.669
5:Billy	2.465	.532	51.371	12.580	.000	162.664	353.916	179.859	253.585	234.482	279.460	208.947	1172.755	1034.078	1208.547	1267.110	1234.868	1221.925
6:Champ	186.913	170.920	381.317	264.138	162.664	.000	45.835	.438	11.274	8.251	18.000	4.276	2207.621	2012.493	2257.922	2327.452	2283.210	2271.814
7:Charger	378.279	370.471	668.462	499.942	353.916	45.835	.000	38.178	12.490	15.239	7.027	22.201	2774.927	2543.775	2842.793	2880.872	2830.828	2834.215
8:Charlie	205.011	188.622	407.607	286.021	179.859	.438	38.178	.000	7.406	5.178	13.062	2.343	2269.424	2071.143	2320.725	2389.993	2345.123	2334.127
9:Chewy	279.912	265.370	520.333	378.451	253.585	11.274	12.490	7.406	.000	.435	.810	2.178	2507.403	2294.805	2565.003	2624.924	2577.596	2571.344
10:Chechee	259.223	246.143	494.083	355.210	234.482	8.251	15.239	5.178	.435	.000	1.999	.746	2444.459	2234.079	2501.930	2559.380	2512.623	2507.041
11:Chico	305.761	292.360	558.929	410.214	279.460	18.000	7.027	13.062	.810	1.999	.000	5.188	2582.741	2365.353	2642.702	2698.324	2650.230	2645.986
12:Chief	232.713	219.860	456.432	323.549	208.947	4.276	22.201	2.343	2.178	.746	5.188	.000	2361.795	2155.683	2417.764	2476.261	2430.320	2423.949
13:Laddy	1111.838	1155.089	786.577	949.505	1172.755	2207.621	2774.927 2543.775	2269.424	2507.403	2444.459 2234.079	2582.741 2365.353	2361.795	.000	7.080	2.624	12.972	12.672	2.878
14:Larry 15:Lassie	973.047 1150.654	1019.713 1188.522	685.471 806.134	828.202 979.331	1034.078	2012.493	2543.775 2842.793	2071.143	2294.805	2234.079 2501.930	2365.353 2642.702	2155.683	7.080	.000	16./05	14.248	11.689 25.376	7.864
15.Lassie 16:Lemmy	1195.368	1253,432	800.134	979.331	1208.547	2327.452	2842.793	2320.725	2624.924	2559.380	2698.324	2417.704	12.972	14,248	24,958	24.958	.225	3.663
17:Loco	1163.771	1203.432	862.122	1012.580	1234.868	2321.432	2830.828	2345.123	2577.596	2512.623	2650.230	2430.320	12.672	11.689	24.830	.000	.223	3.003
18:LouLou	1155.809	1206.014	837.224	996.669	1221.925	2271.814	2834.215	2334.127	2571.344	2507.041	2645.986	2423.949	2.878	7.864	9.659	3.663	3.726	.000
• 7										the orga					5		_	

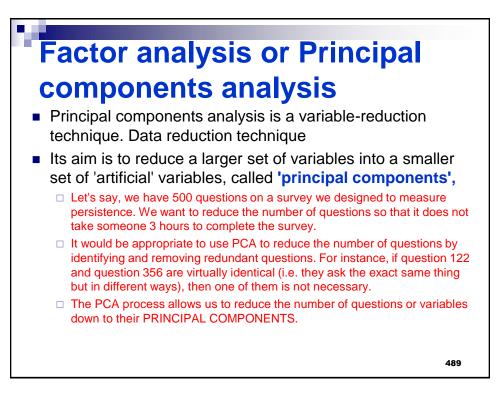
			Agglomeration	Schedule			
	Cluster C	ombined		Stage Cluster	First Appears		
Stage	Cluster 1	Cluster 2	Coefficients	Cluster 1	Cluster 2	Next Stage	
1	16	17	.112	0	0	9	
2	9	10	.330	0	0	5	
3	6	8	.549	0	0	12	
4	2	5	.815	0	0	8	
5	9	11	1.679	2	0	7	
6	13	15	2.991	0	0	11	
7	9	12	4.749	5	0	12	
8	1	2	6.892	0	4	15	
9	16	18	9.317	1	0	13	
10	3	4	16.531	0	0	15	
11	13	14	24.022	6	0	13	
12	6	9	34.561	3	7	14	
13	13	16	49.276	11	9	17	
14	6	7	67.473	12	0	16	
15	1	3	98.032	8	10	16	
16	1	6	1001.275	15	14	17	
17	1	13	8167.574	16	13	0	



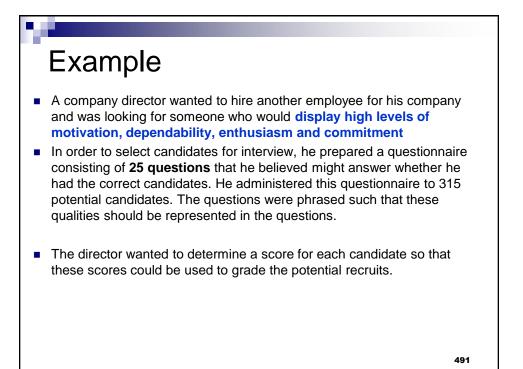
/ \	m	nea	ns	clu	ste	r ar
		r_children.sav [U View Data	ataSet1] - IBM Transform	The second se	Data Editor	<u>G</u> raphs <u>U</u> t
				-	<u> </u>	H
			• -			
		Name	age n	nem span	iq	read ab
	1	Oscar	4.00	4.20	101.00	5.60
	2	Susie	4.00	4.20	101.00	5.60
	3	Kimberly	4.10	3.90	108.00	5.00
	4	Louise	5.50	4.20	90.00	5.80
	5	Ronald	5.50	4.20	90.00	5.80
	6	Charlie	5.50	4.10	105.00	6.00
	7	Gertrude	5.70	3.60	88.00	5.30
	8	Beatrice	5.90	4.00	90.00	6.00
	9	Queenie	5.90	4.00	90.00	6.00
	10	Thomas	5.90	4.00	90.00	6.00
	11	Harry	6.15	5.00	95.00	6.40
	12	Daisy	6.20	4.80	98.00	6.60
	13	Ethel	6.40	5.00	106.00	7.00
	14	Angus	6.70	4.40	95.00	7.20
	15	Morris	6.90	4.50	91.00	6.60
	16	John	6.90	5.00	104.00	7.30
	17	Noel	7.20	5.00	92.00	6.80
	18	Fred	7.30	5.50	100.00	7.20
	19	Peter	7.30	5.50	100.00	7.20
	20	lan	7.50	5.40	96.00	6.60

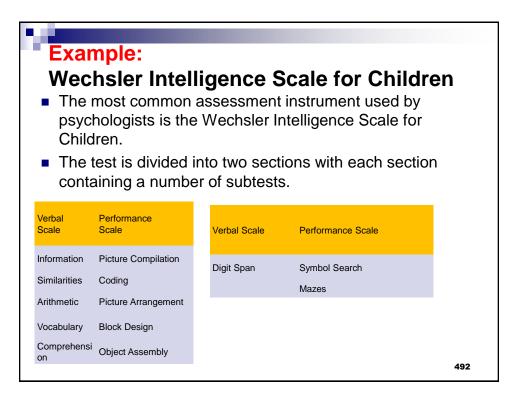
e <u>E</u> dit	<u>View D</u> ata <u>T</u>	ransform	Analyze Direct Marketing Graph	s <u>U</u> tilitie:	s Add- <u>o</u> ns	Window	
			Reports ► Descriptive Statistics ►	*,	4	4	
			Tables				
	Name	age	-	ad ab	var	var	
1	Oscar	4.0		5.60			
2	Susie	4.0	Generalized Linear Models >	5.60			
3	Kimberly	4.1	Mixed Models	5.00			
4	Louise	5.5	Correlate	5.80			
5	Ronald	5.5	Regression >	5.80			
6	Charlie	5.5	Loglinear >	6.00			
7	Gertrude	5.7	Neural Networks	5.30			
8	Beatrice	5.9	Classify	C 00			
9	Queenie	5.9	Dimension Reduction		Step Cluster.		
10	Thomas	5.9	Scale	<u>К-Ме</u>	eans Cluster.	-	
11	Harry	6.1	Nonparametric Tests	m Hier	archical Clus	ter	
12	Daisy	6.2		🔣 T <u>r</u> ee			
13	Ethel	6.4	Forecasting	M Disc	riminant		
14	Angus	6.7	Survival	Nea	rest Neighbor	r	
15	Morris	6.9		0.00			
16	John	6.9		7.30			
17	Noel	7.2		6.80			
18	Fred	7.3		7.20			
19	Peter	7.3	Quality Control	7.20			
20	lan	7.5	ROC Curve	6.60			

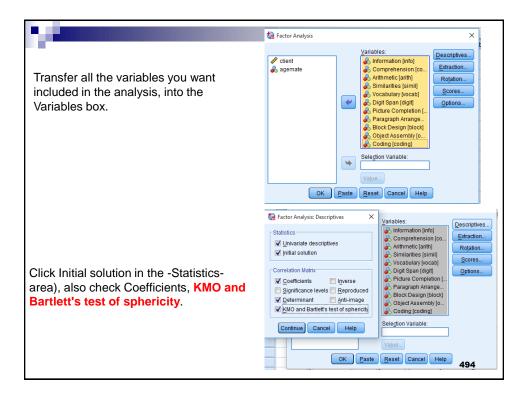

K-Means Cluster Analysi	
	Variables:
Number of Clusters:	Label Cases by: Ame [Name] Method Method Iterate and classify Classify only
Cluster Centers	K-Means Cluster: Save New
 Read initial: Open dataset External data file Write final: 	23 cluster_children.sav [DataSe ▼) File Image: Section 2 and the section of the s
◉ New <u>d</u> ataset ◎ D <u>a</u> ta file	File
	OK Paste Reset Cancel Help


	Variables: Variables: va
Number of Clusters:	Label Cases by: A Name (Name) 3 Method Iterate and classify O Classify only K-Means Cluster Analysis: Opt
Read initial: Open dataset External data file Write final: New dataset Data file	23 duster_children.sav [DataSe▼] Eile Eile Missing Values Exclude cases listwise Exclude cases pairwise
1	OK Paste Reset Cancel Help Continue Cancel Help

		ANOV	/Α			
	Cluste	r	Error			
	Mean Square	df	Mean Square	df	F	Sig.
age	.242	2	1.258	17	.192	.827
short-term memory span	.947	2	.261	17	3.622	.049
Q	345.938	2	3.831	17	90.302	.000
reading ability	.527	2	.466	17	1.130	.346
The F tests should be use maximize the differences a corrected for this and thus equal. Age and reading term memory spa	among cases in d cannot be interpr ability variat	ifferent clus eted as test ole is not	ters. The observe ts of the hypothes : significant to	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short
maximize the differences a corrected for this and thus equal. Age and reading	among cases in d cannot be interpr ability variat an and IQ is	ifferent clus eted as test ole is not significa lumber of	ters. The observe ts of the hypothes : significant to	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short
maximize the differences a corrected for this and thus equal. Age and reading	among cases in d cannot be interpr ability variab an and IQ is	ifferent clus eted as test ole is not significa lumber of	ters. The observe is of the hypothes : significant to ntly good for Cases in each	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short
maximize the differences a corrected for this and thus equal. Age and reading	among cases in d cannot be interpr ability variab an and IQ is	ifferent clus eted as test ble is not significa lumber of Cl	ters. The observe is of the hypothes : significant to ntly good for Cases in each uster	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short
maximize the differences a corrected for this and thus equal. Age and reading	among cases in d cannot be interpr ability variab an and IQ is	ifferent clus eted as test significa lumber of Cl luster 1	ters. The observe is of the hypothes : significant to ntly good for Cases in each uster 8.000	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short
maximize the differences a corrected for this and thus equal. Age and reading	among cases in d cannot be interpr ability variat an and IQ is C	ifferent clus eted as test significa lumber of o Cl luster 1 2	ters. The observe is of the hypothes : significant to ntly good for Cases in each uster 8.000 8.000	d significan s that the cl o make tl	ce levels are uster means ne cluste	not are r. Short


File Edit	View Dat	a Tra	insform Analy	ze Direct Ma		Graphs	in.sav [DataSet Utilities A	
						h		
5:								
	Name	age	mem_span	iq	read_ab	QCL_ 1	QCL_2	
1	Oscar	4.00	4.20	101.00	5.60	1	3.67645	Cluster
2	Susie	4.00	4.20	101.00	5.60	1	3.67645	
3	Kimberly	4.10	3.90	108.00	5.00	3	3.13349	
4	Louise	5.50	4.20	90.00	5.80	2	.62337	membership
5	Ronald	5.50	4.20	90.00	5.80	2	.62337	
6	Charlie	5.50	4.10	105.00	6.00	3	.93742	How much
7	Gertrude	5.70	3.60	88.00	5.30	2	2.35289	
8	Beatrice	5.90	4.00	90.00	6.00	2	.28035	difference
9	Queenie	5.90	4.00	90.00	6.00	2	.28035	unerence
10	Thomas	5.90	4.00	90.00	6.00	2	.28035	from
11	Harry	6.15	5.00	95.00	6.40	1	3.25587	ITOIII
12	Daisy	6.20	4.80	98.00	6.60	1	.27164	aluatar
13	Ethel	6.40	5.00	106.00	7.00	3	1.10623	cluster
14	Angus	6.70	4.40	95.00	7.20	1	3.39412	
15	Morris	6.90	4.50	91.00	6.60	2	1.37153	center
16	John	6.90	5.00	104.00	7.30	3	2.37566	
17	Noel	7.20	5.00	92.00	6.80	2	2.45990	
18	Fred	7.30	5.50	100.00	7.20	1	2.28310	
19	Peter	7.30	5.50	100.00	7.20	1	2.28310	
20	lan	7.50	5.40	96.00	6.60	1	2.67956	487




Assumptions

- Assumption #1: You have multiple variables that should be measured at the continuous level or ordinal variables
- Assumption #2: There needs to be a linear relationship between all variables. The reason for this assumption is that a PCA is based on Pearson correlation coefficients, and as such, there needs to be a linear relationship between the variables.
- Assumption #3: You should have sampling adequacy, which simply means that for PCA to produce a reliable result, large enough sample sizes are required.
- Assumption #4: There should be no significant outliers.

2			Re <u>p</u> orts Descriptive Statistics	۲ ۲			- 4	1 (ABG		
			Tables									
	client	agemate	Compare Means		imil	vocab	digit	pictcomp	parang	block	object	CO
1	3	3	General Linear Model		9	12	9	6	11	12	7	
2	4	3	Generalized Linear Models	•	7	11		6	8	7	12	
3	5	3	Mixed Models	•	16	15		18	8	11	12	
4	6	3	<u>C</u> orrelate		12	9		13	4	7	12	
5	7	2	Regression		9	12		7	7	11	4	
6	8	3	L <u>o</u> glinear	•	12	10		6	12	10	5	
7	9	3	Neural Networks		8	11		14	9	14	14	
8	10	2	Classify		15	10		8	14	11	10	
9	12	3	Dimension Reduction	•	A Facto		0	10	11	10	9	
10	13	3	Scale	•		spondence	Analusia	10	12	9	13	
11	14	3	Nonparametric Tests					15	12	10	10	
12	15	3	Forecasting	•		nal Scaling		14	7	11	9	
13	16	2	Survival		15	13		14	17	9	12	
14 15	17 18	0	Multiple Response		11 15	13 13		13 11	10 13	15 11	15 11	

😭 Factor Analysis	Variables:	X 🔁 Factor Analysis: Extraction	×
 ✓ client → agemate 	Information [info] Comprehension [co Arithmetic [arith] Similarities [simil] Svcabulary (vocab]	Implyes Method: Principal components Implyee ction Analyze Display ition © Cogrelation matrix Implyee ition © Cogrelation matrix Implyee ons © Cogrelation matrix Implyee Extract Implyee Scree plot Implyee Eligenvalue Eligenvalue Eigenvalues greater than: 1 Implyee Implyee Fixed number of factors Factors to extract. Maximum Iterations for Convergence: 25 Continue Cancel Help	lution
			495

Factor Analysis: Descriptives Statistics Junivariate descriptives Junivariate Juniv	Factor Analysis: Rotation × Method Quartimax Yarimax Equamax Direct Oblimin Promax Pelta: Kappa Display Rotated solution Maximum Iterations for Convergence: 25 Continue Cancel
---	---

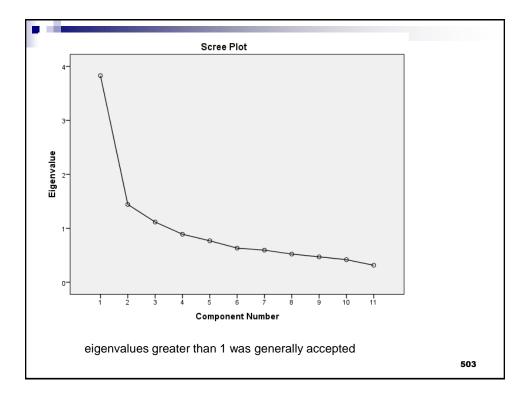
Maximum Iterations for Convergence: 25 Continue Cancel Help Value

Client Client Segmate	Variables: Comprehension [co Comprehension [co Comprehension [co Comprehension [co Comprehension [co Comprehension [co Comprehension] Comprehension Comprehension Coding [coding] Select Design [block] Coding [coding] Selection Variable: Value. Paste Reset Cancel Help	Descriptives Extraction Rotation Scores Options	Factor Analysis: Options Missing Values Exclude cases listwise Exclude cases pairwise Replace with mean Coefficient Display Format Sorted by size Suppress small coefficients Absolute value below: .3 Continue Cancel Help
-----------------------------	--	---	---

	Mean	Std. Deviation	Analysis N
nformation	9.50	2.912	175
Comprehension	10.00	2.965	175
Arithmetic	9.00	2.307	175
Similarities	10.61	3.184	175
/ocabulary	10.70	2.933	175
Digit Span	8.73	2.704	175
Picture Completion	10.68	2.934	175
Paragraph Arrangement	10.37	2.660	175
Block Design	10.31	2.710	175
Object Assembly	10.90	2.844	175
Coding	8.55	2.872	175

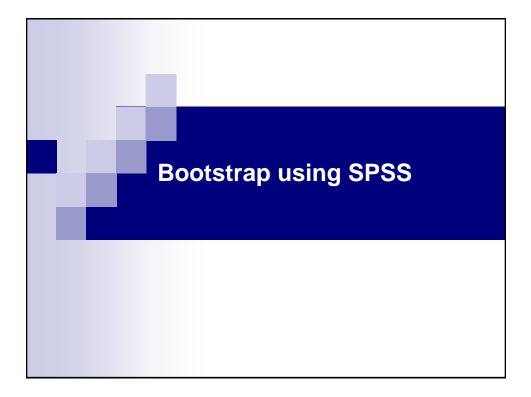
Correlation Matrix^a nprehensi on Picture Completion Paragraph Arrangement Object Assembly Information Arithmetic Similarities Vocabulary Digit Span Block Design Coding 1.000 .202 .187 .007 Information .494 .513 .345 .229 .46 Comprehension 467 .510 407 369 1.000 392 .531 236 322 .061 .155 Arithmetic 494 .392 1.000 369 .387 .269 .227 .272 .043 .090 .269 .185 .035 .510 1.000 Similarities .513 .369 .538 .260 .298 .261 -.041 .538 .297 Vocabulary .625 .531 .387 1.000 .294 .285 132 .100 Digit Span .345 .269 .075 .236 .294 1.000 .148 Picture Completion .230 407 .155 .369 .285 .075 1.000 .249 .382 .363 - 072 Paragraph Arrangemen .202 .187 .227 .132 .148 .249 1.000 .351 .253 Block Design Object Assembly .369 .261 .229 .272 .297 .073 .382 .351 1.000 .399 .107 .185 .043 .185 .035 .253 1.000 .053 .363 .399 Coding 007 061 .041 100 173 072 038 .107 053 1.000 090 a. Determinant = .051 KMO and Bartlett's Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. .828 .886 Bartlett's Test of Sphericity Approx. Chi-Square 55 Sig 000

The Correlation Matrix is the correlation matrix for the variables included. Kaiser-Meyer-Olking (KMO) statistic should be greater than 0.600 and the Bartlett's test should be significant (p < .05). KMO is used for assessing sampling adequacy and evaluates the correlations to determine if the data are likely to CORRELATE on components

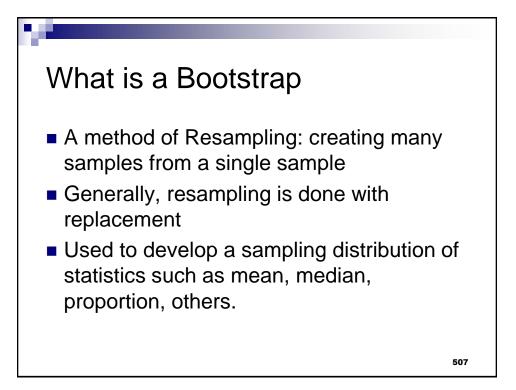

Communa	alities	
	Initial	Extraction
Information	1.000	.693
Comprehension	1.000	.578
Arithmetic	1.000	.487
Similarities	1.000	.616
Vocabulary	1.000	.645
Digit Span	1.000	.474
Picture Completion	1.000	.561
Paragraph Arrangement	1.000	.368
Block Design	1.000	.601
Object Assembly	1.000	.573
Coding	1.000	.792

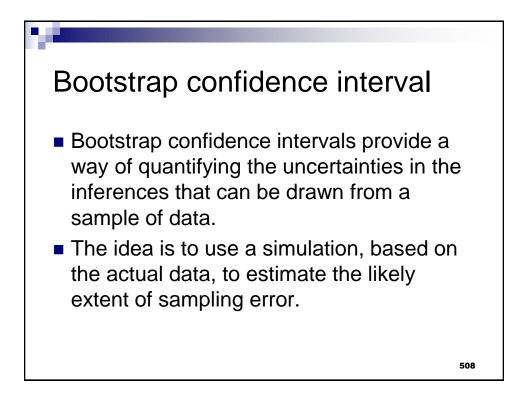
A communality (h²) is the sum of the squared component loadings and it represents the amount of variance in that variable accounted for by all the components

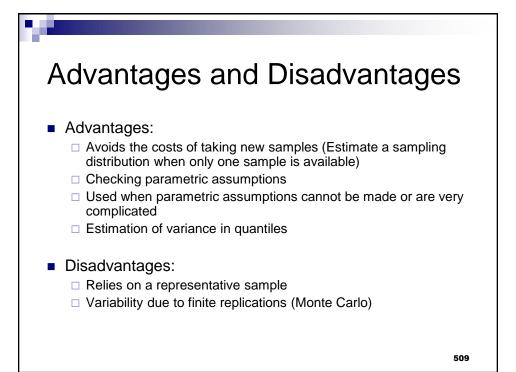
501


		le Met Eine ener			iance Explained		Detetion	0	d L and land
	Tota	Initial Eigenvalu % of Variance	es Cumulative %	Total	n Sums of Square % of Variance	ed Loadings Cumulative %	Total	n Sums of Square % of Variance	d Loadings Cumulative %
Component	TULA	% UI valiance	Cumulative %	TULAI	76 UI Vallance	Cumulative %	TULAI	% UI valiance	Cumulative %
1	3.829	34.806	34.806	3.829	34.806	34.806	3.023	27.485	27.485
2	1.442	13.109	47.915	1.442	13.109	47.915	2.209	20.084	47.569
3	1.116	10.147	58.062	1.116	10.147	58.062	1.154	10.492	58.062
4	.890	8.092	66.153						
5	.768	6.985	73.138						
6	.633	5.753	78.891						
7	.595	5.412	84.303						
8	.522	4.749	89.051						
9	.471	4.281	93.332						
10	.419	3.806	97.138						
11	.315	2.862	100.000						

- The variance explained by each component as well as the cumulative variance explained by all components. Variance explained means the amount of variance in the total collection of variables/items which is explained by the component(s).
- For instance, component 3 explains 10.492% of the variance in the items.
- We could also say, 58.062% of the variance in our items was explained by the 3 • extracted components.


Rotated Co	mponent Mat	rix ^a	
	Co	omponent	
	1	2	3
Information	.826	.107	
Vocabulary	.782	.181	
Similarities	.694	.324	172
Arithmetic	.669		.179
Comprehension	.634	.415	
Digit Span	.535		.428
Object Assembly		756	
Block Design	.173	742	.141
Picture Completion	.246	649	280
Paragraph Arrangement	.142	.567	.163
Coding		.106	.883
Extraction Method: Principa Rotation Method: Varimax		,	ı.
a. Rotation converged in 5	iterations.		
tated Component Matri	,		


Based on these factor loadings, the factors represent: --The first 5 subtests loaded strongly on Factor 1, which I'll call "Verbal IQ" --Picture Completion through Object Assembly all loaded strongly on Factor 2, which I'll "Performance IQ" --Coding loaded strongly on Factor 3.



Bootstrapping

- Bootstrapping is a statistical technique that falls under the broader heading of resampling. Bootstrapping can be used in the estimation of nearly any statistic
- One <u>goal of inferential statistics</u> is to determine the value of a parameter of a population.
- It is typically too expensive or even impossible to measure this directly. So we use <u>statistical sampling</u>. We sample a population, measure a statistic of this sample, and then use this statistic to say <u>something</u> <u>about the corresponding parameter</u> of the population.
- For example, in a chocolate factory, we might want to guarantee that candy bars have a particular <u>mean</u> weight. It's not feasible to weigh every candy bar that is produced, so we use sampling techniques to randomly choose 100 candy bars. We calculate the mean of these 100 candy bars, and say that the population mean falls within a margin of error from what the mean of our sample is.

<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	Descriptives X
📄 🔚			Variable(s): Serumcholesterol Style Style
9:			<u>B</u> ootstrap
	serumcholest erol	var	•
1	3.70		
2	3.80		Save standardized values as variables
3	3.80		
4	4.40		OK Paste Reset Cancel Help
5	4.50		🍓 Bootstrap 🛛 🗙
6	4.50		Perform bootstrapping
7	4.50		Number of samples: 1000
8	4.70		Set seed for Mersenne Twister
9	4.70		Seed: 2000000
10	4.80		
11	4.80		Confidence Intervals
12	4.90		Level(%): 95
13	4.90		Percentile Provide the second secon
14	4.90		Bias corrected accelerated (BCa)
15	5.00		Sampling
16	5.10		© Simple
17	5.10		Stratified Variables: Strata Variables:
18	5.20		variables: Strata variables:
19	5.30		
20	5.30		
21	5.40		
22	5.40		

В	ootstrap Speci	ications					
Sampling Method	Simpl	9		7			
Number of Sample	s		1000				
Confidence Interval	Level		95.0%				
Confidence Interval	Type Bias- (BCa)	orrected and a	accelerated				
SCRIPTIVES V /STATISTICS= escriptives				n max kuf	RTOSIS SKE	WNESS.	
			escriptive S	tatistics	Bo	ootstrap ^a	
			escriptive S	tatistics	Bo	ootstrap ^a BCa 95% Confi	
		C	escriptive S	Bias	Bo Std. Error		dence Interval Upper
erumcholesterol	N	Statistic 86				BCa 95% Confi	
erumcholesterol	N Range	Statistic		Bias	Std. Error	BCa 95% Confi	
erumcholesterol	Range Minimum	Statistic 86 6.70 3.70		Bias	Std. Error	BCa 95% Confi	
erumcholesterol	Range	Statistic 86 6.70		Bias	Std. Error	BCa 95% Confi	
erumcholesterol	Range Minimum	Statistic 86 6.70 3.70		Bias	Std. Error	BCa 95% Confi	
erumcholesterol	Range Minimum Maximum	Statistic 86 6.70 3.70 10.40		Bias	Std. Error 0	BCa 95% Confi Lower	Upper .
erumcholesterol	Range Minimum Maximum Mean	Statistic 86 6.70 3.70 10.40 6.3407		Bias 0 .0005	Std. Error 0 .1495	BCa 95% Confi Lower 6.0649	Upper . 6.6324
serumcholesterol	Range Minimum Maximum Mean Std. Deviatior	Statistic 86 6.70 3.70 10.40 6.3407 1.39978		Bias 0 .0005 01128	Std. Error 0 .1495 .11313	BCa 95% Confi Lower 6.0649 1.19786	Upper 6.6324 1.57908
erumcholesterol	Range Minimum Maximum Mean Std. Deviatior Variance	Statistic 86 6.70 3.70 10.40 6.3407 1.39978 1.959	Std. Error	Bias 0 .0005 01128 019	Std. Error 0 .1495 .11313 .315	BCa 95% Confi Lower 6.0649 1.19786 1.431	Upper 6.6324 1.57908 2.499

