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1 Introduction

Structural equation models (SEMs), also called simultaneous equation models, are multivariate (i.e., multi-
equation) regression models. Unlike the more traditional multivariate linear model, however, the response
variable in one regression equation in an SEM may appear as a predictor in another equation; indeed,
variables in an SEM may in�uence one-another reciprocally, either directly or through other variables as
intermediaries. These structural equations are meant to represent causal relationships among the variables
in the model.
A cynical view of SEMs is that their popularity in the social sciences re�ects the legitimacy that the

models appear to lend to causal interpretation of observational data, when in fact such interpretation is no
less problematic than for other kinds of regression models applied to observational data. A more charitable
interpretation is that SEMs are close to the kind of informal thinking about causal relationships that is
common in social-science theorizing, and that, therefore, these models facilitate translating such theories
into data analysis. In economics, in contrast, structural-equation models may stem from formal theory.
To my knowledge, the only facility in S for �tting structural equation models is my sem library, which at

present is available for R but not for S-PLUS. The sem library includes functions for estimating structural
equations in observed-variables models by two-stage least squares, and for �tting general structural equation
models with multinormal errors and latent variables by full-information maximum likelihood. These methods
are covered (along with the associated terminology) in the subsequent sections of the appendix. As I write
this appendix, the sem library is in a preliminary form, and the capabilities that it provides are modest
compared with specialized structural equation software.
Structural equation modeling is a large subject. Relatively brief introductions may be found in Fox (1984:

Ch. 4) and in Duncan (1975); Bollen (1989) is a standard book-length treatment, now slightly dated; and
most general econometric texts (e.g., Greene, 1993: Ch. 20; Judge et al., 1985: Part 5) take up at least
observed-variables structural equation models.

2 Observed-Variables Models and Two-Stage Least-Squares Esti-
mation

2.1 An Example: Klein�s Model

Klein�s (1950) macroeconomic model of the U. S. economy often appears in econometrics texts (e.g., Greene,
1993) as a simple example of a structural equation model:

Ct = 
10 + 
11Pt + 
12Pt�1 + �11(W
p
t +W

g
t ) + �1t (1)

It = 
20 + 
21Pt + 
22Pt�1 + �21Kt�1 + �2t

W p
t = 
30 + 
31At + �31Xt + �32Xt�1 + �3t

Xt = Ct + It +Gt

Pt = Xt � Tt �W p
t

Kt = Kt�1 + It
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� The variables on the left-hand side of the structural equations are endogenous variables � that is,
variables whose values are determined by the model. There is, in general, one structural equation for
each endogenous variable in an SEM.1

� The ��s (Greek zeta) are error variables, also called structural disturbances or errors in equations; they
play a role analogous to the error in a single-equation regression model. It is not generally assumed
that di¤erent disturbances are independent of one-another, although such assumptions are sometimes
made in particular models.2

� The remaining variables on the right-hand side of the model are exogenous variables, whose values are
treated as conditionally �xed; an additional de�ning characteristic of exogenous variables is that they
are assumed to be independent of the errors (much as the predictors in a common regression model
are taken to be independent of the error).

� The 
�s (Greek gamma) are structural parameters (regression coe¢ cients) relating the endogenous
variables to the exogenous variables (including an implicit constant regressor for each of the �rst three
equations).

� Similarly, the ��s (Greek beta) are structural parameters relating the endogenous variables to one-
another.

� The last three equations have no error variables and no structural parameters. These equations are
identities, and could be substituted out of the model. Our task is to estimate the �rst three equations,
which contain unknown parameters.

The variables in model (1) have the following de�nitions:

Ct Consumption (in year t)
It Investment
W p
t Private wages

Xt Equilibrium demand
Pt Private pro�ts
Kt Capital stock
Gt Government non-wage spending
Tt Indirect business taxes and net exports
W g
t Government wages

At Time trend, year � 1931

The use of the subscript t for observations re�ects the fact that Klein estimated the model with annual
time-series data for the years 1921 through 1941.3 Klein�s data are in the data frame Klein in the sem
library:

> library(sem)
> data(Klein)
> Klein

year c p wp i k.lag x wg g t
1 1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4
2 1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7
3 1922 45.0 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9
4 1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7

1Some forms of structural equation models do not require that one endogenous variable in each equation be indenti�ed as
the response variable.

2See, for example, the discussion of recursive models below.
3Estimating a structural equation model for time-series data raises the issue of autocorrelated errors, as it does in regression

models �t to time-series data (described in the Appendix on time-series regression). Although I will not address this com-
plication, there are methods for accommodating autocorrelated errors in structural equation models; see, e.g., Greene (1993:
608�609).
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5 1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8
6 1925 52.6 20.1 35.4 5.1 192.7 61.0 3.2 3.3 5.5
7 1926 55.1 19.6 37.4 5.6 197.8 64.0 3.3 3.3 7.0
8 1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7
9 1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2
10 1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0
11 1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7
12 1931 50.9 11.4 34.5 -3.4 216.7 53.4 4.8 5.9 7.5
13 1932 45.6 7.0 29.0 -6.2 213.3 44.3 5.3 4.9 8.3
14 1933 46.5 11.2 28.5 -5.1 207.1 45.1 5.6 3.7 5.4
15 1934 48.7 12.3 30.6 -3.0 202.0 49.7 6.0 4.0 6.8
16 1935 51.3 14.0 33.2 -1.3 199.0 54.4 6.1 4.4 7.2
17 1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3
18 1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7
19 1938 57.5 15.3 38.2 -1.9 201.8 60.9 7.7 5.3 7.4
20 1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9
21 1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6
22 1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6

The data in Klein conform to my usual practice of using lower-case names for variables. Some of the
variables in Klein�s model have to be constructed from the data:

> attach(Klein)
> p.lag <- c(NA, p[-length(p)])
> x.lag <- c(NA, x[-length(x)])
> a <- year - 1931

> cbind(year, a, p, p.lag, x, x.lag)
year a p p.lag x x.lag

[1,] 1920 -11 12.7 NA 44.9 NA
[2,] 1921 -10 12.4 12.7 45.6 44.9
[3,] 1922 -9 16.9 12.4 50.1 45.6
[4,] 1923 -8 18.4 16.9 57.2 50.1
[5,] 1924 -7 19.4 18.4 57.1 57.2
[6,] 1925 -6 20.1 19.4 61.0 57.1
[7,] 1926 -5 19.6 20.1 64.0 61.0
[8,] 1927 -4 19.8 19.6 64.4 64.0
[9,] 1928 -3 21.1 19.8 64.5 64.4
[10,] 1929 -2 21.7 21.1 67.0 64.5
[11,] 1930 -1 15.6 21.7 61.2 67.0
[12,] 1931 0 11.4 15.6 53.4 61.2
[13,] 1932 1 7.0 11.4 44.3 53.4
[14,] 1933 2 11.2 7.0 45.1 44.3
[15,] 1934 3 12.3 11.2 49.7 45.1
[16,] 1935 4 14.0 12.3 54.4 49.7
[17,] 1936 5 17.6 14.0 62.7 54.4
[18,] 1937 6 17.3 17.6 65.0 62.7
[19,] 1938 7 15.3 17.3 60.9 65.0
[20,] 1939 8 19.0 15.3 69.5 60.9
[21,] 1940 9 21.1 19.0 75.7 69.5
[22,] 1941 10 23.5 21.1 88.4 75.7

Notice, in particular how the lagged variables Pt�1 and Xt�1 are created by shifting Pt and Xt forward
one time period � placing an NA at the beginning of each variable, and dropping the last observation. The
�rst observation for Pt�1 and Xt�1 is missing because there are no data available for P0 and X0.
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Estimating Klein�s model is complicated by the presence of endogenous variables on the right-hand side
of the structural equations. In general, we cannot assume that an endogenous predictor is uncorrelated
with the error variable in a structural equation, and consequently ordinary least-squares (OLS) regression
cannot be relied upon to produce consistent estimates of the parameters of the equation. For example, the
endogenous variable Pt appears as a predictor in the �rst structural equation, for Ct; but Xt is a component
of Pt, and Xt, in turn, depends upon Ct, one of whose components is the error �1t. Thus, indirectly, �1t
is a component of Pt, and the two are likely correlated. Similar reasoning applies to the other endogenous
predictors in the model, as a consequence of the simultaneous determination of the endogenous variables.

2.2 Identi�cation and Instrumental-Variables Estimation

Instrumental-variables estimation provides consistent estimates of the parameters of a structural equation.
An instrumental variable (also called an instrument) is a variable uncorrelated with the error of a struc-
tural equation. In the present context, the exogenous variables can serve as instrumental variables, as can
predetermined endogenous variables, such as Pt�1.
Let us write a structural equation of the model as

y = X� + � (2)

where y is the n�1 vector for the response variable in the equation; X is an n�pmodel matrix, containing the
p endogenous and exogenous predictors for the equation, normally including a column of 1�s for the constant;
� (Greek delta) is the p� 1 parameter vector, containing the 
�s and ��s for the structural equation; and �
is the n� 1 error vector. Let the n� p matrix Z contain instrumental variables (again, normally including
a column of 1�s). Then, multiplying the structural equation through by Z0 produces

Z0y = Z0X� + Z0�

In the probability limit, 1nZ
0� goes to 0 because of the uncorrelation of the instrumental variables with the

error. Consequently, the instrumental-variables estimatorb�= (Z0X)�1Z0y
is a consistent estimator of �.
I have implicitly assumed two things here: (1) that the number of instrumental variables is equal to the

number of predictors p in the structural equation; and (2) that the cross-products matrix Z0X is nonsingular.

� If there are fewer instrumental variables than predictors (i.e., structural coe¢ cients), then the esti-
mating equations

Z0y = Z0Xb�
are under-determined, and the structural equation is said to be under-identi�ed.4

� If there are p instrumental variables, then the structural equation is said to be just-identi�ed.

� If there are more instrumental variables than predictors, then the estimating equations will almost
surely be over-determined, and the structural equation is said to be over-identi�ed.5 What we have
here is an embarrassment of riches, however: We could obtain consistent estimates simply by discarding
surplus instrumental variables. To do so would be statistically pro�igate, however, and there are
better solutions to over-identi�cation, including the method of two-stage least squares, to be described
presently.

� For Z0X to be nonsingular, the instrumental variables must be correlated with the predictors, and we
must avoid perfect collinearity.

4That there must be at least as many instrumental variables as coe¢ cients to estimate in a structural equation is called
the order condition for identi�cation. It turns out that the order condition is a necessary, but not su¢ cient, condition for
identi�cation. Usually, however, a structural equation model that satis�es the order condition is identi�ed. See the references
cited in the introductory section of the appendix.

5This over-determination is a product of sampling error, since presumably in the population the estimating equations would
hold precisely and simultaneously. If the estimating equations are highly inconsistent, that casts doubt upon the speci�cation
of the model.
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2.3 Two-Stage Least Squares Estimation

Two-stage least squares (2SLS ) is so named because it can be thought of the catenation of two OLS regression:

1. In the �rst stage, the predictors X are regressed on the instrumental variables Z, obtaining �tted
values6 bX = Z(Z

0
Z)

�1
Z0X

2. In the second stage, the response y is regressed on the �tted values from the �rst stage, bX, producing
the 2SLS estimator of �: b�= (bX0 bX)�1 bX0y

This is justi�ed because as linear combinations of the instrumental variables, the columns of bX are (in
the probability limit) uncorrelated with the structural disturbances. An alternative, but equivalent,
approach to the second stage is to apply the �tted values from the �rst stage, bX, as instrumental
variables to the structural equation (2):7

b�= (bX0X)�1 bX0y

The two stages of 2SLS can be combined algebraically, producing the following expression for the esti-
mates: b� = [X0Z(Z

0
Z)

�1
Z0X]�1X0Z(Z

0
Z)

�1
Z0y

The estimated asymptotic covariance matrix of the coe¢ cients is

bV(b�) = s2[X0Z(Z
0
Z)

�1
Z0X]�1

where s2 is the estimated error variance for the structural equation,

s2 =
(y �Xb�)0(y �Xb�)

n� p

that is, the sum of squared residuals divided by residual degrees of freedom.8

To apply 2SLS to the structural equations in Klein�s model, we may use the four exogenous variables,
the constant, and the three predetermined endogenous variables as instruments. Because there are therefore
eight instrumental variables and only four structural parameters to estimate in each equation, the three
structural equations are all over-identi�ed.
The tsls function in the sem library performs 2SLS estimation:

� The structural equation to be estimated is speci�ed by a model formula, as for lm (see Chapter 4 of
the text).

� The instrumental variables are supplied in a one-sided model formula via the instruments argument

� There are optional data, subset, na.action, and contrasts arguments that work just like those in
lm (and which are, again, described in Chapter 4 of the text).

� The tsls function returns an object of class "tsls". A variety of methods exist for objects of this class,
including print, summary, fitted, residuals, and anova methods. For details, enter help(tsls).

For example, to estimate the structural equations in Klein�s model:

6Columns of X corresponding to exogenous predictors are simply reproduced in bX, since the exogenous variables are among
the instrumental variables in Z.

7Obviously, for the two approaches to be equivalent, it must be the case that bX0 bX = bX0X. Can you see why this equation
holds?

8Because the result is asymptotic, a less conservative alternative is to divide the residual sum of squares by n rather than
by n� p.
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> eqn.1 <- tsls(c ~ p + p.lag + I(wp + wg),
+ instruments= ~ g + t + wg + a + p.lag + k.lag + x.lag)

> summary(eqn.1)

2SLS Estimates

Model Formula: c ~ p + p.lag + I(wp + wg)

Instruments: ~g + t + wg + a + p.lag + k.lag + x.lag

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.89e+00 -6.16e-01 -2.46e-01 -4.34e-11 8.85e-01 2.00e+00

Estimate Std. Error t value Pr(>|t|)
(Intercept) 16.55476 1.46798 11.2772 2.587e-09
p 0.01730 0.13120 0.1319 8.966e-01
p.lag 0.21623 0.11922 1.8137 8.741e-02
I(wp + wg) 0.81018 0.04474 18.1107 1.505e-12

Residual standard error: 1.1357 on 17 degrees of freedom

> eqn.2 <- tsls(i ~ p + p.lag + k.lag,
+ instruments= ~ g + t + wg + a + p.lag + k.lag + x.lag)

> summary(eqn.2)

2SLS Estimates

Model Formula: i ~ p + p.lag + k.lag

Instruments: ~g + t + wg + a + p.lag + k.lag + x.lag

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.29e+00 -8.07e-01 1.42e-01 1.36e-11 8.60e-01 1.80e+00

Estimate Std. Error t value Pr(>|t|)
(Intercept) 20.2782 8.38325 2.4189 0.027071
p 0.1502 0.19253 0.7802 0.445980
p.lag 0.6159 0.18093 3.4044 0.003375
k.lag -0.1578 0.04015 -3.9298 0.001080

Residual standard error: 1.3071 on 17 degrees of freedom

> eqn.3 <- tsls(wp ~ x + x.lag + a,
+ instruments= ~ g + t + wg + a + p.lag + k.lag + x.lag)

> summary(eqn.3)

2SLS Estimates

Model Formula: wp ~ x + x.lag + a
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Figure 1: Blau and Duncan recursive basic strati�cation model.

Instruments: ~g + t + wg + a + p.lag + k.lag + x.lag

Residuals:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.29e+00 -4.73e-01 1.45e-02 1.79e-11 4.49e-01 1.20e+00

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.5003 1.27569 1.176 2.558e-01
x 0.4389 0.03960 11.082 3.368e-09
x.lag 0.1467 0.04316 3.398 3.422e-03
a 0.1304 0.03239 4.026 8.764e-04

Residual standard error: 0.7672 on 17 degrees of freedom

Note the use of the identity function I to �protect�the expression wp + wg in the �rst structural equation;
as in a linear model, leaving an expression like this unprotected would cause the plus sign to be interpreted
as specifying separate terms for the model, rather than as the sum of wp and wg, which is what is desired
here.

2.4 Recursive Models

Outside of economics, it is common to specify a structural equation model in the form of a graph called
a path diagram. A well known example, Blau and Duncan�s (1967) basic strati�cation model, appears in
Figure 1.
The following conventions, some of them familiar from Klein�s macroeconomic model, are employed in

drawing the path diagram:

� Directly observable variables are enclosed in rectangular boxes.

� Unobservable variables are enclosed in circles (more generally, in ellipses); in this model, the only
unobservable variables are the disturbances.

� Exogenous variables are represented by x�s; endogenous variables by y�s; and disturbances by ��s.
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� Directed (i.e., single-headed) arrows represent structural parameters. The endogenous variables are
distinguished from the exogenous variables by having directed arrows pointing towards them, while
exogenous variables appear only at the tails of directed arrows.

� Bidirectional (double-headed) arrows represent non-causal, potentially nonzero, covariances between
exogenous variables (and, more generally, also between disturbances).

� As before, 
�s are used for structural parameters relating an endogenous to an exogenous variable,
while ��s are used for structural parameters relating one endogenous variable to another.

� To the extent possible, horizontal ordering of the variables corresponds to their causal ordering:9 Thus,
�causes�appear to the left of �e¤ects.�

The structural equations of the model may be read o¤ the path diagram:10

y1i = 
10 + 
11x1i + 
12x2i + �1i

y2i = 
20 + 
21x1i + 
22x2i + �21y1i + �2i

y3i = 
30 + 
32x2i + �31y1i + �32y2i + �2i

Blau and Duncan�s model is a member of a special class of SEMs called recursive models. Recursive
models have the following two de�ning characteristics:

1. There are no reciprocal directed paths or feedback loops in the path diagram.

2. Di¤erent disturbances are independent of one-another (and hence are unlinked by bidirectional arrows).

As a consequence of these two properties, the predictors in a structural equation of a recursive model
are always independent of the error of that equation, and the structural equation may be estimated by OLS
regression. Estimating a recursive model is simply a sequence of OLS regressions. In S, we would of course
use lm to �t the regressions. This is a familiar operation, and therefore I will not pursue the example further.
Structural equation models that are not recursive are sometimes termed nonrecursive (an awkward and

often-confused adjective).

3 General Structural Equation Models

General structural equation models include unobservable exogenous or endogenous variables (also termed
factors or latent variables) in addition to the unobservable disturbances. General structural equation models
are sometimes called LISREL models, after the �rst widely available computer program capable of estimating
this class of models (Jöreskog, 1973); LISREL is an acronym for linear structural relations.
Figure 2 shows the path diagram for an illustrative general structural equation model, from path-breaking

work by Duncan, Haller, and Portes (1968) concerning peer in�uences on the aspirations of male high-school
students. The most striking new feature of this model is that two of the endogenous variables, Respondent�s
General Aspirations (�1) and Friend�s General Aspirations (�2), are unobserved variables. Each of these
variables has two observed indicators: The occupational and educational aspirations of each boy � y1 and
y2 for the respondent, and y3 and y4 for his best friend.

3.1 The LISREL Model

It is common in general structural equation models such as the peer-in�uences model to distinguish between
two sub-models:

9When there are feedback loops in a model, it is impossible to satisfy the left-to-right rule without using curved directed
arrows.
10 In writing out the structural equations from a path diagram, it is common to omit the intercept parameters (here, 
10, 
20,

and 
30), for which no paths appear. To justify this practice, we may express all variables as deviations from their expectations
(in the sample, as deviations from their means), eliminating the intercept from each regression equation.
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Figure 2: Duncan, Haller, and Portes�s general structural equation model for peer in�uences on aspirations.

1. A structural submodel, relating endogenous to exogenous variables and to one-another. In the peer-
in�uences model, the endogenous variables are unobserved, while the exogenous variables are directly
observed.

2. A measurement submodel, relating latent variables (here only latent endogenous variables) to their
indicators.

I have used the following notation, associated with Jöreskog�s LISREL model, in drawing the path diagram
in Figure 2:

� x�s are used to represent observable exogenous variables. If there were latent exogenous variables in
the model, these would be represented by ��s (Greek xi), and x�s would be used to represent their
observable indicators.

� y�s are employed to represent the indicators of the latent endogenous variables, which are symbolized
by ��s (Greek eta). Were there directly observed endogenous variables in the model, then these too
would be represented by y�s.

� As before, 
�s and ��s are used, respectively, for structural coe¢ cients relating endogenous variables to
exogenous variables and to one-another, and ��s are used for structural disturbances. The parameter
 12 is the covariance between the disturbances �1 and �2 . The variances of the disturbances,  

2
1 and

 22, are not shown on the diagram.

� In the measurement submodel, ��s (Greek lambda) represent regression coe¢ cients (also called factor
loadings) relating observable indicators to latent variables. The superscript y in �y indicates that the
factor loadings in this model pertain to indicators of latent endogenous variables. Notice that one �
for each factor is set to 1; this is done to identify the scale of the corresponding latent variable.

� The "�s (Greek epsilon) represent measurement error in the endogenous indicators; if there were exoge-
nous indicators in the model, then the measurement errors associated with them would be represented
by ��s (Greek delta).
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Symbol Meaning
N Number of observations
m Number of latent endogenous variables
n Number of latent exogenous variables
p Number of indicators of latent endogenous variables
q Number of indicators of latent exogenous variable
�i

(m�1)
Latent endogenous variables (for observation i)

�i
(n�1)

Latent exogenous variables

&i
(m�1)

Structural disturbances (errors in equations)

B
(m�m)

Structural parameters relating latent endogenous variables

�
(m�n)

Structural parameters relating latent endogenous to exogenous variables

yi
(p�1)

Indicators of latent endogenous variables

xi
(q�1)

Indicators of latent exogenous variables

"i
(p�1)

Measurement errors in endogenous indicators

�i
(q�1)

Measurement errors in exogenous indicators

�y
(p�m)
�x
(q�n)

9>=>; Factor loadings relating indicators to latent variables

�
(n�n)

Covariances among latent exogenous variables

	
(m�m)

Covariances among structural disturbances

�"
(p�p)
��
(q�q)

9=; Covariances among measurement errors

�
(p+q�p+q)

Covariances among observed (indicator) variables

Table 1: Notation for the LISREL model. The order of each vector or matrix is shown in paretheses below
its symbol.

We are swimming in notation, but we still require some more (not all of which is necessary for the peer-
in�uences model): We use �ij (Greek sigma) to represent the covariance between two observable variables;
�"ij to represent the covariance between two measurement-error variables for endogenous indicators, "i and
"j ; �

�
ij to represent the covariance between two measurement-error variables for exogenous indicators, �i and

�j ; and �ij to represent the covariance between two latent exogenous variables �i and �j .
The LISREL notation for general structural equation models is summarized in Table 1. The structural

and measurement submodels are written as follows:

�i = B�i + ��i + &i

yi = �y�i + "i

xi = �x�i + �i

In order to identify the model, many of the parameters in B;�;�x;�y;�;	;�", and �� must be con-
strained, typically by setting parameters to 0 or 1, or by de�ning certain parameters to be equal.
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3.2 The RAM Formulation

Although LISREL notation is most common, there are several equivalent ways to represent general structural
equation models. The sem function uses the simpler RAM (reticular action model �don�t ask!) formulation
of McArdle (1980) and McArdle and McDonald (1984); the notation that I employ below is from McDonald
and Hartmann (1992).
The RAM model includes two vectors of variables: v, which contains the indicator variables, directly

observed exogenous variables, and the latent exogenous and endogenous variables in the model; and u, which
contains directly observed exogenous variables, measurement-error variables, and structural disturbances.
The two sets of variables are related by the equation

v = Av + u

Thus, the matrix A includes structural coe¢ cients and factor loadings. For example, for the Duncan, Haller,
and Portes model, we have (using LISREL notation for the individual parameters):

11



26666666666666666664

x1
x2
x3
x4
x5
x6
y1
y2
y3
y4
�1
�2

37777777777777777775

=

26666666666666666664

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 �y21 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 �y42

11 
12 
13 
14 0 0 0 0 0 0 0 �12
0 0 
23 
24 
25 
26 0 0 0 0 �21 0

37777777777777777775

26666666666666666664

x1
x2
x3
x4
x5
x6
y1
y2
y3
y4
�1
�2

37777777777777777775

+

26666666666666666664

x1
x2
x3
x4
x5
x6
"1
"2
"3
"4
�1
�2

37777777777777777775
It is typically the case that A is sparse, containing many 0�s. Notice the special treatment of the observed
exogenous variables, x1 through x6, which are speci�ed to be measured without error, and which consequently
appear both in v and u .
The �nal component of the RAM formulation is the covariance matrix P of u. Assuming that all of the

error variables have expectations of 0, and that all other variables have been expressed as deviations from
their expectations, P = E(uu0). For the illustrative model,

P =

26666666666666666664

�11 �12 �13 �14 �15 �16 0 0 0 0 0 0
�21 �22 �23 �24 �25 �26 0 0 0 0 0 0
�31 �32 �33 �34 �35 �36 0 0 0 0 0 0
�41 �42 �43 �44 �45 �46 0 0 0 0 0 0
�51 �52 �53 �54 �55 �56 0 0 0 0 0 0
�61 �62 �63 �64 �65 �66 0 0 0 0 0 0
0 0 0 0 0 0 �"11 0 0 0 0 0
0 0 0 0 0 0 0 �"22 0 0 0 0
0 0 0 0 0 0 0 0 �"33 0 0 0
0 0 0 0 0 0 0 0 0 �"44 0 0
0 0 0 0 0 0 0 0 0 0  11  12
0 0 0 0 0 0 0 0 0 0  21  22

37777777777777777775
For convenience, I use a double-subscript notation for both covariances and variances; thus, for example, �11
is the variance of x1 (usually written �21); �

"
11 is the variance of "1; and  11 is the variance of �1.

The key to estimating the model is the connection between the covariances of the observed variables,
which may be estimated directly from sample data, and the parameters in A and P. Let m denote the the
number of variables in v, and (without loss of generality) let the �rst n of these be the observed variables in
the model.11 De�ne the m�m selection matrix J to pick out the observed variables; that is

J =

�
In 0
0 0

�
where In is the order�n identity matrix, and the 0�s are zero matrices of appropriate orders. The model
implies the following covariances among the observed variables:

C = E(Jvv0J0) = J(Im�A)
�1
P(Im�A)

�10
J0

Let S denote the observed-variable covariances computed directly from the sample. Fitting the model to
the data � that is, estimating the free parameters in A and P � entails selecting parameter values that
make S as close as possible to the model-implied covariances C. Under the assumptions that the errors and
latent variables are multivariately normally distributed, �nding the maximum-likelihood estimates of the
free parameters in A and P is equivalent to minimizing the criterion

F (A;P) = trace(SC�1)� n+ loge detC� loge detS (3)
11Notice the nonstandard use of n to represent the number of observed variables rather than the sample size. The latter is

represented by N , as in the LISREL model.
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3.3 The sem Function

The sem function computes maximum-likelihood estimates for general structural equation models, using the
RAM formulation of the model. There are three required arguments to sem:

1. ram: a speci�cation of the single and double-headed arrows in the model, corresponding to elements in
the parameter matrices A and P.

(a) The �rst column of ram speci�es parameters in the form "A -> B" for a single-headed arrow from
variable A to variable B, and "A <-> B" for the covariance between variables A and B; a variance
is speci�ed as "A <-> A". If a variable name (e.g., A) is not among the observed variables in
the covariance matrix (see the second argument to sem, immediately below), then it is assumed
to represent a latent variable.12 Error variables do not appear explicitly, but error variances and
covariances are speci�ed using the names of the corresponding endogenous variables; for example,
"B <-> B" is the variance of the disturbance associated with B, if B is an endogenous variable,
or the measurement-error variance of B, if B is an indicator.13

(b) The second column of ram supplies a name for the parameter corresponding to the arrow � for
example, "beta12". If two or more arrows are given the same name, then their parameters are
constrained to be equal. If a parameter is to be �xed at a non-zero value rather than estimated,
then its name is NA.

(c) The last column of ram gives a start-value for the parameter. If this value is NA, then the
program will calculate a start-value using an adaptation of the method described by McDonald
and Hartmann (1992). If the parameter is �xed, then a value must be supplied. At present, the
method used to calculate start-values is not reliable, and may cause sem to fail, reporting either
a singular matrix or a non-�nite objective function. In cases like this, you can request that the
start-values and some other diagnostic output be printed, by including the argument debug=T;
after examining the diagnostic output, you might try to specify some of the start-values directly.

(d) If there are �xed exogenous variables in the model (such as variables x1 through x6 in the peer-
in�uences model), then the variances and covariances of these variables do not have to be speci�ed
explicitly in the ram argument to sem. Rather, the names of the �xed exogenous variables can be
supplied via the argument fixed.x.

2. S: the sample covariance matrix among the observed variables in the model. The covariances may be
obtained from a secondary source or computed by the standard S function var. If S has row and column
names, then these are used by default as the names of the observed variables. The sem function accepts
a lower or upper-triangular covariance matrix, as well as the full (symmetric) covariance matrix.

3. N: the sample size on which the covariance matrix S is based.

Enter help(sem) for a description of the optional arguments to sem.
The Duncan, Haller and Portes model was estimated for standardized variables, so the input covariance

matrix is a correlation matrix:14

> R.dhp <- matrix(c( # lower triangle of correlation matrix
+ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ .6247, 1, 0, 0, 0, 0, 0, 0, 0, 0,
+ .3269, .3669, 1, 0, 0, 0, 0, 0, 0, 0,
+ .4216, .3275, .6404, 1, 0, 0, 0, 0, 0, 0,
+ .2137, .2742, .1124, .0839, 1, 0, 0, 0, 0, 0,

12A consequence of this convention is that typing errors inadvertently create latent variables.
13 Indeed, it is not necessary in the RAM formulation to draw a distinction between indicators and (other) endogenous

variables.
14Using correlation-matrix input raises a complication: The standard deviations employed to standardize variables are esti-

mated from the data, and are therefore an additional source of uncertainty in the estimates of the standardized coe¢ cients. I
will simply bypass this issue, however, which is tantamount to analyzing the data on scales conditional on the sample standard
deviations.
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+ .4105, .4043, .2903, .2598, .1839, 1, 0, 0, 0, 0,
+ .3240, .4047, .3054, .2786, .0489, .2220, 1, 0, 0, 0,
+ .2930, .2407, .4105, .3607, .0186, .1861, .2707, 1, 0, 0,
+ .2995, .2863, .5191, .5007, .0782, .3355, .2302, .2950, 1, 0,
+ .0760, .0702, .2784, .1988, .1147, .1021, .0931, -.0438, .2087, 1
+ ), ncol=10, byrow=T)

> rownames(R.dhp) <- colnames(R.dhp) <- c(�ROccAsp�, �REdAsp�, �FOccAsp�,
+ �FEdAsp�, �RParAsp�, �RIQ�, �RSES�, �FSES�, �FIQ�, �FParAsp�)

> R.dhp
ROccAsp REdAsp FOccAsp FEdAsp RParAsp RIQ RSES FSES FIQ FParAsp

ROccAsp 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
REdAsp 0.6247 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
FOccAsp 0.3269 0.3669 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
FEdAsp 0.4216 0.3275 0.6404 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0
RParAsp 0.2137 0.2742 0.1124 0.0839 1.0000 0.0000 0.0000 0.0000 0.0000 0
RIQ 0.4105 0.4043 0.2903 0.2598 0.1839 1.0000 0.0000 0.0000 0.0000 0
RSES 0.3240 0.4047 0.3054 0.2786 0.0489 0.2220 1.0000 0.0000 0.0000 0
FSES 0.2930 0.2407 0.4105 0.3607 0.0186 0.1861 0.2707 1.0000 0.0000 0
FIQ 0.2995 0.2863 0.5191 0.5007 0.0782 0.3355 0.2302 0.2950 1.0000 0
FParAsp 0.0760 0.0702 0.2784 0.1988 0.1147 0.1021 0.0931 -0.0438 0.2087 1

The ram speci�cation may be read o¤ the path diagram (Figure 2), remembering that the error variables
do not appear explicitly, and that we do not have to supply variances and covariances for the six �xed
exogenous variables:

> ram.dhp <- matrix(c(
+ # arrow parameter start-value
+ �RParAsp -> RGenAsp�, �gam11�, NA,
+ �RIQ -> RGenAsp�, �gam12�, NA,
+ �RSES -> RGenAsp�, �gam13�, NA,
+ �FSES -> RGenAsp�, �gam14�, NA,
+ �RSES -> FGenAsp�, �gam23�, NA,
+ �FSES -> FGenAsp�, �gam24�, NA,
+ �FIQ -> FGenAsp�, �gam25�, NA,
+ �FParAsp -> FGenAsp�, �gam26�, NA,
+ �FGenAsp -> RGenAsp�, �bet12�, NA,
+ �RGenAsp -> FGenAsp�, �bet21�, NA,
+ �RGenAsp -> ROccAsp�, NA, 1,
+ �RGenAsp -> REdAsp�, �lamy21�, NA,
+ �FGenAsp -> FOccAsp�, NA, 1,
+ �FGenAsp -> FEdAsp�, �lamy42�, NA,
+ �RGenAsp <-> RGenAsp�, �psi11�, NA,
+ �FGenAsp <-> FGenAsp�, �psi22�, NA,
+ �RGenAsp <-> FGenAsp�, �psi12�, NA,
+ �ROccAsp <-> ROccAsp�, �theps1�, NA,
+ �REdAsp <-> REdAsp�, �theps2�, NA,
+ �FOccAsp <-> FOccAsp�, �theps3�, NA,
+ �FEdAsp <-> FEdAsp�, �theps4�, NA),
+ ncol=3, byrow=T)
>

To �t the model, I note that the Duncan, Haller, and Portes data set comprises N = 329 observations:
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> sem.dhp <- sem(ram.dhp, R.dhp, N=329,
+ fixed.x=c(�RParAsp�, �RIQ�, �RSES�, �FSES�, �FIQ�, �FParAsp�))

> sem.dhp

Model Chisquare = 26.69722 Df = 15

gam11 gam12 gam13 gam14 gam23
0.16122390 0.24965251 0.21840357 0.07184300 0.06189390

gam24 gam25 gam26 bet12 bet21
0.22886776 0.34903879 0.15953516 0.18422617 0.23545788

lamy21 lamy42 psi11 psi22 psi12
1.06267364 0.92972672 0.28098743 0.26383649 -0.02260149

theps1 theps2 theps3 theps4
0.41214471 0.33614760 0.31119372 0.40460356

Iterations = 28

The sem function returns an object of class "sem"; the print method for sem objects displays parameter
estimates, together with the likelihood-ratio chi-square statistic for the model, contrasting the model with a
just-identi�ed (or saturated) model, which perfectly reproduces the sample covariance matrix. The degrees
of freedom for this test are equal to the degree of over-identi�cation of the model � the di¤erence between
the number of covariances among observed variables, n(n+1)=2, and the number of independent parameters
in the model.15

More information is provided by the summary method for sem objects:

> summary(sem.dhp)

Model Chisquare = 26.697 Df = 15 Pr(>Chisq) = 0.031302
Goodness-of-fit index = 0.98439
Adjusted goodness-of-fit index = 0.94275
RMSEA index = 0.048759 90% CI: (0.014516, 0.078314)
BIC = -94.782

Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.8010 -0.1180 0.0000 -0.0120 0.0398 1.5700

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

gam11 0.161224 0.038487 4.1890 2.8019e-05 RGenAsp <--- RParAsp
gam12 0.249653 0.044580 5.6001 2.1428e-08 RGenAsp <--- RIQ
gam13 0.218404 0.043476 5.0235 5.0730e-07 RGenAsp <--- RSES
gam14 0.071843 0.050335 1.4273 1.5350e-01 RGenAsp <--- FSES
gam23 0.061894 0.051738 1.1963 2.3158e-01 FGenAsp <--- RSES
gam24 0.228868 0.044495 5.1437 2.6938e-07 FGenAsp <--- FSES
gam25 0.349039 0.044551 7.8346 4.6629e-15 FGenAsp <--- FIQ
gam26 0.159535 0.040129 3.9755 7.0224e-05 FGenAsp <--- FParAsp
bet12 0.184226 0.096207 1.9149 5.5506e-02 RGenAsp <--- FGenAsp
bet21 0.235458 0.119742 1.9664 4.9256e-02 FGenAsp <--- RGenAsp
lamy21 1.062674 0.091967 11.5549 0.0000e+00 REdAsp <--- RGenAsp
lamy42 0.929727 0.071152 13.0668 0.0000e+00 FEdAsp <--- FGenAsp

15For the model to be identi�ed the degrees of freedom must be 0 or greater � that is, there must be at least as many
observable covariances as free parameters of the model. Unlike the order condition for the identi�cation of observed-variable
SEMs, however, it is common for this requirement to be met and yet for the model to be under-identi�ed.
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psi11 0.280987 0.046311 6.0674 1.2999e-09 RGenAsp <--> RGenAsp
psi22 0.263836 0.044902 5.8759 4.2067e-09 FGenAsp <--> FGenAsp
psi12 -0.022601 0.051649 -0.4376 6.6168e-01 FGenAsp <--> RGenAsp
theps1 0.412145 0.052211 7.8939 2.8866e-15 ROccAsp <--> ROccAsp
theps2 0.336148 0.053323 6.3040 2.9003e-10 REdAsp <--> REdAsp
theps3 0.311194 0.046665 6.6687 2.5800e-11 FOccAsp <--> FOccAsp
theps4 0.404604 0.046733 8.6578 0.0000e+00 FEdAsp <--> FEdAsp

Iterations = 28

� The marginally signi�cant chi-square statistic indicates that the model can be rejected. Because
any over-identi�ed model can be rejected in a su¢ ciently large sample, structural-equation modelers
typically attend to the descriptive adequacy of the model as well as to this formal over-identi�cation
test.

� The goodness-of-�t index (GFI ) and the adjusted goodness-of-�t index (AGFI ) are ad-hoc measures of
the descriptive adequacy of the model, included in the output of the summary method for sem objects
because they are in common use. The GFI and AGFI are de�ned as follows:

GFI = 1� tracef[C
�1(S�C)]2g

trace[(C�1S)2]

AGFI = 1� n(n+ 1)

2� df (1�GFI)

where df is the degrees of freedom for the model. Although the GFI and AGFI are thought of as
proportions, comparing the value of the �tting criterion for the model with the value of the �tting
criterion when no model is �t to the data, these indices are not constrained to the interval 0 to 1.
Several rough cuto¤s for the GFI and AGFI have been proposed; a general theme is that they should
be close to 1. It is probably fair to say that the GFI and AGFI are of little pratical value.

� There is a veritable cottage industry in ad-hoc �t indices and their evaluation. See, for example, the
papers in the volume edited by Bollen and Long (1993). One index that is perhaps more attractive
than the others is the RMSEA (root mean-squared error approximation), which is an estimate of �t of
the model relative to a saturated model in the population, and is computed as

RMSEA =

s
max

�
F

df
� 1

N � 1 ; 0
�

Here, F is the minimized �tting criterion, from equation (3). Small values of the RMSEA indicate
that the model �ts nearly as well as a saturated model; RMSEA � 0:05 is generally taken as a good
�t to the data. It is possible, moreover, to compute a con�dence interval for the RMSEA. Note that
the RMSEA for the peer-in�uences model is a bit smaller than 0:05.

� In contrast with ad-hoc �t indices, the Bayesian information criterion (BIC ) has a sound statistical
basis (see Raftery, 1993). The BIC adjusts the likelihood-ratio chi-square statistic L2 for the number
of parameters in the model, the number of observed variables, and the sample size:

BIC = L2 � df� loge nN

Negative values of BIC indicate a model that has greater support from the data than the just-identi�ed
model, for which BIC is 0. Di¤erences in BIC may be used to compare alternative over-identi�ed
models; indeed, the BIC is used in a variety of contexts for model selection, not just in structural-
equation modeling. Raftery suggests that a BIC di¤erence of 5 is indicative of �strong evidence�that
one model is superior to another, while a di¤erence of 10 is indicative of �conclusive evidence.�

� The sem library provides several methods for calculating residual covariances, which compare the
observed and model-implied covariance matrices, S and C: Enter help(residuals.sem) for details.
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The summary method for sem objects prints summary statistics for the distribution of the normalized
residual covariances, which are de�ned as

sij � cijr
ciicjj + c

2
ij

N

All of the structural coe¢ cients in the peer-in�uences model are statistically signi�cant, except for the
coe¢ cients linking each boy�s general aspiration to the other boy�s family socioeconomic status (SES).16

To illustrate setting parameter-equality constraints, I take advantage of the symmetry of the model to
specify that all coe¢ cients and error covariances in the top half of the path diagram (Figure 2) are the same
as the corresponding parameters in the lower half.17 These constraints are plausible in light of the parameter
estimates in the initial model, since corresponding estimates have similar values. The equality constraints
are imposed as follows:

> ram.dhp.1 <- matrix(c(
+ �RParAsp -> RGenAsp�, �gam1�, NA,
+ �RIQ -> RGenAsp�, �gam2�, NA,
+ �RSES -> RGenAsp�, �gam3�, NA,
+ �FSES -> RGenAsp�, �gam4�, NA,
+ �RSES -> FGenAsp�, �gam4�, NA,
+ �FSES -> FGenAsp�, �gam3�, NA,
+ �FIQ -> FGenAsp�, �gam2�, NA,
+ �FParAsp -> FGenAsp�, �gam1�, NA,
+ �FGenAsp -> RGenAsp�, �bet�, NA,
+ �RGenAsp -> FGenAsp�, �bet�, NA,
+ �RGenAsp -> ROccAsp�, NA, 1,
+ �RGenAsp -> REdAsp�, �lamy�, NA,
+ �FGenAsp -> FOccAsp�, NA, 1,
+ �FGenAsp -> FEdAsp�, �lamy�, NA,
+ �RGenAsp <-> RGenAsp�, �psi�, NA,
+ �FGenAsp <-> FGenAsp�, �psi�, NA,
+ �RGenAsp <-> FGenAsp�, �psi12�, NA,
+ �ROccAsp <-> ROccAsp�, �theps1�, NA,
+ �REdAsp <-> REdAsp�, �theps2�, NA,
+ �FOccAsp <-> FOccAsp�, �theps1�, NA,
+ �FEdAsp <-> FEdAsp�, �theps2�, NA),
+ ncol=3, byrow=T)

> sem.dhp.1 <- sem(ram.dhp.1, R.dhp, N=329,
+ fixed.x=c(�RParAsp�, �RIQ�, �RSES�, �FSES�, �FIQ�, �FParAsp�))

> summary(sem.dhp.1)

Model Chisquare = 32.647 Df = 24 Pr(>Chisq) = 0.11175
Goodness-of-fit index = 0.98046
Adjusted goodness-of-fit index = 0.95522
RMSEA index = 0.033143 90% CI: (0, 0.059373)
BIC = -161.72

Normalized Residuals
16The path from friend�s to respondent�s general aspiration is statistically signi�cant by a one-sided test, which is appropriate

here since the coe¢ cient was expected to be positive.
17Although this speci�cation makes some sense, the data are not entirely symmetric: Boys nominated their best friends, but

this selection was not necessarily reciprocated.

17



Min. 1st Qu. Median Mean 3rd Qu. Max.
-8.78e-01 -2.05e-01 -5.00e-16 -1.67e-02 1.11e-01 1.04e+00

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

gam1 0.157091 0.028245 5.56177 2.6706e-08 RGenAsp <--- RParAsp
gam2 0.301742 0.032209 9.36812 0.0000e+00 RGenAsp <--- RIQ
gam3 0.221045 0.031698 6.97343 3.0931e-12 RGenAsp <--- RSES
gam4 0.072805 0.036474 1.99609 4.5924e-02 RGenAsp <--- FSES
bet 0.204964 0.076903 2.66523 7.6935e-03 RGenAsp <--- FGenAsp
lamy 0.988764 0.054581 18.11561 0.0000e+00 REdAsp <--- RGenAsp
psi 0.274828 0.033013 8.32493 0.0000e+00 RGenAsp <--> RGenAsp
psi12 -0.014079 0.051365 -0.27410 7.8400e-01 FGenAsp <--> RGenAsp
theps1 0.360262 0.033593 10.72421 0.0000e+00 ROccAsp <--> ROccAsp
theps2 0.374557 0.033586 11.15227 0.0000e+00 REdAsp <--> REdAsp

Iterations = 24

Because pairs of parameters are constrained to be equal, this model has fewer free parameters, and
correspondingly more degrees of freedom, than the original model. We can perform a likelihood-ratio test
for the parameter constraints by taking di¤erences in the model chi-square statistics and degrees of freedom:

L2 = 32:647� 26:697 = 5:950
df = 24� 15 = 9
p = :74

Thus, the data appear to be consistent with the parameter constraints. Moreover, the more parsimonious
constrained model has a much smaller BIC than the original model, and the constrained model has a non-
signi�cant over-identi�cation test; the RMSEA has also improved.
So-called modi�cation indices are test statistics for �xed and constrained parameters in a structural

equation model. If, for example, a parameter is incorrectly constrained to 0, then the test statistic for
this parameter should be large. Most commonly, modi�cation indices are score statistics. The version
implemented in the mod.indices function in the sem library is based on the likelihood-ratio statistic, re�tting
the model freeing each parameter in turn (but �xing all other parameters to their current values).
Applying mod.indices to the respeci�ed peer-in�uences model produces the following result:

> mod.indices(sem.dhp.1)

Approximations based on at most 10 iterations

5 largest modification indices, A matrix:
ROccAsp:FEdAsp FEdAsp:ROccAsp ROccAsp:RSES FOccAsp:ROccAsp

3.7681 3.6722 2.7206 2.6006
FOccAsp:FParAsp

2.2302

5 largest modification indices, P matrix:
FEdAsp:ROccAsp FOccAsp:ROccAsp FEdAsp:REdAsp RSES:REdAsp

10.2407 8.7318 3.3861 3.3800
RSES:ROccAsp

3.2438

The mod.indices function returns an object of class "sem.modind"; the print method for objects of this
class reports the largest modi�cation indices for parameters in the A and P matrices of the RAM model.
These are chi-square statistics, each on one degree of freedom. Because they are based on one-dimensional
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optimizations, the modi�cation indices tend to understate the improvement in the �t of the model: If the
model were re�t to the data, the values of other free parameters could change as well. There is also a problem
of simultaneous inference in examining the largest of many test statistics. Nevertheless, the modi�cation
indices can suggest improvements to an ill-�tting model. The summary method for sem.modind objects
prints the full matrices of modi�cation indices, along with estimated changes in the parameter estimates
upon freeing individual parameters.
Although the respeci�ed peer-in�uences model �ts quite well, I pursue the modi�cation indices for the pur-

pose of illustration. None of the modi�cation indices for coe¢ cients in A is very large, but there are a couple
of moderately large modi�cation indices for the covariances in P. Both of these involve measurement-error
covariances between indicators of general aspirations for the respondent and for the best friend. Correlated
measurement errors between friend�s educational aspiration and respondent�s occupational aspiration (the
covariance with the largest modi�cation index) does not seem substantively compelling, but correlated er-
rors between the two indicators of occupational aspirations (corresponding to the second-largest modi�cation
index) makes more sense.
Respecifying the model to accomodate the error correlation for the two educational-aspiration indicators

yields a substantial decrease in the chi-square statistic for the model (about 10 � as expected, slightly larger
than the modi�cation index), a small decrease in the BIC, and an RMSEA of 0:

> ram.dhp.2 <- matrix(c(
+ �RParAsp -> RGenAsp�, �gam1�, NA,
+ �RIQ -> RGenAsp�, �gam2�, NA,
+ �RSES -> RGenAsp�, �gam3�, NA,
+ �FSES -> RGenAsp�, �gam4�, NA,
+ �RSES -> FGenAsp�, �gam4�, NA,
+ �FSES -> FGenAsp�, �gam3�, NA,
+ �FIQ -> FGenAsp�, �gam2�, NA,
+ �FParAsp -> FGenAsp�, �gam1�, NA,
+ �FGenAsp -> RGenAsp�, �bet�, NA,
+ �RGenAsp -> FGenAsp�, �bet�, NA,
+ �RGenAsp -> ROccAsp�, NA, 1,
+ �RGenAsp -> REdAsp�, �lamy�, NA,
+ �FGenAsp -> FOccAsp�, NA, 1,
+ �FGenAsp -> FEdAsp�, �lamy�, NA,
+ �RGenAsp <-> RGenAsp�, �psi�, NA,
+ �FGenAsp <-> FGenAsp�, �psi�, NA,
+ �RGenAsp <-> FGenAsp�, �psi12�, NA,
+ �ROccAsp <-> ROccAsp�, �theps1�, NA,
+ �REdAsp <-> REdAsp�, �theps2�, NA,
+ �FOccAsp <-> FOccAsp�, �theps1�, NA,
+ �FEdAsp <-> FEdAsp�, �theps2�, NA,
+ �FOccAsp <-> ROccAsp�, �theps24�, NA),
+ ncol=3, byrow=T)

> sem.dhp.2 <- sem(ram.dhp.2, R.dhp, N=329,
+ fixed.x=c(�RParAsp�, �RIQ�, �RSES�, �FSES�, �FIQ�, �FParAsp�))

> summary(sem.dhp.2)

Model Chisquare = 22.466 Df = 23 Pr(>Chisq) = 0.49228
Goodness-of-fit index = 0.98643
Adjusted goodness-of-fit index = 0.96755
RMSEA index = 0 90% CI: (0, 0.044199)
BIC = -163.80
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Normalized Residuals
Min. 1st Qu. Median Mean 3rd Qu. Max.

-9.92e-01 -1.16e-01 6.29e-17 -2.46e-02 1.98e-01 6.77e-01

Parameter Estimates
Estimate Std Error z value Pr(>|z|)

gam1 0.160708 0.028662 5.60697 2.0590e-08 RGenAsp <--- RParAsp
gam2 0.307236 0.032455 9.46665 0.0000e+00 RGenAsp <--- RIQ
gam3 0.226074 0.032125 7.03732 1.9598e-12 RGenAsp <--- RSES
gam4 0.072527 0.037053 1.95738 5.0303e-02 RGenAsp <--- FSES
bet 0.204355 0.076737 2.66305 7.7435e-03 RGenAsp <--- FGenAsp
lamy 0.954089 0.051219 18.62761 0.0000e+00 REdAsp <--- RGenAsp
psi 0.278505 0.034585 8.05265 8.8818e-16 RGenAsp <--> RGenAsp
psi12 0.014493 0.054274 0.26703 7.8944e-01 FGenAsp <--> RGenAsp
theps1 0.337138 0.034399 9.80072 0.0000e+00 ROccAsp <--> ROccAsp
theps2 0.391574 0.034328 11.40669 0.0000e+00 REdAsp <--> REdAsp
theps24 -0.098785 0.031363 -3.14979 1.6339e-03 ROccAsp <--> FOccAsp

Iterations = 26
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