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Preface

Hypothesis testing in the life sciences often involves comparing samples

of observations, and analysis of variance is a core technique for analysing

such information. Parametric analysis of variance, abbreviated as

‘ANOVA’, encompasses a generic methodology for identifying sources of

variation in continuous data, from the simplest test of trend in a single

sample, or difference between two samples, to complex tests of multiple

interacting effects. Whilst simple one-factor models may suffice for

closely controlled experiments, the inherent complexities of the natural

world mean that rigorous tests of causality often require more sophisti-

cated multi-factor models. In many cases, the same hypothesis can be

tested using several different experimental designs, and alternative

designs must be evaluated to select a robust and efficient model. Text-

books on statistics are available to explain the principles of ANOVA and

statistics packages will compute the analyses. The purpose of this book

is to bridge between the texts and the packages by presenting a com-

prehensive selection of ANOVA models, emphasising the strengths

and weaknesses of each and allowing readers to compare between

alternatives.

Our motivation for writing the book comes from a desire for a more

systematic comparison than is available in textbooks, and a more con-

sidered framework for constructing tests than is possible with generic

software. The obvious utility of computer packages for automating

otherwise cumbersome analyses has a downside in their uncritical pro-

duction of results. Packages adopt default options until instructed

otherwise, which will not suit all types of data. Numerous problems can

arise from incautious use of any statistics package, be it of the simplest or
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the most sophisticated type. In this book we will anticipate all of the

following common issues:

� Wrong model or insufficient terms requested for the desired hypothesis

(page 2 onwards);

� Wrong error terms calculated by default or wrongly requested (page 2

onwards);

� Data unsuitable for analysis of variance (page 14);

� Unwise pooling of error terms by default or design (page 38);

� Default analysis of effects that have no logical test (e.g., several designs

in Chapter 7);

� In unbalanced designs, inappropriate default adjustment to variance

estimates (page 237);

� Inmixedmodels, undesireddefault useof anunrestrictedmodel (page242);

� Inappropriate application of analysis of variance (page 250).

Armed with precise knowledge of the structure of a desired analysis,
the user can evaluate outputs from a statistics package and correct
inconsistencies or finish the analysis by hand. The main chapters of this
book are designed to provide the relevant information in a clearly
accessible format. They are preceded by an introduction to analysis of
variance that provides the context of experimental design, and followed
by further topics that treat issues arising out of design choices.

Scope and approach

Whilst there is no computational limit to the complexity of ANOVA
models, in practice, designs with more than three treatment factors are
complicated to analyse and difficult to interpret. We therefore describe all
common models with up to three treatment factors for seven principal
classes of ANOVA design:

1 One-factor – replicate measures at each level of a single explanatory

factor;

2 Nested – one factor nested in one or more other factors;

3 Factorial – fully replicated measures on two or more crossed factors;

4 Randomised blocks – repeated measures on spatial or temporal

groups of sampling units;

5 Split plot – treatments applied at multiple spatial or temporal scales;

6 Repeated measures – subjects repeatedly measured or tested over time;

7 Unreplicated factorial – a single measure per combination of two or

more factors.
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For each class of ANOVA, we describe its particular applications,

highlight its strengths and weaknesses, and draw comparisons with other

classes. We then present a series of models covering all reasonable

combinations of fixed and random factors. For each model we provide

the following information:

� The model equation and its associated test hypothesis;

� A table illustrating the allocation of factor levels to sampling units;

� Illustrative examples of applications;

� Any special assumptions and guidance on analysis and interpretation;

� Full analysis of variance tables.

A systematic approach, with consistent layout and notation, makes it

easy for readers to evaluate alternative models and to identify which type

of model best fits the themes they are investigating.

Examples bring statistics to life as they show how particular models

can be applied to answer real-life questions. Throughout the book we

develop a series of examples to illustrate the similarities and differences

between different ANOVA models. More detailed worked examples are

also given to illustrate how the choice of model follows logically from the

design of the experiment and determines the inferences that can be drawn

from the results.

A multitude of statistics packages are available on the market and it is

beyond the scope of this book to describe the analysis of ANOVA models

in each. Rather, we encourage readers to become familiar with the

approach taken by their favourite package, and to interpret its outputs with

the help of the tables in the book and the sample datasets on our website.

How to use this book

The book is a reference tool to help experimental and field biologists

define their hypotheses, design an appropriate experiment or mensurative

study, translate it into a statistical model, analyse the data and validate

the resulting output. As such, it is intended to be a companion

throughout the scientific process. At the planning stage, the documented

tables allow users to make informed choices about the design of experi-

ments or fieldwork, with particular regard to the need for replication and

the different scales of replication across space or over time. Different

designs are directly comparable, facilitating the task of balancing costs of

replication against benefits of predictive power and generality. At the

analysis stage, the book shows how to construct ANOVA models with

Preface xi



the correct F-ratios for testing the hypotheses, gives options for post hoc

pooling of error terms, and highlights the assumptions underlying the

predictions. Finally, by appreciating the methods used by computer

packages to perform ANOVAs, users can check that their input model is

appropriately structured and correctly formatted for the desired

hypothesis, can verify that the output has tested the intended hypothesis

with the correct error degrees of freedom, and can draw appropriate

conclusions from the results.

Who should use this book?

The book is aimed at researchers of post-graduate level and above who

are planning experiments or fieldwork in the life sciences and preparing to

ask questions of their data. We assume that readers are familiar with the

basic concepts of statistics covered by introductory textbooks (e.g.,

Dytham 2003; Ruxton and Colegrave 2003; McKillup 2006, amongst

many). Numerous very readable texts already exist to explain the theory

and mechanics underpinning analysis of variance (e.g., Kirk 1994;

Underwood 1997; Crawley 2002; Grafen and Hails 2002; Quinn and

Keough 2002), and we recommend that readers consult such texts in

addition to this book. We expect the users of this book to analyse their

data with a statistics package suitable for analysis of variance, and we

assume that they will employ its tutorial and help routines sufficiently to

understand its input commands and output tables.

Companion website

The book is supported by a website at www.soton.ac.uk/�cpd/anovas,

which provides additional tools to help readers analyse and interpret the

ANOVA models presented here. The website includes:

� Analyses of example datasets. The analyses illustrate how the raw data

translate into tested hypotheses for each of the ANOVA models in this

book. Datasets can be freely downloaded to verify the output from the

reader’s own statistics package.

� Model selection and comparison tools. A dichotomous key to the main

classes of ANOVA model is provided to help readers select the right

kind of ANOVA design for their needs, and a hyperlinked summary of

all the ANOVA models in the book is presented to facilitate the

comparison of alternative models.
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Introduction to analysis of variance

What is analysis of variance?

Analysis of variance, often abbreviated to ANOVA, is a powerful statistic

and a core technique for testing causality in biological data. Researchers

use ANOVA to explain variation in the magnitude of a response variable

of interest. For example, an investigator might be interested in the sources

of variation in patients’ blood cholesterol level, measured in mg/dL.

Factors that are hypothesised to contribute to variation in the response

may be categorical or continuous. A categorical factor has levels – the

categories – that are each applied to a different group of sampling units.

For example, sampling units of hospital patients may be classified as male

or female, representing two levels of the factor ‘Gender’. By contrast, a

continuous factor has a continuous scale of values and is therefore

a covariate of the response. For example, age of patients may be quantified

by the covariate ‘Age’. ANOVA determines the influence of these effects

on the response by testing whether the response differs among levels of the

factor, or displays a trend across values of the covariate. Thus, blood

cholesterol level of patients may be deemed to differ among male and

female patients, or to increase or decrease with age of the patient.

A factor of interest can be experimental, with sampling units that are

manipulated to impose contrasting treatments. For example, patients

may be given a cholesterol-lowering drug or a placebo, which represent

two levels of the factor ‘Drug’. Alternatively, the factor can be men-

surative, with sampling units that are grouped according to some pre-

existing difference. For example, patients may be classified as vegetarians

or non-vegetarians, which represent two levels of the factor ‘Diet’.

Biologists use ANOVA for two main purposes: prediction and explana-

tion. In predictive studies, ANOVA functions as an exploratory tool to find
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the best fitting set of response predictors. From a full model of all possible

sources of variation in the response, procedures ofmodel simplification allow

the investigator to discard unimportant factors and so develop a model with

maximum predictive power. This application of ANOVA is just one of many

forms of exploratory analyses now available in standard statistics packages.

ANOVA really comes into its own when it is used for hypothesis testing. In

this case, the primary goal is to explain variation in a response by distin-

guishing a hypothesised effect, or combination of effects, from a null

hypothesis ofnoeffect.Any suchtestofhypothesisedeffectsona responsehas

an analytical structure that is fixed by the design of data collection. Although

this book provides some guidance onmodel simplification, its principal focus

is on the hypothesis-testing applications ofANOVA in studies that have been

designed to explain sources of variation in a response. More exploratory

studies concerned with parameter estimation may be better suited to max-

imum likelihood techniques of generalised linear modelling (GLIM) and

Bayesian inference, which lie beyond the scope of the book.

The great strength of ANOVA lies in its capacity to distinguish effects

on a response from amongst many different sources of variation compared

simultaneously, or in certain cases through time. It can identify interacting

factors, and it can measure the scale of variation within a hierarchy of

effects. This versatility makes it a potentially powerful tool for answering

questions about causality. Of course tools can be dangerous if mishandled,

and ANOVA is no exception. Researchers will not go astray provided they

adhere to the principle of designing parsimonious models for hypothesis

testing. A parsimonious design is one that samples the minimum number

of factors necessary to answer the question of interest, and records suffi-

cient observations to estimate all potential sources of variance amongst

those chosen few factors. As you use this book, you will become aware that

the most appropriate models for answering questions of interest often

include nuisance variables. They need measuring too, even if only to factor

them out from the effects of interest. One of the biggest challenges of

experimental design, and best rewards when you get it right, is to identify

and fairly represent all sources of variation in the data. True to the playful

nature of scientific enquiry, this calls for building a model.

How to read and write statistical models

A statistical model describes the structure of an analysis of variance.

ANOVA is a very versatile technique that can have many different
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structures, and each is described by a different model. Here we introduce

the concept of a statistical model, and some of the terminology used to

describe model components. The meanings of terms will be further

developed in later sections, and all of the most important terms are

defined in a Glossary on page 271.

Analysis of variance estimates the effect of a categorical factor by

testing for a difference between its category means in some continuous

response variable of interest. For example, it might be used to test the

response of crop yield to high and low sowing density. Data on yield will

provide useful evidence of an effect of density if each level of density is

sampled with a representative group of independent measures, and the

variation in yield between samples can be attributed solely to sowing

density. The test can then calibrate the between-sample variation against

the residual and unmeasured within-sample variation. A relatively high

between-sample variation provides evidence of the samples belonging to

different populations, and therefore of the factor explaining or predicting

variation in the response. The analysis has then tested a statistical model:

Y ¼ Aþ e

We read this one-factor model as: ‘Variation in the response variable [Y] is

explained by [¼] variation between levels of a factor [A] in addition to [þ]

residual variation [e]’. This is the test hypothesis, H1, which is evaluated

against a mutually exclusive null hypothesis, H0: Y¼ e.
The evidence for an effect of factor A on variation in Y is determined by

testing H0 with a statistic, which is a random variable described by a

probability distribution. Analysis of variance uses the F statistic to com-

pute the probability P of an effect at least as big as that observed arising by

chance from a true null hypothesis. The null hypothesis is rejected and the

factor deemed to have a significant effect if P is less than some pre-

determined threshold a, often set at 0.05. This is known as the Type I error

rate for the test, and a¼ 0.05 means that we sanction 5% of such tests

yielding false positive reports as a result of rejecting a true null hypothesis.

The analysis has a complementary probability b of accepting a false null

hypothesis, known as the Type II error rate. The value of b gives the rate of

false negative reports, and a lower rate signifies a test with more power to

distinguish true effects. We will expand on these important issues in later

sections (e.g., pages 13 and 248); for the purposes of model building, it

suffices to think of the factor A as having a significant effect if P< 0.05.

Analysis of variance can also estimate the effect of a continuous factor.

This is done by testing for a trend in the response across values of the
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covariate factor. The analysis is now referred to as regression. For

example, one might wish to test the response of crop yield to sowing

density measured on a continuous scale of seeds/m2. A single sample of

independent measurements of yield over a range of sowing densities

allows the effect of sowing density to be tested with a statistical model

having the same structure as the one for the categorical factor:

Y ¼ Aþ e

We read this simple linear regression model as: ‘Variation in the response

variable [Y] is explained by [¼] variation in a covariate [A] in addition to

[þ] residual variation [e]’. The process of distinguishing between the test

hypothesis and a null hypothesis of no effect is exactly the same for the

covariate as for the categorical factor. The null hypothesis is rejected and

the covariate deemed to cause a significant linear trend if P< a.
Users of statistics employ a variety of terminologies to describe the

same thing. One-factor designs may be referred to as one-way designs.

The response may be referred to as the data or dependent variable; each

hypothesised effect may be referred to as a factor, predictor or treatment,

or independent or explanatory variable; categories of a factor may be

referred to as levels, samples or treatments; and the observations or

measures within a sample as data points, variates or scores. Each obser-

vation is made on a different sampling unit which may take the form of an

individual subject or plot of land, or be one of several repeated measures

on the same subject or block of land. The residual variation may be

referred to as the unexplained or error variation. The precise meanings of

these terms will become apparent with use of different models, for some

of which residual and error variation are the same thing and others not,

and so on. A summary of the standard notation for this book can be

found on page 44, and further clarification of important distinctions is

provided by the Glossary on page 271.

The full versatility of ANOVA becomes apparent when we wish to

expand the model to accommodate two or more factors, either catego-

rical or continuous or both. For example, an irrigation treatment may be

applied to a sample of five maize fields and compared to a control sample

of five non-irrigated fields. Yield is measured from a sample of three

randomly distributed plots within each field. Thus, in addition to dif-

ferences between plots that are the result of the irrigation treatments,

plots may differ between fields within the same treatment (due to

uncontrolled variables). This design has an Irrigation factor A with two

levels: treatment and control, and a Field factor B with five levels per
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level of A. Factor B is nested in A, because each field belongs to only one

level of A. This two-factor nested model is written as:

Y ¼ Aþ B0ðAÞ þ e

The model equation is read as: ‘Variation in growth rate [Y] is explained

by [¼] variation between treatment and control fields [A], and [þ] var-

iation between fields nested within each treatment level [B0(A)], in addi-

tion to [þ] residual variation between plots within each field [e]’. This
model has two test hypotheses: one for each factor. At the cost of greater

design complexity, we are now able to test the region-wide applicability of

irrigation, given by the A effect, even in the presence of natural variation

between fields, given by the B0(A) effect.

The site factor B0 is conventionally written as B-prime in order to

identify it as a random factor, meaning that each treatment level is

assigned to a random sample of fields. Factor A is without prime, thereby

identifying it as a fixed factor, with levels that are fixed by the investigator –

in this example, as the two levels of treatment and control. We will return

again to fixed and random factors in a later section (page 16), because

the distinction between them underpins the logic of ANOVA. A nested

model such as the one above may be presented in the abbreviated form:

‘Y¼B0(A)þ e’, which implies testing for the main effect A as well as B0(A).

Likewise, the abbreviated description: Y¼C0(B0(A))þ e implies testing for

A and B0(A) as well as C0(B0(A)).

As an alternative or a supplement to nesting, we use designs with

crossed factors when we wish to test independent but simultaneous

sources of variation that may have additive or multiplicative effects. For

example, seedlings may be treated simultaneously with different levels of

both a watering regime (A) and a sowing density (B). This is a factorial

model if each level of each factor is tested in combination with each level

of the other. It is written as:

Y ¼ Aþ Bþ B*Aþ e

The model equation is read as: ‘Variation in growth rate [Y] is explained

by [¼] variation in watering [A], and independently [þ] by variation in

sowing density [B], and also [þ] by an inter-dependent effect [B*A], in

addition to [þ] residual within-sample variation [e]’. This model has three

test hypotheses: one for each factor and one for the interaction between

them. We are now able to test whether A and B act on the response as

independent main effects A and B additively, or whether the effect of each

factor on Y depends on the other factor in an interaction B*A. An
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interaction means that the effects of A are not the same at all levels of B,

and conversely the effects of B differ according to the level of A. This

factorial model can be written in abbreviated form: ‘Y¼B|Aþ e’, where
the vertical separator abbreviates for ‘all main effects and interactions of

the factors’. Likewise, the description of a three-factor model as: Y¼
C|B|Aþ e abbreviates for all three main effects and all three two-way

interactions and the three-way interaction:

Y ¼ Aþ Bþ B*A þ Cþ C*Aþ C*Bþ C*B*Aþ e

For any ANOVA with more than one factor, the terms in the model must

be entered in a logical order of main effects preceding their nested effects

and interactions, and lower-order interactions preceding higher-order

interactions. This logical ordering permits the analysis to account for

independent components in hierarchical sequence.

This book will describe all the combinations of one, two and three

factors, whether nested in each other or crossed with each other. For

example, the above cross-factored and nested models may be combined

to give either model 3.3 on page 98: Y¼C|B(A)þ e, which is also described

with an example on page 51, or model 3.4 on page 109: Y¼C(B|A)þ e.
Throughout, we emphasise the need to identify the correct statistical

model at the stage of designing data collection. It is possible, and indeed

all too easy, to collect whatever data you can wherever you can get it, and

then to let a statistical package find the model for you at the analysis

stage. If you operate in this way, then you will have no need for this

book, but the analyses will certainly lead you to draw unconvincing or

wrong inferences. Effective science, whether experimental or mensurative,

depends on you thinking about the statistical model when designing

your study.

What is an ANOVA model?

Any statistical test of pattern requires a model against which to test

the null hypothesis of no pattern. Models for ANOVA take the form:

Response¼Factor(s)þ e, where the response refers to the data that

require explaining, the factor or factors are the putative explanatory

variables contributing to the observed pattern of variation in the

response, and e is the residual variation in the response left

unexplained by the factor(s). For each of the ANOVA designs that

we describe in Chapters 1 to 7, we express its underlying model in

three ways to highlight different features of its structure. For
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exampl e, the two-factor nested mod el intro duced above is descri bed

by its:

� Full model, packe d up into a singl e exp ression: Y ¼ B0 (A) þ e ;
� Hier archic al nesting of sampling units in fact ors: S0 (B 0 (A));

� Testable terms f or analysis, unpacked from the f ull m odel:

A þ B(A).

A statistics package will requir e yo u to specif y the ANOV A model

desir ed for a given datase t. You wi ll ne ed to declar e whi ch column

contai ns the response variab le Y, which column( s) con tain the

explanat ory v ariable(s ) to be tested , any nesting or cross facto ring

of multiple factors (thes e are the ‘tes table term s’ abo ve), whet her any

of the facto rs are ran dom (further de tailed on page 16) and whet her

any are cova riates of the respon se (page 29). On page 259, we

descri be a typic al datase t struc ture and associ ate it with various

models.

In the event that the analysis indicates a real effect, this outcome

can be described succinctly (detailed on page 260) and illustrated with

a g raph. Figure 1(a) shows a typical illustrati on of differen ces

between group means for a model Y¼Aþ e, with three levels of A.

The significance of the pattern is evident in the large differences

between the three means relative to the residual variation around the

means. A non-significant effect of factor A would result from larger

sample variances, or sample means all taking similar values.

General principles of ANOVA

Analysis of variance tests an effect of interest on a response variable of

interest by analysing how much of the total variation in the response can

be explained by the effect. Differences among sampling units may arise

from one or more measured factors making up the effect(s) of interest,

but it will certainly also arise from other sources of unmeasured varia-

tion. Estimating the significance of a hypothesised effect on the response

requires taking measurements from more than one sampling unit in each

level of a categorical factor, or across several values of a covariate. The

sampling units must each provide independent information from a ran-

dom sample of the factor level or covariate value, in order to quantify the

underlying unmeasured variation. This random variation can then be

used to calibrate the variation explained by the factor of interest.
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For example, we can use ANOVA to test whether gender contributes

significantly to explaining variation in birth weights of babies. To assess the

effect of gender as a factor in the birth-weight response, it makes sense to

weigh one sample of male babies and another of female babies, with each

baby picked at random from within the population of interest (perhaps a

geographical region or an ethnic group). These babies serve as the replicate

sampling units in each of the two levels (male and female) of the factor

gender. The babies must be chosen at random from the defined population

to avoid introducing any bias that might reinforce a preconceived notion,

for example by selecting heavier males and lighter females. They should also

contribute independent information to the analysis, so twins should be

avoided where the weight of one provides information about the weight of

the other. The ANOVA on these samples of independent and random

replicates will indicate a significant effect of gender if the average difference

in weight between the male and female samples is large compared to the

variation in weight within each sample.

ANOVA works on the simple and logical principle of partitioning

variation in a continuous response Y into explained and unexplained

components, and evaluating the effect of a particular factor as the ratio

between the two components. The method of partitioning explained from

unexplained variation differs slightly depending on whether the ANOVA

is used to compare the response among levels of a categorical factor or to

analyse a relationship between the response and a covariate. We will treat

these two methods in turn.

Analysis of variance on a categorical factor tests for a difference in

average response among factor levels. The total variation in the response is

given by the sum of all observations, measured as their squared deviations

from the response grand mean ��y. This quantity is called the total sum of

squares, SStotal (Figure 1). The use of squared deviations then allows this

total variation to be partitioned into two sources. The variation explained

by the factor is given by the sum of squared deviations of each group mean

y�i from the grand mean ��y, weighted by the n values per group (where

subscript i refers to the i-th level of the factor). This quantity is called the

explained sum of squares, SSexplained. The residual variation left unex-

plained by themodel is given by the sum of squared deviations of each data

point yij from its own group mean y�i (where subscript ij refers to the jth

observation in the i-th factor level). This quantity SSresidual is variously

referred to as the residual, error, or unexplained sum of squares.

Each sum of squares (SS) has a certain number of degrees of freedom

(d.f.) associated with it. These are the number of independent pieces of
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information required to measure the component of variation, subtracted

from the total number of pieces contributing to that variation. The total

variation always has degrees of freedom that equal one less than the total

number of data points, because it uses just the grand mean to calculate

variation among all the data points. A one-factor model with n obser-

vations in each of a groups has a� 1 d.f. for the explained component

of variation, because we require one grand mean to measure between-

group variation among the a means; it has na� a¼ (n� 1)a d.f. for the

residual component, because we require a group means to measure
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Figure 1 Dataset of three samples (a) summarised as group means and

standard deviations, and (b) showing the j¼ 8 observations in each of the

i¼ 3 groups. Total variation in the dataset, measured by the sum of squared

deviations of each observation (yij) from the grand mean (��y), is partitioned
into an explained component that measures variation among the group

means (�yi), and an unexplained or residual component that measures

variation among the data points within each group. The deviations indicated

for the mean of group i and its j-th data point are summed across all data to

obtain the model sums of squares.
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within- group varia tion amo ng all na data points. Thes e exp lained an d

resid ual degrees of freedom sum to the na � 1 total d.f.

Dividing each SS by its d.f. gives each compon ent a mean square (MS)

whic h is a measur e of the varia tion per degree of freedom explain ed by

that so urce. The e xplained co mponent of variation is judged to contribute

significantly to total variation in the response if it has a high ratio of its MS

to the MS for the unexplained residual variance. This ratio is the estimated

F-value from the continuous probability distribution of the random vari-

able F. The  F distribution for the given explained and residual d.f. is used

to determine the probability P of obtaining at least as large a value of the

ob se rv ed r a t io o f s am ple v ar ia nc es , g iv en a t ru e r at io be tw ee n v ar ia nc es

equal to unity. Researchers in the life sciences often consider a probability

of a ¼ 0.05 to be an acceptably safe threshold for rejecting the null

hypothesis of insignificant explained variation. An effect is then considered

significant if its F-value has an associated P < 0.05 (Table 1), indicating a

less than 5% probability of making a mistake by rejecting a true null

hypothesis of no effect (the Type I error rate). This is reported by writing

Fa–1,(n–1)a ¼# .##, P < 0.05, where the subscript ‘a � 1, (n � 1)a’ are the

numbers of test and error d.f. respectively. Every F-value must always be

reported with these two sets of d.f. (further detailed on page 260) because

they provide information about the amount of replication, and therefore

the power of the test to detect patterns.

The validity of the ANOVA test depends on three assumptions about

the residual variance: that the random variation around sample means

has the same magnitude at all levels of the factor, that the residuals

contributing to this variation are free to vary independently of each

Table 1 Generalised ANOVA table for testing a categorical factor, showing

explained and residual (unexplained) sums of squares (SS), degrees of

freedom (d.f.) and mean squares (MS), F-ratio and associated P-value.

Subscript i refers to the ith group, and j to the jth observation in that group.

Component

of variation SS d.f. MS F-ratio P

Explained
Pa

i¼1 n � �yi � ��yð Þ2 a� 1 SSexpl/d.f.expl MSexpl/MSres < 0.05?

Residual
Pa

i¼1

Pn
j¼1ðyij � �yiÞ2 (n� 1)a SSres/d.f.res

Total
Pa

i¼1

Pn
j¼1 yij � ��y

� �2
na� 1
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other, and that the residual variation approximates to a normal dis-

tribution. These important requirements are explained on page 14.

Analysis of covariance tests for a linear trend in a continuous response

Y with a factor X that varies on a continuous scale. The continuous

factor X is said to be a ‘covariate’ of Y. The analysis is commonly

referred to as ‘regression analysis’ unless one or more categorical factors

are included in the model with the continuous factor(s). This book will

describe analyses of covariance with and without categorical factors, and

for the sake of consistency we will refer to them all as analyses of cov-

ariance, abbreviated ‘ANCOVA’.

In the simplest case there is only one sample, comprising coordinates x,

y of the covariate and response. The analysis estimates a line of best fit

through the data that intersects the sample mean coordinate (x�, y�). This

‘linear regression’ is defined by a mathematical equation: ŷ¼ aþ b·x,

where the parameter a is the ‘intercept’ value of ŷ at x¼ 0 and the para-

meter b is the ‘gradient’ of ŷ with x. We will ignore the mechanics of

calculating the parameter values, other than to note that a standard

analysis of variance uses the method of ‘ordinary least squares’ which

minimises the sum of squared deviations of each response yj from the

regression line. This sum comprises the residual sum of squares, SSresidual,

and it partitions out the variation left unexplained by the linear model

(Figure 2). The corresponding explained sum of squares, SSexplained, is the
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Figure 2 A sample of n¼ 10 observations on a covariate and response, with

regression line fitted by analysis of covariance. Total variation, measured by

the sum of squared deviations of each observation from the sample mean, is

partitioned into an explained component that measures deviations of the line

from horizontal, and an unexplained or residual component that measures the

deviation of each data point from the line. The deviations indicated for one

data point are summed across all points to obtain the model sums of squares.
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sum of squared dev iations of the n linea r estimat es ŷj (each given by

a þ b·xj ) from the sampl e mean respo nse y�. Thi s sum partitio ns out the

compo nent of variation in the data due to the slope of the regres sion line

from horizont al. The explai ned an d residu al SS toget her add up to the

total sum of squares , SStotal, given by the sum of squared de viations of

the response yj from the mean respon se y�. The pro portion of explain ed

varia tion: SSexplained /SS total is known as the ‘coeffi cient of determ ination’,

and its squ are-root is the co rrelatio n coeffici ent, r , which is g iven a

sign corresp onding to a posit ive covari ance of y with x or a negati ve

covari ance.

As with the analys is of varia nce be tween samples, each sum of squares

(SS) ha s a certa in numb er of degrees of freedom (d.f .) associated with it.

Agai n, these are the num ber of indepen dent pieces of infor matio n

requir ed to measur e the compon ent of varia tion, sub tracted from the

total number of pieces contri buting to that variation. As before, the total

varia tion alw ays has degrees of freedom that equal one less than the total

numb er of data poi nts ( n � 1), be cause it uses just the grand mean to

calcul ate variation among all the data poin ts. For the analys is of

covari ance on a sampl e of n coo rdinates, the e xplained co mponent of

varia tion has one d.f. becau se it uses the gran d mean to measur e varia tion

from a line defined by two pa rameters (so 2 � 1 ¼ 1). The residu al com-

pone nt of varia tion has n � 2 d.f. be cause we requir e the two pa rameters

that define the line in order to measure the variation of the n responses

from it. These explained and residual degrees of freedom sum to the n� 1

total d.f.

Dividing each SS by its d.f. gives each component a mean square (MS).

These mean squares are used to construct the F-ratio in just the same way

as for the an alysis of variance be tween sampl es (Table 2). The varia tion

explained by the covariate model is judged to contribute significantly to

total variation in the response if it has a high ratio of its MS to the MS

for the unexplained residual variance. More specifically, the regression

slope differs significantly from horizontal if the F-value has an associated

P< a, where a sets the Type I error rate (e.g., at a probability of 0.05 of

falsely rejecting a true null hypothesis). We can then reject the null

hypothesis of no change in Y with X in favour of the model hypothesis of

a linear trend in Y with X. This is reported by writing F1,n�2¼#.##,

P< 0.05, where the subscript ‘1, n� 2’ refer to the d.f. of the test and

error d.f. respectively.

The validity of the ANOVA test depends on three assumptions about

the residual variance: that the random variation around fitted values has
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the same magnitude across the range of the covariate, that the residuals

contributing to this variation are free to vary independently of each other,

and that the residual variation approximates to a normal distribution.

ANOVA as a tool for hypothesis testing

An explanatory hypothesis is a proposal that something interesting is

going on. The hypothesis will be testable if it can be compared to a

null hypothesis of nothing interesting. In analysis of variance, the

‘something’ of interest takes the form of a difference in the response

between levels of a categorical factor or a trend in the response across

values of a covariate. The null hypothesis is that the data contain no

such patterns. Analysis of variance subjects a dataset to one or more

test hypotheses, described by a model. The approach is always to

decide whether or not to reject the null hypothesis of no pattern in

favour of the test hypothesis of a proposed pattern, with some

acceptably small probability of making a wrong decision.

For example, a test of the model Y¼B|Aþ e may reject or accept

the null hypothesis H0: no effect of A on the response. Likewise, it

rejects or accepts the null hypotheses of no B effect and of no

interaction effect. A decision to reject each H0 is taken with some

predetermined probability a of making a Type I error by rejecting a

true null hypothesis. If a¼ 0.05, for example, an effect of A with

P< 0.05 is judged significant. Factor A is then deemed to influence

the response. Conversely, a decision to accept H0 is taken with a

probability b of making a Type II error by accepting a false null

hypothesis. Regardless of the size of b – which depends very much on

Table 2 Generalised ANOVA table for testing a covariate, showing explained

and residual (unexplained) sums of squares (SS), degrees of freedom (d.f.)

and mean squares (MS), F-ratio and associated P-value. Subscript j refers to

the jth response in a sample of size n.

Component of

variation SS d.f. MS F-ratio P

Explained
Pn

j¼1ðŷj � �yÞ2 1 SSexpl/d.f.expl MSexpl/MSres < 0.05?

Residual
Pn

j¼1ðyj � ŷjÞ2 n� 2 SSres/d.f.res

Total
Pn

j¼1ðyj � �yÞ2 n� 1
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sample sizes – an effect with P� a is deemed to have a non-significant

influence on the response. In this case we have only an absence of

evidence, rather than positive evidence of no effect. In general b
exceeds a, with the consequence that absence of evidence is less

certain than evidence of an effect. These issues are discussed more

fully in the sections later in the book on statistical power (page 248)

and evaluating alternative designs for data collection (page 250).

A hypothesis can be of no value in explaining data unless it has a

falsifiable H0. Consider a test for the effect of blood-sucking mites on

fledgling survival in swifts. ANOVA will test the H0: no difference in

survival between nests with and without mites. Only if the evidence

leads us to reject H0 with small probability of error do we accept H1:

mites affect survival. The persuasive evidence is in the form of a

difference that has been calibrated against unmeasured random

variation. Seeking confirmation of H1 directly would not permit this

rigorous evaluation of the alternative, because H1 is not falsifiable –

there are innumerable ways to not see a real effect.

In this book we focus on the explanatory applications of ANOVA,

using models to test evidence for the existence of hypothesised effects

on the response. ANOVA can also be used in a predictive capacity, to

identify parsimonious models and estimate parameter values, in

which case its merits should be judged in comparison to alternative

approaches of statistical inference by likelihood testing. For their

explanatory applications, ANOVA models are generally structured

according to the design of data collection, and magnitudes of effect

take secondary importance to statistical significance. The validity of

any inferences about significance then depends crucially on the

assumptions underpinning the model and the test statistic.

Assumptions of ANOVA

Four assumptions underlie all analysis of variance (ANOVA) using the F

statistic. These are:

(1) Random sampling from the source population;

(2) Independent measures within each sample, yielding uncorrelated

response residuals;

(3) Homogeneous variances across all the sampled populations;

(4) Normal distribution of the response residuals around the model.
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Two further assumptions apply to analysis of covariance (ANCOVA):

(5) Repeatable covariate values that are fixed by the investigator;

(6) Linear relation of the response to the covariate.

The first two assumptions are design considerations. Proper interpretation

of any statistical test requires that it be based on comparisons between

representative and unbiased samples, and that the measures within a sample

are free to vary independently of each other. For example, a comparison of

immature warthog body weights between younger females and older males

has an inherent bias that falsely inflates the contrast; the design should

compare like with like, or compare each level of sex with each level of age.

Similarly, the presence of siblings amongst subjects introduces an inherent

co-dependence within samples that falsely reduces their error variation; the

design should remove siblings, or randomly disperse them amongst treat-

ment allocations, or include ‘family group’ as an extra factor representing

random variation from family to family. The assumption of independence

drives many of the most challenging issues in constructing appropriate

ANOVA models. Sub-sampling from the data, grouping observations, and

repeated measures on sampling units can all lead to loss of independence

unless recognised and accounted for in the analysis.

The third and fourth assumptions are features of the parametisation of

ANOVA. The analysis uses a single error mean square to represent the resi-

dual variation around each of the samplemeans, which is therefore assumed

to be symmetrical about the mean and to take a magnitude that does not

depend on the size of the mean. The calculated F-ratio of test to error MS is

tested against an F distribution which assumes that the two mean squares

come from normally distributed populations. This may be far from realistic

for residuals with distributions skewed from normal, or variances that

increase (or decrease) with the mean, which are therefore not homogeneous.

The assumption of normality can be tested statistically using a

Shapiro–Wilks test, or checked graphically using a normal probability

plot. ANOVA results are generally more sensitive to the assumption of

homogeneous variances. This is best checked in the first instance by

plotting the residuals at each level of the fitted effect(s) to find out

whether they have a similar spread at all levels. Formal statistical tests of

the null hypothesis that the variances are equal across all groups (for

example, Cochran’s test or the Fmax test) may be useful for simple

ANOVA designs, but are sensitive to non-normality.

In the event of violation of these parametisation assumptions, it is

often possible to approximate the normal distribution and homogeneous
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variances by applying a systematic transformation to the data. General

textbooks of statistics provide recommendations on, for example, using

the square root of counts, or applying an ‘arcsine-root’ transformation to

proportions (e.g., Sokal and Rohlf 1995). However, many types of data

have inherently non-normal distributions and heterogeneous variances.

For example, a response measuring the frequency of occurrence of an

event has positive integer values with random variation that increases

with the mean. These attributes are described by the Poisson distribution,

which approximates the normal distribution only at large frequencies. A

response measuring proportions (or percentages) is strictly bounded

between zero and one (or 100), giving a random variation that increases

with distance from either boundary to peak at a proportion of 0.5. These

attributes are described by a binomial distribution. A more parsimonious

alternative to transformation is to use a GLIM which allows the inves-

tigator to declare error structures other than normal, including Poisson

and binomial (e.g., Crawley 2002).

The fifth and sixth assumptions are features of the parametisation of

ANCOVA, in which one ormore factors vary on a continuous scale and thus

are covariates of the response rather than categorical factors. These are

assumed to be fixed factors (detailed in the next section)with values that are

measured without variance and so could be repeated in another study.

The analysis uses just two parameters to represent the response Y to a

covariate X: the Y intercept at X¼ 0 and the slope of Ywith X. It therefore

assumes a constant slope across all values of X, giving a linear relation of Y

to X. For a covariate with a curvilinear relation to the response, trans-

formations may be applied to Y or X, or both, to linearise the relation,

which will often simultaneously rectify problems of heterogeneity of var-

iances. These are discussed in the section on uses of covariates on page 29.

An additional assumption is introduced by having unreplicated re-

peated measurements on individual sampling units, blocks or subjects.

This is the assumption of ‘homogeneity of covariances’ which applies to

the randomised-block, split-plot and repeated-measures designs described

in Chapters 4 to 6. The assumption is detailed in those chapters, on page

118 for randomised blocks and page 183 for repeated measures.

How to distinguish between fixed and random factors

A categorical factor can take one of two forms: fixed or random. Dis-

tinguishing between these alternatives is one of the first hurdles to
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understanding analysis of variance, and getting it wrong can lead to

invalid conclusions. Here we describe how to identify and interpret fixed

and random factors. The consequences for analysis will be detailed with

model descriptions in Chapters 1 to 7.

A fixed factor has precisely defined levels, and inferences about its effect

apply only to those levels. For example, in a test of the impact of irri-

gation on maize yield, Irrigation will be a fixed factor if its levels have

been selected for specific comparison. Irrigation schedules of daily,

weekly and monthly application might be randomly assigned to replicate

plots. The null hypothesis is that there are no differences in the means of

the response among levels of the factor. If the test rejects H0, post hoc tests

(page 245) may be used to investigate precisely how the levels differ from

each other. A subsequent experiment must therefore use the same levels

to re-test the same hypothesis.

In contrast, a random factor describes a randomly and independently

drawn set of levels that represent variation in a clearly defined wider

population. The precise identity and mean of each level holds no value in

itself, and a subsequent analysis could draw a different set at random from

the population to re-test the same hypothesis. Indeed it is assumed that the

levels chosen for analysis come from a large enough population to be

deemed infinite. For example, Genotype would be a random factor if a

random selection of all maize genotypes were tested on the levels of irri-

gation in the previous experiment. The null hypothesis is that there is zero

variance in the response among the genotypes. A subsequent study could

therefore select at random a different set of genotypes to re-test the same

hypothesis. The basic sampling unit in any study, in this case the plot, is a

random variable by definition. Any other nested factors are almost always

random too, in order to provide the residual variation against which to

calibrate the higher-level effects. These nested factors will be assumed to

have a normal distribution of sample means, and homogeneous variances.

We will expand on the applications of nesting on page 21 and in Chapter 2.

Random factors can also function to group together multiple sources of

nuisance variation. For example, the above experiment could be run on a

regional scale by repeating it across a number of replicate farms. The

random factor Farm is not an experimental treatment; rather, its levels

sample unmeasured spatial variation in soil characteristics, microclimate,

historical land use etc. Random factors of this sort are called ‘blocks’, and

we expand on their function on page 25 and in Chapter 4.

A factor is usually fixed if its levels are assigned randomly to sampling

units. For example, Irrigation treatments are applied randomly to
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experimental plots in order to measure their influence on growth. Inter-

pretation of such factors is straightforward since the manipulative nature

of the experiment means the factor measures just one source of variation.

Interpretation of a fixed factor is less straightforward when its levels

cannot be assigned randomly to sampling units. Male–female subjects,

north–south aspects, or upstream–downstream plots are all pre-assigned

to their levels. Consequently, the variation due to sex, aspect or location

is always confounded with unmeasured covariates of these factors,

and this must be acknowledged when interpreting significant effects.

Mensurative (non-experimental) studies have non-random assignment of

factor levels by definition. For example, in a study comparing the tol-

erance to ultraviolet radiation of Caucasians and Afro-Caribbeans,

Ethnicity cannot be randomly assigned to subjects with the result that it

cannot be isolated and tested as a cause of tolerance. With adequate

replication, however, any significant difference in tolerance among the

two groups can be attributed to the factor Ethnicity as defined by all the

unmeasured correlates intrinsically associated with each group, such as

melanin concentration, diet, exposure to sunshine and so on.

Particular care must be taken with the distinction between fixed and

random factors when factor levels cannot be randomly assigned to

sampling units because they represent different locations or times. For

example, a Location factor may have levels of elevation up a shore, or of

blocks of land across a field; a Time factor may have levels of days, or of

seasons. These factors always group together multiple sources of varia-

tion, and for this reason they must be treated as random unless each of

their levels are adequately replicated. Consider the specific example of a

field test in which the settlement of barnacle larvae onto inter-tidal rocks

is measured at three shore elevations: upper, middle and lower. Elevation

is a spatial factor that represents variation due not only to height up the

shore, but also to all the correlates of height, such as immersion time,

wind exposure, predation pressure and surface topography. Any effect of

elevation on settlement can be attributed to the multi-dimensional nat-

ural gradient made up of these variables, provided that their variation

with elevation is a consistent feature of rocky shores in general. It is the

investigator’s knowledge of this proviso that defines whether elevation

must be random or whether it can be fixed.

If barnacle settlement is measured in replicate quadrats at each of three

elevations on a single shore, then any effect of elevation will be com-

pletely confounded with random spatial variation. In other words, a

settlement gradient with elevation may be due to variables that have no
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intrinsic association with elevation. For example, low barnacle settlement

on the upper shore could be due to a band of granite there, which might

equally occur at other elevations on other shores. Elevation can be fixed if

one is specifically interested in testing for differences among those par-

ticular locations on that particular shore, but this sort of hypothesis is

rarely useful because the confounding of elevation with random, within-

shore spatial variation makes it impossible to determine the underlying

cause of any significant effect. With data from only a single shore, it

therefore makes sense to treat elevation as a random blocking factor.

Elevation can be fixed by distributing the quadrats at each of the three

elevations across two or more randomly selected shores within the region

of interest. The replication of shores removes the confounding of varia-

tion due to elevation with random spatial variation. The analysis is

therefore able to partition out the combined effect of elevation and all

variables that consistently co-vary with elevation across shores, from the

effect of all other sources of spatial variation that are not related to

elevation. A significant effect of elevation means that barnacle settlement

varies in response to elevation plus all that co-varies with elevation in the

region, such as immersion time and predation pressure. Without an

experimental assignment of treatments to quadrats, however, it is not

possible to identify which of the covariates causes variation in barnacle

settlement.

Some spatial factors are less clearly defined than elevation and must

always be random because they cannot be replicated in space. For

example, consider an experiment to compare the growth of a crop under

three fixed Irrigation treatments. To take account of suspected spatial

variation in soil conditions, a field is divided into three blocks of land and

each irrigation treatment is assigned randomly to four plots in each

block. Because the blocks are arranged arbitrarily, rather than in relation

to some known biological or physical feature or gradient, the natural

variation that they encompass cannot be defined; it simply encompasses

all random sources of spatial variation. It is therefore not possible to

replicate the exact levels of that factor in other fields, and Block must be

treated as a random factor.

The same logic applies to temporal factors. If the condition of black-

birds is measured in each of four Seasons in a single year, then unless one

specifically wishes to test for differences among seasons in that particular

year, Season will be random because any effect of time of year is com-

pletely confounded by short-term temporal variation. For example, low

condition of birds in summer could be due to natural environmental
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changes that occur every summer, or due to an unusually wet spring.

However, if condition is measured in each of four seasons in each of two

or more years, then Season will be fixed because any consistent effect can

be partitioned out and tested, over and above random within-year var-

iation. The only caveat is that the cause of any significant Season effect

cannot be identified from amongst the multiple sources of temporal

variation grouped together by Season, including variations in tempera-

ture, weather, competitor abundance and so on.

Similarly, if an experiment measures the concentration span of students

over the course of three, arbitrarily-selected weekdays, then Weekday will

be a random factor because it encompasses all possible sources of tem-

poral variation from day to day. Even when the investigator is specifically

interested in the Monday, Wednesday and Friday, if all data are obtained

from a single week, then Weekday must again be random because any

systematic variation in concentration span over the course of the week is

completely confounded by random temporal variation from day to day.

However, if the concentration span of students is measured on the

Monday, Wednesday and Friday of two or more weeks, then Weekday

can be treated as fixed. This is because the replicated levels of Weekday

over time now permit partitioning of variation in concentration span due

to these particular days, which might represent numerous intrinsically

linked variables such as prior alcohol consumption and prior sleep, from

random day to day variation such as that caused by the weather.

Although we still do not know the ultimate cause of any significant dif-

ferences in concentration span between different days of the week,

Weekday is now an interpretable effect because it has been demonstrated

from replicate trials.

In summary, a categorical factor is generally fixed if it is randomly

assigned to sampling units. It can be fixed even if it groups together

multiple unmeasured sources of variation, provided that its levels are

independently replicated in time or space. Interpretation of such group-

ing factors does not permit conclusions about causality, but useful

descriptive information can be forthcoming with which to guide the

design of future experimental manipulations. Random categorical factors

group together all unreplicated spatial or temporal variation, which

inherently confounds their interpretation. Although this is not a problem

for main effects, it can create difficulties when interpreting interactions

between fixed and random factors (further detailed in Chapters 3 and 4).

ANOVA models are classified according to the type of factors they

contain, over and above the random sampling unit(s). A model that
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contain s only fixed fact ors is called a ‘model I ANO VA’, wher eas a mod el

that contai ns only random facto rs is called a ‘model II ANOVA’ . Mo dels

contain ing both fix ed and random factors are know n as ‘mix ed models ’.

Covariat es are always fix ed, so ANCO VA models may be eithe r ‘model I’

or ‘mixed ’. The nature of the test hypothesi s will determ ine what is the

appropri ate assign ment of fixed and random factors, and this must be

correctly judged because it crucia lly influence s the nature of a ny infer -

ences. Fixed effe cts are allowed by the mod el to influence only the mean

of the response Y; they yiel d infer ences ab out the specific levels of the

factor, but the resul ts can not be generalised to other possible level s.

Random effe cts are allowed to influen ce only the varia nce in Y; they yield

inferences only about the population from which the levels were drawn

(see discus sions in Bec k 1997; Newman et al . 1997). These differences

result from fixed and random factors differing in the components of

variation that they estimate, which in turn affect which denominator is

used to calculate a valid F-ratio (detailed in the section below on con-

structing F-ratios).

Nested and crossed factors, and the concept
of replication

One factor is nested in another when its levels are grouped within each

level of the nesting factor. All replicated analyses of variance have some

element of nesting; even a one-factor ANOVA has sampling units (S0)
nested in each level of the treatment factor (A). For example,

an experiment to test the effect of irrigation on crop yield might use a

randomly chosen set of 16 fields, each allocated to either a watering or a

control treatment. Field is then a random factor S0 nested in Irrigation

factor A because no field receives both watering treatments and thus the

identity of the fields is different in each treatment group (Figure 3). In

terms of a statistical model, we represent this feature of the design as

S0(A). The effect of irrigation on crop yield can be tested with a

straightforward one-way ANOVA by requesting a model in the form

Y¼A which will test the treatment effect with 1 and 14 d.f. Note that it is

not necessary to specify S0 in the model request because it is the lowest

level of nesting, which accounts for the residual variation.

Although nesting is involved in all ANOVA models with any form of

replication, the so-called ‘nested’ models will have at least two scales of

nesting. As an example, suppose that the two irrigation treatments have

Nested and crossed factors, and the concept of replication 21



been allocated randomly to eight whole farms, and that crop yield has

been measured in two fields on each farm (Figure 4).

This design contains two levels of nesting: Fields S0 are nested in Farms

B0, and Farms are nested in levels of Irrigation (A), all of which is
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Field1 … … …
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… … … …
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Figure 3 (a) Allocation table illustrating samples of eight fields receiving either

watering or control treatments. Fields are nested in the factor Irrigation because

each field is measured at only one level of the factor. (b) Experimental layout

showing one possible spatial arrangement of fields randomly assigned to

treatment levels of watering (W, hatched) or control (C, clear).
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Figure 4 (a) Allocation table illustrating samples of two fields on each of

eight farms receiving either watering or control treatments. Fields are nested

in the factor Farm, and Farms are nested in the factor Irrigation.

(b) Experimental layout showing one possible spatial arrangement of

farms (columns) randomly assigned to treatment levels of watering

(W, hatched) or control (C, clear).
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denoted S0(B0(A)). The analysis of crop yield will now require a model

requested in the form Y¼AþB(A) where B is declared as a random

factor. The Irrigation effect A is tested against the random farm effect,

and therefore has one and six d.f. (where previously we had one and 14 d.f.).

Its reduced d.f. means that we have lost power to detect a treatment

effect, but this cost has been traded against the benefit of sampling from

across a wider region in order to obtain a more robust prediction. The

analysis also has the possibility of post hoc pooling in the event that the

farms within each treatment category differ little from each other, which

will reinstate the 14 error d.f. (detailed on page 38).

Nested factors are an unavoidable feature of any studies in which

treatments are applied across one organisational scale and responses are

measured at a finer scale. For example, consider a study aiming to test

whether the length of parasitic fungal hyphae depends on the genotype of a

host plant. The hyphae grow in colonies on leaves of the plant, and the

investigators have measured the hyphal length of ten colonies on each of

two leaves from each of two plants from each of five genotypes, giving a

total of 40 observations for each of the five genotypes. At the analysis

stage, the investigators ignore differences between leaves and plants, which

hold no inherent interest, and test for a genotype effect with the one-factor

ANOVA: Length¼Genotypeþ e. They obtain a significant effect with

four and 195 d.f. Such an analysis is flawed, because the one-factor model

has ignored the reality that the 200 data points are not truly independent,

but include replicate colonies from the same leaf and from the same plant.

In fact, the design has two nested factors: Plant B0 nested in Genotype and

Leaf C0 nested in Plant, in addition to the Colony sampling unit S0 nested
in Leaf nested in Plant, and the Genotype factor A of interest. The hier-

archical structure of the design should be recognised by requesting a model

in the form Y¼AþB(A)þC(B A) where B and C are declared as random

factors, and the undeclared residual error e¼ S0(C0(B0(A))). The genotype

effect of interest is now correctly tested with five error d.f. (instead of 195)

because the only independent replicate information for testing an effect of

genotype is the average hyphal length per plant. Had the study been

planned with the correct analysis in mind, the distribution of sampling

effort could have been targeted to give a more powerful test. A better

design would have measured fewer colonies per leaf, because replication at

this lowest organisational level is informative only about the variation

among leaves, and instead would have measured more plants of each

genotype, because it is the replication at this highest organisational level

that determines the error d.f. for the genotype effect of interest.
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In con trast to nesti ng, two fact ors are cross ed when every level of one

facto r is measur ed in c ombination with every level of the oth er factor.

The resulting design is termed ‘fac torial’ . The simp lest factorial design

has sampling units nested in each combinat ion of level s of two factors.

For exampl e, a test of crop yield uses a randoml y ch osen set of 16 fields,

each allocated to either a wateri ng or a control irrigat ion treatment an d

to either a high or a low sowing densit y (Figur e 5 ). The tw o crosse d

facto rs are Irrigati on (A) and Densi ty (B), each wi th tw o levels. The study

can test their simultaneous effects by allocating four fields to the watering-

high co mbination, four to wat ering-low , four to co ntrol-hig h an d four to

control -low. In term s of a statistica l model, we say that a rando m Field

facto r S 0 is ne sted in Treatm ent facto rs A and B, and we write this feat ure

of the design as S0 (B|A). A tw o-factor ANOV A req uested in the form

Y ¼ B|A or Y ¼ A þ B þ B*A will test the independen t and co mbined

influences of irrigation and density on crop yield. The effect of irrigation

may depend on sowing density (the B*A interaction), for example if

bette r yields come from dry–hig h an d wet–low fields (Figur e 5c). Alter-

natively, one or both of irrigation and density may influence crop yield

independently of the other, for example if better yields generally come

from high sowing densities regardless of watering regime. In this design,

the three possible sources of explained variation, AþBþB*A, are all

tested with one and 12 d.f. reflecting the two levels of each factor and the

total of 16 fields grouped into four samples. Note that the tests of main

effects A and B are not equivalent to two separate one-way ANOVAs,

each of which would have one and 14 d.f., because the factorial design

measures the effect of each factor whilst holding the other factor

constant.

All of the designs considered thus far have been fully replicated because

they take several independent and randomly selected measurements of

the response at each level of each factor, or at each combination of levels

of crossed factors. In terms of the statistical model, we can measure the

residual variation from replicate sampling units S0 nested in the factors A,

B, C, etc., which is written: S0(C B A), where the factors inside the par-

entheses may be variously nested or crossed with each other. Although

full replication can be expensive to realise, its great advantage is that it

allows testing of all sources of variation in the model. In the absence of

full replication, a nested model will lose one or more levels of nesting, and

a cross-factored model will lose the ability to test for all interactions. In

the next section, we consider the strengths and weaknesses of a number of

designs that usually lack full replication.
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Uses of blocking, split plots and repeated measures

Blocking and repeated measures are two methods used to partition out

unwanted sources of random variation among sampling units in an

ANOVA. Blocked designs (detailed in Chapter 4), and their associated

split-plot variants (Chapter 5), and repeated-measures designs (Chapter 6),
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Figure 5 (a) Allocation table, and (b) experimental layout of irrigation

(watering or control: hatched or clear) and sowing density (high or low: H or

L) randomly assigned to four samples of four fields. Irrigation and Density are

fully cross factored because measurements are taken at every combination of

factor levels, in this case from four replicate fields nested in each of the four

treatment combinations. (c) Example results, showing sample means and

standard deviation for each of the four treatment combinations. There is a

marked interaction of irrigation with sowing density: watering improves yield

at low density but not at high density. The interaction exposes an effect of

watering that is not apparent either in the irrigation main effect, which has

negligible magnitude after pooling across sowing densities (comparing means

of means given by ‘*’), or in the density main effect which shows a noticeable

overall increase in yield after pooling irrigation levels (comparing means of

means given by ‘þ’). See also Figure 10 on page 78, showing the full range of

possible outcomes from designs of this type.
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all have repeated measures taken on each block or subject. The terms

‘block’, ‘split plot’ and ‘repeated measures’ tend to be applied to designs

without full replication at each combination of factor levels, and that is

how we apply them here, drawing comparisons with equivalent fully

replicated designs.

Blocked d esigns are used to parti tion out back ground spatial or tem-

poral varia tion. Suppos e you ha ve a field that can be divided up into

plots , to whi ch you wish to alloc ate different level s of a treatment . If the

alloc ation of treatment s to plots is c ompletely rand omised, then differ-

ences between the plots will resul t partly from the treatment s, partl y from

spati al variation in soil con ditions, shading, etc. , and pa rtly from mea-

surem ent error. The spati al varia tion and measur ement error are bot h

unco ntrolled sources of rando m varia tion that need to be dist inguish ed

from the fix ed effe cts of inter est. The measur ement error cannot be

eliminat ed, but a t least some of the spati al varia tion can be pa rtitione d

out of the an alysis by organis ing the alloc ation of treatment level s to

group s of neighb ouring plots . These groups of plots are ca lled ‘blocks’.

Variat ion in the response amon g blocks pr ovides an esti mate of the

magni tude of the underlyi ng spati al variation. In a fully randomi sed

block, the design is stra tified so that every treatment level is repres ented

once in every block, an d treatment levels are alloc ated randoml y to plots

within each block. Block s usuall y gro up sampling units in sp ace, but any

rando m factor that canno t be randoml y assign ed to sampl ing units can be

regarde d as a block . For exampl e, Fam ily is a block that groups siblings;

Paren t plan t is a blo ck that groups seedli ngs (e.g ., New man et al. 1997;

Rese tarits and Bern ardo 19 98).

As an exampl e, consider a two -factor experi ment designe d to test the

response of crop yiel d to irrigat ion (factor A wi th tw o levels: wateri ng

and control) and sowing density (factor B with two levels: high and low).

A total of sixteen plots of land are available for the experiment. A

naturally homogeneous landscape, with little natural variation between

plots, will suit a completely randomised design in which each of the four

combinations of treatment levels is allocated randomly to four plots

(Figur e 6a). A natural variation amon gst plots that is more marked,

however, will give large residual MS and an experiment with low power

to detect treatment effects. Moreover, any pattern to the natural varia-

tion, such as a gradient in soil moisture, may bias the predictions of the

completely randomised model.

A randomised-block design partitions out this unwanted background

variation by grouping plots into four groups of four in such a way that
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the plots within each block are as homogen eous as pos sible. Eac h of the

four combinat ions of treatment level s is then repres ented once in each

block, wi th treatment levels randoml y alloc ated to plots within each

block (Figur e 6b). The blocks are modell ed in the analysis as a random

factor with four levels. The varia tion in the respon se from block to block

is then partiti oned out of the residu al MS to provide a more power ful test

for the main treatment effects. It is essent ial to include the blocking factor

in the analys is becau se plots are not trul y inde pendent of each other,

since they be long to a parti cular blo ck, and are rando mly assi gned to

treatment level s per block. To omit the block will resul t in fals ely inflate d

error de grees of freedom, and consequen tly an increa sed likelihood of

falsely rejecting a true null hy pothesis (ter med ‘pseudore plica tion’ by

Hurlbert 1984 ). Note that blocking can only serve its purpose if the

investiga tor has some knowl edge of the pa ttern of landsca pe hetero-

geneity. The visible habitat structure may not suffice to descri be relevan t

landsca pe heterog eneit y, in whi ch case a set of pre-m easures of the

response taken a cross the experi menta l area can inform the placem ent of

blocks.

Split- plot designs are an extens ion of randomi sed-bl ock de signs in

which treatment s are applied at diff erent spatial or tempor al scale s. For

instance, logistical considerations may favour irrigating a larger unit of

area than the unit for sowing density. This is likely to be the case if the
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Figure 6 Example layouts of plots to test effects on crop yield of irrigation,

with watered plots designated by grey hatching and control plots unhatched,

and of sowing density, with high density designated by H and low density by

L. (a) Completely randomised design for a homogeneous landscape with 16

plots (the squares), and treatment combinations randomly assigned to

replicate plots. (b) Randomised-block design for partitioning out a left–right

environmental gradient, with four plots (separated by single lines) in each of

four blocks (double lines), and treatment combinations randomly assigned

to plots within each block.
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irrigat ion is pro vided by a piped water sprayer , whereas sowin g density is

manipul ated by hand. Cont inuing the examp le from ab ove, irrigat ion

could be rando mly alloc ated to one plot pe r block co mprising half of its

area, and sowing de nsity is then rand omly allocated to one of two sub-

plots wi thin each plot (Figur e 7a). Alternativel y, for an experi mental area

with a smaller scale of natural varia tion, wat ering may be applied to

repli cate whol e blocks and sowing den sity to plots wi thin blo cks. For

exampl e, four out of eight blocks cou ld be chosen at random to recei ve

extra wateri ng an d one of the two plots in each block chosen at ran dom

to recei ve high sowing de nsity (Figur e 7b). Suc h designs requ ire care with

the constr uction of appropri ate statistica l models . In the first case, blocks

are crosse d wi th both wat ering and den sity treatment s, wher eas in the

second case blocks are nested within wat ering and crosse d with den sity

treatment .

Repeated- measure s designs partition out variation among experimental

subjects by applying more than one treatment level to each subject.

Treatment levels are applied to the subject in temporal or spatial sequence.

The subject acts as a random blocking factor, but the sequential applica-

tion of treatment levels distinguishes this design from randomised-block

and split-plot designs, both of which have a random allocation of treat-

ment levels within each block. Repeated-measures designs are otherwise

directly analogous to randomised-block and split-plot designs; in the same
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Figure 7 Example layout of split plots to test effects on crop yield of

irrigation, with irrigated plots designated by grey hatching and control plots

unhatched, and of sowing density, with high density designated by H and low

density by L. (a) Split-plot design I, with two sub-plots (demarked by thin

line) within each of two plots (thick line) within each of four blocks (double

lines), showing irrigation applied to one plot randomly selected in each block

and sowing density applied to one sub-plot randomly selected in each plot.

(b) Split-plot design II, with two plots (demarked by single line) within each

of eight blocks (double lines), showing irrigation assigned at random to

replicate whole blocks and sowing density applied to one plot selected at

random within each block.
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way that observations are not fully independent when they come from the

same block, so repeated measurements may be correlated when made on

the same subject.

Both blocking and repeated measures can greatly increase the power of

an analysis to detect treatment effects because the variation among blocks

or among subjects can be measured and partitioned out. They also allow a

study to be performed block-by-block rather than simultaneously testing

all combinations of factors which can prove impractical for large designs.

The disadvantage of these techniques is that any interaction of block or

subject with the treatment factors will complicate the interpretation of the

analysis, and may not be testable unless the design is fully replicated by

having multiple, independent observations of each treatment level in each

block or on each subject. These difficulties should be anticipated at the

design stage, because tighter controls may eliminate the need for blocking

or repeated measures, and a fully replicated design will greatly facilitate

estimation and interpretation of interactions. The non-independence of

observations within a block or on a subject also requires that the ANOVA

meets an additional assumption, of homogeneity of covariances. This is

explained for randomised-block designs on page 118, for split-plot models

on page 143 and for repeated-measures designs on page 183.

The analysis of randomised-block, split-plot and repeated-measures

designs differs from that of their equivalent fully randomised models only

when the design lacks full replication. With or without full replication,

however, their interpretation is less straightforward than for fully ran-

domised models. A treatment effect cannot be fully interpreted in the

presence of a significant interaction with a block or repeated-measures

variable, because that random variable groups together multiple

unmeasured sources of variation. This problem is treated in more detail

in the descriptions of fully randomised models (Chapter 3) and blocked,

split-plot and repeated-measures models (Chapters 4 to 6).

Uses of covariates

A covariate is a predictor variable that is measured on a continuous scale

such as kg, km, hrs, etc., as opposed to a categorical scale, such as male/

female or low/medium/high. All of the ANOVA models in this book can

be adapted to include one or more covariates; the generic term for

parametric models that involve a combination of factors and covariates is

a general linear model (GLM).
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Covariates may be of interest in their own right. For example, a study

of male and female body sizes might aim to test whether sex differences

depend on age. Alternatively, covariates may serve to partition out an

unwanted source of variation in order to increase power to detect

treatment effects, in a similar fashion to blocking. For example, a study

of sex differences in body size might include age as a covariate if samples

of males and females cannot have individuals all of the same age.

Covariates of inherent interest are included as predictors in the model in

the same way as a categorical factor, with all interactions. For example, a

design with a single covariate X and a single factor A is tested with the

model:

Y ¼ XþAþA*Xþ e

In effect, the model fits a separate linear regression between the covariate

and the response at each level of A. The main effect X tests for a non-zero

slope of the response across the range of the covariate after pooling

across all levels of A, the main effect A tests for differences among the a

means of factor A after pooling across all X, and the A*X interaction

tests whether all levels of A have the same regression slope. Figure 8

shows an example. Note that analysis of main effects and interaction does

not require replicate subjects for each level of factor A at each value of

covariate X, nor the same values of X to be sampled within each level of

A. However, the n subjects within each level of A must sample a mini-

mum of three values of X to allow testing of the assumption of linearity.

The structure of the analysis of variance table is the same as that for a

factorial design with two categorical factors A and B, except for the

degrees of freedom. A linear covariate always has one d.f., because it

comprises two pieces of information: the regression slope and its inter-

cept, and one piece is required to measure its variation: the mean value of

the response (so 2� 1¼ 1 d.f.). The d.f. for the categorical factor A are

a� 1, just as in a conventional ANOVA, whilst the d.f. for A*X inter-

action are the product of the d.f. for the component terms: (a� 1) ·
1¼ a� 1. The residual variation will then have (n� 2)a d.f., because

unexplained variation is measured by deviations of the n replicates from

their sample regression line which is fixed by the two parameters of slope

and intercept. Thus a covariate X measured on five replicates in each of

three levels of a treatment A will allow testing of the main effects and the

interaction against (5� 2) · 3¼ 9 residual d.f.
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Cov ariates of no inhe rent intere st are included to partitio n out unwant ed

variation in designs that are conventi onally termed analysis of covari ance

(‘ANCOVA ’, though all models co ntaining continuou s facto rs are in fact

analyses of cova riance). An ANCO VA pa rtitions out the effe ct of the

covariate by ad justing the data for the regression relation ship between

the response and the covari ate. For a de sign with two crosse d facto rs A

and B, the model is:

Y ¼ X þ A þ B þ B*A þ e

The co ntinuous varia ble is conventi onally entere d as the first term in the

model, in order to pa rtition out the unwan ted covari ation before testing

the factors of intere st. Althou gh this wi ll only mak e a difference to

the resul ts of non- orthogonal designs, ANCO VA is likely to be non-

orthogonal when it is unbalanced by ha ving levels of the covari ate that

are not set by the study design but measur ed separately on each rando mly

selected subject or sampling unit. The imbal ance is caused by not having

exactly rep eated values of the covari ate at each combinat ion of levels of

0 5 10 15 20

Covariate X

R
es

po
ns

e 
Y

A1

A2

0

20

40

60

Figure 8 Relationship of the response to a covariate X (e.g., age in years)

measured on subjects nested in two levels of treatment A (e.g., sex: males and

females). For these data, analysis of covariance indicates a significant main

effect of X but a non-significant main effect of A. The non-significance

reflects the similar mean responses of A1 and A2 when data for each sample

are pooled across all covariate values (i.e., ignoring the covariate values).

The analysis produces a significant A*X interaction, which reflects the

different slopes of Y with X at each level of A. This interaction indicates that

factor A does indeed influence the response, with a switch in relative effect

across the range of X. See also Figure 10 on page 78, showing the full range

of possible outcomes from designs of this type.
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the categor ical factors, and the resulting loss of orthogonal ity affects the

calcul ation of SS. This is discus sed furt her on pa ge 237, but will not be an

issue if the nuisance covariate is entere d first into the mo del.

Because this model tests only the main effect X, it fits a co mmon

regres sion relationshi p be tween the co variate and the response for all

group s or sampl es. It makes the impl icit assum ption of no interacti ons

betw een the covari ate and any of the categor ical facto rs, meanin g that all

categor y levels have the same slope of Y wi th X. This assum ption sh ould

be tested, which requir es fitting a full model that includes all c ovariate-

by-fa ctor inter actio ns. For the two-fac tor exampl e abo ve, the covari ate

inter actions are test ed using the mo del:

Y ¼ X þ A þ B þ A*X þ B*X þ B*A þ B*A*X þ e

Any non-si gnificant inter actio n terms can be omitted and the model

refitt ed with the inter action SS pooled into the residual SS. Any sig-

nificant inter action terms should be retained in the mod el, and inter-

preted by plott ing out the wi thin-fact or regres sion slopes . A signi ficant

inter action indicates that the magni tude of treatmen t effe cts depends on

posit ion along the covari ate scale . Althoug h significan t inter action s can

compli cate inter pretation of the analys is, they are often of consider able

biologi cal inter est and tend to be easier to inter pret than interacti ons with

blocks, be cause the nature of the variation is more clear ly defi ned.

An ANCO VA should alw ays be used to partitio n out unwant ed var-

iation in a con tinuous varia ble rather than any kind of ‘res iduals analys is’

involv ing the creation of a ne w data set made up of regression residu als.

Anal ysing residu als is fundame ntall y flawed becau se factors used to

explai n resi dual varia tion may inter act with the covari ate (Garcı́a-Ber-

thou 2001), or be correla ted wi th it (Darli ngton and Smulder s 2001)

leadi ng to biased parame ter estimat es (Freckl eton 2002).

All GLMs assume linear responses to the covariate, which can be

checked visually by plotting the raw data. Some relationships are

intrinsically non-linear, such as those comparing variables with different

dimensions (volume or weight to length or area, etc.). These are likely

also to violate the assumptions of a normal distribution and homo-

geneous variance of response residuals along the regression slope.

Transforming the response and/or the predictor can often correct all of

these problems, but remember always to plot the data again after any

transformation to check that it has had the desired effect.

Introduction to analysis of variance32



The value of a co variate analys is depend s on its unde rlyin g linear

model having so me biologi cal meani ng. When consider ing trans form a-

tions, it is theref ore sensi ble to think abo ut the pro cess that you hypo -

thesise is drivi ng the observed patte rn, and then find a way to presen t it in

linear form . For exampl e, a Volume response will have a cubic relation to

a Leng th covari ate if length is repres entat ive of the dimens ions that make

up the volume . The hypo thesis that Vol ume / Length 3 will be tested by a

linear regression of log(Vo lume) against log(Leng th) with a pred icted

regression coefficie nt b ¼ 3 defining the slope. Altern atively, one might

accept the existen ce of a cubic relation V ¼ a·L 3, and c ube the lengt h

measures in order to test only the value of the parame ter a � for exampl e,

whether it diff ers significantl y from zero or between different treatment s.

One or other transform ation should be applie d even if the dist ribut ion of

raw da ta is not obviousl y non- linear, unless yo u intend to test the bio -

logically mo re co mplex hy pothesis that the volume –length relat ion is

represen ted by a constant of propo rtionali ty. Note that trans form ations

can ch ange the struc ture of the model from an inter pretive point of view .

Logging the response, for inst ance, alters the data points from being

additive to being multipli cative.

Othe r relationshi ps may require more subtl e transform ations based on

an unde rlying mech anistic model to ensure inter pretable predictions. This

is wel l illustr ated by an exampl e of predator respo nses to prey densit y.

Predator s gen erally respo nd to increa sed prey de nsity with a n increa sed

ingestion rate, but for many specie s their responsi veness dimin ishes as

prey de nsity increa ses. The pos itive relationshi p between ingest ion rate

and prey den sity co nsequentl y takes a de celerating (con cave) form ,

known as a satur ation respon se (Figur e 9a). Suc h data are clear ly not

suitable for an alysis using the model Rat e ¼ Densi ty þ e wi thout suitab le
transform ation. In this case we ha ve no biologi cal justificat ion for log-

transform ing prey density, even thou gh it may well straight en out the

relationshi p. Inste ad, linearit y is achieve d more rationall y by taking the

inverse of both the response and the covari ate (Figur e 9b). A simp le

model of the underlying mechanism demonstrates why this is a biologi-

cally meaningful transformation. We partition the time interval between

consecutive ingestions into a search time that is inversely proportional to

prey density D, and a constant handling time a required to manipulate

and ingest each item. The linear regression of Interval on the y-axis

against 1/D on the x-axis then yields a prediction: Interval¼ b/Dþ a, with

slope b and intercept a. Since the inverse of the interval is the rate of

ingestion, we have Rate¼D/(bþ aD), which is the concave predictor to
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fit through the data on rate against density. Note that a sampling effort

designed to give an approximately equal spread of prey densities will

yield values of search time that are skewed towards the origin, which is

not ideal for estimating the linear regression. This problem can be

avoided by weighting sampling effort towards lower prey densities (as in

Figure 9), but it requires thinking through the analysis before collecting

the data.

Wave functions from circular relationships can also be linearised, for

example if the wave is symmetrical and gives a straight-line response to

sine(X). Many other curvilinear relationships with peaks and troughs

cannot be transformed to a linear relationship in principle. These will not

suit linear models unless they can be represented by a polynomial of the

form Y¼X|Xþ e, or Y¼A|X|Xþ e, etc. Non-linear models lie beyond

the scope of this book, but they can be tested with specialist statistics

packages (e.g., see Crawley 2002; Motulsky and Christopoulos 2004).

Some kinds of data may require a comparison of models from alter-

native transformations in order to explore underlying processes. For

example, perhaps the density of a population appears to show a linear

increase over time despite an expectation of exponential growth. It is then

useful to compare the fit of the linear model: Density¼Timeþ e to the fit

of the linearised exponential model: ln(Density)¼Timeþ e. The better

fitting model is the one with the higher proportion of explained variation,
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Figure 9 (a) Saturation response of predator ingestion rate to prey density,

D. (b) Inverse transformations of both axes yield a relationship suitable for

linear regression if the predator has search time inversely proportional to

prey density (here with a predicted constant of proportionality b¼ 0.796)

and constant handling time (here taking a predicted value of a¼ 5.040 hrs).

The curved line in (a), with its equation above the graph, is derived from the

linear regression line in (b), with its equation above the graph.
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given by the co efficient of determ ination : r 2 ¼ SSexpla ined /SS total. In gen -

eral, howeve r, a study with a focus on model compari son and parame ter

estimation may be be tter suit ed to the likel ihood approaches of GLIM or

Bayesia n infer ence.

Mo dels with covari ate and categor ical facto rs are unbal anced if the

covariate takes diff erent values for one treatmen t level than for an other.

Type II SS shou ld then be used to take accoun t of any resul ting corre-

lation betw een covari ates an d factors (deta iled on page 240). In extreme

cases, wher e the co variate takes lower values for one treatment level than

for an other, the ad justment to the SS in a n ANCO VA involv es extra -

polation of the regres sion line beyo nd the ran ge of the co variate values in

one or more groups. Inter pretation of the results theref ore requires

appropri ate caveats a bout the assum ptions made by this extra polation .

ANCOVA is very sensitiv e to the assum ption of homogenei ty of var-

iances if the design is further unba lanced by having different numb ers of

observation s in each treatment level, for exampl e if a factor Sex has

different sample sizes for male and female body weights measur ed agains t

the covari ate Age.

Covar iates are gen erally analys ed as fixed factors , mean ing that the

values are set by the de sign and measur ed without error (jus t like a fixed

categorical fact or). Thi s may not be the reality, particular ly wher e a

covariate takes the role of a rando mly sampled nuisance factor, in which

case regression slopes may be underest imated (e.g., Quinn and Keough

2002 ).

How F -ratios are constructed

The model designs shown in this book all adh ere to a standar d protoco l

for constru cting e ach F-rat io with an error MS that comp rises all relevan t

components of rand om varia tion (Sch ultz 1955). We give it he re, because

it yield s the correct F-ratios for any balanced ANOV A model with

categorical factors, including designs with more than three factors. It

adapts readily to include covariates, as we will describe. For protocols

that show the weightings on each independent component of variation,

see for example Winer et al. (1991); Kirk (1994); Underwood (1997).

To find the correct error mean square for each F-ratio, make up a table

with as many rows as sources of variation. Table 3 below shows a completed

example for the cross-factored fully replicated model Y¼C|B0(A)þ e.
These are the steps to filling out the four columns in turn:
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Column I: Source of variation. List all of the sources, one per line, in their

hierarchical order from main effects and their nested effects through their

constituent interactions to the highest-order interactions and nested

components within them.

Column II: Degrees of freedom. For each source of variation, calculate its

degrees of freedom by multiplying together the number of levels for any

factors within parentheses, and the number of levels minus one for

any factors outside parentheses. For example, a source of variation given

by the interaction of two factors: B*A, with b and a levels respectively,

has (b� 1)(a – 1) degrees of freedom; a source of residual variation given

by n subjects nested in three factors: S0(C0(B*A)), with c, b and a levels

respectively, has (n� 1)cba degrees of freedom. The column sum is the

number of degrees of freedom for the total variation, which equals one

minus the product of n with all factor levels. For example, all models with

three factors have ncba� 1 total degrees of freedom, regardless of nesting

or factoring, or repeated measures.

Column III: Components of variation estimated in the population. For each

source of variation in turn, list all of the components of variation estimated

in the population by the mean square for this source. These are identified

from amongst the sources of variation in lower rows. Start with the bottom

row and work upwards towards the current row, adding each source only

if (i) it contains all of the factor(s) in the current row source, and (ii) any

other factors outside parentheses are random, or if no parentheses, any

other factors are random. Finally add in the source for the current row.

Column IV: F-ratio. For each source of variation, identify its F-ratio from

a numerator comprising the mean square of the row source, and a

denominator comprising the mean square of the error variation. Identify

the source of error variation from whichever row beneath the test row

contains all of the same components of variation in the population (in

Column III), except for the test component. This error variation is always

the source that contains all of the factors in the test component plus one

and only one random factor (Keppel and Wickens 1973). No exact test

exists if there is more than one such source.

Some models present complications beyond the remit of this protocol.

Type II and mixed models allow pooling of error terms under appropriate

conditions, detailed in the next section. Other models have sources

of variation with no exact error MS, which can be analysed with quasi

F-ratios described below on page 40. Mixed models can use an alternative

set of rules for constructing the error MS of random factors, detailed in the
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section on unrestricted models on page 242. We signal these complications

as they arise in Chapters 1 to 7, in footnotes to the ANOVA tables.

If a factor is a linea r covariate , then it will always have one d.f., because

the linea r regression is defined by two pieces of informat ion: its intercep t

and slope, and one piece of infor matio n is requir ed to sum its deviations

from horizont al: the grand mean. The resid ual error for each regres sion is

calculated with n � 2 d.f. because it sums the squared deviat ions of n

observations from their regression defined by an intercept and slope.

Table 3 demon strates how the ANOV A table is influenced by fact or C

being a categorical factor or a covariate in the model C|B0(A)þ e.

Table 3 ANOVA tables for the fully replicated, cross-factored with nesting

model Y¼C|B0(A)þ e (model 3.3 on page 98). (a) All factors are

categorical; (b) factor C is a covariate of the response. Differences between

the two tables are indicated by shading. Worked example 3 on page 51 shows

a specific application with specified numbers of factor levels and sample

sizes.

Mean square d.f.
Components of variation
estimated in population F-ratio

(a) I II III IV

1 A a� 1 S0(C*B0(A))þB0(A)þA 1/2

2 B0(A) (b� 1)a S0(C*B0(A))þB0(A) 2/6

3 C c� 1 S0(C*B0(A))þC*B0(A)þC 3/5

4 C*A (c� 1)(a� 1) S0(C*B0(A))þC*B0(A)þC*A 4/5

5 C*B0(A) (c� 1)(b� 1)a S0(C*B0(A))þC*B0(A) 5/6

6 S0(C*B0(A)) (n� 1)cba S0(C*B0(A)) –

Total variation ncba� 1

(b) I II III IV

1 A a� 1 S0(C*B0(A))þB0(A)þA 1/2

2 B0(A) (b� 1)a S0(C*B0(A))þB0(A) 2/6

3 C 1 S0(C*B0(A))þC*B0(A)þC 3/5

4 C*A (a� 1) S0(C*B0(A))þC*B0(A)þC*A 4/5

5 C*B0(A) (b� 1)a S0(C*B0(A))þC*B0(A) 5/6

6 S0(C*B0(A)) (n� 2)ba S0(C*B0(A)) –

Total variation nba� 1
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Use of post hoc pooling

The power of an F test is the ability to detect a specified difference between

two or more population means, or a linear trend across values of a cov-

ariate, with a specified level of confidence. Post hoc pooling is a technique

applied to models with ramdom factors to improve their power to detect

treatment effects by increasing the denominator degrees of freedom.

How does pooling work?

Planned post hoc pooling involves eliminating non-significant

components of variation from the ANOVA model and then pooling

mean square terms that estimate identical components of variation.

When pooling down – the most common and useful form of pooling –

the pooled error MS for a term is calculated by taking a weighted

average of the original denominator MS and the error MS of this

non-significant term, which is equivalent to summing the sums of

squares (SS) of the original terms and dividing by the sum of their

degrees of freedom:

MSpoo led ¼ ð df1 � MS 1 Þ þ ðdf 2 � MS2 Þ
df1 þ df 2

¼ SS1 þ SS2
df1 þ df 2

T he pooled M S has degrees of freedom equal to df1 þ df 2. The  F-ratio is

then recalculated and tested as normal. The precise criteria for choosing

which error terms can be pooled with which are detailed in footnotes

to the ANOVA tables in this book (follo wing Underwood 1997).

Although pooling is designed to improve power, statisticians do not agree

either about its desirability in principle, or about the criteria for identifying

non-significant components of variation for elimination. Pooling can sub-

stantially increase the statistical power of a test to detect difference among

treatments. Pooling can also increase the power of subsequent multiple

comparison tests and may therefore be desirable even if the original analysis

is already powerful enough to detect differences among treatments. On the

other hand, post hoc pooling results in the investigator seeking differences

between treatments with a design that has been modified in response to the

results from the original design for which the data were collected. More-

over, power is not always improved by pooling, and falsely pooling a term

when its effect is not zero (the result of a Type II error) can inflate the Type I

error rate for subsequent tests (Underwood 1997; Janky 2000).

Introduction to analysis of variance38



Given that pooling is a mixed blessing, when should it be used? In an

ideal world you would avoid compromising the integrity of your design

by ensuring sufficient replication to detect differences with the a priori

analysis, including all terms in the model. This should be the aim for any

experimental manipulation, but it may not be always achievable in the

presence of unmanipulated components such as blocks, or in mensurative

studies. Be wary of designs that rely on pooling to provide an exact

denominator to test a main effect or, more generally, that rely on pooling

to provide a reasonable number of denominator degrees of freedom to

test a main effect. Weigh the benefits of including random factors to test

across greater spatial scales against the costs of needing replicate samples

from across these scales, and the risk of failing to test a main effect

powerfully if the criteria for pooling are not met (see below). We

recommend pooling only when logistical considerations severely limit the

replication possible for an essential random block. For example, when it

is not possible to find, or impractical to sample, many replicate locations

nested in each level of a main effect, then post hoc pooling may be

necessary to provide a powerful test of the main effect. These con-

siderations are discussed in worked example 3, on page 51.

Statistical power is likely to be increased only by ‘pooling down’ (sensu

Hines 1996), which involves pooling the original denominator with an

MS that estimates fewer components of variation (i.e., one located lower

down in the ANOVA table). If the design accommodates post hoc pooling

in principle, appropriate terms and criteria should be identified in

advance to avoid the temptation to keep eliminating terms until the null

hypothesis is rejected. Terms and criteria for post hoc pooling are iden-

tified in the footnotes to tables in this book. Components of variation

should be eliminated only if there is a reasonable likelihood of detecting

the variation that is present among units. A common rule of thumb,

which we adopt, is to control the Type II error rate by pooling only if P >

0.25, having set a¼ 0.25 (Underwood 1997; Janky 2000). A more con-

servative set of rules for deciding when to pool is given in Sokal and

Rohlf (1995).

The alternative method: ‘pooling up’, involves pooling the original

denominator with an MS that has more components of variation (i.e.,

one located higher up in the ANOVA table). This generally produces a

higher MS which more than offsets any benefit associated with increasing

the denominator degrees of freedom. More fundamentally, finding a non-

significant interaction is not a good justification on its own for dropping

the interaction from the analysis (in effect, pooling up the original error
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term with the interaction). This is because the failure to detect a sig-

nificant interaction from the samples does not necessarily mean that there

is no interaction in the population. If it is there, and you are making a

Type II error in not finding it, then removing the interaction biases the

error MS and consequently the validity of the treatment F-ratios.

Likewise, it is not advisable to drop higher-order interactions a priori,

without testing significance. Doing so has two main shortcomings.

Firstly, assuming a lack of interaction between factors changes the test

hypothesis (see discussion in Newman et al. 1997). In effect, undeclared

terms are pooled up untested into the error MS, which compromises the

integrity of the analysis and can render meaningless any attempt to

interpret causality from the main effects. Secondly, if factors do interact,

their pooling into the error term can reduce the power of the analysis to

detect main effects (Hines 1996). Keep test questions simple in order

always to estimate all potential sources of variation.

The need to report all potential sources of variation applies particu-

larly to models that are designed to test experimental hypotheses, and

especially to those that include blocking factors. It may be less relevant to

mensurative studies aiming to isolate the factors that most influence a

response and to identify the most parsimonious explanatory model. In

this case, the ANOVA functions as a tool for model simplification and

prediction rather than for hypothesis testing. Complex, often unbalanced,

models may be simplified by testing higher-order interactions first, fol-

lowed by lower-order interactions and main effects. Each term is tested

by comparing a full model to a reduced model without that term. Non-

significant terms are dropped from the model and their variation pooled

into the residual (Grafen and Hails 2002; Crawley 2002). Since the

removal of a main effect necessitates also removing any of its higher-

order interactions, this approach upholds the fundamental principle

of ANOVA that terms be tested in hierarchical order (known as the

principle of marginality).

Use of quasi F-ratios

For some mixed and random models there is no exact F-ratio denomi-

nator for certain tests. In such cases it may be possible to add and

subtract mean squares to construct an error mean square with the

appropriate estimated components of variation. This error mean square

is then used to obtain a quasi F-ratio. The corresponding error d.f. are
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also estimated from these additions and subtractions of k mean squares,

using the following formula (e.g., Kirk 1994):

df ¼ integer
ðMS1 � � � � �MSkÞ2

MS21=df1 þ � � � þ ðMS2k=dfkÞ

" #

Examples of quasi F-ratios are given in ANOVA tables wherever they

apply in Chapters 3 to 7. Quasi F-ratios produce only crude approx-

imations to valid tests, and post hoc pooling can often provide a more

favourable alternative (Underwood 1997). We will identify these alter-

natives where they arise in ANOVA tables in Chapters 3 to 7.
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Introduction to model structures

In the following Chapters 1 to 7, we will describe all common models with

up to three treatment factors for seven principal classes of ANOVA design:

(1) One-factor – replicate measures at each level of a single explanatory

factor;

(2) Nested – one factor nested in one or more other factors;

(3) Factorial – fully replicated measures on two or more crossed factors;

(4) Randomised blocks – repeated measures on spatial or temporal

groups of sampling units;

(5) Split plot – treatments applied at multiple spatial or temporal scales;

(6) Repeated measures – subjects repeatedly measured or tested in

temporal or spatial sequence;

(7) Unreplicated factorial – a single measure per combination of two or

more factors.

For each model we provide the following information:

� The model equation;

� The test hypothesis;

� A table illustrating the allocation of factor levels to sampling units;

� Illustrative examples;

� Any special assumptions;

� Guidance on analysis and interpretation;

� Full analysis of variance tables showing all sources of variation, their

associated degrees of freedom, components of variation estimated in

the population, and appropriate error mean squares for the F-ratio

denominator;

� Options for pooling error mean square terms.
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As an introduction to Chapters 1 to 7, we first describe the notation used,

explain the layout of the allocation tables, present some worked examples

and provide advice on identifying the appropriate statistical model.

Notation

Chapters 1 to 3 describe fully randomised and replicated designs. This

means that each combination of levels of categorical factors (A, B, C) is

assigned randomly to n sampling units (S0), which are assumed to be

selected randomly and independently from the population of interest. The

sampling unit is therefore the subject or plot from which a single data

point is taken. These replicate observations provide a measurable residual

error, which is denoted by e in the model description and by S0(C B A) in

the ANOVA table. The ANOVA tables in Chapters 1 to 3 are appropriate

also to fully replicated versions of blocked designs in Chapters 4 to 6, and

this will be signalled where relevant.

Chapters 4 to 7 describe designs without full replication. This means

that each combination of levels of categorical factors is tested on just a

single independent sampling unit, leaving no measurable residual error

(residual d.f.¼ 0). In addition, the designs in Chapters 4 to 6 are not fully

randomised: those in Chapters 4 and 5 involve one or more blocking

factors that group sampling units together spatially or temporally, whilst

those in Chapter 6 involve repeated measurements taken sequentially from

the same subject. These blocking factors/subjects are denoted by S0

because they represent the only true form of replication in the model, and

the sampling units nested hierarchically within them are termed plots (P0),
sub-plots (Q0) and sub-sub-plots (R0).
The full notation used in Chapters 1 to 7 is listed in Table 4. For

meanings of ‘d.f.’, ‘SS’, ‘MS’, ‘F’, and ‘P’ in the ANOVA tables, see the

general principles of ANOVA on page 7. The Glossary on page 271

provides further summary definitions of these and other terms.

Allocation tables

For each model in Chapters 1 to 7, an allocation table shows the allocation

of treatment levels amongst replicate sampling units, illustrated with two or

more levels of each factor.We have used a consistent number of factor levels

and replicates across all allocation tables in order to facilitate comparison
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across models, but these should not be taken to indicate adequate replication

for testing effects. The amount of replication required for a given error d.f.

can be judged from inspection of the ANOVA tables. The example alloca-

tion tables below apply to fully replicated models. Models with blocking

factors or repeated measures have allocation tables with at least one extra

level of nesting. These will be explained as they arise in Chapters 4 to 6.

Table 4 Notation used in Chapters 1 to 7.

Symbol Meaning

Y Continuous response variable.

A, B, C Fixed factor (e.g., Treatment A of watering regime).

A0, B0, C0 Random factor (e.g., Treatment B0 of crop genotype).

a, b, c Number of sample levels of factor A, B, C (e.g., factor A
may have a¼ 2 levels, corresponding to ‘low’ and
‘high’).

S0, P0, Q0, R0 Random factor representing randomly selected subjects/
blocks (S0), plots (P0), sub-plots (Q0), or sub-sub-plots
(R0), to which treatments are applied.

Si, Pi, Qi, Ri, Independent and randomly chosen subject/block, plot,
sub-plot or sub-sub-plot which provides a replicate
observation of the response.

n The size of each sample, given by the number of
measures of the response in each combination of factor
levels (including any repeated measures), or by the
number of measures across all values of a covariate.

N Total number of measures of the response across all
factor levels.

B0(A) Hierarchical nesting of one factor in another (here, B0 is
nested in A).

B*A Interaction between factors in their effects on the
response (here, interaction of B with A).

e Residual variation left unexplained by the model, taking
the form S0( . . . ), P0( . . . ), Q0( . . . ) or R0( . . . ).

Y¼C|B|Aþ e Full model (here, variation in Y around the grand mean
partitions amongst the three main effects A, B, C plus
the three two-way interactions B*A, C*A, C*B plus the
one three-way interaction C*B*A, plus the unexplained
residual (error) variation e¼ S0(C*B*A) around each
sample mean. This would not be a full model if only
main effects were tested, or only main effects and
two-way interactions).
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The allocation for the factorial model below shows n¼ 4 subjects (S) in

each of a¼ 2 levels of factor A, cross factored with b¼ 2 levels of factor B,

as identified by column and row headers.

The allocation for the factorial-with-nesting model below shows n¼ 2

subjects (S) in each of b¼ 2 levels of factor B nested in each of a¼ 2 levels

of factor A, and cross factored with c¼ 2 levels of factor C, as identified by

column and row headers.

S9(B|A) A1 A2

S1 … … …
B1

… Sn … …

… … … …
B2

… Snb … Snba

Level 2 of factor
A, measured in
each level of B

Level 2 of cross factor B,
measured in each level of A 

 

1st sample of
n replicate
subjects 

(here n = 4,
 all assigned

treatment
combination

A1B1)
 

Model descriptor, showing hierarchy of 
sampling units nested in treatment levels

bath sample of n subjects, each
measured once with treatment

combination BbAa (here, the 4th
sample of four subjects,

allocated to B2A2)

A1 A2

S
�(

C
|B

(A
))

B1 B2 B3 B4

S1 … … …
C1

Sn Snb … …

… … … …
C2

… Sncb … Sncba

Level 4 of factor B�

nested in A, measured
in each level of C  

Level 1 of factor
A, measured in
each level of C

1st sample of
n replicate
subjects

(here n = 2)

Level 2 of cross factor
C, measured in each
level of B nested in A

cbath sample of n subjects,
each measured once with

treatment combination
CcBbaAa (here, the eighth
sample of two subjects,

allocated to C2B4A2)
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Examples

Examples are a valuable tool for understanding how to apply abstract

statistical models to real-world situations. For every model description

in the following chapters, we therefore outline a number of examples

to illustrate possible applications. In order to facilitate comparison

between models, two manipulative experiments reappear throughout

Chapters 1 to 7.

The first experiment hypothesises effects of up to three treatment factors

on the yield of a crop. The allocation of treatments may be completely

randomised (Chapters 1 to 3) or stratified (Chapters 4 to 6). Treatments

may be applied at the same spatial scale (e.g., Chapters 1 to 4) or different

spatial scales (Chapters 5 and 6). In field trials on crop yields, a treatment

such as watering regime may be applied most efficiently over a large block

of area, whereas sowing density can be manipulated between smaller plots,

and fertiliser between sub-plots. We consider treatments applied at up to

three nested spatial scales: block, plot and sub-plot (or plot, sub-plot and

sub-sub-plot in the case of model 5.4).

The second experiment describes the effects of up to three treatment

factors on the growth of plants within laboratory mesocosms (controlled-

environment rooms). We consider treatment levels of temperature applied

between mesocosms, and treatment levels of light and fertiliser that can be

applied within mesocosms. We also consider how to achieve adequate

replication from a small number of mesocosms, by re-using them across a

sequence of trials (a temporal blocking factor).

In addition to these descriptive applications, we present below three

detailed examples that work through the analysis of data for contrasting

types of experimental design. These worked analyses demonstrate how a

question of biological interest leads to a test hypothesis, which in turn

translates into a statistical model for analysis of variance. The first

example demonstrates a design with nested factors; the second example

illustrates a hypothesis concerning an interaction; the third example

combines nesting with cross-factored treatments in a split plot. This third

example also considers covariate analysis, and raises issues concerning

‘unbalanced’ designs and ‘unrestricted’ models which are discussed further

on pages 237 and 242.

Example datasets and statistical outputs for all the models in Chapters

1 to 7, plus the three worked examples, are available on the book’s website

at www.soton.ac.uk/�cpd/anovas.
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Worked example 1: Nested analysis of variance

Farm chickens are susceptible tomany sources of stress evenwith free-range

access to an outdoor pen. Any form of suffering is clearly undesirable from

a welfare point of view, and it can also reduce the quantity and quality of

eggs and meat for the farmer. One approach to reducing stress is to add

complexity to the animals’ environment of a type that might have been

faced by their wild ancestors, and to which they may have evolved beha-

vioural and physiological adaptations. The experiment below tests whether

the wellbeing of free-range hens improves with a challenge to their foraging

skills in the form of a less predictable availability of food. The response

variable is the concentration of the hormone cortisol, which can be sampled

from blood or saliva and is a good indicator of an individual’s state of stress.

Test hypothesis

Does higher uncertainty in the location of food reduces physiological

stress? The hypothesis was tested experimentally by measuring cortisol

levels in hens subjected to predictable and unpredictable distributions of

their food. Food predictability was manipulated in communal outdoor

pens by distributing the same volume of grain either evenly or in small and

randomly sited patches over the ground. Pens were randomly assigned to

treatment levels and hens were randomly assigned to pens. Although the

design has a single treatment factor it does not suit one-way ANOVA

because responses were measured per individual, whereas the treatment

levels of food predictability were applied to pens. This mismatch between

the scale of treatment application and the scale of measurement means

that pen must be declared as a second factor in the model. Each pen

received just one food treatment, so the random factor Pen was nested in

treatment factor Food. Each hen was present in just one pen, so the

random factor Hen was nested in Pen. This gives model 2.1 (page 68):

Model

Cortisol¼Pen0(Food)þ e

Factors Levels Values

A. Food 2 ‘Even’ and ‘Patchy’
B. Pen(Food) 4 ‘1’, ‘2’, ‘3’, ‘4’ in Even, ‘5’, ‘6’, ‘7’, ‘8’ in Patchy
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Allocation table

The table shows Cortisol concentration (�g/dl) in samples of n¼ 3 replicate

hens (S0) in eachofb¼ 4Pens (B0) at eachofa¼ 2 levelsofFoodtreatment (A).

The data were arranged in three columns: Food, Pen and Cortisol

concentration. Although the experiment used a total of eight pens, these

were coded as numbers 1 to 4 repeated in each level of Food, as demanded

by some software packages to reflect the balanced design.

A balanced ANOVA was computed, requesting analysis of Y against

the terms: AþB(A), with B declared random.

ANOVA table

Food Pen Cortisol

1 1 15.5
1 1 16.2
1 1 15.0
1 2 18.7
. . . . . . . . .
. . . . . . . . .
2 4 9.9

Even Patchy

S
9(

B
(A

))

1 2 3 4 5 6 7 8

15.5 18.7 12.0 12.4 16.1 7.5 5.2 8.8

16.2 15.0 15.0 10.4 7.3 7.2 9.4 10.3

15.0 20.8 13.2 9.5 10.5 10.8 5.5 9.9

Food is a fixed factor, Pen is a random factor:

Source of variation d.f. Mean square F-ratio F P

1 Food 1 177.127 1/2 8.64 0.026
2 Pen0(Food) 6 20.498 2/3 3.78 0.016
3 Hen0(Pen0(Food)) 16 5.424

Total variation 23
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The analysis shows that the mean cortisol concentration differed among

pens within each treatment level (F6,16¼ 3.78, P¼ 0.016). Over and above

the variation at this scale, however, cortisol concentration was influenced

by food predictability (F1,6¼ 8.64, P¼ 0.026). Mean cortisol concentra-

tion was lower on average in pens with a patchy distribution of food than

in pens with an even distribution of food. Note that the error d.f. for the

treatment effect depend on the number of replicate pens per treatment

level (F-ratio: 1/2) and not on the number of replicate hens per pen. Thus

the power of the test could have been improved with more replicate pens,

but not directly with more replicate hens.

The experiment suggests an impact of food predictability on welfare,

which now requires further exploration. The patchily distributed food

caused the hens to spend longer foraging and to interact more with each

other, and either time or interaction could have been primary causes of

the observed differences. The timing of sampling, the number of hens per

pen, and the previous history of the hens may all influence the result. These

could be investigated further with tests for changes in cortisol concentra-

tion associated with swapping from one regime to the other (see repeated-

measures models in Chapter 6). Although stress tends to raise cortisol

levels, a history of trauma can cause unusually low levels. It would thus

be sensible to test for long-term benefits of food predictability with

complementarymeasures of welfare such as weight gain or egg production.

Worked example 2: Cross-factored analysis of variance

Bullheads (Cottus gobio) and stone loach (Barbatula barbatula) are sym-

patric stream fish that prey on benthic macro-invertebrates such as

Chironomid larvae. Although ecologically similar to each other, they have

contrasting foraging strategies. Bullheads are sit-and-wait ambush pre-

dators, whereas stone loach actively search for prey. Predation can be

important in limiting the abundance of prey species. Moreover, predators

may facilitate each other’s prey capture if behavioural responses of prey to

one predator make them more vulnerable to attack from the other.

Test hypothesis

The test hypothesis is that bullheads and stone loach both reduce the

density of Chironomid larvae, and their combined effect is greater than the

summed effects of the two species in isolation.
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The hypothesis was tested experimentally by stocking five bullheads,

five stone loach, or five bullheads plus five stone loach into enclosures in a

stream. A fish exclosure treatment was used as a control. Each of the four

treatments was replicated five times. Fish were held in the cages for 21

days. At the end of the experiment, the gravel substrate in the base of

each enclosure was sampled to estimate densities of Chironomid larvae

remaining. Prey density was expressed as individuals/m2 and log-

transformed to normalise residuals. The data were analysed by two-factor

ANOVA, with presence and absence of bullheads and presence and

absence of stone loach as fixed factors (model 3.1(i) on page 82). This

design is orthogonal since each predator is held with and without the

other. Because the enclosures contain different densities of fish, the

influence of consumer density confounds the influence of species presence

or absence. However, the effect of all individuals consuming Chironomids

equally will show up in the analysis of variance as equally strong main

effects for each species. The interesting test in this analysis is the interac-

tion between species, with a significant interaction indicating that one

species hinders or facilitates the other’s access to the food resource.

Model

Density¼Bullhead | Stone loachþ e

Allocation table

The table shows Chironomid density (log10(individuals/m
2)) in samples of

n¼ 5 replicate cages in each of ba¼ 4 combinations of levels of Stone

loach*Bullhead.

Factors Levels Values

A. Bullhead 2 ‘Absent’ and ‘Present’
B. Stone loach 2 ‘Absent’ and ‘Present’

Bullhead

S�(B|A) Absent Present

Absent 3.89 3.94 4.19 3.99 4.04 3.94 4.01 4.21 4.10 4.02Stone
loach

Present 3.48 3.81 4.08 3.63 3.64 3.60 3.94 3.86 3.96 3.62
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The analysis was computed by requesting the model Y¼B|A,

after arranging the data in three columns: Bullhead, Stone loach and

Chironomid density:

ANOVA table

The analysis shows no interaction between the fish species in their impacts

on Chironomid larvae in the cage enclosures (F1,16¼ 0.02, P¼ 0.882). This

non-significant result was obtained despite high power to detect a real

effect, given by the 16 error d.f. (see page 248 for further discussion of

statistical power). The density of larvae was reduced in the presence of

stone loach (F1,16¼ 13.79, P¼ 0.002), by an amount that was unaffected

by the addition of bullheads, which had no discernable impact on larval

abundance (F1,16¼ 0.61, P¼ 0.446). The full analysis described in Davey

(2003) included water velocity as a covariate to control for variation in

physical conditions between enclosures.

Worked example 3: Split-plot, pooling
and covariate analysis

The inter-tidal barnacle Semibalanus balanoides is a small crustacean

abundant on European rocky shores. With an entirely sessile adult stage

Bullhead and Stone loach are both fixed factors:

Source of variation d.f. Mean square F-ratio F P

1 Bullhead 1 0.01624 1/4 0.61 0.446
2 Stone loach 1 0.36721 2/4 13.79 0.002
3 Stone loach*Bullhead 1 0.00061 3/4 0.02 0.882
4 Cage0(Stone loach*Bullhead) 16 0.02663

Total variation 19

Bullhead Stone loach Density

Absent Absent 3.89
Absent Absent 3.94
Absent Absent 4.19
Absent Absent 3.99
. . . . . . . . .
. . . . . . . . .
Present Present 3.62
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and internal cross-fertilisation, adults can reproduce only if they live

within a penis-reach of neighbours. Although they are hermaphrodite and

have penises up to ten times their body length, this mode of reproduction is

likely to cause larvae to aggregate close to adult conspecifics when they

settle out from pelagic waters onto inter-tidal rocks. Larvae may be less

strongly influenced by the presence of adults on shores that have a gen-

erally high level of recruitment, however, because of the greater chance of

other larval settlers recruiting close by.

Test hypothesis

The test hypothesis is that adult clusters influence larval settlement, with

an effect of cluster size that depends on background levels of recruitment.

The hypothesis was tested experimentally by measuring the densities of

barnacles settling onto replicate patches of inter-tidal rock face during the

spring settlement season. Each patch had been scraped clean of barnacles,

except for a central cluster left untouched, which comprised either

two, eight or 32 adults. To test for an influence of background levels of

recruitment, patches were prepared on replicate shores of high and low

recruitment. Analysis called for an ANOVA that cross factored the

treatment with shores nested in recruitment type, which is split-plot model

5.6(i) on page 167. Because the design is fully replicated, however, it can be

analysed using the equivalent completely randomised design (model 3.3(i)

on page 98). We will show the analysis first with treatment as a fixed factor

and then with treatment as a covariate.

With a limited budget for the experiment, it was decided to sample just

two independent replicate shores within each level of recruitment. The

Recruitment effect has an F-ratio denominator given by the MS for

Shore0(Recruitment), and the low replication means it is tested with only

two error d.f.; in other words, with little power to detect a difference. This

is apparent from inspection of the table for model 3.3(i) on page 101,

where factor A (¼ Recruitment) has an F-ratio denominator given by the

MS for B0(A) (¼ Shore0(Recruitment)), with (b – 1)a error d.f. (¼ (2 –

1) · 2). Preliminary observations had suggested, however, that the two

high recruitment shores were similarly high, and the two lowwere similarly

low, which could then permit pooling error terms (see footnote a to the

ANOVA table for model 3.3(i) on page 101). With three replicate patches

per sample and three samples per shore, this apparent similarity between

shores could be tested with 24 error d.f. giving a high power to avoid
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falsely accepting the null hypothesis of no difference between shores. The

Treatment effect has an F-ratio denominator given by the MS for

Treatment*Shore0(Recruitment), and having three treatment levels means it

will be tested with only four error d.f., unless there is no variation between

shores in the treatment effect. Doing the analysis will illustrate this weak-

ness, and point to design improvements.

Model

Density¼Treatment | Shore0(Recruitment)þ e

Samples of three replicate Patches (S0) are nested in each level of

the Treatment (C) on each shore (B0), which is nested in background

Recruitment (A).

Allocation table

The table shows larval settlement density (square-root(cm-2)) in samples

of n¼ 3 replicate Patches in each of c¼ 3 levels of Treatment C for each of

b¼ 2 levels of Shore B nested in each of a¼ 2 levels of Recruitment A.

Factors Levels Values

A. Recruitment 2 ‘High’ and ‘Low’ background recruitment
of barnacles

B. Shore(Recruitment) 2 ‘Cowes’ and ‘Seaview’ in High,
‘Totland’ and ‘Ventnor’ in Low

C. Treatment 3 ‘2’, ‘8’ and ‘32’ adult barnacles in remnant
cluster

High recruitment Low recruitment
S9(C|B(A)) 

Cowes Seaview Totland Ventnor

2 0.386 0.397 0.279 0.411 0.260 0.190 0.177 0.300 0.304 0.302 0.278

8 0.484 0.482 0.625 0.531 0.478 0.268 0.261 0.396 0.402 0.351 0.254

T
re

at
m

en
t

32 0.484 0.520 0.738 0.570 0.620 0.384 0.319 0.334 0.244 0.401 0.324

0.432

0.514

0.569
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The data were arranged in four columns: Recruitment, Shore, Treat-

ment and the numeric Density:

Mean squares were computed in a statistics package by requesting ana-

lysis of terms: C|AþC|B(A), with Shore (B) declared a random factor. In

the table below, the F-ratios were calculated using the ‘restricted model’,

which follows the protocol for constructing F-ratios described on page 35.

The issue of restricted and unrestricted models is discussed on page 242.

ANOVA table

Recruitment and Treatment are fixed factors, Shore is a random block:

Source of variation d.f. Mean square F-ratio F P

1 Recruitment 1 0.3008 52 1/pooled(2þ 6)a 79.60 <0.001
2 Shore0(Recruitment) 2 0.0031 36 2/6b 0.82 0.453
3 Treatment 2 0.0720 71 3/5c 7.18 0.047
4 Treatment*Recruitment 2 0.0166 22 4/5c 1.66 0.299
5 Treatment*Shore0
(Recruitment)

4 0.0100 32 5/6 2.62 0.060

6 Patch0(Treatment*
Shore0(Recruitment))

24 0.0038 33 –

Total variation 35

a
The MS Shore0(Recruitment) gives a Recruitment effect F1,2¼ 95.93, P¼ 0.010.
Because Shore0(Recruitment) has P> 0.25, however, we assume negligible
variance between nested shores, and make a more powerful test from
the pooled error MS:[SS{Shore0(Recruitment)}þ SS{Patch0(Treatment*Shore0
(Recruitment))}]/[2þ 24] with 26 d.f. See page 38.

b
Many packages default to an unrestricted model of random effects, which uses
Treatment*Shore0(Recruitment) as the error MS, giving a Shore0(Recruitment)
effect F2,4¼ 0.31, P¼ 0.748. See page 242.

c
Treatment*Shore0(Recruitment) has P< 0.25, ruling out post hoc pooling for
Treatment or Treatment*Recruitment.

Recruitment Shore Treatment Density

High Cowes 2 0.386
High Cowes 2 0.397
High Cowes 2 0.432
High Cowes 8 0.484
. . . . . . . . . . . .
. . . . . . . . . . . .
Low Ventnor 32 0.324
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The analys is indica tes that the respo nse density of sett ling ba rnacles

depended on the back ground level of recrui tment ( F1,26 ¼ 79.60,

P < 0.001) irre spective of shore (F2,24 ¼ 0.82, P > 0.05), an d it de pended on

the treatment of remnant cluster size (F2,4 ¼ 7.18, P < 0.05) also irresp ec-

tive of shore ( F4,24 ¼ 2.62, P > 0.05) . Se ttlement den sity increased with

cluster size irre spective of ba ckground recruitme nt (F2,4 ¼ 1.66, P > 0.05) .

Note that the design allowed only four error d.f. for testing the treat -

ment effect and its inter action with recrui tment. Thi s meant that a sig-

nificant effect could be detect ed only from an exp lained componen t of

variation that had more than seven times the magn itude of the une x-

plained co mponent (becaus e the result: F2,4¼ 7.18 gave P¼ 0.047, which

lies just within the 0.05 threshold for significance). In fact, the full

experiment described in Ken t et al . (2003) had six levels of treatment , with

cluster sizes of ‘0’, ‘2’, ‘4’, ‘8’, ‘16’, ‘32’, and the three extra levels gave ten d.f.

for the error MS of Treatment*Shore0(Recruitment) in row 5. The greater

range of treatment levels resulted in a much stronger treatment main effect

of F5,10¼ 7.05, P¼ 0.005; in other words, the six extra error d.f. helped to

reduce the probability of falsely rejecting the null hypothesis by a factor of

ten. Could the same improvement have been achieved by instead

increasing the replication of patches to six per sample? Most likely not,

since the within-sample replication does not directly influence the tests for

Treatment and Treatment*Recruitment. These considerations illustrate

the value of planning for analysis of variance at the design stage, in order

to make the best use of available resources.

The analysis can also be done with Treatment as a covariate. We will

describe the ANCOVA for the purposes of comparison, although it will be

seen to provide an inferior analysis. Where previously we had three pat-

ches in each of 12 samples, we now have nine patches in each of four

samples, because the three levels of Treatment now belong to one sample

(instead of three), from which a regression is calculated at each level of

Shore. As before, the Treatment effects in rows 3 and 4 below are tested

against Treatment*Shore0(Recruitment) in row 5. In effect, the slope of the

single regression for the Treatment main effect (row 3), and the variation

in slopes of the two regressions for Treatment*Recruitment (row 4), are

both calibrated against the variation in slopes between the shores within

each level of Recruitment. This time the calibration is accomplished with

only two error d.f. (compared to four with a categorical treatment),

because of the reduced number of samples. The residual d.f. are corre-

spondingly larger, at (n – 2) · (1 · 2 · (2))¼ 28, with n¼ 9 responses per

regression per shore and a total of four shores.
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Note that some statistics packages will show ‘adjusted SS’ for

Recruitment and Shore0(Recruitment) that differ from the ‘sequential SS’,

even though the design is balanced and should be analysed with the

sequential SS. The difference is caused by the statistics package employing

a Type III adjustment, which adjusts each main effect for its interaction as

well as for the other main effects. The issues of balance and adjusted SS are

discussed in more detail on page 237. Some packages will use the residual

term in row 6 as the default error MS for testing the main effects in rows 3

and 4, in effect ignoring the designation of shore as a random factor for the

purposes of the regressions.

ANCOVA table

With only two error d.f. for testing the treatment main effect, this now

appears as a non-significant covariate. These reduced error d.f. mean that

the ANCOVA has lost power to distinguish the treatment effects of

interest, and this time there are no gains in error d.f. to be had from testing

more levels of Treatment. In addition, graphing the response against

Treatment at each shore reveals a decelerating rise in settlement density

with cluster size, at least on some shores. There is thus little biological

information to be gained even from an ANCOVA that treats Shore as a

fixed factor for the purposes of the regressions (the default option in many

Recruitment is a fixed factor, Shore is a random block, Treatment is a

covariate:

Source of variation d.f. Mean square F-ratio F P

1 Recruitment 1 0.3008 52 1/pooled(2þ 6)a 55.73 <0.001
2 Shore0(Recruitment) 2 0.0031 36 2/6 0.56 0.575
3 Treatment 1 0.0972 97 3/5 6.30 0.129
4 Treatment*
Recruitment

1 0.0256 29 4/5 1.66 0.327

5 Treatment*
Shore0(Recruitment)

2 0.0154 46 5/6b 2.78 0.079

6 Patch0(Treatment*
Shore0(Recruitment))

28 0.0055 60 –

Total variation 35

a
Pooling as in the previous table.

b
Treatment*Shore0(Recruitment) has P< 0.25, ruling out post hoc pooling for
Treatment or Treatment*Recruitment.

Introduction to model structures56



packages), and consequently deploys the 28 residual d.f. for measuring the

regression errors. For this particular experimental design, a much more

powerful and informative test was obtained from the ANOVA with

Treatment as a categorical factor. The categories of Treatment moreover

allow further post hoc testing (see page 245) to show that Density is most

sensitive to smaller cluster sizes.

In general, designating a factor as a covariate may decrease its error d.f.,

and hence reduce the power of the analysis to distinguish effects of

interest, if the model includes random cross factors (as here). Conversely,

designating a factor as a covariate may increase its error d.f. if the factor

would otherwise be treated as a random block or if any other cross factors

are fixed, and always assuming that the covariation describes a linear

response. These differences will be signalled as they arise in Chapters 1 to 3

of the model structures.

Key to types of statistical models

Use the key below to identify the appropriate chapter of model structures

on the following pages, then peruse the illustrations of alternative designs

to find one that matches your data structure.

(1) Can you randomly sample from a population with independent

observations? Yes ! 2; No ! the data may not suit statistical analysis

of any sort (see design considerations on page 15).

(2) Are you interested either in differences between sample averages or in

relationships between covariates? Yes ! 3; No ! the data may not

suit ANOVA or ANCOVA.

(3) Does one or more of your explanatory factors vary on a continuous

scale (e.g., distance, temperature etc.) as opposed to a categorical

scale (e.g., taxon, sex etc.)? Yes ! consider treating the continuous

factor as a covariate and using ANCOVA designs in Chapters 1 to 3;

this will be the only option if each sampling unit takes a unique value

of the factor; No ! 4.

(4) Can all factor levels be randomly assigned to sampling units without

stratifying any crossed factors and without taking repeated measures

on plots or subjects? Yes ! 5; No ! 9.

(5) Are all combinations of factor levels fully replicated? Yes ! 6; No !
use an unreplicated design (Chapter 7).
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Fully randomised and fully replicated designs

(6) Do your samples represent the levels of more than one explanatory

factor? Yes ! 7; No ! use a one-factor design (Chapter 1).

(7) Is each level of one factor present in each level of another? Yes ! 8;

No ! use a nested design with each level of one factor present in

only one level of another (Chapter 2).

(8) Use a fully replicated factorial design (Chapter 3), taking account of

any nesting within the cross factors (models 3.3 to 3.4).

Stratified random designs

(9) Are sampling units grouped spatially or temporally and all

treatment combinations randomly assigned to units within each

group? Yes ! use a randomised-block design (Chapter 4), with

analysis by corresponding Chapter-3 ANOVA tables if fully

replicated; No ! 10.

(10) Are treatments applied at different spatial scales and their levels

randomly assigned to blocks or to plots within blocks, etc.? Yes !
use a split-plot design (Chapter 5), taking account of nesting among

sampling units. No ! use a repeated-measures design (Chapter 6),

taking account of repeated measures on each sampling unit in a

temporal or spatial sequence. Analyse with corresponding Chapter-3

ANOVA tables if fully replicated.

How to describe a given design with a statistical model

Follow these steps to work out the statistical model associated with a given

design. Then go to the appropriate chapter of the book to evaluate the

amount of replication needed to give sufficient error d.f. for testing the

effects of interest (see also page 248 on choosing experimental designs).

(1) Define your independent and random sampling units (S0, usually

subjects or plots) from which you measure the response variable (Y),

and decide how many factors contribute to explaining variation in Y.

This book deals with up to three factors, so let’s imagine you have

three, which we will label A, B and C.

(2) You will have a fully replicated design if each sample has n> 1

replicates each measured once. The model then has S0 nested in all of
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the explanatory factors, in the form Y¼ S0(C B A), where the factors

within the parenthesis are variously crossed or nested with each other

as illustrated in Chapters 1 to 3. For example, factor B is nested in A

if each level of B belongs to (or is treated to) only one level of A;

factor C is cross factored with B if each level of C is represented in (or

treated to) each level of B. These models are conventionally described

without direct reference to S0, as ‘Y¼C|B0(A)þ e’, etc. Here, the term

e refers to the unexplained (residual) variation of the S0 around their

sample means: S0(C|B0(A)). In a statistics package, request the model

without reference to e, as ‘C|AþC|B(A)’, etc. (further detailed on

page 258).

(3) If the design is not fully replicated, it may have repeated measures at

one or more levels, or be fully unreplicated. Your design will have

repeated measures if you measure each subject or plot, or level of a

blocking factor, at more than one level of a crossed factor. For

example, with repeated measures on subjects over time (C), the model

takes the form Y¼C|S0(B A). The subjects S0 are nested in the

remaining factors A and B, because each subject belongs to (or is

treated to) only one level or combination of levels of these factors. We

now decide whether B is nested in A, meaning that each level of B

belongs to (or is treated to) one level of A, giving the full model:

Y¼C|S0(B0(A)) as described on page 214. Alternatively, B may be

cross factored with A, meaning that each level of B is represented in (or

treated to) each level of A, giving the full model Y¼C|S0(B|A) as

described on page 220. The lack of full replication means that these

models have no true residual variation e. Your statistics package may

fail to complete the analysis on account of this, unless you declare all

terms except the highest-order term (always the last numbered row

with non-zero d.f. in the ANOVA tables in this book; see also

page 258). If the repeated measures are taken within spatial blocks,

then you will have a randomised-block or split-plot design, which has

various forms illustrated in Chapters 4 to 6.

(4) The design is fully unreplicated if you have just one data point at each

combination of levels of the factors (n¼ 1). These models of the form

Y¼C|B|A are described in Chapter 7. As with repeated measures, the

lack of replication means that they have no true residual variation e.

A suitable statistics package can calculate SS for any of the models in

this book if you declare all of the numbered terms shown in the relevant

ANOVA table except for the last numbered term with non-zero d.f. (which
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the package will use as residual variation), and any terms with zero d.f.

Use the package with care when applying it to a complex model, and check

its outputs by comparing them to the relevant ANOVA table in the book.

If necessary, calculate the correct F-ratios by hand.

In worked example 1 on page 47, the response of cortisol concentration

was measured on replicate hens S0. There were two factors: food predict-

ability (A), with two levels: even and patchy food, and pen (B0), with four

levels per level of A. Each level of B was tested at only one level of A so the

design was nested (as opposed to cross-factored). The hierarchical struc-

ture of nesting is therefore Y¼ S0(B(A)), which we conventionally write

as Y¼B(A)þ e. Because of the nesting, it may need to be requested

in a statistics package in a more expanded form: AþB(A), declaring

B random.

In worked example 2 on page 49, the response of Chironomid larval

density was measured in replicate cages S0. There were two factors: bull-

head (A) and stone loach (B), each with two levels: present or absent. The

design was fully replicated, with samples of n¼ 5 replicate cages, each

measured once. Each level of B was treated to each level of A so the design

was cross factored (as opposed to nested). The hierarchical structure

of nesting is therefore Y¼ S0(B|A), which we conventionally write

as Y¼B|Aþ e, and which can be requested in a statistics package as

Y¼B|A.

In worked example 3 on page 51, the response of barnacle settlement

density was measured in replicate patches (S0) of cleared rock face. There

were three factors: background recruitment (A), shore (B0) and treatment

(C). The design was fully replicated, with samples of n¼ 3 replicate pat-

ches, each measured once, so it takes the form: Y¼ S0(C B A). Within the

parenthesis, each shore was present in only one level of background

recruitment, giving a nested component: B0(A); each level of treatment was

present in each shore and level of recruitment, adding a cross-factored

component: C|B0(A). The hierarchical structure of nesting is therefore

Y¼ S0(C|B0(A)), which we conventionally write as: Y¼C|B0(A)þ e.
Because of the nesting, it may need to be requested in a statistics package

in a more expanded form: C|AþC|B(A), declaring B random.
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1

One-factor designs

The simplest form of analysis of variance is the one-factor ANOVA, which

seeks to compare the means of a levels of a single factor A. Each sampling

unit (S0) is tested or measured in just one level of factor A, so sampling

units are nested within A. In manipulative experiments, in which the

investigator actively creates differences among sampling units by imposing

treatments, a levels of factor A are assigned randomly amongst na sam-

pling units, giving n independent replicate measures for each level of

A. For example, to investigate the effect of herbivore attack on leaf

chemistry, na plants are each subjected to one of a types of mechanical

defoliation. In mensurative studies, in which the investigator exploits pre-

existing differences among sampling units, n independent subjects are

drawn randomly from each of a populations. For example, the effect of

herbivore attack on leaf chemistry could be examined by comparing n

randomly selected plants showing evidence of herbivore browsing with n

randomly selected undamaged control plants.

The sampling unit for a given factor level is the subject or plot:

Subject or plot S9 replicated in a sample S1

…

…

Sn
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Assumptions

One-factor designs have no assumptions other than those common to all

ANOVA models (page 14). Most importantly, every sampling unit or

observation should be independent of all others. Repeated measurements

taken from the same sampling unit are nested within that unit and should

be analysed using a nested model (Chapter 2). For example, multiple

leaves measured on the same plant will be correlated; treating them as

independent instead of nested replicates constitutes pseudoreplication

(Hurlbert 1984) and will inflate the Type I error rate.

Analysis

In the table below, we assume that samples sizes are balanced (i.e., equal n

for each level of factor A). Outputs are identical for unbalanced sample

sizes, except that the error d.f. ¼ N – a, where N ¼ the total number of

measures of the response across all factor levels. Such designs are never-

theless more sensitive to violation of the assumptions of ANOVA

(page 14), particularly homogeneity of variances.

1.1 One-factor model

Model

Y ¼ Aþ e

Test hypothesis

Variation in the response Y is explained by a single factor A.

Description

Each level of A has n independent replicate subjects or plots (S0). In effect,

samples of n subjects or plots are nested in (belong to) levels of factor A.

Each subject is measured once.

Factors Levels

A a
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Allocation table

The table illustrates samples of n ¼ 4 replicate subjects nested in each of

a ¼ 4 levels of A.

Examples

(1) H1: Stress in free-range hens depends upon uncertainty in the

distribution of their grain, tested by measuring cortisol levels of hens

housed in n replicate Pens (S0) at each of a levels of food Patchiness

(A). Worked example 1 on page 47 describes the experimental design

in more detail. One-factor ANOVA on a response variable

comprising the mean cortisol level of each cage will yield an A effect

identical to that from the two-factor analysis shown in the worked

example.

(2) H1: Crop yield depends on Watering regime (A), with a regimes

randomly assigned amongst na Plots (S0). The response is the yield

from each plot, measured at the end of the experiment.

(3) H1: Plant growth depends on Temperature (A), with a Temperatures

randomly assigned amongst na Mesocosms (S0). The response is the

mean growth of plants in each mesocosm.

(4) H1: Breeding success of gull pairs (S0) is influenced by a commercial

egg Harvest (A), with three levels of impact: undisturbed control,

disturbed by collectors, harvested by collectors. Planned contrasts

can test for a general effect of disturbance compared to the control,

and a difference in the effects of removing eggs compared to

disturbance only (see page 245 for uses of contrasts). If it were

possible to remove eggs without disturbance, then disturbance and

harvest could have been treated as independent and fully crossed

factors using model 3.1.

S
9(

A
)

A1 A2 A3 A4

S1 … … …

… … … …

… … … …

Sn … … Sna
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Comparisons

Whe n a ¼ 2, the analys is is equivalen t to a Studen t’s t test wi th N – 2 d.f.

and the stat istic t ¼ p 
F .

Model 1.1 can be extended to include repli cate measuremen ts taken on

each sampl ing unit (model 2.1 ) or a second, crosse d fact or applie d to

sampl ing units (model 3.1). Lev els of a second, crosse d factor may also be

tested simultaneously in sub-plots (P0) within each plot (S0), giving split-

plot model 5.6 , or tested sequ entially on each subject (S 0 ), givin g repeat ed
measur es model 6.3 .

In testing the effect of a single treatment factor A, model 1.1 has similar

objectives to randomised-block model 4.1 and repeated-measures model

6.1. Crucially it differs from both in that the assignment of the a levels of

factor A to sampling units is completely randomised. Randomised-block

model 4.1 accounts for sources of unwanted background variation among

plots by grouping them into blocks either spatially or temporally. The

random assignment of treatments to sampling units (plots within blocks) is

then stratified so that every level of factor A is represented once in every

block. Repeated-measures model 6.1 achieves the same goal by testing the

levels of A sequentially on each subject. The order in which the treatments

are assigned to sampling units (times within each subject) is randomised

within each subject.

Notes

Care should be taken when testing and interpreting the effect of factors

that represent different locations or times. For example, consider a

study in which barnacle settlement density is measured on replicate

patches of rock at three elevations (A) on a single shore. Because shore

elevation is confounded by other sources of spatial variation across the

shore, such as trampling intensity or predation pressure, any significant

effect of A can be interpreted only as indicating differences in barnacle

density with elevation on that particular shore, not as general differences

among elevations on all shores. Moreover, the cause of any variation

among elevations cannot be determined without further experimenta-

tion. Similarly, in a study in which the condition of blackbirds is mea-

sured in each of four seasons (A) of a year, season is confounded by

other sources of temporal variation such as short-term weather events or

longer-term climatic fluctuations. Any significant effect of A can be

interpreted only as indicating differences in condition with season in
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that particu lar year. The nul l hypo thesis being test ed is therefo re ‘no

difference amon g posit ions or tim es’, rather than ‘no differen ce among

elevations or seasons ’. To test the more general seco nd hypothesi s woul d

require an e xperimental de sign in whi ch the levels of elevation or season

are repli cated independ ently in space or time (see page 16 for details) .

This co uld be a chieved by rep eating the barnacl e settlemen t study at the

same three elevat ions on a number of replicate shores (B 0 ), or measuring

the con dition of blackbi rds in spring , summ er, autumn and winter in a

number of replicate years (B 0 ). The design is then analys ed with mod el

3.1 if it has replicates at each level of B 0 *A or oth erwise by model 6.1 in

a subject -by-tri al design. The power to iden tify a main effect of elevation

or season now dep ends on the number of repli cate shores or years ( b)

rather than the num ber of rep licate patches of rock at each elevat ion or

the num ber of indivi dual birds measur ed in each season (n).

An alternati ve method is to measur e elevation as a covari ate on a

continuous scale as opposed to categor ical levels, in order to seek a linear

trend in barnacl e sett lemen t with elevat ion. Provided the elevation of each

plot is measur ed without error, the co variate ceases to block unmeasur ed

variation an d can be treat ed as a fixed factor (see pa ge 29 on uses of

covariates) . 

ANOVA table for analysis of the term A

ANCOVA table for analysis of the term A

Examples 2 and 3 above could designate A as a covariate.

The model describ es a linear regres sion on A. Figu re 2 on page 11

illustrates an example of a regression analysis with single covariate of the

Model 1.1 ( i) A is a fixed or random factor:

Mean square d.f. 

Components of
variation
estimated
in population F-ratio

1 A a � 1 S0  (A)þ A 1/2
2 S0(A) (n� 1)a S0(A) –

Total variation na� 1
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response. The allocation table below illustrates one sample of n ¼ 16

subjects each taking one of a ¼ 4 values of covariate A. Note that a full

analysis is possible with or without replicate subjects for each value of A.

The n subjects must sample a minimum of three values of A to allow

evaluation of the assumption of a linear response.
S

9(
A

)

A1

S1 … … …

… … … …

… … … …

… … … Sn

A2 A3 A4

Model 1.1(ii) A is a covariate of the response:

Mean square d.f.

Components of
variation estimated
in population F-ratio

1 A 1 S0(A)þA 1/2
2 S0(A) n� 2 S0(A) –

Total variation n� 1
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2

Nested designs

Nested designs extend one-factor ANOVA to consider two or more

factors in a hierarchical structure. Nested factors cannot be cross fac-

tored with each other because each level of one factor exists only in one

level of another (but see models 3.3 and 3.4 for cross-factored models

with nesting). Nested designs allow us to quantify and compare the

magnitudes of variation in the response at different spatial, temporal or

organisational scales. They are used particularly for testing a factor of

interest without confounding different scales of variation. For example,

spatial variation in the infestation of farmed salmon with sea lice could be

compared at three scales – among farms (A0), among cages within each

farm (B0) and among fish within each cage (S0) – by sampling n fish in

each of b cages on each of a farms. Similarly, seasonal variation (A) in

infestation of farmed salmon by sea lice, over and above short term

fluctuations in time (B0), could be measured by sampling n independent

fish on b random occasions in each of a seasons.

Designs are inherently nested when treatments are applied across one

organisational scale and responses aremeasuredat a finer scale. For example

the genotype of a plant may influence the mean length of its parasitic fungal

hyphae. A test of this hypothesismust recognise the fact that hyphae grow in

colonies (S0) that are nestedwithin leaves (C0),which in turnare nestedwithin
plants (B0), which in turn are nested in genotype (A0) (discussed further on

page 23). In effect, the nested design accounts for correlation among repe-

ated measurements taken from the same plant or leaf.

Nested factors are generally random in order to ensure that higher-

order factors are sampled representatively. Fixed nested factors are

unusual but may be needed if levels of the nested factor are not selected at

random; for example if the purpose is to control for variation between

taught classes of students nested within year-group. The fixed classes
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must then be designa ted such that the rando m subject s nested within

them also sample the higher-ord er facto rs repres entativel y.

The sampling unit for a given combinat ion of fact or level s is the subject

or plot:

Assumptions

Nest ed de signs have no assum ptions other than those common to all

ANOV A mod els (page 14). Note, howeve r, that the levels of an y ran dom

facto rs are deemed to be draw n from an infinit e (or effe ctively infi nite)

popul ation, an d that if the fact or is used as an error term, its sampl es of

level means are assum ed to be normal ly distribut ed wi th homogen eous

varia nces be tween samples.

Analysis

The nested designs below all have the nested factor being measured at the

sa me num be r of leve ls in eac h le ve l of the higher -order fact or. I mba lance in

nested designs results in inexact F tests for all but the last term in the model.

Consider using S atte rthw a ite’s approx imati on (Sokal and Rohlf 1 995 ), o r

deleting data points at random to reinstate balance (see page 237).

2.1 Two-factor nested model

Model

Y ¼ BðAÞ þ e

Test hypothesis

Variation in the response Y is explained by treatment A and by grouping

factor B nested in A.

Subject or plot S9 replicated in a sample S1

…

…

Sn
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Description

Samples of n subjects or plots (S0) are nested in levels of grouping factor B

which are nested in levels of treatment A. Each subject is measured once.

Allocation table

The table illustrates samples of n ¼ 4 replicate subjects in each of b ¼ 2

levels of B nested in each of a ¼ 2 levels of A.

Examples

(1) H1: Academic performance of students depends upon Tutorial system

(A), tested by assigning each of b randomly selected Tutors (B0) of
each of a Systems (A) to n randomly selected Pupils (S0).

(2) H1: Fungal infestation of horticultural plants depends upon

Fungicide (A), tested by measuring the number of fungal colonies

per leaf for n Leaves (S0) randomly selected on each of b Plants (B0)
subjected to one of a Fungicide treatments.

(3) H1: Crop yield depends onWatering regime (A) with a regimes randomly

assigned amongst baFields (B0) sampled at randomacross a region. Crop

yield ismeasured in n replicate Plots (S0) in each Field. The response is the
total yield from each plot measured at the end of the experiment.

(4) H1: Plant growth depends on Temperature (A), with a Temperatures

randomly assigned amongst ba Mesocosms (B0), each containing n

Factors Levels

A a
B(A) b

A1 A2

S
9(

B
(A

))

B1 B2 B3 B4

S1 … … …

… … … …

… … … …

Sn Snb … Snba
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replicate Trays of plants (S0). The response is the mean growth of

plants in each of the nba trays.

(5) See worked example 1 on page 47.

Comparisons

Model 2.1 is an extension of model 1.1 to include sub-sampling of each

sampling unit. If there is only one observation for each level of B0, then
the model reverts to model 1.1.

The design is useful when sampling units (B0) are costly or time consuming

to set up, but collection of replicate observations (S0) is relatively easy. If

there is little variation among levels of B0, B0(A) may be pooled into the

residual error term, producing potentially substantial gains in power to test

A. If post hoc pooling is not possible, the error d.f. for testing fixed factor A

will be set by the number of levels of B0, and it is therefore a good principle of
design to anticipate this eventuality by investing most effort in replication at

the level of B0. Nevertheless, some replication at the lowest level of the design

can usefully improve the precision of estimates for levels of B0.
Model 2.1 can be extended to include further sub-sampling (model 2.2),

a third factor crossed with B0 (model 3.3) or a third factor crossed with A

(model 3.4).

If B0 is a random factor that represents different locations or times then

it may be regarded as a blocking factor (S0), with subjects as plots (P0)
nested within blocks. Applying levels of a second treatment factor to the

plots within each block then yields split-plot model 5.6.

ANOVA table for analysis of terms AþB(A)

Model 2.1(i) A is fixed or random, B0 is random:

Mean square d.f.

Components of
variation estimated
in population F-ratio

1 A a� 1 S0(B0(A))þB0(A)þA 1/2a

2 B0(A) (b� 1)a S0(B0(A))þB0(A) 2/3

3 S0(B0(A)) (n� 1)ba S0(B0(A)) –

Total variation nba� 1

a
Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Obtain the
pooled error mean square from [SS{B0(A)}þ SS{S0(B0(A))}]/[a(nb� 1)] and use
a(nb� 1) d.f. See page 38.
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ANCOVA table for analysis of terms AþB(A), with

A as a covariate

FactorAmaybe treatedas a covariate, for example inmeasuring thediversity

of arboreal arthropods in relation towoodlandareaA.Thediversity response

is measured by fumigating n trees in each of b woods of different sizes.

The model describes a linear regression on A of the mean response at

each level of B. The allocation table illustrates samples of n ¼ 4 replicate

subjects in each of b ¼ 4 samples of B each taking a unique value of

covariate A. Note that a full analysis is possible with or without replicate

observations (levels of B) for each value of A. The b levels of factor B

must sample a minimum of three values of A to allow evaluation of the

assumption of a linear response.

A1 A2 A3 A4

S
9(

B
(A

))

B1 B2 B3 B4

S1 … … …

… … … …

… … … …

Sn … … Snb

Model 2.1(ii) A is a covariate of the response, B0 is a random factor:

Mean square d.f.

Components of
variation estimated
in population F-ratio

1 A 1 S0(B0(A))þB0(A)þA 1/2a

2 B0(A) b� 2 S0(B0(A))þB0(A) 2/3

3 S0(B0(A)) (n� 1)b S0(B0(A)) –

Total variation nb� 1

a
Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Obtain the

pooled error mean square from [SS{B0(A)}þ SS{S0(B0(A))}]/[(b� 2)þ (n� 1)b].
See page 38.
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2.2 Three-factor nested model

Model

Y ¼ CðBðAÞÞ þ e

Test hypothesis

Y responds to all or any of factor C0 nested in factor B0, or B0 nested in

treatment A, or A.

Description

Samples of n subjects or plots (S0) are nested in levels of grouping factor

C which are nested in levels of super-grouping factor B which in turn are

nested in levels of treatment A. Each subject is measured once.

Allocation table

The table illustrates samples of n¼ 4 replicate subjects in each of c¼ 2

levels of C nested in each of b¼ 2 levels of B nested in each of a¼ 2 levels

of A.

Factors Levels

A a
B(A) b
C(B) c

A1 A2

B1 B2 B3 B4

S
9(

C
(B

(A
))

)

C1 C2 C3 C4 C5 C6 C7 C8

S1 … … … … … … …

… … … … … … … …

… … … … … … … …

Sn Snc … Sncb … … … Sncba
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Examples

(1) H1: Stress in laboratory mice depends upon animal husbandry

practices (A), tested by measuring cortisol levels in saliva samples

from n mice randomly assigned to each of c Cages (C0) maintained by

b Technicians (B0) at each of a ¼ 2 levels of diet Enrichment

treatment: hazelnuts with shells either intact or broken.

(2) H1: Fungal infection of horticultural plants depends upon Fungicide

(A), tested by measuring the sizes of n fungal Colonies (S0) on each of

c Leaves (C0) randomly selected on each of b Plants (B0) subjected to

one of a Fungicide treatments.

(3) H1: Crop yield depends on Watering regime (A), with a regimes

randomly assigned amongst ba Farms (B0). Each farm contains c

replicate Fields (C0), and each field contains n replicate Plots (S0). The
response is the yield from each plot, measured at the end of the

experiment.

(4) H1: Plant growth depends on Temperature (A), with a temperatures

randomly assigned amongst ba Mesocosms (B0). Each mesocosm

contains c replicate Trays (C0), each containing n replicate plants. The

response is growth of each of the ncba individual Plants.

Comparisons

Model 2.2 is an extension of model 2.1 to include further sub-sampling.

If there is only one observation for each level of C0, then the model

reverts to model 2.1.

With C0 and B0 both random, the analysis effectively comprises a

separate ANOVA at each scale in the nesting. The design is useful when

sampling units (C0) are costly or time consuming to set up, but collection

of replicate observations (S0) is relatively easy. If there is little variation

among levels of C0, C0(B0(A)) may be pooled into the residual error term,

producing potentially substantial gains in power to test A and B0(A).

Likewise, if there is little variation among levels of B0, B0(A) may be

pooled with C0(B0(A)), producing potentially substantial gains in power

to test A. If post hoc pooling is not possible, the error d.f. for testing fixed

factor A will be set by the number of levels of B0, and it is therefore a

good principle of design to anticipate this eventuality by investing most

effort in replication at the level of B0. Nevertheless, some replication at

lower levels of the design can usefully improve the precision of estimates

at higher levels.
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If B0 and C0 are random factors that represent different locations

or times then they may be regarded as blocking factors (blocks S0 and
plots P0, respectively), with subjects as sub-plots (Q0) nested within

plots nested within blocks. Applying levels of a second treatment factor

to the plots within each block and levels of a third treatment factor to the

sub-plots within each plot then yields split-plot model 5.5.

ANOVA table for analysis of terms AþB(A)þC(B A)

ANCOVA table for analysis of terms AþB(A)þC(B A),

with A as a covariate

Factor A may be treated as a covariate, for example in measuring the

diversity of gall wasps in relation to woodland area A. The diversity

response is measured by counting galls on n leaves from each of c trees in

each of b woods of different sizes.

The model describes a linear regression on A of the mean response at

each level of B. The allocation table illustrates samples of n ¼ 4 replicate

subjects in each of c ¼ 2 samples of C in each of b ¼ 4 samples of B each

taking a unique value of covariate A. Note that a full analysis is possible

with or without replicate observations (levels of B) for each value of A.

The b levels of factor B must sample a minimum of three values of A to

allow evaluation of the assumption of a linear response.

Model 2.2(i) A is fixed or random, B0 and C0 are random factors:

Mean square d.f.
Components of variation estimated
in population F-ratio

1 A a� 1 S0(C0(B0(A)))þC0(B0(A))þB0(A)þA 1/2a

2 B0(A) (b� 1)a S0(C0(B0(A)))þC0(B0(A))þB0(A) 2/3b

3 C0(B0(A)) (c� 1)ba S0(C0(B0(A)))þC0(B0(A)) 3/4

4 S0(C0(B0(A))) (n� 1)cba S0(C0(B0(A))) –

Total variation ncba� 1

a
Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Obtain
the pooled error mean square from [SS{B0(A)}þ SS{C0(B0(A))}]/[cb� 1)a]. See
page 38.

b
Planned post hoc pooling is permissible for B0(A) if C0(B0(A)) has P> 0.25.
Obtain the pooled error mean square from [SS{C0(B0(A))}þ SS{S0(C0(B0(A)))}]/
[(nc� 1)ba]. See page 38.
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Model 2.2(ii) A is a covariate of the response, B0 and C0 are random factors:

Mean square d.f.
Components of variation estimated
in population F-ratio

1 A 1 S0(C0(B0(A)))þC0(B0(A))þB0(A)þA 1/2a

2 B0(A) b� 2 S0(C0(B0(A)))þC0(B0(A))þB0(A) 2/3b

3 C0(B0(A)) (c� 1)b S0(C0(B0(A)))þC0(B0(A)) 3/4

4 S0(C0(B0(A))) (n� 1)cb S0(C0(B0(A))) –

Total variation ncb� 1

a
Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Obtain the
pooled error mean square from [SS{B0(A)}þ SS{C0(B0(A))}]/[(b� 2)þ (c� 1)b].
See page 38.

b
Planned post hoc pooling is permissible for B0(A) if C0(B0(A)) has P> 0.25.
Obtain the pooled error mean square from [SS{C0(B0(A))}þ SS{S0(C0(B0(A)))}]/
[(c� 1)bþ (n� 1)cb]. See page 38.

A1 A2 A3 A4

B1 B2 B3 B4
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C1 C2 C3 C4 C5 C6 C7 C8

S1 … … … … … … …

… … … … … … … …

… … … … … … … …

Sn Snc … … … … … Sncb
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3

Fully replicated factorial designs

Factorial models test multiple independent effects simultaneously. The

models in this chapter are orthogonal designs with crossed factors,

meaning that each level of each factor is tested in combination with each

level of the other(s). Fully replicated orthogonal designs allow us to test

whether factors influence the response additively as main effects, or whe-

ther the effect of one factor is moderated by another in an interaction.

Non-orthogonal designs that cannot test interactions are best organised as

a nested model. Further details of factorial designs are given on page 24.

The sampling unit for a given combination of factor levels is the subject

or plot:

Assumptions

Fully replicated factorial designs have no assumptions other than those

common to all ANOVA models (page 14). Note, however, that the levels

of any random factors are deemed to be drawn from an infinite (or

effectively infinite) population, and that if the factor is used as an error

term, its samples of level means are assumed to be normally distributed

with homogeneous variances between samples.

Analysis

Factorial designs must be analysed with respect to their hierarchy of inter-

actions. Each interaction is entered into the model only after entering its

componentmain effects; likewise, higher-order interactions are entered after

Subject or plot S9 replicated in a sample S1 …

… Sn
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their component lower-order interactions. The SS then account for inde-

pendent components in sequence, and are aptly named ‘sequential SS’. In

contrast, the tabulated outputs from factorial designs should be read from

the bottom upwards, in order to interpret higher-order interactions first, and

l o w er -o r de r i nt er ac ti on s b ef or e m ai n e ff ec ts . T hi s i s b ec au s e a s ig ni fic an t

interaction can render unnecessary further interpretation of its constituent

effects. For example, in the allocation table for the two-factor model 3.1 on

page 79, a response with increasing magnitude from left to right in the upper

rows and from right to left in the lower rows can result in a strong interaction

with apparently insignificant main effects. The interaction is all important,

because each main effect is obscured by pooling across levels of the other

factor. Although a main effect should not be interpreted without reference to

its interactions, it may have interest in addition to them, insofar as it indicates

the overall response averaged across levels of the other factor(s). Where one

or more cross facto rs are rand om, signific ant main effe cts are inter pretable

ev en without referen ce to a significant inter action term , provided that the

inter actio n is present in the esti mated compon ents of varia tion for the main

effe ct. For exampl e, main effect A in model 3.1( ii ): Y ¼ B0 |A þ e is tested
ag ainst an error MS of the inter action B 0 *A, and its signifi cance is therefo re

reported over and above that of the interaction. This is not the case for

mo del 3.1( i ). For both types of model, any non- significant fact ors should be

interpreted with respect to higher-order interactions, since a significant

interaction may mask real treatment effects.

The interaction plots in Figure 10 encompass the full range of possible

out comes from model 3.1 : Y¼ B|A þ e , de pending on whi ch c ombina-

tions of main effects and interactions are significant (shown in each

equation above the graph). For each of three levels of a factor A, the lines

join response means for two levels of a factor B. If factor B is a covariate,

and so measured on a continuous scale on the x axis, then these lines

represent linear regressions fitted to the responses at each level of A.

These graphs illustrate the importance of interpreting main effects with

respect to their higher-order interactions. The second row shows three

alternative outcomes in which A and B both influence the response even

though only one, or neither, is significant as a main effect.

With factorial designs involving several factors, the temptation to

simplify models by not declaring some or all interactions should be

avoided, because these terms are then pooled – untested – into the error

MS (see page 40). The analysis is invalidated altogether by testing for

interactions without declaring their component main effects.

Here we treat only symmetrical designs. If two factors cannot be fully

crossed in principle, the existing combinations can be redefined as levels of a
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single factor and analysed with a priori contrasts (see page 245). Asymmetry

also arises unplanned from missing data or from inherent co-dependence

between factors, in which case the loss of orthogonality compromises the

independence of the constituent components of variation. General linear

models (GLM) accommodate this non-independence by using SS that have

been adjusted for other components of the same or lower orders in themodel

hierarchy. When using the ‘adjusted SS’ of computer packages, care must

be taken to ensure that the SS have not been adjusted for higher-order

interactions, as to do so can invalidate the test hypotheses (see page 241).

3.1 Two-factor fully cross-factored model

Model

Y¼B|Aþ e

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.
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Figure 10 Alternative interaction plots for a two-factorANOVA, showing how

relationships can vary according to the influence of factors A and B additively

and interactively. Statistically significant components are indicated in equations

above each graph.
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Description

Sample s of n subjects or plots (S 0 ) are nested in each combinat ion of levels

of B cross fact ored with A. Eac h subject is measur ed once.

Allocation table

The table illu strates sampl es of n ¼ 4 replicate subject s in each of ba ¼ 4

combination s of level s of B*A.

Examples

(1) H1: Crop yield depen ds on a co mbination of Water ing regim e (A) and

sowing Den sity (B) treatment s, with ba comb inations of levels

randoml y assigned amongst nba Plots (S 0 ). The respo nse is the yield
from eac h plot, measur ed at the end of the experi ment. Figure 5 on

page 25 shows an example design and result.

(2) H1: Plant growth depends on a combination of Temperature (A) and

Light (B), with ba combinations of levels randomly assigned amongst

nba Mesocosms (S0). The response is the mean growth of plants in

each mesocosm.

(3) H1: Condition of birds depends on Sex (A) and Species (B0), with n

birds of each sex sampled for each of b randomly selected species.

(4) H1: Seedling growth depends on fertiliser Treatment (A) and parental

Genotype (B0). A total of b randomly chosen Plants (B0) are grown

Factors Levels

A a
B b

S99(B|A) A1 A2

S1 … … …
B1

… Sn … …

… … … …
B2

… Snb … Snba
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unde r identi cal co nditions until mature, when na seeds are colle cted

from e ach plant an d sown indivi dually into a total of nb a Pots (S 0 ).
Eac h of a fertiliser Treatm ents (A) is alloc ated to n rand omly selec ted

seed s from each plant. The respon se is the growth of each indivi dual

seed ling. Note that this design isol ates the effe ct of parenta l gen otype

from random environmental variation arising from different locations

of parent plants.

(5) A drug has been de signed to treat a medic al conditio n with a difficul t

diagn osis; its safety is tested by rand omly assi gning each of tw o levels

of Treatm ent A (drug or placebo) to two sampl es each of n randoml y

selec ted vo lunteers, divide d by Condi tion B (with or wi thout the

med ical cond ition). The health response to the treat ments is

mo nitored for all indivi duals. A signifi cant B*A interacti on signal s

pot ential da ngers of ad ministering the drug without a defin itive

diagn osis, for exampl e if it causes an impr ovement in healt h for those

wi th the cond ition but provoke s illness in those witho ut the

c ondition .

(6) Se e worke d exampl e 2 on page 49.

(7) Se e a lso exampl es to rando mised-bloc k model 4.1 on pa ge 122 an d

rep eated-meas ures model 6.1 on pa ge 188, whi ch are analys ed with

mo del 3.1 ANOV A tables if they are fully repli cated or designa te one

or both facto rs as co variates.

Comparisons

Mod el 3.1 is an extens ion of model 1.1 to include a second crosse d fact or

applie d to subjects or plots . If there is only one observat ion for each of

the ba level s of factors A and B, then the design is unrepli cated an d

shou ld be analys ed us ing model 7.1.

Model 3.1 can be extended to include a third crosse d facto r, level s of

whic h may be assign ed randoml y to subjects or plots (model 3.2),

assigned randomly to replicate sampling units within each plot (model 5.9,

where each plot, S0, becomes a blocking factor), or tested sequentially in

rando m orde r on each sub ject (model 6.7) . M odel 3.1 can also be

extended to include sub-sa mplin g of each sampling unit (model 3.4 ).

In test ing the combined effect of two crosse d facto rs, model 3.1 has

similar objectives to randomised-block model 4.2, split-plot models 5.1

and 5.6 and repeated-measures models 6.2 and 6.3. Crucially, however,
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the assi gnment of the ba level s of factors B and A to sampl ing units is

completely randomi sed. Mod el 4.2 accou nts for sources of unwant ed

background va riation among sampling units (plot s) by grou ping them

into blocks eithe r spatially or tempor ally. The rando m assignment of

treatment s to plots wi thin blocks is then stratifie d so that every combi-

nation of level s of fact ors A and B is repres ented onc e in every block .

Split-pl ot models 5.1 and 5.6 ach ieve the same goal, but assign levels of

factors A a nd B to sampl ing units at different scale s. Repeat ed-measu res

models 6.2 and 6.3 acco unt for sources of unwanted back ground varia -

tion amo ng sampl ing units (subjects) by testing the levels of one or both

factors sequenti ally on each subject . The order of assi gnment of treat -

ments to sampl ing uni ts (times within each subject) may be rando mised

between subject s.

If B 0 is a random fact or that rep resents different locat ions or times then

it is more prop erly regarde d as a random blocking factor because it

measures mult iple sources of random spati al or tempor al variation and

constrains the rando m allocati on of levels of fact or A to plots . The mod el

is then a one-factor randomi sed-blo ck de sign (model 4.1). Full replic ation

at e ach level of B0 * A allows analys is by model 3.1 , howeve r, provided

levels of A are ran domly assi gned to sampling units (plot s) within each

level of B0 . The specia l assum ption of homo geneity of cov ariances (page

118) that usually applie s to rand omised -block designs is then subsumed

into the general assum ption of hom ogeneit y of sampl e va riances. The

principal ad vantage of full replicati on is that it allows testing of the B0 *A
interactio n, an d in the e vent of it being non-sig nificant , vali dation of the

main effect A. The B0 *A interacti on cannot be interpreted, however,

be ca us e B 0 measures multiple sources of variation. The main effect of

factor A may therefore be tested more efficiently with unreplicated model

4.1 which assumes a non-significant B0 *A interaction for the purpose of

interpreting a non-significant main effect of A.

Notes

Analysis and interp retation requ ire care when fact ors are not rando mly

assigned to sampling units, but instead represent different locations or

times, such as elevation on a shore or season of the year (see page 18 and

notes to model 1.1 on page 64 for details). For example, if barnacle

settlement is measured in replicate plots of different surface Rugosity (A)

at three inter-tidal Elevations (B) on a single shore, then unless the

objective is to test for differences among those specific locations on that
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parti cular shore, B must be regarde d as a rando m block because any

effec t of elevation is complete ly confound ed with unmeasur ed spatial

varia tion across the shore. Elevat ion can be fix ed by repeating the study

at the same three elevat ions on two or more rando mly selec ted shores (C 0 )
within the region of inter est. The design is then ana lysed with model 3.2 if

it has replicate plots at each level of C0*B*A or otherwise by model 6.2 in

a subject-by-trial design. The power to identify a main effect of elevation

or season now depends on the number of replicate shores (c) rather than

the number of replicate plots at each elevation (n).

ANOVA tables for analysis of terms B|A

Model 3.1(i) A and B are both fixed factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(B*A)þA 1/4

2 B b� 1 S0(B*A)þB 2/4

3 B*A (b� 1)(a� 1) S0(B*A)þB*A 3/4

4 S0(B*A) (n� 1)ba S0(B*A) –

Total variation nba� 1

Model 3.1(ii) A is a fixed factor, B0 is a random factor (mixed model):

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(B0*A)þB0*AþA 1/3a

2 B0 b� 1 S0(B0*A)þB0 2/4b

3 B0*A (b� 1)(a� 1) S0(B0*A)þB0*A 3/4

4 S0(B0*A) (n� 1)ba S0(B0*A) –

Total variation nba� 1

a Planned post hoc pooling is permissible for A if B0*A has P> 0.25. Obtain the
pooled error mean square from [SS{B0*A}þ SS{S0(B0*A)}]/[(b� 1)(a� 1)þ
(n � 1)ba]. See page 38.

b An unrestricted model tests the MS for B0 over the MS for its interaction with A
(F-ratio¼ 2/3). See page 242.
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ANCOVA tables for analysis of terms B|A,

with B as a covariate

Example s 1 an d 2 above co uld measur e fact or B as a covariate on a

continuous scale . Figure 8 on page 31 illustr ates an exampl e of a co v-

ariate interaction.

The model describes a linear regression on B at each level of A. The

allocation table illustrates a¼ 2 samples of n¼ 8 subjects, with each subject

taking one of b¼ 4 values of covariate B. Note that analysis of main effects

and interaction does not require replicate measures for each level of factor A

at each value of covariate B, nor does it require the same values of B to be

sampledwithin each level ofA. The assumption of a linear response can only

be evaluated, however, if the covariate takes more than two values. Use

adjusted SS rather than sequential SS if the design is not fully orthogonal.

Non-orthogonality arises fromunequal replication, unequal sample sizes, or

because each sampling unit takes a unique value of B (see page 237).

Model 3.1(iii) A0 and B0 are both random factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(B0*A0)þB0*A0 þA0 1/3a

2 B0 b� 1 S0(B0*A0)þB0*A0 þB0 2/3a

3 B0*A0 (b� 1)(a� 1) S0(B0*A0)þB0*A0 3/4

4 S0(B0*A0) (n� 1)ba S0(B0*A0) –

Total variation nba� 1

a Planned post hoc pooling is permissible for A0 and B0 if B0*A0 has P> 0.25.
Obtain the pooled error mean square from [SS{B0*A0}þ SS{S0(B0*A0)}]/[(b� 1)
(a� 1)þ (n� 1)ba]. See page 38.

S99(B|A) A1 A2

S1 … … …B1

… … …

… … … …

B2

B3

B4 … Sn … Sna

…
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Model (v) describes a linear regression on B at each level of A. The var-

iation in regression slopes among levels of A provides the error term for

measuring the deviation from horizontal of the average regression slope for

covariate B (pooled across levels of A). Note that the default for some

statistics package is to take the residual term (row 4) as the error for the

covariate main effect rather than the B*A0 interaction (row 3). Using this

term requires a priori justification, because it effectively ignores the random

designation of factorA. If covariateB canbe redefinedas a categorical factor

with more than two levels, this will increase the d.f. for B*A0, and therefore

the error d.f. for themain effectofB,whilst decreasing thed.f. for the residual

variation, which is the error term only for random effects A0 and B*A0.

Model 3.1(iv) A is a fixed factor, B is a covariate of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(B*A)þA 1/4

2 B 1 S0(B*A)þB 2/4

3 B*A a� 1 S0(B*A)þB*A 3/4

4 S0(B*A) (n� 2)a S0(B*A) –

Total variation na� 1

Model 3.1(v) A0 is a random factor, B is a covariate of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(B*A0)þA0 1/4

2 B 1 S0(B*A0)þB*A0 þB 2/3a

3 B*A0 a� 1 S0(B*A0)þB*A0 3/4

4 S0(B*A0) (n� 2)a S0(B*A0) –

Total variation na� 1

a Planned post hoc pooling is permissible for B if B*A0 has P> 0.25. Obtain the
pooled error mean square from [SS{B*A0}þ SS{S0(B*A0)}]/[(a� 1)þ (n� 2)a].
See page 38.
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ANCOVA table for analysis of terms B|A,

with A and B as covariates

Examples 1 and 2 above could measure factors A and B as covariates.

The model describes a plane in the dimensions of Y, A and B. The plane

may tilt with Y in the A dimension (significant A effect) and/or in the B

dimension (significantBeffect), and/ormaywarpacross its surface (significant

B*A effect). The model can be applied to a curvilinear relationship in one-

dimension by requesting the covariates as a single polynomial predictor: A|A,

and taking sequential SS.

The allocation table illustrates one sample of n¼ 16 subjects each taking

oneof a¼ 4 valuesof covariateAandoneof b¼ 4 valuesof covariateB.Note

that analysis of main effects and interaction does not require replicate sub-

jects at each combination of levels of the covariates A and B, nor does it

require the samevaluesofB tobe sampledat eachvalueofA.The assumption

of linear responses can only be evaluated, however, if the covariates each

take more than two values. Use adjusted SS rather than sequential SS if

the design is not fully orthogonal. Non-orthogonality may arise from

unequal replication or incomplete cross factoring between the covariates, or

because each sampling unit takes unique values of A and B (see page 237).

S��(B|A) 
A1

 
A2 A3

 
A4

 

B1  S1 … … … 

B2  … … … … 

B3  … … … … 

B4  … … … Sn

Model 3.1(vi) A and B are both covariates of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(B*A)þA 1/4

2 B 1 S0(B*A)þB 2/4

3 B*A 1 S0(B*A)þB*A 3/4

4 S0(B*A) n� 22 S0(B*A) –

Total variation n� 1
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3.2 Three-factor fully cross-factored model

Model

Y¼C|B|Aþ e

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Samples of n subjects or plots (S0) are nested in each combination of levels

of C and B cross factored with A. Each subject is measured once.

Allocation table

The table illustrates samples of n¼ 2 replicate subjects in each of cba¼ 8

combinations of levels of C*B*A.

Examples

(1) H1: Crop yield depends on a combination of Watering regime (A),

sowing Density (B) and Fertiliser (C) treatments, with cba combinations

Factors Levels

A a
B b
C c

A1 A2

S
99(

C
|B

|A
)

B1 B2 B1 B2

S1 … … …
C1

Sn … … …

… … … …
C2

Snc Sncb … Sncba
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of le vels ra ndomly ass igned a mongs t ncba Plots (S 0 ). The re sponse is the
yield from each plot, measured at the end of the experiment.

(2) Fully repl icated spatial bloc k : H1: Crop yield depends on a

combinat ion of sowin g de nsity (A) a nd Fertiliser (C) treatment s,

with ca combination s of levels ran domly assign ed amongst nca Pl ots

(S 0 ) in each of b Blo cks (B 0 ). The block s stratify a na tural
environm ental gradie nt in soil moisture from top to bottom of a

slopi ng field. The response is the yield from each plo t, measur ed at

the en d of the exp eriment.

(3) H1: Plant growth dep ends on a combinat ion of Tem peratur e (A) ,

Light (B) and Ferti liser (C ), with cba combinat ions of levels

randoml y assigned amon gst ncba Mesocosm s (S 0 ). The response is
the mean grow th of plants in e ach mesoco sm.

(4) A drug has been designe d to treat a medic al con dition with a difficul t

diagnosi s; its safety is tested by randoml y assigning each of two levels

of Treatm ent A (drug or placebo ) to four samples e ach of n rand omly

selec ted volunte ers. The four samples are divide d by Condi tion B

(with or wi thout the medic al conditio n) and Gen der C (male or

fema le). The he alth respon se to the treat ments is monit ored for all

individ uals. A signi ficant C*B*A inter action signals pote ntial dan gers

of administe ring the drug without a de finitive diagnosi s, for examp le

if it impro ves healt h for females wi th the co ndition but provokes

illness in male s without it. Lik ewise, signi ficant two-way inter actions

signal cond ition-spec ific an d g ender-sp ecific respon ses to the drug.

(5) See also e xamples to randomi sed-blo ck model 4.2 on page 129 and

repeat ed-me asures model 6.2 on page 191, which are analysed with

model 3.2 ANOVA table s if they are fully replicated or designa te one

or more fact ors as covariates.

Comparisons

Model 3.2 is an extens ion of model 3.1 to include a thir d crosse d factor

applied to subject s or plots. If there is only one observat ion for each of

the cba combinations of levels of factors A, B and C, then the design is

unreplicated and should be analysed using model 7.2.

In testing the combined effect of three crossed factors, model 3.2 ha s

similar objectives to randomised-block model 4.3, split-plot models 5.2 to

5.5, 5.7 and 5.9, and repeated-measures models 6.5 and 6.7. Crucially,

however, the assignment of the cba levels of factors C, B and A to sampling

3.2 Three-factor fully cross-factored model 87



units is completely randomised. Model 4.3 accounts for sources of

unwanted background variation among plots by grouping them into

blocks either spatially or temporally. The random assignment of treat-

ments to plots within blocks is then stratified so that every combination of

levels of factors A, B and C is represented once in every block. The various

split-plot models achieve the same goal, but assign levels of factors A, B

and C to sampling units at different scales. The repeated-measures models

account for sources of unwanted background variation among subjects by

testing the levels of one or more factors sequentially on each subject.

If C0 is a random factor that represents different locations or times then it

is more properly regarded as a random blocking factor because it measures

multiple sources of random spatial or temporal variation and stratifies the

random allocation of levels of factors A and B within blocks. The model is

then a two-factor randomised-block design (model 4.2). Full replication at

each level of C0 *B* A allows analysis by model 3.2, however, provided levels

of A and B are randomly assigned to sampling units (plots) within each level

of C0. The special assumption of homogeneity of covariances (page 118) that

usually applies to randomised-block designs is then subsumed into the

general assumption of homogeneity of sample variances. The principal

advantage of full replication is that it allows testing of interactions with C0,
and in the event of their being non-significant, validation of the B|A effects.

Interactions involving C0 cannot be interpreted, however, because C0 mea-

sures multiple sources of variation. The effect of factors A and B and their

interaction B*A may therefore be tested more efficiently with unreplicated

model 4.2 which assumes non-significant block-by-treatment interactions

for the purpose of interpreting non-significant treatment effects.

ANOVA tables for analysis of terms C|B|A

Model 3.2(i) A, B and C are all fixed factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B*A)þA 1/8
2 B b� 1 S0(C*B*A)þB 2/8
3 B*A (b� 1)(a� 1) S0(C*B*A)þB*A 3/8
4 C c� 1 S0(C*B*A)þC 4/8
5 C*A (c� 1)(a� 1) S0(C*B*A)þC*A 5/8
6 C*B (c� 1)(b� 1) S0(C*B*A)þC*B 6/8
7 C*B*A (c� 1)(b–1)(a� 1) S0(C*B*A)þC*B*A 7/8

8 S0(C*B*A) (n� 1)cba S0(C*B*A) –

Total variation ncba� 1
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ANCOVA tables for analysis of terms C|B|A,

with C as a covariate

Examples 1 and 3 above could measure factor C as a covariate if it is

measured on a continuous scale of application rate.

The model describes a linear regression on C at each level of B|A. If a

factor has more than two levels on a numerical scale, designating it as a

covariate will decrease error d.f. for covariate effects, and hence reduce

the power of the analysis to distinguish these effects, if the model includes

random cross factors. Conversely, designating it as a covariate will

increase the power of the analysis if it would otherwise be treated as a

random block, or if any other cross factors are fixed, always assuming it

meets the assumption of a linear response.

The allocation table illustrates ba¼ 4 samples of n¼ 4 subjects,

with each subject taking one of c¼ 4 values of covariate C. Note that

analysis of main effects and interactions does not require replicate

measures for each combination of levels of factors A and B at each

value of covariate C, nor does it require the same value of C to be

sampled at each level of B|A. The assumption of a linear response can

only be evaluated, however, if the covariate takes more than two values.

Use adjusted SS rather than sequential SS if the design is not fully

orthogonal. Non-orthogonality may arise from unequal replication or

unequal sample sizes, or because each sampling unit takes a unique

value of C (see page 237).

A1 A2

S
99(

C
|B

|A
)

B1 B2 B1 B2

C1 S1 … … …

C2 … … … …

C3 … … … …

C4 Sn Snb … Snba

Fully replicated factorial designs92



Model 3.2(v) A and B are fixed factors, C is a covariate of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B*A)þA 1/8

2 B b – 1 S0(C*B*A)þB 2/8

3 B*A (b� 1)(a� 1) S0(C*B*A)þB*A 3/8

4 C 1 S0(C*B*A)þC 4/8

5 C*A (a� 1) S0(C*B*A)þC*A 5/8

6 C*B (b� 1) S0(C*B*A)þC*B 6/8

7 C*B*A (b� 1)(a� 1) S0(C*B*A)þC*B*A 7/8

8 S0(C*B*A) (n� 2)ba S0(C*B*A) –

Total variation nba� 1

Model 3.2(vi) A is a fixed factor, B0 is a random factor, C is a covariate of

the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B0*A)þB0*AþA 1/3a

2 B0 b� 1 S0(C*B0*A)þB0 2/8d

3 B0*A (b� 1)(a� 1) S0(C*B0*A)þB0*A 3/8

4 C 1 S0(C*B0*A)þC*B0 þC 4/6b

5 C*A (a� 1) S0(C*B0*A)þC*B0*AþC*A 5/7c

6 C*B0 (b� 1) S0(C*B0*A)þC*B0 6/8

7 C*B0*A (b� 1)(a� 1) S0(C*B0*A)þC*B0*A 7/8

8 S0(C*B0*A) (n� 2)ba S0(C*B0*A) –

Total variation nba � 1

a Planned post hoc pooling is permissible for A if B0*A has P> 0.25. Use
the pooled error mean square: [SS{B0*A}þ SS{S0(C*B0*A)}]/[(b� 1)
(a� 1)þ (n� 2)ba]. See page 38.

b Planned post hoc pooling is permissible for C if C*B0 has P> 0.25. Use the
pooled error mean square: [SS{C*B0}þ SS{S0(C*B0*A)}]/[(b� 1)þ (n� 2)ba].
See page 38.

c Planned post hoc pooling is permissible for C*A if C*B0*A has P> 0.25. Use
the pooled error mean square: [SS{C*B0*A}þ SS{S0(C*B0*A)}]/[(b� 1)
(a� 1)þ (n� 2)ba]. See page 38.

d An unrestricted model tests the MS for B0 over the MS for B0*A (F-ratio¼ 2/3).
See page 242.
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ANCOVA tables for analysis of terms C|B|A,

with B and C as covariates

Examples 1 and 3 above could measure factors B and C as covariates if C

is measured on a continuous scale of application rate.

The model describes one plane in the dimensions of Y, B and C for

each level of A. The planes may tilt with Y in the B dimension

(significant B effect) and/or in the C dimension (significant C effect),

and/or may warp across their surfaces (significant C*B effect), and

these tilts and warps may variously differ according to the level of A

(significant interactions with A). The model can be applied to a

curvilinear relationship in one-dimension by treating the covariates as

a single polynomial predictor and requesting analysis of terms: B|B|A

with sequential SS.

The allocation table illustrates a¼ 2 samples of n¼ 8 subjects, with

each subject taking one of b¼ 2 values of covariate B and one of c¼ 4

values of covariate C. Note that analysis of main effects and interac-

tions does not require replicate measures for each level of A at each

combination of values of the covariates B and C, nor does it require the

same values of B and C to be sampled at each level of A. The

assumption of linear responses can only be evaluated, however, if

the covariates each take more than two values. Use adjusted SS rather

than sequential SS if the design is not fully orthogonal. Non-

orthogonality may arise from unequal replication or unequal sample

sizes, or because each sampling unit takes unique values of B and C (see

page 237).
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Model 3.2(viii) A is a fixed factor, B and C are covariates of the

response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B*A)þA 1/8

2 B 1 S0(C*B*A)þB 2/8

3 B*A a� 1 S0(C*B*A)þB*A 3/8

4 C 1 S0(C*B*A)þC 4/8

5 C*A a� 1 S0(C*B*A)þC*A 5/8

6 C*B 1 S0(C*B*A)þC*B 6/8

7 C*B*A a� 1 S0(C*B*A)þC*B*A 7/8

8 S0(C*B*A) (n–22)a S0(C*B*A) –

Total variation na� 1

Model 3.2(ix) A0 is a random factor, B and C are covariates of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C*B*A0)þA0 1/8

2 B 1 S0(C*B*A0)þB*A0 þB 2/3a

3 B*A0 a� 1 S0(C*B*A0)þB*A0 3/8

4 C 1 S0(C*B*A0)þC*A0 þC 4/5b

5 C*A0 a� 1 S0(C*B*A0)þC*A0 5/8

6 C*B 1 S0(C*B*A0)þC*B*A0 þC*B 6/7c

7 C*B*A0 a� 1 S0(C*B*A0)þC*B*A0 7/8

8 S0(C*B*A0) (n� 22)a S0(C*B*A0) –

Total variation na� 1

a Planned post hoc pooling is permissible for B if B*A0 has P> 0.25. Use the
pooled error mean square: [SS{B*A0}þ SS{S0(C*B*A0)}]/[ (a� 1)þ (n� 4)a].
See page 38.

b Planned post hoc pooling is permissible for C if C*A0 has P> 0.25. Use the
pooled error mean square: [SS{C*A0}þ SS{S0(C*B*A0)}]/[1þ (n� 4)a]. See
page 38.

c Planned post hoc pooling is permissible for C*B if C*B*A0 has P> 0.25. Use the
pooled error mean square: [SS{C*B*A0}þ SS{S0(C*B*A0)}]/[(a� 1)þ (n – 4)a].
See page 38.
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ANCOVA table for analysis of terms C|B|A,

with A, B and C as covariates

Examples 1 and 3 above could measure factors A, B and C as covariates

if C is measured on a continuous scale of application rate.

The model describes a volume in the four-dimensional space of Y, A, B

and C. Sections through the volume at a given level of A may tilt with Y

in the B dimension (significant B effect) and/or in the C dimension

(significant C effect), and/or may warp across their surfaces (significant

C*B effect), and these tilts and warps may variously differ according to

the level of A (significant interactions with A). The model can be applied

to a curvilinear relationship in one-dimension by treating the three cov-

ariates as a single polynomial predictor and requesting analysis of terms:

A|A|A with sequential SS. Alternatively, it can be applied to a curvilinear

relationship in two-dimensions by requesting two of the covariates as a

single polynomial predictor: B|B|A, and taking sequential SS.

The allocation table illustrates one sample of n¼ 16 subjects each

taking one of a¼ 2 values of covariate A, one of b¼ 2 values of covariate

B, and one of c¼ 4 values of covariate C. Note that analysis of main

effects and interactions does not require replicate subjects at every

combination of values of the covariates A, B and C. The assumption of

linear responses can only be evaluated, however, if the covariates each

take more than two values. Use adjusted SS rather than sequential SS if

the design is not fully orthogonal. Non-orthogonality may arise from

unequal replication, or because each sampling unit takes unique values of

A, B and C (see page 237).
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3.3 Cross-factored with nesting model

Model

Y¼C|B(A)þ e

Test hypothesis

Variation in the response Y is explained by the combined effects of

treatments C and A, with levels of C measured at each level of B nested

in A.

Description

Samples of n subjects or plots (S0) are nested in each level of treatment C

for each level of grouping factor B, which is nested in treatment A. Each

subject is measured once.

Model 3.2(x) A, B and C are all covariates of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(C*B*A)þA 1/8

2 B 1 S0(C*B*A)þB 2/8

3 B*A 1 S0(C*B*A)þB*A 3/8

4 C 1 S0(C*B*A)þC 4/8

5 C*A 1 S0(C*B*A)þC*A 5/8

6 C*B 1 S0(C*B*A)þC*B 6/8

7 C*B*A 1 S0(C*B*A)þC*B*A 7/8

8 S0(C*B*A) n – 23 S0(C*B*A) –

Total variation n� 1

Factors Levels

A a
B(A) b
C c
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Allocation table

The table illustr ates sampl es of n ¼ 2 replicate subject s in each of c ¼ 2

levels of C for each of b ¼ 2 levels of B nested in each of a ¼ 2 levels of A.

Examples

(1) H1: Seedli ng growth depen ds upon wateri ng regime experi enced by

the pa rent plant and fertil iser co ncentra tion. The experimen t tests a

levels of Water ing regime (A) , each alloc ated to b rand omly chosen

Plants (B 0 ). When the plants ha ve matured , nc seed s are collected

from each of the ba plants and individ ually sown into a total of ncba

Pots (S 0 ). Eac h of c concen trations of Fertiliser (C ) is allocated to n
pots from each of the ba plants. The response is seedli ng g rowth rate

in eac h pot.

(2) H1: Mater nal nourishm ent influences subsequen t disper sal distance

by offsp ring. The expe riment tests a level s of Diet qua lity (A) , each

assign ed to b fema le Lizards (B 0 ) selected at rando m from the

populati on. Fr om each fema le, a rand om sampl e of n offs pring of

each Sex (C) is fitted with radio transmitter s for mon itoring

subsequ ent disper sal.

(3) H1: Academ ic perfor mance of student s depends upon tutorial system

(A) and gender (C), tested by assigning each of b randoml y selected

Tutors (B 0 ) of each of a Sy stems (A) to n rand omly selec ted Pupils (S0 )
of each Gender (C, with two levels: male and female).

(4) See worked example 3 on page 51, which is a fully replicated split-plot

analys ed with mod el 3.3 ANO VA table s.
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(5) Se e other exampl es to split-plo t mo del 5.6 on page 168 and repeat ed-

measu res model 6.3 on page 196, whi ch may all be analys ed with

mo del 3.3 ANOV A tables if they are fully repli cated or designa te one

or both cross fact ors as covari ates.

Comparisons

Model 3.3 is an extension of model 2 .1 to include a third factor (C)

crossed with B0 .  It h as a s imilar s truct ure to split -plot model 5.6

(where B 0 corresponds with S0 ,  a nd C c orresponds with B) in that it
tests the effect of two n ested facto rs cr os sed w i th a third factor . It

differs from model 5 .6, however, in t wo important respects: (i) the

assi gnment of treatm ents to samplin g u ni ts is completely randomi sed,

which p ermit s full interpretation o f a ll terms in the model ; (ii) all

combinations of treatment levels are fully replicated, which remove s

the n eed for a special assumption of ho mogeneity o f covariances that

would otherwise apply (page 143). I n example 1, a bove, for instance,

sowing seeds from b randomly chos en plants (B 0 ) into individual pots
(S 0 ) isolates the variation among parent plants from all other sources

of random spatial and temporal variation, which a llows a signi fic ant

C*B 0 interaction to be interpr eted un ambiguously as an effect of

ferti liser concent ration that varies b etween parent plants.

If B 0 is a r andom factor that r epresent s different locations or times

then it is more pr op erly regarded as a random blocking factor becaus e

it m easures multi pl e sources o f rando m s pa tia l o r te mp or al v ar i a t io n

and constrains the random allocation of levels of factor C to sampling

units. The model is then a split-plot design (model 5.6). Full replica-

tion at each level of C*B0 (A) nevertheless allows analysis by model 3.3,

provided levels of C are randomly assigned to sampling units (plots)

within each level of B0. The special assumption of homogeneity of cov-

ariances (page 143) that usually applies to split-plot designs is then

subsumed into the general assumption of homogeneity of sample var-

iances. Nonetheless, the C*B0(A) interaction cannot be interpreted

because B0 measures multiple sources of variation. The main effect of

factor C may therefore be tested more efficiently with unreplicated model

5.6 which assumes a non-significant C*B0(A) interaction for the purpose

of interpreting a non-significant main effect of C.
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Notes

Care must be taken not to inadvertently confound the effect of treat-

ment factor B0 with a random blocking factor. For instance, if the

seeds from each parent plant in example 1 are all sown in the same

grow-bag, then watering treatment A will be applied to whole bags

(B0) and fertiliser treatment C will be applied to individual seedlings

within bags. The n replicates at each level of C*B0(A) allow measure-

ment of the interaction but not its interpretation because factor B0

measures both variation among parent plants and variation among

grow-bags.

Likewise, a field-based version of example 1 might allow the seeds from

each plant to germinate where they fall in the vicinity of the plant. The

extra realism gained by working in the field comes at the cost of reduced

interpretability because B0 now measures two sources of variation –

random variation among parent plants and random variation among

locations of parent plants – making it impossible to distinguish genetic

and environmental contributions to subsequent growth.

ANOVA tables for analysis of terms C|AþC|B(A)

Model 3.3(i) A and C are fixed factors, B0 is a random factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B0(A))þB0(A)þA 1/2a

2 B0(A) (b� 1)a S0(C*B0(A))þB0(A) 2/6c

3 C c� 1 S0(C*B0(A))þC*B0(A)þC 3/5b

4 C*A (c� 1)(a – 1) S0(C*B0(A))þC*B0(A)þC*A 4/5b

5 C*B0(A) (c� 1)(b� 1)a S0(C*B0(A))þC*B0(A) 5/6

6 S0(C*B0(A)) (n� 1)cba S0(C*B0(A)) –

Total variation ncba� 1

a Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Use the
pooled error mean square: [SS{B0(A)}þ SS{S0(C*B0(A))}]/[(b� 1)aþ (n� 1)
cba]. See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B0(A) has P> 0.25.
Use the pooled error mean square: [SS{C*B0(A)}þ SS{S0(C*B0(A))}]/[(c� 1)
(b� 1)aþ (n� 1)cba]. See page 38.

c An unrestricted model tests the MS for B0(A) over the MS for its interaction
with C (F-ratio¼ 2/5). See page 242.
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Model 3.3(iii) A0 and B0 are random factors, C is a fixed factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C*B0(A0))þB0(A0)þA0 1/2
a d

2 B0(A0) (b� 1)a S0(C*B0(A0))þB0(A0) 2/6
e

3 C c� 1 S0(C*B0(A0))þC*B0(A0)þC*A0 þC 3/4
b

4 C*A0 (c� 1)(a� 1) S0(C*B0(A0))þC*B0(A0)þC*A0 4/5
c

5 C*B0(A0) (c� 1)(b� 1)a S0(C*B0(A0))þC*B0(A0) 5/6

6 S0(C*B0(A0)) (n� 1)cba S0(C*B0(A0)) –

Total variation ncba� 1

a
Planned post hoc pooling is permissible for A0 if B0(A0) has P> 0.25. Use the pooled error
mean square: [SS{B0(A0)}þSS{S0(C*B0(A0))}]/[(b� 1)aþ (n� 1)cba]. See page 38.

b
Planned post hoc pooling is permissible for C if C*A0 has P> 0.25. Use the pooled error
mean square: [SS{C*A0}þ SS{C*B0(A0)}]/[(c� 1)(a� 1)þ (c� 1)(b� 1)a]. See page 38.

c
Planned post hoc pooling is permissible for C*A0 if C*B0(A0) has P> 0.25. Use the pooled
error mean square: [SS{C*B0(A0)}þSS{S0(C*B0(A0))}]/[(c� 1)(b� 1)aþ (n� 1)cba]. See
page 38.

d
An unrestricted model has an inexact F-ratio denominator (see page 242).

e
An unrestricted model tests the MS for B0(A0) over the MS for its interaction with C
(F-ratio¼ 2/5). See page 242.

Model 3.3(iv) A0, B0 and C0 are all random factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C0*B0(A0))þC0*B0(A0)þC0*A0 þ
B0(A0)þA0

1/(2þ 4� 5)a

2 B0(A0) (b� 1)a S0(C0*B0(A0))þC0*B0(A0)þB0(A0) 2/5
b

3 C0 c� 1 S0(C0*B0(A0))þC0*B0(A0)þC0*A0 þC0 3/4
c

4 C0*A0 (c� 1)(a� 1) S0(C0*B0(A0))þC0*B0(A0)þC0*A0 4/5
b

5 C0*B0(A0) (c� 1)(b� 1)a S0(C0*B0(A0))þC0*B0(A0) 5/6

6 S0(C0*B0(A0)) (n� 1)cba S0(C0*B0(A0)) –

Total variation ncba� 1

a
There is no exact denominator for this test (see page 40). If B0(A0) and/or C0*A0 have
P> 0.25, however, then post hoc pooling can be used to derive an exact denominator
for A0. If B0(A0) has P> 0.25 (but C0*A0 has P< 0.25), then eliminate B0(A0) from
the mean square for A0, making C0*A0 its error mean square. If C0*A0 has P> 0.25 (but B0
(A0) has P< 0.25), eliminate C0*A0 from the mean square for A0, making B0(A0) its error
mean square. If both B0(A0) and C0*A0 have P> 0.25, use the pooled error mean square:
[SS{B0(A0)}þSS{C0*A0}þSS{C0*B0(A0)}]/[(b� 1)aþ (c� 1)(a� 1)þ (c� 1)(b� 1)a].
Further pooling can be done if C0*B0(A0) has P> 0.25. See page 38.

b
Planned post hoc pooling is permissible for B0(A0) and C0*A0 if C0*B0(A0) has P> 0.25.
Use the pooled error mean square: [SS{C0*B0(A0)}þ SS{S0(C0*B0(A0))}]/[(c� 1)(b� 1)a
þ (n� 1)cba]. See page 38.

c
Planned post hoc pooling is permissible for C0 if C0*A0 has P> 0.25. Use the pooled error
mean square: [SS{C0*A0}þ SS{C0*B0(A0)}]/[(c� 1)(a� 1)þ (c� 1)(b� 1)a]. See page 38.
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ANCOVA tables for analysis of terms C|AþC|B(A),

with C as a covariate

Example 1 above could measure factor C as a covariate on a continuous

scale. If a covariate C can be redefined as a categorical factor with more

than two levels, this will increase the d.f. for C*B0(A), which is the error

term for C and C*A, whilst decreasing the d.f. for the residual variation,

which is the error term only for random effects. The analysis will thereby

have increased power to distinguish covariate effects (see worked example

3 on page 51).

The model describes a linear regression on C at each level of B nested

in A. The variation in regression slopes among the levels of B is used as

the error term to test the main-effect regression slope of the covariate,

and also the C|A interaction describing the difference in regression slopes

between levels of A. Note that some packages will use the residual term

(row 6 in the tables below) as the default error MS for testing the cov-

ariate main effect and its interaction with A, in effect ignoring the des-

ignation of B as a random factor for the purposes of the regressions.

The allocation table illustrates b¼ 2 samples nested in each of a¼ 2

levels of A, with each sample containing n¼ 4 subjects and each subject

taking one of c¼ 4 values of covariate C. Note that analysis of main

effects and interactions does not require replicate subjects for each level

of factor B at each value of covariate C, nor does it require the same

value of C to be sampled at each level of B. The assumption of a linear

response can only be evaluated, however, if the covariate takes more than

two values. Use adjusted SS rather than sequential SS if the design is not

fully orthogonal. Non-orthogonality may arise from unequal replication

or unequal sample sizes, or because each sampling unit takes a unique

value of C (see page 237).
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Model 3.3(v) A is a fixed factor, B0 is a random factor, C is a covariate

of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C*B0(A))þB0(A)þA 1/2a

2 B0(A) (b� 1)a S0(C*B0(A))þB0(A) 2/6

3 C 1 S0(C*B0(A))þC*B0(A)þC 3/5b

4 C*A (a–1) S0(C*B0(A))þC*B0(A)þC*A 4/5b

5 C*B0(A) (b� 1)a S0(C*B0(A))þC*B0(A) 5/6

6 S0(C*B0(A)) (n� 2)ba S0(C*B0(A)) –

Total variation nba� 1

a Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Use the
pooled error mean square: [SS{B0(A)}þ SS{S0(C*B0(A))}]/[(b� 1)aþ (n� 2)ba].
See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B0(A) has P> 0.25.
Use the pooled error mean square: [SS{C*B0(A)}þ SS{S0(C*B0(A))}]/[(b� 1)a
þ (n� 1)ba]. See page 38.

Model 3.3(vi) A0 and B0 are random factors, C is a covariate of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C*B0(A0))þB0(A0)þA0 1/2a

2 B0(A0) (b� 1)a S0(C*B0(A0))þB0(A0) 2/6

3 C 1 S0(C*B0(A0))þC*B0(A0)þC*A0 þC 3/4b

4 C*A0 (a� 1) S0(C*B0(A0))þC*B0(A0)þC*A0 4/5c

5 C*B0(A0) (b� 1)a S0(C*B0(A0))þC*B0(A0) 5/6

6 S0(C*B0(A0)) (n� 2)ba S0(C*B0(A0)) –

Total variation nba� 1

a Planned post hoc pooling is permissible for A0 if B0(A0) has P> 0.25. Use the
pooled error mean square: [SS{B0(A0)}þ SS{S0(C*B0(A0))}]/[(b� 1)aþ (n� 2)
ba]. See page 38.

b Planned post hoc pooling is permissible for C if C*A0 has P> 0.25. Use the
pooled error mean square: [SS{C*A0}þ SS{C*B0(A0)}]/[(a� 1)þ (b� 1)a]. See
page 38.

c Planned post hoc pooling is permissible for C*A0 if C*B0(A0) has P> 0.25. Use
the pooled error mean square: [SS{C*B0(A0)}þ SS{S0(C*B0(A0))}]/[(b� 1)aþ
(n� 2)ba]. See page 38.
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ANCOVA tables for analysis of terms C|AþC|B(A),

with A as a covariate

Example 1 above could measure factor A as a covariate on a continuous

scale. Alternatively, factor A may be treated as a covariate, for example

in measuring the diversity of arboreal arthropods in relation to woodland

area A and tree species C. The diversity response is measured by fumi-

gating n trees of each of c species in each of b woods of different sizes.

The model describes c linear regressions on A of the mean response at

each level of B. The allocation table illustrates samples of n¼ 2 replicate

subjects in each of c¼ 2 levels of C for each of b¼ 4 levels of B each

taking a unique value of covariate A. Note that a full analysis is possible

with or without replicate observations (levels of B) for each value of A.

The assumption of a linear response can only be evaluated, however, if

the covariate takes more than two values.
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Model 3.3(vii) C is a fixed factor, B0 is a random factor, A is a covariate of

the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(C*B0(A))þB0(A)þA 1/2
a

2 B0(A) b� 2 S0(C*B0(A))þB0(A) 2/6
c

3 C c� 1 S0(C*B0(A))þC*B0(A)þC 3/5
b

4 C*A c� 1 S0(C*B0(A))þC*B0(A)þC*A 4/5
b

5 C*B0(A) (c� 1)(b – 2) S0(C*B0(A))þC*B0(A) 5/6
6 S0(C*B0(A)) (n� 1)cb S0(C*B0(A)) –
Total variation ncb� 1

a
Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Use the pooled error
mean square: [SS{B0(A)}þSS{S0(C*B0(A))}]/[(b� 2)þ (n� 1)cb]. See page 38.

b
Planned post hoc pooling is permissible for C andC*A if C*B0(A) hasP> 0.25.Use the pooled
errormean square: [SS{C*B0(A)}þSS{S0(C*B0(A))}]/[(c� 1)(b� 2)þ (n� 1)cb]. See page 38.

c
An unrestricted model tests the MS for B0(A) over the MS for its interaction with C
(F-ratio¼ 2/5). See page 242.
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ANCOVA table for analysis of terms C|AþC|B(A),

with A and C as covariates

Example 1 above could measure factors A and C as covariates on con-

tinuous scales. Alternatively, factors A and C may be treated as covari-

ates, for example in measuring the diversity of arboreal arthropods in

relation to woodland area A and trunk girth C. The diversity response is

measured by fumigating n trees of different girths in each of b woods of

different sizes.

The model describes planes in the dimensions of Y, A and C at each

level of B and all hinged on the regression of the mean response at each

level of B on A. The planes may tilt with Y at their common hinge in the

A dimension (significant A effect) and/or they may tilt with Y in the C

dimension (significant C effect), and/or they may warp across their sur-

faces (significant C*A effect), and the tilts in the C dimension may differ

according to the level of B (significant interaction with B).

Model 3.3(viii) B0 and C0 are random factors, and A is a covariate of the

response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(C0*B0(A))þC0*B0(A)þC0*A
þB0(A)þA

1/(2þ 4� 5)a

2 B0(A) b� 2 S0(C0*B0(A))þC0*B0(A)þB0(A) 2/5b

3 C0 c� 1 S0(C0*B0(A))þC0*B0(A)þC0 3/5b

4 C0*A c� 1 S0(C0*B0(A))þC0*B0(A)þC0*A 4/5b

5 C0*B0(A) (c� 1)(b� 2) S0(C0*B0(A))þC0*B0(A) 5/6

6 S0(C0*B0(A)) (n� 1)cb S0(C0*B0(A)) –

Total variation ncb� 1

a There is no exact denominator for this test (see page 40). If B0(A) and/or C0*A
have P> 0.25, however, then post hoc pooling can be used to derive an exact
denominator for A. If B0(A) has P> 0.25 (but C0*A has P< 0.25), then elim-
inate B0(A) from the mean square for A, making C0*A its error mean square. If
C0*A has P> 0.25 (but B0(A) has P< 0.25), eliminate C0*A from the mean
square for A, making B0(A) its error mean square. If both B0(A) and C0*A have
P> 0.25, use the pooled error mean square: [SS{B0(A)}þ SS{C0*A}þ SS{C0*B0
(A)}]/[(b� 2)þ (c� 1)þ (c� 1)(b� 2)]. Further pooling can be done if C0*B0(A)
has P> 0.25. See page 38.

b Planned post hoc pooling is permissible for B0(A), C0 and C0*A if C0*B0(A) has
P> 0.25. Use the pooled error mean square: [SS{C0*B0(A)}þ SS{S0(C0*B0
(A))}]/[(c� 1)(b� 2)þ (n� 1)cb]. See page 38.
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The allocation table illustrates b samples of n¼ 4 replicate subjects,

with each subject taking a unique value of covariate C, and each of the

b¼ 4 levels of B taking a unique value of covariate A. Note that analysis

of main effects and interactions does not require replicate subjects for

each value of covariate C at each level of factor B, nor does it require

replicate levels of factor B at each value of covariate A. The assumption

of linear responses can only be evaluated, however, if the covariates each

take more than two values.
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Model 3.3(ix) A and C are covariates of the response, B0 is a random factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(C*B0(A))þB0(A)þA 1/2a

2 B0(A) b� 2 S0(C*B0(A))þB0(A) 2/6

3 C 1 S0(C*B0(A))þC*B0(A)þC 3/5b

4 C*A 1 S0(C*B0(A))þC*B0(A)þC*A 4/5b

5 C*B0(A) b� 2 S0(C*B0(A))þC*B0(A) 5/6

6 S0(C*B0(A)) (n� 2)b S0(C*B0(A)) –

Total variation nb� 1

a Planned post hoc pooling is permissible for A if B0(A) has P> 0.25. Use the
pooled error mean square: [SS{B0(A)}þ SS{S0(C*B0(A))}]/[(b� 2)þ (n� 2)b].
See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B0(A) has P> 0.25.
Use the pooled error mean square: [SS{C*B0(A)}þ SS{S0(C*B0(A))}]/[(b� 2)
þ (n� 2)b]. See page 38.
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3.4 Nested cross-factored model

Model

Y¼C(B|A)þ e

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A and B. Subjects are nested in sampling groups (C0), which

themselves are nested within A cross factored with B.

Description

Samples of n subjects or plots (S0) are nested in each level of factor C,

which is nested in each combination of levels of treatments B cross

factored with A. Each subject is measured once.

Allocation table

The table illustrates samples of n¼ 4 replicate subjects in each of c¼ 2

levels of C nested in each of ba¼ 4 levels of B*A.

A1 A2

B1 B2 B1 B2
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C1 C2 C3 C4 C5 C6 C7 C8
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… … … … … … … …

… … … … … … … …

Sn Snc … Sncb … … … Sncba

Factors Levels

A a
B b
C(B*A) c
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Examples

(1) H1: Academ ic perfor mance of student s dep ends upon tutor ial syst em

(A) and gender (B), tested by assi gning each of c randoml y selec ted

Tut ors (C 0 ) of each Gend er (B , wi th two levels: male and fema le) an d

e ach of a Sy stems (A) to n rand omly selec ted Pupi ls (S 0 ).
(2) H1: Funga l infection of hor ticultur al plan ts de pends upon fungi-

c ide, tested by measuring the num ber of fungal colon ies per leaf

for n Leaves (S 0 ) randoml y selec ted from each of c Plants (C 0 )
su bjected to one of ba level s of Fungicide treat ment A and Light

treat ment B.

(3) H1: Crop yiel d de pends on a combinat ion of Water ing regime (A) an d

so wing Densi ty (B) treatment s, with ba combinat ions of level s

ran domly assign ed amon gst cba Plots (C 0 ). Eac h plot co ntains n
rep licate Plants (S 0 ). The respo nse is the yield from each plant,

measu red at the end of the experi ment.

(4) H1: Plant grow th depends on a combinat ion of Tem peratur e (A)

a nd Light (B), wi th ba combinat ions of level s rando mly assign ed

a mongst cba Mesocosm s (C 0 ), each contain ing n repli cate Trays of
plan ts (S 0 ). The respon se is the mean growth of plants in eac h of the

n cba trays .

Comparisons

Mod el 3.4 is an ex tension of model 3.1 to include sub-sa mpling of each

sampling unit. If there is only one replicate observation for each level of

C 0 , then the mod el reverts to mode l 3.1 .

The design is useful when sampling units (C0) are costly or time

consuming to set up, but collection of replicate observations (S0) is

relatively easy. If there is little variation among levels of C0, C0(B*A)

may be pooled into the residual error term, producing potentially

substantial gains in power to test main effects A and B, and their inter-

action B*A.

If C0 is a random factor that represents different locations or times

then it may be regarded as a blocking factor, with subjects as plots nested

within blocks. Applying levels of a third treatment factor to the plots

within each block then yields split-plot model 5.9.
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ANOVA tables for analysis of terms B|AþC(B A)

Model 3.4(i) A and B are both fixed, C0 is a random factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C0(B*A))þC0(B*A)þA 1/4a

2 B b� 1 S0(C0(B*A))þC0(B*A)þB 2/4a

3 B*A (b� 1)(a� 1) S0(C0(B*A))þC0(B*A)þB*A 3/4a

4 C0(B*A) (c� 1)ba S0(C0(B*A))þC0(B*A) 4/5

5 S0(C0(B*A)) (n� 1)cba S0(C0(B*A)) –

Total variation ncba� 1

a Planned post hoc pooling is permissible for A, B and B*A if C0(B*A) has P> 0.25. Obtain the pooled
error mean square from [SS{C0(B*A)}þ SS{S0(C0(B*A))}]/[(c� 1)baþ (n� 1)cba]. See page 38.

Model 3.4(ii) A is fixed, B0 and C0 are random factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C0(B0*A))þC0(B0*A)þB0*AþA 1/3a

2 B0 b� 1 S0(C0(B0*A))þC0(B0*A)þB0 2/4bc

3 B0*A (b� 1)(a� 1) S0(C0(B0*A))þC0(B0*A)þB0*A 3/4b

4 C0(B0*A) (c� 1)ba S0(C0(B0*A))þC0(B0*A) 4/5
5 S0(C0(B0*A)) (n� 1)cba S0(C0(B0*A)) –

Total variation ncba� 1

a Planned post hoc pooling is permissible for A if B0*A has P> 0.25. Obtain the pooled error mean square
from [SS{B0*A}þSS{C0(B0*A)}]/[(b� 1)(a� 1)þ (c� 1)ba]. See page 38. Further pooling is possible if
C0(B0*A) has P> 0.25.

b Planned post hoc pooling is permissible for B0 and B0*A if C0(B0*A) has P> 0.25. Obtain the pooled
error mean square from [SS{C0(B0*A)}þSS{S0(C0(B0*A))}]/[(c� 1)baþ (n� 1)cba]. See page 38.

c An unrestricted model tests the MS for B0 over the MS for its interaction with A (F-ratio¼ 2/3). See page 242.

Model 3.4(iii) A0, B0 and C0 are all random factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C0(B0*A0))þC0(B0*A0)þB0*A0 þA0 1/3a

2 B0 b� 1 S0(C0(B0*A0))þC0(B0*A0)þB0*A0 þB0 2/3a

3 B0*A0 (b� 1)(a� 1) S0(C0(B0*A0))þC0(B0*A0)þB0*A0 3/4b

4 C0(B0*A0) (c� 1)ba S0(C0(B0*A0))þC0(B0*A0) 4/5
5 S0(C0(B0*A0)) (n� 1)cba S0(C0(B0*A0)) –

Total variation ncba� 1

a Planned post hoc pooling is permissible for A0 and B0 if B0*A0 has P> 0.25. Obtain the pooled error
mean square from [SS{B0*A0}þ SS{C0(B0*A0)}]/[(b� 1)(a� 1)þ (c� 1)ba]. See page 38. Further
pooling is possible if C0(B0*A0) has P> 0.25.

b Planned post hoc pooling is permissible for B0*A0 if C0(B0*A0) has P> 0.25. Obtain the pooled error
mean square from [SS{C0(B0*A0)}þSS{S0(C0(B0*A0))}]/[(c� 1)baþ (n� 1)cba]. See page 38.
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ANCOVA tables for analysis of terms B|AþC(B A),

with B as a covariate

Examples 3 and 4 above could measure factor B as a covariate on a

continuous scale. Alternatively, factor B may be treated as a covariate,

for example in measuring the diversity of arboreal arthropods in relation

to woodland isolation A and area B. The diversity response is measured

by fumigating n trees in each of c woodland patches of different sizes at

each of a levels of isolation from neighbouring woodland.

The model describes a linear regressions on B of the mean responses at

each level of C. The allocation table illustrates samples of n¼ 4 replicate

subjects in each of c¼ 4 levels of C each taking a unique value of covariate

B and nested in a¼ 2 levels of factor A. Note that the analysis does not

require replicate measures of C at each value of covariate B, or the same

values of B at each level of A. The assumption of a linear response can only

be evaluated, however, if the covariate takes more than two values.
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Model 3.4(iv) A is a fixed factor, B is a covariate of the response, C0 is a
random factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(C0(B*A))þC0(B*A)þA 1/4a

2 B 1 S0(C0(B*A))þC0(B*A)þB 2/4a

3 B*A a� 1 S0(C0(B*A))þC0(B*A)þB*A 3/4a

4 C0(B*A) (c� 2)a S0(C0(B*A))þC0(B*A) 4/5

5 S0(C0(B*A)) (n� 1)ca S0(C0(B*A)) –

Total variation nca� 1

a Planned post hoc pooling is permissible for A, B and B*A if C0(B*A) has P> 0.25. Obtain the pooled
error mean square from [SS{C0(B*A)}þ SS{S0(C0(B*A))}]/[(c� 2)aþ (n� 1)ca]. See page 38.
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ANCOVA tables for analysis of terms B|AþC(B A),

with A and B as covariates

Examples 3 and 4 above could measure factors A and B as covariates on

continuous scales. Alternatively, factors A and B may be treated as

covariates, for example in measuring the diversity of arboreal arthropods

in relation to woodland isolation A and area B. The diversity response is

measured by fumigating n trees in each of c woodland patches of b sizes

at each of a levels of isolation from neighbouring woodland.

The model describes a plane in the dimensions of Y, A and B with tilt

and warp determined by the mean responses at each level of C. The plane

may tilt with Y in the A dimension (significant A effect) and/or in the B

dimension (significant B effect), and/or may warp across its surface

(significant B*A effect).

The model can be applied to a curvilinear relationship in one-dimen-

sion by requesting the covariates as a single polynomial predictor: A|A,

and taking sequential SS.

The allocation table illustrates samples of n¼ 4 replicate subjects in each

of c¼ 8 levels of C each taking a unique combination of values of cov-

ariates B*A. Note that the analysis does not require replicate measures of

C at each value of B|A, or the same values of B at each level of A. The

assumption of linear responses can only be evaluated, however, if the

covariates each take more than two values.

Model 3.4(v) A0 and C0 are random factors, B is a covariate of the response:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(C0(B*A0))þC0(B*A0)þA0 1/4a

2 B 1 S0(C0(B*A0))þC0(B*A0)þB*A0 þB 2/3b

3 B*A0 a� 1 S0(C0(B*A0))þC0(B*A0)þB*A0 3/4a

4 C0(B*A0) (c� 2)a S0(C0(B*A0))þC0(B*A0) 4/5

5 S0(C0(B*A0)) (n� 1)ca S0(C0(B*A0)) –

Total variation nca� 1

a
Planned post hoc pooling is permissible for A0 and B*A0 if C0(B*A0) has P> 0.25. Obtain
the pooled error mean square from [SS{C0(B*A0)}þSS{S0(C0(B*A0))}]/[(c� 2)aþ (n� 1)
ca]. See page 38.

b
Planned post hoc pooling is permissible for B if B*A0 has P> 0.25. Obtain the pooled error
mean square from [SS{B*A0}þSS{C0(B*A0)}]/[(a� 1)þ (c� 2)a]. See page 38. Further
pooling is possible if C0(B*A0) has P> 0.25.
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Model 3.4(vi) A and B are covariates of the response, C0 is arandom factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A 1 S0(C0(B*A))þC0(B*A)þA 1/4a

2 B 1 S0(C0(B*A))þC0(B*A)þB 2/4a

3 B*A 1 S0(C0(B*A))þC0(B*A)þB*A 3/4a

4 C0(B*A) c� 22 S0(C0(B*A))þC0(B*A) 4/5

5 S0(C0(B*A)) (n� 1)c S0(C0(B*A)) –

Total variation nc� 1

a Planned post hoc pooling is permissible for A, B and B*A if C0(B*A) has
P> 0.25. Obtain the pooled error mean square from [SS{C0(B*A)}þ SS{S0(C0
(B*A))}]/[(c� 4)þ (n� 1)c]. See page 38.

A1 A1 A1  A1 A2 A2 A2 A2 

B1 B2 B3 B4 B1 B2 B3 B4 

S
99(

C
(B

|A
))

 

C1 C2 C3 C4 C5 C6 C7 C8

S1 … … … … … … … 

… … … … … … … … 

… … … … … … … … 

Sn … … … … … … Snc
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4

Randomised-block designs

Blocking is a method of partitioning out unwanted sources of variation that

cannot otherwise be controlled for, in order to increase the power of an

analysis to detect treatment effects. Blocking factors group sampling units

or observations that are essentially homogeneous, leaving the full range of

natural variation in the environment to be sampled between blocks. Blocks

are therefore treated as random factors because they group together, and

measure simultaneously, multiple sources of variation. Due to the origins of

this experimental design in agricultural field trials, the sampling units or

observations nested within each block are usually termed plots:

Blocks are often arbitrarily defined units of space or time. The char-

acteristic feature of randomised-block designs is that treatment levels are

randomly assigned to sampling units within each block. This distinguishes

them from the fully replicated designs of Chapter 3where treatment levels are

randomly assigned across all sampling units. It also distinguishes them from

repeated-measures designs, which use blocks, but assign treatment levels

within each block in temporal or spatial sequence. Randomised-block

models are otherwise conceptually similar to repeated-measures models of

Chapter 6; taking repeatedmeasurements on each block to control for spatial

or temporal background variation is equivalent to taking repeated mea-

surements on each subject to control for intrinsic variation between them.

P9 nested in a blockPlot

S9
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We illustrate this similarity using S0 to denote either blocks or subjects and

P0 to denote either plots nested in block or observations nested in subject.

Randomised-block designs are termed complete when every treatment

level is present in every block. Incomplete block designs, in which every

treatment level is not present in every block, present specific problems of

analysis and interpretation that are summarised on pages 124 and 127.

Sampling units may be grouped into spatial blocks to control for known

or suspected background variation from place to place. For example, in an

experiment to compare the effectiveness of different fertiliser formulations

on crop yield, experimental plots may be grouped into blocks to control for

spatial variation in soil characteristics and microclimate across the field.

Replicate pieces of field or laboratory equipment that group sampling

units together spatially – such as buckets, mesocosms or PCR machines –

may also be treated as blocks to control for variation among them.

Alternatively, sampling units may be grouped into temporal blocks to

control for extraneous variables such as weather conditions, circadian

cycles and drifts in calibration of equipment. For example, when sampling

the densities of fish in replicate pools, runs and riffles over the course of

three days, day could be included as a blocking factor to control for

day-to-day variation in catch efficiency with water temperature, weather

conditions and operator motivation. Temporal blocks are also used

when limited availability of sampling units requires an experiment to be

repeated over time to achieve adequate replication. For example, if only

two mesocosms are available to investigate the effect of temperature on

plant growth, pairs of trials may be conducted sequentially over time with

temperature treatments randomly reallocated to the two mesocosms each

time. If re-using sampling units, care must be taken to ensure that previous

treatments do not contaminate or alter the sampling units in such a way

that might affect the outcome of subsequent trials. Note that the identity

of the sampling units is not considered as a factor in this design, and that

each unit is not necessarily tested with every combination of treatments, in

contrast to a subject-by-treatment repeated-measures design in which the

identity of the sampling units (subjects) is considered as a factor and units

are specifically tested in every level of the within-subject factor(s).

Blocks may also be discrete biological units, such as individual volun-

teers, trees or ponds. Each unit is tested in all levels of one or more

treatment factors that can be randomly assigned within the unit. In a

manipulative experiment, treatments are applied randomly to replicate

parts of each unit; for example, the effect of ointment on acne may be

tested by applying ointment to one cheek of each patient and a placebo to
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the other, the effect of herbivore attack on the production of trichomes

may be tested by mechanically defoliating one branch on each sapling

and leaving another branch intact as a control. In mensurative studies,

the different levels of the within-block factor generally occur in a fixed

sequence. For example, the manual dexterity of right and left hands of

individual subjects, or the north and south sides of tree trunks cannot be

randomly assigned, and are therefore more appropriately analysed as

repeated-measures models (Chapter 6).

Randomised-block designs usually have just one observation of each

treatment or treatment combination in each block, in which case the

number of plots in each block equals the number of treatment combi-

nations. The lack of within-block replication maximises the power of the

experiment to detect treatment effects for a given availability of plots. It

complicates the interpretation of results, however, because certain

interactions between treatments and blocks cannot then be tested. Fully

replicated randomised blocks, which have two or more observations of

each treatment or treatment combination in each block, allow block-by-

treatment interactions to be tested but often give relatively modest

improvements in power for the extra resources invested (e.g., see meso-

cosm example 4 on page 142). Blocked designs that have full replication

are analysed by the models in Chapter 3 (further detailed in the section

below on analysis of randomised-block designs).

For designs that block plots across some defined gradient (e.g., of soil

moisture), the blocking factor could be substituted by a covariate measured

in each plot, although there would then be little point in grouping the

arrangement of plots. A more likely scenario is that a covariate is measured

just once for each block, which yields an orthogonal design (modelled in

Chapter 3). This approach of partitioning out sources of nuisance variation

has two advantages over categorical blocks: (i) the interaction of the

treatment with the covariate can be tested (unlike the interaction with a

categorical block), and (ii) the covariate uses up just one d.f., so potentially

leaving more error d.f. for testing the main treatment effect. These must be

offset against two disadvantages: (i) the single measurement of the covariate

per blockmakes an untested assumption that the value applies without error

across the whole block, and (ii) the covariate will only increase the power of

the test if it has a large, linear influence on the response. A covariate should

never be used without satisfying its assumption of a linear response, because

a non-significant result may mask real non-linear responses. Unless a gra-

dient is well defined, it is often safer to partition out multiple sources of

unknown random variation with a random blocking factor.
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Assumptions

For models with more than two treatment levels, the restricted allocation

of treatments to plots per block introduces an additional assumption of

homogeneity of covariances. Unlike a completely randomised design, in

which all sampling units are independent of each other, sampling units

within a block are correlated with each other by virtue of being within the

same block. This correlation does not present a problem, provided that

the covariances (i.e., correlations) are the same between treatment levels

within each block. This is an extension to the standard assumption of

homogeneous variances that applies to all ANOVA (page 14), and it is

relevant also to unreplicated split-plot (Chapter 5) and repeated-measures

(Chapter 6) designs. In practice, these ANOVAs require only an addi-

tional homogeneity amongst the set of variances obtained from all pairs

of treatment levels, where each variance is calculated from the differences

in the response between the levels across blocks: known as the ‘sphericity

condition’. For a design with three levels of factor A each tested once in

each of six blocks, one variance is calculated from the six differences in

response between A1 and A2, another from the six for A1–A3, and the

third from the six for A2–A3. Heterogeneity amongst these variances will

result in a liberal test that inflates the Type I error rate. Kirk (1982),

Winer et al. (1991) and Quinn and Keough (2002) suggest ways to adjust

the ANOVA when this assumption is not met. If the design is fully

replicated, then the assumption of homogeneity of covariances becomes

subsumed within the standard assumption of homogeneity of variances

between all samples.

With only one replicate sampling unit (plot) per combination of block

and treatment levels, the requirement that it be drawn independently

ceases to apply, but it must be representative of the block, level of A and

level of B. Spatial non-independence of plots within blocks can be pro-

blematic when the sampling units are in close proximity, or when the

block represents an indivisible biological unit. Care must be taken to

ensure that the response of each plot is unaffected by the response of

other plots in the same block. For example, in an agricultural field trial

of an insecticide, plots within each block should be spaced far enough

apart to ensure that insecticide concentrations applied to one plot do not

contaminate neighbouring plots and that invertebrates cannot move

easily from one plot to another. Similarly, an ointment applied to patients

with acne should have only localised effects on the cheek to which it

is applied, and not systemic effects on both control and treatment cheeks.
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Despite the potential prob lem of non-indep endence amon g sampling

units, the rando misatio n of treatmen t level s to plots within blocks en sures

no syst ematic bias, in contras t to repeat ed-me asures designs whi ch are

susceptible to bias from practice and carryov er effe cts (see Chapt er 6).

Unrepl icat ed randomi sed-blo ck designs generally cann ot test for

interactio ns of treatmen ts wi th blocks, which must therefo re be assum ed

to ha ve negligible effect. Alt hough full rep lication allows testing of these

interactio ns, their interp retation remains problem atic (see below ).

Two approaches to analysis of randomised-block designs

Blocking facto rs are alw ays ran dom because they descri be a rando mly

and independen tly drawn set of levels that group mult iple sources of

uncontrol led variation in a wi der populati on (deta iled on page 19). The

precise identi ty of each block holds no value in itself and a subsequen t

analysis could us e a different set of blocks draw n rand omly from the

populatio n to re-test the same hyp othesis. Rando m blocking facto rs

differ from random treatment facto rs in two ways: they co nstrain the

random alloc ation of other treatment fact ors to experi menta l units , and

they measur e multiple sources of varia tion. For exampl e, variation

among blocks of experi mental plots in a field aris es from sources such

as soil mois ture, shad ing, soil micro -nutrient s and so on. Similarl y,

variation amon g randoml y selec ted trees may compri se compo nents due

to indivi dual genotype, local environm ental con ditions, age etc. Sep ar-

ating and testing these different sou rces of va riation req uires carefu l

experimenta l design. For an illu stration, see exampl e 4 to model 3.1 on

page 79.

Com plete rand omised-bloc k experi ments are analys ed as fact orial

ANOVAs because every treatment level is present in every block. Text-

books prescribe two contrasting approaches to the analysis of randomised-

block designs withou t full replica tion, which differ prim arily in their a

priori assump tions regardi ng the presence of the untest able block -by-

treatment inter actio ns. Follow ing New man et al. (1997), we term these

approaches ‘Model 1’ and ‘Model 2’. The Model 1 approa ch assum es that

block-by-treatment interactions are present and uses the relevant block-

by-treatment MS as the F-ratio denominator to test treatment effects.

The Model 2 approach assumes that block-by-treatment interactions are

absent and pools all block-by-treatment MS into the residual MS to test

treatment effects. Be aware that textbooks and reports of analyses
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frequent ly omit to mentio n this assum ption and give no indica tion in the

ANOV A table that pooling ha s been carri ed out.

In practice, these two method s pro duce sim ilar resul ts for designs with

a single treatment factor, but they can produ ce marked ly different results

for designs with two or mo re treat ment factors. We illustr ate bot h

appro aches for models 4.1 to 4.3 below. The M odel-2 app roach poten-

tially provides a more powerful test of treatment effects but the

assumption of no block-by-treatment interactions cannot be tested unless

the design has replicate observations for each combination of treatments

within each block to estimate the residual error term. Furthermore,

Model 2 uses an error term for some treatment effects that comprises all

block-by -tr eatment MS. For exampl e, in model 4.2( i ), A, B and their

interactions are tested against the pooled error MS[S0*Aþ S0*Bþ
S0*B*A]. Pooling in this manner assumes that these contributions to the

error term have approximately equal MS values. Kirk (1982) recom-

mends testing this assumption with an Fmax test, and using the Model-1

approach in the event of heterogeneity of error MS contributions or

significant block-by-treatment interactions.

Interpretation of non-significant treatment factors in randomised-block

designs is problematic because they may indicate no treatment effect, or a

treatment effect that has opposing effects in different blocks. The latter

possibility often cannot be tested if the design is unreplicated. Full repli-

cation allows testing of the assumption of no significant block-by-treatment

interactions and thereby – in the event of no significant interactions –

validation of non-significant treatment effects. Fully replicated rando-

mised-block designs can be analysed using equivalent completely

randomised models in Chapters 1 to 3; if there is little evidence of block-

by-treatment interactions (i.e., high P values), then those terms may be

pooled into the residual MS to increase power to test treatment effects

(see page 38). In the event of a significant block-by-treatment interac-

tion, however, interpretation is problematic because the interaction with

block means that the treatment effect may depend upon any of the

multiple sources of variation encompassed by the blocking factor. Thus,

the causal mechanisms giving rise to a significant block-by-treatment

interaction cannot be interpreted without further experimentation.

Significant treatment factors do not pose the same level of interpretative

difficulty, because they are tested against interactions with the random

block, and therefore report significance over and above any treatment-

by-block interaction.
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4.1 One-factor randomised-block model

Model

Y ¼ S0jA

Test hypothesis

Variation in the response Y is explained by factor A.

Description

Each of a levels of treatment A is randomly assigned one of a plots (P0) in
each of n blocks (S0). This design is a complete randomised block because

every treatment is represented in every block.

Allocation table

The table illustrates a¼ 4 levels of factor A assigned randomly amongst a

plots (demarked by single lines) within each of n ¼ 4 blocks (demarked by

double lines). Note that the table does not indicate the spatial distribu-

tion of treatment combinations, which must be randomised within each

block. For example, treatment level A1 should not be assigned to the first

plot in every block.

Factors Levels Repeated measures on S0

A a yes
S0 n –

P9(S9|A) S1 S2 S3 S4

A1 P1 … … Pn

A2 … … … …

A3 … … … …

A4 … … … Pna

4.1 One-factor randomised-block model 121



Examples

(1) S patial bloc k example : H1: Crop yield depends on sowing Density (A),

with a d e ns it ie s r an do m l y a ss ig ne d a mo ng st a Pl ots ( P0 ) in each of n

Blocks (S0 ). The blocks stratify a natural environmental gradient, such

as soil moisture from top to bottom of a sloping field. The response is

the yield from each plot, measured at the end of the experiment.

(2) Te mporal block exampl e : H1: Plant growth depends on Temperature

(A), with a temperatures randomly assigned amongst a Mesocosms (P0 ).
The whole experiment is repeated with new plants n Times in sequence

(S0 ), with temperatures randomly reassigned to mesocosms each time.

(3) S patial block exam ple : H1: Acne is reduced by treatmen t with

oin tment, test ed by app lying the ointm ent to one cheek and a

placeb o to the oth er, with side randomi sed be tween subjects.

(4) S patial block exampl e : H1: Barnacle settlem ent den sity on a ro cky

sh ore depen ds on ro ck-surface rugo sity (A), with a roughn ess level s

ran domly assi gned amongst a Plo ts (P 0 ) at each of n Ele vations (S 0 ) up
the sho re.

Comparisons

This de sign c an be extended to include a secon d crosse d fact or applie d to

whol e blo cks (model 5.6), to plots within blocks (model 4.2 ), or to

repli cate sub-pl ots within each plo t (model 5.1) .

When a ¼ 2, model 4.1 is equivalent to a paired-sample t test. In testing

the effect of a single treatment factor A, model 4.1 has similar objectives to

completely randomised model 1.1 and repeated-measures model 6.1. It

differs from model 1.1 in that a blocking factor (S0 ) partitions out
unwanted sources of background variation among sampling units by

grouping plots into blocks spatially or temporally. The random allocation

of treatments to plots is then stratified so that each of the a levels of factor

A is represented once in each block. Although the Model-1 analysis for

model 4.1 is identical to that for repeated-measures model 6.1, with block

corresponding with subject (S0), it escapes systematic bias from practice

and carryover effects because the levels of A are randomised within each

block rather than being tested sequentially on each subject.

Model 4.1 ha s a sim ilar structure to model 3.1 (where S0 co rresponds
with B0) in that it tests the effect of two crossed factors. Indeed, the fully

repli cated version of model 4.1 is analys ed with model 3.1. The design

nevertheless differs from model 3.1 in that assignment of levels of A to
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sampling units is randomised only within blocks, and it is not fully

replicated.

The Model-1 analysis is identical to the analysis of an unreplicated

two-factor design with at least one random factor (model 7.1), except that

it must meet the additional assumption of homogeneity of covariances

across blocks.

Special assumptions (see also general

assumptions on page 118)

The model cannot test the block-by-treatment interaction, because the

lack of replication means that there is no residual error term (shaded

grey in the ANOVA tables below). Interpretation of a non-significant A

effect is therefore compromised by not knowing whether it arises from no

effect or opposing effects in different blocks. The assumption of no

significant block-by-treatment interaction can be tested if independent,

replicate plots (P0) are used for each of the a treatments in each block.

The design is then fully replicated and the analysis identical to that for

model 3.1, with B0 substituting for S0. The interpretation of a significant

block-by-treatment interaction is still problematic because the treatment

effect may depend upon any of the multiple sources of variation

encompassed by the blocking factor. Thus, the causal mechanisms

underlying the significant interaction effect cannot be interpreted without

further experimentation.

ANOVA tables for analysis of terms SþA

Model 4.1(i) A is a fixed treatment, S0 is a random blocking factor:

F-ratio

Mean square d.f.
Components of variation
estimated in population Model 1 Model 2

Between n blocks
1 S0 n� 1 P0(S0*A)þ S0 No testa 1/3

Between na plots
2 A a� 1 P0(S0*A)þ S0*AþA 2/3 2/3
3 S0*A (n� 1)(a� 1) P0(S0*A)þ S0*A No test No test
4 P0(S0*A) 0 P0(S0*A) – –

Total variation na� 1

a
An unrestricted model tests the MS for S0 over the MS for its interaction with A
(F-ratio ¼ 1/3). See page 242.
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Balanced incomplete-blocks variant

The randomised complete-block design has a reduced version known as a

‘balanced incomplete block’. The design is incomplete because each of the

n blocks tests only c levels of treatment A, where c< a.

The example allocation table shows four levels of treatment A tested in

random pairs in each of six blocks (S0).

This design is balanced provided that each treatment level is tested the

same number of times, r¼ nc/a, and each pair of treatment levels appears

in the same number of blocks, ‚¼ nc(c� 1)/[a(a� 1)]. In the above

example, a¼ 4, n¼ 6, c¼ 2, so r¼ 3 tests per treatment level, and ‚¼ 1

block for each pair of treatment levels. The incomplete design means

that factors A and S are not independent of each other, making it

vital to randomly assign treatment levels to the c subjects (or plots) per

block.

Model 4.1(ii) A0 is a random factor, S0 is a random blocking factor

F-ratio

Mean square d.f.
Components of variation
estimated in population Model 1 Model 2

Between n blocks
1 S0 b� 1 P0(S0*A0)þ S0*A0 þ S0 1/3 1/3

Between na plots
2 A0 a� 1 P0(S0*A0)þ S0*A0 þA0 2/3 2/3
3 S0*A0 (n� 1)(a� 1) P0(S0*A0)þ S0*A0 No test No test
4 P0(S0*A0) 0 P0(S0*A0) – –

Total variation na� 1

P99(S9|A) S1 S2 S3 S4 S5 S6

A1 P1 P2 P3

A2 P4 P5 P6

A3 P7 P8 P9

A4 P10 P11 P12
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To analys e this design, request the mo del Y ¼ A þ S in a GLM with

adjusted SS (rat her than sequenti al SS), so that the SS of A is calculated

after partiti oning out SS of S, and vice v ersa. The de sign assum es no

interactio n of S with A.

A furth er example of balanced incompl ete blocks is the You den square

described on page 127.

Latin square variant

The ‘L atin sq uare’ is an extens ion of a one -factor rando mised-bloc k

design (model 4.1 ) to include a second block ing fact or. The blocking

factors may be both sp atial, both tempor al or a mixture. Its defining

feature is that each blocking fact or has the same numb er of block s as

there are levels of Factor A (treatm ents), and each treatment appears just

once in ea ch and every block. The de sign is co nvenient ly repres ented as a

square grid with as many columns an d rows (the blocks) as treatmen t

levels. The treatment s are disper sed within the grid in such a way that

they all appea r once in ea ch co lumn (B) an d onc e in each row (C).

Col umns and rows may be treat ed as rand om bloc ks, or one of them

may rep resent a fixed factor. They might account for unwant ed varia tion

in alti tude or shading for exampl e, or a ny unqua ntified spatial varia tion

in two dimens ions. Treating them as ran dom factors means a ssuming

that they rep resentati vely sampl e the true variation in the facto rs. The

design is then a type of randomi sed complet e block. The Latin- square

design is requir ed for c rossove r tri als, in which treatmen t level s are

assigned to different subjects for a given time period, after which the

assignment s are switche d. The tw o blo cking fact ors are then Subje ct

(e.g., columns) and Time period (rows). The objective is for subjects

to receive treatments in different sequences, always paying attention to

the potential problem of carryover effects from one treatment into

the next.

Below is an example of a Latin square layout for three treatment levels

in a 3 · 3 grid of nine plots:

A1 A2 A3

A2 A3 A1

A3 A1 A2
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It is important that levels of the factors A, B and C are paired

randomly. This can be assured for the 3 · 3 layout by beginning with

the design above which has the levels of A in numerical order across

the columns of row 1, starting with A1 in column 1, and again in row 2

starting with A2, etc. From this ‘standard’ form, randomly permute

first rows and then columns of the matrix to obtain one of 12 possible

Latin squares (including this one). Larger grids generate many more

permutations. A 4·4 layout has 576 possible Latin squares, of which

only 144 can be obtained by randomising from a standard form with

the levels of A in numerical order. For these and larger squares, it is

therefore recommended to ensure a truly random arrangement of

treatment levels by using tables of Latin squares, or algorithms that are

available on the web. Below is the design for ANOVA of the above

layout.

The example allocation table shows three levels of treatment A dis-

persed across rows C and columns B in 3 · 3 standard form.

Regardless of whether B or C are treated as random or fixed, the design

assumes no significant interactions. It is analysed with GLM, requesting

the reduced model: Y¼AþBþC. Each factor is then tested against a

residual MS with (a� 1)(a� 2) d.f., constructed from (SS[total] – SS[C] –

SS[B] – SS[A])/([a� 1][a� 2]). More power can be achieved by replicating

the Latin square, either in separate squares, or stacked in a single square.

For example, a two-replicate stack of the 3 · 3 square would have six

observations per treatment, distributed across three column blocks each

with six plots and down six row blocks each with three plots. The

increased size of the column block then allows testing of its interaction

with the treatment.

A1 A2 A3

S
9(

C
|B

|A
)

B1 B2 B3 B1 B2 B3 B1 B2 B3

C1 S1  S5 S9

C2 S3 S4 S8

C3 S2 S6 S7
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The examples below are oppropriate for Latin Square designs.

(1) Spatial example. H1: Crop yield in a sloping field depends on sowing

Density (A). A square grid of a2 Plots is used to control for spatial

variation both down and across the slope. Within the grid, a Density

treatments are randomly assigned to plots so that each treatment is

tested once at each position down and across the slope.

(2) Temporal example. H1: Plant growth depends on Temperature (A).

Each of a ambient temperatures is randomly assigned to one of a

Mesocosms (B0) for a period sufficient for measuring plant growth.

The whole experiment is then repeated over a Time periods (C0), each
time with new plants and mesocosms reassigned to temperatures such

that every mesocosm is tested at every temperature.

Youden square variant

The Youden square is a further reduction, in which a row or column has

been removed from the Latin square (making it actually a rectangle). It

is commonly used to balance out the effects of the position of a treat-

ment in a repeated-measures sequence. For example, to test for predator

aversion behaviour, each of b Mice (B) might be offered food tainted

with a variety of predator Odours (A). Each mouse can be tested with

one less than the total number of odour types, in Order (C) assigned by

the Youden square.

Removing a row from the above design, we have treatment A with a

levels compared across b¼ a levels of a random block B0, and c¼ a� 1

levels of a random block C0. This is one of many possible ‘balanced

incomplete-block’ designs. The design is incomplete because it does not

test each treatment level in each level of B and in each level of C (as the

Latin square did). It is balanced because each treatment level is tested

the same number of times, r¼ bc/a, and each pair of treatment levels

appears in the same number of blocks, ‚¼ bc(c� 1)/[a(a� 1)]. The

design assumes no significant interactions. It is analysed with

GLM, requesting the reduced model: Y¼AþBþC. In this case, use

adjusted SS in a GLM (rather than sequential, as in the Latin square),

so that the SS of A is calculated after partitioning out SS of B, and

vice versa.
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4.2 Two-factor randomised-block model

Model

Y ¼ S0jBjA

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.

Description

Each of ba combinations of crossed factors B and A is randomly

assigned one of ba plots (P0) in each of n blocks (S0). This design is a

complete randomised block because every treatment combination is

represented in every block.

Allocation table

The table shows ba¼ 4 combinations of levels of B*A assigned randomly

amongst ba plots (demarked by single lines) within each of n ¼ 4 blocks

(demarked by double lines). Note that the table does not indicate the

spatial distribution of treatment combinations, which must be rando-

mised within each block. For example, treatment level B1 should not be

assigned to the first plot in every block.

Factors Levels Repeated measures on S0

A a yes
B b yes
S0 n –

P99(S9|B|A) S1 S2 S3 S4

B1 P1 … … Pn
A1

B2 … … … Pnb

B1 … … … …
A2

B2 … … … Pnba
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Examples

(1) Spatial block example : H1: Crop yield depen ds on a combinat ion of

sowing den sity (A) and Ferti liser (B) treatment s, with ba co mbina-

tions of levels ran domly assigne d amongst ba Plo ts (P 0 ) in each of n
Blocks (S 0 ). The blocks stra tify a natural environm ental gradie nt,

such as soil mois ture from top to bottom of a sloping field. The

response is the yield from each plot, measur ed at the end of the

experi ment.

(2) Temp oral bloc k exampl e : H1: Plant g rowth de pends on a

combinat ion of Tem perature (A) and Light (B), with ba co mbina-

tions of level s randoml y assi gned amongst ba Meso cosms (P 0 ). The
whol e experi ment is repeated with new plants n Ti mes in sequence

(S 0 ), with temperatur es an d light rando mly reassigned to mesoco sms

each time.

Comparisons

Model 4.2 is an extens ion of a one -factor ran domised -block mod el

(model 4.1 ) to include a seco nd crosse d factor applie d to plots . If A or B

is random, then consider using the Latin or Youden Squa re varia nts of

model 4.1 ab ove (pages 125 to 127). The mode l can be extend ed to

include a third crossed factor, which may be app lied to whol e blocks

(model 5.7), to plots within blocks (model 4.3 ), or to replicate sub-plo ts

within each plot (model 5.2).

In testing the combined effect of two crossed factors, model 4.2 ha s

similar objectives to cross-factored models 3.1, 5.1, 5.6 and 6.2. Crucially,

it differs from fully randomised model 3.1 in that the assignment of

treatments to sampling units (plots) is randomised only within blocks, and

it differs from split-plot models 5.1 and 5.6 in that both factors are applied

to sampling units at the same scale. Although the Model 1 analysis for

model 4.2 is identical to that for repeated-measures model 6.2, with block

corresponding with subject (S0 ), it escapes systematic bias from practice

and carryover effects because the levels of A and B are randomised within

each block rather than being tested sequentially on each subject.

Mo del 4.2 has a simila r struc ture to model 3.2 (w here S0 corres ponds
with C0) in that it tests the effect of three crossed factors. Indeed,

the full y replicated versio n of model 4.2 is analys ed with model 3.2.

The design nevertheless differs from model 3.2 in that assignment of
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the ba level s of factors A and B to sampl ing units is randomi sed only

within blocks, and it is not fully replicated.

The Mo del-1 analys is is identi cal to the an alysis of an unrepli cated

three- factor design with at least one random facto r (model 7.2), except

that it must meet the additio nal assum ption of homogen eity of covar-

iances ac ross blocks.

Special assumptions (see also general

assumptions on page 118)

The model assum es that so me or all block-by -tre atment inter actio ns are

absent or not signifi cant, many of whi ch cannot be teste d anywa y be cause

the lack of replicati on means that there is no resid ual error term (shaded

grey in the ANO VA table s be low). Inter pretation of non-si gnificant A, B

or A*B is comprom ised because it could result either from no effe ct, or

from oppos ing effe cts in different blocks. The assum ption of no sig-

nificant block-by -treatm ent interacti ons can be tested if ind ependent,

repli cate plots (P 0 ) are used for each of the ab treatment co mbination s in

each block. The design is then fully repli cated and the an alysis identical

to that for mod el 3.2, with C0 sub stituting for S 0 . The inter pretation of a
signi ficant block -by-treat ment intera ction is nevert heless pro blematic

becau se the treat ment effect may depend upon any of the multiple

sources of varia tion encompass ed by the blo cking fact or. Thus , the causal

mechani sms unde rlying the signi ficant inter action effe ct cannot be

interpreted without further experimentation.

If all block-by-treatment interactions are assumed to be absent, the

error term for some treatment effects may comprise all block-by-

treatment MS (Mod el 2, Newman et al . 19 97 ). For exampl e, in mod el 4.2

(i), A, B and B*A are tested against the pooled error MS[S0*Aþ S0*B
þ S0*B*A]. Pooling in this manner assumes that these contributions to

the error term have approximately equal MS values (see page 120).
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4.3 Three-factor randomised-block model

Model

Y ¼ S0jCjBjA

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A, factor B and factor C.

Description

Eachof cba combinations of crossed factorsC,BandA is randomly assigned

one of cba plots (P0) in each of n blocks (S0). This design is a complete

randomised block because every treatment combination is represented in

every block.

Allocation table

The table shows cba¼ 8 combinations of levels of C*B*A assigned ran-

domly amongst cba plots (demarked by single lines) within each of n ¼ 4

blocks (demarked by double lines). Note that the table does not indicate

the spatial distribution of treatment combinations, which must be ran-

domised within each block. For example, treatment level C1 should not

be assigned to the first plot in every block.

Factors Levels Repeated measures on S0

A a yes
B b yes
C c yes
S0 n –
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Examples

(1) Spatial bloc k exampl e : H1: Crop yield depends on a combination of

Herbicide (A), sowing Density (B) and Fertiliser (C) treatments, with cba

combinations of levels randomly assigned amongst cba Plots (P0 ) in
each of n Bl oc ks ( S0 ). The blocks stratify a natural environmental

gradient, such as soil moisture from top to bottom of a sloping field. The

response is the yield from each Plot, measured at the end of the

experiment.

(2) Temp oral bloc k example : H1: Plant growth depends on a combination

of Temperature (A), Light (B) and Fertiliser (C), with cba combinations

of levels randomly assigned amongst cba Mesocosms (P0 ). The whole
experiment is repeated with new plants n Times in sequence (S0 ), with
temperatures, light levels and fertiliser type randomly reassigned to

mesocosms each time. It is likely that different fertiliser treatments

c an b e a pp lie d w it hi n e ac h m es oc os m, i n wh ic h c as e u se m o de l 5 .2 ,

which uses only ba mesocosms.

Comparisons

Model 4.3 is an extens ion of a two-fa ctor randomi sed-blo ck mod el

(model 4.2) to include a third crosse d factor applie d to plots. In testing

the combine d effe ct of t hre e c ro sse d f actors, mode l 4. 3 has similar objectives

to com ple tely ra nd om ised m odel 3 .2, split-plot m od els 5.2 , 5 .3, 5 .4, 5.5 ,

5.7, 5.9 and repeated-measures models 6.5 and 6.7. Crucially, it differs

from model 3.2 in that the assignment of treatments to sampling units

P99(S9|C|B|A) S1 S2 S3 S4

C1 P1 … … Pn
B1

C2 … … … Pnc

C1 … … … …
A1

B2
C2 … … … Pncb

C1 … … … …
B1

C2 … … … …

C1 … … … …
A2

B2
C2 … … … Pncba
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(plots ) is n ot com ple tely randomis ed . It d iffer s from the v arious split-plot

mode ls in that fa ctors A, B a nd C a re a ssig ne d to s ampling units at the sa me

sc ale , and f rom the re pe ated-me asures mode ls in that fa ctor lev els are ra n-

domly assigned within blocks rather than being applied in sequence.

Special assumptions (see also general

assumptions on page 118)

The model assumes that some or all block-by-treatment interactions are

absent or not significant, many of which cannot be tested anyway because

the lack of replication means that there is no residual error term (shaded grey

in the ANOVA tables below). Interpretation of non-significant effects

amongst A, B, C and their interactions is compromised because the result

could mean either no effect, or opposing effects in different blocks. The

assumption of no significant block-by-treatment interactions can be tested if

independent, replicate plots (P0 ) a re u s e d f o r e ac h o f t he cba treatment

combinations in each block. The interpretation of a significant block-by-

treatment interaction is nevertheless problematic because the treatment

effect may depend upon any of the multiple sources of variation encom-

passed by the blocking factor. Thus, the causal mechanisms underlying the

significant interaction effect cannot be interpreted without further experi-

mentation.

If all block-by -treatm ent inter actio ns are assum ed to be absent, the

error term for some treatment effe cts may compri se all block-by -treat-

ment MS (Model 2, Newman et al. 1997). For example, in model 4.3(i),

A, B, C and their interactions are tested against the pooled error MS

[S0*Aþ S0*Bþ S0*Cþ S0*B*Aþ S0*C*Aþ S0*C*Bþ S0*C*B*A]. Pooling

in this manner assumes that these contributions to the error term have

approximately equal MS values (see page 120).
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5

Split-plot designs

Split-plot models extend the randomised-block designs of Chapter 4

to situations in which different treatments are assigned to sampling units

at different scales. In addition to one or more treatments being assigned

at random to plots within each block, further treatments are assigned at

random to whole blocks and/or to sub-plots nested in plots (and even to

sub-sub-plots nested within each sub-plot). Cross-factored treatments are

therefore applied to a hierarchy of nested sampling units: sub-sub-plots in

sub-plots in plots in blocks. Further details of split-plot designs are given

on page 25.

These are the four scales of sampling unit to which a given treatment

level may be assigned in the models described in this chapter:

As with randomised-block designs, randomisation of treatments to

sampling units occurs only within each block, plot or sub-plot. Split-plot

designs are usually unreplicated, with just one observation of each

treatment or combination of treatments within a particular block, plot,

sub-plot or sub-sub-plot. This lack of replication complicates the inter-

pretation of results, because it precludes testing of certain interactions

between treatment factors and sampling units. Full replication allows

Sub-sub-plot R9 in a sub-plot in a plot in a block  Q9 

P9 

S9 

141



testing of these inter action s, but often gives relat ively mode st impr ove-

ments in power for the extra resourc es invested.

The ap plication of treatment s at more than one (usual ly spati al) scale

has a num ber of practical advantag es.

(1) In mult i-factor ex periments it may be impracti cal to apply some

treat ments to very large or very small sampl ing units. For exampl e, in

a field trial to test the response of crop yield to wateri ng regim e (A)

a nd fert iliser concentra tion (B), neighbo uring small plo ts ca nnot

recei ve diff erent wateri ng regim es because the water will leach across

plo t bounda ries. One solution is to apply diff erent wateri ng regim es

to rep licate groups of plots (blocks , S0 ) and to ap ply different fertiliser
c oncentra tions to plots (P 0 ) within each blo ck, resulting in spli t-plot
mo del 5.6.

(2) Spl it-plot designs allow new treatment fact ors to be intr oduc ed into

a n experimen t alrea dy in progres s. Each of the smallest existing

sampl ing uni ts can be split into yet smaller units , to whi ch the levels

of the new factor are ap plied. Suppos e, for exampl e, that an

invest igato r decides to incorpora te a third treatment , pe sticide (C),

into the above experiment. As the experiment is already in progress

and no more plots of land are available, each plot is further

subdivided into c sub-plots (Q0) and one concentration of pesticide is

applied to each sub-plot. The experiment is then analysed using

mo del 5.5 .

(3) Split-plot designs are useful for analysing multiple response variables.

Suppose that the biomass of weeds is recorded from each plot in the

first experiment, in addition to the biomass of the crop. Plant type

then becomes a third factor (C) and the experiment is again analysed

us ing model 5.5.

(4) Split-plot designs allow multi-factor experiments to be conducted

with few primary sampling units (blocks). For example, suppose that

a laboratory experiment to test the response of seedling growth to

four concentrations of nitrogen Fertiliser (A) and three Temperatures

(B) has available only six mesocosms (S0). The investigator wants to

test for interacting effects of fertiliser and temperature, but cannot do

this in a fully replicated two-factor design without having at least 24

mesocosms – one for each of two replicates at each of the 12

combinations of levels of A and B. However, all treatment effects

may be tested with just six mesocosms if each of high, medium and

low temperature are allocated to two mesocosms and all four
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concentrations of fertiliser are then tested in each mesocosm, one per

tray of seedlings (P0). As more than one observation is made in each

mesocosm, the analysis must now declare Mesocosm as a random

blocking factor (S0) to account for variation between mesocosms.

Since each mesocosm has its own temperature setting but all levels of

fertiliser, the factor Mesocosm is nested in Temperature and cross

factored with Fertiliser, giving model 5.6. Note that having just three

mesocosms will not suffice, because the effect of temperature is then

entirely confounded with unmeasured differences between the

mesocosms.

Assumptions

Split-plot models involve repeated measurements on blocks (and on plots

if sub-plots are present, and on sub-plots if sub-sub-plots are present),

which introduces an additional assumption of homogeneity of covariances.

Because blocks group plots (which in turn group sub-plots, which in turn

group sub-sub-plots), any observations made on factors within these

blocks (or plots or sub-plots) are not independent of each other. This

source of correlation between levels of within-block (or plot or sub-plot)

factors is not a problem provided that the covariances (i.e., correlations)

are the same between treatment levels within each block (or plot or sub-

plot). This is an extension to the standard assumption of homogeneous

variances, which applies to all ANOVA (page 14). In practice, these

ANOVAs require only an additional homogeneity amongst the set of

variances obtained from all pairs of treatment levels, where each variance

is calculated from the differences in response between the levels across

blocks (or plots or sub-plots): known as the ‘sphericity condition’. Het-

erogeneity amongst these variances will result in a liberal test that inflates

the Type I error rate. Kirk (1982), Winer et al. (1991) and Quinn and

Keough (2002) suggest ways to adjust the ANOVA when this assumption

is not met. If the design is fully replicated, then the assumption of

homogeneity of covariances becomes subsumed within the standard

assumption of homogeneity of variances between all samples.

With only one replicate observation per combination of sampling unit

and treatment levels, the requirement that it be drawn independently

ceases to apply, but it must be representative of the sampling and

treatment level. Spatial non-independence of sampling units can be a

problem if they are in close proximity. To avoid this problem, replicate
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plots (or sub-plots or sub-sub-plots) should be spaced apart such that

treatments applied to one sampling unit do not influence measurements

taken from its neighbours. Despite the potential for non-independence

among sampling units, the randomisation of treatment levels to sampling

units ensures no systematic bias, in contrast to repeated-measures designs

which are susceptible to bias from practice and carryover effects (see

Chapter 6).

Unreplicated split-plot designs generally cannot test for interactions of

within-block treatments with blocks, which must therefore be assumed to

have negligible effect. Although full replication would allow testing of

these interactions, their interpretation remains problematic (see below).

Analysis

Split-plot designs are analysed as unreplicated factorial models with

nesting. They are factorial because each level of each treatment factor

is tested in combination with each level of the other treatment factors,

and nested because the sampling units (blocks, plots, sub-plots and sub-

sub-plots) to which the treatments are applied are hierarchical. The

nesting of sampling units means that each sampling scale has its own

ANOVA table.

Analysis follows the Model-2 approach used for randomised-block

designs (page 119). If the design is unreplicated then it is not possible to

test for interactions of treatment factors with blocks, plots, sub-plots or

sub-sub-plots because the relevant error terms cannot be estimated. These

interaction terms are assumed to be zero and pooled together in order to

test treatment effects. The error term for a particular treatment effect is

then the interaction between blocks and all treatments that are applied to

that sampling unit or larger. Pooling assumes that the MS contributions

to the pooled error term have approximately equal MS values. Kirk

(1994) recommends an Fmax test of this assumption, and using the less

powerful unpooled test in the event of heterogeneous variances.

Interpretation of non-significant results is problematic because they

may indicate no treatment effect, or a treatment effect that has opposing

effects in different sampling units. Full replication allows testing of the

assumption of no sampling unit-by-treatment interactions and thereby –

in the event of no significant interactions – validation of non-significant

treatment effects. Interpretation of significant interactions is nevertheless

problematic because the treatment effect may depend upon any of the
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multiple sources of v ariation enco mpass ed by the blocking fact or. Thus ,

the c ausal mech anisms givi ng rise to a signi ficant sampl ing unit-b y-

treatment interacti on cann ot be inter preted without furth er experi -

mentation. Signific ant treat ment fact ors do not pose the same level of

interpreta tive difficul ty, because they are tested agains t inter action s with

the random sampling units, and theref ore rep ort significa nce over and

above any inter actio ns with them.

Types of split-plot model

Textbooks vary in the term inology used to descri be the ne sted sampling

units in spli t-plot de signs. For c onsistency with the rando mised-bloc k

models in Chapte r 4, we refer to the top level in the hierar chy as blo cks,

and subsequen t level s in the hierar chy as plo ts, sub-plo ts and sub -sub-

plots (see also Underw ood 1997 ; Crawl ey 2002 ; Quinn and Keough

2002 ). Howe ver, other books refer to the top level in the hierarch y as

plots an d term the lowe r levels acco rdingly (for exampl e, Winer et al .

1991).

Split -plot mo dels are simila r in concep t to repeat ed-me asures models .

Repeated observat ions are taken on each block in the same way that

repeated measur ement s are taken on each su bject. W e illustr ate this

similarit y using S0 to deno te both blocks and sub jects and P 0 to deno te
both plots nested in block s and obs ervations nested in sub ject. Split -plot

models differ from repeat ed-me asures models , howeve r, in that treatmen t

levels are ran domly assi gned within blocks (subj ects), rather than being

applied in spatial or tempor al sequen ce. Split-pl ot de signs therefore do

not suffer systemat ic bias from practi ce and carryov er effe cts, whi ch are

unique to repeat ed-me asures de signs. Care must be taken, nevert heless ,

to ensure that treatment s applie d to one part of a sampl ing unit do not

affect other treatment s ap plied to oth er parts of the sampl ing unit.

In this chapter, we describe nine common split-plot designs, listed in

Table 5. Because split-plot designs have been developed specifically for

multiple treatments, we detail all models with up to three fixed factors

having categorical levels. Models 5.1 to 5.5 have no equivalent amongst

standard repeated-measures models. They may be used as repeated-

measures models, however, if the factor applied at the lowest level in the

hierarchy is a temporal or spatial sequence. For example, model 5.1 could

be a one-factor (A) randomised-block model with each plot repeatedly

sampled over time (B). Models 5.6 to 5.9 are directly equivalent to
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standard repeated-measures models 6.3 and 6.5 to 6.7. As the analysis

of equivalent split-plot and repeated-measures models is identical, we

refer readers to the ANOVA tables in Chapter 6 to avoid unnecessary

replication.

5.1 Two-factor split-plot model (i)

Model

Y ¼ B|P0ðS0|AÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.

Description

Each of a levels of treatment A is randomly assigned one of a plots (P0) in
each of n blocks (S0), and each of b levels of treatment B is randomly

assigned one of b sub-plots (Q0) in each plot.

Table 5 Split-plot designs with up to three fixed treatments factors (A, B, C)

allocated to blocks, plots within blocks, sub-plots within plots and sub-sub

plots within sub-plots. Any corresponding repeated-measures models are

identified in the first column.

Treatments applied to

Model
Number Model

Sub-sub-plots
(R0)

Sub-plots
(Q0)

Plots
(P0)

Blocks
(S0)

5.1 Y¼B|P0(S0|A) B A –

5.2 Y¼C|P0(S0|B|A) C B|A –

5.3 Y¼C|B|P0(S0|A) C|B A –

5.4 Y¼C|Q0(B|P0(S0|A)) C B A –

5.5 Y¼C|P0(B|S0(A)) C B A

5.6¼ 6.3 Y¼B|S0(A) B A

5.7¼ 6.5 Y¼C|B|S0(A) C|B A

5.8¼ 6.6 Y¼C|S0(B(A)) C B(A)

5.9¼ 6.7 Y¼C|S0(B|A) C B|A
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Allocation table

The table shows a ¼ 2 levels of factor A allocated amongst a plots P0 in
each of n ¼ 4 blocks S0, and b ¼ 2 levels of factor B allocated amongst b

sub-plots Q0 in each plot. Note that the table does not indicate the spatial

distribution of treatment combinations, which must be randomised

within each sampling unit. For example, treatment level B1 should not be

assigned to the first sub-plot in every plot.

Examples

(1) Spatial block example: H1: Crop yield depends on a combination of

Watering regime (A) and sowing Density (B) treatments. The a levels

of watering are randomly assigned amongst a Plots (P0) in each of n

Blocks (S0), and the b sowing densities are randomly assigned

amongst b Sub-plots (Q0) within each Plot. The response is the yield

from each sub-plot, measured at the end of the experiment.

(2) Temporal block example: H1: Plant growth depends on a combination

of Temperature (A) and Fertiliser (B). The a temperatures are

randomly assigned amongst aMesocosms (P0) and b levels of fertiliser

are randomly assigned amongst b Trays of plants (Q0) within each

mesocosm. The whole experiment is repeated with new plants n Times

in sequence (S0), with temperatures randomly reassigned to meso-

cosms and fertiliser treatment randomly reassigned to trays within

mesocosms each Time.

Factors Levels Repeated measures on S0

A a yes
B b yes
S0 n –

Q9(B|P9(S9|A)) S1 S2 S3 S4

B1 Q1 … … QnA1

B2 … … … Qnb

B1 … … … …
A2

B2 … … … Qnba
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Comparisons

Mod el 5.1 is a n extens ion of a one-fa ctor rand omised-bloc k model 4.1 to

include a second crossed factor applied to sub-plots nested within plots.

Model 5.1 can be extended to include a third, crossed treatment factor

applied to whole blocks (model 5.5), plots (model 5.2), sub-plots

(model 5.3) or sub-sub-plots (model 5.4).

In test ing the combined effect of two crosse d facto rs, model 5.1 has

similar objectives to cross-factored models 3.1, 4.2, 5.6, 6.2 and 6.3.

Crucially, it differs from fully randomised model 3.1 in that the assign-

ment of treatments to sampling units (plots) is not completely rando-

mised, and from randomised-block model 4.2 in that factors A and B are

assig ned to sampl ing units at different scales. Model 5.1 diff ers from

split-plot model 5.6 only in the way treatment factors are applied to

sampling units. In contrast to repeated-measures models 6.2 and 6.3,

model 5.1 ran domly assi gns levels of both treatment factors within blocks

rather than applying them sequentially.

Special assumptions (see also general

assumptions on page 143)

Themodel assumes no interactions of sampling units with treatments, which

cannot be tested anyway because the lack of replication means that there is

no residual error term (shaded grey in the ANOVA table below). Inter-

pretation of non-significant A, B or A*B is compromised because the result

could mean either no effect, or opposing effects in different sampling units.

The assumption of no sampling unit-by-treatment interactions can be tested

if independent, replicate plots (P0) are used for each level of A in each block

and independent, replicate sub-plots (Q0) are used for each level of B in each

plot. The interpretation of a significant sampling unit-by-treatment inter-

action is nevertheless problematic because the treatment effect may depend

upon any of the multiple sources of variation encompassed by the blocking

factor. Thus, the causal mechanisms underlying a significant interaction

cannot be interpreted without further experimentation.

The nesting of Sub-plot0(Plot0(Block0)) means that the error term for

each fixed main effect or main-effect interaction comprises the interaction

between the block and all factors applied to that sampling unit or larger.

Thus, A is tested against the error MS[S0*A], while B and B*A are tested

against the pooled error MS[B*S0 þB*S0*A]. Pooling terms in this

manner assumes that these contributions to the error term have

approximately equal MS values (see page 144).
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5.2 Three-factor split-plot model (i)

Model

Y ¼ C|P0ðS0|B|AÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Each of ba combinations of levels of A*B is randomly assigned one of ba

plots (P0) in each of n blocks (S0), and each of c levels of treatment C is

randomly assigned one of c sub-plots (Q0) in each plot.

Allocation table

The table shows ba¼ 4 combinations of levels of factors B and A allocated

amongst ba plots P0 in each of n¼ 4 blocks S0, and c¼ 2 levels of factor C

allocated amongst c sub-plots Q0 in each plot. Note that the table does not

indicate the spatial distribution of treatment combinations, which must be

randomised within each sampling unit. For example, treatment level C1

should not be assigned to the first sub-plot in every plot.

Factors Levels Repeated measures on S0

A a yes
B b yes
C c yes
S0 n –
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Examples

(1) Spatial block example: H1: Crop yield depends on a combination of

Watering regime (A), sowing Density (B) and Fertiliser (C) treatments.

The ba combinations of watering and density are randomly assigned

amongst ba Plots (P0) in each of n Blocks (S0), and the c levels

of fertiliser are randomly assigned amongst c Sub-plots (Q0) within

each Plot. The response is the yield from each sub-plot, measured at

the end of the experiment.

(2) Temporal block example: H1: Plant growth depends on a combination

of Temperature (A), Light (B) and Fertiliser (C). The ba combina-

tions of temperature and light are randomly assigned amongst ba

Mesocosms (P0), and the c fertiliser concentrations are randomly

assigned amongst c Trays of plants (Q0) within each mesocosm. The

whole experiment is repeated with new plants n Times in sequence

(S0), with temperatures and light levels randomly reassigned to

mesocosms and fertiliser levels randomly reassigned to trays within

mesocosms each time.

Comparisons

Model 5.2 is an extens ion of two -factor randomi sed-bl ock mod el 4.2 to

include a third, crossed factor, applied to sub-plots within each plot, and

an extens ion of split-pl ot model 5.1 to include a third crossed factor

applied to plots.

Q9(C|P9(S9|B|A)) S1 S2 S3 S4

C1 Q1 … … Qn
B1

C2 … … … Qnc

C1 … … … …

A1

B2
C2 … … … Qncb

C1 … … … …
B1

C2 … … … …

C1 … … … …
A2

B2
C2 … … … Qncba
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In testing the combined effe ct of three crosse d facto rs, model 5.2 has

simila r object ives to cross-fac tored models 3.2, 4.3, 5.3 , 5.4 , 5.5 , 5.7, 5.9,

6.5 and 6.7. Crucially, it differs from fully randomised model 3.2 in that

the assignment of treatments to sampling units is not completely ran-

domised, and from randomised-block model 4.3 in that factors A, B and

C are assigned to sampling uni ts at different scale s. M odel 5.2 differs

from the other three-factor split-plot models only in the way treatment

factors are applied to sampling units. In contrast to repeated-measures

models 6.5 and 6.7, model 5.2 randoml y assi gns treatmen t levels rather

than applying them sequentially.

Special assumptions (see also general

assumptions on page 143)

The model assumes no interactions of sampling units with treatments,

which cannot be tested anyway because the lack of replication means that

there is no residual error term (shaded grey in the ANOVA table below).

Interpretation of any non-significant main effects and interactions is

compromised because the result could mean either no effect, or opposing

effects in different sampling units. The assumption of no sampling unit-

by-treatment interactions can be tested if independent, replicate plots (P0)
are used for each of the ba levels of factors B and A in each block and

independent, replicate sub-plots (Q0) are used for each level of C in each

plot. The interpretation of a significant sampling unit-by-treatment

interaction is nevertheless problematic because the treatment effect may

depend upon any of the multiple sources of variation encompassed by the

blocking factor. Thus, the causal mechanisms underlying a significant

interaction cannot be interpreted without further experimentation.

The nesting of Sub-Plot0(Plot0(Block0)) means that the error term for

each fixed main effect or main-effect interaction comprises the interaction

between the block and all factors applied to that sampling unit or larger.

Pooling terms in this manner assumes that these contributions to the

error term have approximately equal MS values (see page 144).
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5.3 Three-factor split-plot model (ii)

Model

Y ¼ C|B|P0ðS0|AÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Each of a levels of treatment A is randomly assigned one of a plots

(P0) in each of n blocks (S0), and each of cb combinations of levels of

treatments C and B is randomly assigned one of cb sub-plots (Q0) in

each plot.

Allocation table

The table shows a¼ 2 levels of factor A allocated amongst a plots

P0 in each of n¼ 4 blocks S0, and cb¼ 4 combinations of levels of factors

C and B allocated amongst cb sub-plots Q0 in each plot. Note that the

table does not indicate the spatial distribution of treatment combinations,

which must be randomised within each sampling unit. For example,

treatment level C1 should not be assigned to the first sub-plot in

every plot.

Factors Levels Repeated measures on S0

A a yes
B b yes
C c yes
S0 n –
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Examples

(1) Spatial block exam ple: H1: Crop y ield de pends on a combinat ion of

Water ing regime (A), sowing Densi ty (B ) and Fer tiliser (C)

treatment s. The a levels of wat ering are randoml y assigned amo ngst

a Plots (P 0 ) in each of n Block s (S 0 ), and the cb combinat ions of

sowing density and fert iliser are rando mly assi gned amongst cb Sub-

plots (Q0 ) within each Plot. The respon se is the yiel d from each sub -

plot, measur ed at the e nd of the ex periment.

(2) Temp oral bloc k example : H1: Plan t grow th depen ds on a comb ination

of Temperat ure (A), Light (B) and Fer tiliser (C). The a tempe ratures

are rando mly assi gned amon gst a Mesocosm s (P 0 ), and the cb
combinat ions of light and fertil iser are ran domly assi gned amongst cb

Trays of plants (Q 0 ) within each Meso cosm. The whol e experi ment is

repeat ed wi th new plants n Times in sequen ce (S 0 ), with tempe ratures

randoml y reass igned to mesocos ms and light an d fertil iser levels

randoml y reassigned to trays within mesocos ms each tim e.

Comparisons

Model 5.3 is an extens ion of split-plo t mo del 5.1 to include a third

crossed fact or app lied to sub -plots.

In testing the combined effect of three crosse d factors, model 5.3

has similar object ives to cross- facto red models 3.2, 4.3, 5.2 , 5.4, 5.5 ,

5.7, 5.9, 6.5 and 6.7. Crucially, it differs from fully randomised model 3.2

Q9(C|B|P9(S9|A)) S1 S2 S3 S4

C1 Q1 … … Qn
B1

C2 … … … Qnc

C1 … … … …
A1

B2
C2 … … … Qncb

C1 … … … …
B1

C2 … … … …

C1 … … … …
A2

B2
C2 … … … Qncba
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in that the assignmen t of treatment s to sampling units is not co mpletely

rando mised, and from randomi sed-bl ock mo del 4.3 in that facto rs A, B

and C a re assigned to sampl ing units at different scales. Mo del 5.3 differs

from the other three-factor split-plot models only in the way treatment

factors are applied to sampling units. In contrast to repeated-measures

models 6.5 and 6.7, model 5.3 randoml y assi gns treatmen t levels rather

than applying them sequentially.

Special assumptions (see also general

assumptions on page 143)

The model assumes no interactions of sampling units with treatments,

which cannot be tested anyway because the lack of replication means that

there is no residual error term (shaded grey in the ANOVA table below).

Interpretation of any non-significant main effects and interactions is

compromised because the result could mean either no effect, or opposing

effects in different sampling units. The assumption of no sampling unit-

by-treatment interactions can be tested if independent, replicate plots (P0)
are used for each of the a levels of factor A in each block and indepen-

dent, replicate sub-plots (Q0) are used for each of the cb levels of factors B

and C in each plot. The interpretation of a significant sampling unit-by-

treatment interaction is nevertheless problematic because the treatment

effect may depend upon any of the multiple sources of variation

encompassed by the blocking factor. Thus, the causal mechanisms

underlying a significant interaction cannot be interpreted without further

experimentation.

The nesting of Sub-Plot0(Plot0(Block0)) means that the error term for

each fixed main effect or main-effect interaction comprises the interaction

between the block and all factors applied to that sampling unit or larger.

Pooling terms in this manner assumes that these contributions to the

error term have approximately equal MS values (see page 144).
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5.4 Split-split-plot model (i)

Model

Y ¼ C|Q0ðB|P0ðS0|AÞÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Each of a levels of treatment A is randomly assigned one of a plots (P0)
in each of n blocks (S0), and each of b levels of treatment B is randomly

assigned one of b sub-plots (Q0) in each plot, and each of c levels

of treatment C is randomly assigned one of c sub-sub-plots (R0) in

each plot.

Allocation table

The table shows a¼ 2 levels of factor A allocated amongst a plots P0 in
each of n¼ 4 blocks S0, and b¼ 2 levels of factor B allocated amongst b

sub-plots Q0 in each plot, and c¼ 2 levels of factor C allocated amongst c

sub-sub-plots R0 in each sub-plot. Note that the table does not indicate

the spatial distribution of treatment combinations, which must be ran-

domised within each sampling unit. For example, treatment level B1

should not be assigned to the first sub-plot in every plot.

Factors Levels Repeated measures on S0

A a yes
B b yes
C c yes
S0 n –
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Examples

(1) Spatial block exam ple: H1: Crop y ield de pends on a combinat ion of

Water ing regime (A), sowing Densi ty (B ) and Fer tiliser (C)

treatment s. The a levels of wat ering are randoml y assigned amo ngst

a Plots (P 0 ) in each of n Blocks (S 0 ), the b levels of so wing densit y are
randoml y assi gned amo ngst b Sub-plot s (Q0 ) wi thin each Plot, and
the c levels of fertiliser are ran domly assig ned amon gst c Sub-sub -

plots (R 0 ) wi thin each Sub- plot. The response is the yiel d from each

sub-sub- plot, measur ed at the en d of the exp eriment.

(2) Temp oral bloc k example : H1: Plan t grow th depen ds on a comb ination

of Temperat ure (A), Light (B) and Fer tiliser (C). The a tempe ratures

are randoml y assign ed amongst a M esocosm s (P 0 ), the b levels of light
are randoml y assi gned amongst b She lves (Q0 ) within each mesocos m,

and the c levels of fertiliser are rand omly assigned amongst c Trays

(R0 ) on each shelf . The whol e experi ment is repeat ed with new plants

n Times in sequen ce (S 0 ), each time with a rand om reass ignmen t of

tempe ratures to mesoco sms, light level s to shelve s within mesocos ms,

and fertil iser levels to trays on each shelf.

Comparisons

Model 5.4 is an extens ion of split-plo t mo del 5.1 to include a third

crossed fact or app lied to sub -sub-plots wi thin each sub-pl ot.

In test ing the co mbined effect of three cro ssed fact ors, mo del 5.4 has

similar object ives to cross- factored mode ls 3.2, 4.3, 5.2, 5.3 , 5.5 , 5.7, 5.9,

R9(C|Q9(B|P9(S9|A))) S1 S2 S3 S4

C1 R1 … … RnB1

C2 … … … Rnc

C1 … … … … 
A1 

B2 
C2 … … … Rncb

C1 … … … … 
B1

C2 … … … … 

C1 … … … … 
A2 

B2 
C2 … … … Rncba
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6.5 and 6.7. Cruc ially, it differs from fully rand omised model 3.2 in that

the assignment of treatments to sampling units is not completely ran-

domised, and from randomised-block model 4.3 in that factors A, B and

C are assigned to sampling uni ts at different scale s. M odel 5.4 differs

from the other three-factor split-plot models only in the way treatment

factors are applied to sampling units. In contrast to repeated-measures

models 6.5 and 6.7, model 5.4 randoml y assi gns treatmen t levels rather

than applying them sequentially.

Special assumptions (see also general

assumptions on page 143)

The model assumes no interactions of sampling units with treatments,

which cannot be tested anyway because the lack of replication means that

there is no residual error term (shaded grey in the ANOVA table below).

Interpretation of any non-significant main effects and interactions is

compromised because the result could mean either no effect, or opposing

effects in different sampling units. The assumption of no sampling unit-

by-treatment interactions can be tested if independent, replicate plots (P0)
are used for each level of factor A in each block, independent replicate

sub-plots (Q0) are used for each level of factor B in each plot, and

independent replicate sub-sub-plots (R0) are used for each level of factor

C in each sub-plot. The interpretation of a significant sampling unit-by-

treatment interaction is nevertheless problematic because the treatment

effect may depend upon any of the multiple sources of variation

encompassed by the blocking factor. Thus, the causal mechanisms

underlying a significant interaction cannot be interpreted without further

experimentation.

The nesting of Sub-sub-plot0(Sub-plot0(Plot0(Block0))) means that the

error term for each fixed main effect or main-effect interaction comprises

the interaction between the block and all factors applied to that sampling

unit or larger. Pooling terms in this manner assumes that these con-

tributions to the error term have approximately equal MS values (see

page 144).

Split-plot designs160



A
N
O
V
A

ta
b
le

fo
r
a
n
a
ly
si
s
o
f
te
rm

s
C
|B
|A

þ
B
|S
|A

M
o
d
el

5
.4
(i
)
A
in

p
lo
ts
,
B
in

su
b
-p
lo
ts

a
n
d
C

in
su
b
-s
u
b
-p
lo
ts

a
re

fi
xe
d
fa
ct
o
rs
;
S
0 i
s
a
ra
n
d
o
m

b
lo
ck
:

M
ea
n
sq
u
a
re

d
.f
.

C
o
m
p
o
n
en
ts

o
f
v
a
ri
a
ti
o
n
es
ti
m
a
te
d
in

p
o
p
u
la
ti
o
n

F
-r
a
ti
o

B
et
w
ee
n
n
b
lo
ck
s

1
S
0

n
–
1

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
P
0 (S

0 *
A
)
þ
S
0

N
o
te
st
a

B
et
w
ee
n
n
a
p
lo
ts

2
A

a
–
1

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
P
0 (S

0 *
A
)

þ
S
0 *
A
þ
A

2
/3

3
S
0 *
A

(n
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
P
0 (S

0 *
A
)

þ
S
0 *
A

N
o
te
st

4
P
0 (S

0 *
A
)

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
P
0 (S

0 *
A
)

N
o
te
st

B
et
w
ee
n
n
b
a
su
b
-p
lo
ts

5
B

b
–
1

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
B
*
P
0 (S

0 *
A
)

þ
B
*
S
0 þ

B
5
/p
[7

þ
8
]

6
B
*
A

(b
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
B
*
P
0 (S

0 *
A
)

þ
B
*
S
0 *
A
þ
B
*
A

6
/p
[7

þ
8
]

7
B
*
S
0

(b
�
1
)(
n
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
B
*
P
0 (S

0 *
A
)

þ
B
*
S
0

N
o
te
st

8
B
*
S
0 *
A

(b
�
1
)(
n
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
B
*
P
0 (S

0 *
A
)

þ
B
*
S
0 *
A

N
o
te
st

9
B
*
P
0 (S

0 *
A
)

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))
þ
B
*
P
0 (S

0 *
A
)

N
o
te
st

1
0
Q

0 (B
*
P
0 (S

0 *
A
))

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
Q

0 (B
*
P
0 (S

0 *
A
))

N
o
te
st

B
et
w
ee
n
n
cb
a
su
b
-s
u
b
-p
lo
ts

1
1
C

c
–
1

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
P
0 (S

0 *
A
)

þ
C
*
S
0 þ

C
1
1
/p
[1
5
þ
1
6
þ
1
8
þ
1
9
]

1
2
C
*
A

(c
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
P
0 (S

0 *
A
)

þ
C
*
S
0 *
A
þ
C
*
A

1
2
/p
[1
5
þ
1
6
þ
1
8
þ
1
9
]

161



1
3
C
*
B

(c
�
1
)(
b
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
B
*
P
0 (S

0 *
A
)

þ
C
*
B
*
S
0 þ

C
*
B

1
3
/p
[1
5
þ
1
6
þ
1
8
þ
1
9
]

1
4
C
*
B
*
A

(c
�
1
)(
b
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
B
*
P
0 (S

0 *
A
)

þ
S
0 *
C
*
B
*
A
þ
C
*
B
*
A

1
4
/p
[1
5
þ
1
6
þ
1
8
þ
1
9
]

1
5
C
*
S
0

(c
�
1
)(
n
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
P
0 (S

0 *
A
)

þ
C
*
S
0

N
o
te
st

1
6
C
*
S
0 *
A

(c
�
1
)(
n
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
P
0 (S

0 *
A
)

þ
C
*
A
*
S
0

N
o
te
st

1
7
C
*
P
0 (S

0 *
A
)

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
P
0 (S

0 *
A
)

N
o
te
st

1
8
C
*
B
*
S
0

(c
�
1
)(
b
�
1
)(
n
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
B
*
P
0 (S

0 *
A
)

þ
C
*
B
*
S
0

N
o
te
st

1
9
C
*
B
*
S
0 *
A

(c
�
1
)(
b
�
1
)(
n
�
1
)(
a
�
1
)

R
0 (C

*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
B
*
P
0 (S

0 *
A
)

þ
C
*
B
*
S
0 *
A

N
o
te
st

2
0
C
*
B
*
P
0 (S

0 *
A
)

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))
þ
C
*
B
*
P
0 (S

0 *
A
)

N
o
te
st

2
1
C
*
Q

0 (B
*
P
0 (S

0 *
A
))

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)
þ
C
*
Q

0 (B
*
P
0 (S

0 *
A
))

N
o
te
st

2
2
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)

0
R

0 (C
*
Q

0 (B
*
P
0 (S

0 *
A
))
)

–

T
o
ta
l
v
a
ri
a
ti
o
n

n
cb
a
–
1

a
A
n
u
n
re
st
ri
ct
ed

m
o
d
el

te
st
s
S
0 o

v
er

th
e
M
S
fo
r
it
s
in
te
ra
ct
io
n
w
it
h
A

(F
-r
a
ti
o
¼
1
/3
).
S
ee

p
a
g
e
2
4
2
.

M
o
d
el

5
.4
(i
)
(c
o
n
t.
)

M
ea
n
sq
u
a
re

d
.f
.

C
o
m
p
o
n
en
ts

o
f
v
a
ri
a
ti
o
n
es
ti
m
a
te
d
in

p
o
p
u
la
ti
o
n

F
-r
a
ti
o

162



5.5 Split-split-plot model (ii)

Model

Y ¼ C|P0ðB|S0ðAÞÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Replicate whole blocks (S0) are assigned to each level of treatment A, and

each of b levels of treatment B is randomly assigned one of b plots (P0) in
each block, and each of c levels of treatment C is randomly assigned one

of c sub-plots (Q0) in each plot.

Allocation table

The table shows n¼ 2 replicate blocks S0 nested in each of a¼ 2 levels of

factor A, and b¼ 2 levels of factor B allocated amongst b plots P0 in each

block, and c¼ 2 levels of factor C allocated amongst c sub-plots Q0 in
each plot. Note that the table does not indicate the spatial distribution of

treatment combinations, which must be randomised within each sam-

pling unit. For example, treatment level C1 should not be assigned to the

first sub-plot in every plot.

Factors Levels Repeated measures on S0

A a no
B b yes
C c yes
S0 n –
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Examples

(1) S patial bloc k exampl e: H1: Crop yield depen ds on a combinat ion of

W atering regim e (A), sowi ng Density (B) and Ferti liser (C)

treat ments. The a level s of wateri ng are rand omly assi gned amongst

na Blocks (S 0 ), the b levels of sowi ng densit y are randoml y assign ed

a mongst b Plots (P 0 ) within eac h block , and the c level s of fertiliser
a re rando mly assign ed amongst c Sub-plot s (Q 0 ) wi thin each Plot.
The response is the y ield from each sub -plot, measur ed at the end of

the experi ment.

(2) Te mporal block exampl e : H1: Plant growth de pends on a combinat ion

of Tem perature (A), Light (B) and Ferti liser (C). The a tempe ratur es

a re randoml y assigned amongst a series of na Trials (S 0 ) cond ucted
seq uentially. In each trial, b light level s are randoml y assign ed

a mongst b Me socosm s (P 0 ) all held a t the same tempe ratur e, and the c

level s of fertiliser are randoml y assigned amongst c Trays of plants

(Q0) within each mesocosm. For each trial, new plants are used, light

levels are randomly reassigned to mesocosms, and fertiliser levels are

randomly reassigned to trays within mesocosms.

Comparisons

Mod el 5.5 is an extens ion of spli t-plot model 5.6 to include a thir d

crossed factor applied to sub-plots within each plot.

In testing the combined effe ct of three crosse d facto rs, model 5.5 has

simila r object ives to cross- facto red models 3.2, 4.3, 5.2 , 5.3 , 5.4 , 5.7,

5.9, 6.5 and 6.7. Crucially, it differs from fully randomised model 3.2 in

that the assignment of treatments to sampling units is not completely

randomised, and from randomised-block model 4.3 in that factors A, B

and C are assigned to sampling units at different scale s. Mo del 5.5

A1 A2
Q9(C|P9(B|S9(A))) 

S1 S2 S3 S4

C1 Q1 Qn … QnaB1

C2 … … … Qnca

C1 … … … …
B2

C2 … … … Qncba
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differs from the other three- factor split-plo t models only in the way

treatment factors are ap plied to sampl ing units . In contras t to repeated -

measures mo dels 6 .5 an d 6.7, model 5.5 randoml y assign s treatment levels

rather than ap plying them sequentiall y.

Special assumptions (see also general

assumptions on page 143)

The model assum es no interacti ons of sampl ing units with treatment s,

which can not be tested anywa y because the lack of repli cation means that

there is no resi dual error term (shaded grey in the ANOVA table below ).

Interpretat ion of any non- significan t main effects and inter action s is

comprom ised because the result c ould mean either no effe ct, or opposing

effects in diffe rent sampling units. The a ssumption of no sampl ing unit-

by-treatm ent interacti ons can be tested if indepen dent, replicate plots (P 0 )
are used for each level of factor B in each block , and if replicate sub-pl ots

(Q0 ) are used for each level of factor C in each plo t. The interpreta tion of
a signi ficant sampl ing unit-by-t reatmen t interacti on is nevert heless pro -

blematic because the treatmen t effe ct may de pend upon any of the

multiple sources of v ariation enco mpass ed by the blocking fact or. Thus ,

the cau sal mechani sms unde rlyin g a signi ficant interacti on canno t be

interprete d without furt her e xperimentat ion.

The nested structure of Sub-p lot0 (Plot 0 (Block 0 )) means that the error

terms for B, C and all their interactions comprise the interaction between

the block and all factors applied to that sampling unit or larger. Pooling

terms in this manner assumes that these contributions to the error term

have approximately equal MS values (see page 144).
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5.6 Two-factor split-plot model (ii)

Model

Y ¼ B|S0ðAÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.

Description

Replicate whole blocks (S0) are assigned to each level of treatment A, and

each of b levels of treatment B is randomly assigned one of b plots (P0) in
each block.

Allocation table

The table shows n¼ 2 replicate blocks S0 nested in each of a¼ 2 levels of

factor A, and b¼ 4 levels of factor B allocated amongst b plots P0 in each

block. Note that the table does not indicate the spatial distribution of

treatment combinations, which must be randomised within each sam-

pling unit. For example, treatment level B1 should not be assigned to the

first plot in every block.

Factors Levels Repeated measures on S0

A a no
B b yes
S0 n –

A1 A2

P
9(

B
|S

9(
A

))

S1 S2 S3 S4

B1 P1 Pn … Pna

B2 … … … …

B3 … … … …

B4 … … … Pnba
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Examples

(1) S patial block exam ple: H1: Crop yield depends on a combinat ion of

W atering regime (A) and sowi ng Den sity (B) treatment s. The a

c oncentra tions of wateri ng are rand omly assigned amongst na Bl ocks

(S 0 ), and the b sowin g den sities are randoml y assigned among st b

Pl ots (P 0 ) in each bloc k. The response is the yiel d from e ach plot,

measu red at the end of the experi ment.

(2) Te mporal block exampl e : H1: Plant growth de pends on a combinat ion

of Temp erature (A) and Light (B). The a tempe ratur es are randoml y

a ssigned amon gst a series of na Tr ials (S 0 ) co nducted sequenti ally. In
e ach tri al, b light level s are rando mly assigne d amo ngst b Mesocosm s

(P 0 ), whi ch are all held at the same tempe rature. For each tri al, new

plan ts are used and light level s are rando mly reass igned to

M esocosm s.

(3) S patial bloc k exampl e : H1: Barn acle settlemen t depends upon back-

g round rate of recrui tment and resi dent adult cluster size, tested by

measu ring ba rnacle density on b Patches (P 0 ) of ro ck subject ed to
diff erent clust er-size Treatm ents (B) on Shor es (S 0 ) nested in

ba ckground rate of Recr uitment (A). See worke d exampl e 3 on

pa ge 51 for a fully replicated versio n of this design.

(4) Te mporal block exampl e : A local en vironmen tal dist urbance Eve nt (A,

wi th two level s: be fore a nd after) is monito red at random Times (S 0 )
a nd rando m Loca tions (B 0 ), wi th impact gau ged by B 0 *A. The

unba lanced versi on of this ‘befor e-after- control-im pact’ de sign is

de scribed in Underwo od (1994 ).

Comparisons

Model 5.6 is an extension of model 1.1 to include a second crossed factor

applied to plots nested within each block, and is an extension of ran-

domised-block model 4.1 to include a second crossed factor applied to

whole blocks. It can be extended to include a third crossed factor applied

to blocks (model 5.9), to plots within blocks (model 5.7) or to sub-plots

within plots (model 5.5 ).

The test for the main effect of A is identical to a fully replicated one-

factor ANOVA (model 1.1) on the mean value of the response for each

block pooled across levels of B. When b¼ 2, the test for the interaction

B*A is identical to a fully replicated one-factor ANOVA on a treatment
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levels, tested with one response pe r block compri sing the value of B2

subtracted from B1.

In testing the co mbined effe ct of two crosse d fact ors, model 5.6 has

similar objectives to cross-fac tored mod els 3.1, 4.2, 5.1 and 6.2. Crucial ly,

it diff ers from full y rand omised model 3.1 in that the assi gnment of

treatment s to sampling units (plot s) is not comp letely randomi sed, and

from rando mised-bloc k mode l 4.2 in that fact ors A and B are assigned to

sampling units at differen t scale s. Model 5.6 diff ers from sp lit-plot mod el

5.1 only in the way treatment facto rs are ap plied to sampl ing units. In

contrast to repeat ed-me asures model 6.2, mod el 5.6 rando mly assigns

treatment level s within blocks rather than ap plying them seq uentially.

Mo del 5.6 has a sim ilar struc ture to complet ely ran domised model 3.3

(where S0 corres ponds with B0 , an d B corres ponds with C) in that it tests
the effe ct of one fact or nested in an other a nd crosse d with a third fact or.

It diff ers from mo del 3.3, howeve r, in tw o impor tant respect s: the

assignment of treatmen ts to sampl ing units is co nstrained be cause S0

groups plots sp atially or tempor ally , an d the interacti on of treatment B

with blocks S0 is not repli cated. The interpreta tion of the analys is is
influenced by the fact that the allocati on of facto r levels is constr ained to

be rand omised only within each block (see specia l assum ptions below ),

and the lack of full replicati on is accep table only unde r the assump tion of

homogenei ty of covari ances (see the general assump tions of split plots on

page 143).

Model 5.6 is equivalent to repeated-measures model 6.3, where block

corresponds with subject (S0 ), except that levels of factor B are randomly

assigned to plots within each block rather than being tested sequentially on

each subject. It therefore escapes systematic bias from practice and car-

ryover effects, which are unique to the sequential application of treatments.

Special assumptions (see also general

assumptions on page 143)

The mod el assumes no B*S 0 inter action, whi ch cann ot be tested because
lack of repli cation mean s that there is no residual error term. Inter -

pretation of non-si gnificant B or B*A is comp romised because the resul t

could mean either no effect, or oppos ing effe cts in different blocks. This

problem is not resol ved by excis ing the lack of replicati on with a response

variable that measur es the diff erence between b ¼ 2 level s of facto r B.

The assum ption of no B*S 0 inter action ca n be tested if independ ent,
replicate plots (P 0 ) are used for e ach of b levels of fact or B in each of n
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blocks (S0). The design is then fully replicated and can be analysed using

model 3.3, with B0 substituting for S0 and C substituting for B. The

interpretation of a significant treatment-by-block interaction is never-

theless problematic because the treatment effect may depend upon any of

the multiple sources of variation encompassed by the blocking factor.

Thus, the causal mechanisms underlying a significant interaction cannot

be interpreted without further experimentation.

ANOVA tables

Use tables for model 6.3 on page 198, where ‘Subjects’ denotes ‘Blocks’.

5.7 Three-factor split-plot model (iii)

Model

Y ¼ C|B|S0ðAÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B and C.

Description

Replicate whole blocks (S0) are assigned to each level of treatment A, and

each of cb combinations of levels of treatments C and B is randomly

assigned one of cb plots (P0) in each block.

Factors Levels Repeated measures on S0

A a no
B b yes
C c yes
S0 n –
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Allocation table

The table shows n¼ 2 replicate blocks S0 nested in each of a¼ 2 levels of

factor A, and cb¼ 4 combinations of levels of factors C and B allocated

amongst cb plots P0 in each block. Note that the table does not indicate

the spatial distribution of treatment combinations, which must be ran-

domised within each sampling unit. For example, treatment level C1

should not be assigned to the first plot in every block.

Examples

(1) Spatial block example: H1: Crop yield depends on a combination of

Watering regime (A), sowing Density (B) and Fertiliser (C) treatments.

The a levels of watering are randomly assigned amongst na Blocks (S0),
and cb combinations of sowing density and fertiliser are randomly

assigned amongst cb Plots (P0) in each block. The response is the yield

from each plot, measured at the end of the experiment.

(2) Temporal block example: H1: Plant growth depends on a combination

of Temperature (A), Light (B) and Fertiliser (C). The a temperatures

are randomly assigned amongst a series of na Trials (S0) conducted
sequentially. In each trial, cb combinations of light and fertiliser are

randomly assigned amongst cb Mesocosms (P0). For each trial, new

plants are used and light and fertiliser treatments are randomly

reassigned to mesocosms.

(3) Spatial block example: H1: Barnacle settlement depends upon back-

ground recruitment, rock type and resident adult cluster size, tested

by measuring barnacle density on cb Boulders (P0) randomly selected

from b available Rock types (B0), and subjected to c different cluster-

size Treatments (C) on n Shores (S0) nested in a background rates of

Recruitment (A). This design is a variant of the design for worked

example 3 on page 51, with stratified random sampling of rock

A1 A2
P9(C|B|S9(A))

S1 S2 S3 S4

C1 P1 Pn … Pna
B1

C2 … … … Pnca

C1 … … … …
B2

C2 … … … Pncba
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types, whi ch assumes that the boul ders of diff erent rock types are

dist ribut ed inde pendently , not grouped toget her.

Comparisons

Mod el 5 .7 is an extens ion of rand omised -block model 4.2 to include a

third crosse d factor applied to blo cks, and an extens ion of spli t-plot

model 5.6 to include a third crosse d fact or applied to plots.

The test for the main effec t of A is identical to a fully replicated one-

facto r ANO VA (model 1.1) on the mean value of the response for each

block pool ed across levels of B and C. W hen c ¼ 2, the interacti on of C

with B|S 0 (A) is identical to spli t-plot model 5.6 on a treatment s, test ed

with b responses per blo ck each compri sing the value of C2 subtra cted

from C1. When both c an d b ¼ 2, the interacti on of C*B with A is

identi cal to a fully replicated one -factor ANOV A on a treat ments (model

1.1), test ed with one respon se per block compri sing the value of [(C2 – C1)

at B2] – [(C2 – C1) at  B1].

Model 5.7 is equival ent to repeated -measures model 6.5, where blo ck

corres ponds wi th subject (S 0 ), except that the cb level s of facto rs B and C
are randoml y assign ed to plots within each block rather than being test ed

sequentially on each subject. It therefore escapes systematic bias from

practice and carryover effects, which are unique to the sequential appli-

cation of treatments in repeated-measures.

In testing the combined effect of three crossed factors, model 5.7 has

simila r object ives to cross-fac tored models 3.2, 4.3, 5.2, 5.3 , 5.4 , 5.5, 5.9

and 6.7. Crucially, it differs from fully randomised model 3.2 in that the

assignment of treatments to sampling units (plots) is not completely

randomised, and from randomised-block model 4.3 in that factors A, B

and C are assigned to sampling units at different scales. Model 5.7 differs

from the other three-factor split-plot models only in the way treatment

factors are applied to sampling units. In contrast to repeated-measures

model 6.7, model 5.7 randomly assigns treatment levels within blocks

rather than applying them sequentially.

Special assumptions (see also general

assumptions on page 143)

The model assumes no interactions of B and C with S0, which cannot be

tested because the lack of replication means that there is no residual error
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term. Interpretation of any non-significant terms amongst B, C, C*B and

their interactions with A is compromised because the result could mean

either no effect, or opposing effects in different blocks. The assumption

of no treatment-by-block interactions can be tested if independent,

replicate plots (P0) are used for each of the bc combinations of factors B

and C in each block. The interpretation of a significant treatment-by-

block interaction is nevertheless problematic because the treatment effect

may depend upon any of the multiple sources of variation encompassed

by the blocking factor. Thus, the causal mechanisms underlying a sig-

nificant treatment-by-block effect cannot be interpreted without further

experimentation.

ANOVA tables

Use tables for model 6.5 on page 208, where ‘Subjects’ denotes ‘Blocks’.

5.8 Split-plot model with nesting

Model

Y ¼ C|S0ðBðAÞÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

factors A, B nested in A, and C.

Description

Replicate blocks (S0) are nested in super-blocks (B0) which are themselves

nested in levels of treatment A, and each of c levels of treatment C is

randomly assigned one of c plots in each block.

Factors Levels Repeated measures on S0

A a no
B(A) b no
C c yes
S0 n –
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Allocation table

The table shows n¼ 2 replicate blocks S0 nested in each of b¼ 2 levels of

super-blocks B0 nested in each of a¼ 2 levels of treatment A, and c¼ 4

levels of factor C allocated amongst c plots P0 in each block. The a

temperatures are randomly assigned amongst a series of nba Trials (S0)
conducted sequentially, with a randomly selected Mesocosm (B0) used for

each trial. In each trial, c levels of fertiliser are randomly assigned

amongst c Trays of plants (P0).

Examples

(1) Spatial block example: H1: Crop yield depends on a combination of

Watering regime (A) and sowing Density (C). The a watering regimes

are randomly assigned amongst ba Fields (B0) sampled at random

across a region, and the c levels of sowing density are randomly

assigned amongst c Plots (P0) in each of n Blocks (S0) per field. The
response is the yield from each plot, measured at the end of the

experiment.

(2) Temporal block example: H1: Plant growth depends on a combination

of Temperature (A) and Fertiliser (C). The a temperatures are

randomly assigned amongst a series of ba Trials (B0) conducted

sequentially, with n Mesocosms (S0) used for each trial. In each

mesocosm, c levels of fertiliser are randomly assigned amongst c

Trays of plants (P0). For each trial, new plants are used and fertiliser

treatments are randomly reassigned to trays.

(3) Spatial block example: H1: Barnacle settlement depends upon back-

ground rate of recruitment, shore and resident adult cluster size,

tested by measuring barnacle density on c Boulders (P0) randomly

A1 A2

B1 B2 B3 B4

P
9(

C
|S

9(
B

(A
))

)

S1 S2 S3 S4 S5 S6 S7 S8

C1 P1 Pn … Pnb … … … Pnba

C2 … … … … … … … …

C3 … … … … … … … …

C4 … … … … … … … Pncba
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subjected to different cluster-size Treatments (C) in n randomly

selected Patches (S0) on each of b randomly-selected Shores (B0) in
each of a background rates of Recruitment (A).

Comparisons

Model 5.8 is an extension of model 2.1, in which each subject (S0) is
tested in every level of a third factor C. If c¼ 2, tests for interactions

with C are numerically equivalent to nested model 2.1 using a response

of C2 – C1.

Model 5.8 is equivalent to repeated-measures model 6.6, where block

corresponds with subject (S0), except that levels of factor C are randomly

assigned to plots within each block rather than being applied sequentially

on each subject. It therefore escapes systematic bias from practice and

carryover effects, which are unique to the sequential application of

treatments in repeated measures.

Special assumptions (see also general

assumptions on page 143)

The model assumes no C*S0 interaction, which cannot be tested because

the lack of replication means that there is no residual error term. Inter-

pretation of a non-significant C or C*A is compromised because the

result could mean either no effect or opposing effects in different blocks.

The assumption of no C*S0 interaction can be tested if independent,

replicate plots (P0) are used for each of the c levels of factor C in each

block. The interpretation of a significant C*S0 is nevertheless problematic

because the treatment effect may depend upon any of the multiple

sources of variation encompassed by the blocking factor. Thus, the causal

mechanisms underlying a significant treatment-by-block effect cannot be

interpreted without further experimentation.

ANOVA tables

Use tables for model 6.6 on page 216, where ‘Subjects’ denotes ‘Blocks’.
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5.9 Three-factor split-plot model (iv)

Model

Y ¼ C|S0ðB|AÞ

Test hypothesis

Variation in the response Y is explained by the combined effects of

treatments A, B and C.

Description

Each of ba combinations of levels of treatments B and A is randomly

allocated to n whole blocks (S0), and each of c levels of treatment C is

randomly assigned one of c plots (P0) in each block.

Allocation table

The table shows n¼ 2 replicate blocks S0 nested in each of ba¼ 4

combinations of levels of factors B and A, and c¼ 4 levels of factor C

allocated amongst c plots P0 in each block. Note that the table does not

indicate the spatial distribution of treatment combinations, which must

be randomised within each sampling unit. For example, treatment level

C1 should not be assigned to the first plot in every block.

Factors Levels Repeated measures on S0

A a no
B b no
C c yes
S0 n –

A1 A2

B1 B2 B1 B2

P
9(

C
|S

9(
B

|A
))

S1 S2 S3 S4 S5 S6 S7 S8

C1 P1 Pn … Pnb … … … Pnba

C2 … … … … … … … …

C3 … … … … … … … …

C4 … … … … … … … Pncba
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Examples

(1) Spatial block exam ple: H1: Crop y ield de pends on a combinat ion of

Water ing regime (A), sowing Densi ty (B ) and Fer tiliser (C)

treatment s. The ba co mbinations of wat ering an d sowing density

are randoml y assi gned amon gst nba Blo cks (S 0 ), an d the c levels of
fertil iser are randoml y assign ed amongst c Plo ts (P 0 ) within each
block. The response is the yield from each plot, measur ed at the end

of the experi ment.

(2) Temp oral bloc k example : H1: Plan t grow th depen ds on a comb ination

of Temperat ure (A), Light (B) and CO2 concentra tion (C). The ba

combinat ions of tempe ratur e and light are randoml y assi gned

amongst a seri es of nba Trial s (S 0 ) conducted sequentiall y. In each
trial, c co ncentra tions of CO2 are rando mly assigned amongst c

Mesoco sms (P 0 ). For each tri al, ne w plants are used and CO2

concen trations are randoml y reassigned to mesoc osms.

Comparisons

Model 5.9 is an extens ion of comp letely randomi sed two-fa ctor model 3.1

in whi ch each subject (S 0 ) is tested in every level of an extra cross factor
(C), and also an extens ion of split-pl ot model 5.6 to include a third

crossed fact or app lied to blocks. If c ¼ 2, tests for interacti ons with C are

numericall y equ ivalent to fully rep licated two -factor mod el 3.1 using a

response of C2 – C1.

Mo del 5.9 is equ ivalent to repeat ed-me asures model 6.7, wher e block

corresp onds with sub ject (S 0 ), except that levels of facto r C are rando mly

assigned to plots wi thin each blo ck rather than being app lied sequenti ally

on each subject . It theref ore escap es systemat ic bias from practice and

carryov er effects, whi ch a re unique to the sequen tial app lication of

treatment s in repeated measur es.

In test ing the co mbined effect of three cro ssed fact ors, mo del 5 .9 has

similar object ives to cross- facto red models 3.2, 4.3, 5.2 , 5.3 , 5.4 , 5.5 , 5.7

and 6.5. Cruc ially, it differs from fully randomi sed mod el 3.2 in that the

assignment of treat ments to sampl ing units (plots) is not complet ely

randomised, and from randomised-block model 4.3 in that factors A, B

and C are assigned to sampling units at different scales. Model 5.9 differs

from the other three-factor split-plot models only in the way treatment

factors are applied to sampling units. In contrast to repeated-measures

model 6.5, model 5.9 randomly assigns levels of treatment factors rather

than applying them sequentially.
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Special assumptions (see also general

assumptions on page 143)

The model assumes no C*S0 interaction, which cannot be tested because

the lack of replication means that there is no residual error term. Inter-

pretation of non-significant terms amongst C and its interactions with

A and B is compromised because the result could mean either no effect,

or opposing effects in different blocks. The assumption of no C*S0

interaction can be tested if independent, replicate plots (P0) are used for

each of the c levels of factor C in each block. The interpretation of a

significant C*S0 is nevertheless problematic because the treatment effect

may depend upon any of the multiple sources of variation encompassed

by the blocking factor. Thus, the causal mechanisms underlying a sig-

nificant treatment-by-block effect cannot be interpreted without further

experimentation.

ANOVA tables

Use tables for model 6.7 on page 223, where ‘Subjects’ denotes ‘Blocks’.
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6

Repeated-measures designs

Repeated-measures designs involve measuring each sampling unit repeat-

edly over time or applying treatment levels in temporal or spatial sequence

to each sampling unit. Because these designs were developed primarily for

use in medical research, sampling units are often referred to as subjects.

Those factors for which each subject participates in every level are termed

‘within-subject’ or ‘repeated-measures’ factors; levels of the within-subject

factor are applied in sequence to each subject. Conversely, ‘between-

subjects’ factors are grouping factors, for which each subject participates in

only one level. Repeated-measures models are classified into two types,

subject-by-trial and subject-by-treatment models, according to the nature

of the within-subject factors (Kirk 1994).

Subject-by-trial designs apply the levels of the within-subject factor to

each subject in an order that cannot be randomised, because time or space

is an inherent component of the factor. Subjects (sampling units) may be

measured repeatedly over time to track natural temporal changes in some

measurable trait – for example, blood pressure of patients at age 40, 50 and

60, biomass of plants in plots at fixed times after planting, build-up of

lactic acid in muscle during exercise. Likewise, subjects may be measured

repeatedly through space to determine how the response varies with

position – for example barnacle density in plots at different shore eleva-

tions, or lichen diversity on the north and south sides of trees. Alter-

natively, subjects may be measured before and after an experimental

manipulation or specific event – for example, blood pressure of patients

before and after taking a drug, biomass of plants in plots before and after a

fire, lactic acid concentration in muscles before, during and after a race.

At each sampling occasion, either the whole subject is sampled non-

destructively (for example, the blood pressure of a patient), or a part of

each subject is removed for measurement (for example, one randomly
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selected plant from each plot, on the assumption that this will not affect

subsequent growth of remaining plants).

When assessing the effect of a natural event or experimental manip-

ulation occurring at a particular point in time, a control treatment level is

required to ensure that the effect of the event or manipulation is not

confounded by time or by factors that co-vary with time such as the state

of the environment or the condition of the subjects. For example, to study

the effect of fire on plant biomass, replicate plots susceptible to burning

should be compared to a control set of unburned plots measured at the

same times. In medicinal trials, the control treatment may take the form of

a placebo. Consider an experiment in which a new drug to lower blood

pressure is given to a randomly selected group of patients. The blood

pressure of each patient is measured before, and again eight hours after,

administering the drug in the form of an oral pill. Any statistically sig-

nificant difference in mean activity level over time cannot be attributed

unambiguously to the effect of the drug, because a whole range of con-

founding influences could have influenced the change, such as time of day,

temperature or hunger level, or the psychological boost to the patient

resulting simply from believing in the treatment. No logically valid con-

clusion can be drawn from the experiment without including a placebo

treatment to control for these confounding influences. The treatment levels

of drug and placebo are randomly assigned to patients, with the placebo

taking the form of a pill that is identical in all respects to the drug pill

except that it does not contain the drug. The drug and placebo treatments

will need administering in a ‘double blind’ process for any trial involving

human subjects. This means coding the doses in such a way that neither the

patient nor the doctor are aware of which treatment level is being admi-

nistered, in order to minimise bias in the results due to prior beliefs or

desires about the effectiveness of the drug. Some form of blinding should

be considered in any experimental manipulation that risks bias in the

recording or analysis of results.

Treatments with a control or placebo always introduce a between-sub-

ject grouping factor to the design. Further between-subject factors may be

used to compare the effect of the treatment among different populations of

subjects. Isolated, one-off events, such as pollution incidents or hurricanes,

which cannot be replicated in space, require more specialised asymmetrical

designs (see Underwood 1994).

The same hypotheses are often testable using a completely randomised

model, with separate sets of subjects measured on each occasion or subjects

measured only after the event. However, repeatedly measuring the same

Repeated measures designs180



subjects can increase the power to detect treatment effects because the

repeated measures control for inherent differences among subjects, for

example in blood pressure among patients, in plant biomass among plots

or in fitness among athletes.

Subject-by-treatment designs apply the sequential levels of the within-sub-

ject factor (treatments) in an order that is randomised in time. For example,

theperformance-enhancing effects of drinking a specially formulated isotonic

glucose electrolyte may be tested by clocking athletes’ times over a 10 km

course after drinking either the electrolyte or water, and clocking them again

after swapping their treatments. The order in which each athlete receives the

two treatments is randomised. Similarly, the palatability of three types of

seeds may be tested by presenting the seeds, one type at a time, to individual

mice and measuring the mass of seeds consumed in two minutes. Again, the

treatments are applied to each subject in a random order. Testing all levels of

a within-subject factor on each subject increases the power of the experiment

to detect an effect of the within-subject factor by controlling for inherent

differences among subjects – in fitness among athletes, or in body size among

mice. Thus, a repeated-measures design requires fewer subjects to achieve the

same power and precision as a completely randomised design, in which each

subject is tested in just one level of an experimental factor.

Subject-by-treatment designs may have between-subject factors, just as

the subject-by-trial designs group subjects by treatment versus control. For

example, athletes could be classified according to their level of fitness to

test the hypothesis that the type of fluid intake affects the performance of

elite athletes more than that of recreational joggers; similarly, mice could

be classified according to body size to test the hypothesis that larger mice

prefer larger seeds.

The disadvantage of the subject-by-treatment design is its inherent

susceptibility to practice effects and carryover effects. Practice effects arise

when the condition of the subjects changes systematically during the course

of the experiment. For example, athletes could be more tired in the second

trial than the first due to their exertions in the first trial; the appetite of the

mice might decrease over time as they become satiated. Carryover effects

arise when exposure to one experimental treatment influences the effect of

one or more subsequent treatments. For example, athletes that receive the

electrolyte drink in the first trial may still derive some benefit from it

during the second trial; mice may be more likely to consume a particular

type of seed if it looks or smells like one they have been presented with

previously. In statistical terms, practice effects are an effect of time since

the start of the study, whilst carryover effects are an interaction between a
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treatment factor and the order or sequence of application of its levels. Both

effects can potentially increase the variation within each subject and

thereby reduce the power of the experiment to test treatment effects.

Practice effects and carryover effects may be reduced or eliminated by

providing rest periods between successive treatments, for example by

conducting trials on successive days to allow athletes sufficient rest for

their fluid levels to return to normal between trials. However, this may not

be an effective solution to carryover effects that arise from subjects

remembering or learning from previous treatments. For example, the

behaviour of mice may be modified by their memory of previously

encountered seed types even after a rest period of several days or weeks.

Alternatively, practice effects and carryover effects can be controlled for

by systematically varying the presentation order of the treatments, a process

known as ‘counterbalancing’ or ‘switching’. For example, if half the athletes

drink water first and electrolyte second and the other half drink electrolyte

first and water second, then the order of the treatments will be balanced

across all the subjects and any difference between the treatments will not be

confounded by practice or carryover effects. The advantage of counter-

balancing is that the existence of a carryover effect can then be tested by

seeking an interaction between the treatment and its order of application.

For example, we could test whether any benefit of the electrolyte drink

depends on the fatigue of the athlete, or whether the palatability of seeds is

affected by prior experience of other seed types. The disadvantage of

counterbalancing is that it may require large numbers of subjects for factors

with three ormore levels. For example, controlling for all carryover effects in

the seed palatability study requires testing at least twomice in each of the six

permutations of order, and then cross factoring order with seed type (a¼ 6

levels of Order, b¼ 3 levels of Seed type in model 6.3). However, since this

design requires at least 12 subjects, seed preference could have been tested

more efficiently with a fully replicated one-factor ANOVA in which 12mice

are each tested with just one seed type, assigned to them at random

(model 1.1). Alternatively, the Latin square variant of one-factor rando-

mised blocks provides a design that uses just three mice as levels of a Subject

block, which are cross factored with three levels of an Order block (detailed

on page 125). Although this kind of ‘crossover’ design only samples the

variation in order, it can be replicated to improve power (see examples in

Ratkowski et al. 1993; Crawley 2002; Quinn and Keough 2002).

Repeated-measures models are similar in concept to randomised-block

and split-plot models (see Chapters 4 and 5): taking repeated measure-

ments on each subject to control for intrinsic variation between them is
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equivalent to taking repeated measurements on each block to control for

inherent spatial or temporal background variation. We illustrate this

similarity using S0 to denote both subjects and blocks and P0 to denote both

observations nested in subject and plots nested in blocks. Repeated-

measures models differ from randomised-block and split-plot models,

however, in that the within-subject (block) treatment levels are assigned in

spatial or temporal sequence rather than being randomly assigned within

each block. Practice and carryover effects are therefore unique to repeated-

measures designs.

The sampling unit for a given treatment level or combination in

repeated-measures designs is the observation:

Assumptions

As with randomised-block and split-plot models, repeated measures

designs make an assumption of homogeneity of covariances because the

repeated measurements on each subject from different levels of the within-

subject factor are not independent of each other. This source of correlation

between levels of the within-subject factor is not a problem provided that

the covariances (i.e., correlations) are the same between treatment levels

within each subject. This is an extension to the standard assumption of

homogeneous variances, which applies to all ANOVA (page 14). In prac-

tice, the assumption requires only an additional homogeneity amongst the

set of variances obtained from all pairs of within-subject treatment levels,

where each variance is calculated from the differences in response between

the levels across subjects: known as the ‘sphericity condition’. Thus, in the

design for model 6.1 below, with a¼ 3 levels of factor A and n¼ 6 subjects,

one variance is calculated from the six differences in response between A1

and A2, another from the six for A1 and A3, and the third from the six for

A2 and A3. Heterogeneity amongst these variances will result in a liberal

test that inflates the Type I error rate. Kirk (1982), Winer et al. (1991) and

Quinn and Keough (2002) suggest methods of dealing with this problem.

Note that a model that has a single within-subject factor with just two

P9 nested in a subjectObservation in time or space

S9
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levels has only one covariance, and is therefore not subject to the sphericity

condition. If the design is fully replicated, then the assumption of homo-

geneity of covariances becomes subsumed within the standard assumption

of homogeneity of variances between all samples.

With only one replicate observation made per subject on each level of

the within-subject factor(s), the requirement that it be drawn independently

ceases to apply, but it must be representative of the subject, and of that

level of the within-subject factor(s). Unlike randomised-block designs,

which randomise the assignment of treatment levels within each block,

repeated-measures designs are constrained by a sequential assignment of

levels. They must therefore assume no practice or carryover effects.

Unreplicated repeated-measures designs generally cannot test for inter-

actions of within-subject treatments with subjects, which must therefore be

assumed to have negligible effect. Although full replication allows testing

of these interactions, their interpretation remains problematic (see below).

Analysis

Repeated measurement of the same subject over time or of the same

subject in spatial sequence will give rise to non-independent observations.

Treating these observations as independent replicates constitutes pseu-

doreplication (Hurlbert 1984), which can increase the probability of a Type

I error (rejection of a true null hypothesis) by inflating the denominator

degrees of freedom for tests of treatment effects. This non-independence is

explicitly accounted for in repeated-measures models by including Subject

as a random factor (S0).
Subjects are always crossed with within-subject factors and nested in

between-subject factors. Subject-by-trial designs have the sequential factor

Time or Location as the within-subject factor. When measurements are

taken on each subject three or more times, post hoc tests or orthogonal

contrasts (page 245) may be used to compare measurements. For example,

a study of lactic acid concentrations in muscles before, during and after

exercise could use Dunnett’s test to specifically compare the during and

after measurements with the before measurements. Alternatively, repeated

measurements that track natural changes in the subjects can model time as

a covariate to compare regression slopes among subjects.

Repeated-measuresmodels usually test every subject just once in each level

of the within-subject factor, as this maximises the power of the experiment to

detect treatment effects. The lack of replication has a serious shortcoming,

common to all unreplicated models. Specifically, interactions between
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subjects and within-subject factors generally cannot be tested, which thereby

increases the likelihood of a Type II error (acceptance of a false null

hypothesis) when interpreting lower-order effects (Underwood 1997). In

other words, an apparently non-significant within-subject factor may have a

real influence on the response that varies by subject. However, the existence

of within-subject effects can retain interest regardless of interactions with

subject, if the priority is to avoid Type I errors.

A number of approaches overcome or avoid the problem of incomplete

replication:

� The possiblity that subjects have opposing responses to a treatment can

be excluded post hoc by finding positive correlations of equal magnitude

between all pairs of levels of the within-subject factor.

� Obtain full replication by repeatedly testing every subject in each level of

the within-subject factor. In some cases, the design can then be analysed

using equivalent models in Chapter 3. Although this allows all subject-

by-treatment interactions to be tested, full replication may provide

relatively little improvement in power for the extra resources invested

and may be impossible in subject-by-trial designs.

� Eliminate the repeated measures altogether by redefining the response

as a single summary statistic per subject that encapsulates the

information on the within-subject factor of interest (Grafen and

Hails 2002). For example, to compare the biomass of plants in plots at

fixed times after planting, one could take a response variable from the

last observation only, or from the difference between the first and the

last, or from the slope of the regression of biomass against time.

� Employamultivariate approach, suchasdiscriminant functionanalysisor

MANOVA (see, for example, Underwood 1997; Grafen and Hails 2002).

All of the repeated-measures designs described in this chapter have an

equivalent randomised-block or split-plot model in which levels of the

within-subject factor are applied to different parts of each subject (block)

rather than in sequence. This is reflected in the allocation tables for this

chapter, which denote subjects by S0 to illustrate their similarity with

blocks, and the replicate observations on each subject by P0 to illustrate

their similarity with plots nested in blocks. The randomised-block and

split-plot designs are analysed and interpreted in exactly the same way as

repeated measures, except that they do not suffer the inherent biases of

practice and carryover effects. In order to appreciate the fundamental

differences between these types of model, consider variations on an

agricultural experiment to test the effect of a fertiliser Treatment (A) on
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crop yield. Imagine that the experiment requires a random factor Block

with eight levels to group unmeasured environmental heterogeneity. The

experiment could be designed with various levels of replication and ran-

domisation, and these considerations will determine which of Chapters 1 to

6 provide the appropriate ANOVA tables.

Chapter 1. Fully replicated one-factor model 1.1. Treatment levels are

randomly assigned to whole blocks (S0) and one response measured

per block.

Chapter 2. Fully replicated nested model 2.1. The response is measured as

the yield per plot (S0) nested in blocks (B0).
Chapter 3. Fully replicated cross-factored model 3.1(ii). Each treatment

level is randomly assigned to replicate plots (S0) within each block (B0).
Chapter 4. Randomised-block model 4.1. Each treatment level is randomly

assigned to one plot (P0) within each block (S0).
Chapter 5. Split-plot model 5.6. Treatment levels are randomly assigned to

whole blocks (S0), and tested against a sowing Density cross factor (B,

with two levels: high and low) randomly assigned to plots (P0) within
blocks.

Chapter 6(a). Repeated measures in time (subject-by-trial) model 6.3.

Treatment levels are randomly assigned to whole blocks (S0), and
tested against a Time cross factor (B0, with two levels: before and

after fertiliser application).

Chapter 6(b). Repeated measures in space (subject-by-trial) model 6.3.

Treatments level are randomly assigned to whole blocks (S0), and
tested against a cross factor Sector (B, with two levels: north and

south end of block).

Chapter 6(c). Repeated measures in time (subject-by-treatment) model 6.3.

Whole blocks (S0) are allocated at random to fertiliser treatments of

phosphate then nitrogen, or nitrogen then phosphate. This design has

two cross factors: Order (A, with two levels: earlier and later

application of phosphate) in which the blocks are nested, and the

repeated-measures factor of Fertiliser (B, with two levels: phosphate

and nitrogen). Although the Order factor could be ignored, since it is

randomised, the testable Order*Treatment interaction would likely

be of interest if significant.

Chapter 6(d). Repeated measures in space (subject-by-treatment) model 6.3.

Whole blocks (S0) are allocated at random to phosphate and nitrogen

in north and south ends respectively, or in south and north ends

respectively. This design has two cross-factors: Sector (A, with two
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levels: north and south end for phosphate) in which the blocks are

nested, and the repeated-measures factor of fertiliser (B, with two

levels: phosphate and nitrogen). Although the Sector factor could be

ignored, since it is randomised, the testable Sector*Treatment

interaction would likely be of interest if significant.

6.1 One-factor repeated-measures model

Model

Y¼ S0|A

Test hypothesis

Variation in the response Y is explained by repeated-measures factor A.

Description

Repeated observations (P0) are taken on n subjects (S0), once at each level

of factor A.

Allocation table

The table illustrates n¼ 4 subjects S0 each observed once at a sequence of

a¼ 4 levels of factor A. Unlike the allocation table for randomised-block

model 4.1, this table does indicate the spatial or temporal sequence of

treatment combinations.

Factors Levels Repeated measures on S0

A a yes
S0 n –

P9(S9|A) S1 S2 S3 S4

A1 P1 … … Pn

A2 … … … …

A3 … … … …

A4 … … … Pna
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Examples

(1) Subject-by-trial design: H1: Barnacle settlement density on Shores (S0)
varies with elevation (A), tested by sampling one Plot (P0) at each of a

elevations on each of n shores.

(2) Subject-by-trial design: H1: Species diversity of lichens on Trees (S0)
changes with tree Aspect (A), tested by sampling once on each of north

and south sides of each tree.

(3) Subject-by-treatment design: H1: Performance of n Athletes (S0) depends
on Drink treatment (A with two levels: isotonic glucose electrolyte and

water). Performance is measured by clocking the running times of

athletes over a 10km course after drinking either electrolyte or water,

and clocking them again after swapping their treatments. The order in

which each athlete receives the two treatments is randomised.

(4) Subject-by-treatment design: H1: Social interactions in n captive lemur

Groups (S0) depend on public Viewing (A with two levels: open and

closed to view). The order in which each group of lemurs is opened and

closed to view is randomised.

Comparisons

Model 6.1 can be extended to include a second crossed factor applied to

subjects (model 6.3) or tested sequentially on each subject (model 6.2).

When a¼ 2, the test is equivalent to a paired-sample t test, which itself is

equivalent to testing the mean difference in response between two times

against the null hypothesis of zero difference.

In testing the effect of a single treatment factor A, model 6.1 has similar

objectives to completely randomised model 1.1 and randomised-block

model 4.1. It differs from model 1.1 in that each subject (S0) is tested in

each level of factor A to partition out unwanted sources of background

variation among subjects. Although the analysis for model 6.1 is identical

to model 4.1 (Model 1), with subject corresponding with block (S0), the
levels of A are tested sequentially on each subject rather than being ran-

domised within each block. Model 6.1 is therefore inherently susceptible to

practice and carryover effects from the sequential application of treatments

in repeated measures.

The analysis of model 6.1 is identical to the analysis of an unreplicated

two-factor design with at least one random factor (model 7.1), except that
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it must meet the additional assumptions of homogeneity of covariances

across subjects and no practice and carryover effects.

Special assumptions (see also general assumptions

of repeated measures on page 183)

The model cannot test the subject-by-treatment interaction, because the

lack of replication means that there is no residual error term (shaded

grey in the ANOVA tables below). Interpretation of a non-significant A

is compromised because the result could mean either no effect, or

opposing effects on different subjects. The assumption of no significant

subject-by-treatment interaction can be tested if independent, replicate

observations (P0) are made for each of the a treatments on each subject.

The design is then fully replicated and the analysis identical to that for

model 3.1, with B0 substituting for S0. The interpretation of a significant

block-by-treatment interaction is nevertheless problematic because the

treatment effect may depend upon any of the multiple sources of variation

encompassed by the subject factor. In Example 1 above, a significant S0*A
interaction would mean that the effect of shore elevation on barnacle

settlement varies spatially, due to differences among shores in geology,

microclimate, human impact and so on. Thus, the causal mechanisms

underlying a significant subject-by-treatment effect cannot be interpreted

without further experimentation.

Notes

Model 6.1 is suitable only for detecting changes over time (or across space),

and not for attributing causality to the change. It cannot analyse treat-

ments in ‘before–after’ experiments because it has no control for the

numerous factors that co-vary with time. For some studies, the con-

founding influence of time can be avoided by cross factoring it with a

between-subject treatment, using model 6.3. For example, subjects may be

tested before and after ingesting a medical treatment, with one group given

a drug and another a placebo. Causality can then be inferred from a

significant treatment-by-time interaction.

6.1 One-factor repeated-measures model 189



ANOVA tables for analysis of terms SþA

6.2 Two-factor repeated-measures model

Model

Y¼ S0|B|A

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.

Model 6.1(ii) A0 is a random factor, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 S0 n� 1 P0(S0*A0)þ S0*A0 þ S0 1/3

Within subjects

2 A0 a� 1 P0(S0*A0)þ S0*A0 þA0 2/3

3 S0*A0 (n� 1)(a� 1) P0(S0*A0)þ S0*A0 No test

4 P0(S0*A0) 0 P0(S0*A0) –

Total variation na� 1

Model 6.1(i) A is a fixed factor, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects
1 S0 n� 1 P0(S0*A)þ S0 No testa

Within subjects
2 A a� 1 P0(S0*A)þ S0*AþA 2/3

3 S0*A (n–1)(a–1) P0(S0*A)þ S0*A No test

4 P0(S0*A) 0 P0(S0*A) –

Total variation na� 1

a
An unrestricted model tests the MS for S0 over the MS for its interaction with A
(F-ratio ¼ 1/3). See page 242.
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Description

Repeated observations (P0) are taken on n subjects (S0), once at each

combination of levels of cross factors B and A.

Allocation table

The table illustrates n¼ 4 subjects S0, each observed once at each of ba¼ 4

combinations of levels of factors B and A.

Examples

(1) Subject-by-trial design: H1: Barnacle settlement density on Shores (S0)
varies with Elevation (A) and Surface rugosity (B), tested by allocating

one Plot (P0) to each of b levels of rugosity at each of a elevations on

each of n shores.

(2) Subject-by-trial design: H1: Species diversity of lichens on Trees (S0)
changes with Aspect (A with two levels: north or south side) and Age

(B with three levels: 5, 10 and 20 years) of tree. Both sides of n trees are

sampled repeatedly at ages 5, 10 and 20 years.

(3) Subject-by-treatment design: H1: Performance of Athletes (S0) depends
on Drink treatment (A with two levels: isotonic glucose electrolyte and

water) and Vitamin supplement (B, vitamin tablet, placebo control).

Performance is measured by clocking the running times of athletes (S0)
over a 10km course after taking each combination of drink and

P9(S9|B|A) S1 S2 S3 S4

B1 P1 … … Pn
A1

B2 … … … Pnb

B1 … … … …
A2

B2 … … … Pnba

Factors Levels Repeated measures on S0

A a yes
B b yes
S0 n –
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vitamin supplement. The order in which each athlete receives the four

treatment combinations is randomised.

Comparisons

Model 6.2 is an extension of model 6.1 to include a second crossed factor

(B). It can be extended to include a third crossed factor applied to subjects

(model 6.5).

In testing the combined effect of two crossed factors, model 6.2 has

similar objectives to cross-factored models 3.1, 4.2, 5.1, 5.6 and 6.3. Cru-

cially, it differs from fully randomised model 3.1 in that each subject (S0) is
tested in all levels of factors A and B to partition out unwanted sources of

background variation among subjects. Although the analysis of model 6.2

is identical to randomised-block model 4.2 (Model 1), with subject corre-

sponding with block (S0), the ba levels of factors A and B are tested

sequentially on each subject rather than being randomised within each

block. Model 6.2 is therefore inherently susceptible to practice and car-

ryover effects from the sequential application of treatments in repeated

measures. Similarly, model 6.2 is distinguished from split-plot models 5.1

and 5.6 by the sequential application of treatments to sampling units.

Finally, model 6.2 differs from repeated-measures model 6.3 in that A is a

within-subjects factor rather than a between-subjects factor.

The analysis of model 6.2 is identical to the analysis of an unreplicated

three-factor design with at least one random factor (model 7.2), except that

it must meet the additional assumptions of homogeneity of covariances

across subjects and no practice and carryover effects.

Special assumptions (see also general assumptions

of repeated measures on page 183)

Model 6.2 cannot test subject-by-treatment interactions, because the lack

of replication means that there is no residual error term (shaded grey in the

ANOVA tables below). Interpretation of non-significant A, B or B*A is

compromised because the result could mean either no effect, or opposing

effects on different subjects. The assumption of no significant subject-by-

treatment interaction can be tested if independent, replicate observations

(P0) are made on each subject for each of the ba levels of factors A and B.

The design is then fully replicated and the analysis identical to that for

model 3.2, with C0 substituting for S0. The interpretation of a significant

Repeated measures designs192



block-by-treatment interaction is nevertheless problematic because the

treatment effect may depend upon any of the multiple sources of variation

encompassed by the subject factor.

In example 2 above, the slow growth rates of lichens provides little

opportunity to take independent replicate observations on a tree within

each aspect and age group. An alternative fully replicated design would

involve measuring simultaneously many trees of different ages and aspects.

The test hypothesis for such a two-factor ANOVA would be that lichen

diversity varies with tree age and aspect, as opposed to changing with tree

age according to aspect, which is the question directly tested by the repe-

ated-measures design.

Notes

Model 6.2 is suitable only for detecting changes over time, and not for

attributing causality to the change. It cannot analyse treatments in ‘before–

after’ experiments because it has no control for the numerous factors that

co-vary with time. For some studies, the confounding influence of time can

be avoided by cross factoring it with between-subject treatments, using

model 6.7. For example, male and female subjects may be tested before

and after ingesting a medical treatment, with one group of each sex given a

drug and another a placebo. Causality can then be inferred from a sig-

nificant treatment-by-time interaction.

ANOVA tables for analysis of terms S|B|A – S*B*A

Model 6.2(i) A and B are fixed factors, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 S0 n� 1 P0(S0*B*A)þ S0 No testa

Within subjects

2 A a� 1 P0(S0*B*A)þ S0*AþA 2/5

3 B b� 1 P0(S0*B*A)þ S0*BþB 3/6

4 B*A (b� 1)(a� 1) P0(S0*B*A)þ S0*B*AþB*A 4/7

5 S0*A (n� 1)(a� 1) P0(S0*B*A)þ S0*A No test

6 S0*B (n� 1)(b� 1) P0(S0*B*A)þ S0*B No test

7 S0*B*A (n� 1)(b� 1)(a� 1) P0(S0*B*A)þ S0*B*A No test

8 P0(S0*B*A) 0 P0(S0*B*A) –

Total variation nba � 1

a An unrestricted model has an inexact F-ratio denominator (see page 242).
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Model 6.2(ii) A is a fixed factor, B0 is a random factor, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 S0 n� 1 P0(S0*B0*A)þ S0*B0 þ S0 1/6b

Within subjects

2 A a� 1 P0(S0*B0*A)þ S0*B0*AþS0*AþB0*A
þA

2/(4þ5� 7)ab

3 B0 b� 1 P0(S0*B0*A)þ S0*B0 þB0 3/6b

4 B0*A (b� 1)(a� 1) P0(S0*B0*A)þ S0*B0*AþB0*A 4/7

5 S0*A (n� 1)(a� 1) P0(S0*B0*A)þ S0*B0*AþS0*A 5/7

6 S0*B0 (n� 1)(b� 1) P0(S0*B0*A)þ S0*B0 No test

7 S0*B0*A (n� 1)(b� 1)(a� 1) P0(S0*B0*A)þ S0*B0*A No test

8 P0(S0*B0*A) 0 P0(S0*B0*A) –

Total variation nba � 1

a There is no exact denominator for this test (see page 40). If B0*A and/or S0*A have P> 0.25, however,
then post hoc pooling can be used to derive an exact denominator for A. If B0*A has P> 0.25 (but S0*A
has P< 0.25), eliminate B0*A from the mean square for A, making S0*A its error mean square. If S0*A
has P> 0.25 (but B0*A has P< 0.25), then eliminate S0*A from the mean square for A, making B0*A its
error mean square. If both B0*A and S0*A have P> 0.25, use the pooled error mean square: [SS
{B0*A}þSS{S0*A}þSS{S0*B0*A}]/[(b� 1)(a� 1)þ (n� 1)(a� 1)þ (n� 1)(b� 1)(a� 1)]. Further pool-
ing can be done if S0*B0*A has P> 0.25. See page 38.

b An unrestricted model has an inexact F-ratio denominator (see page 242).

Model 6.2(iii) A0 and B0 are random factors, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects
1 S0 n� 1 P0(S0*B0*A0)þS0*B0*A0 þS0*B0 þS0*A0 þS0 1/(5þ6� 7)a

Within subjects
2 A0 a� 1 P0(S0*B0*A0)þS0*B0*A0 þS0*A0 þB0*A0 þA0 2/(4þ5� 7)a

3 B0 b� 1 P0(S0*B0*A0)þS0*B0*A0 þS0*B0 þB0*A0 þB0 3/(4þ6� 7)a

4 B0*A0 (b� 1)(a� 1) P0(S0*B0*A0)þS0*B0*A0 þB0*A0 4/7
5 S0*A0 (n� 1)(a� 1) P0(S0*B0*A0)þS0*B0*A0 þS0*A0 5/7
6 S0*B0 (n� 1)(b� 1) P0(S0*B0*A0)þS0*B0*A0 þS0*B0 6/7
7 S0*B0*A0 (n� 1)(b� 1)(a� 1) P0(S0*B0*A0)þS0*B0*A0 No test
8 P0(S0*B0*A0) 0 P0(S0*B0*A0) –

Total variation nba � 1

a There is no exact denominator for this test (see page 40). If higher-order interactions contributing to the
mean square have P> 0.25, however, then they can be removed from the mean square in post hoc pooling
to derive an exact denominator (applying the same technique as for A in model (ii) above).
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6.3 Two-factor model with repeated measures
on one cross factor

Model

Y¼B|S0(A)

Test hypothesis

Variation in the response Y is explained by the combined effects of factor

A and factor B.

Description

Replicate subjects (S0) are assigned to each level of treatment A, and

repeated observations (P0) are taken on each subject, once at each level of

factor B.

Allocation table

The table shows n¼ 2 replicate subjects S0 nested in each of a¼ 2 levels of

factor A, and each subject observed once at each of b¼ 4 levels of factor B.

Factors Levels Repeated measures on S0

A a no
B b yes
S0 n –

A1 A2

P
9(

B
|S

9(
A

))

S1 S2 S3 S4

B1 P1 Pn … Pna

B2 … … … …

B3 … … … …

B4 … … … Pnba
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Examples

(1) Subject-by-trial design: H1: Blood pressure of Patients (S0) responds to
Ingestion (B with two levels: before and after) of Medicine (A with two

levels: drug and placebo).

(2) Subject-by-trial design: H1: Visual acuity varies between left and right

Eye (B) of each Subject (S0) according to their Handedness (A).

(3) Subject-by-trial design: Barnacle settlement density is measured on

Patches (P0) of rock at different Elevations (B) on Shores (S0) nested in

background rate of Recruitment (A).

(4) Subject-by-treatment design: H1: Performance of Athletes (S0) depends
on Drink treatment (B with two levels: isotonic glucose electrolyte and

water). Performance is measured by clocking the running times of

athletes over a 10km course after drinking either electrolyte or water,

and clocking them again after swapping their treatments. Each athlete

receives the two treatments in a particular Order (A with two levels:

electrolyte first and water first).

(5) Subject-by-treatment design: H1: Social interactions in Groups of

captive lemurs (S0) depend on public Viewing (B with two levels:

open and closed to view) and Management regime (A with two levels:

single-species cages and mixed-species cages). n groups of lemurs are

studied in each of a management regimes. The order in which each

group of lemurs is opened and closed to view is randomised. This

analysis assumes that the effect of management is not confounded by

other factors, such as number of individuals per cage.

Comparisons

Model 6.3 is an extension of model 1.1 in which each subject is tested

sequentially in every level of a second, crossed factor B, and it is an

extension of repeated-measures model 6.1 to include a between-subjects

factor. It can be further extended to include an additional between-subjects

factor (model 6.7) or an additional within-subjects factor (model 6.5).

The test for the main effect of A is identical to a fully replicated one-

factor ANOVA on the mean value of the response for each subject pooled

across levels of B. When b¼ 2, the test for the interaction B*A is identical

to a fully replicated one-factor ANOVA on a treatments (model 1.1),

tested with one response per subject comprising the value of B2 subtracted

from B1.
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Model 6.3 is equivalent to split-plot model 5.6, where subject

corresponds with block (S0), except that levels of factor B are tested

sequentially on each subject rather than being randomly assigned within

each block. It is therefore inherently susceptible to practice and carryover

effects from the sequential application of treatments in repeated measures.

In testing the combined effect of two crossed-factors, model 6.3 has

similar objectives to cross factored models 3.1, 4.2, 5.1 and 6.2. Crucially, it

differs from fully randomised model 3.1, randomised-block model 4.2 and

split-plot model 5.1 in that the b levels of factor B are tested sequentially

on each subject. Finally, model 6.3 differs from repeated-measures

model 6.2 in that A is a between-subjects factor rather than a within-

subjects factor.

Special assumptions (see also general

assumptions of repeated measures on page 183)

Model 6.3 cannot test the B*S0 interaction, because lack of replication

means that there is no residual error term (shaded grey in the ANOVA

tables below). Interpretation of non-significant B or B*A is compromised

because the result could mean either no effect, or opposing effects on

different subjects. This problem is not resolved by excising the lack of

replication with a response variable that measures the difference between

b¼ 2 levels of factor B. The assumption of no significant B*S0 interaction
can be tested if independent, replicate observations (P0) are made for each

of b levels of factor B in each of n subjects (S0). The design is then fully

replicated and can be analysed using model 3.3, with B0 substituting for S0

and C substituting for B. The interpretation of a significant treatment-by-

subject interaction is nevertheless problematic because the treatment effect

may depend upon any of the multiple sources of variation encompassed by

the subject factor. If treatment effects may be subject-dependent, one

should consider what aspect of the subject may be influencing the treat-

ment effect and include it as an additional between-subjects factor (using

model 6.7).

For instance, Example 1 above tests particularly for a significant B*A

interaction, which indicates an effective drug. The model cannot test

whether this effect depends on subject, however, and a non-significant

interaction could mean either that the drug has no effect, or that it has

opposing effects on different subjects. These questions of causality are

not resolved by applying a one-factor ANOVA between the drug and

placebo to a response variable that compares change in blood pressure
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(B2 subtracted from B1). Testing for a subject-dependent effect requires

taking random and independent observations within each subject and level

of the crossfactor and using model 3.3 (with factor B0 coding for subjects in
both cases, and S0 for observations). The interpretation of a significant

interaction with subject is nevertheless problematic because the random

subject factor encompasses multiple sources of variation. Thus, the causal

mechanisms underlying a significant interaction with subject cannot be

interpreted without further experimentation.

ANOVA tables for analysis of terms B|AþB|S(A) – B*S(A)

Model 6.3(i) A and B are fixed factors, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 A a� 1 P0(B*S0(A))þ S0(A)þA 1/2

2 S0(A) (n� 1)a P0(B*S0(A))þ S0(A) No testa

Within subjects

3 B b� 1 P0(B*S0(A))þB*S0(A)þB 3/5

4 B*A (b� 1)(a� 1) P0(B*S0(A))þB*S0(A)þB*A 4/5

5 B*S0(A) (b� 1)(n� 1)a P0(B*S0(A))þB*S0(A) No test

6 P0(B*S0(A)) 0 P0(B*S0(A)) –

Total variation nba� 1

a An unrestricted model tests the MS for S0(A) over the MS for its interaction with B (F-ratio¼ 2/5). See
page 242.

Model 6.3(ii) A is a fixed factors, B0 is a random factor, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 A a� 1 P0(B0*S0(A))þB0*S0(A)þB0*Aþ S0(A)þA 1/(2þ 4� 5)a

2 S0(A) (n� 1)a P0(B0*S0(A))þB0*S0(A)þ S0(A) 2/5

Within subjects

3 B0 b� 1 P0(B0*S0(A))þB0*S0(A)þB0 3/5b

4 B0*A (b� 1)(a� 1) P0(B0*S0(A))þB0*S0(A)þB0*A 4/5

5 B0*S0(A) (b� 1)(n� 1)a P0(B0*S0(A))þB0*S0(A) No test

6 P0(B0*S0(A)) 0 P0(B0*S0(A)) –

Total variation nba� 1

a There is no exact denominator for this test (see page 40). If S0(A) and/or B0*A have P> 0.25, however,
then post hoc pooling can be used to derive an exact denominator for A. If S0(A) has P> 0.25 (but B0*A
has P< 0.25), then eliminate S0(A) from the mean square for A, making B0*A its error mean square. If
B0*A has P> 0.25 (but S0(A) has P< 0.25), eliminate B0*A from the mean square for A, making S0(A) its
error mean square. If both S0(A) and B0*A have P> 0.25, use the pooled error mean square: [SS{S0(A)}þ
SS{B0*A}þSS{B0*S0(A)}]/[(n� 1)aþ(b� 1)(a� 1)þ(b� 1)(n� 1)a]. See page 38.

b Anunrestrictedmodel tests theMS forB0 over theMSfor its interactionwithA (F-ratio¼ 3/4). See page 242.
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Model 6.3(iii) A0 is a random factor, B is a fixed factor, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 A0 a� 1 P0(B*S0(A0))þ S0(A0)þA0 1/2a

2 S0(A0) (n� 1)a P0(B*S0(A0))þ S0(A0) No testb

Within subjects

3 B b� 1 P0(B*S0(A0))þB*S0(A0)þB*A0 þB 3/4c

4 B*A0 (b� 1)(a� 1) P0(B*S0(A0))þB*S0(A0)þB*A0 4/5

5 B*S0(A0) (b� 1)(n� 1)a P0(B*S0(A0))þB*S0(A0) No test

6 P0(B*S0(A0)) 0 P0(B*S0(A0)) –

Total variation nba� 1

a An unrestricted model has an inexact F-ratio denominator (see page 242).
b An unrestricted model tests the MS for S0(A0) over the MS for its interaction with B
(F-ratio¼ 2/5). See page 242.

c Planned post hoc pooling is permissible for B if B*A0 has P> 0.25. Use the pooled error mean
square: [SS{B*A0}þSS{B*S0(A0)}]/[(b� 1)(a� 1)þ(b� 1)(n� 1)a]. See page 38.

Model 6.3(iv) A0 and B0 are random factors, S0 is a random subject:

Mean square d.f.
Components of variation
estimated in population F-ratio

Between subjects

1 A0 a� 1 P0(B0*S0(A0))þB0*S0(A0)þB0*A0
þ S0(A0)þA0

1/(2þ 4� 5)a

2 S0(A0) (n� 1)a P0(B0*S0(A0))þB0*S0(A0)þS0(A0) 2/5

Within subjects

3 B0 b� 1 P0(B0*S0(A0))þB0*S0(A0)þB0*A0 þB0 3/4b

4 B0*A0 (b� 1)(a� 1) P0(B0*S0(A0))þB0*S0(A0)þB0*A0 4/5

5 B0*S0(A0) (b� 1)(n� 1)a P0(B0*S0(A0))þB0*S0(A0) No test

6 P0(B0*S0(A0)) 0 P0(B0*S0(A0)) –

Total variation nba� 1

a There is no exact denominator for this test (see page 40). If S0(A0) and/or B0*A0 have
P> 0.25, however, then post hoc pooling can be used to derive an exact denominator for A0.
If S0(A0) has P> 0.25 (but B0*A0 has P< 0.25), then eliminate S0(A0) from the mean square
for A0, making B0*A0 its error mean square. If B0*A0 has P> 0.25 (but S0(A0) has P< 0.25),
eliminate B0*A0 from the mean square for A0, making S0(A0) its error mean square. If both S0
(A0) and B0*A0 have P> 0.25, use the pooled error mean square: [SS{S0(A0)}þSS
{B0*A0}þ SS{B0*S0(A0)}]/[(n� 1)aþ (b� 1)(a� 1)þ (b� 1)(n� 1)a]. See page 38.

b Planned post hoc pooling is permissible for B0 if B0*A0 has P> 0.25. Use the pooled error
mean square: [SS{B0*A0}þ SS{B0*S0(A0)}]/[(b� 1)(a� 1)þ (b� 1)(n� 1)a]. See page 38.
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6.4 Three-factor model with repeated measures
on nested cross factors

Model

Y¼C(B)|S0(A)

Test hypothesis

Variation in the response Y is explained by A cross factored with repeated

measures on B and C nested in B.

Description

Replicate subjects (S0) are assigned to each level of treatment A, and

repeated observations (P0) are taken on each subject, once at each level of

factor C nested in levels of treatment B.

Allocation table

The table shows n¼ 2 replicate subjects S0 nested in each of a¼ 2 levels of

treatment A, and each subject observed once at each of c¼ 2 levels of

factor C nested in each of b¼ 2 levels of treatment B.

Factors Levels Repeated measures on S0

A a no
B b yes
C(B) c yes
S0 n –

A1 A2
P9(C(B)|S9(A))

S1 S2 S3 S4

C1 P1 Pn … Pna
B1

C2 … … … Pnca

C3 … … … …
B2

C4 … … … Pncba
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Examples

(1) Subject-by-trial design: H1: Blood pressure of Patients (S0) responds to
Ingestion (B with two levels: before and after) of Medicine (A with two

levels: drug and placebo). The blood pressure of each patient is

monitored at random Times (C0) before and after taking the medicine.

(2) Subject-by-trial design: The effect of a local environmental disturbance

Event (B, with two levels: before and after) is monitored by repeated

measures of stress levels at random Times C0 in Subjects (S0) occupying
different Locations (A0), with impact gauged by B*A0. This is a

variation on the ‘before-and-after-control-impact’ design given by

model 5.6.

Comparisons

Model 6.4 is an extension of model 6.3 to include an extra nested

factor (C0).
The test for the main effect of A is identical to a fully replicated one-

factor ANOVA (model 1.1) on the mean value of the response for each

subject pooled across levels of C.

Special assumptions (see also general assumptions

of repeated measures on page 183)

The model cannot test the C0*S0 interaction, because the lack of replication

means that there is no residual error term (shaded grey in the ANOVA

tables below). If independent, replicate observations (P0) are made for each

of the cb levels of factor C nested in B in each subject, then the design is

fully replicated. The principal advantage of full replication is that it allows

testing of the assumption of no significant interaction of C0 with S0 and
thereby – in the event of no significant S0*C0 – validation of a non-

significant main effect C. The interpretation of a significant treatment-

by-subject interaction is nevertheless problematic because the treatment

effect may depend upon any of the multiple sources of variation encom-

passed by the subject factor. Thus, the causal mechanisms underlying

a significant treatment-by-subject effect cannot be interpreted without

further experimentation.
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6.5 Three-factor model with repeated measures
on two cross factors

Model

Y¼C|B|S0(A)

Test hypothesis

Variation in the response Y is explained by A cross factored with repeated

measures on C cross factored with B.

Description

Replicate subjects (S0) are assigned to each level of treatment A, and

repeated observations (P0) are taken on each subject, once at each com-

bination of levels of cross factors C and B.

Allocation table

The table shows n¼ 2 replicate subjects S0 nested in each of a¼ 2 levels of

factor A, and each subject observed once at each of c¼ 2 levels of factor C

in each of b¼ 2 levels of treatment B.

Factors Levels Repeated measures on S0

A a no
B b yes
C c yes
S0 n –

A1 A2
P9(C|B|S9(A))

S1 S2 S3 S4

C1 P1 Pn … Pna
B1

C2 … … … Pnca

C1 … … … …
B2

C2 … … … Pncba
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Examples

(1) Subject-by-trial design: H1: Systolic and diastolic blood Pressure (C) of

Patients (S0) responds to Ingestion (B with two levels: before and after)

of Medicine (A with two levels: drug and placebo).

(2) Subject-by-trial design: H1: Barnacle settlement depends upon back-

ground recruitment, elevation up shore, and substrate aspect, tested by

measuring barnacle density on cb Patches (P0) of rock at different

Elevations (B) and Aspects (C) on n Shores (S0) nested in a background

rates of Recruitment (A). For example, east- and west-facing sides of

the shore are sampled at low- and mid-shore on four shores at high

and four at low background rates of recruitment.

(3) Subject-by-treatment design: H1: Performance of athletes depends on

Drink treatment (C with two levels: isotonic glucose electrolyte and

water) and Vitamin supplement (B with two levels: vitamin tablet and

placebo). Performance is measured by clocking the running times of

athletes (S0) over a 10km course after taking each combination of

drink and vitamin supplement. Each athlete receives the four

treatments in a particular Order (A with ten levels).

Comparisons

Model 6.5 is an extension of repeated-measures model 6.2 to include a

between-subjects factor, and is an extension of repeated-measures model

6.3 to include a second within-subjects factor.

The test for the main effect of A is identical to a fully replicated one-

factor ANOVA (model 1.1) on the mean value of the response for each

subject pooled across levels of B and C. When c¼ 2, the interaction of C

with B|S0(A) is identical to the repeated-measures split-plot model 6.3 on a

treatments, tested with b responses per subject each comprising the value of

C2 subtracted from C1. When both c and b¼ 2, the interaction of C*B with

A is identical to a fully replicated one-factor ANOVA on a treatments

(model 1.1), tested with one response per subject comprising the value of

[(C2 – C1) at B2] – [(C2 – C1) at B1].

Model 6.5 is equivalent to split-plot model 5.7, where subject corre-

sponds with block (S0), except that the cb levels of factors B and C are

tested sequentially on each subject rather than being randomly assigned

within each block. It is therefore inherently susceptible to practice and

carryover effects from the sequential application of treatments in repeated

measures.
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In testing the combined effect of three crossed factors, model 6.5 has

similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 5.4, 5.5, 5.7,

5.9 and 6.7. Crucially, it differs from completely randomised, randomised-

block and split-plot models in that the levels of factors B and C are tested

sequentially on each subject. Model 6.5 differs from repeated-measures

model 6.7 in that it has one between-subjects factor and two within-

subjects factors, rather than two between-subjects factors and one within-

subjects factor.

Special assumptions (see also general assumptions of repeated

measures on page 183)

The model cannot test the interactions of B and C with S0, because the lack
of replication means that there is no residual error term (shaded grey in the

ANOVA tables below). Interpretation of non-significant terms amongst B,

C, C*B and their interactions with A is compromised because the result

could mean either no effect, or opposing effects on different subjects. The

assumption of no significant treatment-by-subject interactions can be tes-

ted if independent, replicate observations (P0) are made for each of the bc

combinations of factors B and C on each subject. The interpretation of a

significant treatment by-subject interaction is nevertheless problematic

because the treatment effect may depend upon any of the multiple sources

of variation encompassed by the subject factor. Thus, the causal

mechanisms underlying a significant treatment-by-subject effect cannot be

interpreted without further experimentation.
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6.6 Nested model with repeated measures on a cross factor

Model

Y¼C|S0(B(A))

Test hypothesis

Variation in the response Y is explained by repeated-measures treatment C

combined with treatment A and with grouping factor B nested in A.

Description

Replicate subjects (S0) are nested in groups (B0) which are themselves

nested in levels of treatment A, and repeated observations (P0) are taken on

each subject, once at each level of factor C.

Allocation table

The table shows n¼ 2 replicate subjects S0 nested in each of b¼ 2 groups B0

nested in each of a¼ 2 levels of treatment A, and each subject observed

once at each of c¼ 4 levels of treatment C.

Factors Levels Repeated measures on S0

A a no
B(A) b no
C c yes
S0 n –

A1 A2

B1 B2 B3 B4

P
9(

C
|S

9(
B

(A
))

)

S1 S2 S3 S4 S5 S6 S7 S8

C1 P1 Pn … Pnb … … … Pnba

C2 … … … … … … … …

C3 … … … … … … … …

C4 … … … … … … … Pncba
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Examples

(1) Subject-by-trial design: H1: Blood pressure of Patients (S0) responds to
drug treatment over Time (Cwith two levels: before and after) according

toDoctor (B0) nested inMedicine (Awith two levels: drug and placebo).

This analysis assumes that doctors are allocated randomly to patients

and that medicines are assigned randomly to doctors.

(2) Subject-by-treatment design: H1: Social interactions in Groups of captive

lemurs (S0) dependonpublicViewing (Cwith two levels: openand closed

toview)according toZoo (B0) nested inManagement regime (Awith two

levels: single-species cages and mixed-species cages). n groups of lemurs

are studied in eachof b zoos in each of amanagement regimes. The order

in which each group of lemurs is opened and closed to view is

randomised. This analysis assumes that the effect of management is not

confounded by other factors, such as number of individuals per cage.

Comparisons

Model 6.6 is an extension of model 2.1, in which each subject (S0) is tested
sequentially in every level of an extra cross factor (C). If c¼ 2, tests for

interactions with C are numerically equivalent to nested model 2.1 using a

response of C2 – C1.

Model 6.6 is equivalent to split-plot model 5.8, where subject corre-

sponds with block (S0), except that the c levels of factor C are tested

sequentially on each subject rather than being randomly assigned within

each block. It is therefore inherently susceptible to practice and carryover

effects from the sequential application of treatments in repeated measures.

Special assumptions (see also general assumptions

of repeated measures on page 183)

The model cannot test the C*S0 interaction, because the lack of replication

means that there is no residual error term (shaded grey in the ANOVA

tables below). Interpretation of non-significant C or C*A is compromised

because the result could mean either no effect, or opposing effects on dif-

ferent subjects. The assumption of no significant C*S0 interaction can

be tested if independent, replicate observations (P0) are made for each of the

c levels of factor C in each subject. The interpretation of a significant

treatment-by-subject interaction is nevertheless problematic because the

treatment effect may depend upon any of the multiple sources of variation

encompassed by the subject factor. Thus, the causal mechanisms underlying

a significant treatment-by-subject effect cannot be interpreted without

further experimentation.
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6.7 Three-factor model with repeated measures
on one factor

Model

Y¼C|S0(B|A)

Test hypothesis

Variation in the response Y is explained by the interaction of repeated-

measures treatment C with factors A and B combined.

Description

Each of ba combinations of levels of treatments B and A is randomly

allocated n subjects (S0), and repeated observations (P0) are taken on each

subject, once at each level of factor C.

Allocation table

The table shows n¼ 2 replicate subjects S0 nested in each of ba¼ 4 com-

binations of levels of cross factors B and A, and each subject observed once

at each of c¼ 4 levels of treatment C.

Factors Levels Repeated measures on S0

A a no
B b no
C c yes
S0 n –

A1 A2

B1 B2 B1 B2

P
9(

C
|S

9(
B

|A
))

S1 S2 S3 S4 S5 S6 S7 S8

C1 P1 Pn … Pnb … … … Pnba

C2 … … … … … … … …

C3 … … … … … … … …

C4 … … … … … … … Pncba
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Examples

(1) Subject-by-trial design: H1: Species diversity of lichens on Trees (S0)
depends on Aspect (C with two levels: north and south side), tree

Species (B with two levels: oak and beech) and Ivy (A, with two levels:

present or absent).

(2) Subject-by-trial design: H1: Blood pressure of Patients (S0) responds

over Time (C with two levels: before and after) to ingestion of

Medicine (A with two levels: drug and placebo) depending upon

Gender (B with two levels: male and female).

(3) Subject-by-treatment design: H1: Performance of Athletes (S0) depends
on Drink treatment (C with two levels: isotonic glucose electrolyte and

water) and Gender (B). Performance is measured by clocking the

running times of Athletes (S0) over a 10km course after drinking either

isotonic glucose electrolyte or water, and clocking them again after

swapping their treatments. Each athlete receives the two treatments in

a particular Order (A with two levels: electrolyte first and water first).

(4) Subject-by-treatment design: H1: Social interactions in Groups of

captive lemurs (S0) depend on public Viewing (C with two levels:

open and closed to view), Zoo (B0) and Management regime (A with

two levels: single-species cages and mixed-species cages). n groups of

lemurs in single-species cages and n groups of lemurs in mixed-species

cages are studied in each of b zoos. The order in which each group of

lemurs is opened and closed to view is randomised. This analysis

assumes that the effect of management is not confounded by other

factors, such as number of individuals per cage.

Comparisons

Model 6.7 is an extension of model 3.1 in which each subject is tested

sequentially in every level of a third crossed factor C. It is also an extension

of repeated-measures model 6.3 to include an additional between-subjects

factor. If c¼ 2, tests for interactions with C are numerically equivalent to

fully replicated two-factor model 3.1 using a response of C2 – C1.

Model 6.7 is equivalent to split-plot model 5.9, where subject corre-

sponds with block (S0), except that the c levels of factor C are tested

sequentially on each subject rather than being randomly assigned within

each block. It is therefore inherently susceptible to practice and carry-

over effects from the sequential application of treatments in repeated

measures.
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In testing the combined effect of three crossed factors, model 6.7 has

similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 5.4, 5.5, 5.7,

5.9 and 6.5. Crucially, it differs from completely randomised, randomised-

block and split-plot models in that the c levels of factor C are tested

sequentially on each subject. Model 6.7 differs from repeated-measures

model 6.5 in that it has two between-subjects factors and one within-

subjects factor, rather than one between-subjects factor and two within-

subjects factors.

Special assumptions (see also general assumptions of repeated

measures on page 183)

The model cannot test the C*S0 interaction, because the lack of replication

means that there is no residual error term (shaded grey in the ANOVA

tables below). Interpretation of non-significant terms amongst C and its

interactions with A and B is compromised because the result could mean

either no effect, or opposing effects on different subjects. The assumption

of no significant C*S0 interaction can be tested if independent, replicate

observations (P0) are made for each of the c levels of factor C on each

subject. The interpretation of a significant C*S0 is nevertheless problematic

because the treatment effect may depend upon any of the multiple sources

of variation encompassed by the subject factor.
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7

Unreplicated designs

Every model in Chapte rs 2 and 3 ha s one or more equival ents withou t full

replicatio n. For model 2.1 it is 1.1, for 2.2 it is 2.1, for 3.1 it is 4.1 or 6.1,

for 3.2 it is 4.2 or 6.2, for 3.3 it is 5.6 or 6.3, an d for 3.4 it is 3.1. Here we

give tw o furth er versions of fact orial mo dels 3.1 and 3.2 without full

replicatio n. The lack of repli cated sampl ing units means that at least one

of the fact ors must be ran dom, as demon strated by model 7.1( i) be low in

comparison to ( ii ) and ( iii ). Fac torial designs that lack full replicati on

must furt her assum e that there are no signi ficant higher- order inter ac-

tions be tween fact ors, which can not be test ed by the model since there is

no measur e of the residu al error among replicate observat ions (subjects) .

This is pro blematic be cause low er-ord er effects can only be interprete d

fully with respect to their higher-o rder interacti ons (chapt er 3). Falsely

assuming an absence of higher- order inter actions will c ause tests of

lower-or der effe cts to ov erestima te the Type I error (rejectio n of a true

null hypo thesis) and to underest imate the Type II error (accept ance of a

false null hypothesi s). Without testing for interacti ons, causality canno t

be attribu ted to signi ficant main effects, and no co nclusion can be dr awn

about non- significant main effects. For some analys es, the existen ce of a

significant main effect when levels of an orthogonal random block are

pooled toget her may hold inter est regardless of whet her or not the effe ct

also varie s with block ; the main effe ct ind icates an ov erall trend average d

across levels of the random factor.

The sampl ing unit for a given treat ment level or comb ination in

unreplicated designs is the plot, neither nested in a sample (as in Chapters

1 to 3) nor in a block (as in Chapt ers 4 to 6):

S9
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7.1 Two-factor cross-factored unreplicated model

Model

Y¼B|A

Test hypothesis

Variation in the response Y is explained by additive effects of factors

A and B.

Description

Each combination of levels of cross factors B and A are randomly

assigned to a different subject or plot (S0). Each subject (or plot) is

measured once.

Allocation table

The table illustrates ba¼ 16 combinations of levels of cross factors B

and A assigned randomly amongst ba subjects or plots. For plots, note

that the table does not indicate the spatial distribution of treatment

combinations, which must be randomised.

Factors Levels Repeated measures on S0

A a no
B b no

S9(B|A) A1 A2 A3 A4

B1 S1 … … Sa

B2 … … … …

B3 … … … …

B4 … … … Sba

Unreplicated designs230



Example

(1) H1: Crop yield depends upon sowing Density (A), with one of a

sowing density treatments and one of b levels of a Watering regime

(B0) randomly assigned to each of ba Plots (S0).

Comparisons

This design is an unreplicated version of a two-factor ANOVA (model

3.1). It assumes no two-way interaction, and it is logically testable only if

at least one of the two factors is random. It differs from a one-factor

randomised-block design (model 4.1) in that the levels of the random

factor are randomly assigned to sampling units S0, rather than being

blocked in space. Were it not for the lack of full replication, such a factor

could otherwise be treated as fixed (see discussion of fixed and random

factors on page 16).

Example 1 is suitable for analysis (ii) below if the replicate plots for each

level of watering are not blocked together. Such a design might be used to

test for an effect of sowing density over the natural range of rainfall likely

to be experienced across years. If watering level is grouped in space, for

example by a natural gradient in moisture, use randomised-block

model 4.1. The design is fully interpretable only if A and B have additive

effects, since there is no within-plot replication with which to test the

interaction. If the response to the sowing density may depend on soil

moisture, then use the fully replicated two-factor model 3.1.

ANOVA tables for analysis of terms AþB

Model 7.1(i) A and B are both fixed factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(B*A)þA No testa

2 B b� 1 S0(B*A)þB No testa

3 B*A (b� 1)(a� 1) S0(B*A)þB*A No testa

4 S0(B*A) 0 S0(B*A) –

Total variation ba� 1

a
A, B and B*A are all untestable because the residual error cannot be estimated.
Use the fully replicated two-factor model 3.1(i).
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7.2 Three-factor cross-factored unreplicated model

Model

Y¼C|B|A

Test hypothesis

Response Y depends on factors A, B, C and their two-factor interactions.

Description

Each combination of levels of cross factorsC, B andAare randomly assigned

to a different subject or plot (S0). Each subject (or plot) is measured once.

Model 7.1(ii) A is a fixed factor, B0 is a random factor:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A a� 1 S0(B0*A)þB0*AþA 1/3
2 B0 b� 1 S0(B0*A)þB0 No testa

3 B0*A (b� 1)(a� 1) S0(B0*A)þB0*A No test

4 S0(B0*A) 0 S0(B0*A) –
Total variation ba� 1

a
An unrestricted model tests the MS for B0 over the MS for its interaction with A
(F-ratio¼ 2/3). See page 242.

Model 7.1(iii) A0 and B0 are both random factors:

Mean square d.f.
Components of variation
estimated in population F-ratio

1 A0 a� 1 S0(B0*A0)þB0*A0 þA0 1/3
2 B0 b� 1 S0(B0*A0)þB0*A0 þB0 2/3
3 B0*A0 (b� 1)(a� 1) S0(B0*A0)þB0*A0 No test

4 S0(B0*A0) 0 S0(B0*A0) –
Total variation ba� 1

Factors Levels Repeated measures on S0

A a no
B b no
C c no
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Allocation table

The table illustrates cba¼ 16 combinations of levels of cross factors C, B

and A assigned randomly amongst cba subjects or plots. For plots, note

that the table does not indicate the spatial distribution of treatment

combinations, which must be randomised.

Example

(1) H1: Crop yield depends upon Fertiliser (A) and Shading (C), with one

of ca combinations of Fertiliser and Shading treatments and one of b

levels of a Watering regime (B0) randomly assigned to each of cba

Plots (S0).

Comparisons

The design is an unreplicated version of a three-factor ANOVA (model

3.2). It assumes no three-way interaction and is logically testable only if

at least one of the three factors is random. It differs from a two-factor

randomised-block design (model 4.2) in that it does not assume homo-

geneous covariances for randomised blocks.

Example 1 is suitable for analysis (ii) below, provided that the replicate

plots at each of the levels of moisture and shading are fully independent,

and not grouped together spatially. Alternative field designs for blocking

a natural gradient in soil moisture (or shading) are described by model 4.2

and model 5.1. If plots are grouped both for moisture and shading, the

treatment effect may be tested more efficiently with a Latin square design

(page 125).

A1 A2

S
9(

C
|B

|A
)

B1 B2 B1 B2

C1 S1 Sb … Sba

C2 … … … …

C3 … … … …

C4 … … … Scba
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ANOVA tables for analysis of terms C|B|A – C*B*A

Model 7.2(i) A, B and C are all fixed factors:

Mean square d.f.

Components of
variation estimated
in population F-ratio

1 A a� 1 S0(C*B*A)þA No testa

2 B b� 1 S0(C*B*A)þB No testa

3 B*A (b� 1)(a� 1) S0(C*B*A)þB*A No testa

4 C c� 1 S0(C*B*A)þC No testa

5 C*A (c� 1)(a� 1) S0(C*B*A)þC*A No testa

6 C*B (c� 1)(b� 1) S0(C*B*A)þC*B No testa

7 C*B*A (c� 1)(b� 1)(a� 1) S0(C*B*A)þC*B*A No testa

8 S0(C*B*A) 0 S0(C*B*A) –

Total variation cba� 1

a
A, B, C and their interactions are all untestable because the residual error
cannot be estimated. Use the fully replicated three-factor model 3.2(i).

Model 7.2(ii) A and C are fixed factors, B0 is a random factor:

Mean square d.f.

Components of
variation estimated
in population F-ratio

1 A a� 1 S0(C*B0*A)þB0*AþA 1/3

2 B0 b� 1 S0(C*B0*A)þB0 No testa

3 B0*A (b� 1)(a� 1) S0(C*B0*A)þB0*A No testb

4 C c� 1 S0(C*B0*A)þC*B0 þC 4/6

5 C*A (c� 1)(a� 1) S0(C*B0*A)þC*B0*AþC*A 5/7

6 C*B0 (c� 1)(b� 1) S0(C*B0*A)þC*B0 No testb

7 C*B0*A (c� 1)(b� 1)(a� 1) S0(C*B0*A)þC*B0*A No test

8 S0(C*B0*A) 0 S0(C*B0*A) –

Total variation cba� 1

a
An unrestricted model has an inexact F-ratio denominator (see page 242).

b
An unrestricted model tests the MS for B0*A and for C*B0 over the MS for the
interaction term C*B0*A. See page 242.
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Further topics

Balanced and unbalanced designs

Balanced designs have the same number of replicate observations in each

sample. Thus a one-factor model Y¼Aþ e will be balanced if sample sizes

all take the same value n at each of the a levels of factor A. Balanced designs

are generally straightforward to analyse because factors are completely

independent of each other and the total sum of squares (SS) can be parti-

tioned completely among the various terms in the model. The SS explained

by each term is simply the improvement in the residual SS as that term is

added to the model. These are often termed ‘sequential SS’ or ‘Type I SS’.

Designs become unbalanced when some sampling units are lost,

destroyed or cannot be measured, or when practicalities mean that it is

easier to sample some populations than others. For nested models,

imbalance may result from unequal nesting as well as unequal sample

sizes. Thus a nested model Y¼B0(A)þ e will be balanced only if each of

the a levels of factor A has b levels of factor B0, and each of the ba level of

B0 has n replicate observations. For factorial models, an imbalance means

that some combinations of treatments have more observations than

others. An extreme case of unbalanced data arises in factorial designs

where there are no observations for one or more combinations of treat-

ments, resulting in missing samples and a substantially more complicated

analysis. Missing data are particularly problematic for unreplicated

designs, such as randomised-block, split-plot or repeated-measures models,

where each data point represents a unique combination of factor levels.

Where this is a risk, avoid such designs in favour of fully replicated models.

Unbalanced one-factor ANOVA presents few problems other than

increased sensitivity to the assumptions, particularly of homogeneity of

variances. Unbalanced designs with more than one factor are likewise less
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robu st to viola tions of the a ssumptions (including homogen eity of cov-

arianc es for rand omised-bloc k, split-pl ot and repeat ed-me asures designs ,

pages 118, 143 and 183).

Imbalance in nested designs causes no difficulties for computing SS and

MS, but results in inexact F-tests for all but the last term in the model

(Underwood 1997). Under certain conditions, Satterthwaite’s approxima-

tion will provide adjusted F-ratios that follow a true F distribution (Sokal

and Rohlf 1995). Alternatively, randomly sub-sampling an equal number of

replicates per level can reinstate balance, with the consequent reduction in

replication being offset by a likely gain in homogeneity of sample variances.

Loss of balance in factorial models can cause the factors to become

correlated with each other, and therefore non-orthogonal (i.e., non-inde-

pendent), with the result that the sequential SS cannot partition the total

SS straightforwardly amongst the various terms in the model. This loss of

orthogonality applies to categorical factors just as to covariates, and it can

be an inherent feature even of certain balanced designs (e.g., balanced

incomplete blocks and Youden squares on pages 124 and 127). It will

always arise among covariates that take observed values as opposed to

values set by experimental manipulation, unless the two covariates have a

correlation coefficient equal to zero. To determine the independent effect

of a term, its SS must be adjusted to factor out the correlated effects of

other terms in the model (see box on page 240). The analysis of variance is

then done on these ‘adjusted SS’. Be aware that if two factors are highly

correlated as a result of severe imbalance, it may be impossible to deter-

mine the independent effect of each predictor using adjusted SS. Neither

factor may add additional predictive power after controlling for the effect

of the other, even though the model as a whole is significant. In such cases

consider testing just one of the correlated variables in a simpler model, or

use a technique such as principal components analysis to reduce the

number of variables in the analysis to strictly orthogonal components

which can then be tested with factorial ANOVA.

Although an unequal distribution of sample sizes can be planned to

avoid loss of orthogonality (Grafen and Hails 2002), the usual outcome

of measuring some combinations of factor levels less than others is that

the factors lose their independence and adjusted SS differ from sequential

SS. The adjustment may raise or lower the SS of a particular term,

depending on whether the factor is made more or less informative by

accounting for the other sources of variation. If the explanatory power of

a factor A is increased in the presence of another factor B, then any

correlation between them raises the adjusted SS above the sequential SS
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for A when B is included in the model. In co ntrast, if factor A shares

informat ion on the respon se with fact or B, then any correlati on between

them reduces the adjust ed SS below the sequ ential SS for A.

Thi s difference is illu strated by consider ing the exampl e of rate of

increase in the size of a populati on of breeding insect s. A populati on of size

Nt in year t , ha s a per capita rate of increa se measur ed from births minus

deaths that approxim ates to r ¼ –ln( Nt) þ ln( Ntþ 1). If the popul ation is free

to grow without density limit ation, grow th rate r wi ll be independen t of Nt

and the covari ate ln(Nt) will therefo re have little or no power to exp lain

variation in r with a stat istical model of the form Y ¼ A þ e . However, the

two cov ariates ln( Nt) and ln(N tþ1) in combinat ion will explain all or vir-

tually all varia tion in r wi th a model of the form Y ¼ A þ B þ e . In this
two-factor model, the first-entered predictor ln(Nt) will have sequential SS

close to zero, but a large adjusted SS reflecting its high explanatory power

when ln(Ntþ1) is alrea dy included in the model (Figur e 11a ). In co ntrast, if

the population is density limited, growth rate r will decrease as population

size increases and the covariate ln(Nt) will therefore have high explanatory

powerwhen testedwith a statisticalmodel of the formY¼Aþ e. However,
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Figure 11 Contrasting datasets of population growth rate r on the y-axis as a

function of population size ln(Nt) on the x-axis. Each point has an associated

value of ln(Ntþ1) and broken lines join points with equal ln(Ntþ1). Both

graphs are analysed with the same statistical covariate model r ¼ ln(Nt) þ
ln(Ntþ1) þ e. (a) With density independent population growth, the first

entered term ln(Nt) has sequential SS close to zero because it has almost no

explanatory power in the absence of the second term. Analysis with adjusted

SS is more informative, showing both terms to be highly significant as an

additive combination. (b) With density-dependent population growth, both

main effects are non-significant when analysed with adjusted SS, because of a

strong correlation between ln(Nt) and ln(Ntþ1). Analysis with sequential SS is

more informative in this case, indicating a highly significant linear trend with

ln(Nt), as suggested by the graph, and little additional explanatory power

provided by ln(Ntþ1).
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its SS will now be adjusted downw ards on adding a secon d cova riate

ln( Ntþ 1) be cause of a strong pos itive correlati on betwe en ln(N t) and

ln( Ntþ 1). The ad justed SS may become so small as to render a clear trend

appa rently insignifican t (Figur e 11b).

Sums of squares in non-orthogonal factorial models

Two factors A and B are orthogonal if the distribution of levels of B

is independent of the distribution of levels of A (i.e., they are

uncorrelated with each other). Orthogonal designs are analysed with

sequential (Type I) SS that are not influenced by their order of entry

into the model. Non-orthogonal designs have sequential SS with

values that depend on their order of entry into the model. These

models can be analysed with adjusted SS that are computed by one of

two methods, termed Type II and Type III. The merits of these

alternative types of adjustment have received much attention and are

a subject of ongoing debate (Shaw and Mitchell-Olds 1993; Grafen

and Hails 2002; Quinn and Keough 2002). Type II and III SS are

computed from sequential SS by comparing the residual SS of full

and appropriately reduced models.

Type II SS are the reduction in residual SS obtained by adding

a term to a model consisting of all the other terms that do not

contain the term in question. For example, in a three-factor ANOVA:

Y¼C|B|Aþ e, the main effect A is adjusted for B and C and B*C,

but not A*B, A*C or A*B*C, by comparing Y¼BþCþB*C with

model Y¼BþCþB*CþA. Similarly, the two-way interaction A*B

is adjusted for all terms except A*B*C. Type II SS use marginal

means weighted by the sample sizes and so test hypotheses that are

complex functions of the sample sizes. Type II SS are suitable for

models with fixed cross factors but unsuitable for models with

random cross factors (Searle et al. 1992).

Type III SS are the reduction in residual SS obtained by adding a

term to a model that contains all other terms. This is equivalent to the

SS explained by a term when it is the last to enter the model.

Continuing the three-factor ANOVA example, the SS explained by A

is found by comparing Y¼BþCþA*BþA*CþB*CþA*B*C

with Y¼BþCþA*BþA*CþB*CþA*B*CþA. Type III SS are

based on unweighted marginal means, and so tests of hypotheses are

unaffected by the imbalance in the data. Type III SS are suitable for

Further topics240



models wi th rando m cross fact ors, but unsuit able for mod els with

only fixed cross facto rs.

The problem wi th using Type III SS in fix ed-factor models is that

terms are illogical ly ad justed for their own higher- order interacti ons

(Grafen and Hails 2002 ). As a result, Type III SS viola te the princi ple

of margi nality, that terms be test ed in hierar chical order (see how

F-ratios are con structed on page 35). The hierarc hical orderi ng is

logic al, be cause the test of an inter action includes test s of its

consti tuent main effects. A signi ficant inter action means by definiti on

that the main effe cts of which it is comp osed must also be impor tant,

since the effect of each on the respon se is deemed to depend on the

other (rega rdles s of the signi ficance of each as a n indivi dual main

effect – de tailed on page 77). Bec ause an interactio n contai ns a main

effect, it makes no sense to include it when testing the explanat ory

power of the main effe ct, yet the interactio n doe s get include d with a

Type III SS that is being ad justed for the influence of all other

varia bles in the model.

The adjustment of SS by comparison of full and reduced models is auto-

mated in many statistics packages, and you should check which methods

your statistics package offers and which is used as the default. If your SS

have been adjusted for higher-order interactions (a Type III adjustment),

this will be evident in non-identical sequential and adjusted SS for the last

entered main effect in the model. Some packages only do Type III SS, and

therefore cannot avoid adjusting for higher-order interactions in fixed

effects, which thereby violates the principle of marginality (see box above).

You can nevertheless obtain Type II SS by requesting sequential SS and

running the GLM as many times as there are main effects, each time

changing their order of entry into the model and keeping the sequential SS

(and its MS and F) only for the last-entered main effect and its interac-

tions. In that way you ensure that the retained SS will have been correctly

adjusted for all terms other than those containing the term in question.

The process of comparing full and reduced models is also used to

simplify complex unbalanced models. The highest-order interaction is

tested first, followed by lower-order interactions and main effects, pool-

ing non-significant terms into the residual term en route (Crawley 2002).

Whilst this is a valid method of model simplification to find the most

parsimonious of unbalanced models and useful for deriving predictive

models, the indiscriminate and uncritical use of pooling means that it is
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not the best approach to hyp othesis testing (see the secti on on post hoc

pooling on page 38, in parti cular the problem s associated wi th pooling

up). For mal signi ficance testing of specific terms shou ld be ach ieved using

the ANO VA table and F-tests that follow from the de sign of the

experi ment, as set out in the table s in this book.

The analys is of unba lanced designs wi th missing whole samples poses

substa ntial difficul ties. In fact orial designs , the imbalan ce may prevent

testing of some main effects an d inter action s. Certain hypo theses may

still be test ed, howeve r, either by runn ing a one -factor ANOV A to

compare all the sampl e means and then partitio ning the varia tion using

planned contras ts (page 245), or by an alysing balanced subset s of the full

datase t (e.g ., worke d ex amples in Quinn and Keou gh 2002 ). For unre-

plica ted models, includi ng randomi sed-bl ock and repeat ed-me asures

designs , omit ting any blocks or subject s that have mis sing values is the

easie st solution but may resul t in a consider ably reduced datase t for

analys is. Balance can a lso be reins tated by estimating mis sing values from

the marginal means and adjusting the residu al d.f. accordi ngly (Sokal an d

Rohlf 1995 ; Underw ood 1997 ). This techni que has the advantag e of not

losin g an y da ta but relies on the assump tion that there are no interacti ons

betw een treatmen t and blo ck or subject. A third option is to co mpute the

SS for ea ch term by co mparing app ropriate full and reduced models

(detailed in Quinn and Keough 2002).

Restricted and unrestricted mixed models

A mixed model is one with both random and fixed factors. It is termed

‘restricted’ or ‘unrestricted’ according to the method of constructing error

mean squares of its random factors (see box).

The choice of model does not change the mean squares or their asso-

ciated degrees of freedom but it does affect the estimated variance

components, the expected mean squares and, most critically, some error

terms used to calculate F-ratios. For example: in model 3.3(i) (page 101),

the random factor B0(A) estimates the following independent components

of variation:

� Restricted model: S0(C*B0(A))þB0(A), with error estimated by the MS

for S0(C*B0(A));

� Unrestricted model: S0(C*B0(A))þC*B0(A)þB0(A), with error esti-

mated by the MS for C*B0(A).
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In the restricted model, C*B0(A) does not contribute to the indepen-

dent components of variation estimated by B0(A) because it sums to zero

over the a levels of fixed factor A.

What are restricted and unrestricted models?

To distinguish the two types, it is necessary to define an important

characteristic of fixed factors. All fixed factors and their interactions

with each other have a zero sum for the deviation of their sample

means from the grand mean �y (e.g., Winer et al. 1991). Worked

example 3 on page 51 illustrates the principle. Let us use the coding of

model 3.3(i) to denote the mean value for the 18 measures at high

Recruitment as �yA1, and for the 12 measures at Treatment level ‘2’ as

�yC1, and for the six measures at Treatment level ‘2’ and high

Recruitment as �yC1A1. Then:

across columns:
Pa
i¼1

ð�yAi � �yÞ ¼ 0,

and across rows:
Pc
k¼1

ð�yCk � �yÞ ¼ 0, and also
Pc
k¼1

Pa
i¼1

ð�yCkAi � �yÞ ¼ 0

Consider now all random factors and their interactions with other

factors, whether random or fixed. These are each assumed to

contribute a random component of variation with a normal

distribution around a mean of zero. In the worked example, the

deviations from �y by each mean of the nine measures per Site: �yB0(A)j

sum to zero across the four levels of Site; likewise, the 12 deviations

(�yCkB0(A)j – �y) sum to zero. A restricted mixed model requires in

addition that the random components with crossed, mixed factors

(C*B0(A) in the worked example) sum to zero over the levels of each

fixed factor. An ‘unrestricted’ mixed model does not require this

constraint, and in consequence all its random components are

considered to be independent of each other.

The reasons for choosing one form over the other have not been clearly

defined in the statistical literature (Quinn and Keough 2002). Most text-

books adhere to the restricted model and this is the one we use because it is

consistent with the method of generating error terms from the principles

described on page 35. The unrestricted model is appropriate for unba-

lanced data (Searle 1971), and is the default option for many statistics

packages, though some will allow optional use of the restricted form for

balanced designs. If your statistics package does not provide this option
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and you wish to use the restricted model, then manually recalculate the

F-ratios using the correct error terms provided by the tables in this book.

Magnitude of effect

Analysis of variance provides information on the magnitude of an effect in

addition to testing its significance as a source of variation. Although this

book focuses on the hypothesis-testing applications of ANOVA, its more

exploratory uses often concern predictions about effect sizes. The size of an

effect cannot be gauged from its significance alone, since significance

depends also on the amount of background variation and the sample size.

An effect of small magnitude can be strongly significant if it is sampled

with little residual variation from many replicates. Conversely, an appar-

ently large effect may have no significance if it is sampled with large

residual variation or from few replicates. Here we summarise briefly the

issues involved in measuring the magnitude of a significant effect. For

more detailed analysis, we recommend Searle et al. (1992), Graham and

Edwards (2001) and Quinn and Keough (2002).

The magnitude of an effect is measured in different ways depending on

the type of effect. The size of a fixed categorical effect is estimated in

terms of deviations of sample means from the grand mean, which are zero

in the case of no effect. The impact of a covariate is estimated by the

steepness of the regression slope, which is horizontal in the case of no

covariation. The size of a random effect is estimated by the magnitude of

between-sample variance, which is zero in the case of no effect.

Effect sizes for fixed factors should be measured for the highest-order

significant fixed effects in the model hierarchy. Thus, in the event of a

significant interaction B*A, measure deviations from the global mean of

the ba sample means, rather than the deviations of the a means of main

effect A and the b means of B. Effect sizes may be illustrated most

succinctly with an interaction plot, or main-effects plots if there is no

interaction. In the event of a significant interaction with a random factor,

B0*A, the size of a significant A effect can be measured from the devia-

tions of the a means of main effect A, because the significance of A is

estimated over and above that of the interaction with the random factor.

Regression slopes for covariates should be measured and graphed only

for significant effects. The slope is the increment or decrement in the

response Y with each unit of increment in the covariate X. In the event of

a significant interaction of a covariate with a categorical fixed factor:

X*A, the magnitude of the interaction is given by the amount of variation
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between the a slopes. The coefficient of determination, r2, is an alternative

measure of effect size for a covariate, since its estimate of the proportion

of explained variation is informative about how tightly the data are

grouped around the regression line.

Variance components for random factors are measured for nested ran-

dom effects, which are deemed significant if they have non-zero variance

between their sample means. A variance component for a random effect

is given by the increase in the effect MS over its error MS, divided by its

pooled sample size. For example, model 2.2: Y¼C0(B0(A))þ e, has a

variance component for subjects S0 (nested in C0 nested in B0 nested in A)

given directly by the residual MS. At the next step up in the hierarchy, the

variance component for C0 is (MS[C0]�MS[e])/n. Finally, the variance

component for B0 is (MS[B0]�MS[C0])/nc. All variance components

should be positive or zero, reflecting the increasing number of compo-

nents of variation estimated in the population at each step up in the

model hierarchy. A negative value has no meaning, and is conventionally

returned as zero. The relative contribution of each step in the hierarchy is

given by the variance component as a percentage of the sum of all var-

iance components. This information can be useful for improving the

efficiency of a design. For example, the power to test a treatment factor A

in the above model may be enhanced by focussing replication at the scale

with the largest variance component. Any imbalance in the nested design

poses problems for estimating variance components and GLIM methods

are then preferred, such as restricted maximum likelihood estimation

(REML), discussed in detail in Searle et al. (1992).

A priori planned contrasts and post hoc unplanned
comparisons

A significant categorical factor allows us to reject the null hypothesis that

group means are equal, but for fixed effects with more than two levels it

does not indicate how they are unequal. Additional tests are available to

find out which groups differ from which others, either as an integral part

of the analysis or as a supplementary analysis. The two approaches are a

priori planned contrasts and post hoc unplanned comparisons.

A priori planned contrasts are pre-meditated tests of specific subsidiary

hypotheses concerning group means within fixed effects. They can be

made on a factor of interest even if it returns a non-significant effect in

the ANOVA. Planned contrasts compare the mean of the response

among groups or combinations of groups. For instance, one could
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compare the mean of group 1 to the mean of group 2, or compare the

mean of group 1 to the weighted average of groups 2 and 3. Each contrast

has d.f.¼ k� 1, where k is the number of groups, or combinations

of groups, being compared. Contrasts are tested for significance using an

F-ratio test with the same denominator MS as that used for the original

test of overall significance.

A set of planned contrasts is orthogonal if each contrast is independent

of all other contrasts – i.e., if the outcome of each contrast does not

influence the outcome of any other contrast. A treatment factor with a> 2

levels has explained SS that can be partitioned completely into a� 1

planned orthogonal contrasts. There is often more than one way to con-

struct a set of orthogonal contrasts for a particular treatment factor and

the choice will depend upon the hypotheses to be tested. Provided they are

orthogonal, planned contrasts use the same pre-determined significance

level (e.g., fi¼ 0.05) for rejecting the null hypothesis as the original test of

overall significance.

Planned orthogonal contrasts are particularly useful for analysing

factors that are incompletely crossed by design. For example, the one-

factor ANOVA model 1.1 on page 62 might be used to test the influence

of a commercial egg Harvest (A) on breeding success of gull pairs (S0). An

experiment could have a¼ 3 levels of impact: undisturbed control, dis-

turbed by collectors, harvested by collectors. If it were possible to remove

eggs without disturbance, then disturbance and harvest could have been

treated as independent and fully crossed factors using model 3.1 (page

78). Since harvesting inevitably involves disturbance, however, we cannot

sample a harvested–undisturbed combination. Instead, planned contrasts

can firstly test for a general effect of disturbance by comparing the mean

of the undisturbed control with the weighted mean of the disturbed-by-

collectors and the harvested-by-collectors treatments. The contrasts can

independently test for an effect of harvesting by comparing the mean

breeding success of gulls that are disturbed and harvested with those that

are disturbed only. In general for contrasts within a factor A, a contrast B

between a control (B1) and the average of two or more experimental

treatments (B2) has one d.f., and a contrast C(B2) between the c treat-

ments nested in B2 has a� 2 d.f., with SS(BþC(B2))¼ SS(A). These

particular contrasts can be done in a GLM model that requests analysis

of terms: BþC(B), where C(B) tests variation amongst experiments

around the overall experimental mean, and the error term e¼MS[S0(A)]

as in the one-way test.
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A set of planned contrasts is non-orthogonal if the outcome of each

contrast influences the outcome of any other contrast. Performing

simultaneously a number of non-independent contrasts inflates the

family-wise error rate (the probability of making at least one Type I error

in a set of tests) by an unknown amount. A variety of procedures are

available to limit this error rate by adjusting fi, the threshold for sig-

nificance of each individual test (Day and Quinn 1989; Quinn and

Keough 2002). For example, Dunnett’s test specifically contrasts a con-

trol group against all other groups, while the sequential Bonferroni

method or the Dunn–Sidák procedure can be useful for other sets of non-

orthogonal contrasts (but see cautions in Moran 2003).

Post hoc unplanned comparisons explore a significant main effect by

comparing all possible pairs of group means. Unplanned comparisons, as

the name suggests, should be used when the researcher has no pre-

meditated subsidiary hypotheses to test and desires simply to identify

which groups differ from which others. Unplanned comparisons are

invariably non-orthogonal and, just as with planned contrasts, simulta-

neously performing multiple non-independent tests inflates the family-

wise error rate. Again, a variety of procedures have been developed to

control the excessive rate of Type I error that otherwise accrues in

multiple exploratory comparisons (Day and Quinn 1989; Quinn and

Keough 2002). For example, Ryan’s test provides the most powerful pair-

wise comparisons, and Tukey’s honestly significant difference test is

practical for hand-calculation of unplanned comparisons.

In multi-factor models with significant nested or crossed effects, post

hoc unplanned comparisons should be used to explore only the significant

source(s) of variation at the highest level in the hierarchy of sources. For

example, if the model Y¼B|Aþ e produces a significant interaction B*A,

then a post hoc test should be used to compare all combinations of levels

of B with A. If only the main effects have a significant influence on the

response, then levels of main effect A can be compared with each other

(pooling levels of B), and levels of main effect B can be compared with

each other (pooling levels of A).
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Choosing experimental designs

Empirical research invariably requires making informed choices about the

design of data collection. Although the number and identity of experimental

treatments is determined by the question(s) being addressed, the investigator

must decide at what spatial and temporal scales to apply them and whether

to include additional fixed or random factors to extend the generality of the

study. The investigator can make efficient use of resources by balancing the

cost of running the experiment against the power of the experiment to detect

a biologically significant effect. In practice this means either minimising the

resources required to achieve a desired level of statistical power or max-

imising the statistical power that can be attained using the finite resources

available. An optimum design can be achieved only by careful planning

before data collection, particularly in the selection of an appropriate model

and allocation of sampling effort at appropriate spatial and temporal scales.

Inadequate statistical power continues to plague biological research

(Jennions and Møller 2003; Ioannidis 2005), despite repeated calls to

incorporate it into planning (Peterman 1990; Greenwood 1993; Thomas

and Juanes 1996). Yet efficient experimentation has never been more in

demand. Journal editors and grant review panels are increasingly scru-

tinizing the statistical power of studies submitted for publication or

funding (McClelland 1997). At the same time, increased competition for

funding imposes financial constraints on replication, and animal welfare

guidelines require researchers to minimise the number of animals used in

their experiments.

Statistical power

To provide a robust test of the hypotheses of interest, an experiment

should have a reasonable chance of detecting a biologically important
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effect if it truly occurs. In statistical terms this means having a low Type

II error rate – the probability b of accepting a false null hypothesis. The

probability that a test will reject a false null hypothesis (1� b) is therefore
a measure of the sensitivity of the experiment, and is known as statistical

power.

The power of an experiment can be calculated retrospectively to

demonstrate that a study producing a non-significant result had sufficient

power to detect a real effect. Such calculations commonly work on the

sampled effect and error mean squares, however, in which case the ret-

rospective power contains no other information than that provided by

the P-value (Hoenig and Heisey 2001). A non-significant effect from a

powerful test can be more persuasively demonstrated simply by graphing

fitted values with their confidence intervals (Colegrave and Ruxton 2003).

Power analysis is far more useful if used prospectively to ensure that a

proposed experiment will have adequate power to detect a given differ-

ence between population means, known as the effect size. Prospective, or

a priori, power analysis can be employed to optimise the design of a study

in two ways: either it can determine the minimum amount of resources

(i.e., replication) required to detect a specified effect size, or it can

determine the minimum detectable effect size for a fixed total quantity of

resources. These calculations require an estimate of the error variance,

specification of the desired power and significance threshold, and a

knowledge of either the total quantity of resources available or the

minimum effect size that we wish to detect.

The statistical power (1� b) to detect a given effect size (y) increases
with the significance threshold (a) and the number of replicates (n), and

decreases with increasing error variance (�2). The error variance (�2) may

be estimated from a pilot experiment, previously published data or from

personal experience. Whatever source is used, it is important that the

conditions under which the variance is estimated match as closely as

possible the conditions of the future experiment (Lenth 2001; Carey and

Keough 2002).

Since a smaller significance threshold (a) has the effect of reducing

power (1� b), it is rarely possible in practice to achieve the ideal of a
close to zero and 1� b close to unity. The trade-off is usually resolved by

a compromise, many investigators arbitrarily setting a at 0.05 and power

at 0.80, respectively – the so-called ‘five-eighty convention’ (Di Stefano

2003), which sets the probability of Type I and Type II errors at 5% and

20%, respectively. Adopting this convention implies an acceptance that

the cost of making a Type I error is four times more important than the

Statistical power 249



cost of making a Type II error (Cohen 1988; Di Stefano 2003). However,

Type II errors may be more critical than Type I errors, for example when

assessing environmental impacts, testing the toxicity of chemicals, or

managing natural resources (Mapstone 1995; Dayton 1998; Field et al.

2004). The relative costs of making Type I and Type II errors should

therefore be taken into account when deciding on an acceptable level of

statistical power. More flexible methods that evaluate these relative costs

are described by Mapstone (1995) and Keough and Mapstone (1997).

The effect size (y) measures absolute change in the response variable,

usually relative to a control group. The specified effect size should be the

minimum change in the response that is biologically meaningful. This is

often difficult to decide in practice, especially for complex and poorly

understood systems (Lenth 2001). It can be tempting to use arbitrary effect

sizes. For example, Cohen (1988) took the standardised difference between

group means (½�y2 � �y1�=�) as a measure of the effect size, in order to

quantify ‘large’, ‘medium’ and ‘small’ effects as 0.8, 0.5 and 0.2, respectively.

This ‘off-the-shelf’ approach suffers twomain drawbacks: the effects may or

may not be biologically important, and it takes no account of measurement

precision (Lenth 2001). Given the difficulty of specifying a singlemeaningful

effect size, an alternative approach is to plot the attainable power or

required sample size for a range of effect sizes to get an idea of the sensitivity

of the experiment (Lenth 2001; Quinn and Keough 2002).

Armed with this information, power analysis can be used to compare

alternative models and determine the optimal allocation of resources

within a given design.

Evaluating alternative designs

Power analysis is a useful tool for evaluating the relative efficiency of

different experimental designs. Investigators can achieve considerable

gains in efficiency by choosing between alternatives on the basis of their

statistical power at a given level of replication, or their cost in replication

required to detect a specified effect size (Allison et al. 1997).

The exact formulae to be used depend upon the model being evaluated.

Detailed descriptions of power-analysis calculations are beyond the scope of

this book; interested readers should consult more specialist texts, and use

power-analysis software freely available on the web. Each hypothesis

requires a separate calculation, and it may be necessary to prioritise them to

ensure that the experiment has adequate power to detect the key hypotheses.
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The main limitation of power analysis is that it requires reliable

estimates of the error variation. Whilst this can be fairly straightforward

for simple designs, more complex designs may require comprehensive

pilot studies. For example, to calculate the power of a test for A in the

fully replicated model A|B0, one needs to know the expected variance of

the A*B0 interaction (which forms the denominator of the F-ratio), which

may be difficult to estimate without conducting a large-scale pilot study.

If the error variation cannot be estimated from earlier studies and there

are insufficient resources to conduct a pilot study, sensible design deci-

sions can still be made without a formal power analysis, by adhering to

the following general rules.

(1) Prioritise your hypotheses and focus on those of most interest. Since

more complex designs usually require more resources than simple

designs, trying to answer too many questions at once may mean that

resources are insufficient to answer any of them adequately.

(2) Ensure that a valid F-ratio is available to test key hypotheses. For

example, the unreplicated two-factor design B|A (model 7.1(i)) has no

residual variation with which to test any of its terms – although your

statistics package may go ahead and test them anyway.

(3) Be aware of the problems of interpreting unreplicated, repeated-

measures and split-plot designs; interpretation of results will be

clearer and easier to justify to your audience if you can use a

completely randomised and fully replicated design.

(4) An unreplicated randomised complete block will be more powerful

than an equivalent unblocked design only if it has a reduction in the

residual MS that more than compensates for the reduction in residual

d.f. from lack of replication. In the absence of good pilot data, a

decision to block without replication must be made on the likely

magnitude of variation between blocks relative to that within blocks.

In the event that blocks (or repeated measures) are used, and the block

effect turns out to be non-significant, avoid the temptation to simplify

the model post hoc by removing block (or subject) from the main

effects declared in the model. Failure to detect a significant effect in

samples does not necessarily mean that there is no effect in the

population. Removing the effect from the model biases the error MS

and consequently the validity of the treatment F-ratios.

(5) Avoid subjecting a null hypothesis to more than one test. Incorporate

multiple factors into a single ANOVA rather than doing several
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one-factor ANOVAs, which ignore nesting or interactions and accrue

excessive Type I errors as a result of not partitioning the total

variation into distinct sources. Likewise, use one-factor ANOVA

rather than multiple t tests. As an example of just how excessive the

Type I errors can be in multiple tests of the same null hypothesis,

consider a response that has been measured across ten samples of a

factor. The sensible analysis is one-factor ANOVA, but suppose

instead that you wish to probe the data with an unplanned search for

any significant differences amongst the 45 sample pairs. You might be

tempted to do 45 t tests all of the same null hypothesis H0: no

difference between any pair of means. The approach is disastrous,

however, because it leads to a 90% chance of falsely rejecting H0 on

at least one test. This ‘family-wise’ Type I error rate is calculated

from one minus the probability of not making a Type I error in any

of the 45 individual tests: 1 – (1 – 0.05)45¼ 0.90 (e.g., Moran 2003).

Setting a¼ 0.05 means that we are willing to falsely reject the null

hypothesis on up to 5% of occasions. In 45 tests, we may thus expect

to falsely reject the null hypothesis on as many as 2–3 occasions with

this a. ANOVA avoids the problem of multiple tests by partitioning

the variance in the data into distinct sources and testing one unique

null hypothesis per partition. It is possible to do unplanned post hoc

tests after an ANOVA, in order to seek where differences lie amongst

sample means, but these are designed specifically to control the

family-wise error rate (see page 245).

(6) There is little point in doing a very weak test with only one or a few

error degrees of freedom, because a significant difference would be

obviously different anyway and no conclusions could be drawn from

a non-significant difference. Conversely, there may be little extra

power to be gained from having hundreds rather than tens of error

d.f., and usually little opportunity of obtaining large numbers of

truly independent replicates. For example, the critical value of F at

a¼ 0.05 for a test with one and six degrees of freedom is F1,6

[0.05]¼ 5.99. This means that an effect will register as significant only

if the measure of explained variance given by the test mean square is

at least six times greater than the unexplained (error) variance.

This threshold increases in incrementally bigger steps with fewer error

d.f., until F1,1[0.05]¼ 161, and it tails off going the other way, until

F¼ 1.00. For a given test and workload of total observations, the
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critical F depe nds on the distribut ion of data points betw een level s of

sampl ing units an d treatment s. Figure 12 illustr ates the rapid increase

in thres hold as the error d.f. dro p below six, and the rapidly

dimin ishing retur ns in power as the error d.f. increa se in the other

direction . For a given total of N da ta points , the crit ical F will tend to

be smaller in de signs that partiti on N betw een more samples, as

oppos ed to more replicates per sampl e (illust rated by circl es in Figure

12). This is pa rticular ly true for mixe d models , wher e the num ber of

levels of the random factor determine the error degrees of freedom.

When comparing alternative designs it can be informative to consider

how many subjects in total are required to obtain a given number of error

d.f. for the main hypotheses of interest. For example, the following

models all test a two-level fixed factor A with six error d.f. but require

collection of vastly different quantities of data:

Figure 12 Upper 5% points of the F distribution for given test degrees of

freedom. Dotted lines show the threshold ratio of test to error MS for one

and six d.f.; circles show thresholds for one-factor analyses of two, three,

four and six samples (right to left), all with the same total number of

observations (N¼ 12).
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1.1. One-factor model Y¼Aþ e tests A with one and six d.f. from

error MS[S0(A)] on N¼ 8 subjects:

2.1(i) Nested model Y¼B0(A)þ e tests A with one and six d.f. from

error MS[B0(A)] on N� 16 subjects:

3.1. Cross factored models . . .

(i) Y¼B|Aþ e tests A with one and six d.f. from errorMS[S0(B*A)]

on N¼ 12 subjects:

A1 A2

S
9(

B
9(

A
))

B1 B2 B3 B4 B5 B6 B7 B8

S1 … … … … … … S15

S2 … … … … … … S16

S9(A) A1 A2

S1 S5

… …

… …

S4 S8

S9(B|A) A1 A2

B1 S1 S2 … …

B2 … … … …

B3 … … S11 S12
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(ii) Y¼B0|Aþ e tests A with one and six d.f. from error MS[B0*A]

on N� 28 subjects:

4.1(i) or 6.1(i) Randomised-block or repeated-measures model Y¼ S0|A
tests A with one and six d.f. from error MS[S0*A] on N¼ 7 blocks or

subjects:

5.6(i) or 6.3(i). Split-plot or repeated-measures model Y¼B|S0(A) tests

A with one and six d.f. from error MS[S0(A)] on N¼ 8 blocks or subjects:

We end this chapter with a caution that some types of scientific endea-

vour will always be more susceptible than others to false claims, regardless

of the design of data collection. Although a more powerful design will

S9(B9|A) A1 A2

B1 S1 S2 … …

B2 … … … …

B3 … … … …

B4 … … … …

B5 … … … …

B6 … … … …

B7 … … S27 S28

A1 A2
P9(B|S9(A))

S1 S2 S3 S4 S5 S6 S7 S8

B1 P1 … … … … … … …

B2 … … … … … … … P16

P9(S9|A) S1 S2 S3 S4 S5 S6 S7

A1 P1 … … … … … …

A2 … … … … … … P14
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increase the chance of forming true conclusions from a test, a claimed

finding may yet have low probability of being true. This is because its

chance of being true depends on the prevalence of the effect in the popu-

lation, in addition to the Type I and II error rates for the test. This should

not pose a problem for tests of an effect with putative 100% prevalence.

For example, we may suppose that crop yield either does or does not

depend on watering regime, always and everywhere within the defined

environment of interest. If it does not, then we can expect a false positive

result on 5% of trials given an a¼ 0.05; if it does, then we can expect a false

negative on 20% of trials given a b¼ 0.20. Problems arise, however, when

statistics are used to claim a finding of some rare attribute or event. Rare

findings attract high profile attention and thus tend to be claimed with

vigour, but the statistical evidence must be interpreted with great caution to

avoid later embarrassment in the face of contradictory results.

The frequency of false positive results can be extremely high in studies

that trawl many thousands of suspects for a few rare dependencies

(Ioannidis 2005). For example, if a heritable disease is likely to be

associated with around ten gene polymorphisms out of 100 000 available

for testing, then a claim to have identified one of these polymorphisms

with P< 0.01 will have no more than 1% chance of being true even with

the most powerful test (i.e., with b � 0). This is because an analysis with

a¼ 0.01 must sanction 1000 false positive results in the total 100 000 tests

that would embrace the �10 true polymorphisms, yielding �10/1010

chance of a given positive result being true. If the test has only 60%

power (b¼ 0.4), then about four of the �10 true results are likely to be

misdiagnosed, resulting in �0.6% chance that the positive result is a true

find. With such a high likelihood of error, it can be only a matter of

time before the claim is contradicted by other independent studies of the

same polymorphism. Indeed, claims and counter-claims are a recurrent

feature of scientific endeavour of this sort (Ioannidis 2005). The positive

result nevertheless serves a valuable purpose, even in the face of counter-

claims, inasmuch as it reveals �60-fold increase in probability for that

polymorphism, relative to the pre-test probability. Similar issues arise

with diagnostic screening for rare diseases (see example on page 268).

These kinds of studies should draw probabilistic conclusions with respect

to the known rarity of relationships, rather than claiming to reveal

a truth.

In general, a statistically significant result is more likely true than false

only if the expected ratio of wrongly to correctly rejected null hypotheses

(a/(1� b)) is less than the actual ratio of false to true null hypotheses in
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the field of research. In fact, in order to have as little as a 1% chance of

a false positive result from a test with a¼ 0.01 would require the putative

effect to have at least 99% prevalence in the population (and more if

b> 0). If such an effect is known to be so prevalent, however, there is

nothing to be gained by testing for it. This is an example of the una-

voidable trade-off between certainty and utility that can seem to reduce

statistical analysis to a dispenser of either useless truths or false claims.

It emphasises the importance of identifying a correct statistical approach

with respect to the objectives of the study. The method of falsification,

which is the great strength of hypothesis-testing statistics, is severely

undermined in applications that involve screening for a sought-after

result. These endeavours are much better suited to the more subjective

approach of Bayesian inference, which concerns the impact of new

information on a previous likelihood. The method of testing a falsifiable

null hypothesis for which statistics such as ANOVA were developed

is best suited to studies that can obtain persuasive evidence from a

single test.
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How to request models
in a statistics package

You will need to declare any random factors and covariates as such. For

balanced designs you may have an option to use the restricted form of the

model (see page 242).

For a fully replicated design, most packages will give you all main

effects and their interactions if you request the model in its abbreviated

form. For example, the design Y¼C|B|Aþ e (model 3.2) can be requested

as: ‘C|B|A’. Where a model has nested factors, you may need to request it

with expansion of the nesting. For example the design Y¼C|B0(A)þ e
(model 3.3) is requested with ‘C|AþC|B(A)’.

Repeated-measures and unreplicated designs have no true residual

variation. The package may require residual variation nevertheless, in

which case declare all the terms except the highest-order term (always the

last row with non-zero d.f. in the ANOVA tables in this book). For

example, for the design Y¼B|S0(A) (model 6.3) request: ‘B|AþB|S(A)�
B*S(A)’, and the package will take the residual from the subtracted term.

Likewise, for the design Y¼ S0|A (model 4.1) request: ‘S|A� S*A’, and

the package will take the residual from the subtracted term; or equally,

request ‘Aþ S’, and the package will take the residual from the one

remaining undeclared term: S*A.

Where models contain nesting of the form B(A), factor B may need to

have its levels coded as 1, 2, . . . , b repeated within each level of A. Where

a model has nesting into more than one factor simultaneously, you may

need to simplify the description of the model. For example, the designs

Y¼C0(B0(A))þ e and Y¼C0(B|A)þ e, of models 2.2 and 3.4 respectively,

both need factor C to be written as ‘C(B A)’. The first is analysed by

requesting: ‘AþB(A)þC(B A)’, and the second by requesting: ‘B|Aþ
C(B A)’. The same structure of the input is required for both these requests,

and also for Y¼C|B|Aþ e and Y¼C|B0(A)þ e (models 3.2 and 3.3).
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For example, a response Y measured on two subjects at each of two levels

of factors C, B and A is input in the following form regardless of nesting

or cross factoring:

Because your data will be correctly analysed by only one model, it is

obviously vital that you request the correct one. Find the appropriate

model in the book with the help of the guide to model construction on

page 58, and the diagrams on p. 288. Remember that a factor is nested in

another if each of its levels belongs to only one level of the other (e.g.,

subject nested in gender, plot nested in treatment). It is cross factored if

each of its levels are represented in each level of the other. All repeated

measures on replicate subjects or blocks are cross factored with the

replicate.

A B C Y

1 1 1 9.2
1 1 1 9.4
1 1 2 8.5
1 1 2 9.7
1 2 1 8.3
1 2 1 9.1
1 2 2 9.2
1 2 2 7.9
2 1 1 8.2
2 1 1 9.6
2 1 2 9.2
2 1 2 9.5
2 2 1 7.8
2 2 1 9.1
2 2 2 8.9
2 2 2 9.4
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Best practice in presentation of the design

How to report your designs and analyses

The objective of a Methods section to a report is to allow anyone to

repeat all of your procedures. You therefore need to explain what you did

and report all decisions relevant to the design of data collection and its

analysis.

In the Methods, write out the statistical model either fully or in its

contracted form (e.g., Y¼B|Aþ e). The residual variation should be

indicated by e in a fully replicated model, to distinguish it from unre-

plicated or repeated-measures designs that do not have true residual

variation. Clearly identify your sampling or observational unit, from

which you draw each data point. Explain which factors are fixed and

which random. Explain the function served by any random factors, and

detail how these influence the construction of F-ratios. Where an analysis

will not be testing for some interactions, explain why not. The reason is

likely to have to do with intrinsic design features, for example of some

split-plot and other non-orthogonal designs, or because of insufficient

replication. That an interaction may be deemed biologically uninteresting

is not a good reason for dropping it from the analysis, because to do so

pools up the interaction with the error term and changes the estimates of

the main effects.

Also in the Methods, justify the assumptions of random and inde-

pendent observations, and report results of tests or checks for homo-

geneity of variances and normality of residuals (after any necessary

transformations). If post hoc pooling is an option, show that this has been

planned into the data-collection design.

The objective of the Results section to a report is to interpret the

outcomes of your analyses (according to protocols described in the
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Methods), showing sufficient detail of the analysis to allow your audience

to evaluate the interpretation. So remember to fulfil the formal require-

ments of showing degrees of freedom or sample sizes, in addition to

emphasising the result that you consider most important.

In the Results, try to summarise principal differences and trends gra-

phically. If possible, show one graph per analysis of variance. An

‘interaction plot’ may suit a cross-factored analysis with significant

interactions, showing sample means without associated variation and

linking means of the same factor. Otherwise, always attach a measure of

variation to any mean, clearly identifying which measure it is (standard

deviation, standard error, or confidence intervals, etc.). If the analysis

required transformed data, then show back-transformed means and

confidence intervals on the graph and in the text. More than two factors

may require panels of graphs, or a table to summarise sample means and

confidence intervals. In graphs, use the minimum necessary axis marks,

labelled to sensible decimal places. In tables, give all non-integer values to

whatever numbers of decimal places are appropriate to the scale and

accuracy of measurement. If space permits, show statistics for all sources,

regardless of significance, because non-significant results have the same

biological validity as significant ones. For each source of variation, report

the value of F, the two values of d.f., and P. For analyses with more than

two factors, this may be achieved most succinctly in a table listing each

source, its d.f., MS, F and P. Always interpret such a table from the

bottom up, because interactions take precedence over main effects. In

complex analyses consider how to get more from the global test by

comparing magnitudes of effect (page 244) or using post hoc comparisons

of sample means (page 245).

A one-factor ANOVA can be completely described by a single sen-

tence, such as: ‘Body weights differed by sex (mean±s.e. of males¼
23.6±3.3 g, females¼ 18.2±3.4 g; F1,8¼ 6.48, P< 0.05).’ There is no

need to talk about a ‘significant difference’ because that only opens the

door to nonsensical permutations such as ‘males were heavier than

females but the difference was not significant’ when an analysis has not

yielded a desired result. The statistic provides the evidence that the factor

levels either did differ at a probability a of rejecting a true null hypothesis,

or did not differ at a probability b of accepting a false null hypothesis. Be

informative about what is revealed by each result. To state that ‘the results

were significant’ is uninformative, and that ‘the results are presented in

Table 1’ is lazy. Obviously, avoid annoying your audience with statements

of the type: ‘The data were significant’.
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Where factors vary on a continuous scale, show regression lines only

for significant trends. For each source of variation, report the value of F,

the two values of d.f., P, and the r2 which represents the proportion of

variation explained by the model. A linear regression is completely

described in one sentence, such as: ‘The per capita birth rate day-1

declined with population density m-2 (y¼ 3.4 – 0.2x, F1,12¼ 8.32,

P< 0.01, r2¼ 0.41).’

How to understand the designs and analyses

reported by others

Authors often omit to make any explicit mention of design in their

Methods, either because it is simple and self-evident, or because it is

complicated and they have let a statistics package sort out that bit for

them. If you suspect the latter, then treat the analyses and their inferences

with suspicion. Statistical analyses should not be judged correct simply by

virtue of having been published, but by virtue of well-justified explana-

tions of the logic underpinning design choices.

Graphs or tables of principal results will usually provide clues to the

appropriate design, if not to the actual design used by the authors. If

error bars are attached to means, then the data probably suit an ANOVA

or related analysis. If means have no error bars, then again think of

ANOVA remembering that, except for interaction plots, means should

always be given with their errors. A graph with two or more types of data

point or bar is likely to need factorial ANOVA; equally a graph with two

or more regression lines is likely to need a factorial ANCOVA. Analysis

of residuals is not an acceptable substitute for ANCOVA (see page 32).

Authors use different measures of variation around sample means to

represent their data, and they don’t always clearly identify what the

measure is. Standard errors are always smaller than s.d. and confidence

limits, but all of these measures can show up any non-homogeneity of

variances (unless the graph shows only the pooled standard deviation

from the error MS).

If the report shows an ANOVA table, then use the relevant tables in

this book to check that effects have been tested with the appropriate error

MS. This is particularly important in mixed models and nested designs

where omitting to identify random factors as random can lead to grossly

inflated levels of significance (e.g., compare F-ratios for factor A in

models 3.1(i) and (ii)). Where tables are not shown, the values of error

d.f. will generally reveal which source of variation was used for the error
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MS. If no error d.f. are shown, then treat the results as highly suspect

because of the failure to report the amount of replication underpinning

the inferences. If error d.f. are very large, then question whether they

refer to genuinely independent replicates. For example, do they corre-

spond to the number of subjects or plots? If not, has subject or plot been

factored into the analysis in a repeated-measures design?
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Troubleshooting problems during analysis

Correctly identifying the appropriate model to use (see page 57) is the

principal hurdle in any analysis, but running the chosen model in your

favourite statistics package also presents a number of potential pitfalls. If

you encounter problems when using a statistics package, do refer to its

help routines and tutorials in order to understand the input requirements

and output formats, and to help you interpret error messages. If that fails

then look to see if you have encountered one of these common problems.

Problems with sampling design

If I just want to identify any differences amongst a suite of samples, can I do t

tests on all sample pairs? No, the null hypothesis of no difference requires

a single test yielding a single P-value. Multiple P-values are problematic

in any unplanned probing of the data with more than one test of the same

null hypothesis, because the repeated testing inflates the Type I error rate

(illustrated by an example on page 252). If an ANOVA reveals a general

difference between samples, explore where the significance lies using post

hoc tests designed to account for the larger family-wise error (page 245).

How can I get rid of unwanted variation? In experimental designs, a

treatment applied to a group of sampling units should be compared to

a control group which is the same in all respects other than the test

manipulation. Full control is often not logistically feasible, particularly in

field experiments, and mensurative studies typically have no controls. It is

then important to declare all the components of random variation in the

model, so that the analysis can test the factors of interest independently

of other sources of variation. This needs thinking about at the design

stage, because the different sources of random variation will influence the
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amount of replication for testing effects of interest. See sections on

nesting, blocking and covariates (pages 21, 25, 29).

I have applied a treatment factor to whole sampling units but have taken

replicate measurements from within each sampling unit. Use a nested model

to account for the nesting of replicate measurements within sampling

units (see the introduction to nesting on page 21, worked example 1 on

page 47 and the models in Chapter 2).

Allocation of treatment levels cannot be fully randomised, because of

natural gradients in the landscape. Use stratified random sampling in a

randomised-block design (see the introduction to blocking on page 25

and the models in Chapter 4).

Cross-factored treatments are applied to sampling units at different spatial

scales. If one factor has treatment levels assigned to blocks, while another

factor has treatment levels assigned to plots nested in blocks, then use a

split-plot design (see the introduction to blocking on page 25, and the

models in Chapter 5).

Some combinations of factor levels cannot be measured in principle.

Redefine the existing combinations as levels of a single factor and analyse

with orthogonal contrasts (page 245).

Do the levels of a random blocking factor need to be independent of each

other? The mean responses per block need to vary independently of each

other around the overall mean response for the block factor. Check for

an absence of correlation between the responses per block.

Do the values of a covariate need to be independent or evenly spaced? It is

only the response residuals that need to provide independent information

in ANOVA and ANCOVA. There is no special requirement for covariate

values to be evenly spaced, though a skewed distribution can cause

the few values in the long tail to have a high leverage – i.e., to exert an

undue influence on the regression slope. A covariate cross factor should

be measured at the same or similar level for each level of the other factor,

if possible, and adjusted SS used to adjust for any discrepancies (see the

discussion of unbalanced designs on page 237).

Can I use the same test many times over to screen a population for a rare

phenomenon? Hypothesis testing is not well suited to finding a few rare

dependencies amongst a large number of suspects. For example, a posi-

tive result with P< 0.05 is more likely false than true if the effect occurs in

less than 5% of the population available for testing, regardless of the

power of the analysis (page 256).
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Problems with model specification

I just want to do a one-way ANOVA on three samples, but the statistics

package demands information on a ‘response’ and ‘factors’. All analyses of

variance use statistical models, and the package is simply asking for the

elements of your model, in this case a response variable containing all the

measured data and an explanatory variable which describes the factor

level or covariate value applied to each observation. Most statistics

packages require the response and each factor or covariate to be arranged

in columns of equal length (as described in the worked examples, pages

48, 51, 54). Make sure that the model you request will contain all the

testable sources of variation present in your design, even those that

account only for nuisance variation.

How do I get rid of nuisance variables? If your design has not controlled

for unwanted variation, then any nuisance variables will need to be

factored into the model. Failure to declare all sources of variation as

factors will result in their contributions to variation becoming pooled

into the residual variation. Although this raises the residual MS, it also

increases the residual d.f. which can greatly inflate the Type I error for

the test.

If I am only interested in main effects from a multi-factor analysis, is it

wrong to not request the interactions? Interactions can provide valuable

additional information about the significance of main effects (see page 77)

and it is generally advisable to include them in hypothesis-testing designs.

In more exploratory analyses, you can consider dropping non-significant

interactions as part of model simplification (page 40). In designs without

full replication (Chapters 4 to 7), some or all interactions cannot be tested

and are assumed to be zero, though they still need to be entered into the

model as (untestable) sources of variation. Such models cannot be fully

interpreted without testing the assumption of no interaction, which would

require full replication (using models in Chapters 1 to 3).

A factor of interest varies on a continuous scale, but has been measured in

discrete increments; should it be declared as a categorical factor or as a

covariate? Either is feasible, and which you choose depends on the nature

of the response and the desired hypothesis. Plot a graph of the response

against the continuous factor to find out whether the relationship is linear

or whether the response and/or the factor can be transformed to make the

relationship linear. If so, modelling it as a covariate may give a more

parsimonious model and allow you to interpolate between the measured

values of the covariate. It can also increase the residual d.f. which
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increases the power to detect some or all declared effects in the model

(though not always those of most interest – see worked example 3 on

page 51).

If a categorical factor of interest has levels arranged on an ordinal scale,

can it be analysed as a covariate? It may be reasonable to designate a set

of ordered categories as a covariate for the purpose of testing a null

hypothesis of no systematic increase or decrease in response. The

ANCOVA cannot be used to predict the value of the response, however,

unless a covariate is measured on an interval scale, such that the interval

between values of one and two has the same value as that between two

and three, etc. This may not necessarily be the case with ordered cate-

gories that measure qualitative degrees, for example of the health of a

subject, or the shadiness of a plot.

I am trying to do an analysis of variance on a categorical factor, but my

statistics package insists on treating the factor as a covariate. Some sta-

tistics packages automatically treat a factor with numerical values as a

covariate unless you identify it as a categorical factor. This problem will

not arise if levels of a factor are coded using words or letters rather than

numbers.

The statistics package won’t give me the interaction term in a two-factor

ANOVA. Make sure that you have asked it to by requesting ‘B|A’, or

‘AþBþB*A’ instead of just ‘AþB’. The two-factor ANOVA can only

estimate an interaction if the design is fully replicated, with more than

one measure at each combination of levels of A and B.

I have many possible explanatory factors – should I include them all in the

model? If your goal is to explore a dataset to identify which of many

competing factors most influence a response, then ANOVA can be used

as a tool to select the most parsimonious model. If your goal is to test

specific hypotheses rather than to develop a predictive model, then you

would be wise to keep things simple. Each additional cross factor added

to an ANOVA design adds an extra dimension to the analysis, multiplies

up the number of potential sources of variance and creates extra com-

plexity that can be difficult to interpret. In addition, it can reduce the

power of the analysis to detect a significant effect, unless an appropriate

increase is planned in the number of measures to be taken on the

response. A good design is therefore one that samples the minimum

number of factors necessary to answer the question of interest, and

measures sufficient replicates to estimate all potential sources of variance

amongst those chosen few factors.
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Not all samples contain the same number of replicate observations (or

more generally, the nesting is not symmetrical). This is not a problem for

one-factor analyses, though it increases sensitivity to the assumptions of

the analysis. For designs with more than one factor, use adjusted sums of

squares in a general linear model (see page 237). If the GLM package

cannot avoid adjusting for higher-order interactions between fixed fac-

tors, request only sequential SS and run the GLM as many times as there

are main effects, each time changing their order of entry into the model

and keeping results only for the last-entered main effect and its interac-

tions. Alternatively, resample from the data to reinstate symmetry,

whereupon sequential and adjusted SS will be equal.

The data are not normally distributed. It is the residuals that are assumed

by ANOVA to be normally distributed, not the raw data (see page 14).

The residuals are the squared distance of each data point from its sample

mean (or from the regression line in ANCOVA), from which is calculated

the unexplained (residual) variation on the assumption that this is ade-

quately represented for all samples by the same normal distribution.

Most statistical packages will calculate and store residuals for you, which

you can then test for normality using a normal probability plot. If you

suspect there is a significant departure from normality, then consider

applying a transformation to the response (see assumptions of ANOVA

on page 14 and of ANCOVA on page 32).

Sample variances differ, or residuals are not normally distributed around

sample means. Consider applying a transformation to the response (see

assumptions of ANOVA on page 14 and of ANCOVA on page 32).

Problems with results

A diagnostic test for a disease has a Type I error rate of 1%; if it returns a

positive result (P< 0.01) on a patient’s sample, does the patient have > 99%

chance of carrying the disease? No, the error rate indicates a 1% chance

of the analysis returning a false positive, but the probability of this

particular diagnosis being true depends also on the prevalence of the

disease and the Type II error rate of the test. For a disease carried by 1 in

5000 of the population, a test with a¼ 0.01 will return 100 false positives

on average for every couple of true positives. If the test has b¼ 0.5, then

one of these true positives will be missed on average, and the patient

returning a positive result will have a 1 in 101 chance of carrying the

disease – in other words > 99% chance of not having it! The test has
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nevertheless served a purpose, by reporting a 50-fold increase in the

patient’s probability of being a carrier relative to the pre-test probability

of 1 in 5000 (see also page 256).

The statistics package returns an ANOVA table with only one set of d.f.

assigned to each term. Should I report the treatment effect as ‘F2 ¼ 9.78’ etc?

No, always report two sets of d.f. for an ANOVA result. The first set is

the test d.f., which provides information about the number of levels of the

effect. The second set is the error d.f., which provides information on the

amount of replication available for testing the effect. For an ANOVA

without random factors, this will be the residual d.f. in the last line of the

table before the total d.f. For any other type of ANOVA, use the tables in

this book to determine the correct error d.f. for each term. Then check

that the package has used the correct error terms by dividing the effect

MS by the error MS to get the same F-value as that returned by the

package.

Can I transform the data in order to improve their fit to the model? The

data represent your best estimate of reality and so cannot be fitted to

a model. The purpose of statistics is to compare the fit of alternative

models to the data (see page 2). The validity of any model inevitably

depends on its underlying assumptions. Although many types of biolo-

gical data violate the assumptions of ANOVA, it is often possible to

apply some form of transformation to correct the problem (see pages 14

and 32). The sole purpose of transformations is therefore to allow valid

tests of model hypotheses.

The data contain numerous zeros. If these contribute to violating the

assumptions of ANOVA, this will present a problem that cannot be

resolved by transformation. Consider redefining the hypothesis to

exclude zeros from consideration. Regression analyses can be severely

biased by a heavy weighting of zeros in the response and/or covariate

even without violating underlying assumptions. For example, consider a

test of ‘camera traps’ deployed to photograph jaguars patrolling forest

trails, which pairs a camera with a new type of heat-sensitive trigger

against one with a standard infra-red trigger of known efficiency. The

frequency of captures by the new type might bear no relation to that by

the standard type, but it will appear as strongly correlated if the analysis

includes the many trap points where neither camera was triggered by a

jaguar. These locations may simply contain no jaguars, and they can be

excluded from the analysis on this assumption.

Adjusted sums of squares differ from sequential sums of squares. The explan-

atory factors are not orthogonal, requiring care in the interpretation of
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main effects (page 237). If two continuous variables are strongly corre-

lated with each other, they may both show as non-significant even when

each has a clear linear relationship to the response. This is because the

effect of each is measured after adjusting for the other. SS should not be

adjusted for higher-order interactions between their fixed effects.

The statistics package returns an F-test denominator of zero, or zero error

d.f. Erase from the input model the last-entered (and highest-order) term,

which then becomes the residual error term (see pages 57 and 258).

The statistics package returns an inexact F-test. The design permits only

a quasi F-ratio, although post hoc pooling may present a viable alter-

native (see page 40 and footnotes to tables of the model structures).

The statistics package calculates the F-ratio for some random factors

using a different denominator to that prescribed in this book. It may be using

an unrestricted mixed model (see page 242 and footnotes to tables of the

model structures).

In a design with many crossed factors, is there a problem with getting

multiple P-values in the ANOVA table of results? Multiple P-values are not

a problem when they are generated by an ANOVA that has partitioned

sources of variation in the response, because each tests a different null

hypothesis. This is true also of a priori contrasts, but unplanned post hoc

tests must account for an inflated Type I error that results from multiple

tests of the same null hypothesis (page 245).

My ANOVA on three samples is not significant, but when I do a t test on

each pair of samples, one of them does give a significant result. All that the

multiple tests have given you is an excessive Type I error rate. See the

section on evaluating alternative designs (page 250, and particularly point

5 on page 252). Consider use of post hoc tests designed to account for the

inflated error (page 245).

There are few error degrees of freedom for one or more F-ratios. Inves-

tigate options for post hoc pooling (see page 38 and footnotes to tables of

the model structures). If pooling is not possible then reflect on the need to

plan the analysis before collecting the data (see the example on page 51).
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Glossary

Adjusted sums of squares Adjustment to the sum of squares used in general
linear models (GLM) to account for designs without orthogonality. A Type

II adjustment to the SS of a term involves adjusting for all other terms in the
model that do not contain the term in question. A Type III adjustment
involves adjusting for all other terms in the model, including those

containing the term in question. Only Type II SS are suitable for models
with fixed cross factors, and only Type III SS are suitable for models with
random cross factors.

Analysis of covariance (ANCOVA) Analysis of variance on a model
containing one or more covariates, usually in addition to one or more
categorical factors. Each covariate X is tested for a linear trend with the

continuous response Y.
Analysis of variance (ANOVA) An analysis of the relative contributions of

explained and unexplained sources of variance in a continuous response
variable. In this book, we use the term ‘ANOVA’ in its broad sense to

include explanatory factors that vary on continuous as well as categorical
scales, with a focus on balanced designs. Parametric ANOVA and GLM
partition the total variance in the response by measuring sums of squared

deviations from modelled values. Significant effects are tested with the F

statistic, which assumes a normal distribution of the residual error,
homogeneous variances and random sampling of independent replicates.

A priori tests Tests that are integral to the original hypothesis.
Assumptions These are the necessary preconditions for fitting a given type of

model to data. No form of generalisation from particular data is possible
without assumptions. They provide the context for, and the means of

evaluating, scientific statements purporting to truly explain reality. As with
any statistical test, ANOVA assumes unbiased sampling from the population
of interest. Its other assumptions concern the error variation against which

effects are tested by the ANOVA model. Underlying assumptions should be
tested where possible, and otherwise acknowledged as not testable for a given
reason of design or data deficiency.
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Balance A balanced design has the same number of replicate observations in
each sample. Balance is a desirable attribute particularly of cross-factored
models, where loss of balance generally (though not inevitably) leads to loss

of orthogonality. The consequent complications to the partitioning of
sources of variance in the response are accommodated by general linear
models.

Block A level of a random factor designated to sample unmeasured variation in
the environment.

Blocking factor A random factor designated to sample unmeasured variation
in the environment.

Categorical factor A factor with levels that are classified by categories (e.g.,
factor Sex with levels male and female). A factor may vary on a continuous
scale (e.g., distance in km, or time in hours) but still be treated as categorical

if it is measured at fixed intervals (e.g., before and after a place or event).
Control A treatment level used to factor out extraneous variation by

mimicking the test procedure in all respects other than the manipulation

of interest. For example, a liquid fertiliser applied to a crop needs to be tested
against a control of an equal quantity of liquid without the fertiliser
ingredients. Failure to do so can result in a false positive induced by the
carrier medium alone.

Correlation Any co-variation of continuous factors with each other or with a
continuous response. Correlation between explanatory factors is a form of
non-orthogonality.

Covariate A factor X that varies at least on an ordinal scale, and usually on a
continuous scale (such as time, distance, etc.) and is therefore a covariate of
the response Y. Analysis of covariance assumes that the response has a linear

relation to the covariate, and transformations of response or covariate may
be necessary to achieve this prior to analysis.

Crossed factor One factor is crossed with another when each of its levels is

tested in each level of the other factor. For example, watering regime is
crossed with sowing density if the response to the wet regime is tested at both
high and low sowing density, and so is the response to the dry regime
(assuming both factors have just two levels).

Data The measurements of the response at given levels of factors of interest.
Degrees of freedom (d.f.) The number of independent pieces of information

required to measure the component of variation, subtracted from the total

number of pieces contributing to that variation. Analysis of variance always
has two sets of d.f.: the first informs on the number of test samples and the
second informs on the amount of replication available for testing the effect.

For example, a result F2,12¼ 3.98, P< 0.05 indicates a significant effect with
three levels allocated between 15 sampling units.

Effect A term in the statistical model accounting for one of several independent

sources of variance in the response. For example the cross-factored model
Y¼B|Aþ e has two main effects (A and B) and one interaction effect (B*A).

Effect size The magnitude of an effect, measured in terms of deviations
of sample means from the grand mean (fixed factor), or the steepness of

the regression slope from horizontal (covariate), or the magnitude of
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between-sample variance (random factor). The significance of an effect
depends upon a combination of its size, the amount of background variation
and the sample size. An effect of small magnitude can thus be strongly

significant if it is sampled with little residual variation from many replicates.
Conversely, an apparently large effect may have no significance if it is
sampled with large residual variation or from few replicates.

Error variance The random variation in the response against which an effect is
tested, containing all of the same components of variation estimated in the
population except for the test effect. The validity of ANOVA depends on
three assumptions about the error variance: (i) that the random variation

around fitted values is the same for all sample means of a factor, or across
the range of a covariate; (ii) that the residuals contributing to this variation
are free to vary independently of each other; (iii) that the residual variation

approximates to a normal distribution.
Experiment A manipulative study involving the application of one or more

treatments under controlled conditions. Where possible, treatment levels are

randomly assigned to sampling units, and effects compared against a control.
Factor A source of variance in the response. A categorical factor is measured in

categorical levels, whereas a covariate factor is measured on a scale of
continuous (or sometimes ordinal) variation. A model might be constructed

to test the influence of a factor as the sole explanation (Y¼Aþ e) or as one
of many factors variously crossed with each other or nested within each
other.

Factorial model A model containing crossed factors in which every level of
each factor is tested in combination with every level of the other factors.
Fully replicated factorial designs test whether the effect of one factor is

moderated by interaction with another.
False negative The result of making a Type II error by accepting a false null

hypothesis. This type of error can incur severe consequences for sampling

units, such as patients being screened for a disease or rivers being screened for
a pollutant. The Type II error rate b can be minimised by using a design with
sufficient replication to ensure high power for distinguishing true effects.

False positive The result of making a Type I error by rejecting a true null

hypothesis. Tests that are deemed significant if P< 0.05 must sanction a false
positive arising once in every 20 runs on average. This causes problems
particularly in studies that apply the same test to a large number of datasets to

screen for a phenomenon with low incidence in the population. A positive
identification is more likely false than true if incidence< a, the Type I error
rate.

Fitted values The values of the response predicted by the model for each data
point. Fitted values are the sample means for categorical factors, or points
on a regression line for a covariate.

Fixed factor A factor with levels that are fixed by the design and could be
repeated without error in another investigation. The factor has a significant
effect if sample means differ by considerably more than the background
variation, or for a covariate, if the variation of the regression line from

horizontal greatly exceeds the variation of data points from the line.
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F statistic The test statistic used in ANOVA and GLM, named in honour of
R.A. Fisher, who first described the distribution and developed the method
of analysis of variance in the 1920s. The continuous F distribution for a given

set of test and error d.f. is used to determine the probability of obtaining at
least as large a value of the observed ratio of explained to unexplained
variation, given a true null hypothesis. The associated P-value reports the

significance of the test effect on the response.
Fully replicated design A design with replicate sampling units at each factor

level, or for designs with more than one factor, each combination of factor
levels. Such designs have residual variation given by these nested random

sampling units, which permits the ANOVA to test all sources of variance in
the response. A design without full replication has the random sampling unit
cross-factored with other terms, contributing to the variance in the response

having one or more untestable sources.
General linear model (GLM) Generic term for parametric analyses of variance

that can accommodate combinations of factors and covariates, and

unbalanced and non-orthogonal designs. GLMs generally use an
unrestricted model for analysing combinations of fixed and random factors.

Generalised linear model (GLIM) Generic term for analyses of variance that
can accommodate combinations of factors and covariates, and can permit

the residuals to follow any distribution from the exponential family, which
includes Gaussian, Poisson, binomial and gamma distributions. Components
of variation are partitioned using maximum likelihood rather than sums of

squares.
Hypothesis test An analysis of data to test for pattern against the null

hypothesis H0: no pattern. Analysis of variance subjects a dataset to one or

more test hypotheses, described by a model. For example, a test of the model
Y¼B|Aþ e may reject or accept the null hypothesis of no effect of A on the
response. Likewise, it rejects or accepts the null hypotheses of no B effect and

of no interaction effect. A decision to reject H0 is taken with some predefined
probability a of making a Type I error by rejecting a true null hypothesis. A
decision to accept H0 is taken with a probability b of making a Type II error
by accepting a false null hypothesis.

Independent replicates The power of any statistical test to detect an effect
depends on the accumulation of independent pieces of information. ANOVA
assumes that replicate data points are independent of each other in the sense

that the value of one data point at a given factor level has no influence on the
value of another sampled at the same level. The assumption is often violated
by the presence of confounding factors. For instance, a sample of ten

subjects will not provide ten independent pieces of information about a
response if it comprises five pairs of siblings. Independence can be restored
by declaring a factor Sibling, or by measuring just one individual at random

of each pair. Likewise, a response of leaf area to soil type is tested with
replicates given by the number of independent plants not, by the number of
leaves.

Interaction An interaction tests whether the effect of one factor on a response

depends on the level of another factor. For example, students may respond
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to different tutorial systems according to their age, indicated by a significant
interaction effect Age*System on the response. If one factor is a covariate,
the interaction is illustrated by different regression slopes at each level of the

categorical factor. Two covariates show a significant interaction in a curved
plane for their combined effect on the response. An interaction effect must
always be interpreted before its constituent main effects, because its impact

influences interpretation of the main effect.
Linear model A model with linear (additive) combinations of parameter

constants describing effect sizes. Linear models can describe non-linear
trends in covariates, for example by transformation of the data or fitting a

polynomial model. All the models in this book are linear.
Main effect A main effect tests whether the effect of one factor on a response

occurs irrespective of the level of another factor. For example, students may

respond to different tutorial systems regardless of their age. Main effects
must always be interpreted after interpreting any interactions.

Marginality The fundamental principle of ANOVA that terms be tested in

hierarchical order. This becomes an issue in non-orthogonal designs, where
the variance due to an interaction must be estimated after factoring out the
variance due to the terms contained within it.

Mean The arithmetic average value of the responses in a sample. The sample

means provide the fitted values from which effect size is measured in analyses
of categorical factors. In covariate analysis, the linear regression pivots on
the coordinate for the sample means of response and covariate: (�x, �y).

Mean square (MS) The variance measured as variation per degree of freedom.
The F-ratio is the ratio of explained to unexplained MS, where the
numerator is the MS explained by the model and the denominator is the

error MS left unexplained by the model.
Mensurative study A study that tests the effect of one or more factors on a

response without controlled manipulation.

Mixed model A model with random and fixed factors.
Model The hypothesised effect(s) on a response, which can be tested with

ANOVA for evidence of pattern in the data. An ANOVA model contains
one or more terms, each having an effect on the response that is tested

against unmeasured error or residual variation. A model with a single factor
(whether categorical or covariate) is written: Y¼Aþ e, and the ANOVA
tests the term A against the residual e. Models with multiple factors require

care with declaring all terms in a statistical package. For example, the cross-
factored with nesting model: Y¼C|B0(A)þ e is analysed by declaring the
terms: C|AþC|B(A). The two-factor randomised-block model: Yþ S0|B|A is

analysed by declaring the terms: S|B|A – S*B*A for a Model 1 analysis, or
the terms: SþB|A for a Model 2 analysis.

Model 1 In designs without full replication, an ANOVA model that assumes

the presence of block-by-treatment interactions, even though the design has
not allowed for their estimation. Randomised-block designs may be analysed
by Model 1 or Model 2. Repeated-measures designs are generally analysed
by Model 1.
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Model 2 In designs without full replication, an ANOVA model that assumes the
absence of block-by-treatment interactions, even though the design has not
allowed for any direct test of this assumption. Randomised-block designsmay be

analysed by Model 1 or 2. Split-plot designs are generally analysed by Model 2.
Multiple tests Multiple tests of the same hypothesis cause inflation of the Type I

error rate. The problem arises in data probing, involving an unplanned search

for any significant differences amongst a set of samples. For example, if
replicate measures are taken from two levels of a factor A and from three levels
of a factor B, then a search for any differences between the five samples might
involve a total of ten independent t tests (A1 versus A2, A1 versus B1, . . . etc.).
If each has a Type I error rate of 0.05, then the ensemble of ten tests has a
probability of 1� 0.9510¼ 0.40 of mistakenly rejecting the null hypothesis of no
single difference between any sample means. This unacceptably high rate is

avoided only by using a statistical model that respects a planned design of data
collection. A cross-factored ANOVA would partition the total variance in the
response into three testable sources: A, B, and B*A, each with their own P-

value testing a specific null hypothesis.
Nested factor One factor is nested within another when each of its levels are

tested in (or belong to) only one level of the other. For example a response
measured per leaf for a treatment factor applied across replicate trees must

declare the trees as a random factor nested in the treatment levels. The
sampling unit of Leaf is then correctly nested in Tree nested in Treatment.

Nuisance variable Factors or covariates holding no interest in their own right,

but requiring inclusion in the model in order to factor out their contributions
to variation in the data.

Null hypothesis (H0) The statistically testable hypothesis of no pattern in the

data. The null hypothesis is the proposal that nothing interesting is
happening, against which to test a model hypothesis of trend in a sample
or differences between samples. If the test upholds the null hypothesis, then

we conclude that the ANOVA model takes the form Y¼ e; otherwise we
infer a significant effect of a factor of interest on the response. A null
hypothesis must be open to falsification. For example, a null hypothesis of
zero difference between samples is capable of falsification. A suitable

ANOVA will evaluate the evidence for a difference and accept or reject the
null hypothesis accordingly. In contrast, a null hypothesis of a difference
between samples is not capable of falsification, because absence of evidence

(for a difference) is not evidence of absence.
Ordinary least squares (OLS) A method of estimating the values of parameters

in linear models by minimising the sum of squared deviations of each

observation of the response from the model estimate. In ANOVA, this sum is
known as the residual sum of squares, SSresidual, and it partitions out the
variation left unexplained by the model.

Orthogonality A cross-factored design is orthogonal if each of its factors are
independent of each other. Two categorical cross factors are orthogonal by
design if each level of one is measured at every level of the other. Orthogonal
designs partition total variation in the response straightforwardly into

testable components using sequential sums of squares for each effect in turn.
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Although a balanced design generally (but not inevitably) ensures
orthogonality, this can be difficult to achieve in practice, especially with
covariates. Two covariates are only orthogonal if they have a correlation

coefficient of zero. Loss of orthogonality can reduce or enhance the power of
a design to detect effects, and usually requires analysis with the aid of
adjusted sums of squares calculated in a GLM.

Parsimony The principle of sampling the minimum number of factors
necessary to answer the question of interest with a single model. Each
additional cross factor adds an extra dimension to the design and multiplies
up the number of potential sources of variation in the response. For example

the one-way model Y¼Aþ e has one testable source (A); the two-factor
model: Y¼B|Aþ e has three testable sources (AþBþB*A); the three
factor model Y¼C|B|Aþ e has seven testable sources, and so on. Parsimony

is not improved by ignoring any nuisance factors that contribute to variation
in the data. These must be included in the analysis.

Placebo A treatment used in medicinal trials to control for extraneous

variation by mimicking the test procedure in all respects other than the
therapeutic benefit of interest. For example, a drug trial for the effectiveness
of a medicinal pill requires a treatment with two levels: drug and placebo,
where the placebo is a dummy pill of the same shape and colour as the drug

pill except that it does not contain the drug. The need for a control is well
illustrated by the ‘placebo effect’ – the psychological boost to health that can
be stimulated by an environment of medical care. For this reason, the

treatment levels usually need to be allocated in a ‘double blind’ trial, whereby
neither doctor nor patient can distinguish drug from placebo.

Polynomial predictor A polynomial equation describes a curvilinear

relationship with one or more exponents. Polynomials can be tested with
linear models by declaring the covariate more than once. For example, the
relationship: y¼ aþ bxþ cx2 is tested in GLM by requesting the polynomial

predictor in the form: X|X and taking sequential SS.
Pooling The construction of an error term from more than one source of

variance in the response. A priori pooling occurs in designs without full
replication, where untestable interactions with random factors are pooled

into the residual variation. The analysis then proceeds on the assumption
that the interactions are either present (Model 1) or absent (Model 2).
Planned post hoc pooling is applied to mixed models by pooling a non-

significant error term with its own error term. The design is thereby
influenced by the outcome of the analysis (in terms of whether or not an
error term is itself significant). More generally, pooling can describe the

process of joining together samples, for example in calculating a main effect
MS by pooling across levels of a cross factor.

Population In a statistical model for analysis of variance, the population is the

theoretical complete set of units from which we sample replicate independent
and randomly selected measures for the purposes of testing treatment effects.
Any random factor requires a clear definition of the population it describes,
so that a given sampling regime can be seen to fairly represent it. For
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example, do the subjects for a treatment come from a particular age, gender
or ethnic group?

Post hoc tests Tests that are supplementary to the original hypothesis.

Power The capacity of a statistical test to detect an effect if it truly occurs. A
test with high power has a low probability of mistakenly accepting a false
null hypothesis (i.e., a low Type II error rate). Power increases with more

replication, provided it is applied at an appropriate scale. For example a
response measured per leaf for a treatment applied across replicate trees
includes trees as a random factor nested in the treatment levels. The power of
the design depends on the number of replicate trees per treatment level, and

not directly on the number of replicate leaves per tree.
Pseudoreplication The result of replicates in a sample not being truly

independent of each other, which inflates the Type I error rate. ANOVA

models are particularly prone to pseudoreplication if they omit to declare
sources of nuisance variation in addition to the effects of interest.

Random factor A factor with levels that sample at random from a defined

population. A random factor will be assumed to have a normal distribution
of sample means, and homogeneous variance of means, if its MS is the error
variance for estimating other effects (e.g., in nested designs). The random
factor has a significant effect if the variance among its levels is considerably

greater than zero.
Random sampling Replicate measures of a response to a given factor level

must be taken at random if they are to represent the population that is being

sampled. As with any statistical test, ANOVA assumes random sampling.
This assumption is violated for instance if a test for a gender effect of body
weight samples heavier males and lighter females.

Randomised-blocks A design containing a random blocking factor, crossed
with other factor(s) that have a randomised order of levels within each block.

Regression Analysis of a covariate, or multiple covariates in the case of multiple

regression. In this book we refer to such analyses as analyses of covariance,
regardless of whether or not the model also includes categorical factors.

Repeated-measures A design containing a random factor (usually Subject)
crossed with one or more treatments having levels that are applied in a fixed

sequence (usually temporal). For example, the performance of subjects may be
tested before and after imbibing a treatment drink with two levels: tonic and
control. The repeated-measures factor is Time with two levels: before and

after. The design has no degrees of freedom for testing residual variation.
Repeated-measures factor A factor (usually temporal) with a fixed sequence of

levels that are crossed with a random factor (usually Subject).

Replicates Randomly selected and independent measurements of the response
that together make up a sample of the population of interest.

Replication A model is fully replicated if it has true residual variation, given by

a nesting of sampling units in samples. Full replication requires taking more
than one independent, randomly selected measurement of the response at
each level of each categorical factor, or at each combination of levels of
crossed factors. The true residual variation allows estimation of all the

explained components of variation.
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Residual variation All ANOVA models have residual variation defined by the
variation amongst sampling units within each sample. This is always given by
the last mean square in ANOVA tables, and denoted ‘e’ (epsilon) in the

descriptions of fully replicated models. Models without full replication may
have no degrees of freedom for measuring residual variation (e.g.,
randomised-block, split-plot and repeated-measures models).

Response The continuous variable on which data are collected to test for
sources of variance. The response is the variable Y on the left of the equals
sign in the model equation: Y¼Aþ e, etc.

Restricted model A mixed model (i.e., with random and fixed factors) is termed

restricted if a random factor is not allowed to have fixed cross factors
amongst its components of variation estimated in the population. This
restriction influences the choice of error MS for random effects. The

ANOVA tables in this book are all constructed with the restricted model.
Sample A group of replicate measures of the response taken at the same level of

a categorical factor (or combination of factor levels if several categorical

factors are present), or across a range of values of a covariate.
Sampling unit The basic unit from which is recorded a single measure or

observation of the response.
Significance The strength of evidence for an effect, measured by a P-value

associated with the F-ratio from analysis of variance. A significant effect has
a small P-value indicating a small chance of making a Type I error. For
example, P< 0.05 means a less than 5% chance of mistakenly rejecting a true

null hypothesis. For many tests this would be considered a reasonable level
of safety for rejecting the null hypothesis of no effect, in favour of the model
hypothesis of a significant effect on the response. The significance of an effect

is not directly informative about the size of the effect. Thus an effect may be
statistically highly significant as a result of low residual variation, yet have
little biological significance as a result of a small effect size in terms of the

amount of variation between sample means or the slope of a regression. A
non-significant effect should be interpreted with reference to the Type II
error rate, which depends on the power of the test to detect significant effects.

Split-plot A design with two or more treatment factors, and the levels of one

factor applied at a different scale to those of another. For example, whole
blocks might be allocated to wet or dry watering regime, and plots within
blocks allocated to dense or sparse sowing density.

Sum of squares (SS) The sum of squared deviations of each independent piece of
information from its modelled value. Analysis of variance partitions the total
variation in the response into explained and unexplained sums of squares.

Test hypothesis H1 The hypothesis describing the statistical model to be tested
by analysis of variance. The hypothesis H1 may have several partitions (e.g.,
AþBþB*A), which describe putative pattern in the data. The evidence for

pattern is tested against the null hypothesis H0 of no pattern.
Transformation A re-scaling procedure applied systematically to the response

and/or covariates with the purpose of meeting the assumptions of the
analysis. For example, measurements of volume and length might be log-

transformed to linearise the relationship between them.
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Treatment A factor with levels that are applied in a manipulative experiment.
More loosely, a factor of interest (as opposed to a nuisance variable).

Type I error The mistake of rejecting a true null hypothesis. A maximum

acceptable Type I error rate should be set a priori; in the biological sciences it
is often taken to be a¼ 0.05. An effect is then considered significant if it
returns a P< 0.05. The Type I error is particularly susceptible to inflation in

multiple tests of the same hypothesis. It is an unavoidable cause of false
positives in screening programmes for rare phenomena.

Type II error The mistake of accepting a false null hypothesis. An acceptable
Type II error should be set a priori; in the biological sciences it is often taken

to be b¼ 0.20. The power of a test is greater the smaller is b. Models without
full replication are particularly susceptible to Type II error, as a result of not
testing higher-order interactions.

Unrestricted model A mixed model (i.e., with random and fixed factors) is
termed unrestricted if a random factor is allowed to have fixed cross factors
amongst its components of variation estimated in the population. This

freedom influences the choice of error MS for random effects. The
unrestricted model is not used in this book to construct ANOVA tables,
though differences are noted in footnotes to the tables. It is generally used
for unbalanced designs analysed with GLM.

Variance The variation in the data, measured as the average squared deviation
of the data from the mean. Analysis of variance partitions the total variance
into explained and unexplained components and estimates these variances as

mean squares (MS).
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Index of all ANOVA models
with up to three factors
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Index

a priori contrasts, 245

adjusted sums of squares, 35, 78, 125, 127,

237, 240, 268, 269

analysis of covariance, 11 See ANCOVA
models

ANCOVA models, 11, 16, 29, 57

ANOVA models, 8, 284

assumptions of ANOVA, 14, 118, 143, 183

fixed predictor, 16

homogeneity of covariances, 16, 118, 143,

183

homogeneous variances, 15, 17

independence, 15, 118, 143, 184

linearity, 16, 32

normality, 15, 17, 268

random sampling, 15

balance, 237

Bayesian inference, 2, 257

before-after-control-impact, 168, 201

block, 58, 87, 115, 141, 182

balanced incomplete, 124, 127

blocking, 26

nested blocks, 99

randomised complete, 125, 251

Bonferroni method, 247

carryover effects, 125, 181

coefficient of determination, 12, 35, 245

comparisons, 247 See post hoc comparisons

confounding factors, 67, 189, 193

contrasts, 245 See a priori contrasts

control, 4, 21, 50, 117, 180, 246, 264

correlation, 35, 67, 118, 143, 183, 229, 238

coefficient, 12, 238

counterbalancing, 182

covariates, 1, 4, 29, 37, 77, 265,

266, 267

crossed factors, 24 See factorial designs

crossover trial, 125

degrees of freedom, 8, 10, 12,

23, 36, 253

double blind trial, 180

Dunnett’s test, 184, 247

Dunn–Sidák procedure, 247

effect size, 244, 249, 250

error rate, 3, 13

Type I, 3, 10, 12, 13, 38, 62, 118,

143, 183, 184, 229, 247, 252, 264,

268, 270

Type II, 3, 13, 38, 39, 185, 229, 249

error variance, 4, 6, 10, 12, 37, 249

F distribution, 10, 15

factorial designs, 5, 24, 58, 76

false claims, 255

fixed factor, 5, 17, 243

fixed predictor assumption, 16

See assumptions of ANOVA

F-ratio, 10, 12, 35

Quasi-, inexact or approximate, 40

general linear models, 29 See GLM

generalised linear models, 29 See GLIM

GLIM, 2, 16, 35, 245

GLM, 29, 32, 78, 125, 241, 247, 268

hierarchical structure, 36, 67, 76, 241

homogeneity of covariances assumption, 16

See assumptions of ANOVA
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homogeneous variances assumption, 15

See assumptions of ANOVA

hypothesis testing, 13

independence, 15, 118, 143, 184

See assumptions of ANOVA

interaction, 5, 24, 31, 266, 267

interaction plot, 77, 261

Latin-square design, 125

linearity assumption, 16, 32

see assumptions of ANOVA

magnitude of effect, 244

main effect, 5, 6, 24, 30, 241

manipulative experiment, 1, 61, 116

marginality principle, 40, 241

mean squares, 10, 12

mensurative study, 1, 18, 61

mixed model, 21, 242

model formulation, 2, 58, 258

model presentation, 260, 264

model simplification, 2, 40, 77, 238, 241

multiple comparisons, 247 See post hoc
comparisons

multiple tests, 247, 252, 256, 270

nested designs, 5, 21, 58, 67

non-significant terms, 38, 251

normality assumption, 15, 17, 268

See assumptions of ANOVA

nuisance variable, 2, 17, 26, 32, 117, 266

null hypothesis, 2, 3, 13, 17, 39, 53, 55

one-factor designs, 58, 61

ordinal scale, 267

ordinary least squares, 11

orthogonal factors, 238, 240

paired-sample t test, 122, 188, 285

parsimony, 2, 40, 241

placebo, 180 See control

planned contrasts, 245 See a priori contrasts

polynomial predictor, 34, 85, 95, 97, 113

post hoc comparisons, 245

post hoc pooling, 38, 41, 51

power of the design, 38, 52, 248, 250

practice effects, 181

pseudoreplication, 27, 62, 184

P-value, 3, 10, 12, 13, 261, 270

random factor, 5, 16, 242

random-sampling assumption, 15
See assumptions of ANOVA

randomised block, 26 See blocking

regression, 4 See covariates

regression slope, 12, 30, 35, 244

repeated measures, 28, 58, 59, 127, 179

replication, 8, 10, 19, 21, 70, 185, 252

advantages of, 120, 144, 189

cost of, 252

lack of, 26, 29, 43, 117, 141, 184, 266

residual variance, 4 See error variance

response variable, 3, 6, 8, 44

restricted maximum-likelihood, 245

restricted model, 242, 243

Ryan’s test, 247

Satterthwaite’s approximation, 68, 238

significance level, 3, 10, 13, 246, 249

spatial factors, 19, 116

sphericity condition, 183 See homogeneity
of covariances assumption

split-plot design, 27, 52, 58, 99, 141, 197

statistical model, 2, 6, 13

stratified random design, 26, 171

Student’s t test, 64, 284

misuse of, 252

subject-by-treatment designs, 181

subject-by-trial designs, 179

sum of squares, 8, 12

switching, 125, 182

temporal factors, 19, 116

test hypothesis, 3, 13

transformations, 16, 33, 261, 269

troubleshooting, 264

Tukey’s honestly significant difference, 247

Type I error, 13 See error rate

Type II error, 13 See error rate

unbalanced designs, 35, 62, 68, 237

unplanned comparisons, 247 See post hoc
comparisons

unreplicated designs, 16, 59, 119, 144, 184

See replication

unrestricted model, 54, 242, 243

unwanted variation, 26 See nuisance
variable

variance components, 245

Youden-square design, 127

zeros values, 269
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Categories of model

1. One factor

2. Fully replicated nested

factors

3. Fully replicated crossed

factors

4. Randomised blocks

5. Split plot

5–6. Split plotþ repeated

measures
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