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Testing Assumptions: Normality and Equal Variances 
 
So far we have been dealing with parametric hypothesis tests, mainly the different versions of the 
t-test.  As such, our statistics have been based on comparing means in order to calculate some 
measure of significance based on a stated null hypothesis and confidence level.  But is it always 
correct to compare means? No, of course not; parametric statistics, by definition, assume that the 
data we want to test are normally distributed, hence the use of the mean as the measure of central 
tendency.  Sample data sets are often skewed to the right for various reasons, and if we cannot 
normalize the data we should not compare means (more on normalizing data sets later).  In other 
words, in order to be consistent we need to formally test our assumptions of normality.  Luckily 
this is very easy in MINITAB. 
 
For example, say we have a sample of fifty (n = 50) excavated units and we are interested in the 
artifact density per unit.  Before we think about comparing the data set to another sample (for 
example) we need to see if the data is normal.  To do this we run our descriptive statistics as 
usual and produce some graphics: 
 
 

Descriptive Statistics 
 
Variable        N     Mean   Median  Tr Mean    StDev  SE Mean 
C1             50    6.702    5.679    6.099    5.825    0.824 
 
Variable      Min      Max       Q1       Q3 
C1          0.039   25.681    2.374    9.886 
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Histogram of C1, with Normal Curve

 
 

In this case we see that the data set is skewed to the right, and looks more like an exponential 
distribution than a normal distribution.  To test formally for normality we use either an 
Anderson-Darling or a Shapiro-Wilk test.  The way these tests work is by generating a normal 
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probability plot (sometimes called a rankit plot) based on what a normally distributed data set of 
a given sample size should look like.  They then test the correlation between the predicted 
normal data with the actual data.  This correlation coefficient has some critical value based on 
the degrees of freedom (or sample size) of the data set so that we can compare our coefficient to 
the critical value as in all the other tests.  However, MINITAB gives us a p value with both tests, 
and so we can automatically compare this value to our stated alpha level without having to 
bother looking up values in a table. 
 
Here is the Anderson-Darling output for our data set: 
 

P-Value:   0.000
A-Squared: 1.676

Anderson-Darling Normality Test

N: 50
StDev: 5.82523
Average: 6.70196
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We are primarily concerned with the p value in the bottom right corner of the graph, which in 
our case is p = 0.000.  The null hypothesis (as usual) states that there is no difference between 
our data and the generated normal data, so that we would reject the null hypothesis as the p value 
is less than any stated alpha level we might want to choose; the data is highly non-normal and we 
should not use parametric statistics on the raw data of excavated units.  The straight line on the 
graph is the null hypothesis of normality, so that we want our data to be as close to that line as 
possible in order to assume normality.  The p value tells us whether our data are significantly 
different from this line or not.  The Shapiro-Wilk test produces the same graph using a slightly 
different test statistic, but is equally as valid. 
 
In MINITAB there are two ways of conducting a normality test.  The normal probability plot is 
generated by the following procedure: 
 
 
>STATS 



Hypothesis Testing: Checking Assumptions 3

 >BASIC STATISTICS 

  >NORMALITY TEST 

   >Put your data column in the VARIABLE BOX (leave the reference 

box empty) 

    >Choose ANDERSON-DARLING or RYAN-JOINER (same as 

Shapiro-Wilk) 

     >OK 

 

 
The other way is to choose the GRAPHICAL SUMMARY output option under the GRAPHICS 
for the DESCRIPTIVE STATISTICS: This output includes an Anderson-Darling test for 
normality at the top on the left. 
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Descriptive Statistics
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Equal Variances: The F-test 
 
The different options of the t-test revolve around the assumption of equal variances or unequal 
variances.  We have learned that we can usually eye-ball the data and make our assumption, but 
there is a formal way of going about testing for equal variances; the F-test.  The F-test is not only 
used for t-tests, but for any occasion when you are interested comparing the variation in two data 
sets.  As usual, the test calculates an FSTAT that is compared to a FCRIT in a statistical table, which 
can then be turned into a p value.  The F-test is very easy. 
 

FSTAT  =  larger sample variance   
                 smaller sample variance 

 
Of course, what is going on here is that if the sample variances are equal, the ratio of their 
differences should be around 1.  The test calculates whether the sample variances are close 
enough to 1, given their respective degrees of freedom. 
 
For example, say we had two samples: n1 = 25, s1 = 13.2, and n2 = 36, s2 = 15.3.  Remember the 
ratio is the variance not the standard deviation, so 
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The degrees of freedom are v2 = 36 – 1 = 35 and v1 = 25 – 1 = 24 for the larger and smaller 
variances respectively.  In an F table we would look for the column v for the larger sample 
variance (v2 = 35) along the top of the table, and the row relating to the smaller variance (v1 = 
24).  In our case, we are not given all the exact degrees of freedom so we assume our critical 
value is less than the next highest value give, which would be FCRIT = 1.79.  As our FSTAT < FCRIT 
we can assume the sample variances are equal.  Notice that we cannot calculate a p value from 
the table. 
 
MINITAB does not do F-tests, but EXCEL does. 
 
The formula is  =FTEST(array1, array2), so  =FTEST(Xi:Xj, Yi:Yj),  and EXCEL will return a p 
value, which you can then compare to an alpha level of your choosing. 
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