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Preface 
Statistics is the science of collecting, organizing and interpreting numerical and non-numerical 
facts, which we call data.  
The collection and study of data is important in the work of many professions, so that training in 
the science of statistics is valuable preparation for variety of careers, for example, economists 
and financial advisors, businessmen, engineers and farmers. 
Knowledge of probability and statistical methods also are useful for informatics specialists in 
various fields such as data mining, knowledge discovery, neural networks, and fuzzy systems 
and so on. 
Whatever else it may be, statistics is first and foremost a collection of tools used for converting 
raw data into information to help decision makers in their work.  
The science of data - statistics - is the subject of this course. 
Chapter 1 is an introduction into statistical analysis of data. Chapters 2 and 3 deal with 
statistical methods for presenting and describing data. Chapters 4 and 5 introduce the basic 
concepts of probability and probability distributions, which are the foundation for our study of 
statistical inference in later chapters. Sampling and sampling distributions is the subject of 
Chapter 6. The remaining seven chapters discuss statistical inference - methods for drawing 
conclusions from properly produced data. Chapter 7 deals with estimating characteristics of a 
population by observing the characteristic of a sample. Chapters 8 to 13 describe some of the 
most common methods of inference: for drawing conclusions about means, proportions and 
variances from one and two samples, about relations in categorical data, regression and 
correlation and analysis of variance. In every chapter we include examples to illustrate the 
concepts and methods presented. The use of computer packages such as SPSS and 
STATGRAPHICS will be evolved.  

 

Audience 
This tutorial as an introductory course to statistics is intended mainly for users such as 
engineers, economists and managers who need to use statistical methods in their work and for 
students. However, many aspects will be useful for computer trainers. 
 

Objectives 
Understanding statistical reasoning 
Mastering basic statistical methods for analyzing data such as descriptive and inferential 
methods  
Ability to use methods of statistics in practice with the help of computer software 

Entry requirements 
High school algebra course (+elements of calculus) 
Elementary computer skills 
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THE STATISTICAL ANALYSIS OF DATA 
 

Chapter 1 Introduction 
 

CONTENTS 

1.1. What is Statistics? 

1.2. Populations and samples 

1.3. Descriptive and inferential statistics 

1.4. Brief history of statistics  

1.5. Computer softwares for statistical analysis 

 
1.1 What is Statistics 

The word statistics in our everyday life means different things to different people. To a football 
fan, statistics are the information about rushing yardage, passing yardage, and first downs, 
given a halftime. To a manager of a power generating station, statistics may be information 
about the quantity of pollutants being released into the atmosphere. To a school principal, 
statistics are information on the absenteeism, test scores and teacher salaries. To a medical 
researcher investigating the effects of a new drug, statistics are evidence of the success of 
research efforts. And to a college student, statistics are the grades made on all the quizzes in a 
course this semester. 

Each of these people is using the word statistics correctly, yet each uses it in a slightly different 
way and for a somewhat different purpose. Statistics is a word that can refer to quantitative data 
or to a field of study.  

As a field of study, statistics is the science of collecting, organizing and interpreting numerical 
facts, which we call data. We are bombarded by data in our everyday life. The collection and 
study of data are important in the work of many professions, so that training in the science of 
statistics is valuable preparation for variety of careers. Each month, for example, government 
statistical offices release the latest numerical information on unemployment and inflation. 
Economists and financial advisors as well as policy makers in government and business study 
these data in order to make informed decisions. Farmers study data from field trials of new crop 
varieties. Engineers gather data on the quality and reliability of manufactured of products. Most 
areas of academic study make use of numbers, and therefore also make use of methods of 
statistics. 

Whatever else it may be, statistics is, first and foremost, a collection of tools used for converting 
raw data into information to help decision makers in their works.  

The science of data - statistics - is the subject of this course. 
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1.2 Populations and samples 
In statistics, the data set that is the target of your interest is called a population.  Notice that, a 
statistical population does not refer to people as in our everyday usage of the term; it refers to a 
collection of data. 

 

Definition 1.1 

A population is a collection (or set) of data that describes some phenomenon of 
interest to you. 

 

 

Definition 1.2 

A sample  is a subset of data selected from a population 

 

Example 1.1 The population may be all women in a country, for example, in Vietnam. If from 
each city or province we select 50 women, then the set of selected women is a sample. 

Example 1.2 The set of all whisky bottles produced by a company is a population. For the 
quality control 150 whisky bottles are selected at random. This portion is a sample. 

 

1.3 Descriptive and inferential statistics 
If you have every measurement (or observation) of the population in hand, then statistical 
methodology can help you to describe this typically large set of data. We will find graphical and 
numerical ways to make sense out of a large mass of data. The branch of statistics devoted to 
this application is called descriptive statistics.     

 

Definition 1.3 
The branch of statistics devoted to the summarization and description of data 
(population or sample) is called descriptive statistics. 

 

 

If it may be too expensive to obtain or it may be impossible to acquire every measurement in the 
population, then we will want to select a sample of data from the population and use the sample 
to infer the nature of the population. 

Definition 1.4 
The branch of statistics concerned with using sample data  to make an inference 
about a population of data  is called inferential statistics. 

 



 viii 

1.4 Brief history of statistics  
The word statistik comes from the Italian word statista (meaning “statesman”). It was first used 
by Gottfried Achenwall (1719-1772), a professor at Marlborough and Gottingen. Dr. E.A.W. 
Zimmermam introduced the word statistics to England. Its use was popularized by Sir John 
Sinclair in his work “Statistical Account of Scotland 1791-1799”. Long before the eighteenth 
century, however, people had been recording and using data. 

 Official government statistics are as old as recorded history.  The emperor Yao had taken a 
census of the population in China in the year 2238 B.C. The Old Testament contains several 
accounts of census taking. Governments of ancient Babylonia, Egypt and Rome gathered detail 
records of population and resources. In the Middle Age, governments began to register the 
ownership of land. In A.D. 762 Charlemagne asked for detailed descriptions of church-owned 
properties. Early, in the ninth century, he completed a statistical enumeration of the serfs 
attached to the land. About 1086, William and Conqueror ordered the writing of the Domesday 
Book, a record of the ownership, extent, and value of the lands of England. This work was 
England’s first statistical abstract. 

Because of Henry VII’s fear of the plague, England began to register its dead in 1532. About 
this same time, French law required the clergy to register baptisms, deaths and marriages. 
During an outbreak of the plague in the late 1500s, the English government started publishing 
weekly death statistics. This practice continued, and by 1632 these Bills of Mortality listed births 
and deaths by sex. In 1662, Captain John Graunt used thirty years of these Bills to make 
predictions about the number of persons who would die from various diseases and the 
proportion of male and female birth that could be expected. Summarized in his work, Natural 
and Political Observations ...Made upon the Bills of Mortality, Graunt’s study was a pioneer 
effort in statistical analysis. For his achievement in using past records to predict future events, 
Graund was made a member of the original Royal Society. 

The history of the development of statistical theory and practice is a lengthy one. We have only 
begun to list the people who have made significant contributions to this field. Later we will 
encounter others whose names are now attached to specific laws and methods. Many people 
have brought to the study of statistics refinements or innovations that, taken together, form the 
theoretical basis of what we will study in this course. 

 

1.5 Computer softwares for statistical analysis 
Many real problems have so much data that doing the calculations by hand is not feasible. For 
this reason, most real-world statistical analysis is done on computers. You must prepare the 
input data and interpret the results of the analysis and take appropriate action, but the machine 
does all the “number crunching”. There many widely-used software packages for statistical 
analysis. Below we list some of them. 

• Minitab (registered trademark of Minitab, Inc., University Park, Pa) 
• SAS (registered trademark of SAS Institute, Inc., Cary, N.C.) 
• SPSS (registered trademark of SPSS, Inc.,Chicago) 
• SYSTAT (registered trademark of SYSTAT, Inc., Evanston,II) 
• STATGRAPHICS (registered trademark of Statistical Graphics Corp., Maryland). 
Except for the above listed softwares it is possible to make simple statistical analysis of data by 
using the part “Data analysis” in Microsoft EXCEL.   
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Chapter 2 Data presentation 
 

CONTENTS 

2.1. Introduction 

2.2. Types of data 

2.3. Qualitative data presentation 

2.4. Graphical description of qualitative data 

2.5. Graphical description of quantitative data:  Stem and Leaf displays 

2.6. Tabulating quantitative data:  Relative frequency distributions         

2.7. Graphical description of quantitative data: histogram and polygon 

2.8. Cumulative distributions and cumulative polygons 

2.9. Summary 

2.10. Exercises 

 

 

 

2.1 Introduction 
The objective of data description is to summarize the characteristics of a data set. Ultimately, we want to 
make the data set more comprehensible and meaningful. In this chapter we will show how to construct 
charts and graphs that convey the nature of a data set. The procedure that we will use to accomplish this 
objective in a particular situation depends on the type of data that we want to describe. 

2.2 Types of data 
Data can be one of two types, qualitative and quantitative. 

Definition 2.1 

Quantitative data are observations measured on a numerical scale. 

 

In other words, quantitative data are those that represent the quantity or amount of something. 
 
Example 2.1 Height (in centimeters), weight (in kilograms) of each student in a group are both 
quantitative data. 
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Definition 2.2 
Non-numerical data that can only be classified into one of a group of categories are 
said to be qualitative data. 

 

  

In other words, qualitative data are those that have no quantitative interpretation, i.e., they can 
only be classified into categories. 

Example 2.2 Education level, nationality, sex of each person in a group of people are qualitative 
data. 

2.3 Qualitative data presentation 

When describing qualitative observations, we define the categories in such a way that each 
observations can fall in one and only one category. The data set is then described by giving the 
number of observations, or the proportion of the total number of observations that fall in each of 
the categories. 

Definition 2.3 

The category frequency for a given category is the number of observations that fall in 
that category. 

 

Definition 2.4 

The category relative frequency for a given category is the proportion of the total 
number of observations that fall in that category. 

 

 

nsobservatio ofnumber  Total

categoryin that  falling nsobservatio ofNumber 
category afor frequency  Relative =  

Instead of the relative frequency for a category one usually uses percentage for a category, 
which is computed as follows 
  

Percentage for a category  =  Relative frequency for the category x 100% 

 

Example 2.3 The classification of students of a group by the score on the subject “Statistical 
analysis” is presented in Table 2.0a. The table of frequencies for the data set generated by 
computer using the software SPSS is shown in Figure 2.1. 
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Table 2.0a   The classification of students 

No of 

Stud. 

CATEGORY No of 

Stud. 

CATEGORY No of 

Stud. 

CATEGORY No of 

stud 

CATEGORY 

1 Bad 13 Good 24 Good 35 Good 

2 Medium 14 Excellent 25 Medium 36 Medium 

3 Medium 15 Excellent 26 Bad 37 Good 

4 Medium 16 Excellent 27 Good 38 Excellent 

5 Good 17 Excellent 28 Bad 39 Good 

6 Good 18 Good 29 Bad 40 Good 

7 Excellent 19 Excellent 30 Good 41 Medium 

8 Excellent 20 Excellent 31 Excellent 42 Bad 

9 Excellent 21 Good 32 Excellent 43 Excellent 

10 Excellent 22 Excellent 33 Excellent 44 Excellent 

11 Bad 23 Excellent 34 Good 45 Good 

12 Good       

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

2.4 Graphical description of qualitative data 
Bar graphs and pie charts are two of the most widely used graphical methods for describing 
qualitative data sets. 

Bar graphs give the frequency (or relative frequency) of each category with the height or length 
of the bar proportional to the category frequency (or relative frequency).   

 

CATEGORY

6 13.3 13.3 13.3

18 40.0 40.0 53.3

15 33.3 33.3 86.7

6 13.3 13.3 100.0

45 100.0 100.0

Bad

Excelent

Good

Medium

Total

Valid
Frequency Percent

Valid
Percent

Cumulative
Percent

 

 

Figure 2.1  Output from SPSS showing the frequency table for the variable 
CATEGORY. 
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Example 2.4a (Bar Graph) The bar graph generated by computer using SPSS for the variable 
CATEGORY is depicted in Figure 2.2. 

 

0 5 10 15 20

Bad

Excelent

Good

Medium

 

 

 

Figure 2.2  Bar graph showing the number of students of each category 

 

 

Pie charts divide a complete circle (a pie) into slices, each corresponding to a category, with the 
central angle  and  hence the area of the slice proportional to the category relative frequency. 

Example 2.4b (Pie Chart) The pie chart generated by computer using EXCEL CHARTS for the 
variable CATEGORY is depicted in Figure 2.3. 

 

 

Bad

Excelent

Good

Medium

 

 

Figure 2.3  Pie chart showing the number of students of each category 
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2.5 Graphical description of quantitative data:  Stem and Leaf displays 
One of graphical methods for describing quantitative data is the stem and leaf display, which is widely 
used in exploratory data analysis when the data set is small. 

In order to explain what is a stem and what is a leaf we consider the data from the table 2.0b. For this data 
for a two-digit number, for example, 79, we designate the first digit (7) as its stem; we call the last digit 
(9) its leaf; and for three-digit number, for example, 112, we designate the first two digit (12) as its stem; 
we  also call the last digit (2) its leaf. 
 

Steps to follow in constructing a Stem and Leaf Display 

1. Divide each observation in the data set into two parts, the Stem and the Leaf. 
2. List the stems in order in a column, starting with the smallest stem and ending with 

the largest. 
3. Proceed through the data set, placing the leaf for each observation in the 

appropriate stem row. 
 

 

Depending on the data, a display can use one, two or five lines per stem. Among the different 
stems, two-line stems are widely used. 
 

Example 2.5 The quantity of glucose in blood of 100 persons is measured and recorded in 
Table 2.0b (unit is mg %). Using SPSS we obtain the following Stem-and-Leaf display for this 
data set. 

 

Table 2.0b   Quantity of glucose in blood of 100 students (unit: mg %) 

70 79 80 83 85 85 85 85 86 86 

86 87 87 88 89 90 91 91 92 92 

93 93 93 93 94 94 94 94 94 94 

95 95 96 96 96 96 96 97 97 97 

97 97 98 98 98 98 98 98 100 100 

101 101 101 101 101 101 102 102 102 103 

103 103 103 104 104 104 105 106 106 106 

106 106 106 106 106 106 106 107 107 107 

107 108 110 111 111 111 111 111 112 112 

112 115 116 116 116 116 119 121 121 126 
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Figure 2.4. 
Output from SPSS 
showing the Stem-
and-Leaf display for 
the data set of 
glucose 

GLUCOSE 

GLUCOSE Stem-and-Leaf Plot 

 

 Frequency    Stem &  Leaf 

 

     1.00 Extremes    (=<70) 

     1.00        7 .  9 

     2.00        8 .  03 

    11.00        8 .  55556667789 

    15.00        9 .  011223333444444 

    18.00        9 .  556666677777888888 

    18.00       10 .  001111112223333444 

    16.00       10 .  5666666666677778 

     9.00       11 .  011111222 

     6.00       11 .  566669 

     2.00       12 .  11 

     1.00 Extremes    (>=126) 

 

 Stem width:        10 

 Each leaf:       1 case(s) 

 

 

The stem and leaf display of Figure 2.4 partitions the data set into 12 classes corresponding to 
12 stems. Thus, here two-line stems are used. The number of leaves in each class gives the 
class frequency. 

Advantages of a stem and leaf display over a frequency distribution (considered in the 
next section):  
1. The original data are preserved. 
2. A stem and leaf display arranges the data in an orderly fashion and makes it easy to 

determine certain numerical characteristics to be discussed in the following chapter. 
3. The classes and numbers falling in them are quickly determined once we have selected the 

digits that we want to use for the stems and leaves. 

Disadvantage of a stem and leaf display: 

Sometimes not much flexibility in choosing the stems. 

 2.6 Tabulating quantitative data:  Relative frequency distributions         
Frequency distribution or relative frequency distribution is most often used in scientific 
publications to describe quantitative data sets. They are better suited to the description of large 
data sets and they permit a greater flexibility in the choice of class widths. 



 xv 

A frequency distribution is a table that organizes data into classes. It shows the number of 
observations from the data set that fall into each of classes. It should be emphasized that we 
always have in mind non-overlapping classes, i.e. classes without common items. 

 

Steps for constructing a frequency distribution and relative frequency 
distribution: 

1. Decide the type and number of classes for dividing the data set, lower limit and 
upper limit of  the classes: 

Lower limit < Minimum of values 

Upper limit > Maximum of values 

2. Determine the width of class intervals: 

classes ofnumber   Total

limitLower   -limit Upper  
intervals class ofWidth =  

3. For each class, count the number of observations that fall in that class. This 
number is called the class frequency. 

4. Calculate each class relative frequency  

nsobservatio  ofnumber   Total

frequency Class
frequency relative Class =  

 

 

Except for frequency distribution and relative frequency distribution one usually uses relative 
class percentage, which is calculated by the formula: 

 

 

Relative class percentage  =  Class relative frequency x 100% 

 

Example 2.6 Construct frequency table for the data set of quantity of glucose in blood of 100 
persons recorded in Table 2.0b (unit is mg %). 

Using the software STATGRAPHICS, taking Lower limit = 62, Upper limit = 150 and Total 
number of classes = 22 we obtained the following table. 
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Table 2.1 Frequency distribution for glucose in blood of 100 persons  

 

Class Lower 
Limit 

Upper 
Limit 

Midpoint Frequency Relative 
Frequency 

Cumulative 
Frequency 

Cum. Rel. 

Frequency 

0 62 66 64 0 0 0 0 

1 66 70 68 1 0.01 1 0.01 

2 70 74 72 0 0 1 0.01 

3 74 78 76 0 0 1 0.01 

4 78 82 80 2 0.02 3 0.03 

5 82 86 84 8 0.08 11 0.11 

6 86 90 88 5 0.05 16 0.16 

7 90 94 92 14 0.14 30 0.3 

8 94 98 96 18 0.18 48 0.48 

9 98 102 100 11 0.11 59 0.59 

10 102 106 104 18 0.18 77 0.77 

11 106 110 108 6 0.06 83 0.83 

12 110 114 112 8 0.08 91 0.91 

13 114 118 116 5 0.05 96 0.96 

14 118 122 120 3 0.03 99 0.99 

15 122 126 124 1 0.01 100 1 

16 126 130 128 0 0 100 1 

17 130 134 132 0 0 100 1 

18 134 138 136 0 0 100 1 

19 138 142 140 0 0 100 1 

20 142 146 144 0 0 100 1 

21 146 150  0 0 100 1 

 

 

Remarks: 

1. All classes of frequency table must be mutually exclusive. 
2. Classes may be open-ended when either the lower or the upper end of a quantitative 

classification scheme is limitless. For example  
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Class: age 

birth to 7 

8 to 15 

........ 

64 to 71 

72 and older 

 

3. Classification schemes can be either discrete or continuous. Discrete classes are separate 
entities that do not progress from one class to the next without a break. Such class as the 
number of children in each family, the number of trucks owned by moving companies. 
Discrete data are data that can take only a limit number of values. Continuous data do 
progress from one class to the next without a break. They involve numerical measurement 
such as the weights of cans of tomatoes, the kilograms of pressure on concrete. Usually, 
continuous classes are half-open intervals. For example, the classes in Table 2.1 are half-
open intervals [62, 66), [66, 70) ... 

2.7 Graphical description of quantitative data: histogram and polygon 
There is an old saying that “one picture is worth a thousand words”. Indeed, statisticians have 
employed graphical techniques to describe sets of data more vividly. Bar charts and pie charts 
were presented in Figure 2.2 and Figure 2.3 to describe qualitative data. With quantitative data 
summarized into frequency, relative frequency tables, however, histograms and polygons are 
used to describe the data.  

2.7.1 Histogram 
When plotting histograms, the phenomenon of interest is plotted along the horizontal axis, while 
the vertical axis represents the number, proportion or percentage of observations per class 
interval – depending on whether or not the particular histogram is respectively, a frequency 
histogram, a relative frequency histogram or a percentage histogram. 

Histograms are essentially vertical bar charts in which the rectangular bars are constructed at 
midpoints of classes. 

Example 2.7 Below we present the frequency histogram for the data set of quantities of 
glucose, for which the frequency table is constructed in Table 2.1. 
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Figure 2.5  Frequency histogram for quantities of glucose, tabulated in Table 2.1  

Remark: When comparing two or more sets of data, the various histograms can not be 
constructed on the same graph because superimposing the vertical bars of one on another 
would cause difficulty in interpretation.  For such cases it is necessary to construct relative 
frequency or percentage polygons. 

2.7.2 Polygons 

As with histograms, when plotting polygons the phenomenon of interest is plotted along the 
horizontal axis while the vertical axis represents the number, proportion or percentage of 
observations per class interval – depending on whether or not the particular polygon is 
respectively, a frequency polygon, a relative frequency polygon or a percentage polygon. For 
example, the frequency polygon is a line graph connecting the midpoints of each class interval 
in a data set, plotted at a height corresponding to the frequency of the class.  

Example 2.8 Figure 2.6 is a frequency polygon constructed from data in Table 2.1. 

 

Figure 2.6  Frequency polygon for data of glucose in Table 2.1 

 

Advantages of polygons:   

• The frequency polygon is simpler than its histogram counterpart. 
• It sketches an outline of the data pattern more clearly. 
• The polygon becomes increasingly smooth and curve like as we increase the number 

of classes and the number of observations. 
  

2.8 Cumulative distributions and cumulative polygons 
Other useful methods of presentation which facilitate data analysis and interpretation are the 
construction of cumulative distribution tables and the plotting of cumulative polygons. Both may 
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be developed from the frequency distribution table, the relative frequency distribution table or 
the percentage distribution table. 

A cumulative frequency distribution enables us to see how many observations lie above or 
below certain values, rather than merely recording the number of items within intervals.  

 A “less-than” cumulative frequency distribution may be developed from the frequency table as 
follows: 

Suppose a data set is divided into n classes by boundary points x1, x2, ..., xn, xn+1. Denote the 
classes by C1, C2, ..., Cn. Thus, the class Ck = [xk, xk+1). See Figure 2.7. 

 

Suppose the frequency and relative frequency  of class Ck is  fk and rk (k=1, 2, ..., n), 

respectively.  Then the cumulative frequency that observations fall into classes C1, C2, ..., Ck or 

lie below the value xk+1 is the sum f1+f2+...+fk. The corresponding cumulative  relative 

frequency is r1 +r2+...+rk. 

Example 2.9 Table 2.1 gives frequency, relative frequency, cumulative frequency and 
cumulative relative frequency distribution for quantity of glucose in blood of 100 students. 
According to this table the number of students having quantity of glucose less than 90 is 16. 

A graph of cumulative frequency distribution is called an  “less-than” ogive or simply ogive. 
Figure 2. shows the cumulative frequency distribution for quantity of glucose in blood of 100 
students (data from Table 2.1) 
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Figure 2.7  Class intervals 
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Figure 2.8  Cumulative frequency distribution for quantity of glucose 
(for data in Table 2.1) 

 

2.9 Summary 
This chapter discussed methods for presenting data set of qualitative and quantitative variables. 

For a qualitative data set we first define categories and the category frequency which is the 
number of observations falling in each category. Further, the category relative frequency 

and the percentage for a category are introduced. Bar graphs and pie charts as the graphical 
pictures of the data set are constructed. 

If the data are quantitative and the number of the observations is small the categorization and 
the determination of class frequencies can be done by constructing a stem and leaf display. 
Large sets of data are best described using relative frequency distribution. The latter presents a 
table that organizes data  into classes with their relative  frequencies. For describing the 
quantitative data graphically histogram and polygon are used. 

 

2.10  Exercises 
1) A national cancer institure survey of 1,580 adult women recently responded to the question 

“In your opinion, what is the most serious health problem facing women?” The responses 
are summarized in the following table: 

 

The most serious health 
problem for women 

Relative 
frequency 

Breast cancer 0.44 

Other cancers 0.31 

Emotional stress 0.07 

High blood pressure 0.06 

Heart trouble 0.03 

Other problems 0.09 

 

a) Use one of graphical methods to describe the data. 

b) What proportion of the respondents believe that high blood pressure or heart trouble is the 
most serious health problem for women? 

c) Estimate the percentage of all women who believe that some type of cancer is the most 
serious health problem for women? 

2) The administrator of a hospital has ordered a study of the amount of time a patient must wait 
before being treated by emergency room personnel. The following data were collected 
during a typical day: 
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WAITING TIME (MINUTES) 

12 16 21 20 24 3 11 17 29 18 

26 4 7 14 25 2 26 15 16 6 

a) Arrange the data in an array from lowest to heighest. What comment can you make 
about patient waiting time from your data array? 

b) Construct a frequency  distribution using 6 classes. What additional interpretation can 
you give to the data from the frequency distribution? 

c) Construct the cumulative relative frequency polygon and from this ogive state how long 
75% of the patients should expect to wait. 

3) Bacteria are the most important component of microbial eco systems in sewage treatment 
plants. Water management engineers must know the percentage of active bacteria at each 
stage of the sewage treatment.  The accompanying data represent  the percentages of 
respiring bacteria in 25 raw sewage samples collected from a sewage plant. 

 

42.3 50.6 41.7 36.5 28.6 

40.7 48.1 48.0 45.7 39.9 

32.3 31.7 39.6 37.5 40.8 

50.1 39.2 38.5 35.6 45.6 

34.9 46.1 38.3 44.5 37.2 

 a. Construct  a relative frequency distribution for the data. 

 b. Construct a stem and leaf display for the data. 

 c. Compare the two graphs of parts a and b. 

4) At a newspaper office, the time required to set the entire front page in type was recorded for 
50 days. The data, to the nearest tenth of a minute, are given below. 

 

20.8 22.8 21.9 22.0 20.7 20.9 25.0 22.2 22.8 20.1 

25.3 20.7 22.5 21.2 23.8 23.3 20.9 22.9 23.5 19.5 

23.7 20.3 23.6 19.0 25.1 25.0 19.5 24.1 24.2 21.8 

21.3 21.5 23.1 19.9 24.2 24.1 19.8 23.9 22.8 23.9 

19.7 24.2 23.8 20.7 23.8 24.3 21.1 20.9 21.6 22.7 

a) Arrange the data in an array from lowest to heighest. 
b) Construct a frequency  distribution and a “less-than” cumulative  frequency    distribution 

from the data, using intervals of 0.8 minutes. 
c) Construct a frequency  polygon from the data. 
d) Construct a  “less-than” ogive from the data. 
e) From your ogive, estimate what percentage of the time the front page can be set in less 

than 24 minutes. 
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Chapter 3  Data characteristics: descriptive summary 
statistics  
 

CONTENTS 

3.1. Introduction 

3.2. Types of numerical descriptive measures 

3.3. Measures of central tendency 

3.4. Measures of data variation 

3.5. Measures of relative standing 

3.6. Shape  

3.7.  Methods for detecting outlier 

3.8. Calculating some statistics from grouped data 

3.9. Computing descriptive summary statistics using computer softwares 

3.10. Summary 

3.11. Exercises 

 

3.1  Introduction 
In the previous chapter data were collected and appropriately summarized into tables and charts. In 

this chapter a variety of descriptive summary measures will be developed. These descriptive  measures 
are useful for analyzing and interpreting quantitative data, whether collected in raw form (ungrouped 
data) or summarized into frequency distributions (grouped data) 

 

3.2  Types of numerical descriptive measures 

Four types of characteristics which describe a data set pertaining to some numerical variable or 
phenomenon of interest are: 
• Location 
• Dispersion 
• Relative standing 
• Shape 
In any analysis and/or interpretation of numerical data, a variety of descriptive measures 
representing the properties of location, variation, relative standing and shape may be used to 
extract and summarize  the salient features of the data set. 

If these descriptive measures are computed from a sample of data they are called statistics . In 
contrast, if these descriptive measures are computed from an entire population of data, they are 
called parameters. 

Since statisticians usually take samples rather than use entire populations, our primary 
emphasis deals with statistics rather than parameters. 
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3.3  Measures of location (or measures of central tendency) 

3.3.1. Mean 

 

Definition 3.1 

The arithmetic mean of a sample (or simply the sample mean) of  n observations 

nxxx ,,, 21 Κ , denoted by x  is computed as 
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Definition 3.1a 

The population mean is defined by the formula 
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Note that the definitions of the population mean and the sample mean are the same. It is also 
valid for the definition of other measures of central tendency. But in the next section we will give 
different formulas for variances of  population and  sample. 

  

Example 3.1  Consider 7 observations: 4.2, 4.3, 4.7, 4.8, 5.0, 5.1, 9.0. 

By definition   

x  = (4.2+ 4.3+ 4.7+ 4.8+ 5.0+ 5.1+ 9.0)/7 = 5.3 

 

Advantages of the mean: 

• It is a measure that can be calculated and is unique. 
• It is useful for performing statistical procedures such as comparing the means from several 

data sets. 

Disadvantages of the mean: 

It is affected by extreme values that are not representative of the rest of the data.  

Indeed, if in the above example we compute the mean of the first 6 numbers and exclude the 
9.0 value, then the mean is 4.7. The one extreme value 9.0 distorts the value we get for the 
mean. It would be more representative to calculate the mean  without including such an extreme 
value.  
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3.3.2.  Median 
 

Definition 3.2 

The median m of a sample of n observations nxxx ,,, 21 Κ arranged in ascending or 

descending order is the middle number that divides the data set into two equal 
halves: one half of the items lie above this point, and the other half lie below it. 

 

 

Formula for calculating median of an arranged in ascending order data set 

 

 

 

 

 

 

Example 3.2  Find the median of the data set consisting of the observations 7, 4, 3, 5, 6, 8, 10. 

Solution  First, we arrange the data set in  ascending order   

3  4  5  6  7  8  10. 

Since the number of observations is odd, n = 2 x 4 - 1, then median m = x4 = 6. We see that a half of the 

observations, namely, 3, 4, 5 lie below the value 6 and another half of the observations, namely, 7, 8 and 

10 lie above the value 6. 

Example 3.3   Suppose we have an even number of the observations 7, 4, 3, 5, 6, 8, 10, 1. Find 
the median of this  data set. 

Solution  First, we arrange the data set in  ascending order   

1  3  4  5  6  7  8  10. 

Since the number of the observations n  = 2 x 4, then by Definition  

Median = (x4+x5)/2 = (5+6)/2 = 5.5 

 

Advantage of the median over the mean: Extreme values in data set do not affect the median  
as strongly as they do the mean.   

Indeed, if in Example 3.1 we have 

mean = 5.3,  median = 4.8. 

The extreme value of 9.0 does not affect the median. 

3.3.3   Mode 
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Definition 3.3 

The mode of  a data set nxxx ,,, 21 Κ  is the value of  x    that occurs with the 

greatest frequency , i.e., is repeated most often in the data set.  

 

 

Example 3.4  Find the mode of  the data set in Table 3.1. 

 

Table 3.1 Quantity of glucose (mg%) in blood of 25 students 

70 88 95 101 106 

79 93 96 101 107 

83 93 97 103 108 

86 93 97 103 112 

87 95 98 106 115 

 

Solution  First we arrange this data set in the ascending order  

  

70 88 95 101 106 

79 93 96 101 107 

83 93 97 103 108 

86 93 97 103 112 

87 95 98 106 115 

 

This data set contains 25 numbers. We see that, the value of 93 is repeated most often. 
Therefore, the mode of the data set is 93. 

Multimodal distribution:  A  data set may have several modes. In this case it is called 
multimodal distribution.  

Example 3.5  The data set  

 

0 2 6 9 

0 4 6 10 

1 4 7 11 

1 4 8 11 

1 5 9 12 
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have two modes: 1 and 4.  his distribution is called bimodal distribution. 

Advantage of the mode: Like the median, the mode is not unduly affected  by extreme values. 
Even if the high values are very high and the low value  is very low, we choose the most 
frequent value  of the data set to be the modal value We can use the mode no matter how large, 
how small, or how spread out the values in the data set happen to be.  

Disadvantages of the mode:  

• The mode is not used as often to measure central tendency as are the mean and the 
median. Too often, there is no modal value  because the data set contains no values that 
occur more than once. Other times, every value  is the mode because every value occurs for 
the same number of times. Clearly, the mode is a useless measure  in these cases.  

• When data sets contain two, three, or many modes, they are difficult to interpret and 
compare. 

 

Comparing the Mean, Median and Mode 

• In general, for data set 3 measures of central tendency: the mean , the median and the 
mode are different. For example, for the data set in Table 3.1,  mean =96.48, median  = 97 
and mode = 93. 

• If all observations in a data set are arranged symmetrically about an observation then this 
observation is the mean, the median and the mode.  

• Which of these three measures of  central tendency is better? The best measure of central 
tendency for a data set depends on the type of descriptive information you want. For most 
data sets encountered in business, engineering and computer science, this will be the 
MEAN.  

 

3.3.4 Geometric mean 
 

Definition 3.4 

Suppose all the n observations  in a data set 0,,, 21 >nxxx Κ . Then the geometric 

mean   of the data set is defined by the formula 

 

n
nG xxxMGx .... 21==  

 

The geometric mean is appropriate to use whenever we need to measure  the average rate of 
change (the growth rate) over a period of time. 

From the above formula it follows 

 

where log is the logarithmic function of any base. 
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Thus, the logarithm of the geometric mean of the values of a data set is equal to the arithmetic mean of 
the logarithms of the values of the data set.  
 

3.4  Measures of data variation 
Just as measures of central tendency locate the “center” of a relative  frequency distribution, 
measures of  variation measure  its “spread”. 

The most commonly used measures of  data variation are the range, the variance and the 
standard deviation. 

3.4.1  Range  
 

Definition 3.5 
The range of a quantitative data set is the difference between the largest and smallest values 
in the set.  
 

Range = Maximum - Minimum, 

where Maximum = Largest value, Minimum = Smallest value. 

  

3.4.2  Variance and standard deviation  
 

Definition 3.6 

The population variance of the population of the observations x is defined the formula 
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where:  2σ =population variance  

  ix  = the item or observation 

  µ  = population mean  

  N  = total number of observations in the population. 

 

 

From the Definition 3.6 we see that the population variance is the average of the squared 
distances of the observations from the mean.  
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Definition 3.7 

The standard deviation of a population is equal to the square root of the variance  
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Note that for the variance, the units are the squares of the units of the data. And for the 
standard deviation, the units are the same as those used in the data. 

 

Definition 3.6a 

The sample variance of the sample of  the observations nxxx ,,, 21 Κ  is defined the 

formula 
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where:  2s =sample variance  

  x  = sample mean  

  n  = total number of observations in the sample 

 

The standard deviation of the sample is  

2ss =  

 

 

Remark: In the denominator of the formula for s
2
  we use n-1 instead n because statisticians 

proved that if s
2
 is defined as above then s2 is an unbiased estimate of the variance of the 

population from which the sample was selected ( i.e. the expected value  of s
2 is equal to the 

population variance ). 

Uses of the standard deviation   

 The standard deviation enables us to determine, with a great deal of accuracy, where the 
values of a frequency distribution are located in relation to the mean.  We can do this according 
to a theorem devised by the Russian mathematician P.L. Chebyshev (1821-1894). 
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Chebyshev’s Theorem 

For any data set with the mean x  and the standard deviation s at least  75% of the 

values will fall within the interval  sx 2± and at least 89% of the values will fall within 

the interval sx 3± . 

 

We can measure with  even more precision the percentage of items that fall within specific 
ranges under a symmetrical, bell-shaped curve. In these cases we have: 

 

The Empirical Rule  

If a relative frequency  distribution of sample data is bell-shaped  with mean x  and 
standard deviation s, then the proportions of the total number of observations falling 
within the intervals sx ± , sx 2± , sx 3± are as follows: 

sx ± :    Close to 68%  

sx 2± :  Close to 95% 

sx 3± :  Near 100% 

 

3.4.3  Relative dispersion: The coefficient  of variation 

The standard deviation is an absolute measure of  dispersion  that expresses variation in the 
same units as the original data. For example, the unit of standard deviation of the data set of 
height of a group of students is centimeter, the unit of standard deviation of the data set of their 
weight is kilogram. Can we compare the values of these standard deviations? Unfortunately, no, 
because they are in the different units. 

We need a relative measure that will give us a feel for the magnitude of the deviation relative to 
the magnitude of the mean. The coefficient  of variation is one such relative measure of 
dispersion. 

 

Definition 3.8 

The coefficient  of variation of a data set is the relation of its standard deviation to its 
mean 

cv = Coefficient of variation = %100
Mean

deviation  Standard
×  

 

This definition is applied to both population and sample. 

 The unit of the coefficient  of variation is percent. 
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Example 3.6  Suppose that each day laboratory technician A completes 40 analyses with a 

standard deviation of 5. Technician B completes 160 analyses per day with a standard deviation  
of 15. Which employee shows less variability? 

At first glance, it appears that technician B has three times more variation in the output rate than 

technician A. But B completes analyses at a rate 4 times faster than A. Taking all this 
information into account, we compute the coefficient  of variation for both technicians: 

 For technician A:  cv=5/40 x 100% = 12.5% 

 For technician B:  cv=15/60 x 100% = 9.4%. 

So, we find that, technician B who has more absolute variation in output than technician A, has 
less relative variation. 

 3.5  Measures of relative standing 

In some situations, you may want to describe the relative position of a particular observation in a 
data set. 

Descriptive measures that locate the relative position of an observation in relation to the other 
observations  are called measures of relative standing.  

A measure that expresses this position in terms of a percentage is called a percentile for the 
data set. 

 

Definition 3.9 

Suppose a data set is arranged in ascending (or descending ) order. The pth    

percentile is a number such that p% of the observations of the data set fall below and 

(100-p)% of the observations fall above it. 

The median, by definition, is the 50th  percentile.    
The 25th percentile, the median and 75th percentile are often used to describe a data set 
because they divide the data set into 4 groups, with each group containing one-fourth (25%) of 
the observations. They would also divide the relative  frequency distribution for a data set into 4 
parts, each contains the same are (0.25) , as shown in Figure 3.1. Consequently, the 25th 
percentile, the median, and the 75th percentile are called the lower quartile, the mid quartile, and 
the upper quartile, respectively, for a data set.  

 

Definition 3.10 

The lower quartile, QL, for a data set is the 25
th  percentile 
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Definition 3.11 

The mid- quartile, M, for a data set is the 50th  percentile. 

 

 

Definition 3.12 

The upper quartile, QU, for a data set is the 75
th  percentile. 

 

Definition 3.13 

The interquartile range of a data set is  QU  - QL . 

 

 

 

 

 

                                       QL      M        QU    
Figure 3.1  Locating of lower, mid and upper quartiles 

 

For large data set, quartiles are found by locating the corresponding areas under the relative 
frequency distribution polygon as in Figure 3. . However, when the sample data set is small, it 
may be impossible to find an observation in the data set that exceeds, say, exactly 25% of the 
remaining observations. Consequently, the lower and the upper quartiles for small data set are 
not well defined. The following box describes a procedure for finding quartiles for small data 
sets. 

 

Finding quartiles for small data sets: 

1. Rank the n observations in the data set in ascending order  of magnitude. 
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2. Calculate the quantity (n+1)/4 and round to the nearest integer. The observation 
with this rank  represents the lower quartile. If (n+1)/4 falls halfway between two 
integers, round up. 

3. Calculate the quantity 3(n+1)/4 and round to the nearest integer. The observation 

with this rank  represents the upper quartile. If 3(n+1)/4 falls halfway between two 
integers, round down. 

 

 

Example 3.7 Find the lower quartile, the median, and  the upper quartile for the data set  in 
Table 3.1. 

Solution  For this data set n = 25. Therefore, (n+1)/4 = 26/4 = 6.5,  3(n+1)/4 = 3*26/4 = 19.5. We 
round 6.5 up to 7 and 19.5 down to 19. Hence, the lower quartile = 7th  observation = 93, the 
upper quartile =19th observation = 103. We also have the median = 13th  observation = 97. The 
location of  these quartiles is presented in Figure 3.2. 

 

Another measure of real relative standing is the z-score for an observation (or standard score). 
It describes how far individual item in a distribution departs from the mean of the distribution. 
Standard score gives us the number of standard deviations, a particular observation lies below 
or above the mean. 

 

     70    80  90  93     97 100 103        110      115 
  

   

 Min       QL         M        QU                  Max 

 

Figure 3.2   Location of the quartiles for the data set of Table 2.1 
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Definition  3.14  

Standard score (or z -score)  is defined as follows: 

For a population:  

z-score= 
σ
µ−x
 

where    x  = the observation from the population, 

µ = the population mean,  

 σ = the population standard deviation . 

For a sample: 

z-score= 
s

xx −
 

where    x  = the observation from the sample 

x = the sample mean,  

 s = the sample standard deviation . 

 

3.6  Shape  

The fourth important  numerical characteristic of a data set is its shape. In describing a 
numerical data set its is not only necessary to summarize the data  by presenting appropriate 
measures of central tendency, dispersion  and relative standing, it is also necessary to consider 
the shape of the data – the manner, in which the data are distributed. 

There are two measures of the shape of a data set: skewness and kurtosis. 

 

3.6.1  Skewness 

If the distribution of the data is not symmetrical, it is called asymmetrical or skewed. 

Skewness characterizes the degree of asymmetry of a distribution around its mean. For a 
sample data, the  skewness is defined by the formula: 

3
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Skewness , 

where   n = the number of observations in the sample, 
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 ix  = i
th observation in the sample, 

 s = standard deviation of the sample. 

The direction of the skewness depends upon the location of the extreme values. If the extreme 
values are the larger observations, the mean will be the measure  of location most greatly 
distorted toward the upward direction. Since the mean exceeds the median and the mode, such 
distribution is said to be positive or right-skewed.  The tail of its distribution is extended to the 
right. This is depicted in Figure 3.3a.   

On the other hand, if the extreme values are the smaller observations, the mean will be the 
measure  of location most greatly reduced. Since the mean is exceeded by the median and the 
mode, such distribution is said to be negative or left-skewed.  The tail of its distribution is 
extended to the left. This is depicted in Figure 3.3b.  

 

 
 

 

Figure 3.3a  Right-skewed 
distribution 

 

Figure 3.3b  Left-skewed distribution 

 

 

3.6.2  Kurtosis 

Kurtosis characterizes the relative peakedness or flatness of a distribution compared with the  
bell-shaped distribution (normal distribution). 

Kurtosis of a sample data set is calculated by the  formula: 
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Positive kurtosis indicates a relatively peaked distribution. Negative kurtosis indicates a 
relatively flat distribution. 

The distributions with positive and negative kurtosis are depicted in Figure 3.4 , where the 
distribution with null kurtosis is normal distribution. 
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Figure 3.4 
The distributions 
with positive and 
negative kurtosis 

 

 

 

 

3.7  Methods for detecting outlier 
 

Definition 3.15 

An observation (or measurement) that is unusually large or small relative to the 
other values in a data set is called an outlier. Outliers typically are attributable to 
one of the following causes: 

1. The measurement is observed, recorded, or entered into the computer 
incorrectly. 

2. The measurements come from a different population. 
3. The measurement is correct, but represents a rare event. 
 

 

Outliers occur when the relative frequency distribution of the data set is extreme skewed, 
because such a distribution of the data set has a tendency to include extremely large or small 
observations. 

There are two widely used methods for detecting outliers.  

 Method of using z-score: 

According to Chebyshev theorem almost all the observations in a data set will have z-score less 

than 3 in absolute value i.e. fall into the interval ( )sxsx 3,3 +− , where x the mean and s is is 

the standard deviation of the sample. Therefore, the observations with z-score greater than 3 
will be outliers. 

Example 3.8 The doctor of a school has measured the height of pupils in the class 5A. The 
result (in cm) is follows 
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   Table 3.2  Heights of the pupils of the class 5A 

 

 

 

 

 

For the data set in Table 3.1  x = 132.77,   s = 6.06, 3s = 18.18, z-score of the observation of 
153 is (153-132.77)/6.06=3.34 , z-score of 110 is (110-132.77)/6.06 = -3.76. Since the absolute 

values of z-score of 153 and 110 are more than 3, the height of 153 cm and the height of 110 

cm are outliers in the data set. 

Box plot  method 

Another procedure for detecting outliers is to construct a box plot of the data. Below we present 
steps to follow in constructing a box plot. 

 

Steps to follow in constructing a box plot 

1. Calculate the median M, lower and upper quartiles, QL and QU, and the 

interquartile range, IQR= QU - QL, for the data set. 
2. Construct a box with QL and QU located at the lower corners. The base width will 

then be equal to IQR. Draw a vertical line inside the box to locate the median M. 
3. Construct two sets of limits on the box plot: Inner fences are located a distance 

of 1.5 * IQR below QL and above QU; outer fences are located a distance of 3 * 

IQR below QL and above QU (see Figure 4.5 ). 
4. Observations that fall between the inner and outer fences are called suspect 

outliers. Locate the suspect outliers on the box plot using asterisks 
(*).Observations that fall outside the outer fences is called highly suspect 
outliers. Use small circles to locate them. 

 

 

130 132 138 136 131 153 

131 133 129 133 110 132 

129 134 135 132 135 134 

133 132 130 131 134 135 
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For large data set box plot can be constructed using available statistical computer software. 

A computer-generated by SPSS box plot for data set in Table 3.2 is shown in Figure 3.6.  

 

 

Figure 3.6  Output from SPSS  showing box plot for the data set in Table 3.2 
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                   QL            M         QU   

 

               1.5 * IQR 1.5 * IQR IQR     1.5 * IQR     1.5 * IQR 

  

 

      

Figure 3.5  Box plot 
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3.8  Calculating some statistics from grouped data 

In Sections 3.3 through 3.6 we gave formulas for computing the mean, median, standard 
deviation etc. of a data set. However, these formulas apply only to raw data sets, i.e., those, in 
which the value of each of the individual observations in the data set is known.  If the data have 
already been grouped into classes of equal width and arranged in a frequency table, you must 
use an alternative method to compute the mean, standard deviation etc. 

Example 3.9 Suppose we have a frequency table of average monthly checking-account 
balances of 600 customers at a branch bank. 

 

CLASS (DOLLARS) FREQUENCY 

0 – 49.99 78 

50 – 99.99 123 

100 – 149.99 187 

150 – 199.99 82 

150 – 199.99 82 

200 – 249.99 51 

250 – 299.99 47 

300 – 349.99 13 

350 – 399.99 9 

400 – 449.99 6 

450 – 499.99 4 

From the information in this table, we can easily compute an estimate of the value of the mean 
and the standard deviation.  

Formulas for calculating the mean and the standard deviation for grouped data: 
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where   x  = mean of the data set,     s2 = standard deviation of the data set 

xi = midpoint of the ith class,  fi = frequency of the ith class, 
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 k = number of classes, n = total number of observations in the data set. 

  

3.9  Computing descriptive summary statistics using computer 
softwares 

All statistical computer softwares have procedure for computing descriptive summary statistics. 
Below we present outputs from STATGRAPHICS and SPSS for computing descriptive summary 
statistics for GLUCOSE data in Table 2.0b. 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

Variable:             GLUCOSE.GLUCOSE                                 

---------------------------------------------------------

------------- 

Sample size           100.                                            

Average               100.                                            

Median                100.5                                           

Mode                  106.                                            

Geometric mean         99.482475                                      

Variance              102.767677                                      

Standard deviation     10.137439                                      

Standard error          1.013744                                      

Minimum                70.                                            

Maximum               126.                                            

Range                  56.                                            

Lower quartile         94.                                            

Upper quartile        106.                                            

Interquartile range    12.                                            

Skewness               -0.051526                                     

Kurtosis                0.131118                                      

Coeff. of variation    10.137439 

 

Figure 4.7 Output from STATGRAPHICS for Glucose data 
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3.10 Summary 
Numerical descriptive measures enable us to construct a mental image of the relative frequency 
distribution for a data set pertaining to a numerical variable. There are 4 types of these 
measures: location, dispersion, relative standing and shape. 

 Three numerical descriptive measures are used to locate a relative frequency distribution are 
the mean, the median, and the mode. Each conveys a special piece of information. In a sense, 
the mean is the balancing point for the data. The median, which is insensitive to extreme values, 
divides the data set into two equal halves: half of the observations will be less than the median 
and half will be larger. The mode is the observation that occurs with greatest frequency. It is the 
value of the data set that locates the point where the relative frequency distribution achieves its 
maximum relative frequency. 

The range and the standard deviation measure the spread of a relative frequency distribution. 
Particularly, we can obtain a very good notion of the way data are distributed around the mean 
by constructing the intervals and referring to the Chebyshev’s theorem and the Empirical rule.  

Percentiles, quartiles, and z-scores measure the relative position of an observation in a data set. 
The lower and upper quartiles and the distance between them called the inter-quartile range can 
also help us visualize a data set. Box plots constructed from intervals based on the inter-quartile 
range and z-scores provide an easy way to detect possible outliers in the data. 

The two numerical measures of the shape of a data set are skewness and kurtosis. The 
skewness characterizes the degree of asymmetry of a distribution around its mean. The kurtosis 
characterizes the relative peakedness or flatness of a distribution compared with the bell-
shaped distribution. 
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3.11  Exercises 

1. The ages of a sample of the people attending a  training course on networking in IOIT in 
Hanoi are: 

 

29 20 23 22 30 32 28 

23 24 27 28 31 32 33 

31 28 26 25 24 23 22 

26 28 31 25 28 27 34 

a) Construct a frequency distribution with intervals 15-19, 20-24, 25-29, 30-34, 35-39. 

b) Compute the mean and the standard deviation of the raw data set. 

c) Compute the approximate values for the  mean and the standard deviation using the 
constructed frequency distribution table. Compare these values with ones obtained in b).  

2. Industrial engineers periodically conduct “work measurement” analyses to determine the 
time used to produce a single unit of output. At a large processing plant, the total number of 
man-hours required per day to perform a certain task was recorded for 50 days. his 
information will be used in a work measurement analysis. The total man-hours required for 
each of the 50 days are listed below. 

 

128 119 95 97 124 128 142 98 108 120 

113 109 124 97 138 133 136 120 112 146 

128 103 135 114 109 100 111 131 113 132 

124 131 133 88 118 116 98 112 138 100 

112 111 150 117 122 97 116 92 122 125 

 

a) Compute the mean, the median, and the mode of the data set. 

b) Find the range, the variance and the standard deviation of the data set. 

c) Construct the intervals sx ± , sx 2± , sx 3± . Count the number of observations that fall 
within each interval and find the corresponding proportions. Compare the  results to the 
Chebyshev theorem. Do you detect any outliers? 

e) Find the 75th percentile for the data on total daily man-hours. 

3. An engineer tested nine samples of each of three designs of a certain bearing for a new 
electrical winch. The following data are the number of hours it took for each bearing to fail when 
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the winch motor was run continuously at maximum output, with a load on the winch equivalent 
to 1,9 times the intended capacity. 

DESIGN 

A B C 

16 18 21 

16 27 17 

53 34 23 

21 34 32 

17 32 21 

25 19 18 

30 34 21 

21 17 28 

45 43 19 

a) Calculate the mean and the median for each group. 

b) Calculate the standard deviation for each group. 

c) Which design is best and why? 

4. The projected 30-day storage charges (in US$) for 35 web pages stored on the web server of 
a university are listed here: 

120 125 145 180 175 167 154 

143 120 180 175 190 200 145 

165 210 120 187 179 167 165 

134 167 189 182 145 178 231 

185 200 231 240 230 180 154 

a) Construct a stem-and-leaf display for the data set. 

b) Compute x , s2 and s. 

c) Calculate the intervals sx ± , sx 2± , and sx 3± and count the number of observations that 
fall within each interval. Compare your results with the Empirical rule.  
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Chapter 4 Probability: Basic concepts 
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4.7. Summary 

4.8. Exercises 

 

 

4.1  Experiment, Events and Probability of an Event 
 

Definition 4.1 

The process of making an observation or recording a measurement under a given 
set of conditions is a trial or experiment 

 

Thus, an experiment is realized whenever the set of conditions is realized. 

Definition 4.2 
Outcomes of an experiment are called events. 

 

 We denote events by capital letters A, B, C,... 

Example 4.1 Consider the following experiment. Toss a coin and observe whether the upside of 
the coin is Head or Tail. Two events may be occurred:  

• H: Head is observed, 

• T: Tail is observed. 

Example 4.2 Toss a die and observe the number of dots on its upper face. You may observe 
one, or two, or three, or four, or five or six dots on the upper face of the die. You can not predict 
this number. 

Example 4.3  When you draw one card from a standard 52 card bridge deck,  some possible 
outcomes of this experiment can not be predicted with certainty in advance are: 

• A: You draw an ace of hearts 

• B: You  draw an eight of diamonds 
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• C: You  draw a spade 

• D: You  do not draw a spade. 
 

The probability of an event A, denoted by P(A), in general, is the chance A will happen. 

But how to measure the chance of occurrence, i.e., how determine the probability an event?  

The answer to this question will be given in the next Sections. 

 
4.2 Approaches to probability  
The number of different definitions of probability that have been proposed by various authors is 
very large. But the majority of definitions can be subdivided into 3 groups: 

1. Definitions of probability as a quantitative measure of the “degree of certainty” of the 
observer of experiment. 

2. Definitions that reduce the concept of probability to the more primitive notion of “equal 
likelihood” (the so-called “classical definition “). 

3. Definitions that take as their point of departure the “relative frequency” of occurrence of the 
event in a large number of trials (“statistical” definition). 

According to the first approach to definition of probability, the theory of probability is something 
not unlike a branch of psychology and all conclusions on probabilistic judgements are deprived 
of the objective meaning that they have independent of the observer. Those probabilities that 
depend upon the observer are called subjective probabilities. 

In the next sections we shall give the classical and statistical definitions of probability.       

   

4.3  The field of events 
Before proceeding to the classical Definition of the concept of probability we shall introduce 
some definitions and relations between the events, which may or may not occur when an 
experiment is realized. 

1. If whenever the event A occurs the event B also occurs, then we say that A implies B (or A 

is contained in B) and write A⊂B or B ⊃ A. 
2. If A implies B and  at  the same time, B implies A, i.e., if for every realization of the 

experiment either A and B both occur or both do not occur, then we say that the events A 

and B are equivalent and write A=B. 

3. The event consisting in the simultaneous occurrence of A and B is called the product or 

intersection of the events A and B, and will be denoted by AB or A∩B. 
4. The event consisting in the occurrence of at least one of the events A or B is called the 

sum, or union, of the events A and B, and is denoted by A+B or A∪B.  
5. The event consisting in the occurrence of A and the non-occurrence of B is called the 

difference of the events A and B and is denoted by A-B or A\B.  

6. An event is called certain (or sure) if it must inevitably occur whenever the experiment is 

realized.  

7. An event is called impossible if it can never occur. 

Clearly, all certain events are equivalent to one another. We shall denote these events by the 
letter E. All impossible events are likewise equivalent and denoted by 0. 
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8. Two events A and A  are complementary if  EAA =+  and AA  = 0 hold simultaneously. 

For example, in the experiment of tossing a die the following events are complementary: 

• evenD  = {even number of dots is observed on upper face}  

• oddD  ={ odd number of dots is observed on upper face} 

9. Two events A and B are called mutually exclusive if when one of  the two events occurs in 

the experiment, the other can not occur, i.e., if their joint occurrence  is impossible   AB = 0. 

10. If  A=B1+B2+...+Bn  and the events Bi (i =1,2,...,n) are mutually exclusive in pairs (or pair 

wise mutually exclusive), i.e., BiBj = 0 for any i≠ j, then we say that the event A is 
decomposed into the mutually exclusive events B1, B2, ..., Bn.  

For example, in the experiment of tossing a  single die, the event consisting of the throw of an 
even number of dots is decomposed into the mutually exclusive events D2, D4 and D6, where Dk 

= {observing k dots on the upper face of the die}. 

11. An event A is called simple (or elementary) if it can not be decomposed into other events. 

For example, the events Dk that k dots (k=1, 2, 3, 4, 5, 6) are observed in the experiment of 
tossing a die are simple events. 

12. The sample space of an experiment is the collection of all its simple events. 

13. Complete list of events: Suppose that when the experiment is realized there may be a list 
of events A1, A2, ..., An with the following properties: 

I. A1, A2, ..., An are pair wise mutually exclusive  events, 

II. A1+A2+...+An=E. 

Then we say that the list of events A1, A2, ..., An is complete. 

The examples of complete list of events may be: 

• List of events Head and  Tail  in tossing a coin 
• List of events D1, D2, D3, D4, D5, D6 in the experiment of tossing a die. 

• List of events  evenD  and oddD  in the experiment of tossing a die. 

All relations between events may be interpreted geometrically by Venn diagrams. In theses 
diagrams the entire sample space is represented by a rectangle and events are represented by 
parts of the rectangle. If two events are mutually exclusive, their parts of the rectangle will not 
overlap each other as shown in Figure 4.1a. If two events are not mutually exclusive, their parts 
of the rectangle will overlap as shown in Figure 4.1b.   

 

  

Figure 4.1a  Two mutually exclusive 
events 

 

Figure 4.1b  Two non-mutually 
exclusive events 
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A A  B 

   

B  A+B AB 

 

Figure 4.2   Events B, B, AA, and AB 

 

In every problem in the theory of probability one has to deal with an experiment (under some 
specific set of conditions) and some specific family of events S. 

 

Definition 4.3 

A family S of events is called a field of events if it satisfies the following properties: 

1. If the event A and B belong to the family S, the so do the events AB, A+B   and A-

B. 

2. The family S contains the certain event E and the impossible event 0 . 
 

 

We see that the sample space of an experiment together with all the events generated from the 
events of this space by  operations “sum”, “product” and “complement” constitute a field of 
events. Thus, for every experiment we have a field of events. 

4.4  Definitions of probability 

4.4.1 The classical definition of probability  

The classical definition of probability reduces the concept of probability to the concept of 
equiprobability (equal likelihood) of events, which is regarded as a primitive concept and hence 
not subject to formal definition. For example, in the tossing of a single perfectly cubical die, 
made of completely homogeneous material, the equally likely events are the appearance of any 
of the specific number of dots (from 1 to 6) on its upper face. 
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Thus, for the classical definition of probability we suppose that all possible simple events are 
equally likely. 

 

Definition 4.4 (The classical definition of probability)  

The probability P(A) of an event A is equal to the number of  possible simple events 
(outcomes) favorable to A divided by the total number of possible simple events of 
the experiment, i.e.,  

N

m
P(A) =  

where m= number of the simple events into which the event A can be decomposed. 

 

 

Example 4.4  Consider again the experiment of tossing a balanced coin (see Example 4.1). In 
this experiment the sample space consists of two simple events: H (Head is observed ) and T 

(Tail is observed ). These events are equally likely. Therefore, P(H)=P(T)=1/2.   

Example 4.5  Consider again the experiment of tossing a balanced die (see Example 4.2). In 
this experiment the sample space consists of 6 simple events: D1, D2, D3, D4, D5, D6, where  Dk  

is the event that k dots (k=1, 2, 3, 4, 5, 6) are observed on the upper face of the die. These 

events are equally likely. Therefore, P(Dk) =1/6  (k=1, 2, 3, 4, 5, 6).  

Since Dodd = D1+D3+D5, Deven = D2+D4+D6 , where Dodd is the event that an odd number of dots 

are observed, Deven an even number of dots are observed, we have P(Dodd)=3/6=1/2, P(Deven) = 

3/6 = 1/2. If denote by A the event that a number less than 6 of dots is observed then P(A) = 5/6 

because the event A = D1+ D2+D3+ D4+ D5 .   

According to the above definition, every event belonging to the field of events S has a well-
defined probability. Therefore, the probability P(A) may be regarded as a function of the event A 

defined over the field of events S. This function has the following properties, which are easily 
proved. 

The properties of probability: 

1. For every event A of the field S,   P(A)≥  0 
2. For the certain event E,   P(E) = 1 

3. If the event A is decomposed into the mutually exclusive events B and C 

belonging to S then P(A)=P(B)+P(C) 
This property is called the theorem on the addition of probabilities. 

4. The probability of the event A  complementary to the event A is given by the 

formula  )(1)( APAP −= . 

5. The probability of the impossible event is zero, P(0) = 0. 

6. If the event A implies the event B then P(A) ≤  P(B). 
7. The probability of any event A lies between 0 and 1:  0 ≤  P(A) ≤  1. 
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Example 4.6  Consider the experiment of tossing two fair coins. Find the probability of the event 
A = {observe at least one Head} by using the complement relationship. 

Solution The experiment of tossing two fair coins has 4 simple events: HH, HT, TH and TT, 

where H = {Head is observed}, T = {Tail is observed}. We see that the event A consists of the 

simple events HH, HT, TH. Then the complementary event for A is A  = { No Heads observed } 

= TT. We have P( A ) = P(TT) = 1/4. Therefore, P(A) = 1-P( A ) = 1-1/4 = 3/4. 

 

4.4.2  The statistical  definition of probability 

The classical definition of probability encounters insurmountable difficulties of a fundamental 
nature in passing from the simplest examples to a consideration of complex problems. First off 
all, the question arises in a majority of cases, as to a reasonable way of selecting the “equally 
likely cases”. Thus, for examples, it is difficult to determine the probability that tomorrow the 
weather will be good, or the probability that a baby to be born is a boy, or to answer to the 
question “what are the chances that I will blow one of my stereo speakers if I turn my amplifier 
up to wide open?” 

Lengthy observations as to the occurrence or non-occurrence of an event A in large number of 
repeated trials under the same set of conditions show that for a wide class of phenomena, the 
number of occurrences or non-occurrences of the event A is subject to a stable law. Namely, if 
we denote by m the number of times the event A occurs in N independent trials, then it turns out 

that for sufficiently large N the ratio m/N in most of such series of observations, assumes an 

almost constant value. Since this constant is an objective numerical characteristic of the 

phenomena, it is natural to call it the statistical probability of the random event A under 
investigation.  

 

Definition 4.5 (The statistical  definition of probability) 

The probability of an event A can be approximated by the proportion of times that A 
occurs when the experiment is repeated a very large number of times. 

 

 

Fortunately, for the events to which the classical definition of probability is applicable, the 
statistical probability is equal to the probability in the sense of the classical definition. 

4.4.3 Axiomatic construction of the theory of probability (optional) 

The classical and statistical definitions of probability reveal  some restrictions and shortcomings 
when deal with complex natural phenomena and especially, they may lead to paradoxical 
conclusions, for example, the well-known Bertrand’s paradox.  Therefore, in order to find wide 
applications of the theory of probability, mathematicians have constructed a rigorous foundation 
of this theory. The first work they have done is the axiomatic definition of probability that 
includes as special cases both the classical and statistical definitions of probability and 
overcomes the shortcomings of each. 

Below we formulate the axioms that define probability. 
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Axioms for probability 

1. With each random event A in a field of events S, there is associated  a non-

negative number P(A),called its probability. 

2. The probability of the certain event E is 1, i.e., P(E) = 1. 
3. (Addition axiom)  If the event A1, A2, ..., An are pair wise mutually exclusive 

events then 
P(A1+ A2+ ...+An) =  P(A1)+P(A2)+ ...+P(An) 

4. (Extended axiom of addition) If the event A is equivalent to the occurrence of at 

least one of the pair wise mutually exclusive  events A1, A2, ..., An,...then 

P(A) =  P(A1)+P(A2)+ ...+P(An)+... 

 

 

Obviously, the classical and statistical definitions of probability which deal with finite sum of 
events, satisfy the formulated above axioms. The necessity for introducing the extended axiom 
of addition is motivated by the fact that in probability theory we constantly have to consider 
events that decompose into an infinite number of sub-events. 

4.5  Conditional probability and independence 
We have said that a certain set of conditions Ç underlies the definition of the probability of an 
event. If no restrictions other than the conditions Ç are imposed when calculating the probability 
P(A), then this probability is called unconditional.  

However, in many cases, one has to determine the probability of an event under the condition 
that an other event B whose probability is greater than 0 has already occurred.  

 

Definition 4.6 

The probability of an event A, given that an event B has occurred, is called the 

conditional probability of A given B and denoted by the symbol P(A|B). 

 

Example 4.7 Consider the experiment of tossing a fair die. Denote by A and B the following 
events: 

A = {Observing  an even number of dots on the upper face of the die}, 

B = {Observing a number of dots less than  or equal to 3 on the upper face of the die}. 

Find the probability of the event A, given the event B. 

Solution  We know that the sample space of the experiment of tossing a fair die consists of 6 
simple events: D1, D2, D3, D4, D5, D6, where  Dk  is the event that k dots (k = 1, 2, 3, 4, 5, 6) are 
observed on the upper face of the die. These events are equally likely, and P(Dk) = 1/6  (k = 1, 
2, 3, 4, 5, 6). Since A =  D2+ D4+ D6, B =  D1+ D2+D3 we have P(A) =  P(D2)+ P(D4)+ P(D6) = 
3*1/6 = 1/2, P(B) =  P(D1)+ P(D2)+ P(D3) = 3*1/6 = 1/2. 
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If the event B has occurred then it reduces the sample space of the experiment from 6 simple 

events to 3 simple events (namely those D1, D2, D3 contained in event B). Since the only even 

number  of three numbers 1, 2, 3  is 2 there is only one simple event D2 of reduced sample 

space that is contained in the event A. Therefore, we conclude that the probability that A occurs 

given that B has occurred is one in three, or 1/3, i.e., P(A|B) = 1/3.  

For the above example it is easy to verify that  
P(B)

P(AB)
P(A|B) = .  In the general case, we use 

this formula to define the conditional probability. 

 

 

Formula for conditional probability 

If the probability of an event B is greater 0  then the conditional probability of an 

event A, given that the event B has occurred, is calculated by the formula 

P(B)

P(AB)
P(A|B) = ,     (1) 

where AB is the event that both A and B occur.  

In the same way, if P(A)>0, the conditional probability of an event B, given that the 

event A has occurred, is defined by the formula 

.  
P(A)

P(AB)
P(B|A) =                            (1’) 

 

Each of formulas (1) and (1’) is equivalent to the so-called Multiplication Theorem.  

 

Multiplication Theorem  

The probability of the product of two events is equal to the product  of the probability 
of one of the events by the conditional probability of the other event, given that the 
first even has occurred, namely 

P(AB) = P(A) P(B|A) = P(B) P(A|B). 

 

The Multiplication Theorem is also applicable if one of the events A and B is impossible since, in 

this case, one of the equalities P(A|B) = 0 and P(AB) = 0 holds along with P(A) = 0. 
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Definition 4.7  

We say that an event A is independent of  an event B if  

P(A|B) = P(A), 

i.e.,  the occurrence of the event B does not affect the probability of the event A. 

 

 

If the event A is independent of the event B, then it follows from (2) that  

P(A) P(B|A) = P(B) P(A). From this we find P(B|A) = P(B) if P(A)>0, i.e., the event B is also 

independent of A. Thus, independence is a symmetrical relation. 

Example 4.8 Consider the experiment of tossing a fair die and define the following events: 

A = {Observe an even number of dots} 

B = { Observe a number of dots less or equal to 4}. 

Are events A and B independent? 

Solution  As in Example 4.7 we have P(A) = 1/2 and   P(B) =  P(D1)+ P(D2)+ P(D3)+P(D4) = 
4*1/6 = 2/3,  where Dk  is the event that k dots (k = 1, 2, 3, 4, 5, 6) are observed on the upper 
face of the die. Since AB = D2 + D4 , we have P(AB) =  P(D2)+ P(D4) = 1/6+1/6 = 1/3. 

Now assuming B has occurred, the probability of A given B is   

 

P(A)
/

/

P(B)

P(AB)
P(A|B) ====

2

1

32

31
. 

Thus, assuming B has occurred does not alter the probability of A. Therefore, the events A and 

B are independent. 

 

The concept of independence of events plays an important role in the theory of probability and 
its applications. In particular, the greater  part of the results presented in this course is obtained 
on the assumption that the various events considered are independent. 

In practical problems, we rarely resort to verifying that relations P(A|B) = P(A) or P(B|A) = P(B) 
are satisfied in order to determine whether or not the given events are independent. To 
determine independence, we usually  make use of intuitive arguments based on experience. 

 

The Multiplication Theorem in the case of independent events takes on a simple form. 
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Multiplication Theorem for independent events 

If the events A and B are independent then 

P(AB) = P(A) P(B). 

 

 

We next generalize the notion of the independence of two events to that of a collection of 
events. 

 

Definition 4.8 

The events B1, B2, ..., Bn  are called collectively independent or mutually independent 

if for any event Bp (p = 1, 2,..., n) and for any group of other events Bq, Br, ...,Bs of 

this collection, the event Bp and the event BqBr...Bs are independent. 

 

 

Note that for several events to be mutually independent, it is not sufficient that they be pair wise 
independent. 

 

4.6  Rules for calculating probability 
4.6.1 The addition rule  

From the classical definition of probability we deduced the addition theorem, which serves as 
the addition axiom for the axiomatic definition of probability. Using this axiom we get the 
following rule: 

 

Addition rule 

If the event A1, A2, ..., An are pair wise mutually exclusive events then 

P(A1+ A2+ ...+An) =  P(A1)+P(A2)+ ...+P(An) 

In the case of two non-mutually exclusive events  A and B we have the formula 

P(A+B)  =  P(A) + P(B) – P(AB). 

 

Example 4.9  In a box there are 10 red balls, 20 blue balls, 10 yellow balls and 10 white balls. 
At random draw one ball from the box. Find the probability that this ball is color. 

Solution  Call the event that the ball drawn is red to be R, is blue B, is yellow Y, is white W and is 

color C. Then P(R) = 10/(10+20+10+10) = 10/50 = 1/5, P(B) = 20/50 = 2/5, P(Y) = 10/50 = 1/5. 
Since C = R+B+Y and the events R, B and Y are mutually exclusive , we have P(C) = P(R+B+Y) 
= 1/5+2/5+1/5 = 4/5. 
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In the preceding section we also got the multiplicative theorem. Below for the purpose of 
computing probability we recall it. 

 

Multiplicative rule 

For any two events A and B  from the same field of events there holds the formula 

P(AB) = P(A) P(B|A) = P(B) P(A|B).     

If these events are independent then 

P(AB) = P(A) P(B). 

 

 

Now suppose that the event B may occur together with one and only one of n mutually exclusive 

events A1, A2, ..., An, that is  

B = A1B + A2B + ...+AnB. 

By Addition rule we have 

P(B)= P(A1B)+P(A2B)+ ...+P(AnB). 

Further, by Multiplicative rule we get a formula, called the formula of total probability. 

 

Formula of total probability 

If the event B may occur together with one and only one of n mutually exclusive 

events A1, A2, ..., An then 

P(B)= P(A1)P(B|A1)+P(A2)P(B|A2)+ ...+P(An)P(B|An). 

 

 

Example 4.10  There are 5 boxes of lamps:  

3 boxes with the content A1: 9 good lamps and 1 defective lamp, 

2 boxes with the content A2: 4 good lamps and 2 defective lamp. 

At random select one box and from this box draw one lamp. Find the probability that the drawn 
lamp is defective. 

Solution  Denote by B the event that the drawn lamp is defective and by the same A1, A2 the 

events that the box with content A1, A2, respectively, is selected. Since the defective lamp may 

be drawn from a box of either content A1 or content A2  we have      B = A1B + A2B. By the 

formula of total probability P(B) = P(A1)P(B|A1)+P(A2)P(B|A2). 

Since P(A1) = 3/5, P(A2) = 2/5, P(B|A1) = 1/10, P(B|A2) = 2/6 = 1/3 we have 
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P(B) = 3/5 * 1/10 + 2/5 *1/3 = 29/150 = 0.19. 

Thus, the probability that the drawn lamp is defective is 0.19. 

 

Now, under the same assumptions and notations as in the formula of total probability, find the 
probability of the event Ak, given that the event B has occurred.  

According to the Multiplicative rule,  

P(AkB) = P(B)P(Ak|B) =  P(Ak) P(B|Ak) 

Hence,  

P(B)

))P(B|AP(A
|B)P(A kk
k =  

using the formula of total probability, we then find the following 

 

Bayes’s Formula 

If the event B may occur together with one and only one of n mutually exclusive 

events A1, A2, ..., An then 

∑
=

==
n

j

jj

kkkk

k

))P(B|AP(A

))P(B|AP(A

P(B)

))P(B|AP(A
|B)P(A

1

 

 

 

The formula of Bayes is sometimes called the formula for probabilities of hypotheses. 

Example 4.11  As in Example 4.10, there are 5 boxes of lamps:  

3 boxes with the content A1: 9 good lamps and 1 defective lamp, 

2 boxes with the content A2: 4 good lamps and 2 defective lamp. 

From one of the boxes, chosen at random, a lamp is withdrawn. It turns out to be a defective 
(event B). What is the probability, after the experiment has been performed      (the aposteriori 

probability), that the lamp was taken from an box of content A1? 

Solution  We have calculated P(A1) = 3/5, P(A2) = 2/5, P(B|A1) = 1/10, P(B|A2) = 2/6 = 1/3, P(B) 
=  29/150. Hence, the formula of Bayes gives  

310
29

9

15029

1015311
1 .

/

/*/

P(B)

))P(B|AP(A
|B)P(A ≈=== . 

Thus, the probability that the lamp was taken from an box of content A1, given the experiment 
has been performed, is equal 0.31. 
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4.7  Summary 

In this chapter we introduced the notion of experiment whose outcomes called the events could 
not be predicted with certainty in advance. The uncertainty associated with these events was 
measured by their probabilities. But what is the probability? For answer to this question we 
briefly discussed approaches to probability and gave the classical and statistical definitions of 
probability. The classical definition of probability reduces the concept of probability to the 
concept of equiprobability of simple events. According to the classical definition, the probability 
of an event  A is equal to the number of possible simple events favorable to A divided by the 
total number of possible events of the experiment. In the time, by the statistical definition the 
probability of an event is approximated by the proportion of times that A occurs when the 
experiment is repeated very large number of times. 

 

4.8  Exercises 
A, B, C are random events. 

1) Explain the meaning of the relations: 
a) ABC = A; 

b) A + B + C = A. 
2) Simplify the expressions 

a) (A+B)(B+C); 

b) ;)BB)(A(A ++  

c) B).A)(BB)(A(A +++  

3) A four-volume work is placed on a shelf in random order. What is the probability that the 
books are in proper order from right to left or left to right? 

4) In a lot consisting of N items, M are defective , n items are selected at random from the lot 

(n<N). Find the probability that )Nm (m ≤  of them will be prove to be defective. 

5) A quality control inspector examines the articles in a lot consisting of m items of first grade 
and n items of second grade. A check of the first b articles chosen at random from the lot 

has shown that all of them are of second grade (b<m). Find the probability that of the next 
two items selected at random from those remaining at least one proves to be second grade. 

6) From a box containing m white balls and n black balls (m>n), one ball after another is drawn 
at random. What is the probability that at some point the number of white balls and black 
balls drawn will be the same? 

7) Two newly designed data base management systems (DBMS), A and B, are being 
considered for marketing by a large computer software vendor. To determine whether 
DBMS users have a preference for one of the two systems, four of the vendor’s customers 
are randomly selected and given the opportunity to evaluate the performances of each of 
the two systems. After sufficient testing, each user is asked to state which DBMS gave the 
better performance (measured in terms of CPU utilization, execution time, and disk access). 
a) Count the possible outcomes for this marketing experiment. 
b) If DBMS users actually have no preference for one system over the other (i.e., 

performances of the two systems are identical), what is the probability that all four 
sampled users prefer system A? 

c) If all four customers express their preference for system A, can the software vendor infer 
that DBMS users in general have a preference for one of the two systems? 

 



 lvi 

Chapter 5 Basic Probability distributions 
 

CONTENTS 

5.1.  Random variables 

5.2. The probability distribution for a discrete random variable 

5.3.  Numerical characteristics of a discrete random variable 

5.4. The binomial probability distribution 
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5.6 Continuous random variables: distribution function and density function 

5.7  Numerical characteristics  of  a continuous random variable 

5.8. The normal distribution 

5.9. Summary   

5.10. Exercises 

 

 

5.1 Random variables 
One of the fundamental concepts of probability theory is that of a random variable.  

 

Definition 5.1 

A random variable is a variable that assumes numerical values associated with 
events of an experiment. 

 

Example 5.1 Observe 100 babies to be born in a clinic. The number of boys, which have been 
born, is a random variable. It may take values from 0 to 100. 

Example 5.2 Number of patients of a clinic daily is a  random variable. 

Example 5.3 Select one student from an university and measure his/her height and record this 
height by x. Then x is a random variable, assuming values from, say from 100 cm to 250 cm in 
dependence upon  each specific student. 

Example 5.4 The weight of babies at birth also is a random variable. It can assume values in 
the interval, for example, from 800 grams to 6000 grams. 

Classification of  random variables:  Random variables may be divided into two types: 
discrete random variables and continuous random variables. 
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Definition 5.2 

A  discrete random variable is one that can assume only a countable number of 
values. 

A  continuous random variable can assume any value in one or more intervals on 
a line. 

 

Among the random variables described above the number of boys in Example 5.1 and the 
number of patients in Example 5.2 are discrete random variables, the height of students and the 
weight of babies are continuous random variables. 

Example 5.5 Suppose you randomly select a student attending your university. Classify each of 
the following random variables as discrete or continuous: 

a) Number of credit hours taken by the student this semester 
b) Current grade point average of the student. 

Solution  a) The number of credit hours taken by the student this semester is a discrete random 
variable because it can assume only a countable number of values (for example 10, 11, 12, and 
so on). It is not continuous since the number of credit hours can not assume values as 11.5678, 
15.3456 and 12.9876 hours. 

b) The grade point average for the student is a continuous random variable because it could 
theoretically assume any value (for example, 5.455, 8.986) corresponding to the points on the 
interval from 0 to 10 of a line. 

5.2  The probability distribution for a discrete random variable 
 

Definition 5.3 

The probability distribution for a discrete random variable x is a table, graph, or 

formula that gives the probability of observing each value of x. We shall denote the 

probability of x by the symbol p(x). 

 

Thus, the probability distribution for a discrete random variable x may be given by one of the 
ways: 

1. the table 
 

x p 

x1 p1 

x2  p2 

... ... 

xn pn 
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where pk is the probability that the variable x assume the value xk (k = 1, 2,..., n). 

2. a formula for calculating p(xk) (k = 1, 2,..., n). 
3. a graph presenting the probability of each value xk . 

Example 5.6 A balanced coin is tossed twice and the number x of heads is observed. Find the 

probability distribution for x. 

Solution  Let Hk and Tk denote the observation of a head and a tail, respectively, on the k
th toss, 

for k = 1, 2. The four simple events and the associated values of x are shown in Table 5.1. 

 

 

Table 5.1 Simple events of the experiment of  tossing  a coin twice 
 

SIMPLE EVENT DESCRIPTION PROBABILITY NUMBER OF HEADS 

E1 H1H2 0.25 2 

E2 H1T2 0.25 1 

E3 T1H2 0.25 1 

E4 T1T2 0.25 0 

 

The event x = 0 is the collection of all simple events that yield a value of x = 0, namely, the 

simple event E4. Therefore, the probability that x assumes the value 0 is  

P(x = 0) = p(0) = P(E4) = 0.25. 

The event x = 1 contains two simple events, E2 and E3. Therefore, 

P(x = 1)  =  p(1) = P(E2)  + P(E3)  = 0.25 + 0.25  = 0.5. 

Finally,  

P(x = 2) = p(2) = P(E1) = 0.25. 

The probability distribution p(x) is displayed in tabular form in Table 5.2 and as a probability 
histogram in Figure 5.1. 

 

 

Table 5.2  Probability distribution for x, the number of heads in two 
tosses of a coin 

 

x p(x) 

0 0.25 

1 0.5 

2 0.25 
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Figure 5.1   Probability distribution for x, the number of heads in two tosses of 
a coin 

 

Properties of the probability distribution for a discrete random variable x 

1. 10 ≤≤ p(x)  

2. ∑ =
xall

p(x) 1 

 

Relationship between the probability distribution for a discrete random variable and the 
relative frequency distribution of data: 

Suppose you were to toss two coins over and over again a very large number of times and 
record the number x of heads  for each toss. A relative frequency distribution for the resulting 
collection of 0’s, 1’s and 2’s would be very similar to the probability distribution shown in Figure 
5.1.  In fact, if it were possible  to repeat the experiment an infinitely large number of times, the 
two distributions would be almost identical.  

Thus, the probability distribution of Figure 5.1 provides a model for a conceptual population of 

values x – the values of x that would be observed  if the experiment were to be repeated an 

infinitely large number of times. 

5.3 Numerical characteristics of a discrete random variable 
5.3.1 Mean or expected value 

Since a probability distribution for a random variable x is a model for a population relative 
frequency  distribution, we can describe it with numerical descriptive measures, such as its 
mean and standard deviation, and we can use Chebyshev theorem to identify improbable 
values of x. 

The expected value (or mean) of a random variable x, denoted by the symbol E(x), is defined as 
follows: 
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Definition 5.4 

Let x be a discrete random variable with probability distribution p(x). Then the mean 

or expected value of x is 

∑==
all  x

xp(x)E(x)  

 

Example 5.6  Refer to the two-coin tossing experiment of Example 5.5 and the probability 
distribution for the random variable x, shown in Figure 5.1. Demonstrate that the formula for E(x) 

gives the mean of  the probability distribution for the discrete random variable x. 

Solution  If we were to repeat the two-coin tossing experiment a large number of times – say 
400,000 times, we would expect to observe x = 0 heads approximately 100,000 times, x = 1 
head approximately 200,000 times and x = 2 heads approximately 100,000 times. Calculating 

the mean  of these 400,000 values of x, we obtain 

xxp
n

x

xall

∑∑ =++=
++

=≈ )()2(
4

1
)1(

2

1
)0(

4

1

000,400

)2(000,100)1(000,200)0(000,100
µ  

Thus, the mean  of x is 1=µ . 

 

If x is a random variable then any function g(x) of x  also is a random variable. The expected 

value of g(x) is defined as follows: 

 

Definition 5.5 

Let x be a discrete random variable with probability distribution p(x) and let g(x) be a 

function of x . Then the mean or expected value of g(x) is 

∑=
xall

g(x)p(x)E[g(x)]  

 
5.3.2 Variance and standard deviation  

The second important numerical characteristics of random variable are its variance and 
standard deviation, which are defined as follows: 
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Definition 5.6 

Let x be a discrete random variable with probability distribution p(x). Then the 

variance of x is 

])-E[(x 22 µσ =  

The standard deviation of x is the positive square root of the variance of x: 

2σσ =  

 

Example 5.7  Refer to the two-coin tossing experiment and the probability distribution for x, 

shown in Figure 5.1. Find the variance and standard deviation of x. 

Solution  In Example 5.6 we found the mean of x is 1. Then  

2

1

4

1
)12(

2

1
)11(

4

1
)10()( 2222 =
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−=== ∑
=

2

0x

22 )-(x])-E[(x xpµµσ  

and  

707.0
2

12 ≈== σσ  

5.4  The binomial probability distribution 
Many real-life experiments are analogous to tossing an unbalanced coin a number n of times.  

Example 5.8  Suppose that 80% of the jobs submitted to a data-processing center are of a 
statistical nature. Then selecting a random sample of 10 submitted jobs would be analogous to 
tossing an unbalanced coin 10 times, with the probability of observing a head (drawing a 
statistical job) on a single trial equal to 0.80.   

Example 5.9  Test for impurities commonly found in drinking water from private wells showed 
that 30% of all wells in a particular country have impurity A. If 20 wells are selected at random 
then it would be analogous to tossing an unbalanced coin 20 times, with the probability of 
observing a head (selecting a well with impurity A) on a single trial equal to 0.30.   

Example 5.10 Public opinion or consumer preference polls that elicit one of two responses – 
Yes or No, Approve or Disapprove,... are also analogous to  the unbalanced coin tossing 
experiment if the size N of the population is large and the size n of the sample is relatively small. 

All these experiments are particular examples of a binomial experiment known as a Bernoulli 
process, after the seventeenth-century Swiss mathematician, Jacob Bernoulli. Such 
experiments and the resulting binomial random variables have the following characteristics, 
which form the model of a binomial random variable. 
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Model (or characteristics) of a binomial random variable 

1. The experiment consists of n identical trials 
2. There are only 2 possible outcomes on each trial. We will denote one outcome by 

S (for Success) and the other by F (for Failure). 

3. The probability of S remains the same from trial to trial. This probability will be 

denoted by p, and the probability of F will be denoted by q ( q = 1-p). 
4. The trials are independent. 
5. The binomial random variable x is the number of S’ in n trials. 
 

 

The binomial probability distribution, its mean and its standard deviation are given the following 
formulas: 

 

The probability distribution, mean and variance for a binomial random 

variable: 

1. The probability distribution: 
xnxx

n qpCp(x) −=  (x = 0, 1, 2, ..., n), 

where 

p = probability of a success on a single trial, q=1-p 

n = number of trials, x= number of successes in n trials 

 
x!(n-x)!

n!
C x

n = = combination of x from n. 

2. The mean: np=µ  

3. The variance: npq=2σ  

 

 

Example 5.11 (see also Example 5.9) Test for impurities commonly found in drinking water from 
private wells showed that 30% of all wells in a particular country have impurity A. If a random 
sample of 5 wells is selected from the large number of wells in the country, what is the 
probability that: 

a) Exactly 3 will have impurity A? 
b) At least 3? 
c) Fewer than 3? 

Solution  First we confirm that this experiment possesses the characteristics of a binomial 
experiment. This experiment consists of n = 5 trials, one corresponding to each random 

selected well.  Each trial results in an S (the well contains impurity A) or an F (the well does not 

contain impurity A). Since the total number of wells in the country is large, the probability of 
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drawing a single well and finding that it contains impurity A is equal to 0.30 and this probability 
will remain the same for each of the 5 selected wells. Further, since the sampling is random, we 
assume that the outcome on any one well is unaffected by the outcome of any other and that 
the trials are independent. Finally, we are interested in the number x of wells in the sample of n 
= 5 that contain impurity A. Therefore, the sampling process represents a binomial experiment 

with n = 5 and p = 0.30. 

a) The probability of drawing exactly x = 3 wells containing impurity A is 

xnxx

n qpCp(x) −=  with n = 5, p = 0.30 and x = 3. We have by this formula 

132303001300
23

5
3 353 .).().(

!!

!
)p( =−= − . 

b) The probability of observing at least 3 wells containing impurity A is 

P(x≥3) = p(3)+p(4)+p(5). We have calculated p(3) = 0.1323 and  we leave to the reader to 
verify  that p(4) = 0.02835, p(5) = 0.00243.  In result, P(3) = 0.1323+0.02835+0.00243 = 
0.16380. 

c)  Although P(x<3) = p(0)+p(1)+p(2), we can avoid calculating 3 probabilities by using the 
complementary relationship P(x<3) = 1-P(x≥  3) = 1-0.16380 = 0.83692. 

5.5 The Poisson distribution 
The Poisson probability distribution is named for the French mathematician S.D. Poisson (1871-
1840, It is used to describe a number of processes, including the distribution of telephone calls 
going through a switchboard system, the demand of patients for service at a health institution, 
the arrivals of trucks and cars at a tollbooth, and the number of accidents at an intersection.  

 

Characteristics defining a Poisson random variable 

1. The experiment consists of counting the number x of times a particular event 
occurs during a given unit of time 

2. The probability that an event occurs in a given unit of time is the same for all 
units. 

3. The number of events that occur  in one unit of time is independent of the 
number  that occur  in other units. 

4. The mean number of events in each unit will be denoted by the Greek letter λ  

 

The formulas for the probability distribution, the mean and the variance of a Poisson random 
variable are shown in the next box. 
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The probability distribution, mean and variance for a Poisson random variable 

x: 

1. The probability distribution: 

x!

e
p(x)

x λλ −

=  ( x = 0, 1, 2,...), 

where  

λ = mean number of events during the given  time period, 

 e = 2.71828...(the base of natural logarithm). 

2. The mean:  λµ =  

3. The variance: λσ =2
 

 

 

Note that instead of time, the Poisson random variable may be considered in the experiment of 
counting the number x of times a particular event occurs during a given unit of area, volume, 
etc. 

Example 5.12  Suppose that we are investigating the safety of a dangerous intersection. Past 
police records indicate a mean of 5 accidents per month at this intersection.  Suppose the 
number of accidents is distributed according to a Poisson distribution. Calculate the probability 
in any month of exactly 0, 1, 2, 3 or 4 accidents. 

Solution Since the number of accidents is distributed according to a Poisson distribution and the 
mean number of accidents per month is 5, we have the probability of happening  

  accidents in any month 
!

5 5

x

e
p(x)

x −

= .  By this formula we can calculate 

p(0) = 0.00674, p(1) = 0.3370, p(2) = 0.08425, p(3) = 0.14042, p(4) = 0.17552. 

 

The probability distribution of the number of accidents per month is presented in Table 5.3 and 
Figure 5.2. 
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Table 5.3  Poisson probability distribution of the number of accidents per month 

X-  NUMBER OF 
ACCIDENTS 

P(X) -  PROBABILITY 

0 0.006738

1 0.03369 

2 0.084224 

3 0.140374 

4 0.175467 

5 0.175467 

6 0.146223 

7 0.104445 

8 0.065278 

9 0.036266 

10 0.018133 

11 0.008242 

12 0.003434 

 

 

 

 

 

Figure 5.2  The Poisson probability distribution of the number of accidents 

 

5.6 Continuous random variables: distribution function and density 
function 

Many random variables observed in real life are not discrete random variables because the 
number of values they can assume is not countable. In contrast to discrete random variables, 
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these variables can take on any value within an interval. For example, the daily rainfall at some 
location, the strength of a steel bar and the intensity of sunlight at a particular  time of day. In 
Section 5.1 these random variables were called continuous random variables.  

The distinction between discrete random variables and continuous random variables is usually 
based on the difference in their cumulative distribution functions.  

 

Definition 5.7 

Let ξ  be a continuous random variable assuming any value in the interval (-∞ , +∞ ). 

Then the cumulative distribution function F(x) of the variable ξ  is defined as 
follows 

x)P(F(x) ≤= ξ  

i.e., F(x) is equal to the probability that the variable ξ  assumes values, which are 

less than or equal to x. 

 

 

Note that here and from now on we denote by letter ξ  a continuous random variable and 

denote by x a point on number line. 

From the definition of the cumulative distribution function F(x) it is easy to show the following its 
properties. 

 

Properties of the cumulative distribution function F(x) for a continuous 

random variable ξ  

1. 1)(0 ≤≤ xF , 

2. F(x) is a monotonically non-decreasing function, that is, if ba ≤ then )()( bFaF ≤  

for any real numbers a and b. 
3. )()()( aFbFbaP −=≤≤ ξ  

4. 0)( →xF as −∞→x  and +∞→→ xxF as1)(  

 

 

In Chapter 2 we described a large data set by means of a relative frequency distribution. If the 
data represent measurements on a continuous random variable and if the amount of data is 
very large, we can reduce the width of the class intervals until the distribution appears to be a 
smooth curve. A probability density is  a theoretical model for this distribution. 
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Definition 5.8 

If F(x) is the cumulative distribution function for a continuous random variable ξ  then 
the density probability function f(x) for  ξ  is 

f(x) = F’(x), 

i.e., f(x) is the derivative of the distribution function F(x). 

 

 

The density function for a continuous random variable ξ , the model for some real-life population 

of data, will  usually be a smooth curve as shown in Figure 5.3. 

 

 

 

Figure 5.3  Density function f(x) for a continuous random variable 

 

 

 

It follows from Definition 5.8 that  

∫
∞

=
x

-

f(t)dtF(x)  

Thus, the cumulative area under the curve between -∞  and a point x0 is equal to F(x0). 

 The density function for a continuous random variable must always satisfy the two properties 
given in the box. 
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Properties of a density function 

1. 0≥f(x)  

2. 1=∞=∫
+∞

∞−

)F(x)dxf(  

 

5.7  Numerical characteristics  of  a continuous random variable 
 

Definition 5.8 

Let  ξ  be a continuous random variable with density function f(x). Then the mean or 

the expected value of ξ  is 

∫
+∞

∞

=
-

xf(x)dx)E(ξ  

 

Definition 5.9 

Let  ξ  be a continuous random variable with density function f(x) and g(x) is a 

function of x. Then the mean or the expected value of g(ξ ) is 

∫
+∞

∞

=
-

g(x)f(x)dx)]E[g(ξ  

 

 
Definition 5.10 

Let  ξ  be a continuous random variable with the expected value µξ =)E( . Then the 

variance  of ξ  is 

])-E[( 22 µξσ =  

The standard deviation of ξ  is the positive square root of the variance  2σσ =  
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5.8 Normal probability distribution 
The normal (or Gaussian) density function was proposed by C.F.Gauss (1777-1855) as a model 
for the relative frequency  distribution of errors, such errors of measurement. Amazingly, this 
bell-shaped curve provides an adequate model for the relative frequency  distributions of data 
collected from many different scientific areas. 

 

The density function, mean and variance for a normal random variable 

 The density function: 
22 2/)(

2

1
)( σµ

πσ
−−= xexf  

The parameters µ and σ2 are the mean and the variance , respectively, of the normal 
random variable 

 

There is infinite number of normal density functions – one for each combination of µ and σ. The 
mean measures the location and the variance measures its spread. Several different normal 
density functions are shown in Figure 5.4. 
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Figure 5.4  Several normal distributions: Curve 1 with 1,3 == σµ , 

Curve 2 with 0,1 =−= σµ , and Curve 3 with 5.1,0 == σµ , 

 

 

 

If  µ = 0 and  σ =1 then  2/)( 2

2

1
)( µ

π
−−= xexf . The distribution with this density function is 

called the standardized normal distribution. The graph of the standardized normal density 
distribution is shown in Figure 5.5. 
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Figure 5.5  The standardized normal density distribution 

 

 

 

If ξ is a normal random variable with the mean µ and variance σ  then 

1) the variable 

σ
µξ −

=z  

is the standardized normal  random variable. 

2) )(2)( nnP Φσµξ =≤− , where 

∫ −=Φ
x

t dtex
0

2/2

2

1
)(

π
 

This function is called the Laplace function and it is tabulated. 

In particular, we have 

=≤− )(P σµξ 0.6826 

=≤− )2(P σµξ 0.9544 

=≤− )3(P σµξ 0.9973 

These equalities are  known as σ , 2σ and  σ rules, respectively and are often used in statistics. 
Namely, if a population of measurements has approximately a normal distribution the probability 
that a random selected observation falls within the intervals   (µ - σ, µ + σ),  (µ - 2σ, µ +2σ),  and  
(µ - 3σ, µ + 3σ),  is approximately 0.6826, 0.9544 and 0.9973, respectively. 
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The normal distribution as an approximation to various discrete         probability 
distributions 

Although the normal distribution is continuous, it is interesting to note that it can sometimes be 
used to approximate discrete distributions. Namely, we can use normal distribution to 
approximate binomial probability distribution.  
Suppose we have a binomial distribution defined by two parameters: the number of trials n and 

the probability of success p. The normal distribution with the parameters µ and σ  will be a good 
approximation for that binomial distribution if both  

 p)1(np22 −−=− npσµ  and p)np(np −+=+ 122σµ  lie between 0 and n. 

For example, the binomial distribution with n = 10 and p = 0.5 is well approximated by the 

normal distribution with µ = np = 10*0.5 = 5.0 and p)np( −= 1  = 0.5* 10  = 1.58. See 

Figure 5.6 or Table 5.4. 
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Figure 5.6  Approximation of binomial distribution (bar graph) with n=10, p=0.5 
by a normal distribution (smoothed curve) 

 
 

Table 5.4   The binomial and normal probability distributions for 

the same values of x 

 

x Binomial 
distribution 

Normal 
distribution 

0 0.000977 0.0017 

1 0.009766 0.010285 

2 0.043945 0.041707 

3 0.117188 0.113372 

4 0.205078 0.206577 
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5 0.246094 0.252313 

6 0.205078 0.206577 

7 0.117188 0.113372 

8 0.043945 0.041707 

9 0.009766 0.010285 

10 0.000977 0.0017 

 

 
 
5.9. Summary 

This chapter introduces the notion of a random variable – one of the fundamental concepts of 
the probability theory. It is a rule that assigns one and only one value of a variable x to each 
simple event in the sample space. A variable is said to be discrete if it can assume only a 
countable number of values. 

The probability distribution of a discrete random variable is a table, graph or formula that gives 
the probability associated with each value of x . The expected value µ=)(xE  is the mean of 

this probability distribution and 2)][( σµ =−xE is its variance. 

Two discrete random variables – the binomial, and the Poisson – were presented, along with 
their probability distributions. 

 In contrast to discrete random variables, continuous random variable can assume value 
corresponding to the infinitely large number can assume value corresponding to the infinitely 
large number of points contained in one or more intervals on the real line. The relative 
frequency distribution for a population of data associated with a continuous random variable can 
be modeled using a probability density function. The expected value (or mean) of a continuous 
random variable x  is defined in the same manner as for discrete random variables, except that 
integration is substituted for summation. The most important probability distribution – the normal 
distribution - with its properties is considered. 

 

5.10 Exercises 

1) The continuous random variable ξ   is called a uniform random variable if its density function 
is 






 ≤≤
−=

elsewhere

if

          

b x a     
abf(x)

0

1

 

Show that for this variable, the mean 
2

ba +
=µ  and the variance 

12

)( 2
2 ab −
=σ . 

2) The continuous random variable ξ  is called a exponential random variable if its density 

function is 



 lxxiii 

)0()(
/

∞≤≤=
−

x
e

xf
x

β

β

 

Show that for this random variable 
22, βσβµ == . 

3) Find the area beneath a standardized normal curve between the mean z = 0 and the point z 
= -1.26. 

4) Find the probability that a normally distributed random variable ξ  lie more than z = 2 standard 

deviations above its mean. 

5) Suppose y is normally distributed random variable with mean 10 and standard deviation 2.1. 

a) Find ).11( ≥yP  

b) Find  )2.126.7( ≤≤ yP  
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Chapter 6.    Sampling Distributions 
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6.1 Why the method of sampling is important 

Much of our statistical information comes in the form of samples from populations of interests. In 
order to develop and evaluate methods for using sample information to obtain knowledge of the 
population, it is necessary to know how closely a descriptive quantity such as the mean or the 
median of a sample resembles the corresponding population quantity. In this chapter, the ideas 
of probabilities will be used to study the sample-to-sample variability of these descriptive 
quantities. 

We now return to the objective of statistics - namely, the use of sample information to infer the 
nature of a population.  We will explain why the method of sampling is important through an 
example. 

Example 6.1   The Vietnam Demographic and Health Survey (VNDHS) was a nationwide 
representative sample survey conducted in May 1988 to collect data on fertility and a few 
indicators of child and maternal health. In the survey a total of 4,171 eligible women, ale 
aged 15 to 49 years old were interviewed. The survey data was given in Appendix A by 
the format of Excel. The relative frequency distribution for number of children ever born 
for 4,171 women appears as in the Table 6.1 and in Figure 6.1. In actual practice, the 
entire population of 4,171 women's number of children ever born may not be easily 
accessible. Now, we draw two samples of 50 women from the population of 4,171 women. 
The relative frequency distributions of the two samples are given in Table 6.2a and 6.2b 
and graphed in Figures 6.2a and 6.2b. 
Click here for Simulation in SPSS. 

Compare the distributions of number of children ever born for two samples. Which appears to 
better characterize number of children ever born for the population? 

Solution    It is clear that the two samples lead to quite different conclusions about the 
same population from which they were both selected. From Figure 6.2a, we see that only 
18% of the sampled women bore 3 children, whereas from Figure 6.2b, we see that 26% 
of the sampled women bore such number of children. This may be compared to the 
relative frequency distribution for the population (shown in Figure 6.1), in which we 
observe that 18% of all the women bore 3 children. In addition, note that none of the 
women in the second sample (Figure 6.2b) had no children, whereas 10% of the women 
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in the first sample (Figure 6.2a) had no child. This value from the first sample compare 
favorably with the 7% of "no children" of the entire population (Figure 6.1). 

 
Table 6.1 Frequency distribution of number 
of children ever born for 4,171 women 

Figure 6.1  Relative frequency distribution of 
number of children ever born for  4,171 
women 

Number of 

Children 

Frequency Relative 

Frequency 

0 312 0.07 

1 708 0.17 

2 881 0.21 

3 737 0.18 

4 570 0.14 

5 354 0.08 

6 243 0.06 

7 172 0.04 

>7 194 0.05 

Total 4171 1.00 

 

 

 

Table 6.2  Frequency distribution of number 
of children ever born for each of two samples 
of 50 women selected from 4,171 women 

Figure 6.2   Frequency distribution of 
number of children ever born for each of two 
samples of 50 women selected from 4,171 
women 

Number of 

Children 

Frequency Relative 

Frequency 

0 5 0.10 

1 8 0.16 

2 10 0.20 

3 9 0.18 

4 8 0.16 

5 3 0.06 

6 4 0.08 

7 2 0.04 

>7 1 0.02 

Total 50 1.00 

 

a      a 

 

Number of 

Children 

Frequency Relative 

Frequency 

0 0 0.00 

1 8 0.16 

2 8 0.16 

3 13 0.26 
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4 9 0.18 

5 6 0.12 

6 2 0.04 

7 4 0.08 

Total 50 1.00 

 

   b      b 

To rephrase the question posed in the example, we could ask: Which of the two samples is 
more representative of, or characteristics of, the number of children ever born for all 4,171 of the 
VNDHS's women? Clearly, the information provided by the first sample (Table and Figure 6.2a) 
gives a better picture of the actual population of numbers of children ever born. Its relative 
frequency distribution is closer to that for the entire population (Table and Figure 6.1) than is the 
one provided by the second sample (Table and Figure 6.2b). Thus, if we were to rely on 
information from the second sample only, we may have a distorted, or biased, impression of the 
true situation with respect to numbers of children ever born. 

How is it possible that two samples from the same population can provide contradictory 
information about the population? The key issue is the method by which the samples are 
obtained. The examples in this section demonstrate that great care must be taken in order to 
select a sample that will give an unbiased picture of the population about which inferences are 
to be made. One way to cope with this problem is to use random sampling. Random sampling 
eliminates the possibility of bias in selecting a sample and, in addition, provides a probabilistic 
basic for evaluating the reliability of an inference. We will have more to say about random 
sampling in Section 6.2. 

6.2 Obtaining a Random Sample 
In the previous section, we demonstrated the importance of obtaining a sample that exhibits 
characteristics similar to those possessed by the population from which it came, the population 
about which we wish to make inferences. One way to satisfy this requirement is to select the 
sample in such a way that every different sample of size n has an equal probability of being 
selected. This procedure is called random sampling and the resulting sample is called a random 
sample of size n. In this section we will explain how to draw a random sample, and will then 
employ random sampling in sections that follow. 

Definition 6.1 

A random sample of n experimental units is one selected in such a way that every 

different sample of size n has an equal probability of selection. 

 

Example 6.2   A city purchasing agent can obtain stationery and office supplies from any 
of eight companies. If the purchasing agent decides to use three suppliers in a given 
year and wants to avoid accusations of bias in their selection, the sample of three 
suppliers should be selected from among the eight. 

a. How many different samples of three suppliers can be chosen from among the eight? 
b. List them. 
c. State the criterion that must be satisfied in order for the selected sample to be random. 

Solution   In this example, the population of interest consists of eight suppliers (call them 
A, B, C, D, E, F, G, H).  from which we want to select a sample of size n = 3. The numbers 
of different samples of n = 3 elements that can be selected from a population of N = 8 
elements is 
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a. The following is a list of 56 samples: 
 

A, B, C A, C, F A, E, G B, C, G B, E, H C, E, F D, E, H 

A, B, D A, C, G A, E, H B, C, H B, F, G C, E, G D, F, G 

A, B, E A, C, H A, F, G B, D, E B, F, H C, E, H D, F, H 

A, B, F A, D, E A, F, H B, D, F B, G, H C, F, G D, G, H 

A, B, G A, D, F A, G, H B, D, G C, D, E C, F, H E, F, G 

A, B, H A, D, G B, C, D B, D, H C, D, F C, G, H E, F, H 

A, C, D A, D, H B, C, E B, E, F C, D, G D, E, F E, G, H 

A, C, E A, E, F B, C, F B, E, G C, D, H D, E, G F, G, H 

 

b. Each sample must have the same chance of  being selected in order to ensure that we have 
a random sample. Since there are 56 possible samples of size n = 3, each must have a 
probability equal to 1/56 of being selected by the sampling procedure. 

 

What procedures may one use to generate a random sample? If the population is not too large, 
each observation may be recorded on a piece of paper and placed in a suitable container. After 
the collection of papers is thoroughly mixed, the researcher can remove n pieces of paper from 
container; the elements named on these n pieces of paper would be ones included in the 
sample.  

However, this method has the following drawbacks: It is not feasible when the population 
consists of a lager number of observations; and since it is very difficult to achieve a thorough 
mixing, the procedure provides only an approximation to random sample. 

A more practical method of generating a random sample, and one that may be used with lager 
populations, is to use a table of random numbers. At present, in almost statistical program 
packages this method is used to select random samples. For example, SPSS PC - a 
comprehensive system for analyzing data, provides a procedure to select a random sample 
based on an approximate percentage or an exact number of observations. Two samples in 
Example 6.1 were drawn by the SPSS's "Select cases" procedure from the data on fertilities of 
4,171 women recorded in Appendix A. 

For the first sample, the mean is 

For the second sample, the mean is 

56
)1*2*4*5()1*2*3(

1*2*3*4*5*6*7*8
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where the mean for all 4,171 observations is 3.15. In the next section, we discuss how to judge 
the performance of a statistic computed from a random sample. 

6.3 Sampling Distribution 
In the previous section, we learned how to generate a random sample from a population of 
interest, the ultimate goal being to use information from the sample to make an inference about 
the nature of the population.  In many situations, the objective will be to estimate a numerical 
characteristic of the population, called a parameter, using information from sample. For 
example, from the first sample of 50 women in the Example 6.1, we computed 96.2=x , the 

mean number of children ever born from the sample of n = 50. In other word, we used the 
sample  information to compute a statistic - namely, the sample mean, x . 

 

Definition 6.2 

A numerical descriptive measure of a population is called a parameter. 

 

Definition 6.3 

A quantity computed from the observations in a random sample is called a statistic.  

 

You may have observed that the value of a population parameter (for example, the mean µ) is a 
constant (although it is usually unknown to us); its value does not vary from sample to sample. 
However, the value of a sample statistic (for example, the sample mean x ) is highly dependent 
on the particular sample that is selected. As seen in the previous section, the means of two 
samples with the same size of n = 50 are different. 

Since statistics vary from sample to sample, any inferences based on them will necessarily be 
subject to some uncertainty. How, then, do we judge the reliability of a sample statistic as a tool 
in making an inference about the corresponding population parameter? Fortunately, the 
uncertainty of a statistic generally has characteristic properties that are known to us, and that 
are reflected in its sampling distribution. Knowledge of the sampling distribution of a particular 
statistic provides us with information about its performance over the long run. 

 

Definition 6.4 

A sampling distribution of a sample statistic (based on n observations) is the relative 
frequency distribution of the values of the statistic theoretically generated by taking 
repeated random samples of size n and computing the value of the statistic for each 
sample. (See Figure 6.3.)   

We will illustrate the notion of a sampling distribution with an example, which our interest 
focuses on the numbers of children ever born of 4,171 women in VNDHS 1988. The data are 
given in Appendix A. In particular, we wish to estimate the mean number of children ever born to 

38.3
50

0*84*72*66*59*413*38*28*10*0
=

++++++++
==∑

n

vf
x
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all women. In this case, the 4,171 observations constitute the entire population and we know 
that the true value of µ, the mean of the population, is 3.15 children. 

Example 6.3   How could we generate the sampling distribution of x , the mean of a 

random sample of n = 5 observations from population of 4,171 numbers of children ever 
born in Appendix A? 

Solution   The sampling distribution for the statistic x , based on a random sample of n = 

5 measurements, would be generate in this manner: Select a random sample of five 
measurements from the population of 4,171 observations on number of children ever 
born in Appendix A; compute and record the value of x  for this sample. Then return 

these five measurements to the population and repeat the procedure. (See Figure 6.3). If 
this sampling procedure could be repeated an infinite number of times, the infinite 
number of values of x  obtained could be summarized in a relative frequency 

distribution, called the sampling distribution of x . 

The task described in Example 6.3, which may seem impractical if not impossible, is not 
performed in actual practice. Instead, the sampling distribution of a statistic is obtained by 
applying mathematical theory or computer simulation, as illustrated in the next example. 

  

 

 

 

 

 

 

 

 

 

Figure 6.3  Generating the theoretical sampling distribution of the sample mean x  

Example 6.4   Use computer simulation to find the approximate sampling distribution of 

x , the mean of a random sample of n = 5 observations from the population of 4,171 

number of children ever born in Appendix A. 

Solution   We used a statistical program, for example SPSS, to obtain 100 random 
samples of size n = 5 from target population. The first ten of these samples are presented 
in Table 6.3. 

Table 6.3   The first ten of samples of n = 5 measurement from 
population of numbers of children ever born of 4,171 women 

Sample Number of children ever born Mean ( x ) 

1 1 1 1 2 2 1.4 

2 1 2 3 3 3 2.4 

3 0 0 4 6 7 3.4 
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4 0 1 2 2 3 1.6 

5 2 2 3 4 7 3.6 

6 1 2 3 5 8 3.8 

7 1 2 2 5 6 3.2 

8 1 2 2 3 6 2.8 

9 2 2 3 3 11 4.2 

10 0 0 2 3 4 1.8 

 

For each sample of five observations, the sample mean x  was computed. The relative 
frequency distribution of the number of children ever born for the entire population of 4,171 
women was plotted in Figure 6.4 and the 100 values of x  are summarized in the relative 
frequency distribution shown in Figure 6.5. 

Click here to see some scripts and print outs from sampling and case summarize procedures in 
SPSS with sample size of n = 5. 

 

 

 

 

 

 

 

 

 

Figure 6.4 Relative frequency distribution for 4,171 numbers of children ever born 

We can see that the value of x  in Figure 6.5 tend to cluster around the population mean, µ = 
3.15 children. Also, the values of the sample mean are less spread out (that is, they have less 
variation) than the population values shown in Figure 6.4. These two observations are borne out 
by comparing the means and standard deviations of the two sets of observations, as shown in 
Table 6.4. 

 

 

 

 

 

 

Figure 6.5 Sampling distribution of x : Relative frequency distribution of x based on  
                     100 samples of size n = 5 

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10 11 12 13

P
e
rc
e
n
ta
g
e

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5

P
e
rc
e
n
ta
g
e



 lxxxi 

 

Table 6.4 Comparison of the population and the approximate sampling distribution of  
                  x based on 100 samples of size n = 5 

 Mean Standard 
Deviation 

Population of 4,171 numbers of children ever born (Fig. 6.4) 

100 values of  x  based on samples of size n = 5 (Fig. 6.5) 

µ = 3.15 
3.11 

σ = 2.229 

.920 

Example 6.5    Refer to Example 6.4. Simulate the sampling distribution of x   for samples 

size n = 25 from population of 4,171 observations of number of children ever born. 
Compare result with the sampling distribution of x  based on samples of  

n = 5, obtained in Example 6.4. 

Solution   We obtained 100 computer-generated random samples of size n = 25 from 

target population. A relative frequency distribution for 100 corresponding values of  x  is 

shown in Figure 6.6. 

It can be seen that, as with the sampling distribution based on samples of size n = 5, the values 
of x  tend to center about the population mean. However, a visual inspection shows that the 
variation of the x -values about their mean in Figure 6.6 is less than the variation in the values 

of x based on samples of size n = 5 (Figure 6.5). The mean and standard deviation for these 
100 values of x  are shown in Table 6.5 for comparison with previous results. 

Table 6.5   Comparison of the population distribution and the approximate sampling  

                    distributions of x , based on 100 samples of size n = 5 and n = 25 

 Mean Standard 
Deviation 

Population of 4,171 numbers of children ever born (Fig. 6.4) 

100 values of x  based on samples of size n = 5 (Fig. 6.5) 

100 values of x  based on samples of size n = 25 (Fig. 6.6) 

µ = 3.15 
3.11 

3.14 

σ = 2.229 
.920 

.492 

 

 

 

 

 

 

 

 

 

 

Figure 6.6   Relative frequency distribution of x  based on 100 samples of size n = 25 
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Click here to see some scripts and print outs from sampling and case summarize procedures in 
SPSSS with sample size of n = 25. 

From Table 6.5 we observe that, as the sample size increases, there is less variation in the 
sampling distribution of x ; that is, the values of x tend to cluster more closely about the 

population mean as n gets larger. This intuitively appealing result will be stated formally in the 
next section. 

6.4 The sampling distribution of x : the Central Limit Theorem 
Estimating the mean number of children ever born for a population of women, or the mean 
height for all 3-year old boys in a day-care center are examples of practical problems in which 
the goal is to make an inference about the mean, µ, of some target population. In previous 
sections, we have indicated that the mean x is often used as a tool for making an inference 

about the corresponding population parameter µ, and we have shown how to approximate its 
sampling distribution. The following theorem, of fundamental importance in statistics, provides 
information about the actual sampling distribution of x .  

The Central Limit Theorem 

If the size is sufficiently large, the mean x of a random sample from a population has a 
sampling distribution that is approximately normal, regardless of the shape of the 
relative frequency distribution of the target population. As the sample size increases, 
the better will be the normal approximation to the sampling distribution. (*) 

The sampling distribution of x , in addition to being approximately normal, has other known 
characteristics, which are summarized as follows. 

Properties of Sampling Distribution of x  

If x is the mean of a random sample of size n from a population with mean µ and 
standard deviation σ, then: 

1. The sampling distribution of x  has a mean equal to the mean of the population 

from which the sample was selected. That is, if we let 
x

µ denote the mean of the 

sampling distribution of x , then 

x
µ = µ  

2. The sampling distribution of x  has a standard deviation equal to the standard 
deviation of the population from which the sample was selected, divided by the 

square root of the sample size. That is, if we let 
x

σ denote the standard deviation 

of the sampling distribution of x , then 

n
x

σ
σ =  

                                                
(*)
 This is why the normal distribution is so important! 
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Example 6.6    Show that the empirical evidence obtained in Examples 6.4 and 6.5 
supports the Central Limit Theorem and two properties of the sampling distribution of x . 

Recall that in Examples 6.4 and 6.5, we obtained repeated random samples of size n = 5 

and n = 25 from the population of numbers of children ever born in Appendix A. For this 

target population, we know that the values of the parameters µµµµ and σσσσ: 

Population mean:   µ  = 3.15 children 

Population standard deviation: σ = 2.229 children 

Solution   In Figures 6.4 and 6.5, we note that the values of x   tend to cluster about the 

population mean, µ = 3.15. This is guaranteed that by property 1, which implies that, in the long 
run, the average of all values of x  that would be generated in infinite repeated sampling would 

be equal to µ. 

We also observed, from Table 6.5, that the standard deviation of the sampling distribution of x  

decreases as the sample size increases from n = 5 to n = 25. Property 2 quantifies the decrease 
and relates it to the sample size. As an example, note that, for our approximate sampling 
distribution based on samples of size n = 5, we obtained a standard deviation of .920, whereas 
property 2 tells us that, for the actual sampling distribution of x , the standard deviation is equal 
to 

997.
5

229.2
===

n
x

σ
σ  

Similarly, for samples of size n = 25, the sampling distribution of x  actually has a standard 
deviation of  

446.
25

229.2
===

n
x

σ
σ  

The value we obtained by simulation was .492 

Finally, the Central Limit Theorem guarantees an approximately normal distribution for x , 
regardless of the shapes of the original population. In our examples, the population from which 
the samples were selected is seen in Figure 6.4 to be moderately skewed to the right. Note from 
Figure 6.5 and 6.6 that, although the sampling distribution of x  tends to be bell-shaped in each 

case, the normal approximation improves when the sample size is increased from n = 5 (Figure 

6.5) to n = 25 (Figure 6.6). 

Example 6.7     In research on the health and nutrition of  children in a rural area of 
Vietnam 1988, it was reported that the average height of 823 three-year old children in 
rural areas in 1988 was 89.67 centimeters with a standard deviation of  4.99 centimeters. 
These observations are given in Appendix B. In order to check these figures, we will 
randomly sample 100 three-year old children from the rural area and monitor their 
heights.  
a. Assuming the report's figures is true, describe the sampling distribution of the mean height 

for a random sample of 100 three year old children in the rural. 

b. Assuming the report's figures are true, what is probability that the sample mean height will 
be at least 91 centimeters? 
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Solution    
a. Although we have no information about the shape of the relative frequency distribution of the 

heights of the children, we can apply the Central Limit Theorem to conclude that the 
sampling distribution of the sample mean height of the 100 three year old children is 

approximately normally distributed. In addition, the mean 
x

µ , and the standard deviation, 

x
σ , of the sampling distribution are given by 

x
µ  = µ  = 91 cm and  

cm
n

x
499.

100

99.4
===

σ
σ  

assuming that the reported values of µ  and σ  are correct. 

b. If the reported values are correct, then P( x ≥91), the probability of observing a mean height 
of 91 cm or higher in the sample of 100 observations, is equal to the greened area shown in 
Figure  6.7. 

Since the sampling distribution is approximately normal, with mean and standard deviation as 
obtained in part a, we can compute the desired area by obtaining the z-score for x  = 91  

 

Thus, P( ≥x 91) = P(z ≥  2.67), and this probability (area) may be found in Table 1 of Appendix 

C. 

     P( x ≥91)  = P(z ≥ 2.67) 

  = .5 - A (see Figure 6.7) 

  = .5 - .4962  

= .0038 

 

P( x ≥ 91) 
A 

89.67            91.00 
( z = 0 )      ( z = 2.67) 

   67.2
499.

67.8991
=

−
=

σ

µ−
=

x

x
x

z  
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Figure 6.7  Sampling distribution of x in Example 6.7 

The probability that we would obtain a sample mean height of 91 cm or higher is only .0038, if 
the reported values are true. If the 100 randomly selected three year old children have an 
average height of 91 cm or higher, we would have strong evidence that the reported values are 
false, because such a larger sample mean is very unlikely to occur if the research is true.  

In practical terms, the Central Limit Theorem and two properties of the sampling distribution of 

x  assure us that the sample mean x  is a reasonable statistic to use in making inference about 

the population mean µ, and they allow us to compute a measure of the reliability of references 

made about µ. As we notice earlier, we will not be required to obtain sampling distributions by 
simulation or by mathematical arguments. Rather, for all the statistics to be used in this course, 
the sampling distribution and its properties will be presented as the need arises. 

6.5 Summary 
The objective of most statistical investigations is to make an inference about a population 
parameter. Since we often base inferences upon information contained in a sample from the 
target population, it is essential that the sample be properly selected. A procedure for obtaining 
a random sample using statistical software (SPSS) was described in this chapter. 

After the sample has been selected, we compute a statistic that contains information about the 
target parameter. The sampling distribution of the statistic, characterizes the relative frequency 
distribution of values of the statistic over an, infinitely large number of samples.  

The Central Limit Theorem provides information about the sampling distribution of the sample 
mean, x . In particular, if you have used random sampling, the sampling distribution of x  will be 
approximately normal if the sample size is sufficiently large. 

6.6 Exercises 

6.1 Use command Select cases of SPSS/PC to obtain 30 random samples of size  
n = 5 from “population” of 4,171 number of children ever born from Appendix A. 

a. Calculate x  for each of the 30 samples. Construct a relative frequency distribution for 
the 30 sample means. Compare with the population relative frequency distribution 
shown in Table 6.1. 

b. Compute the average of the 30 sample means. 
c. Compute the standard deviation of the 3o sample means. 

6.2 Repeat parts a, b, and c of Exercise 7.1, using random samples of size n = 10. Compare 
relative frequency distribution with that of Exercise 7.1. Do the values of x generated from 

samples of size n = 10 tend cluster more closely about µ? 

6.3 Suppose a random sample of n measurements is selected from a population with mean µ 
= 60 and variance σ2 =100. For each of the following values of n, give the mean and 
standard deviation of the sampling distribution of the sample means, x : 

a. n = 10 b.  n = 25 c.  n = 50 

d. n = 75 e.  n = 100 f.   n = 500 

x  
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6.4 A random sample of n = 225 observations is selected from a population with  

µ = 70 and σ =30. Calculate each of the following probabilities: 

a.  P( x > 72.5)  b. P( x <73.6) 

c.  P(69.1< x <74.0) d. P( x <65.5) 

6.5 This part year, an elementary school began using a new method to teach arithmetic to first 
graders. A standardized test, administered at the end of the year, was used to measure 
the effectiveness of the new method. The relative frequency distribution of the test scores 
in past years had a mean of 75 and a standard deviation of 10. Consider the standardized 
test scores for a random sample of 36 first graders taught by the new method. 

a. If the relative frequency distribution of test scores for first graders taught by the new 
method is no different from that of the old method, describe the sampling distribution of 
x , the mean test score for random sample of 36 first graders. 

b. If the sample mean test score was computed to be x = 79, what would you conclude 
about the effectiveness of the new method of teaching arithmetic? (Hint: Calculate 
P( x ≥ 79) using the sampling distribution described in part a.) 
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Chapter 7   Estimation 
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7.1 Introduction 

In preceding chapters we learned that populations are characterized by numerical descriptive 
measures (parameters), and that inferences about parameter values are based on statistics 
computed from the information in a sample selected from the population of interest. In this 
chapter, we will demonstrate how to estimate population means, proportions, or variances, and 
how to estimate the difference between two population means or proportions. We will also be 
able to assess the reliability of our estimates, based on knowledge of the sampling distributions 
of the statistics being used. 

Example 7.1   Suppose we are interested in estimating the average number of children 
ever born to all 4,171 women in the VNDHS 1998 in Appendix A. Although we already 
know the value of the population mean, this example will be continued to illustrate the 
concepts involved in estimation. How could one estimate the parameter of interest in this 
situation? 

Solution   An intuitively appealing estimate of a population mean, µ , is the sample mean, 

x , computed from a random sample of n observations from the target population. 

Assume, for example, that we obtain a random sample of size  n  = 30 from numbers of 
children ever born in Appendix A, and then compute the value of the sample mean to be 
x =3.05 children. This value of x  provides a point estimate of the population mean. 

 

Definition 7.1 

A point estimate of a parameter is a statistic, a single value computed from the 
observations in a sample that is used to estimate the value of the target parameter. 
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1.96σD 1.96σD 

Area = .95 

µ 
 x  

 

How reliable is a point estimate for a parameter? In order to be truly practical and meaningful, 
an inference concerning a parameter must consist more than just a point estimate; that is, we 
need to be able to state how close our estimate is likely to be to the true value of the population. 
This can be done by using the characteristics of the sampling distribution of the statistic that 
was used to obtain the point estimate; the procedure will be illustrated in the next section. 

7.2 Estimation of a population mean: Large-sample case 

Recall from Section 6.4 that, for sufficient large sample size, the sampling distribution of the 
sample mean, x , is approximately normal, as shown in Figure 7.1. 

Example 7.2   Suppose we plan to take a sample of  n  = 30 measurements from 
population of numbers of children ever born in Appendix A and construct interval 









±=±

n
xx

x

σ
σ 96.196.1  

where σ  is the population standard deviation of the 4,171 numbers of children ever born and 

n
x

/σσ =  is the standard deviation of the sampling distribution of x  (often called the 

standard error of x .) In other word, we will construct an interval 1.96 standard deviations 
around the sample mean x . What can we say about how likely is it is that this interval will 
contain the true value of the population mean, µ ? 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1  Sample distribution of x  

 

Solution   We arrive at a solution by the following three-step process: 

Step 1 First note that, the area beneath the sampling distribution of x  between 

x
σµ 1.96- and 

x
1.96σµ + is approximately .95. (This area colored green in 
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Figure 7.1, is obtained from Table 1 of Appendix C.) This applies that before 
the sample of measurements is drawn, the probability that x will fall within 

the interval 
x

σµ 1.96± . 

Step 2 If in fact the sample yields a value of x  that falls within the interval  

x
σµ 1.96± , then it is true that x

x
σ1.96±  will contain µ , as demonstrated in 

Figure 7.2. For particular value of x that falls within the interval 
x

σµ 1.96± , a 

distance of 
x

σ1.96 is marked off both to the left and to the right of x . You 

can see that the value of µ  must fall within x
x

σ1.96± . 

Step 3 Step 1 and Step 2 combined imply that, before the sample is drawn, the 

probability that the interval x
x

σ1.96±  will enclose µ  is approximately .95.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2  Sample distribution of x  in Example 7.2 

 

The interval 
x

x σ96.1±  in Example 7.2 is called a large-sample 95% confidence interval for 

the population mean µ . The term large-sample refers to the sample being of a sufficiently large 

size that we can apply the Central Limit Theorem to determine the form of the sampling 
distribution of  x  .  

 

Definition 7.2 

A confidence interval for a parameter is an interval of numbers within which we 
expect the true value of the population parameter to be contained. The endpoints of 

 x  
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the interval are computed based on sample information. 

Example 7.3   Suppose that a random sample of observations from the population of 
three-year old children heights yield the following sample statistics:  

x  = 88.62 cm   and    s = 4.09 cm 

Construct a 95% confidence interval of µ , the population mean height, based on this sample. 

Solution    A 95% confidence interval for µ , based on a sample of size = 30, is given by 
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±=±

30
96.167.9296.196.1

σσ
σ

n
xx

x
 

In most practical applications, the value of the population deviation σ  will be unknown. 

However, for larger samples (n ≥ 30), the sample standard deviation s provides a good 
approximation to σ , and may be used on the formula for the confidence interval. For this 
example, we obtain 

46.162.88
30

09.4
96.162.88

30
96.162.88 ±=








±=








±

σ
 

or (87.16, 90.08). Hence, we estimate that the population mean height falls within the interval 
from 87.16 cm to 90.08 cm. 

How much confidence do we have that µ , the true population mean height, lies within the 

interval (87.16, 90.08)? Although we cannot be certain whether the sample interval contain µ  

(unless we calculate the true value of µ  for all 823 observations in Appendix B), we can be 

reasonably sure that it does. This confidence is based on the interpretation of the confidence 
interval procedure: If we were to select repeated random samples of size  n  = 30 heights, and 
from a 1.96 standard deviation interval around x   for each sample, then approximately 95% of 
the intervals constructed in this manner would contain µ . Thus, we are 95% confident that the 

particular interval (89.93, 95.41) contains µ , and this is our measure of the reliability of the 

point estimate x . 

Example 7.4   To illustrate the classical interpretation of a confidence interval, we 
generated 40 random samples, each of size  n  = 30, from the population of heights in 
Appendix B. For each sample, the sample mean and standard deviation are presented in 
Table 7.1. We then constructed the 95% confidence interval for µ , using the information 

from each sample. Interpret the results, which are shown in Table 7.2. 

 
Table 7.1   Means and standard deviations for 40 random samples of 30 heights 
                    from Appendix B 

Sample Mean Standard  
Deviation 

Sample Mean Standard 
Deviation 

1 89.53 6.39 21 91.17 5.67 

2 90.70 4.64 22 89.47 6.68 

3 89.02 5.08 23 88.86 4.63 

4 90.45 4.69 24 88.70 5.02 

5 89.96 4.85 25 90.13 5.07 
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6 89.96 5.53 26 91.10 5.27 

7 89.81 5.60 27 89.27 4.91 

8 90.12 6.70 28 88.85 4.77 

9 89.45 3.46 29 89.34 5.68 

10 89.00 4.61 30 89.07 4.85 

11 89.95 4.48 31 91.17 5.30 

12 90.18 6.34 32 90.33 5.60 

13 89.15 5.98 33 89.31 5.82 

14 90.11 5.86 34 91.05 4.96 

15 90.40 4.50 35 88.30 5.48 

16 90.04 5.26 36 90.13 6.74 

17 88.88 4.29 37 90.33 4.77 

18 90.98 4.56 38 86.82 4.82 

19 88.44 3.64 39 89.63 6.37 

20 89.44 5.05 40 88.00 4.51 
 

 

Table 7.2   95% confidence intervals for µ  for 40 random samples of 

                   30 heights from Appendix B 

Sample LCL UCL Sample LCL UCL 

1 87.24 91.81 21 89.14 93.20 

2 89.04 92.36 22 87.07 91.86 

3 87.20 90.84 23 87.20 90.52 

4 88.77 92.13 24 86.90 90.50 

5 88.23 91.69 25 88.31 91.95 

6 87.99 91.94 26 89.22 92.99 

7 87.81 91.82 27 87.51 91.02 

8 87.72 92.51 28 87.14 90.56 

9 88.21 90.69 29 87.31 91.37 

10 87.35 90.65 30 87.33 90.80 

11 88.35 91.56 31 89.27 93.07 

12 87.91 92.45 32 88.33 92.33 

13 87.01 91.29 33 87.23 91.39 

14 88.01 92.21 34 89.27 92.83 

15 88.79 92.01 35 86.34 90.26 

16 88.16 91.92 36 87.71 92.54 

17 87.35 90.41 37 88.62 92.04 

18 89.35 92.61 38 85.10 88.55 

19 87.14 89.75 39 87.35 91.91 

20 87.63 91.25 40 86.39 89.62 

(Note: The green intervals don't contain µ  = 89.67 cm) 

Solution   For the target population of  823 heights, we have obtained the population mean 

value µ  = 89.67 cm. In the 40 repetitions of the confidence interval procedure described 

above, note that only two of the intervals (those based on samples 38 and 40, indicated 
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by red color) do not contain the value of µ , where the remaining 38 intervals (or 95% of 

the 40 interval) do contain the true value of µ . 

Note that, in actual practice, you would not know the true value of µ  and you would not perform 

this repeated sampling; rather you would select a single random sample and construct the 
associated 95% confidence interval. The one confidence interval you form may or not contain 
µ , but you can be fairly sure it does because of your confidence in the statistical procedure, the 

basis for which was illustrated in this example. 

Suppose you want to construct an interval that you believe will contain µ  with some degree of 

confidence other than 95%; in other words, you want to choose a confidence coefficient other 
than .95. 

Definition 7.3 

The confidence coefficient is the proportion of times that a confidence interval 
encloses the true value of the population parameter if the confidence interval 
procedure is used repeatedly a very large number of times. 

The first step in constructing a confidence interval with any desired confidence coefficient is to 
notice from Figure 7.1 that, for a 95% confidence interval, the confidence coefficient of 95% is 
equal to the total area under the sampling distribution (1.00), less .05 of the area, which is 
divided equally between the two tails of the distribution. Thus, each tail has an area of .025. 
Second, consider that the tabulated value of z (Table 1 of Appendix C) that cuts off an area of 

.025 in the right tail of the standard normal distribution is 1.96 (see Figure 7.3). The value z = 
1.96 is also the distance, in terms of standard deviation, that x  is from each endpoint of the 
95% confidence interval. By assigning a  confidence coefficient other than .95 to a confidence 
interval, we change the area under the sampling distribution between the endpoint of the 
interval, which in turn changes the tail area associated with z. Thus, this z-value provides the 
key to constructing a confidence interval with any desired confidence coefficient.  

 

 

 

 

 

 

 

Figure 7.3 Tabulated z-value corresponding to a tail area of .025 

 

Definition 7.4 

We define 2/αz  to be the z-value such that an area of 2/α lies to its right (see Figure 

7.4). 
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Figure 7.4   Locating 2/αz on the standard normal curve 

Now, if an area of 2/α lies beyond 2/αz  in the right tail of the standard normal (z) distribution, 

then an area of 2/αz lies to the left of 2/αz− in the left tail (Figure 7.4) because of the symmetry 

of the distribution. The remaining area, )1( α− , is equal to the confidence coefficient - that is, 

the probability that x  falls within 2/αz standard deviation of µ  is )1( α− . Thus, a lager-sample 

confidence interval for µ , with confidence coefficient equal to )1( α− , is given by 

x
zx σα 2/±  

Example 7.5   In statistic problems using confidence interval techniques, a very common 

confidence coefficient is .90. Determine the value of 2/zα that would be used in 

constructing a 90% confidence interval for a population mean based on a large sample. 

Solution   For a confidence coefficient of .90, we have 

   90.1 =−α  

     10.=α  

 05.2/ =α  

and we need to obtain the value 05.2/ zz =α  that locates an area of .05 in the upper tail of the 

standard normal distribution. Since the total area to the right of 0 is .50,  
z.05 is the value such that the area between 0 and z.05  is .50 - .05 = .45. From Table 1 of 

Appendix C, we find that z.05 = 1.645 (see Figure 7.5). We conclude that a large-sample 90% 
confidence interval for a population mean is given by 

x
x σ645.1±  

In Table 7.3, we present the values of 2/αz for the most commonly used confidence coefficients. 

 

 

 

 

 

   - z α/2                   0                 zα/2  
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Table 7.3  Commonly used confidence  
                   coefficient 

Figure 7.5 Location of 2/αz for Example 7.5 

Confidence 
Coefficient 

  

)1( α−  2/α  2/αz  

.90 .050 1.645 

.95 .025 1.960 

.98 .010 2.330 

.99 .005 2.58 

 

 

A summary of the large-sample confidence interval procedure for estimating a population 
means appears in the next box. 

 

Large-sample )( αααα−1 100% confidence interval for a population mean, µµµµ  









±=±

n
zxzx

x

σ
σ αα 2/2/  

where 2/αz  is the z-value that locates an area of 2/α  to its right, σ  is the standard 

deviation of the population from which the sample was selected,  n  is the sample size, 
and x   is the value of the sample mean. 

 

Assumption: n ≥ 30 
[When the value of σ  is unknown, the sample standard deviation s may be used to 

approximate σ  in the formula for the confidence interval. The approximation is generally quite 

satisfactory when  n  ≥ 30.] 

Example 7.6   Suppose that in the previous year all graduates at a certain university 
reported the number of hours spent on their studies during a certain week; the average 
was 40 hours and the standard deviation was 10 hours. Suppose we want to investigate 
the problem whether students now are studying more than they used to. This year a 
random sample of  n  = 50 students is selected. Each student in the sample was 
interviewed about the number of hours spent on his/her study. This experiment produced 
the following statistics: 

x   = 41.5 hours  s = 9.2 hours 

Estimate µ , the mean number of hours spent on study, using a 99% confidence interval. 

Interpret the interval in term of the problem. 

Solution  The general form of a large-sample 99% confidence interval for µ  is  

36.35.41
50

2.9
58.25.4158.258.2 ±=








±=








±≈








±

n

s
x

n
x

σ
 

     0               z.05 = 1.645 
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or (38.14, 44.86). 

We can be 99% confident that the interval (38.14, 44.86) encloses the true mean weekly time 
spent on study this year. Since all the values in the interval fall above 38 hours and below 45 
hours, we conclude that there is tendency that students now spend more than 6 hours and less 
than 7.5 hours per day on average (suppose that they don't study on Sunday). 

Example 7.7   Refer to Example 7.6. 
a. Using the sample information in Example 7.6, construct a 95% confidence interval for mean 

weekly time spent on study of all students in the university this year. 

b. For a fixed sample size, how is the width of the confidence interval related to the confidence 
coefficient? 

Solution    
a. The form of a large-sample 95% confidence interval for a population mean µ  is 

55.25.41
50

2.9
96.15.4196.196.1 ±=








±=
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±

n

s
x

n
x

σ
 

 or (38.95, 44.05).   

b. The 99% confidence interval for µ  was determined in Example 7.6 to be (38.14, 44.86). 

The 95% confidence interval, obtained in this example and based on the same sample 
information, is narrower than the 99% confidence interval. This relationship holds in general, 
as stated in the next box. 

Relationship between width of  confidence interval and confidence coefficient 

For a given sample size, the width of the confidence interval for a parameter increases 
as the confidence coefficient increases. Intuitively, the interval must become wider for 
us to have greater confidence that it contains the true parameter value. 

Example 7.8   Refer to Example 7.6. 

a. Assume that the given values of the statistic x  and s were based on a sample of size  n  = 
100 instead of a sample size  n  = 50. Construct a 99% confidence interval for µ , the 

population mean weekly time spent on study of all students in the university this year. 

b. For a fixed confidence coefficient, how is the width of the confidence interval related to the 
sample size? 

Solution 
a. Substitution of the values of the sample statistics into the general formula for a 99% 

confidence interval for µ  yield 

37.25.41
100

2.9
58.25.4158.258.2 ±=








±=
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±

n

s
x

n
x

σ
 

or (39.13, 43.87) 

b. The 99% confidence interval based on a sample of size  n  = 100, constructed in part a., is 
narrower than the 99% confidence interval based on a sample of size  n  = 50, constructed 
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in Example 7.6. This will also hold in general, as stated in the box. 
 

Relationship between width of  confidence interval and sample size 

For a fixed confidence coefficient, the width of the confidence interval decreases as 
the sample size increases. That is, larger samples generally provide more information 
about the target population than do smaller samples. 

In this section we introduced the concepts of point estimation of the population mean µ , based 

on large samples. The general theory appropriate for the estimation of µ  also carries over to 

the estimation of other population parameters. Hence, in subsequent sections we will present 
only the point estimate, its sampling distribution, the general form of a confidence interval for the 
parameter of interest, and any assumptions required for the validity of the procedure. 

7.3 Estimation of a population mean: small sample case 
In the previous section, we discussed the estimation of a population mean based on large 
samples (n ≥ 30). However, time or cost limitations may often restrict the number of sample 
observations that may be obtained, so that the estimation procedures of Section 7.2 would not 
be applicable. 

With small samples, the following two problems arise: 

1. Since the Central Limit Theorem applies only to large samples, we are not able to assume 
that the sampling distribution of x  is approximately normal. For small samples, the sampling 
distribution of x  depends on the particular form of the relative frequency distribution of the 
population being sampled. 

2. The sample standard deviation s may not be a satisfactory approximation to the population 
standard deviation σ  if the sample size is small. 

Fortunately, we may proceed with estimation techniques based on small samples if we can 
make the following assumption: 

Assumption required for estimating µµµµ  based on small samples (n < 30) 

The population from which the sample is selected has an approximate normal 
distribution. 

If this assumption is valid, then we may again use x  as a point estimation for µ , and the 

general form of a small-sample confidence interval for µ  is as shown next box. 

Small-sample confidence interval for µµµµ  









±

n

s
tx 2/α  

where the distribution of t based on (n - 1) degrees of freedom. 

Upon comparing this to the large-sample confidence interval for µ , you will observe that the 

sample standard deviation s replaces the population standard deviation σ . Also, the sampling 

distribution upon which the confidence interval is based is known as a Student's t-distribution. 
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Consequently, we must replace the value of 2/αz used in a large-sample confidence interval by 

a value obtained from the t-distribution. 

The t-distribution is very much like the z-distribution. In particular, both are symmetric, bell-

shaped, and have a mean of 0. However, the distribution of t depends on a quantity called its 

degrees of freedom (df), which is equal to (n - 1) when estimating a population mean based on 
a small sample of size n. Intuitively, we can think of the number of degrees of freedom as the 

amount of information available for estimating, in addition to µ , the unknown quantity 
2σ . 

Table 2 of Appendix C, a portion of which is reproduced in Table 7.4, gives the value of αt  that 

located an area of α  in the upper tail of the t-distribution for various values of α  and for 
degrees of freedom ranging from 1 to 120. 

Table 7.6 
Some values for Student's t-distribution 

 

 

 

 

 
 

Degrees  
of 

freedom 

 

t.100 

 

t.050 

 

t.025 

 

t.010 

 

t.005 

 

t.001 

 

t.0005 

1 3.078 6.314 12.706 31.821 63.657 318.31 636.62 

2 1.886 2.920 4.303 6.965 9.925 22.326 31.598 

3 1.638 2.353 3.182 4.541 5.841 10.213 12.924 

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 

13 1.350 1.771 2.160 2.650 3.102 3.852 4.221 

14 1.345 1.760 2.145 2.624 2.977 3.787 4.140 

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 

 

Example 7.9   Using Table 7.4 to determine the t-value that would be used in constructing 

a 95% confidence interval for µ  based on a sample of size  n  = 14. 

Solution  For confidence coefficient of .95, we have 

 95.1 =−α  

     05.=α  

 025.2/ =α  

tα

α 
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We require the value of t.025 for a t-distribution based on (n - 1) = (14 - 1) = 13 degrees of 

freedom. In Table 7.4, at intersection of the column labeled t.025 and the row corresponding to df 
= 13, we find the entry 2.160 (see Figure 7.6). Hence, a 95% confidence interval for µ , based 

on a sample of size  n  = 13 observations, would be given by 









±

14
160.2

s
x  

 

 

 

 

 

 

 

 

 

Figure 7.6    Location of t.025 for Example 7.9 

 

At this point, the reasoning for the arbitrary cutoff point of  n  = 30 for distinguishing between 
large and small samples may be better understood. Observe that the values in the last row of 
Table 2 in Appendix C (corresponding to df = ∞ ) are the values from the standard normal z-

distribution. This phenomenon occurs because, as the sample size increases, the t distribution 

becomes more like the z distribution. By the time  n  reaches 30, i.e., df = 29, there is very little 

difference between tabulated values of t and z. 

Before concluding this section, we will comment on the assumption that the sampled population 
is normally distributed. In the real world, we rarely know whether a sampled population has an 
exact normal distribution. However, empirical studies indicate that moderates departures from 
this assumption do not seriously affect the confidence coefficients for small-sample confidence 
intervals. As a consequence, the definition of the small-sample confidence given in this section 
interval is frequently used by experimenters when estimating the population mean of a non-
normal distribution as long as the distribution is bell-shaped and only moderately skewed. 

7.4 Estimation of a population proportion 
We will consider now the method for estimating the binomial proportion of successes, that is, 
the proportion of elements in a population that have a certain characteristic. For example, a 
demographer may be interested in the proportion of a city residents who are married; a 
physician may be interested in the proportion of men who are smokers. How would you estimate 
a binomial proportion p based on information contained in a sample from a population. 

Example 7.10   A commission on crime is interested in estimation the proportion of 
crimes to firearms in an area with one of the highest crime rates in a country. The 
commission selects a random sample of 300 files of recently committed  crimes in the 
area and determines that a firearm was reportedly used in 180 of them. Estimate the true 

t-distribution with 13 df 

 

    0             t.025 = 2.160 
t 
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proportion p of all crimes committed in the area in which some type of firearm was 
reportedly used. 

Solution   A logical candidate for a point estimate of the population proportion p is the 

proportion of observations in the sample that have the characteristic of interest (called a 

"success"); we will call this sample proportion p̂  (read "p hat"). In this example, the 

sample proportion of crimes related to firearms is given by   

sapmlein  crimes ofnumber  Total

used reportedly  wasfirearm ain which  samplein  crimes ofNumber 
ˆ =p =180/300=.60 

That is, 60% of the crimes in the sample were related to firearms; the value 60.ˆ =p servers as 

our point estimate of the population proportion p. 

To assess the reliability of the point estimate p̂ , we need to know its sampling distribution. This 

information may be derived by an application of the Central Limit Theorem. Properties of the 
sampling distribution of p̂ are given in the next box. 

Sampling distribution of p̂  

For sufficiently large samples, the sampling distribution of p̂ is approximately normal, 

with 

 Mean:   pp =ˆµ  

and  Standard deviation: 
n

pq
p =ˆσ  

where q = q- p. 

A large-sample confidence interval for p may be constructed by using a procedure analogous to 
that used for estimating a population mean.  

Large-sample )1( αααα− 100% confidence interval for a population proportion, p 

  
n

qp
zpzp p

ˆˆ
ˆˆ

2/ˆ2/ αα σ ±≈±  

where p̂ is the sample proportion of observations with the characteristic of interest, 

and pq ˆ1ˆ −= . 

 

Note that, we must substitute p̂ and q̂  into the formula for npqp /ˆ =σ in order to construct the 

confidence interval. This approximation will be valid as long as the sample size  n  is sufficiently 
large.  

Example 7.11   Refer to Example 7.10. Construct a 95% confidence interval for p, the 

population proportion of crimes committed in the area in which some type of firearm is 
reportedly used. 



 c 

Solution   For a confidence interval of .95, we have 95.1 =−α ; 05.=α ; 025.2/ =α ; 

and the required z-value is z.025 = 1.96. In Example 7.10, we obtained 60.300/180ˆ ==p . 

Thus, 40.60.1ˆ1ˆ =−=−= pq . Substitution of these values into the formula for an 

approximate confidence interval for p yields 

06.60.
300

)40)(.60(.
96.160.

ˆˆ
ˆ

2/ ±=±=±
n

qp
zp α  

or (.54, .66). Note that the approximation is valid since the interval does not contain 0 or 1. 

We are 95% confident that the interval from .54 to .66 contains the true proportion of crimes 
committed in the area that are related to firearms. That is, in repeated construction of 95% 
confidence intervals, 95% of all samples would produce confidence interval that enclose p. 

It should be noted that small-sample procedure are available for the estimation of a population 
proportion p. We will not discuss details here, however, because most surveys in actual practice 
use samples that are large enough to employ the procedure of this section. 

7.5 Estimation of the difference between two population  
      means: Independent samples 
In Section 7.2, we learned how to estimate the parameter µ  based on a large sample from a 

single population. We now proceed to a technique for using the information in two samples to 
estimate the difference between two population means. For example, we may want to compare 
the mean heights of the children in province No.18 and in province No.14 using the 
observations in Appendix B. The technique to be presented is a straightforward extension of 
that used for large-sample estimation of a single population mean. 

Example 7.12   To estimate the difference between the mean heights for all children of 
province No. 18 and province No. 14 use the following information 

1. A random sample of 30 heights of children in province No. 18 produced a sample mean of 
91.72 cm and a standard deviation of 4.50 cm. 

2. A random sample of 40 heights of children in province No. 14 produced a sample mean of 
86.67 cm and a standard deviation of 3.88 cm. 

Calculate a point estimate for the difference between heights of children in two provinces. 

Solution   We will let subscript 1 refer to province No. 18 and the subscript 2 to province 
No. 14. We will also define the following notation: 

1µ   = Population mean height of all children of province No. 18. 

2µ  = Population mean height of all children of province No. 14. 

Similarly, lets 1x  and 2x  denote the respective means; s1 and s2, the respective sample 

standard deviations; and n1 and n2, the respective sample sizes. The given information may be 
summarized as in Table 7.5. 

Table 7.5 Summary information for Example 7.12 

 Province No. 18 Province No. 14 

Sample size n1 = 30 n2 = 40 
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(µ1 - µ2) 
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xx −
σ  

Sample mean 1x  =  91.72 cm 2x  =  86.67 cm 

Sample standard deviation s1 =  4.50   cm   s2 =   3.88  cm   

To estimate )( 21 µµ − , it seems sensible to use the difference between the sample means  

)( 21 xx −  = (91.72 - 86.67) =  5.05  as our point estimate of the difference between two 

population means. The properties of the point estimate )( 21 xx −  are summarized by its 

sampling distribution shown in Figure 7.8. 

 

 

 

 

 

 

 

 

Figure 7.8 Sampling distribution of )( 21 xx −  

Sampling distribution of )( 21 xx −−−−  

For sufficiently large sample size (n1 and n2 ≥  30), the sampling distribution of  

)( 21 xx − , based on independent random samples from two population, is 

approximately normal with  

Mean:   )( 21)( 21
µµµ −=

−xx
 

Standard deviation: 
2

2

2

1

2

1

)( 21 nnxx

σσ
σ +=

−
 

where 
2

1σ and 
2

2σ are standard deviations of two population from which the samples 

were selected. 

As was the case with large-sample estimation of single population mean, the requirement of 
large sample size enables us to apply the Central Limit Theorem to obtain the sampling 

distribution of )( 21 xx − ; it also suffices use to 
2

1s and 
2

2s  as approximation to the respective 

population variances, 
2

1σ and 
2

2σ .  

The procedure for forming a large-sample confidence interval for )( 21 µµ −  appears in the 

accompanying box. 
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Large-sample (1 - αααα)100% confidence interval for )( 21 µµµµµµµµ −−−−  
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(Note: We have used the sample variances 
2

1s and 
2

2s  as approximations to the corresponding 

population parameters.) 

The assumptions upon which the above procedure is based are the following: 

Assumptions required for large-sample estimation of )( 21 µµµµµµµµ −−−−  

1. The two random samples are selected in an independent manner from the target 
populations. That is the choice of elements in one sample does not affect, and is 
not affected by, the choice of elements in the other sample. 

2. The sample sizes n1 and n2 are sufficiently large. (at least 30) 

Example 7.13   Refer to Example 7.12. Construct a 95% confidence interval for )( 21 µµ − , 

the difference between mean heights of all children in province No. 18 and province No. 
14. Interpret the interval. 

Solution   The general form of a 95% confidence interval for )( 21 µµ −  based on large 

samples from the target populations, is given by 

2

2

2

1

2

1
2/21 )(

nn
zxx

σσ
α +±−  

Recall that z.025 = 1.96 and use the information in Table 7.5 to make the following substitutions 
to obtain the desired confidence interval: 

4030
96.1)67.8672.91(

2

2

2

1 σσ
+±−  

40

)88.3(

30

)50.4(
96.1)67.8672.91(

22

+±−≈  

01.205.5 ±≈  

or (3.04, 7.06). 

The use of this method of estimation produces confidence intervals that will enclose )( 21 µµ − , 

the difference between population means, 95% of the time. Hence, we can be reasonably sure 
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that the mean height of children in province No. 18 was between 3.04 cm and 7.06 cm higher 
than the mean height of children in province No. 14 at the survey time. 

When estimating the difference between two population means, based on small samples from 
each population, we must make specific assumptions about the relative frequency distributions 
of the two populations, as indicated in the box. 

Assumptions required for small-sample estimation of )( 21 µµµµµµµµ −−−−  

1. Both of the populations which the samples are selected have relative frequency  
distributions that are approximately normal. 

2. The variances 
2

1σ and 
2

2σ of the two populations are equal. 

3. The random samples are selected in an independent manner from two 
populations. 

 

When these assumptions are satisfied, we may use the procedure specified in the next box to 

construct a confidence interval for )( 21 µµ − , based on small samples  

(n1 and n2 < 30) from respective populations. 

 

Small-sample (1 - αααα)100% confidence interval for )( 21 µµµµµµµµ −−−−  
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and the value of 2/αt is based on (n1 + n2 - 2) degrees of freedom. 

Since we assume that the two populations have equal variances (i.e., 
22

2

2

1 σσσ == ), we 

construct an estimate of 
2σ based on the information contained in both samples. This pooled 

estimate is denoted by 
2

ps  and is computed as in the previous box. 

7.6 Estimation of the difference between two population  
      means: Matched pairs 
The procedure for estimating the difference between two population means presented in 
Section 7.5 were based on the assumption that the samples were randomly selected from the 
target populations. Sometimes we can obtain more information about the difference between 

population means )( 21 µµ − , by selecting paired observations. 

For example, suppose we want to compare two methods for teaching reading skills to first 
graders using sample of ten students with each method. The best method of sampling would be 
to match the first graders in pairs according to IQ and other factors that might affect reading 
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achievement. For each pair, one member would be randomly selected to be taught by method 
1; the other member would be assigned to class taught by method 2. Then the differences 
between matched pairs of achievement test scores should provide a clearer picture of the 
difference in achievement for the two reading methods because the matching would tend to 
cancel the effects of the factors that formed the basic of the matching. 

In the following boxes, we give the assumptions required and the procedure to be used for 
estimating the difference between two population means based on matched-pairs data. 

Assumptions required for estimation of )( 21 µµµµµµµµ − : Matched pairs 

1. The sample paired observations are randomly selected from the target population 
of paired observations. 

2. The population of paired differences is normally distributed. 

 

Small-sample )1( αααα−−−− 100% confidence interval for )( 21 µµµµµµµµµµµµ −=d  

Let d1, d2, . . . dn represent the differences between the pair-wise observations in a 
random sample of  n  matched pairs. Then the small-sample confidence interval for 

)( 21 µµµ −=d  is 









±

n

s
td d

2/α  

where d  is the mean of  n  sample differences, sd is their standard deviation, and 2/αt  

is based on (n-1) degrees of freedom. 

Example 7.14   Suppose that the  n  = 10 pairs of achievement test scores were given in 

Table 7.7 . Find a 95% confidence interval for the difference in mean achievement, 

)(d 21 µµµ −= . 

Table 7.7   Reading achievement test scores for Example 7.14 

 Student pair 

 1 2 3 4 5 6 7 8 9 10 

Method 1 score 78 63 72 89 91 49 68 76 85 55 

Method 2 score 71 44 61 84 74 51 55 60 77 39 

Pair difference 7 19 11 5 17 -2 13 16 8 16 

Solution  The differences between matched pairs of reading achievement test scores are 
computed as 
 d = (method 1 score - method 2 score) 

The mean, variance, and standard deviation of the differences are 

0.11
10

110
===∑

n

d
d  
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6667.42
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210,1594,1

9

10

)110(
594,1

1

2
2

2

2 =
−

=
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=
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−
=

∑∑
n

n

d
d

sd  

53.667.42 ==ds  

The value of t.025, based on (n -1) = 9 degrees of freedom, is given in Table 2 of Appendix C as 

t.025 = 2.262. Substituting these values into the formula for the confidence interval, we obtain 









±

n

s
td d

025.  

 7.40.11
10

53.6
262.20.11 ±=








±=  

or (6.3, 15.7). 

We estimate, with 95% confidence that the difference between mean reading achievement test 
scores for method 1 and 2 falls within the interval from 6.3 to 15.7. Since all the values within 
the interval are positive. method 1 seems to produce a mean achievement test score that 
substantially higher than the mean score for method 2. 

7.7 Estimation of the difference between two population proportions 
This section extends the method of Section 7.4 to the case in which we want to estimate the 
difference between two population proportions. For example, we may be interested in 
comparing the proportions of married and unmarried persons who are overweight. 

Example  7.15   Suppose that there were two surveys, one was carried out in 1990 and 
another in 1998. In both surveys, random samples of 1,400 adults in a country were 
asked whether they were satisfied with their life. The results of the surveys are reported 
in Table 7.8. Construct a point estimate for difference between the proportions of  adults 
in the country in 1990 and in 1998 who were satisfied with their life. 

Table 7.8   Proportions of two samples for Example 7.15 

 1990 1998 

Number surveyed  n1 = 1,400 n2 = 1,400 

Number in sample who said they were 
satisfied with their life 

462 674 

Solution   We define some notations: 

p1   =  Population proportion of adults who said that they were satisfied with their life in 1990. 

p2    = Population proportion of adults who said that they were satisfied with their life in 1998. 

As a point estimate of (p1 - p2), we will use the difference between the corresponding sample 

proportions, )ˆˆ( 21 pp − , where 

33.
400,1

462

1990

1990
ˆ
1 ===

insurveyedadultsofNumber

lifetheirwithsatisfiedweretheythatsaidwhoinadultsofNumber
p  
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and 

48.
400,1

674

1998

1998
ˆ
2 ===

insurveyedadultsofNumber

lifetheirwithsatisfiedweretheythatsaidwhoinadultsofNumber
p  

Thus, the point estimate of  (p1 - p2), is 

)ˆˆ( 21 pp −  = .33 - .48 = -.15 

To judge the reliability of the point estimate )ˆˆ( 21 pp − , we need to know the characteristics of its 

performance in repeated independent sampling from two populations. This information is 

provided by the sampling distribution of )ˆˆ( 21 pp − , shown in the next box. 

Sampling distribution of )ˆˆ( 21 pp −−−−  

For sufficiently large sample size, n1 and n2, the sample distribution of )ˆˆ( 21 pp − , 

based on independent random samples from two populations, is approximately normal 
with 

 Mean:   )ˆˆ( 21)ˆˆ( 21
pppp −=−µ  

and 

 Standard deviation:  
2

22

1

11
)ˆˆ( 21 n

qp

n

qp
pp +=−σ  

where q1 = 1 - p1 and q2 = 1 - p2. 

 

It follows that a large-sample confidence interval for )ˆˆ( 21 pp −  may be obtained as shown in the 

box. 

 

Large-sample )1( αααα−−−− 100% confidence interval for )ˆˆ( 21 pp −−−−  
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where 1p̂  and 2p̂ are the sample proportions of observations with the characteristics 

of interest. 

Assumption: The samples are sufficiently large so that the approximation is valid. As a 
general rule of thumb we will require that intervals 

1

11
1

ˆˆ
2ˆ

n

qp
p ± and  

2

22
2

ˆˆ
2ˆ

n

qp
p ± do not contain 0 or 1. 
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Example 7.16   Refer to Example 7.15. Estimate the difference between the proportions of 
the adults in this country in 1990 and in 1998 who said that they were satisfied with their 
life, using a 95% confidence interval. 

Solution   From Example 7.15, we have n1 = n2 = 1,400, 1p̂ = .33 and 2p̂ = .48.  

Thus, 1q̂ = 1 - .33 = .67 and 2q̂  = 1 - .48 = .52. Note that the intervals 

025.33.
400,1

)67)(.33(.
233.

ˆˆ
2ˆ

1

11
1 ±=±=±

n

qp
p  

027.48.
400,1

)67)(.48(.
248.

ˆˆ
2ˆ

2

22
2 ±=±=±

n

qp
p  

do not contain 0 and 1. Thus, we can apply the large-sample confidence interval for  
(p1 - p2). 

The 95% confidence interval is 

400,1

)52)(.48(.

400,1

)67)(.33(.
96.1)48.33(.

ˆˆˆˆ
)ˆˆ(

2

22

1

11
025.21 +±−=+±−

n

qp

n

qp
zpp  

036.15. ±−=  

or (-.186, -.114). Thus we estimate that the interval (-.186, -.114) enclose the difference (p1 - p2) 
with 95% confidence. It appears that there were between 11.4% and 18.6% more adults in 1998 
than in 1990 who said that they were satisfied with their life. 

7.8 Choosing the sample size 
Before constructing a confidence interval for a parameter of interest, we will have to decide on 
the number  n  of observations to be included in a sample. Should we sample  n  = 10 

observations,  n  = 20, or  n  = 100? To answer this question we need to decide how wide a 
confidence interval we are willing to tolerate and measure of confidence - that is, the confidence 
coefficient- that we wish to place in it. The following example will illustrate the method for 
determining the appropriate sample size for estimating a population mean. 

Example 7.17   A mail-order house wants to estimate the mean length of time between 
shipment of an order and receipt by customer. The management plans to randomly 

sample  n  orders and determine, by telephone, the number of days between shipment 

and receipt for each order. If management wants to estimate the mean shipping time 
correct to within .5 day with probability equal to .95, how many orders should be sample? 

Solution   We will use x , the sample mean of the  n  measurements, to estimate µ , the 

mean shipping time. Its sampling distribution will be approximately normal and the 
probability that x  will lie within 









=

n
x

σ
σ 96.196.1  

of the mean shipping time, µ , is approximately .95 (see Figure 7.9). Therefore, we want to 

choose the sample size  n  so that n/96.1 σ equals .5 day: 
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Figure 7.9 Sampling distribution of  the sample mean, x  

To solve the equation n/96.1 σ = .5, we need to know that value of σ , a measure of variation 

of the population of all shipping times. Since σ is unknown, we must approximate its value 
using the standard deviation of some previous sample data or deduce an approximate value 
from other knowledge about the population. Suppose, for example, that we know almost all 
shipments will delivered within 7 days. Then the population of shipping times might appear as 
shown in Figure 7.10. 

 

 

 

 

 

 

 

Figure 7.10  Hypothetical relative frequency distribution of population of shipping 
                      times for Example 7.17.  

 

Figure 7.9 provides the information we need to find an approximation for σ . Since the Empirical 

Rule tells us that almost all the observations in a data set will fall within the interval σµ 3± , it 

follows that the range of a population is approximately σ6 . If the range of population of 
shipping times is 7 days, then 

 σ6  = 7 days 

and σ  is approximately equal to 7/6 or 1.17 days. 

The final step in determining the sample size is to substitute this approximate value of σ  into 
the equation obtained previously and solve for n.  

 x  
µ 

1.96σD 1.96σD 

.5 day .5 day 



 cix 

Thus, we have 

5.
17.1

96.1 =








n
 or 59.4

5.

)17.1(96.1
==n  

Squaring both sides of this equation yields: n = 21.07. 

we will follows the usual convention of rounding the calculated sample size upward. Therefore, 
the mail-order house needs to sample approximately  n  = 22 shipping times in order to estimate 
the mean shipping time correct to within .5 day with probability equal .95. 

In Example 7.17, we wanted our sample estimate to lie within .5 day of the true mean shipping 
time, µ , with probability .95, where .95 represents the confidence coefficient. We could 

calculate the sample size for a confidence coefficient other than .95 by changing the z-value in 
the equation. In general, if we want x  to lie within a distance d of µ  with probability )1( α− , we 

would solve for  n  in the equation 

d
n

z =






 σ
α 2/  

where the value of  2/zα is obtained from Table 1 of Appendix C. The solution is given by 

2

2/ 







=

d

z
n

σα  

For example, for a confidence coefficient of .90, we would require a sample size of 

2
64.1








=
d

n
σ

 

Choosing the sample size for estimating a population mean µµµµ  to within d units 

with probability )1( αααα−−−−  

 

2

2/ 







=

d

z
n

σα  

(Note: The population standard deviation σ  will usually have to be approximated.) 

The procedures for determining the sample sizes needed to estimate a population proportion, 
the difference between two population means, or the difference between two population 
proportions are analogous to the procedure for the determining the sample size for estimating a 
population mean. 
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Choosing the sample size for estimating a population proportion p to within d 

units with probability )1( αααα−−−−  

 pq
d

z
n

2

2/ 







=

σα   

where p is the value of the population proportion that we are attempting to estimate 
and q = 1 - p. 

(Note: This technique requires previous estimates of p and q. If none are available, use  
  p = q = .5 for a conservative choice of n.) 

7.9 Estimation of a population variance  
In the previous sections, we considered interval estimates for population means or proportions. 
In this optional section, we discuss a confidence interval for a population variance, σ2. Intuitively, 
it seems reasonable to use the sample variance s2 to estimate σ2 and to construct our 
confidence interval around this value. However, unlike sample means and sample proportions, 
the sampling distribution of the sample variances does not possess a normal z-distribution or a 

t-distribution.  

Rather, when certain assumptions are satisfied, the sampling distribution of s2 possesses 

approximately a chi-square (χχχχ2) distribution. The chi-square probability distribution, like the t-
distribution, is characterized by a quantity called the degrees of freedom associated with the 
distribution. Several chi-square probability distributions with different degrees of freedom are 
shown in Figure 7.11. Unlike z- and  

t-distributions, the chi-square distribution is not symmetric about 0.  

Throughout this section we will use the words chi-square and the Greek symbol χ2 
interchangeably. 

Example 7.18  Tabulated values of the χχχχ2 distribution are given in Table 3 of Appendix C; 

a partial reproduction of this table is shown in Table 7.9. Entries in the table give an 

upper-tail value of χχχχ2, call it χχχχ2
αααα , such that P(χχχχ2 > χχχχ2

αααα) = αααα. Find the tabulated value of χχχχ2 
corresponding to 9 degrees of freedom that cuts off an upper-tail area of .05.  
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Figure 7.11 Several chi-square probability distribution 

Solution   The value of χχχχ2 that we seek appears (shaded) in the partial reproduction of 

Table 3 of Appendix C given in Table 7.9. The columns of the table identify the value of αααα 

associated with the tabulated value of χχχχ2
αααα  and the rows correspond to the degrees of 

freedom. For this example, we have df = 9 and αααα = .05. Thus, the tabulated value of χχχχ2 
corresponding to 9 degrees of freedom is 

   χ2.05  = 16.9190 

Table 7.9  Reproduction of part of Table 3 of Appendix C  

 

We use the tabulated values of χ2 to construct a confidence interval for σ2 as the next example. 

Example 7.19   There was a study of contaminated fish in a river. Suppose it is important 
for the study to know how stable the weights of the contaminated fish are.  That is, how 

large is the variance σσσσ2 in the fish weights? The 144 samples of fish in the study 
produced the following summary statistics: 

   grams. 376.6  grams,7.049,1 == sx  

Use this information to construct a 95% confidence interval for the true variation in weights of 
contaminated fish in the river. 

Degrees of 
freedom  χ2.050 χ2.025 χ2.010 χ2.005 

1  2.70554 3.84146 5.02389 6.63490 7.87944 

2  4.60517 5.99147 7.37776 9.21034 10.59660 

3  6.25139 7.81473 9.34840 11.34490 12.83810 

4  7.77944 9.48773 11.14330 13.27670 14.86020 

5  9.23635 11.07050 12.83250 15.08630 16.74960 

6  10.64460 12.59160 14.44940 16.81190 18.54760 

7  12.01700 14.06710 16.01280 18.47530 20.27770 

8  13.36160 15.50730 17.53460 20.09020 21.95500 
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9  14.68370 16.91900 19.02280 21.66600 23.58930 

10  15.98710 18.30700 20.48310 23.20930 25.18820 

11  17.27500 19.67510 21.92000 24.72500 26.75690 

12  18.54940 21.02610 23.33670 26.21700 28.29950 

13  19.81190 22.36210 24.73560 27.68830 29.81940 

14  21.06420 23.68480 26.11900 29.14130 31.31930 

15  22.30720 24.99580 27.48840 30.57790 32.80130 

16  23.54180 26.29620 28.84540 31.99990 34.26720 

17  24.76900 27.58710 30.19100 33.40870 35.71850 

18  25.98940 28.86930 31.52640 34.80530 37.15640 

19  27.20360 30.14350 32.85230 36.19080 38.58220 

Solution  A (1 - αααα)100% confidence interval for σσσσ2 depends on the quantities s2,  

(n - 1), and critical values of χχχχ2 as shown in the box. Note that (n - 1) represents the 

degrees of freedom associated with the χχχχ2 distribution. To construct the interval, we first 

locate the critical values 
2

2/1 αχ − , and 
2

2/αχ . These are the values of χχχχ2 that cut off an area 

of αααα/2 in the lower and upper tails, respectively, of the chi-square distribution (see Figure 

7.11).  

A (1 - αααα)100% confidence interval for a population variance, σσσσ2  
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where 2

2/1 αχ − , and 2

2/αχ are values of χ2 that locate an area of α/2 to the right and α/2 
to the left, respectively, of a chi-square distribution based on (n - 1) degrees of 
freedom.  

Assumption: The population from which the sample is selected has an approximate 
normal distribution. 

 

 For a 95% confidence interval, (1 - α) = .95 and α/2 = .05/2 = .025. There- fore, we need the 
tabulated values  χ2

.025, and χ2
.975 for (n - 1) = 143 df. Looking in the  

df = 150 row of Table 3 of Appendix C (the row with the df values closest to 143), we find χ2
.025 

= 185.800 and χ2
.975  = 117.985. Substituting into the formula given in the box, we obtain  

  
985.117

)6.376)(1144(

800.185

)6.376)(1144( 2
2

2 −
≤≤

−
σ  
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We are 95% confident that the true variance in weights of contaminated fish in the river falls 
between 109,156.8 and 171,898.4. 

Figure 7.11 The location of χ21-α/2 and χ
2
α/2 for a chi-square distribution 

Example 7.20   Refer to Example 7.19. Find a 95% confidence interval for σσσσ, the true 
standard deviation of the fish weights.  

Solution  A confidence interval for σσσσ  is obtained by taking the square roots of the lower 

and upper endpoints of a confidence interval for σσσσ2. Thus, the 95% confidence interval is  

6.4144.330
4.898,1718.156,109

2

2

≤≤
≤≤

σ
σ  

Thus, we are 95% confident that the true standard deviation of the fish weights is between 
330.4 grams and 414.6 grams. 

Note that the procedure for calculating a confidence interval for σ2 in Example 7.19 (and the 
confidence interval for a in Example 7.20) requires an assumption regardless of whether the 
sample size n is large or small (see box). We must assume that the population from which the 
sample is selected has an approximate normal distribution. It is reasonable to expect this 
assumption to be satisfied in Examples 7.19 and 7.20 since the histogram of the 144 fish 
weights in the sample is approximately normal. 

7.10 Summary 
This chapter presented the technique of estimation - that is, using sample information to make 
an inference about the value of a population parameter, or the difference between two 
population parameters. In each instance, we presented the point estimate of the parameter of 
interest, its sampling distribution, the general form of a confidence interval, and any 
assumptions required for the validity of the procedure. In addition, we provided techniques for 
determining the sample size necessary to estimate each of these parameters. 

7.11 Exercises 
7.1. Use Table 1 of Appendix C to determine the value of zα/2 that would be used to construct a 

large-sample confidence interval for µ, for each of the following confidence coefficients: 

a) .85   
b) .95   
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c) .975 

7.2. Suppose a random sample of size n = 100 produces a mean of x =81 and a standard 
deviation of s = 12. 

a) Construct a 90% confidence interval for µ. 
b)  Construct a 95% confidence interval for µ.  
c) Construct a 99% confidence interval for µ. 

7.3. Use Table 2 of Appendix C to determine the values of tα/2 that would used in the 
construction of a confidence interval for a population mean for each of the following 
combinations of confidence coefficient and sample size: 

a) Confidence coefficient .99,  n = 18. 
b) Confidence coefficient .95,  n = 10. 
c) Confidence coefficient .90,  n = 15. 

7.4. A random sample of n = 10 measurements from a normally distributed population yields 
x = 9.4 and s = 1.8. 

a) Calculate a 90% confidence for µ. 
b) Calculate a 95% confidence for µ. 
c) Calculate a 99% confidence for µ. 

7.5. The mean and standard deviation of n measurements randomly sampled from a normally 
distributed population are 33 and 4, respectively. Construct a 95% confidence interval for 
µ when: 

a) n = 5  b) n = 15  c) n = 25   

7.6. Random samples of n measurements are selected from a population with unknown 

proportion of successes p. Compute an estimate of p̂σ  for each of the following situations: 

a) n = 250,   p̂  = .4  b) n = 500, p̂  = .85  c) n = 95, p̂  = .25 

7.7. A random sample of size 150 is selected from a population and the number of successes 
is 60. 

a) Find p̂ . 

b) Construct a 90% confidence interval for p. 
c) Construct a 95% confidence interval for p. 
d) Construct a 99% confidence interval for p. 

7.8. Independent random samples from two normal population produced the sample means 
and variances listed in the following table. 

Sample from 
population 1  

Sample from 
population 2 

n1   = 14 

1x  = 53.2 

2

1s   = 96.8 

n2   = 7 

1x  = 43.4 

2

2s   = 102.0 

 

a) Find a 90% confidence interval for (µ1 - µ2).  
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b) Find a 95% confidence interval for (µ1 - µ2). 
c) Find a 99% confidence interval for (µ1 - µ2). 

7.9. A random sample of ten paired observations yielded the following summary information: 

d = 2.3  sd = 2.67 

a) Find a 90% confidence interval for µd. 
b) Find a 95% confidence interval for µd. 
c) Find a 99% confidence interval for µd. 
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Chapter 8    Hypothesis Testing 
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8.1 Introduction 

In this chapter we will study another method of inference-making: hypothesis testing. The 
procedures to be discussed are useful in situations where we are interested in making a 
decision about a parameter value, rather than obtaining an estimate of its value. It is often 
desirable to know whether some characteristics of a population is larger than a specified value, 
or whether the obtained value of a given parameter is less than a value hypothesized for the 
purpose of comparison.  

8.2 Formulating Hypotheses 
When we set out to test a new theory, we first formulate a hypothesis, or a claim, which we 
believe to be true. For example, we may claim that the mean number of children  born to urban 
women is less than the mean number of children  born to rural women.  

Since the value of the population characteristic is unknown, the information provided by a 
sample from the population is used to answer the question of whether or not the population 
quantity is larger than  the specified or hypothesized value. In statistical terms, a statistical 
hypothesis is a statement about the value of a population parameter. The hypothesis that we try 
to establish is called the alternative hypothesis and is denoted by Ha. To be paired with the 
alternative hypothesis is the null hypothesis, which is "opposite" of the alternative hypothesis, 
and is denoted by H0. In this way, the null and alternative hypotheses, both stated in terms of 
the appropriate parameters, describe two possible states of nature that cannot simultaneously 
be true. When a researcher begins to collect information about the phenomenon of interest, he 
or she generally tries to present evidence that lends support to the alternative hypothesis. As 
you will subsequently learn, we take an indirect approach to obtaining support for the alternative 
hypothesis: Instead of trying to show that the alternative hypothesis is true, we attempt to 
produce evidence to show that the null hypothesis is false. 

It should be stressed that researchers frequently put forward a null hypothesis in the hope that 
they can discredit it. For example, consider an educational researcher who designed a new way 
to teach a particular concept in science, and wanted to test experimentally whether this new 
method worked better than the existing method. The researcher would design an experiment 
comparing the two methods. Since the null hypothesis would be that there is no difference 
between the two methods, the researcher would be hoping to reject the null hypothesis and 
conclude that the method he or she developed is the better of the two.  
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The null hypothesis is typically a hypothesis of no difference, as in the above example where it 
is the hypothesis that there is no difference between population means. That is why the word 
"null" in "null hypothesis" is used − it is the hypothesis of no difference.  

Example 8.1 Formulate appropriate null and alternative hypotheses for testing the 
demographer's theory that the mean number of children born to urban women is less 
than the mean number of children born to rural women. 

Solution The hypotheses must be stated in terms of a population parameter or 
parameters. We will thus define 

   µ1 = Mean number of children born to urban women, and 

   µ2 = Mean number of children ever born of the rural women. 

The demographer wants to support the claim that µ1 is less than µ2; therefore, the null and 
alternative hypotheses, in terms of these parameters, are 

   H0: (µ1 - µ2) = 0 (i.e., µ1 = µ2; there is no difference between the mean numbers of children 
born to urban and rural women) 

   Ha: (µ1 - µ2) < 0 (i.e., µ1 < µ2; the mean number of children born to urban women is less 
than that for the rural women) 

Example 8.2   For many years, cigarette advertisements have been required to carry the 
following statement: "Cigarette smoking is dangerous to your health." But, this waning is 
often located in inconspicuous corners of the advertisements and printed in small type. 
Consequently, a researcher believes that over 80% of those who read cigarette 
advertisements fail to see the warning. Specify the null and alternative hypotheses that 
would be used in testing the researcher's theory. 

Solution   The researcher wants to make an inference about p, the true proportion of all 
readers of cigarette advertisements who fail to see the warning. In particular, he wishes 
to collect evidence to support the claim that p is greater than .80; thus, the null and 
alternative hypotheses are 

   H0: p = .80 
   Ha: p > .80 
Observe that the statement of H0 in these examples and in general, is written with an equality (=) 

sign. In Example 8.2, you may have been tempted to write the null hypothesis as H0: p ≤ .80. 
However, since the alternative of interest is that p > .80, then any evidence that would cause you 
to reject the null hypothesis H0: p = .80 in favor of Ha: p > .80 would also cause you to reject H0: 
p = p', for any value of p' that is less than .80. In other words, H0: p = .80 represents the worst 
possible case, from the researcher's point of view, when the alternative hypothesis is not correct. 
Thus, for mathematical ease, we combine all possible situations for describing the opposite of Ha 
into one statement involving equality. 

Example 8.3   A metal lathe is checked periodically by quality control inspectors to 
determine if it is producing machine bearings with a mean diameter of .5 inch. If the 
mean diameter of the bearings is larger or smaller than .5 inch, then the process is out of 
control and needs to be adjusted. Formulate the null and alternative hypotheses that 
could be used to test whether the bearing production process is out of control.  
Solution   We define the following parameter:  

   µ = True mean diameter (in inches) of all bearings produced by the lathe  

If either µ > .5 or µ < .5, then the metal lathe's production process is out of control. Since we 
wish to be able to detect either possibility, the null and alternative hypotheses would be  
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   H0: µ = .5 (i.e., the process is in control)  

   Ha: µ ≠  .5 (i.e., the process is out of control)  

An alternative hypothesis may hypothesize a change from H0 in a particular direction, or it may 
merely hypothesize a change without specifying a direction. In Examples 8.1 and 8.2, the 
researcher is interested in detecting departure from H0 in one particular direction. In Example 
8.1, the interest focuses on whether the mean number of children born to the urban women is 
less than the mean number of children born to rural women. The interest focuses on whether 
the proportion of cigarette advertisement readers who fail to see the warning is greater than .80 
in Example 8.2. These two tests are called one-tailed tests. In contrast, Example 8.3 illustrates a 
two-tailed test in which we are interested in whether the mean diameter of the machine bearings 
differs in either direction from .5 inch, i.e., whether the process is out of control. 

8.3 Types of errors for a Hypothesis Test 
The goal of any hypothesis testing is to make a decision. In particular, we will decide whether to 
reject the null hypothesis, H0, in favor of the alternative hypothesis, Ha. Although we would like 
always to be able to make a correct decision, we must remember that the decision will be based 
on sample information, and thus we are subject to make one of two types of error, as defined in 
the accompanying boxes. 
 

Definition 8.1 

A Type I error is the error of rejecting the null hypothesis when it is true. The 

probability of committing a Type I error is usually denoted by α.  

 

Definition 8.2 

A Type II error is the error of accepting the null hypothesis when it is false. The 

probability of making a Type II error is usually denoted by β. 

 

The null hypothesis can be either true or false further, we will make a conclusion either to reject 
or not to reject the null hypothesis. Thus, there are four possible situations that may arise in 
testing a hypothesis (see Table 8.1). 

Table 8.1 Conclusions and consequences for testing a hypothesis  
  Conclusions 

  Do not reject  

Null Hypothesis 

Reject  

Null Hypothesis 

Null Hypothesis  Correct conclusion Type I error  

True  

"State of Nature" Alternative Hypothesis  Type II error Correct conclusion 

The kind of error that can be made depends on the actual state of affairs (which, of course, is 
unknown to the investigator). Note that we risk a Type I error only if the null hypothesis is 
rejected, and we risk a Type II error only if the null hypothesis is not rejected. Thus, we may 

make no error, or we may make either a Type I error (with probability α), or a Type II error 
(with probability β), but not both. We don't know which type of error corresponds to actuality 
and so would like to keep the probabilities of both types of errors small. There is an intuitively 

appealing relationship between the probabilities for the two types of error: As α increases, β 
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decreases, similarly, as β increases, a decreases. The only way to reduce α and β simultaneously 
is to increase the amount of information available in the sample, i.e., to increase the sample size.  

Example 8.4   Refer to Example 8.3. Specify what Type I and Type II errors would 
represent, in terms of the problem.  

Solution   A Type I error is the error of incorrectly rejecting the null hypothesis. In our 
example, this would occur if we conclude that the process is out of control when in fact 
the process is in control, i.e., if we conclude that the mean bearing diameter is different 
from .5 inch, when in fact the mean is equal to .5 inch. The consequence of making such 
an error would be that unnecessary time and effort would be expended to repair the 
metal lathe.  

A Type II error that of accepting the null hypothesis when it is false, would occur if we conclude 
that the mean bearing diameter is equal to .5 inch when in fact the mean differs from .5 inch. The 
practical significance of making a Type II error is that the metal lathe would not be repaired, 
when in fact the process is out of control. 

The probability of making a Type I error (α) can be controlled by the researcher (how to do this 
will be explained in Section 8.4). α is often used as a measure of the reliability of the conclusion 
and called the level of significance (or significance level) for a hypothesis test.  

You may note that we have carefully avoided stating a decision in terms of "accept the null 
hypothesis H0." Instead, if the sample does not provide enough evidence to support the 
alternative hypothesis Ha, we prefer a decision "not to reject H0." This is because, if we were to 

"accept H0," the reliability of the conclusion would be measured by β, the probability of Type II 
error. However, the value of β is not constant, but depends on the specific alternative value of the 
parameter and is difficult to compute in most testing situations.  

In summary, we recommend the following procedure for formulating hypotheses and stating 
conclusions. 

Formulating hypotheses and stating conclusions  
1. State the hypothesis as the alternative hypothesis Ha.  

2. The null hypothesis, H0, will be the opposite of Ha and will contain an equality sign.  

3. If the sample evidence supports the alternative hypothesis, the null hypothesis will be 
rejected and the probability of having made an incorrect decision (when in fact H0 is true) is 
α, a quantity that can be manipulated to be as small as the researcher wishes.  

4. If the sample does not provide sufficient evidence to support the alternative hypothesis, then 
conclude that the null hypothesis cannot be rejected on the basis of your sample. In this 
situation, you may wish to collect more information about the phenomenon under study. 

Example 8.5   The logic used in hypothesis testing has often been likened to that used in 
the courtroom in which a defendant is on trial for committing a crime.  
a. Formulate appropriate null and alternative hypotheses for judging the guilt or innocence of 

the defendant. 

b. Interpret the Type I and Type II errors in this context.  

c. If you were the defendant, would you want α to be small or large? Explain.  

Solution    
a. Under a judicial system, a defendant is "innocent until proven guilty." That is, the burden of 

proof is not on the defendant to prove his or her innocence; rather, the court must collect 
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sufficient evidence to support the claim that the defendant is guilty. Thus, the null and 
alternative hypotheses would be  

H0:     Defendant is innocent  

Ha:     Defendant is guilty  

b. The four possible outcomes are shown in Table 8.2. A Type I error would be to conclude 
that the defendant is guilty, when in fact he or she is innocent; a Type II error would be to 
conclude that the defendant is innocent, when in fact he or she is guilty. 

Table 8.2 Conclusions and consequences inn Example 8.5 
  Decision of Court 

  Defendant is 
innocent 

Defendant is 
guilty 

True State of 
Nature 

Defendant is innocent 
 

Defendant is guilty 

Correct decision 
 

Type I error 

Type II error 
 

Correct decision 

 
c. Most would probably agree that the Type I error in this situation is by far the more serious. 

Thus, we would want α, the probability of committing a Type I error, to be very small indeed.   

A convention that is generally observed when formulating the null and alternative hypotheses of 
any statistical test is to state H0 so that the possible error of incorrectly rejecting H0 (Type I 
error) is considered more serious than the possible error of incorrectly failing to reject H0 (Type 
II error). In many cases, the decision as to which type of error is more serious is admittedly not 
as clear-cut as that of Example 8.5; experience will help to minimize this potential difficulty. 

8.4 Rejection Regions 
In this section we will describe how to arrive at a decision in a hypothesis-testing situation. 
Recall that when making any type of statistical inference (of which hypothesis testing is a special 
case), we collect information by obtaining a random sample from the populations of interest. In 
all our applications, we will assume that the appropriate sampling process has already been 
carried out.  

Example 8.6   Suppose we want to test the hypotheses  

   H0: µ = 72  
   Ha: µ > 72  

What is the general format for carrying out a statistical test of hypothesis?  

Solution  The first step is to obtain a random sample from the population of interest. The 
information provided by this sample, in the form of a sample statistic, will help us decide 
whether to reject the null hypothesis. The sample statistic upon which we  base our 
decision is called the test statistic.  
The second step is to determine a test statistic that is reasonable in the context of a given 
hypothesis test. For this example, we are hypothesizing about the value of the population mean 

µ. Since our best guess about the value of µ is the sample mean x  (see Section 7.2), it seems 
reasonable to use x as a test statistic. We will learn how to choose the test statistic for other 
hypothesis-testing situations in the examples that follow.  
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The third step is to specify the range of possible computed values of the test statistic for which 
the null hypothesis will be rejected. That is, what specific values of the test statistic will lead us 
to reject the null hypothesis in favor of the alternative hypothesis? These specific values are 
known collectively as the rejection region for the test. For this example, we would need to 
specify the values of x  that would lead us to believe that Ha is true, i.e., that µ is greater than 
72. We will learn how to find an appropriate rejection region in later examples. 

Once the rejection region has been specified, the fourth step is to use the data in the sample to 
compute the value of the test statistic. Finally, we make our decision by observing whether the 
computed value of the test statistic lies within the rejection region. If in fact the computed value 
falls within the rejection region, we will reject the null hypothesis; otherwise, we do not reject 
the null hypothesis.  
An outline of the hypothesis-testing procedure developed in Example 8.6 is given followings. 

Outline for testing a hypothesis  

1. Obtain a random sample from the population(s) of interest.  

2. Determine a test statistic that is reasonable in the context of the given hypothesis test.  

3. Specify the rejection region, the range of possible computed values of the test statistic for 
which the null hypothesis will be rejected.  

4. Use the data in the sample to compute the value of the test statistic.  

5. Observe whether the computed value of the test statistic lies within the rejection region. If so, 
reject the null hypothesis; otherwise, do not reject the null hypothesis. 

Recall that the null and alternative hypotheses will be stated in terms of specific population 
parameters. Thus, in step 2 we decide on a test statistic that will provide information about the 
target parameter. 

Example 8.7   Refer to Example 8.1, in which we wish to test  

   H0: (µ1 - µ2) = 0  

   Ha: (µ1 - µ2) < 0  

where µ1, and µ2, are the population mean numbers of children born to urban women and rural 
women, respectively. Suggest an appropriate test statistic in the context of this problem.  

Solution  The parameter of interest is (µµµµ1 - µµµµ2), the difference between the two population 

means. Therefore, we will use )( 21 xx − , the difference between the corresponding sample 

means, as a basis for deciding whether to reject H0. If the difference between the sample 

means, )( 21 xx − , falls greatly below the hypothesized value of (µµµµ1 - µµµµ2) = 0, then we have 

evidence that disagrees with the null hypothesis. In fact, it would support the alternative 

hypothesis that (µµµµ1 - µµµµ2) < 0. Again, we are using the point estimate of the target 

parameter as the test statistic in the hypothesis-testing approach. In general, when the 
hypothesis test involves a specific population parameter, the test statistic to be used is 
the conventional point estimate of that parameter. 

In step 3, we divide all possible values of the test into two sets: the rejection region and its 
complement. If the computed value of the test statistic falls within the rejection region, we reject 
the null hypothesis. If the computed value of the test statistic does not fall within the rejection 
region, we do not reject the null hypothesis. 
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Example 8.8   Refer to Example 8.6. For the hypothesis test  

   H0:  µ  = 72  

   Ha:  µ  > 72  

indicate which decision you may make for each of the following values of the test statistic:  

73xc59xb110xa === ...  

Solution    

a. If 110x = , then much doubt is cast upon the null hypothesis. In other words, if the null 

hypothesis were true (i.e., if µ is in fact equal to 72), then it is very unlikely that we would 
observe a sample mean x  as large as 110. We would thus tend to reject the null hypothesis 

on the basis of information contained in this sample.  

b. Since the alternative of interest is µ > 72, this value of the sample mean, 59x = , provides 

no support for Ha. Thus, we would not reject H0 in favor of Ha: µ > 72, based on this sample.  

c. Does a sample value of 73x =  cast sufficient doubt on the null hypothesis to warrant its 

rejection? Although the sample mean 73x = is larger than the null hypothesized value of µ 
=72, is this due to chance variation, or does it provide strong enough evidence to conclude 
in favor of Ha? We think you will agree that the decision is not as clear-cut as in parts a and 
b, and that we need a more formal mechanism for deciding what to do in this situation. 

We now illustrate how to determine a rejection region that takes into account such factors as the 
sample size and the maximum probability of a Type I error that you are willing to tolerate.  

Example 8.9   Refer to Example 8.8. Specify completely the form of the rejection region for 
a test of  

   H0: µ = 72  
   Ha: µ > 72  
at a significance level of α = .05.  

Solution  We are interested in detecting a directional departure from H0; in particular, we 

are interested in the alternative that µµµµ is greater than 72. Now, what values of the sample 

mean x  would cause us to reject H0 in favor of Ha? Clearly, values of x  which are 

"sufficiently greater" than 72 would cast doubt on the null hypothesis. But how do we 

decide whether a value, 73x =  is "sufficiently greater" than 72 to reject H0? A convenient 

measure of the distance between x and 72 is the z-score, which "standardizes" the value 

of the test statistic x :  
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The z-score is obtained by using the values of 
x

µ  and 
x

σ  that would be valid if the null 

hypothesis were true, i.e., if µ = 72. The z-score then gives us a measure of how many standard 
deviations the observed x  is from what we would expect to observe if H0 were true.  
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We examine Figure 8.1a and observe that the chance of obtaining a value of x  more than 1.645 

standard deviations above 72 is only .05, when in fact the true value of µ is 72. We are 
assuming that the sample size is large enough to ensure that the sampling distribution of x  is 
approximately normal. Thus, if we observe a sample mean located more than 1.645 standard 
deviations above 72, then either H0, is true and a relatively rare (with probability .05 or less) 
event has occurred, or Ha is true and the population mean exceeds 72. We would tend to favor 
the latter explanation for obtaining such a large value of x , and would then reject H0. 

 

Figure 8.1   Location of rejection region of Example 8.9 
In summary, our rejection region for this example consists of all values of z that are greater than 

1.645 (i.e., all values of x  that are more than 1.645 standard deviations above 72). The value at 

the boundary of the rejection region is called the critical value. The critical value 1.645 is shown 

in Figure 8.1b. In this situation, the probability of a Type I error − that is, deciding in favor of Ha 
if in fact H0 is true − is equal to a  α =.05.  

Example 8.10    Specify the form of the rejection region for a test of  

   H0:  µ  = 72  

   Ha:  µ  < 72  

at significance level α = .01.  

Solution   Here, we want to be able to detect the directional alternative that µµµµ is less than 
72; in this case, it is "sufficiently small" values of the test statistic x  that would cast 

doubt on the null hypothesis. As in Example 8.9, we will standardize the value of the test 
statistic to obtain a measure of the distance between x and the null hypothesized value of 

72: 
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This z-value tells us how many standard deviations the observed x is from what would be 

expected if H0 were true. Here, we have also assumed that n ≥ 30 so that the sampling 
distribution of x  will be approximately normal. The appropriate modifications for small samples 
will be indicated in Chapter 9.  
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Figure 8.2a shows us that, when in fact the true value of µ  is 72, the chance of observing a 
value of x more than 2.33 standard deviations below 72 is only .01. Thus, at significance level 

(probability of Type I error) equal to .01, we would reject the null hypothesis for all values of z 
that are less than - 2.33 (see Figure 8.2b), i.e., for all values of x  that lie more than 2.33 
standard deviations below 72.    

Figure 8.2   Location of rejection region of Example 8.10 

Example 8.11    Specify the form of the rejection region for a test of  

   H0:   µ  = 72  

   Ha:   µ  ≠ 72  

where we are willing to tolerate a .05 chance of making a Type I error.  

Solution   For this two-sided (non-directional) alternative, we would reject the null 
hypothesis for "sufficiently small" or "sufficiently large" values of the standardized test 
statistic  

ns

x
z

/

72−
≈  

Now, from Figure 8.3a, we note that the chance of observing a sample mean x more than 1.96 
standard deviations below 72 or more than 1.96 standard deviations above 7 2, when in fact H0 is 

true, is only α = .05. Thus, the rejection region consists of two sets of values: We will reject H0 if 
z is either less than -1.96 or greater than 1.96 (see Figure 8.3b). For this rejection rule, the 
probability of a Type I error is .05.  
The three previous examples all exhibit certain common characteristics regarding the rejection 
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region, as indicated in the next paragraph. 

Figure 8.3  Location of rejection region of Example 8.11 

Guidelines for Step 3 of Hypothesis Testing  

1. The value of α, the probability of a Type I error; is specified in advance by the researcher. It 
can be made as small or as large as desired; typical values are α = .01, .02, .05, and .10. 
For a fixed sample size, the size of the rejection region decreases as the value of a 

decreases (see Figure 8.4). That is, for smaller values of α, more extreme departures of the 
test statistic from the null hypothesized parameter value are required to permit rejection of 
H0.  

2. For testing means or proportions, the test statistic (i.e., the point estimate of the target 
parameter) is standardized to provide a measure of how great is its departure from the null 
hypothesized value of the parameter. The standardization is based on the sampling 
distribution of the point estimate, assuming H0 is true. (It is through standardization that the 
rejection rule takes into account the sample sizes.) 
 

estimate pointofdeviationStandard

value edHypothesiz-estimatePoint
statistictestStandard =  

3. The location of the rejection region depends on whether the test is one-tailed or two-tailed, 

and on the pre-specified significance level, α.  
a. For a one-tailed test in which the symbol ">" occurs in H0, the rejection region consists of 

values in the upper tall of the sampling distribution of the standardized test statistic. The 

critical value is selected so that the area to its right is equal to α.  
b. For a one-tailed test in which the symbol "<" appears in Ha, the rejection region consists 

of values in the lower tail of the sampling distribution of the standardized test statistic. The 

critical value is selected so that the area to its left is equal to α.  
c. For a two-tailed test, in which the symbol "≠" occurs in Ha, the rejection region consists of 

two sets of values. The critical values are selected so that the area in each tail of the 

sampling distribution of the standardized test statistic is equal to α/2.  

Figure 8.4  Size of the upper-tail rejection region for different values of α 
Steps 4 and 5 of the hypothesis-testing approach require the computation of a test statistic from 
the sample information. Then we determine if the standardized of the test statistic value lies 
within the rejection region in order to make a decision about whether to reject the null 
hypothesis.  
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Example 8.12   Refer to Example 8.9. Suppose the following statistics were calculated 

based on a random sample of n = 30 measurements: x = 73, s = 13. Perform a test of  

   H0:  µ = 72  

   Ha:  µ > 72  

at a significance level of α = .05.  

Solution   In Example 8.9, we determined the following rejection rule for the given value of α 
and the alternative hypothesis of interest:  

   Reject H0 if z > 1.645.  

The standardized test statistic, computed assuming H0 is true, is given by  
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Figure 8.5  Location of rejection region of Example 8.12 
Since this value does not lie within the rejection region (shown in Figure 8.5), we fail to reject H0 

and conclude there is insufficient evidence to support the alternative hypothesis, Ha:  µ > 72. 
(Note that we do not conclude that H0 is true; rather, we state that we have insufficient evidence 
to reject H0.)  

8.5 Summary 
In this chapter, we have introduced the logic and general concepts involved in the statistical 
procedure of hypothesis testing. The techniques will be illustrated more fully with practical 
applications in Chapter 9. 

8.6 Exercises 
8.1. A medical researcher would like to determine whether the proportion of males admitted to 

a hospital because of heart disease differs from the corresponding proportion of females. 
Formulate the appropriate null and alternative hypotheses and state whether the test is 
one-tailed or two-tailed. 

8.2. Why do we avoid stating a decision in terms of "accept the null hypothesis H0"? 

8.3. Suppose it is desired to test 

H0:   µ  = 65 

Ha:   µ  ≠ 65 

at significance level α = .02. Specify the form of the rejection region. (Hint: assuming that 
the sample size will be sufficient to guarantee the approximate normality of the sampling 
distribution of x .) 

8.4. Indicate the form of the rejection region for a test of 

H0: (p1 − p2)  = 0 

Ha: (p1 − p2)  > 0 

Assume that the sample size will be appropriate to apply the normal approximation to the 

sampling distribution of )ˆˆ( 21 pp − , and that the maximum tolerable probability of 

committing a Type I error is .05. 

8.5. For each of the following rejection region, determine the value of α, the probability of a 
Type I error: 

a)   z < −1.96       b)   z > 1.645       c)   z < −2.58 or z > 2.58 
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Chapter 9   Applications of Hypothesis Testing 

9.1 Introduction 

In this chapter, we will present applications of the hypothesis-testing logic developed in Chapter 

8. Among the population parameters to be considered are (µ1 - µ2), p, and (p1 − p2).  
The concepts of a hypothesis test are the same for all these parameters; the null and alternative 
hypotheses, test statistic, and rejection region all have the same general form (see Chapter 8). 
However, the manner in which the test statistic is actually computed depends on the parameter of 
interest. For example, in Chapter 7 we saw that the large-sample test statistic for testing a 

hypothesis about a population mean µ is given by  

   
ns

x
z

/

0µ−=  (see also Example 8.9) 

while the test statistic for testing a hypothesis about the parameter p is  

   

n

qp

pp
z

00
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The key to correctly diagnosing a hypothesis test is to determine first the parameter of interests. 
In this section, we will present several examples illustrating how to determine the parameter of 
interest. The following are the key words to look for when conducting a hypothesis test about a 
population parameter. 
 

Determining the parameter of interest 

P A R A M E T E R DESCRIPTION 

µ 

(µ1 − µ2) 
 

p 

(p1 − p2) 
 

σ2 

2

2

2

1

σ

σ
 

Mean; average 

Difference in means or averages; mean difference; 
comparison of means or averages 

Proportion; percentage; fraction; rate 

Difference in proportion, percentage, fraction, or rates; 
comparison of proportions, percentages, fractions, or rates 

Variance; variation; precision 

Ratio of variances; difference in variation; comparison of 
variances  

 

In the following sections we will present a summary of the hypothesis-testing procedures for 
each of the parameters listed in the previous box.  

9.2 Hypothesis test about a population mean 
Suppose that in the last year all students at a certain university reported the number of hours 
spent on their studies during a certain week; the average was 40 hours. This year we want to 
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determine whether the mean time spent on studies of all students at the university is in excess of 
40 hours per week. That is, we will test  

   H0:  µ = 40  

   Ha:  µ > 40  

where  

   µ = Mean time spent on studies of all students at the university.  

We are conducting this study in an attempt to gather support for Ha; we hope that the sample 

data will lead to the rejection of H0. Now, the point estimate of the population mean µ is the 
sample mean x . Will the value of x  that we obtain from our sample be large enough for us to 

conclude that µ is greater than 40? In order to answer this question, we need to perform each 
step of the hypothesis-testing procedure developed in Chapter 8.  

Tests of population means using large samples 
The following box contains the elements of a large-sample hypothesis test about a population 

mean, µ. Note that for this case, the only assumption required for the validity of the procedure is 
that the sample size is in fact large (n ≥  30).  

Large-sample test of hypothesis about a population mean 

ONE -TAILED TEST 

H0:   µ = µ0 

Ha:   µ > µ0 (or Ha:   µ < µ0) 

TWO -TAILED TEST 

H0:   µ = µ0 

Ha:   µ ≠ µ0 

Test statistic: 
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Rejection region: 

z > zα    (or z < - zα) 

Rejection region: 

z < -zα/2    (or z > zα/2) 

where zα is the z-value such that P(z > zα) = α; and zα/2 is the z-value such that P(z > 
zα/2) = α/2. [Note: µ0 is our symbol for the particular numerical value specified for µ 
in the null hypothesis.]  

Assumption: The sample size must be sufficiently large (say, n ≥ 30) so that the 
sampling distribution of x  is approximately normal and that s provides a good 

approximately to σ. 

Example 9.1   The mean time spent on studies of all students at a university last year was 
40 hours per week. This year, a random sample of 35 students at the university was 
drawn. The following summary statistics were computed:  

   hours hours; 85.131.42 == sx  

Test the hypothesis that µ, the population mean time spent on studies per week is equal to 40 

hours against the alternative that µ is larger than 40 hours. Use a significance level of α = .05.   
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Solution   We have previously formulated the hypotheses as  

   H0:  µ = 40  

   Ha:  µ > 40  

Note that the sample size n = 35 is sufficiently large so that the sampling distribution of x  is 

approximately normal and that s provides a good approximation to σ. Since the required 
assumption is satisfied, we may proceed with a large-sample test of hypothesis about µ.  

Using a significance level of α = .05, we will reject the null hypothesis for this one-tailed test if  
   z > zα/2 = z.05  

i.e., if z > 1.645. This rejection region is shown in Figure 9.1.  

Figure 9.1   Rejection region for Example 9.1 

Computing the value of the test statistic, we obtain  

   897.
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Since this value does not fall within the rejection region (see Figure 9.1), we do not reject H0. 

We say that there is insufficient evidence (at α = .05) to conclude that the mean time spent on 
studies per week of all students at the university this year is greater than 40 hours. We would 

need to take a larger sample before we could detect whether µ > 40, if in fact this were the 
case. 

Example 9.2  A sugar refiner packs sugar into bags weighing, on average 1 kilogram. Now 
the setting of machine tends to drift i.e. the average weight of bags filled by the machine 
sometimes increases sometimes decreases. It is important to control the average weight 
of bags of sugar. The refiner wish to detect shifts in the mean weight of bags as quickly 
as possible, and reset the machine. In order to detect shifts in the mean weight, he will 
periodically select 50 bags, weigh them, and calculate the sample mean and standard 
deviation. The data of a periodical sample as follows: 

kgskgx 05.03.1 ==  
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Test whether the population mean µ is different from 1 kg at significance level  

α = .01. 

Solution   We formulate the following hypotheses: 

   H0:  µ = 1    

   Ha:  µ ≠  1   

The sample size (50) exceeds 30, we may proceed with the larger sample test about µ. 
Because shifts in µ in either direction are important, so the test is two-tailed. 

At significance level α = .01, we will reject the null hypothesis for this two tail test if 

   z < - zα/2 = - z.005    or z >  zα/2 =  z.005 

i.e., if z < - 2.576  or z >  2.576. 

The value of the test statistic is computed as follows: 

   243.4
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Since this value is greater than the upper-tail critical value (2.576), we reject the null hypothesis 
and accept the alternative hypothesis at the significance level of 1%. We would conclude that the 
overall mean weight was no longer 1 kg, and would run a less than 1% chance of committing a 
Type I error.  

Example 9.3   Prior to the institution of a new safety program, the average number of on-
the-job accidents per day at a factory was 4.5. To determine if the safety program has 
been effective in reducing the average number of accidents per day, a random sample of 
30 days is taken after the institution of the new safety program and the number of 
accidents per day is recorded. The sample mean and standard deviation were computed 
as follows:  

   3.17.3 == sx  

a. Is there sufficient evidence to conclude (at significance level .01) that the average number of 
on-the-job accidents per day at the factory has decreased since the institution of the safety 
program?  

b. What is the practical interpretation of the test statistic computed in part a?  

Solution    

a. In order to determine whether the safety program was effective, we will conduct a large-
sample test of  

   H0:  µ = 4.5  (i.e., no change in average number of on-the-job accidents per day)  

   Ha:  µ < 4.5  (i.e., average number of on-the-job accidents per day has decreased) 

where µ represents the average number of on-the-job accidents per day at the factory after 
institution of the new safety program. For a significance level of  

α = .01, we will reject the null hypotheses if  

   z < - z.01 = - 2.33 (see Figure 9.2)   

The computed value of the test statistic is  
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Since this value does fall within the rejection region, there is sufficient evidence (at α =.01) 
to conclude that the average number of on-the-job accidents per day at the factory has 
decreased since the institution of the safety program. It appears that the safety program was 
effective in reducing the average number of accidents per day.  

b. If the null hypothesis is true, µ = 4.5. Recall that for large samples, the sampling distribution 

of x  is approximately normal, with mean µµ =
x

 and standard deviation n
x

/σσ = . Then 

the z-score for x , under the assumption that H0 is true, is given by 

   
n

x
z

/

5.4

σ

−
=   

Figure 9.2   Location of rejection region of Example 9.3 

You can see that the test statistic computed in part a is simply the z-score for the sample mean 

x , if in fact µ = 4.5. A calculated z-score of -3.37 indicates that the value of x  computed from 

the sample falls a distance of 3.37 standard deviations below the hypothesized mean of µ = 4.5. 
Of course, we would not expect to observe a z-score this extreme if in fact µ = 4.5.   

Tests of population means using small samples 
When the assumption required for a large-sample test of hypothesis about µ is violated, we need 
a hypothesis-testing procedure that is appropriate for use with small samples. Because if we use 
methods of the large-sample test, we will run into trouble on two accounts. Firstly, our small 
sample will underestimate the population variance, so our test  statistic will be wrong. Secondly, 
the means of small samples are not normally distributed, so our critical values will be wrong. We 
have learnt that the means of small samples have a t-distribution, and the appropriate t-
distribution will depend on the number of degrees of freedom in estimating the population 
variance. If we use large samples to test a hypothesis, then the critical values we use will depend 
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upon the type of test (one or two tailed). But if we use small samples, then the critical values will 
depend upon the degrees of freedom as well as the type of test. 
A hypothesis test about a population mean, µ, based on a small sample (n < 30) consists of the 
elements listed in the accompanying box. 

 

Small-sample test of hypothesis about a population mean 

ONE-TAILED TEST 

H0:   µ = µ0 

Ha:   µ > µ0 (or Ha:   µ < µ0) 

TWO-TAILED TEST 

H0:   µ = µ0 

Ha:   µ ≠ µ0 

Test statistic: 

ns

x
t
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0µ−=  

Rejection region: 

t > tα    (or t < - tα) 

Rejection region: 

t < -tα/2    (or t > tα/2) 

where the distribution of t is based on (n – 1) degrees of freedom; tα is the 

t-value such that P(t > tα) = α; and tα/2 is the t-value such that P(t > tα/2) = α/2.  

Assumption: The relative frequency distribution of the population from Which the 
sample was selected is approximately normal. 

 

As we noticed in the development of estimation procedures, when we are making inferences 
based on small samples, more restrictive assumptions are required than when making inferences 
from large samples. In particular, this hypothesis test requires the assumption that the population 
from which the sample is selected is approximately normal.  
Notice that the test statistic given in the box is a t statistic and is calculated exactly as our 

approximation to the large-sample test statistic, z, given earlier in this section. Therefore, just 

like z, the computed value of t indicates the direction and approximate distance (in units of 

standard deviations) that the sample mean, x , is from the hypothesized population mean, µ0.  

Example 9.4   The expected lifetime of electric light bulbs produced by a given process 
was 1500 hours. To test a new batch a sample of 10 was taken which showed a mean 
lifetime of 1410 hours. The standard deviation is 90 hours. Test the hypothesis that the 
mean lifetime of the electric light bulbs has not changed, using a level of significance of 

αααα = .05. 

Solution    This question asks us to test that the mean has not changed, so we must employ a 
two-tailed test: 

   H0:  µ = 1500   

   Ha:  µ ≠ 1500   

Since we are restricted to a small sample, we must make the assumption that the lifetimes of the 
electric light bulbs have a relative frequency distribution that is approximately normal. Under 
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this assumption, the test statistic will have a  
t-distribution with (n - 1) = (10 -1) = 9 degrees of freedom. The rejection rule is then to reject the 
null hypothesis for values of t such that 

  t < - tα/2     or   t > tα/2   with α/2 = .05/2 = .025. 
From Table 7.6 in Chapter 7 (or Table 2 of Appendix C) with 9 degrees of freedom, we find that 
   t.025  = 2.262. 
The value of test statistic is  
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The computed value of the test statistic, t = - 2.999, falls below the critical value of  
- 2.262. We reject H0 and accept H1 at significance level of .05, and conclude that there is some 
evidence to suggest that the mean lifetime of all light bulbs has changed. 

9.3 Hypothesis tests of  population proportions 
Tests involving sample proportions are extremely important in practice. Many market 
researchers express their results in terms of proportions, e.g. "40% of the population clean their 
teeth with brand A toothpaste ". It will be useful to design tests that will detect changes in 
proportions. For example, we may want to test the null hypothesis that the true proportion of 
people who use brand A is equal to .40  (i.e., H0: p = .40) against the alternative Ha: p > .40.  

The procedure described in the next box is used to test a hypothesis about a population 
proportion, p, based on a large sample from the target population. (Recall that p represents the 
probability of success in a Bernoulli process.)  

In order that the procedure to be valid, the sample size must be sufficiently large to guarantee 
approximate normality of the sampling distribution of the sample proportion, p. A general rule of 

thumb for determining whether n is "sufficiently large" is that the interval nqpp /ˆˆ2ˆ ± does not 

include 0 or 1.  

Large-sample test of hypothesis about a population proportion 

ONE -TAILED TEST 

H0:   p = p0 

Ha:   p > p0 (or Ha: p <  p0) 

TWO -TAILED TEST 

H0:   p = p0 

Ha:   p ≠ p0 

Test statistic: 
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Rejection region: 

z > zα    (or z < - zα) 

where q0 = 1 – p0 

Rejection region: 

z < -zα/2    (or z > zα/2) 

where q0 = 1 – p0 

Assumption: The interval nqpp /ˆˆ2ˆ ±  does not contain 0 and 1. 

Example 9.5    Suppose it is claimed that  in a very large batch of components, about 10% 
of items contain some form of defect. It is proposed to check whether this proportion has 
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increased, and this will be done by drawing randomly a sample of 150 components. In 
the sample, 20 are defectives. Does this evidence indicate that the true proportion of 

defective components is significantly larger than 10%? Test at significance level αααα = .0 5.  

Solution   We wish to perform a large-sample test about a population proportion, p:  

   H0: p = .10  (i.e., no change in proportion of defectives)  

   Ha: p > .10  (i.e., proportion of defectives has increased)  

where p represents the true proportion of defects.  

At significance level α = .05, the rejection region for this one-tailed test consists of all values of z 
for which  

   z > z.05 = 1.645  

The test statistic requires the calculation of the sample proportion, p̂ , of defects:  
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Noting that q0 = 1 – p0 = 1 - .10 = .90, we obtain the following value of the test statistic:  
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This value of z lies out of the rejection region; so we would conclude that the proportion 
defective in the sample is not significant. We have no evidence to reject  the null hypothesis that 
the proportion defective is .01 at the 5% level of significance. The probability of our having made 

a Type II error (accepting H0 when, in fact, it is not true) is β = .05.  

[Note that the interval  

   056.133.150/)133.1)(133(.2133./ˆˆ2ˆ ±=−±=± nqpp  

does not contain 0 or 1. Thus, the sample size is large enough to guarantee that  

validity of the hypothesis test.] 

Although small-sample procedures are available for testing hypotheses about a population 
proportion, the details are omitted from our discussion. It is our experience that they are of 
limited utility since most surveys of binomial population performed in the reality use samples 
that are large enough to employ the techniques of this section. 

9.4 Hypothesis tests about the difference between two population 
means 

 

There are two brands of coffee, A and B. Suppose a consumer group wishes to determine 
whether the mean price per pound of brand A exceeds the mean price per pound of brand B. 
That is, the consumer group will test the null hypothesis  
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H0: (µ1 - µ2) = 0 against the alternative ((µ1 - µ2) > 0. The large-sample procedure described in 

the box is applicable testing a hypothesis about (µ1 - µ2), the difference between two population 
means. 

 

 

 

 

 

Large-sample test of hypothesis about (µµµµ1 - µµµµ2) 

ONE -TAILED TEST 

H0: (µ1 - µ2) = D0 

Ha: (µ1 - µ2) > D0 (or Ha: (µ1 - µ2)< D0) 

TWO -TAILED TEST 

H0: (µ1 - µ2) = D0 

Ha: (µ1 - µ2) ≠ D0 

Test statistic: 
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Rejection region: 

z > zα    (or z < - zα) 

Rejection region: 

z < -zα/2    or   z > zα/2 

[Note: In many practical applications, we wish to hypothesize that there is no difference 
between the population means; in such cases, D0 = 0]  

Assumptions:  

1. The sample sizes n1 and n2 are sufficiently large (n1 ≥ 30 and n2 ≥ 30). 
2. The samples are selected randomly and independent from the target 

populations. 

Example 9.6   A consumer group selected independent random samples of supper-
markets located throughout a country for the purpose of comparing the retail prices per 
pound of coffee of brands A and B. The results of the investigation are summarized in 
Table 9.1. Does this evidence indicate that the mean retail price per pound of brand A 
coffee is significantly higher than the mean retail price per pound of brand B coffee? Use 

a significance level of αααα = .01. 

Table 9.1 Coffee prices for Example 9.6 

Brand A Brand B 

n1 = 75 

00.3$1 =x  

s1 = $.11 

n2 = 64 

95.2$2 =x  

s2 = $.09 

 
Solution   The consumer group wants to test the hypotheses  

   H0: (µ1 - µ2) = 0  (i.e., no difference between mean retail prices)  
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   Ha: (µ1 - µ2) > 0  (i.e., mean retail price per pound of brand A is higher than that of brand 
B)  

where  

   µ1 = Mean retail price per pound of brand A coffee at all super-markets  

   µ2 = Mean retail price per pound of brand B coffee at all super-markets  

This one-tailed, large-sample test is based on a z statistic. Thus, we will reject H0 if  

z > zα = z.01. Since z.01 = 2.33, the rejection region is given by  z > 2.33 (see Fig. 9.3) 

We compute the test statistic as follows:  
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 Figure 9.3   Rejection region for Example 9.6 

Since this computed value of z = 2.947 lies in the rejection region, there is sufficient evidence (at 

α = .01) to conclude that the mean retail price per pound of brand A coffee is significantly higher 
than the mean retail price per pound of brand B coffee. The probability of our having committed 

a Type I error is α = .01.  

When the sample sizes n1 and n2 are inadequate to permit use of the large-sample procedure of 
Example 9.9, we have made some modifications to perform a small-sample test of hypothesis 
about the difference between two population means. The test procedure is based on 
assumption that are more restrictive than in the large-sample case. The elements of the 
hypothesis test and required assumption are listed in the next box. 

 

Small-sample test of hypothesis about (µµµµ1 - µµµµ2) 

ONE -TAILED TEST 

H0: (µ1 - µ2) = D0 

Ha: (µ1 - µ2) > D0 (or Ha: (µ1 - µ2)< D0) 

TWO -TAILED TEST 

H0: (µ1 - µ2) = D0 

Ha: (µ1 - µ2) ≠ D0 
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Test statistic: 
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Rejection region: 

t > tα    (or t < - tα) 

Rejection region: 

t < -tα/2    or   t > tα/2 
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and the distribution of t is based on (n1 + n2 - 2) degrees of freedom. 

Assumptions:  

1. The population from which the samples are selected both have approximately 
normal relative frequency distributions. 

2. The variances of the two populations are equal. 
3. The random samples are selected in an independent manner from the two 

populations. 

 

Example 9.7   There was a research on the weights at birth of the children of urban and 
rural women. The researcher suspects there is a significant difference between the mean 
weights at birth of children of urban and rural women. To test this hypothesis, he selects 
independent random samples of weights at birth of children of mothers from each group, 
calculates the mean weights and standard deviations and summarizes in Table 9.2. Test 

the researcher's belief, using a significance of αααα = .02. 

Table 9.2  Weight at birth data for Example 9.7  

Urban mothers Rural mothers 

n1 = 15 

kgx 5933.31 =  

s1 = .3707 kg 

n2 = 14 

kgx 2029.32 =  

s2 = .4927 kg 

Solution   The researcher wants to test the following hypothesis: 

   H0: (µ1 - µ2) = 0  (i.e., no difference between mean weights at birth)  

   Ha: (µ1 - µ2) ≠ 0  (i.e., mean weights at birth of children of urban and rural  
 women are different) 

where µ1 and µ2 are the true mean weights at birth of children of urban and rural women, 
respectively. 

Since the sample sizes for the study are small (n1 = 15, n2 = 14), the following assumptions are 
required: 

1. The populations of weights at birth of children both have approximately normal distributions. 



 cxxxix 

2. The variances of the populations of weights at birth of children for two groups of mothers are 
equal. 

3. The samples were independently and randomly selected. 

If these three assumptions are valid, the test statistic will have a t-distribution with  

(n1 + n2 - 2) = (15 + 14 - 2) = 27 degree of freedom with a significance level of  

α = .02, the rejection region is given by 

   t < - t.01 = - 2.473  or t > t.01 = 2.473  (see Figure 9.4) 

Figure 9.4   Rejection region of Example 9.7 

Since we have assumed that the two populations have equal variances (i.e. that  

σσσ == 2

2

2

1 ), we need to compute an estimate of this common variance. Our pooled estimate 

is given by 
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Using this pooled sample variance in the computation of the test statistic, we obtain 
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Now the computed value of t does not fall within the rejection region; thus, we fail to reject the 

null hypothesis (at α = .02) and conclude that there is insufficient evidence of a difference 
between the mean weights at birth of children of urban and  rural women.  

In this example, we can see that the computed value of t is very closed to the upper boundary of 
the rejection region. This region is specified by the significance level and the degree of freedom. 
How is the conclusion about the difference between the mean weights at births affected if the 

significance level is α = .05? We will answer the question in the next example. 
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Example 9.8  Refer Example 9.7.  Test the investigator's belief, using a significance level 

of αααα = .05. 

Solution   With a significance level of αααα = .05, the rejection region is given by 

 t < - t.025 = - 2.052  or  t > t.025 = 2.052 (see Figure 9.5) 

Since the sample sizes are not changed, therefore test statistic is the same  as in Example 9.10, 
t = 2.422. 

Now the value of t falls in the rejection region; and we have sufficient evidence at a significance 

level of α = .05 to conclude that the mean weight at birth of children of  urban women differs 
significantly (or we can say that is higher than) from the mean weight at birth of children of rural 

women. But you should notice that the probability of our having committed a Type I error is α = 
.05. 

Figure 9.5   Rejection region of Example 9.8 

9.5 Hypothesis tests about the difference between two proportions 
Suppose we are interested in comparing p1, the proportion of a population with p2, the 
proportion of other population. Then the target parameter about which we will test a hypothesis 
is (p1 - p2). Recall that p1, and p2 also represent the probabilities of success for two binomial 

experiments. The method for performing a large-sample test of hypothesis about (p1 - p2), the 
difference between two binomial proportions, is outlined in the following box.  

Large-sample test of hypothesis about (p1 - p2) 

ONE -TAILED TEST 

H0:  (p1 - p2) = D0 

Ha:  (p1 - p2) > D0  or  (Ha: (p1 - p2) < D0) 

TWO -TAILED TEST 

         H0: (p1 - p2) = D0 

         Ha: (p1 - p2) ≠ D0 

Test statistic: 
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Rejection region: 

z > zα    (or z < - zα) 

Rejection region: 

z < -zα/2   or z > zα/2 

where   
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For the special case where D0 = 0, calculate 
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when the total number of successes in the combined samples is (x1 + x2) and 
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Assumption: The intervals  

   22221111 /ˆˆ2ˆ/ˆˆ2ˆ nqppnqpp ±± and  do not contain 0 and 1. 

 

When testing the null hypothesis that (p1 - p2) equals some specified difference  D0, we make a 

distinction between the case D0 = 0 and the case D0 ≠ 0. For the special case D0 = 0, i.e., when 
we are testing H0: (p1 - p2) = 0 or, equivalently, H0: p1 = p2, the best estimate of p1 = p2 = p is 
found by dividing the total number of successes in the combined samples by the total number of 
observations in the two samples. That is, if x1 is the number of successes in sample 1 and x2 is 
the number of successes in sample 2, then  
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In this case, the best estimate of the standard deviation of the sampling distribution of 

)ˆˆ( 21 pp − is found by substituting p̂ for both :ˆˆ
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For all cases in which D0 ≠ 0 [for example, when testing H0: (p1 - p2)=.2], we use 

.ˆˆ
)ˆˆ(21 21 pppp −σ for formula the in and   

However, in most practical situations, we will want to test for a difference between proportions - 
that is, we will want to test H0: (p1 - p2) = 0. 

The sample sizes n1 and n2, must be sufficiently large to ensure that the sampling distribution of 

21
ˆˆ pp  and , and hence of the difference )ˆˆ( 21 pp  − are approximately normal. The rule of thumb 

given in the previous box may be used to determine if the sample sizes are "sufficiently large."  
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Example 9.9   Two types of needles, the old type and the new type, used for injection of 
medical patients with a certain substance. The patients were allocated at random to two 
group, one to receive the injection from needle of the old type, the other to receive the 
injection from needles of the new type. Table 9.3 shows the number of patients showing 
reactions to the injection. Does the information support the belief that the proportion of 
patients giving reactions to needles of the old type is less than the corresponding 
proportion patients giving reactions to needles of the new type? Test at significance 

level of αααα = .01. 

Table 9.3  Data on the patients' reactions in Example 9.9 

 Injected by old type 
needles 

Injected by new type 
needles 

Number of sampled patients 

Number in sample with reactions 

100 
37 

100 
56 

Solution   We wish to perform a test of 
    H0:  (p1 - p2) = 0 

   Ha:  (p1 - p2) < 0 

where 

p1 = Proportion of patients giving reactions to needles of the old type.  

p2 = Proportion of patients giving reactions to needles of the new type.  

For this large-sample, one-tailed test, the null hypothesis will be rejected if 

   z < -z.01, = -2.33      (see Figure 9.6)  

The sample proportions p1 and p2  are computed for substitution into the formula for the test 
statistic:  

37.
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 typenew  the of needles  withreactions giving patients ofproportion Samplep

 

Hence, 
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Since D0 = 0 for this test of hypothesis, the test statistic is given by 
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Then we have 

69.2
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1

100

1
)535)(.465(.

0)56.37(.
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−−
=z  

This value falls below the critical value of - 2.33. Thus, at α = .01, we reject the null hypothesis; 
there is sufficient evidence to conclude that the proportion of patients giving reactions to 
needles of the old type is significantly less than the corresponding proportion of patients giving 
reactions to needles of the new type, i.e., p1 < p2.  

The inference derived from the test in Example 9.12 is valid only if the sample sizes, n1 and n2, 
are sufficiently large to guarantee that the intervals 
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do not contain 0 and 1. This requirement is satisfied for Example 9.12: 

   .467),(.273 or   097.37.
100

)63)(.37(.
237.

ˆˆ
2ˆ

1

11
1 ±=±=±

n

qp
p  

   .659),(.467 or   099.56.
100

)44)(.56(.
256.

ˆˆ
2ˆ

1

22
2 ±=±=±

n

qp
p  

 

Figure 9.6   Rejection region of Example 9.9 

9.6 Hypothesis test about a population variance 
Hypothesis tests about a population variance σ2 are conducted using the chi-square (χ2) 
distribution introduced in Section 7.9. The test is outlined in the box. Note that the assumption of 
a normal population is required regardless of whether the sample size n is large or small. 

Example 9.10   A quality control supervisor in a cannery knows that the exact amount 
each can contains will vary, since there are certain uncontrollable factors that affect the 

amount of fill. The mean fill per can is important, but equally important is the variation σσσσ2 



 cxliv 

of the amount of fill. If σσσσ2 is large, some cans will contain too little and others too much. 
Suppose regulatory agencies specify that the standard deviation of the amount of fill 

should be less than .1 ounce. The quality control supervisor sampled n = 10 cans and 

calculated s = .04. Does this value of s provide sufficient evidence to indicate that the 

standard deviation σσσσ of the fill measurements is less than .1 ounce?  
 

Test of hypothesis about a population variance σσσσ2 

ONE -TAILED TEST 

   H0:  σ2 = σ02 

   Ha:  σ2 > σ02      or   (Ha: σ2 < σ02) 

TWO -TAILED TEST 

                      H0: σ2 = σ02 

                      Ha: σ2 ≠ σ02 

Test statistic: 

2

0

2
2 )1(

σ
χ

sn−
=  

Rejection region: 

χ2 > χ2
α    (or χ2 < χ2

1-α) 

Rejection region: 

χ2 < χ2
1-α/2 or χ2 > χ2

α/2 

where 2

∞χ  and 2

1 ∞−χ are values of χ2 that locate an area of α to the right and α to 
the left, respectively, of a chi-square distribution based on (n -1) degrees of 
freedom.  

[Note: 
2

0σ  is our symbol for the particular numerical value specified for σ2
 in the null 

hypothesis.]  

Assumption: The population from which the random sample is selected has an 
approximate normal distribution. 
 

Solution   Since the null and alternative hypotheses must be stated in terms of σσσσ2  (rather 

than σσσσ), we will want to test the null hypothesis that σσσσ2  = .01 against the alternative that 

σσσσ2  < .01. Therefore, the elements of the test are  

   H0: σ2
 = .01 

   Ha: σ2
 < .01 

Assumption: The population of "amounts of fill" of the cans are approximately normal.  

2

0

2
2 )1(

 :statisticTest 
σ

χ
sn−

=    

Rejection region: The smaller the value of s2 we observe, the stronger the evidence in favor of 

Ha. Thus, we reject H0 for "small values" of the test statistic. With α = .05 and 9 df, the χ2 value 

for rejection is found in Table 3, Appendix C and pictured in Figure 9.7. We will reject H0 if  χ2 < 
3.32511. 

Remember that the area given in Table 3 of Appendix C is the area to the right of the numerical 

value in the table. Thus, to determine the lower-tail value that has α = .05 to its left, we use the 
χ2

.95  column in Table 3 of Appendix C.  
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Since  

   44.1
01.

)04(.9)1( 2

2

0

2
2 ==

−
=

σ
χ

sn
 

is less than 3.32511, the supervisor can conclude that the variance of the population of all 

amounts of fill is less than .01 (σ < 0.1) with 95 % confidence. As usual, the confidence is in the 

procedure used - the χ2  test. If this procedure is repeatedly used, it will incorrectly reject H0 only 
5% of the time. Thus, the quality control supervisor is confident in the decision that the cannery 
is operating within the desired limits of variability. 

Figure 9.7   Rejection region of Example 9.10 

9.7 Hypothesis test about the ratio of two population  variances 
In this section, we present a test of hypothesis for comparing two population variances, 2

1σ  and 
2

2σ . Variance tests have broad applications in business. For example, a production manager 

may be interested in comparing the variation in the length of eye-screws produced on each of 
two assembly lines. A line with a large variation produces too many individual eye-screws that 
do not meet specifications (either too long or too short), even though the mean length may be 
satisfactory. Similarly, an investor might want to compare the variation in the monthly rates of 
return for two different stocks that have the same mean rate of return. In this case, the stock 
with the smaller variance may be preferred because it is less risky - that is, it is less likely to 
have many very low and very high monthly return rates. 

 

Test of hypothesis for the ratio of two population variances, 
2

2

2

1 /σσ  

ONE -TAILED TEST 

     H0: 1/ 2

2

2

1 =σσ        )..( 2

2

2

1 σσ =ei  

   TWO -TAILED TEST 

       H0: 1/ 2

2

2

1 =σσ       )..( 2

2

2

1 σσ =ei  
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     Ha: 1/ 2

2

2

1 >σσ        )..( 2

2

2

1 σσ >ei or 

    [Ha: 1/ 2

2

2

1 <σσ        )..( 2

2

2

1 σσ <ei ] 

       Ha: 1/ 2
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1 ≠σσ       )..( 2
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Test statistic: 
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Rejection region: 

F > Fα 

Rejection region: 

F > Fα/2 

where Fα, and Fα/2 are values that locate an area α and α/2, respectively, in the 
upper tail of the F-distribution with ν1 = numerator degrees of freedom (i.e., the df 

for the sample variance in the numerator) and ν2 = denominator degrees of 
freedom (i.e., the df for the sample variance in the denominator).  

Assumptions: 1. Both of the populations from which the samples are selected have 
relative frequency distributions that are approximately normal. 

                       2. The random samples are selected in an independent manner from 
the two populations. 

 

 

Variance tests can also be applied prior to conducting a small-sample t test for  

(µ1 - µ2), discussed in Section 9.4. Recall that the t test requires the assumption that the 
variances of the two sampled populations are equal. If the two population variances are greatly 
different, any inferences derived from the t test are suspect. Consequently, it is important that 
we detect a significant difference between the two variances, if it exists, before applying the 
small-sample t test.  

The common statistical procedure for comparing two population variances, 2

1σ and 2

2σ , makes 

an inference about the ratio 2

2

2

1 /σσ . This is because the sampling  

distribution of the estimator for 2

2

2

1 /σσ  is well known when the samples are randomly and 

independently selected from two normal populations.  

The elements of a hypothesis test for the ratio of two population variances, 2

2

2

1 /σσ , are given in 

the preceding box.  

Example 9.11  A class of 31 students were randomly divided into an experimental set of 

size n1 = 18 that received instruction in a new statistics unit and a control set of size n2 = 
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13 that received the standard statistics instruction. All students were given a test of 
computational skill at the end of the course. A summary of the results appears in Table 
9.4. Do the data provide sufficient evidence to indicate a difference in the variability of 
this skill in the hypothetical population of students who might be given the new 
instruction and the population of students who might be given the standard instruction? 

Test using αααα = .01. 

Table 9.4  Data on students' scores in Example 9.11 

 Control set Experimental set 

Sample size 

Standard deviation 

18 

1.93 

13 

3.10 
 

Solution   Let 
2

1σ = Variance of test scores of the experimental population  

2

2σ  = Variance of test scores of the control population  

The hypotheses of interest are   

   H0: 1/ 2

2

2

1 =σσ        )( 2

2

2

1 σσ =  

   Ha: 1/ 2

2

2

1 ≠σσ      )( 2

2

2

1 σσ ≠  

According to the box, the test statistic for this two-tailed test is  

   58.2
)93.1(

)10.3(
2

2

1

1

2

2

2

2

====
s

s

s

s
F

 Smaller

 Larger
 

To find the appropriate rejection region, we need to know the sampling distribution of the test 
statistic. Under the assumption that both samples of test scores come from normal populations, 

the F statistic, 2

1

2

2 / ssF = , possesses an F distribution with  

ν1 = (n2 - 1) numerator degrees of freedom and ν2= (n1 - 1) denominator degrees of freedom.  

Unlike the z and t-distributions of the preceding sections, an F-distribution can be symmetric 
about its mean, skewed to the left, or skewed to the right; its exact shape depends on the 

degrees of freedom associated with 2

2s and 2

1s , in this example,  

(n2 - 1) = 12 and (n2 - 1) = 17, respectively. An F-distribution with ν1= 12 numerator df and ν2 = 
17 denominator df is shown in Figure 9.8. You can see that this particular  
F-distribution is skewed to the right. 

Upper-tail critical values of F are found in Table 4 of Appendix C. Table 9.5 is partially 

reproduced from this table. It gives F values that correspond to α = .05 upper-tail areas for 
different pairs of degrees of freedom. The columns of the table correspond to various numerator 
degrees of freedom, while the rows correspond to various denominator degrees of freedom.  

Thus, if the numerator degrees of freedom are 12 and the denominator degrees of freedom are 
17, we find the F value,  

   F.05 = 2.38  
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As shown in Figure 9.8, α/2 = .0 5 is the tail area to the right of 2.38 in the  
F-distribution with 12 numerator df and 17 denominator df. Thus, the probability that the F 

statistic will exceed 2.38 is α/2 = .05.  

Given this information on the F-distribution, we are now able to find the rejection region for this 

test. Since the test is two-tailed, we will reject H0 if F > Fα/2. For  

α = .10, we have α/2 = .05 and F.05 = 2.38 (based on ν1 = 12 and ν2 = 17 df). Thus, the rejection 
region is  

 Figure 9.8   Rejection region of Example 9.11 

 

Rejection region: Reject H0 if  F > 2.38.  

Since the test statistic, F = 2.58, falls in the rejection region (see Figure 9.8), we reject H0. 

Therefore, at α = .10, the data provide sufficient evidence to indicated that the population 
variances differ. It appears that the new statistics instruction results in a greater variability in 
computational skill. 

Example 9.11 illustrates the technique for calculating the test statistic and rejection region for a 
two-tailed F test. The reason we place the larger sample variance in the numerator of the test 

statistic is that only upper-tail values of F are shown in the F table of Appendix C - no lower-tail 
values are given. By placing the larger sample variance in the numerator, we make certain that 

only the upper tail of the rejection region is used. The fact that the upper-tail area is α/2 reminds 
us that the test is two-tailed.  

The problem of not being able to locate an F value in the lower tail of the  

F-distribution is easily avoided in a one-tailed test because we can control how we specify the 
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ratio of the population variances in H0 and Ha. That is, we can always make a one-tailed test an 
upper-tailed test.  

Table 9.5 Reproduction of part of Table 4 from Appendix C; α = .05 

 

Numerator degrees of freedom ν1 

ν2 10 12 15 20 24 30 40 60 120 ∞ 

1 241.90 243.90 245.90 248.00 249.10 250.10 251.10 252.20 253.33 254.30 

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50 

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53 

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63 

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36 

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67 

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23 

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93 

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71 

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54 

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40 

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30 

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21 

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13 

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07 

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01 

 

 

Denominator 

 

degrees 

 

of 

 

freedom 

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96 
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9.8 Summary 
In this chapter we have learnt the procedures for testing hypotheses about various population 
parameters. Often the comparison focuses on the means. As we note with the estimation 
techniques of Chapter 7, fewer assumptions about the sampled populations are required when 
the sample sizes are large. It would be emphasized that statistical significance differs from 
practical significance, and the two must not be confused. A reasonable approach to hypothesis 
testing blends a valid application of the formal statistical procedures with the researcher's 
knowledge of the subject matter. 

 

9.9 Exercises  
9.1. A random sample of n observation is selected from a population with unknown mean µ 

and variance σ2. For each of the following situations, specify the test statistic and reject 
region. 

 10.;6.,5.9,48;11:,11:   c.
 01.;6.9,5.140,40;120:,120:   b.

05.;64,60,35;40:,40:   a.

0

0

2

0

====<=
====≠=
====>=

αµµ
αµµ
αµµ

sxnHH
sxnHH

sxnHH

a

a

a

 

 

9.2. A random sample of 51 measurements produced the following sums: 

683.50
2
==∑ ∑ xx                        

a. Test the null hypothesis that µ = 1.18 against the alternative that µ < 1.18. Use α = 
.01. 

b. Test the null hypothesis that µ = 1.18 against the alternative that µ < 1.18. Use α = 
.10. 

9.3. A random sample of n observations is selected from a binominal population. For each of 
the following situations, specify the rejection region, test statistic value, and conclusion: 

 01.,60,80.ˆ,85.:,85.:   c.
 05.,000,1,04.ˆ,05.:,05.:   b.

10.,200,28.ˆ,25.:,25.:   a.

0

0

0

===≠=
===<=
===>=

α
α
α

nppHpH
nppHpH
nppHpH

a

a

a

  

9.4. Two independent random samples are selected from populations with means µ1 and µ2, 
respectively. The sample sizes, means, and standard deviations are shown in the table. 

5545

0.10.3

5.65.7

==

==

==

nn

ss

xx

                             

                             

                             

2 Sample                      1 Sample

 

a. Test the null hypothesis H0:  (µ1 - µ2) = 0 against the alternative hypothesis Ha:  (µ1 - 

µ2) ≠ 0 at α = .05. 
b. Test the null hypothesis H0:  (µ1 - µ2) = .5 against the alternative hypothesis Ha:  (µ1 - 

µ2) ≠ .5 at α = .05. 
 

9.5. Independent random samples selected from two binomial populations produced the 
results given in the table 
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     Sample 1 Sample 2 

Number of successes       80      74 

Sample sizes      100    100 

.at Test a. part in as      
 same the remain and  estimates sample the but  Suppose   b.

at  Test   a.

0

0

05.,0)(:,0)(:
ˆ,ˆ,ˆ,000,1

10.,0)(:,0)(:

2121

2121

2121

=>−=−
==

=>−=−

α

α

ppHppH
pppnn

ppHppH

a

a

 

9.6. A random sample of n = 10 observations yields .5.157.231 2 == sx  and  Test the null 

hypothesis H0: σ2 = 20 against the alternative hypothesis  

Ha: σ2 < 20. Use α = .05. What assumptions are necessary for the test to be valid. 

9.7. The following measurements represent a random sample of n = 5 observations from a 

normal population: 10, 2, 7, 9, 14. Is this sufficient evidence to conclude that σ2 ≠ 2. Test 
using α = .10. 

9.8. Calculate the value of the test statistic for testing H0: σ1
2/σ2

2 in each of following cases: 

 

235,2,750,1;1/:
90.5,52.1;1/:
23.1,75.1;1/:
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Chapter 10   Categorical data analysis and analysis of  
                      variance 
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10.1 Introduction 

In this chapter we present some methods for treatment of categorical data. The methods involve 
the comparison of a set of observed frequencies with frequencies specified by some hypothesis 
to be tested. A test of such a hypothesis is called a test of goodness of fit.  

We will show how to test the hypothesis that two categorical variables are independent. The test 
statistics discussed have sampling distributions that are approximated by chi-square 
distributions. The tests are called chi-square tests. These tests are useful in analyzing more 
than two population means. 

In this chapter we will discuss the procedures for selecting sample data and analyzing variances. 
The objective of these sections is to introduce some aspects of experimental design and analysis 
of data from such experiments using an analysis of variance. 

10.2 Tests of goodness of fit 

We know that observations of a qualitative variable can only be categorized. For example, 
consider the highest level of education attained by each in a group of women in a rural region. 
"Level of education" is a qualitative variable and each woman would fall into one and only one of 
the following three categories: can read/write degree; primary degree; and secondary and 
above degree. The result of the categorization would be a count of the numbers of rural women 
falling in the respective categories. When the qualitative variable results in one of the two 
responses (yes or no, success or failure, favor or do not favor, etc.) the data (i.e., the counts) 
can be analyzed using the binomial probability distribution. However, qualitative variables such 
as "level of education" that allow for more than two categories for a response are much more 
common, and these must be analyzed using a different method called test of goodness of fit. A 
test of goodness of fit  tests whether a given distribution fits a set of data. It is based on 
comparison of an observed frequency distribution with the hypothesized distribution. 

Example 10.1   Level of education attained by the women from a rural region is divided 
into three categories: can read/write degree; primary degree; secondary and above 
degree. A demographer estimates that 28% of them have can read/write degree, 61% 
have primary degree and 11% have higher secondary degree. In order to verify these 
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percentages, a random sample of n = 100 women at the region were selected and their 

level of education recorded. The number of the women whose level of education falling 
into each of the three categories is shown in Table 10.1.  

Table 10.1 Categories corresponding to level of education 

Level of education  

Primary degree Secondary degree Higher secondary Total 

22 64 14 100 

 

Do the data given in Table 10.1 disagree with the percentages of 28%, 61%, and 11% 
estimated by the demographer? As a first step in answering this question, we need to find the 
number of women in the sample of 100 that would be expected to fall in each of the three 
educational categories of Table 10.1, assuming that the demographer's percentages are 
accurate.  

Solution   Each woman in the sample was assigned to one and only one of the three 
educational categories listed in Table 10.1. If the demographer's percentages are correct, 
then the probabilities that a education level will fall in the three educational categories 
are as shown in Table 10.2. 

Table 10.2 Categories probabilities based on the demographer's percentages 

 Level of education  

 Can 
read/write  

Primary Secondary 
and above 

Total 

Cell number 

Cell probability 

1 

p1 = .28 

2 

p2=.61 

3 

p3 =.11 

 

1.00 

 

Consider first the "Can read/write" cell of Table 10.2. If we assume that the level of education of 
any woman independent of the level of education of any other, then the observed number O1, of 
responses falling into cell 1 is a binomial random variable and its expected value is  

   e1 = np1 = (100)(.28) = 28 

Similarly, the expected observed numbers of responses in cells 2 and 3 (categories 2 and 3) are  

   e2 = np2 = (100)(.61) = 61  

and  

   e3 = np3 = (100)(.11) = 11  

The observed numbers of responses and the corresponding expected numbers (in parentheses) 
are shown in Table 10.3. 

Table 10.3 Observed and expected numbers of responses falling in the cell categories  
                     for Example 10.1  

 Level of education  

 Can 
read/write  

Primary Secondary 
and above 

Total 

Observed numbers 22 64 14 100 
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Expected numbers (28) (61) (11) 100 

 

Formula for calculating expected cell counts  

   ei = npi  

where  

   ei = Expected count for cell i  

   n = Sample size  

   pi = Hypothesized Probability that an observation will fall in cell i.                                     

Do the observed responses for the sample of 100 women disagree with the category 
probabilities based on the demographer's estimates? If they do, we say that the theorized 
demographer probabilities do not fit the data or, alternatively, that a lack of fit exists. The 
relevant null and alternative hypotheses are:  

   H0:  The category (cell) probabilities are p1= .28, p2= .61,  p3= .11  

   Ha:  At least two of the probabilities, p1, p2, p3, differ from the values specified in the null 
hypothesis  

To find the value of the test statistic, we first calculate  

   
i

ii

e

eO 2)( −
=

count cell Expected

count) cell Expected - count cell (Observed 2

 

for each of the cells, i = 1, 2, 3. The sum of these quantities is the test statistic used for the 
goodness-of-fit test:  
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Substituting the values of the observed and expected cell counts from Table 10.3 into the 
formula for calculating χ2, we obtain  

   

26.282.15.29.1
11
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Example 10.2   Specify the rejection region for the test described in the preceding 

discussion. Use αααα = .05. Test to determine whether the sample data disagree with the 
demographer's estimated percentages.  

Solution   Since the value of chi-square increases as the differences between the 
observed and expected cell counts increase, we will reject  

   H0: p1 = .28,   p2 = .61,   p3 = .11  

for values of chi-square larger than some critical value, say 2

αχ , i.e.,  

   Rejection region: 2χ > 2

αχ  
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The critical values of the χ2 distribution are given in Table 3 of Appendix C. The degrees of 
freedom for the chi-square statistic used to test the goodness of fit of a set of cell probabilities 
will always be 1 less than the number of cells. For example, if k cells were used in the 
categorization of the sample data, then  

   Degrees of freedom: df = k - 1 

For our example, df = (k - 1) = (3 - 1) = 2 and α = .05. From Table 3 of Appendix C, the 
tabulated value of 2

αχ , corresponding to df = 2 is 5.99147.  

The rejection region for the test, 22

αχχ > , is illustrated in Figure 10.1. We will reject H0 if χ
2 > 

5.99147. Since the calculated value of the test statistic,  

26.22 =χ , is less than 2

05.χ , we can not reject H0. There is insufficient information to indicate a 

lack of fit of the sample data to the percentages estimated by the demographer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.1  Rejection region for Example 10.2 

Summary of a goodness of fit test for specified values of the Cell probabilities  

   H0: The k cell probabilities are p1,   p2, . . . . ,   pk  

   Ha:  At least two of the cell probabilities differ from the values specified in H0  

  Test statistic: ∑
=

−
=

k

i i

ii

e

eO

1

2
2 )(

χ  

   where  

       k = Number of cells in the categorization table  

      Oi = Observed count for cell i  

      ei = Expected count for cell i  

      n = Sample size = 01 + 02 + . . . + 0k  
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   Rejection region: 22

αχχ >  

At the start, we assumed that each of n observations could fall into one of k categories (or cells), 

that the probability that an observation would fall in cell 1 was pi, i = 1, 2, . . . , k, and that the 
outcome for any one observation was independent of the outcome for any others. These 
characteristics define a multinomial experiment. The binomial experiment is a multinomial 
experiment with k = 2. 

Properties of the underlying distribution of response data for a chi-square goodness of 
fit test  

1. The experiment consists of n identical trials.  

2. There are k possible outcomes to each trial.  

3. The probabilities of the k outcomes, denoted by p1,   p2, . . . . ,   pk remain the same from trial 

to trial, where p1 +  p2 + . . . . +   pk = 1. 

4. The trials are independent. 

5. The (estimated) expected number of responses for each of the k cells should be at least 5. 

Because it is widely used, the chi-square test is also one of the most abused statistical 
procedures. The user should always be certain that the experiment satisfies the assumptions 
before proceeding with the test. In addition, the chi- square test should be avoided when the 
estimated expected cell counts are small, because  in this case the chi-square probability 
distribution gives a poor approximation to the sampling distribution of the χ2 statistic. The 
estimated expected number of responses for each of the k cells should be at least 5. In this 
case the chi-square distribution can be used to determine an approximate critical value that 
specifies the rejection region.  

In the sections that follow, we will present a method for analyzing data that have been 
categorized according to two qualitative variables. The objective is to determine whether a 
dependency exists between the two qualitative variables − the qualitative variable analogue  to 
a correlation analysis for two quantitative random variables. As you will see subsequently, these 
methods are also based on the assumption that the sampling satisfies the requirements for one 
or more multinomial experiments. 

10.3 The analysis of contingency tables  
Qualitative data are often categorized according to two qualitative variables. As a practical 
example of a two-variable classification of data, we will consider a 2 × 3 table.  

Suppose that a random sample of men and women indicated their view on a certain proposal as 
shown in Table 10.4. 

Table 10.4  Contingency table for views of women and men on a proposal 

 In favour Opposed Undecided Total 

Women  

Men 

118 

84 

62 

78 

25 

37 

205 

199 

Total 202 140 62 404 

 

We are to test the statement that there is no difference in opinion between men and women, i.e. 
the response is independent of the sex of the person interviewed, and we adopt this as our null 
hypothesis. Now if the statement is not true, then the response will depend on the sex of the 
person interviewed, and the table will enable us to calculate the degree of dependence. A table 
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constructed in this way (to indicate dependence or association) is called a contingency table. 
"Contingency" means dependence − many of you will be familiar  with the terms "contingency 
planning"; i.e. plans that will be put into operation if certain things happen. Thus, the purpose of 
a contingency table analysis is to determine whether a dependence exists between the two 
qualitative variables. 

We adopt the null hypothesis that there is no association between the response and the sex of 
person interviewed. On this basis we may deduce that the proportion of the sample who are 
female is 205/404, and as 202 people are in favour of the proposal, the expected number of 
women in favour of proposal is 205/404 × 202 = 102.5. Therefore, the estimated expected 
number of women (row 1) in favour of the proposal (column 1) is 

   102.5)total 1 Column
total1Row

=×







=×







= (202
404

205
11

n
e  

Also, as 140 people are against the proposal, the expected number of women against the 
proposal is (row 1, column 2) 

  71)total 2 Column
total1Row

=×







=×







= (140
404

205
12

n
e  

And the expected number of undecided women is (row 1, column 3) 

   31.5)total 3 Column
total1Row

=×







=×







= (62
404

205
13

n
e   

We now move to row 2 for men and note that the row total is 199. Therefore, we would expect 
the proportion of the sample who are male is 199/404 for all three types of opinion. The 
estimated expected cell counts for columns of row 2 are 

      99.5)total 1 Column
total2Row

=×







=×







= (202
404

119
21

n
e  

    69)total 2 Column
total2Row

=×







=×







= (140
404

119
22

n
e  

     30.5)total 3 Column
total2Row

=×







=×







= (62
404

119
21

n
e  

The formula for calculating any estimated expected value can be deduced from the values 
calculated above. Each estimated expected cell count is equal to the product of its respective 
row and column totals divided by the total sample size n: 

   
n

CR
e

ji

ij

×
=  

where  eij = Estimated expected counts for the cell in row i and column j 

            Ri   = Row total corresponding to row i 

            Cj  = Column total corresponding to column j 

            n   =  Sample size 
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The observed and estimated expected cell counts for the herring gull contingency table are 
shown in Table 10.5. 

Table 10.5 Observed and expected (in parentheses) counts for  
                    response of women and men  

 In-favour Opposed Undecided 

Women  

 

Men 

118 

(102.5) 

84 

(99.5) 

62 

(71) 

78 

(69) 

25 

(31.5) 

37 

(30.5) 

 

In this example, the chi-square test statistic , χ2, is calculated in the same manner as shown in 
Example 10.1.  
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The appropriate degrees of freedom for a contingency table analysis will always be  
(r - 1) × (c -1), where r is the number of rows and c is the numbers of columns in the table. In 
this example, we have two degrees of freedom in calculating the expected values. Consulting 

Table 3 of Appendix C, we see that the critical values for χ2 are 5.99 at a significance level of α 
= .05 and 9.21 at level of α = .01. In both cases, the computed test statistic is lager than these 
critical values. Hence, we would reject the null hypothesis accepting the alternative hypothesis 
that men and women think differently with 99% confidence.  

General form of a chi-square test for independence of two directions of classification 

H0:   The two direction of classification in the contingency table are independent 

Ha:   The two direction of classification in the contingency table are dependent 

Test statistic: ∑∑
= =

−
=

r

i

c

j ij

ijij

e

eO

1 1

2

2
)(

χ  

where 

   r   = Number of rows in the table 

   c   = Number of columns in the table 

   Oij = Observed number of responses in the cell in row i and column j 

   eij  = Estimated expected number of responses in the cell(ij) = (Ri × Cj) / n 

Rejection region: 
22

αχχ >  

where 2

αχ  is tabulated value of the chi-square distribution based on (r -1) × (c-1) degrees of 

freedom such that αχχ α => )( 22P  

10.4 Contingency tables in statistical software packages 
In all statistical software packages there are procedures for analysis of categorical data. 
Following are printouts of the procedure "Crosstabs" of SPSS for creating the contingency table 
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and computing value of the χ2 statistic to test dependence of the education level on living region 
of women interviewed in the DHS Survey 1988 in Vietnam (data of the survey is given in 
Appendix A).  

CROSSTABS 

  /TABLES=urban  BY gd1 

  /FORMAT= AVALUE TABLES 

  /STATISTIC=CHISQ CC PHI 

  /CELLS= COUNT EXPECTED ROW . 

Crosstabs 

Case Processing Summary 

Cases 

Valid Missing Total 

  

  

  N Percent N Percent N Percent 

URBAN * Education Level 4172 100.0% 0 .0% 4171 100.0% 

 

URBAN * Education Level Cross tabulation 

Education Level   

  

  
Can 

read/write 
Primary Secondary 

and above 

 

 

Total 

URBAN Urban Count 163 299 266 728 

    Expected Count 197.5 415.5 115.0 728.0 

    % within URBAN 22.4% 41.1% 36.5% 100.0% 

  Rural Count 969 2082 393 3444 

    Expected Count 934.5 1965.5 544.0 3444.0 

    % within URBAN 28.1% 60.5% 11.4% 100.0% 

Total   Count 1132 2381 659 4172 

    Expected Count 1132.0 2381.0 659.0 4172.0 

    % within URBAN 27.1% 57.1% 15.8% 100.0% 

 

 

Chi-Square Tests 

  Value df Asymp. Sig.  
(2-sided) 

Pearson Chi-Square 287.084
a 

2 .000 

Likelihood Ratio 241.252 2 .000 

Linear-by-Linear Association 137.517 1 .000 

N of Valid Cases 4172     

a
  0 cells (.0%) have expected count less than 5. The minimum expected count is 114.99. 

Before changing to discuss about analysis of variance, we make some remarks on methods for 
treating categorical data. 
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- Surveys that allow for more than two categories for a single response (a one-way table) can 

be analyzed using the chi-square goodness of fit test. The appropriate test statistic, called χ2 
statistic, has a sampling distribution approximated by the chi-square probability distribution 
and measures the amount of disagreement between the observed number of responses and 
the expected number of responses in each category. 

- A contingency table analysis is an application of the χ2 test for a two-way (or two-variable) 
classification of data. The test allows us to determine whether the two directions of 
classification are independent.  

10.5 Introduction to analysis of variance 
As we have seen in the preceding chapters, the solutions to many statistical problems are 
based on inferences about population means. Next sections extend the methods of Chapters 7 - 
9 to the comparison of more than two means.  

When the data have been obtained according to certain specified sampling procedures, they are 
easy to analyze and also may contain more information pertinent to the population means than 
could be obtained using simple random sampling. The procedure for selecting sample data is 
called the design of the experiment and the statistical procedure for comparing the population 
means is called an analysis of variance.  

We will introduce some aspects of experimental design and the analysis of the data from such 
experiments using an analysis of variance.  

10.6 Design of experiments 
The process of collecting sample data is called an experiment and the variable to be measured 
in the experiment is called the response. The planning of the sampling procedure is called the 
design of the experiment. The object upon which the response measurement is taken is called 
an experimental unit. 

Variables that may be related to a response variable are called factors. The value − that is, the 
intensity setting − assumed by a factor in an experiment is called a level. The combinations of 
levels of the factors for which the response will be observed are called treatments.  

The process of the design of an experiment can be divided into four steps as follows: 

1. Select the factors to be included in the experiment and identify the parameters that are the 
object of the study. Usually, the target parameters are the population means associated with 
the factor level.  

2. Choose the treatments to be included in the experiment. 
3. Determine the number of observations (sample size) to be made for each treatment.  
4. Decide how the treatments will be assigned to the experimental units.  

Once the data for a designed experiment have been collected, we will want to use the sample 
information to make inferences about the population means associated with the various 
treatments. The method used to compare the treatment means is known as analysis of 
variance, or ANOVA. The concept behind an analysis of variance can be explained using the 
following simple example.  

Example 10.3    A elementary school teacher wants to try out three different reading 
workbooks. At the end of the year the 18 children in the class will take a test in reading 
achievement. These test scores will be used to compare the workbooks. Table 10.6 gives 
reading achievement scores. Each set of scores of the 6 children using a type of 
workbook is considered as a sample from the hypothetical population of all kindergarten 
children who might use that type of workbook. The scores are plotted as line plots in 
Figure 10.2. 
Table 10.6   Reading scores of 18 children using three different workbooks 
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 Workbook 1 Workbook 2 Workbook 3 

 2 
4 
3 
4 
5 
6 

9 
10 
10 
7 
8 
10 

4 
5 
6 
3 
7 
5 

Sums 24 54 30 

Sample means 4 9 5 

Total of 3 samples: 108; mean of 3 samples: 6 

Figure 10.2 Reading scores by workbook used and for combined sample 

The means of the three samples are 4, 9, and 5, respectively. Figure 10.2 shows these as the 
centers of the three samples; there is clearly variability from group to group. The variability in 
the entire pooled sample of 18 is shown by the last line. 

In contrast to this rather typical allocation, we consider Tables 10.7 and 10.8 as illustrations of 
extreme cases. In Table 10.7 every observation in Group A is 3, every observation in Group B is 
5, and every observation in Group C is 8. There is no variation within groups, but there is 
variation between groups. 

Table 10.7 No variation within groups  

 Group 

 A B C 

 3 
3 
3 
3 

5 
5 
5 
5 

8 
8 
8 
8 

      0     1     2     3     4     5     6     7     8     9    10

                                1x

                                           •
                         •       •       •      •       •

Children using Workbook 1

      0     1     2     3     4     5     6     7     8     9    10

                                                                   2x

                                                                                              •
                                                                                              •
                                                            •       •       •      •       •

Children using Workbook 2

      0     1     2     3     4     5     6     7     8     9    10

                                       3x

                                                    •
                                  •       •       •      •       •

Children using Workbook 3

      0     1     2     3     4     5     6     7     8     9    10

                                               x

                                           •      •                                         •
                                  •       •      •       •       •                       •
                         •       •       •      •       •       •       •       •      • All children
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Means 3 5 8 

 

In Table 10.8 the mean of each group is 3. There is no variation among the group means, 
although there is variability within each group. Neither extreme can be expected to occur in an 
actual data set. In actual data, one needs to make an assessment of the relative sizes of the 
between-groups and within-groups variability. It is to this assessment that the term "analysis of 
variance" refers. 

Table 10.8  No variation between groups  

 Group 

 A B C 

 3 
5 
1 
3 

3 
6 
2 
1 

1 
4 
3 
4 

Means 3 3 3 

In Example 10.3, the overall mean, x , is the sum of all the observations divided by the total 
number of observations: 

   6
18

108

18

)5...42(
==

+++
=x  

The sum of squared deviations of all 18 observations from mean of the combined sample is a 
measure of variability of the combined sample. This sum is called Total Sum of Squares and is 
denoted by SS(Total).  

   SS(Total) =  (2 - 6)2 + (4 - 6)2 + (3 - 6)2 + (4 - 6)2 + (5 - 6)2 + (6 - 6)2 + 

                         (9 - 6)2 + (10- 6)2 + (10 - 6)2 + (7 - 6)2 + (8 - 6)2 + (10 - 6)2 + 

                         (4 - 6)2 + (5 - 6)2 + (6 - 6)2 + (3 - 6)2 + (7 - 6)2 + (5 - 6)2  

                     = 34 + 62 + 16 = 112 

Next we measure the variability within samples. We calculate the sum of squared deviation of 
each of 18 observations from their respective group means. This sum is called the Sum of 
Squares Within Groups (or Sum of Squared Errors) and is denoted by SS(Within Groups) (or 
SSE). 

   SSE = (2 - 4)2 + (4 - 4)2 + (3 - 4)2 + (4 - 4)2 + (5 - 4)2 + (6 - 4)2 + 

              (9 - 9)2 + (10- 9)2 + (10 - 9)2 + (7 - 9)2 + (8 - 9)2 + (10 - 9)2 + 

              (4 - 5)2 + (5 - 5)2 + (6 - 5)2 + (3 - 5)2 + (7 - 5)2 + (5 - 5)2  

            = 10 + 8 + 10 = 28 

Now let us consider the group means of 4, 9, and 5. The sum of squared deviation of the group 
means from the pooled mean of 6 is  

   (4 - 6)2 + (9 - 6)2 + (5 - 6)2 = 4 + 9 + 1 =14. 

However, this sum is not comparable to the sum of squares within groups because the sampling 
variability of means is less than that of individual measurements. In fact, the mean of a sample 
of 6 observations has a sampling of 1/6 the sampling variance of a single observation. Hence, to 
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put the sum of squared deviations of group mean on a basis that can be compared with 
SS(Within Groups), we must multiply it by 6, the number of observation in each sample, to 
obtain 6 × 14 = 84. This is called the Sum of Squares Between Groups (or Sum of the Squares 
for Treatment) and is denoted by SS(Between Groups) (or SST). 

Now  we have three sums that can be compared: SS(Between Groups), SS(Within Groups), 
and SS(Total). They are given in Table 10.9. Observe that addition of the first two sum of 
squares gives the last sum. This demonstrates what we mean by the allocation of the total 
variability to the variability due to differences between means of groups and variability of 
individuals within groups. 

Table 10.9 Sums of Squares for Example 10.3 

SS(Between Groups) 

SS(Within Groups) 

SS(Total) 

84 

28 

112 

In this example we notice that the variability between groups is a large proportion of the total 
variability. However, we have to adjust the numbers in Table 10.9 in order to take account of the 
number of pieces of information going into each sum of squares. That is, we want to use the 
sums of squares to calculate sample variances. The sum of squares between groups has 3 
deviations about the mean of combined sample. Therefore its number of degrees of freedom is 
3 - 1 = 2 and the sample variance based on this sum of squares is 

   42
2

84

13

)(
==

−
=−

GroupsBetweenSS
VariationGroupBetween  

This quantity is also called Mean Square for Treatments (MST). 

The sum of squares within groups is made up of 3 sample sums of squares. Each involves 6 
squared deviations, and hence, each has 6 -1 = 5 degrees of freedom. Therefore 3 samples 
have 18 - 3 = 15 degrees of freedom. The sample  variance based on this sum is 

   867.1
15

28

318

)(
==

−
=−

GroupsWithinSS
VariationGroupWithin   

This variation is also called Mean Square for Error (MSE). 

The two estimates of variation MST, measuring variability among groups and MSE, measuring 
variability within groups, are now comparable. Their ratio is 

   50.22
867.1

42
===

MSE

MST
F . 

The fact that MST is 22.5 times MSE seems to indicate that the variability among groups is 
much greater than that within groups. However, we know that such a ratio computed for 
different triplets of random samples would vary from triplet to triplet, even if the population 
means were the same. We must take account of this sampling variability. This is done by 
referring to the F-tables depending on the desired significance level as well as on the number of 
degrees of freedom of MST, which is 2 here, and the number of degrees of freedom of MSE, 
which is 15 here. The value in the F-table for a significance level of .01 is 6.36. Thus we would 
consider the calculated ratio of 22.50 as very significant. We conclude that there are real 
differences in average reading readiness due to the use of different workbooks. 

The results of computation are set out in Table 10.10.  

Table 10.10   Analysis of Variance Table for Example 10.3 
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Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean of 
Squares 

F 

Between groups 84 2 42 22.50 

Within groups 28 15 1.867  

 

In next sections we will consider the analysis of variance for the general problem of comparing k 
population means for three special types of experimental designs. 

10.7 Completely randomized designs 
The most common experimental design employed in practice is called a completely randomized 
design. This experiment involves a comparison of the means for a number, say k, of treatments, 

based on independent random samples of n1, n2, . . . , nk observations, drawn from populations 
associated with treatments 1, 2, . . . , k, respectively. 

After collecting the data from a completely randomized design, our goal is to make inferences 
about k population means where µi is the mean of the population of measurements associated 
with treatment i, for i = 1, 2, . . . , k. The null hypothesis to be tested is that the k treatment 
means are equal, i.e.,  

   H0: µ1 = µ2 = . . . = µk 

and the alternative hypothesis is that at least two of the treatment means differ.  

An analysis of variance provides an easy way to analyze the data from a completely 
randomized design. The analysis partitions SS(Total) into two components, SST and SSE. 
These two quantities are defined in general term as follows: 

   ∑
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Recall that the quantity SST denotes the sum of squares for treatments and measures the 
variation explained by the differences between the treatment means. The sum of squares for 
error, SSE, is a measure of the unexplained variability, obtained by calculating a pooled 
measure of the variability within the k samples. If the treatment means truly differ, then SSE 
should be substantially smaller than SST. We compare the two sources of variability by forming 
an F statistic:  
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where n is the total number of measurements. Under certain conditions, the F statistic has a 

repeated sampling distribution known as the F-distribution. Recall from Section 9.6 that the F 

distribution depends on ν1 numerator degrees of freedom and ν2, denominator degrees of 

freedom. For the completely randomized design, F is based on ν1 = (k - 1) and ν2 = (n - k) 
degrees of freedom. If the computed value of F exceeds the upper critical value, F∞ we reject H0 
and conclude that at least two of the treatment means differ. 

Test to Compare k Population Means for a Completely Randomized Design  
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   H0: µ1 = µ2 . . . = µk     [i.e., there is no difference in the treatment (population) 
                                          means]  

   Ha:   At least two treatment means differ  

Test statistic:    F = MST/MSE  

Rejection region: F > Fα  

where the distribution of F is based on (k - 1) numerator df and (n - k) denominator df, and Fα is 

the F value found in Table 4 of Appendix C such that P(F > Fα) = α.  
Assumptions:  1. All k population probability distributions are normal.  

                        2. The k population variances are equal.  

                        3. The samples from each population are random and  
                             independent. 

The results of an analysis of variance are usually summarized and presented in an analysis of 
variance (ANOVA) table. Such a table shows the sources of variation, their respective degrees 
of freedom, sums of squares, mean squares, and computed F statistic. The results of the 
analysis of variance for Example 10.3 are given in Table 10.9, and the general form of the 
ANOVA table for a completely randomized design is shown in Table 10.11. 
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Table 10.11 Analysis of Variance Table for Completely Random Design 

Source of Variation Sum of 
Squares 

Degrees of 
Freedom 

Mean of 
Squares 

F 

Between groups SST k - 1 MST/(k – 1) 

Within groups SSE n - k SSE/(n - k) 

F = 
MST/MSE 

Total SS(Total) n -1   

Example 10.4   Consider the problem of comparing the mean number of children  born to 
women in 10 provinces numbered from 1 to 10. Numbers of children born to 3448 women 
from these provinces are randomly selected  from the column heading CEB of Appendix 
A. The women selected from 10 provinces are considered to be the only ones of interest. 
This ensure the assumption of equality between the population variances. Now, we want 
to compare the mean numbers of children born to all women in these provinces, i.e., we 
wish to test  

   H0:   µ1 = µ2 . . . = µ10  

   Ha:   At least two population means differ  

Solution   We will use the SPSS package to make an analysis of variance. Following are 
the syntax and the print out of the procedure "One-Way ANOVA" of SPSS for analysis of 
CEB by province. 

 

ONEWAY 

  ceb BY province 

  /STATISTICS DESCRIPTIVES 

  /MISSING ANALYSIS . 

 

ONEWAY 

Descriptives 

Children ever born  

95% Confidence 
Interval for Mean 

 
 
N 

 
 

Mean 

 
 

Std. 
Deviation 

 
 

Std. Error Lower 
Bound 

Upper 
Bound 

 
 

Minimum Maximum 

1 228 2.40 1.55 .10 2.19 2.60 0 10 
2 323 2.84 2.30 .13 2.59 3.09 0 11 
3 302 3.15 2.09 .12 2.91 3.39 0 12 
4 354 2.80 2.00 .11 2.59 3.01 0 10 
5 412 2.53 1.61 7.93E-02 2.37 2.68 0 9 
6 366 3.08 1.99 .10 2.88 3.29 0 11 
7 402 3.26 1.83 9.13E-02 3.08 3.44 0 10 
8 360 3.45 2.21 .12 3.23 3.68 0 11 
9 297 3.87 2.66 .15 3.56 4.17 0 12 
10 403 3.75 2.52 .13 3.51 4.00 0 12 

Total 3448 3.13 2.15 3.66E-02 3.06 3.20 0 12 
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                                          ANOVA 

Children born  

 Sum of Squares df Mean 
Square 

F Sig. 

Between Groups 702.326 9 78.036 17.621 .000 

Within Groups 15221.007 3437 4.429     

Total 15923.333 3446       

 

From the printout we can see that the SPSS One-Way ANOVA procedure presents the results 
in the form of an ANOVA table. Their corresponding sums of squares and mean squares are:  

   SST  = 702.326 

   SSE  = 15221.007 

   MST = 78.036 

   MSE = 4.429 

The computed value of the test statistic, given under the column heading F is  

   F = 17.621  

with degrees of freedom between provinces is ν1 = 9 and degrees of freedom within provinces is 

ν2 = 3437. 

To determine whether to reject the null hypothesis  

   H0:   µ1 = µ2 . . . = µ10  

in favor of the alternative  

   Ha:  at least two population means are different  

we may consult Table 4 of Appendix C for tabulated values of the F distribution corresponding 

to an appropriately chosen significance level α. However, since the SPSS printout gives the 
observed significance level (under the column heading Sig.) of the test, we will use this quantity 
to assist us in reaching a conclusion. This quality is the probability of obtaining F statistic at 
least as large as the one calculated when all population means are equal. If this probability is 
small enough, the null hypothesis (all population means are equal) is rejected. In this example, 
the observed significance level is approximately .0001. It implies that H0 will be rejected at any 
chosen level of α lager than .0001.  Thus, there is very strong evidence of a difference among 
the mean numbers of children ever born of women in 10 provinces. The probability that this 
procedure will lead to a Type I error is .0001. 

Before ending our discussion of completely randomized designs, we make the following 
comment. The proper application of the ANOVA procedure requires that certain assumptions be 
satisfied, i.e., all k populations are approximately normal with equal variances. If you know, for 
example, that one or more of the populations are non-normal (e.g., highly skewed), then any 
inferences derived from the ANOVA of the data are suspect. In this case, we can apply a non-
parametric technique.  
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10.8 Randomized block designs 

Example 10.5   Three methods of treating beer cans are being compared by a panel of 5 
people. Each person samples beer from each type of can and scores the beer with a 
number (integer) between 0 and 6, 6 indicating a strong metallic taste and 0 meaning no 
metallic taste. It is obvious that different people will use the scale somewhat differently, 
and we shall take this into account when we compare the different types of can.  
The data are reported in Table 10.12. This is an example of a situation in which the investigator 
has data pertaining to k treatments (k = 3 types of can) in b blocks (b = 5 persons) . We let xgj 

denote the observation corresponding to the gth treatment and the jth block, .gx  denote the 

mean of the b observations for the gth treatment, jx.  the mean of the k observations in the jth 

block, and x  the overall mean of all n = kb observations. When this particular design is used, 
the three types of can are presented to the individuals in random order.  

An experimental design of this type is called a randomized blocks design. In agricultural 
experiments the k treatments might correspond, for example, to k different fertilizers; the field 
would be divided into blocks of presupposed similar fertility; and every fertilizer was used in 
each block so that differences in fertility of the soil in different parts of the field (blocks) would 
not bias the comparison of the fertilizers. Each block would be subdivided into k sub-blocks, 

called "plots." The k fertilizers would be randomly assigned to the plots in each block; hence the 
name, "randomized blocks."  

Table 10.12  Scores of three types of can on "metallic" scale 

Person   

Type of Can P1 P2 P3 P4 P5 Sums 

A 

B 

C 

6 

2 

6 

5 

3 

4 

6 

2 

4 

4 

2 

4 

3 

1 

3 

24 

10 

21 

Sums 14 12 12 10 7 55 

 

In general terms, we can define that a randomized  block design as a design in which k 

treatments are compared within each of b blocks. Each block contains k matched experimental 

units and the k treatments are randomly assigned, one to each of the units within each block. 

Table 10.13 shows the pattern of a data set resulting from a randomized blocks design; it is a 
two-way table with single measurements as entries. In the example people correspond to blocks 
and cans to treatments. The observation xgj is called the response to treatment g in block j.  

The treatment mean .gx , estimates the population mean µg, for treatment g (averaged out over 

people). An objective may be to test the hypothesis that treatments make no difference,  

   H0: µ1 = µ2 = . . . = µk 
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Table 10.13   Randomized Blocks Design 

Blocks  

Treatments 1 2 . . . b 

1 

2 

. 

. 

. 

k 

x11 
x21 

. 

. 

. 

xk1 

x12 

x22 

. 

. 

. 

xk2 

. . . 

. . . 

 

 

 

. . . 

x1b 

x2b 

. 

. 

. 

xkb 
 

Each observation xgj can be written as a sum of meaningful terms by means of the identity 
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The "residual" is 

   [ ])()( .. xxxxxx jggj −+−+− , 

which is the difference between the observation and 

   )()( .. xxxxx jj −+−+ , 

obtained by taking into account the overall mean, the effect of the gth treatment, and the effect 

of the jth block. Algebra shows that the corresponding decomposition is true for sums of 
squares: 
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that is, 

   SS(Total) = SS(Treatment) + SS(Blocks) + SS(Residuals). 

The number of degrees of freedom of SS(Total) is kb - 1 = n - 1, the number of observations 
less 1 for the overall mean.  

The number of degrees of freedom of SS(Treatments) is k - 1, the number of treatments less 1 
for the overall mean.  

Similarly, the number of degrees of freedom of SS(Blocks) is b - 1. There remain, as the number 
of degrees of freedom for SS(Residuals)  

   kb - 1 - (k - 1) - (b - 1) = (k - 1)(b - 1).  

There is a hypothetical model behind the analysis. It is assumes that in repeated experiments 
the measurement for the gth treatment in the jth block would be the sum of a constant 
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pertaining to the treatment, namely µg, a constant pertaining to the jth block, and a random 
"error" term with a variance of σ2. The mean square for residuals,  

 MS(Residuals) =    SS(Residuals) / (k - 1)(b - 1) 

is an unbiased estimate of σ2 regardless of whether the µg's differ (that is, whether there are true 

effects due to treatments). If there are no differences in the µg's,  

   MS(Treatments) = MS(Treatments) / (k - 1)  

is an unbiased estimate of σ2 (whether or not there are true effects due to blocks). If there are 

differences among the µg's, then MS(Treatments) will tend to be larger than σ2. One tests H0 by 
means of  

   F = MS(Treatments) / MS(Residuals)  

When H0 is true, F is distributed as an F-distribution based on (k - 1) numerator df and (k - 1) (b 

-1) df. One rejects H0 if F is sufficiently large, that is, if F exceeds Fα. Table 10.14 is the analysis 
of variance table.  

Table 10.14 Analysis of variance table for randomized blocks design 

Sources of  
variation 

 
Sum of squares 

Degrees of 
freedom 

 
Mean square 

 

F 
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The computational formulas are 
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    SS(Residuals) = SS(Total) - SS(Treatments) - SS(Block) 
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For the data in Table 10.13 we have 
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    SS(Total)  = 237 - 201.67 = 35.33 
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=      BlocksSS  

    SS(Residuals) = 35.33 - 21.73 = 4.27 

The analysis of variance table is Table 10.15. From Table 4 in Appendix C, the tabulated value 
of F.05 with 2 and 8 df is 4.46. Therefore, we will reject H0 if the calculated value of F is F > 4.46.  
Since the computed value of test statistic,  
F = 20.40, exceeds 4.46, we have sufficient evidence to reject the null hypothesis of no 

difference in metallic taste of types of can at α = .05. 

Table 10.15 Analysis variance table for "Metallic"  scale 

Sources of 
variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean  
square 

 

F 

Cans 

Persons 

Residual 

21.73 

9.33 

4.27 

2 

4 

8 

10.87 

2.33 

0.533 

Total 35.33 14  

20.40 

4.38 

 

The roles of cans and people can be interchanged. To test the hypothesis that there are no 
differences in scoring among persons (in the hypothetical population of repeated experiments), 
one uses the ration of MS(Blocks) to MS(Residuals) and rejects the null hypothesis if that ratio 
is greater than an F-value for b - 1 and  

(k - 1)(b - 1) degrees of freedom. The value here of 4.38 is referred to Table 4 of Appendix C 
with 4 and 8 degrees of freedom, for which the 5% point is 3.84; it is barely significant. 

10.9 Multiple comparisons of means and confidence regions 
The F-test gives information about all means µ1, µ2, . . ., µk simultaneously. In this section we 
consider inferences about differences of pairs of means. Instead of simply concluding that some 

of µ1, µ2, . . ., µk are different, we may conclude that specific pairs µg, µh are different. 

The variance of difference between two means, say 1x and 2x , is σ2(1/n1 + 1/n2), which is 

estimated as s2(1/n1 + 1/n2). The corresponding estimated standard deviation is 

   21 /1/1 nns + . 
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If one were interested simply in determining whether the first two population means differed, one 

would test the null hypothesis that µ1 = µ2 at significance level α by using  a t-test, rejecting the 
null hypothesis if 

  2/2121 )/1/1/( α>+− tnnsxx  

where the number of degrees of freedom for the t-value is the number of degrees of freedom for 

s. However, now we want to consider each possible difference µg - µh ; that is, we want to test all 
the null hypotheses  

   Hgh: µg = µh, with g ≠ h; g, h = 1, . . . , k.  

There are k(k - 1)/2 such hypotheses.  

If, indeed, all the µ's were equal, so that there were no real differences, the probability that any 
particular one of the pair wise differences in absolute value would exceed the relevant t-value is 

α. Hence the probability that at least one of them would exceed the t-value, would be greater 

than α. When many differences are tested, the probability that some will appear to be 
"significant" is greater than the nominal significance level α when all the null hypotheses are 
true. How can one eliminate this false significance? It can be shown that, if m comparisons are 
to be made and the overall Type I error probability is to be at most α, it is sufficient to use α/m 
for the significance level of the individual tests. By overall Type I error we mean concluding µg ≠ 
µh for at least one pair g, h when actually  µ1 = µ2 = . . .= µk . 

Example 10.5   We illustrate with Example 10.3 (Tables 10.6 and 10.9). Here  

s2 = 1.867, based on 15 degrees of freedom (s = 1.366). Since all the sample sizes are 6, 

the value with which to compare each differences hg xx − is  

789.3/1366.16/16/1366.1)/1/1(
2/2/2/212/ **** ×=××=+××=+×

αααα
tttnnst  

where α* is to be the level of the individual tests.  

The number of comparisons to be made for k = 3 is k(k - 1)/2 = 3 = m. If we want the overall 

Type I error probability to be at most .03, then it suffices to choose the level α* to be .03/3 = .01. 
The corresponding percentage point of Student's t-distribution with 15 degrees of freedom is 

t.01/2 = t.005 = 2.947. The value with which to compare hg xx − is .789 x 2.947 = 2.33. In Table 

10.6 the means are  .5,9,4 321 === xxx  

The difference 54912 =−=− xx  is significant; so is the 45932 =−=− xx . The difference 

14513 =−=− xx  is not significant. The conclusion is that µ2 is different from both µ1 and µ3, but 

µ1 and µ3 may be equal; Workbook 2 appears to be superior.  
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Confidence Regions 

With confidence at least 1 - α, the following inequalities hold:  

hghghghghg nnstxxnnstxx /1/1)(/1/1
2/2/ ** ++−<µ−µ<+−−

αα
 

for g ≠ h; g, h = 1, . . . , k, if α* = α/m and the distribution of t is based on (n - k) degrees of 
freedom.  

10.10 Summary 
This chapter presented an extension of the methods for comparing two population means to 
allow for the comparison of more than two means. The completely randomized design uses 
independent random samples selected from each of k populations. The comparison of the 
population means is made by comparing the variance among the sample means, as measured 
by the mean square for treatments (MST), to the variation attributable to differences within the 
samples, as measured by the mean square for error (MSE). If the ratio of MST to MSE is large, 
we conclude that a difference exists between the means of at least two of the k populations.  

We also presented an analysis of variance for a comparison of two or more population means 
using matched groups of experimental units in a randomized block design, an extension of the 
matched-pairs design. The design not only allows us to test for differences among the treatment 
means, but also enables us to test for differences among block means. By testing for 
differences among block means, we can determine whether blocking is effective in reducing the 
variation present when comparing the treatment means.  

Remember that the proper application of these ANOVA techniques requires that certain 
assumptions are satisfied. In most applications, the assumptions will not be satisfied exactly. 
However, these analysis of variance procedures are flexible in the sense that slight departures 
from the assumptions will not significantly affect the analysis or the validity of the resulting 
inferences.  

10.11 Exercises 
10.1. A random sample of n = 500 observations were allocated to the k = 5 categories shown 

in the table. Suppose we want to test the null hypothesis that the category probabilities 
are p1 =.1, p2 =.1, p3 =.5, p4 =.1, and p5 =.2. 

Category 

1 2 3 4 5 

 
Total 

27 62 241 69 101 500 

a. Calculate the expected cell counts. 

b. Find 2

αχ  for α = .05. 

c. State the alternative hypothesis for the test. 

d. Do the data provide sufficient evidence to indicate that the null hypothesis is false? 
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10.2. Refer to the accompanying 2 × 3 contingency table. 

Columns  

1 2 3 

 
Totals 

Rows 1 

2 

14 

21 

37 

32 

23 

38 

74 

91 

Totals  35 69 61 165 

a. Calculate the estimated expected cell counts for the contingency table. 

b. Calculate the chi-square statistic for the table. 

10.3. A partially completed ANOVA table for a completely randomized design is shown here. 

 Source SS df MS F 

Between groups 

Within groups 

24.7 

 

4 

 

 

 

 

 

Total 62.4 34   

a. Complete the ANOVA table. 

b. How many treatments are involved in the experiment? 

c. Do the data provide sufficient evidence to indicate a difference among the population 

means? Test using α = .10. 

10.4. A randomized block design was conducted to compare the mean responses for three 
treatments, A, B, and C, in four blocks. The data are shown in the accompanying table,  
followed by a partial summary ANOVA table. 

Block     

Treatment 1 2 3 4 

A 

B 

C 

3 

5 

2 

6 

7 

3 

1 

4 

2 

2 

6 

2 

   

Source SS df MS F 

Treatments 

Blocks 

Residuals 

23.167 

14.250 

 

 

 

 

 

4.750 

.917 

 

 

Total 42.917    

a. Complete the ANOVA table. 
b. Do the data provide sufficient evidence to indicate a difference among treatment 

means? Testing using α = .05. 
c. Do the data provide sufficient evidence to indicate that blocking was effective in 

reducing the experimental error? Testing using α = .10. 
d. What assumptions must the data satisfy to make the F test in parts b and c valid? 

10.5. At the 5% level make the F-test of equality of population (treatment) means for the data 
in the table. 
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Blocks   

Treatment 1 2 3 

1 

2 

3 

1 

4 

9 

4 

9 

16 

9 

16 

23 
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Chapter 11 Simple Linear regression and correlation 
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11.1  Introduction: Bivariate relationships 
 
Subject of this Chapter is to determine the relationship between variables.  
In Chapter 10 we used chi-square tests of independence to determine whether  a statistical 
relationship existed between two variables. The chi-square test tells us if there is such a 
relationship, but it does not tell us what the relationship is. Regression and correlation analyses 
will show how to determine both the nature and the strength of a relationship between two 
variables.  
The term “regression “ was first used as a statistical  concept by Sir Francis Galton. He 
designed the word regression as the name of the general process of predicting one variable ( 
the height of the children ) from another ( the height of the parent ). Later, statisticians coined 
the term multiple regression  to describe the process by which several variables are used to 
predict another. 
In regression analysis we shall develop an estimating equation – that is a mathematical formula 
that relates the known variables to the unknown variable. Then, after we have learned the 
pattern of this relationship we can apply correlation analysis to determine the degree to which 
the variables are related. Correlation  analysis tell us how well the estimating equation actually 
describes the relationship. 

 

Types of relationships  

Regression and correlation analyses are based on the relationship or association between two 
or more variables.  

 

Definition 11.1 

The relationship between two random  variables is known as a bivariate relationship. 
The known variable ( or variables ) is called the independent variable(s).  The variable 
we are trying to predict is the dependent variable. 
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Example 11.1  A farmer may be interested in the relationship between the level of fertilizer x 

and  the yield of potatoes y. Here the level of fertilizer x is independent variable and the yield of  

potatoes y is dependent  variable. 

Example 11.2  A medical researcher may be interested  in the bivariate relationship  between  a 
patient’s blood  pressure x and heart rate y. Here x is independent variable and y is dependent 
variable. 

Example 11.3  Economists might base their predictions of the annual gross national product 
(GDP) on the final consumption spending within the economy. Then, the final consumption 
spending is the independent variable, and the GDP would be the dependent variable. 

In regression analysis we can have only one dependent variable in our estimating equation.  
However, we can use more than one independent variable. We often add independent variables 
in order to improve the accuracy of our prediction.  
 

Definition 11.2  

If when the independent variable x increases, the dependent variable y also increases 

then the relationship between x and y is direct relationship. In the case, the dependent 

variable y decreases as the independent variable x increases, we call the relationship 
inverse.  

 

Scatter diagrams 

The first step in determining whether  there is a relationship between two variables is to 
examine the graph of the observed (or known) data, i.e. of the data points. 

 

Definition 11.3 

The graph of the data points is called a scatter diagram or scatter gram. 

Example 11.4  In recent years, physicians have used the so-called diving reflex to reduce 
abnormally rapid heartbeats in humans by submerging the patient’s face in old water. A 
research physician conducted an experiment to investigate the effects of various cold 
temperatures on the pulse rates of ten small children. The results are presented in Table 11.1. 
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Table 11.1  
Temperature of water – Pulse rate data 

 

 

Child 

Temperature of 
Water, xo F 

Reduction in 
Pulse, y 

beats/minute 

1 68 2 

2 65 5 

3 70 1 

4 62 10 

5 60 9 

6 55 13 

7 58 10 

8 65 3 

9 69 4 

10 63 6 

The scatter gram of the data set in Table 11.1 is depicted in Figure 11.1. 
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Figure 11.1  Scatter gram for the data in Table 11. 
 

From the scatter gram we can visualize the relationship that exists between the two variables. 
As a result we can draw or “fit” a straight line through our scatter gram to represent the 
relationship. We have done this in Figure 11.2.  
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Figure 11.2  Scatter gram with straight line representing the 
relationship between x and y  “fitted” through it  

 

We see that the relationship described by the data points is well described by a straight line. 
Thus, we can say that it is a linear relationship. This relationship, as we see, is inverse because 
y decreases as x increases     
 

Example 11.5  To model the relationship between the CO (Carbon Monoxide) ranking, y, and 

the nicotine content, x, of an American-made cigarette the Federal Trade commission  tested a 
random sample of 5 cigarettes. The CO ranking and nicotine content values are given in Table  
11.2  
 
 

 

Table 11.2  CO Ranking-Nicotine Content Data 

 

Cigarett
e 

Nicotine Content, x, 
mgs 

CO ranking, y, mgs 

1 0.2 2 

2 0.4 10 

3 0.6 13 

4 0.8 15 

5 1 20 

 

The scatter gram with straight line representing the relationship between Nicotine Content x and 

CO Ranking y  “fitted” through it is depicted in Figure 11.3.  From this we see that the 
relationship here is direct. 



 clxxx 

C
O
 r
a
n
k
in
g
 y
, 
m
g
s
 

0

5

10

15

20

25

0 0.5 1 1.5
                                 

Nicotine Content x, mgs 
 

Figure 11.3  Scatter gram with straight line 
representing the relationship between x and y  
“fitted” through it 

 

 

11.2  Simple Linear regression: Assumptions 

Suppose we believe that the value of y tends to increase or decrease in a linear manner as x 

increases. Then we could select a model relating y to x by drawing a line which is well fitted to a 
given data set. Such a deterministic model – one that does not allow for errors of prediction –
might be adequate if all of the data points fell on the fitted line. However, you can see that this 
idealistic situation will not occur for the data of   Table 11.1 and 11.2. No matter how you draw a 
line through the points in Figure 11.2 and Figure 11.3, at least some of  points will deviate 
substantially from the fitted line. 
The solution to the proceeding problem is to construct a probabilistic model relating y to x- one 
that acknowledges the random variation of the data points about a line. One type of probabilistic 
model, a simple linear regression model, makes assumption that the mean value of y for a given 

value of x graphs as straight line and that points deviate about this line of means by a random   
amount equal to e, i.e. 

y = A + B x + e, 

where A and B are unknown parameters of  the deterministic (nonrandom ) portion of the model. 
If we suppose that the points deviate above or below the line of means and with expected value  
E(e) = 0 then the mean value of y is 

y = A + B x. 

Therefore, the mean value of y for a given value of x, represented by the symbol E(y) graphs as 

straight line with y-intercept A and slope B. 

A graph of the hypothetical line of means, E(y) = A + B x is shown in Figure 11.4. 
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Figure 11.4   The straight line of means 
 

 

 

 

A SIMPLE LINEAR REGRESSION MODEL  

y = A + B x + e, 

where 

y = dependent variable (variable to be modeled – sometimes called 
the  response variable) 

x = independent variable ( variable used as a predictor of y) 

e = random error 

A = y-intercept of the line 

B = slope of the line 

 
In order to fit a  simple linear regression model to a set of data , we must find estimators for the 
unknown parameters A and B of the line of means y = A + B x. Since the sampling distributions 

of these estimators will depend on the probability distribution of  the random error e, we must 
first make specific assumptions  about its properties. 
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ASSUMPTIONS REQUIRED FOR  A  LINEAR REGRESSION MODEL  

1. The mean of  the probability distribution of the random  error is 0, E(e) = 
0. that is, the average of the errors over an infinitely long series of 
experiments is 0 for each setting of the independent variable x. this 

assumptionsimplies that the mean value  of y, E(y) for a given value of x is 

y = A + B x. 

2. The variance of  the random  error  is equal a constant, say σ2, for all 
value  of x. 

3. The probability distribution of the random  error  is normal. 

4. The errors associated with any two different observations are 
independent. That is, the error  associated with one value  of  y has no 
effect on the errors  associated with other values. 

 
 
 

11.3  Estimating  A and B: the method of least squares 

The first problem of simple regression analysis is to find estimators of A and B of the regression 
model based on a sample data . 
Suppose we have a sample of n data  points (x1, y1), (x2, y2), ..., (xn, yn). The straight-line model 

for the response y in terms x is  

y = A + B x + e. 

The line of means is  E(y) = A + B x  and the line fitted to the sample data  is bxay +=ˆ . Thus, 

ŷ is an estimator of the mean value of y and a predictor of some future value  of y; and a, b are 

estimators of A and B, respectively. 

For a given data point, say the point (xi, yi), the observed value of y is yi and the predicted value  

of y would be 

ii bxay +=ˆ  

and the deviation of the ith value  of y from its predicted value is 

∑
=

+−=
n

i

ii bxaySSE
1

2)]([ . 

The values of a and b that make the SSE minimum is called the least squares estimators of the 

population parameters A and B and the prediction equation   bxay +=ˆ  is called the least 

squares line. 

 

Definition 11.4 

The least squares line is one that has a smaller than any other straight-line model. 
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FORMULAS FOR THE LEAST SQUARES ESTIMATORS 

Slope:           
xx

xy

SS

SS
b = ,   y-intercept:   xbya −=  

where 

          ∑
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−−=
n

i

iixy yyxxSS
1

))(( ,    ∑
=

−=
n

i

ixx xxSS
1

2)( , 

          ∑∑
==

==
n

i

i

n

i

i y
n

yx
n

x
11

1
,

1
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           n = sample size 

 

Example 11.6  Refer to Example 11.5. Find the  best-fitting straight line through the sample 
data points. 

Solution  By the least squares method  we found the equation of the best-fitting straight line. It 
is xy 5.203.0ˆ +−=  . The graph of this line is shown in Figure 11.5 

 

 

Figure 11.5  Least squares line for Example 11.6 

 

11.4  Estimating  σσσσ2 

In most practical situations, the variance σ2 of the random  error  e will be unknown and must be 
estimated from the sample  data. Since σ2 measures the variation  of the y values about the 

regression line, it seems intuitively reasonable to estimate σ2 by dividing the total error SSE by 
an appropriate  number. 
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ESTIMATION OF  σσσσ2 

 

2

2

−
==
n

SSE

r errorfreedom foDegree of 

SSE
s  

where 

          2

1

)ˆ(∑
=

−=
n

i

ii yySSE  

 
 

From the following Theorem it is possible to prove that s
2
 is an unbiased estimator of  σ2

, that is 

E(s
2
) = σ2. 

 

Theorem 11.1  

Let 
2

2

−
=
n

SSE
s . Then, when the assumptions of Section 11.2 are satisfied, the statistic  

2

2

2

2 )2(

σσ
χ

snSSE −
==  has a chi-square distribution with )2( −= nν degrees of 

freedom. 
 
Usually, s is referred to as a standard error of estimate. 

Example 11.7  Refer to Example 11.5. Estimate the value of the error variance σ2 . 

Data analysis or statistical softwares provide procedures or functions for computing the 
standard error of estimate s. For example, the function STEYX of MS-Excel gives, for the data 
of Example 11.5, the result s =1.816590. 
  
Recall that the least squares line estimates the mean value of y for a given value  of x. Since s 

measures the spread of distribution of  y values about the least squares line, most observations 

will lie within 2s of the least squares line.  
 

INTERPRETATION OF s, THE ESTIMATED STANDARD DEVIATION OF e 

 
We expect most of the observed  y  values to lie within 2s of their respective least 

squares predicted value ŷ . 
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11.5  Making inferences about the slope, B 

In Section 11.2 we proposed the probabilistic model y = A + B x + e for the relationship between 

two random variables x and y, where x is independent variable and y is dependent variable, A 

and B are unknown parameters, and e is a random error. Under the assumptions made on the 

random error e we have E(y) = A + B x . This is the population regression line.  If we are given a 

sample of n data points (xi, yi), i =1,...,n, then by the least squares method in Section 11.3 we 

can find the straight line bxay +=ˆ  fitted to these sample data. This line is the sample 

regression line. It is an estimate for the population regression line. We should be able to use it 
to make inferences about the population regression line. In this section we shall make 
inferences about the slope B of the  “true” regression equation  that are based upon the slope b 
of the sample regression  equation.  

The theoretical background for making inferences about the slope B lies in the following 

properties of the least squares estimator  b: 

 

PROPERTIES OF THE LEAST SQUARES ESTIMATOR  b 

1. Under the assumptions in section 11.2, b  will possess sampling distribution that 
is normally distributed. 

2. The mean of the least squares estimator  b is B, E(b) = B, that is, b is an 

unbiased estimator for B. 

3. The standard deviation of  the sampling distribution of b is 

xx

b
SS

σ
σ = , 

     where   σ is the standard deviation of the random error e,  ∑
=

−=
n

i

ixx xxSS
1

2)(  

 

We will use these results to test hypotheses about  and to construct a confidence interval for the 
slope B of the population regression line. 

Since σ  is usually unknown, we use its estimator s and instead of  
xx

b
SS

σ
σ =  we use its 

estimate 
xx

b
SS

s
s = . 

For testing hypotheses about B first we state null and alternative hypotheses: 

)(:

:

000

00

BBorBBorBBH

BBH

a ><≠

=
 

where B0 is the hypothesized value  of B. 

Often, one tests the hypothesis if B = 0 or not, that is, if x does or does not contribute 

information for the prediction of y. The setup of our test of utility of the model is summarized in 
the box. 
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A TEST OF MODEL UTILITY 

ONE-TAILED TEST 

)0(

0:

0:0

>

<

=

B

BH

BH

a

or 

 

Test statistic: 

xxb SSs

b

s

b
t

/
==  

 
Rejection region 

αtt −<  

( or t > tα ), 

where αt  is based on (n - 2) df.  

 

TWO-TAILED TEST 

 
0:

0:0

≠

=

BH

BH

a

  

 

Test statistic: 

xxb SSs

b

s

b
t

/
==  

 
 
Rejection region 

2/2/ αα tttt >−< or  , 

where 2/αt  is based on (n-2) df. 

 

The values of αt  such that αα =≥ )( ttP  are given in Table 7.4 

 
Example 11.8  Refer to the nicotine-carbon monoxide ranking problem of Example 11.5. At 
significance level 05.0=α , test the hypothesis that the nicotine content of a cigarette 

contributes useful information for the prediction of carbon monoxide ranking y, i.e. test the 

prediction ability of the least squares straight line model xy 5.203.0ˆ +−= . 

Solution Testing the usefulness of the model  requires testing the hypothesis 

0:

0:0

≠

=

BH

BH

a

 

with n = 5 and  05.0=α , the critical value based on (5 -2) = 3 df is obtained from Table 7.4 

182.3025.02/ == ttα . 

Thus, we will reject H0 if t < -3.182 or t > 3.182. 

In order to compute the test statistic we need the values of b, s and SSxx. In Example 11.6 we 

computed b =20.5. In Example 11.7 we know s = 1.82 and we can compute SSxx = 0.4. Hence, 
the test statistic is  
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12.7
4.0/82.1

5.20

/
===

xxSSs

b
t  

 

Since the calculated t-value is greater than the critical value t0.025 = 3.182, we reject the null 

hypothesis and conclude that the slope 0≠B . At the significance level α = 0.05, the sample 
data provide sufficient evidence to conclude that nicotine content does contribute useful 
information  for prediction of carbon-monoxide ranking using the linear model. 
 
Example 11.9  A consumer investigator obtained the following least squares straight line model      
( based on a sample on n = 100 families ) relating the yearly food cost  y  for a family of 4 to 

annual income x:  

xy 26.0467ˆ += . 

In addition, the investigator computed the quantities s = 1.1, SSxx = 26. Compute the observed 

p-value for a test to determine whether mean yearly food cost  y  increases as annual income x 

increases , i.e., whether the slope of the population regression line B is positive. 

Solution  The consumer investigator wants to test 

0:

0:0

>

=

BH

BH

a

 

To compute the observed significance level (p-value ) of the test we must first find the 

calculated value of the test statistic, tc . Since b = 0.26, s =1.1, and SSxx = 26 we have 

21.1
26/1.1

26.0

/
===

xxSSs

b
t  

The observed significance level or p-value is given by  

P(t > tc ) = P(t >1.21), where t-distribution is based on (n - 2) = (100 - 2) = 98 df. Since df >30 
we can approximate the t-distribution with the z-distribution. Thus, 

p-value = P(t >1.21) = P(z >1.21) ≈  0.5 – 0.3869 = 0.1131. 

In order to conclude that the mean yearly food cost increases as annual income increases  (B > 

0) we must tolerate   1131.0≥α . But it is a big risk and usually we take α = 0.05. Under this 
significance level we can not reject the hypothesis H0. It means we consider the sample result 

to be statistically insignificant. 

Another way to make inferences about the slope B is to estimate it using a confidence interval. 
This interval is formed as shown in the box. 

 

A  (1-αααα)100% CONFIDENCE INTERVAL FOR THE SLOPE B 

bstb 2/α± ,  where  
xx

b
SS

s
s =  and  2/αt  is based on (n-2) df. 

 

Example 11.10  Find the 95% confidence interval for B in Example 11.8. 
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Solution For a 95% confidence interval α = 0.05. Therefore, we need to find the value of tα/2 = 
t0.025  based  on ( 5-2 ) = 3 df. In Example 11.8 we found that t0.025 = 3.182. Also, we have b = 

20.5,     SSxx = 0.4. Thus, a 95% confidence interval for the slope in the model relating carbon 
monoxide to nicotine content is  

 16.95.20
4.0

82.1
182.35.202/ ±=








±=














±

xxSS

s
tb α  

Our interval estimate of the slope parameter  B is then  11.34 to 29.66. Since all the values in 

this interval are positive, it appears that B is positive and that the mean of y, E(y) increases as x 
increases. 

 
Remark   From the above we see the complete similarity between the t-statistic for testing 

hypotheses about the slope B and the t-statistic for testing hypotheses about the means of 
normal populations in Chapter 9 and the similarity of the corresponding confidence intervals. In 
each case, the general form of the test statistic is 

estimator  theoferror standardEstimated

meanedhypothesizItsestimatorParameter −
=t  

and the general form of the confidence interval is 

Point estimator  ± tα/2 (Estimated standard error of the estimator) 

 

 

11.6. Correlation analysis 

Correlation analysis is the statistical tool that we can use to describe the degree to which one 
variable is linearly related to another. Frequently, correlation analysis is used in conjunction with 
regression analysis to measure how well the least squares line fits the data . Correlation 
analysis can also be used by itself, however, to measure the degree of association between two 
variables. 

In this section we present two measures for describing the correlation between two variables: 
the coefficient of determination and the coefficient of correlation. 

11.6.1 The coefficient of correlation  

  

Definition 11.5 

The Pearson product moment coefficient of correlation (or simply, the coefficient of 
correlation)  r is a measure of the strength of the linear relationship between two 
variables x and y. It is computed ( for a sample of n measurements on x and y ) as 
follows 

yyxx

xy

SSSS

SS
r =  , 

where  
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Some properties of the coefficient of correlation: 

i) -1 ≤ r ≤ 1  (this follows from the Cauchy-Bunhiacopskij inequality ) 

ii) r and b ( the slope of the least squares line ) have the same sign 

iii) A value of r near or equal to 0 implies little or no linear relationship between x and y. The 

closer r is to 1 or to –1, the stronger the linear relationship between x and y. 

Keep in mind that the correlation coefficient r measures the correlation between x values and y 
values in the sample, and that a similar linear coefficient of correlation exists for the population  

from which the data points were selected. The population correlation coefficient is denoted by ρ 
(rho). As you might expect, ρ is estimated by the corresponding sample statistic r. Or, rather 

than estimating ρ, we might want to test the hypothesis H0: ρ = 0 against Ha: ρ ≠ 0, i.e., test the 
hypothesis that x contributes no information for the predicting y using the straight line model 
against the alternative that the two variables are at least linearly related. But it can be shown 
that the null hypothesis H0: ρ = 0 is equivalent to the hypothesis H0: B = 0. Therefore, we omit 
the test of hypothesis for linear correlation. 

11.6.1 The coefficient of determination 

 Another way to measure the contribution of x in predicting y is to consider how much the errors 

of prediction of y can be reduced by using the information provided by x. 

The sample coefficient of determination is develped from the relationship between two kinds of 
variation: the variation of the y values in a data set around: 

1. The fitted regression line 

2. Their own mean 

The term variation in both cases is used in its usual statistical sense to mean “ the sum of a 
group of squared deviations”. 

The first variation is the variation of y values around the regression line, i.e., around their 
predicted values. This variation is the sum of squares for error (SSE) of the regression model 

2

1

)ˆ(∑
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−=
n

i

ii yySSE  

The second variation is the variation of y values around their own mean 
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1
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iyy yySS  

Definition 11.6 

The coefficient of determination is 
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It is easy to verify that  

yyyy
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−
= 12 , 

where r is the coefficient of correlation, defined in Subsection 11.6.1.  

Therefore, usually we call r2 the coefficient of determination. 

 Statisticians interpet the coefficient of determination by looking at the amount of the variation in 
y that is explained by the regression line. To understand this meaning of  r2 consider Figure 
11.6. 

 

 

Figure 11.6  The explained  and 
unexplained deviations 

Here we singled out one observed value of y and showed the total variation of this y from its 

mean y , yy − , the unexplained deviation yy ˆ−  and the remaining explained deviation 

yy −ˆ . Now consider a whole set of observed y values instead of only one value. The total 

variation, i.e., the sum of squared deviations of these points from their mean would be  
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iyy yySS . 

The unexplained portion of the total variation of these points from the regression line is   

2

1
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ii yySSE . 

The explained portion of the total variation is 
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i yy . 

It is true that 

 Total variation = Explained variation + Unexplained variation. 
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PRACTICAL INTERPRETATION OF THE COEFFICIENT OF DETERMINATION, r2  

 
About 100(r2) % of the total sum of squares of deviations of the sample y-values 

about their mean y can be explained by (or attributed to) using x to predict  y in the 

straight-line model. 
 

 

Example 11.11  Refer to Example 11.5. Calculate the coefficient of determination for the 
nicotine content-carbon monoxide ranking and interpret its value. 

Solution By the formulas given in this section we found r2 = 0.9444. We interpret this value as 
follows: The use of nicotine content, x, to predict carbon monoxide ranking, y, with the least 
squares line  

xy 5.203.0ˆ +−=   

accounts for approximately 94% of the total sum of squares of deviations of the five sample CO 
rankings about their mean. That is, we can reduce the total sum of squares of our prediction 
errors by more than 94% by using the least squares equation instead of  y .  

 

11.7  Using the model for estimation and prediction   

The most common uses of a probabilistic model can be divided into two categories: 

1) The use of the model for estimating the mean value of y, E(y), for a specific value of x 

2) The second use of the model entails predicting a particular  y  value for a given x value. 

In case 1) we are attempting to estimate the mean result of a very large number of experiments 
at the given x value. In case 2) we are trying to predict the outcome of a single experiment at 

the given x value. 

The difference in these two model uses lies in the relative accuracy of the estimate and the 
prediction. These accuracies are best measured by the repeated sampling errors of the least 
squares line when it is used as estimator and as a predictor, respectively. These errors are 
given in the next box. 
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SAMPLING ERRORS FOR THE ESTIMATOR OF THE MEAN AND THE 

PREDICTOR OF AN INDIVIDUAL y 

 
The standard deviation of the sampling 
distribution of the estimator ŷ of the 

mean value of y at a fixed x is 
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y
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The standard deviation of the prediction 
error for the predictor ŷ of an individual 

y-value at a fixed x is 
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−
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where σ is the square root of σ2, the variance of the random error (see Section 11.2) 
 

The true value of σ  will rarely be known. Thus, we estimate  σ by s and calculate the estimation 
and prediction intervals as follows 

 

A  (1-αααα)100% CONFIDENCE INTERVAL 

FOR THE MEAN VALUE OF y FOR x = 
xp 

A  (1-αααα)100% CONFIDENCE INTERVAL 

FOR AN INDIVIDUAL y FOR x = xp 
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where 2/αt  is based on (n-2) df 
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where 2/αt  is based on (n-2) df 

 

Example 11.12   Find a 95% confidence interval for the mean carbon monoxide ranking of all 
cigarettes that have a nicotine content of 0.4 milligram. Also, find a 95% prediction interval for a 
particular cigarette if its nicotine content is 0.4 mg. 

Solution For a nicotine content of 0.4 mg, xp = 0.4 and the confidence interval for the mean of y 

is calculated by the formula in left of the above box with  s = 1.82, n = 5,  df = n - 2 = 5 - 2 = 3,      

t0.025 = 3.182 9.74.0*5.203.05.203.0ˆ =+−=+−= pxy , SSxx = 0.4. Hence, we obtain the 

confidence interval  (7.9 ± 3.17).  

Also, by the formula in the right cell we obtain the 95% prediction interval for a particular 
cigarette with nicotine content of 0.4 mg as (7.9 ± 6.60).  
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From the Example 11.12 it is important note that the prediction interval for the carbon monoxide 
ranking of an individual cigarette is wider than corresponding confidence interval for the mean 
carbon monoxide ranking. By examining the formulas for the two intervals, we can see that this 
will always be true.  

Additionally, over the range of sample data, the width of both intervals increase as the value of x 
gets further from x  (see Figure 11.7).    

 

 

 
Figure 11.7  Comparison of 95% confidence interval  and 
prediction interval  

 

 

 

11.8. Simple Linear Regression: An Example  

In the previous sections we have presented the basic elements necessary to fit and use a 
straight-line regression model. In this section we will assemble these elements by applying them 
to an example. 

Example 11.13  The international rice research institute in the Philippines wants to relate the 
grain yield of rice varieties, y, to the tiller number, x . They conducted experiments for some rice 
varieties and tillers. Below there are the results obtained for the rice variety Milfor 6 
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Table 11.3  The grain yield of rice, 
y,  for the tiller number, x 

Grain Yield, 

kg/ha 

Tillers, 

no./m2 

4,862 160 

5,244 175 

5,128 192 

5,052 195 

5,298 238 

5,410 240 

5,234 252 

5,608 282 

Step 1  Suppose that the assumptions listed in Section 11.2 are satisfied, we hypothesize a 
straight line probabilistic model for the relationship between the grain yield, y, and the tillers, x 

y = A + B x + e. 

Step 2  Use the sample data  to find the least squares line. For the purpose we make 
calculations: 

∑
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i

ixx xxSS
1
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SS

SS
b = , xbya −=  

for the data. As a result, we obtain the least squares line 

xy 56.44242ˆ +=   

The scattergram for the data and the least squares line fitted to the data are depicted in Figure 
11.8. 
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Figure 11.8  Simple linear model relating Grain Yield to Tiller Number 

Step 3  Compute an estimator, s2, for the variance σσσσ2  of the random error e : 

2

2

−
=
n

SSE
s  

where 

  2

1
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=

−=
n

i

ii yySSE . 

The result of computations gives s2 = 16,229.66,   s = 127.39. The value of s implies that most 
of the observed 8 values will fall within 2s = 254.78 of their respective predicted values. 

Step 4  Check the utility of the hypothesized model, that is, whether x really contributes 

information for the prediction of y using the straight-line model. First test the hypothesis that the 

slope B is 0, i.e., there is no linear relationship between the grain yield, y, and the tillers, x. We 
test:    

 
0:

0:0
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BH

BH
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Test statistic: 

xxb SSs

b

s

b
t

/
==  

For the significance level  α = 0.05, we will reject H0 if  2/2/ αα tttt >−< or  , 

where 2/αt  is based on (n-2) = (8 – 2) = 6 df. On this df we find t0.025 = 2.447,  

004.4
125415/39.127

56.4
==t . 

This t-value is greater than t0.025. Thus, we reject the hypothesis B = 0. 

Next, we obtain additional information about the relationship by forming a confidence interval for 
the slope B. A 95% confidence interval is  

78.256.4
5.12541

39.127
447.256.42/ ±=








±=














±

xxSS

s
tb α . 

It is the interval (1.78, 7.34). 
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Another measure of the utility of the model is the coefficient of correlation  

yyxx
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SS
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−=
n

i

iyy yySS . 

Computations give r = 0.853. 

The high correlation confirms our conclusion that B differs from 0. It appears that the grain yield 
and tillers are rather highly correlated. 

The coefficient of determination is r2 = 0.7277, which implies that 72.77% of the total variation is 
explained by the tillers. 

Step 5 Use the least squares model:   

Suppose the researchers want to predict the grain yield if the tillers are 210 per m2, i.e., xp =210. 
The predicted value is  

6.5199210*56.4424256.44242ˆ =+=+= pxy . 

If we want a 95% prediction interval, we calculate 

)18.5530,82.4867(18.3315199

5.12541

)75.26210(

8

1
139.127*447.26.5199

)(1
1..ˆ

22

2/

=±=

−
++±=

−
++±

xx

p

SS

xx

n
sty α  

Thus, the model yields a 95% prediction interval for the grain yield for the given value 210 of 
tillers from 4867.82 kg/ha to 5530.18 kg/ha. 

Below we include the STATGRAPHICS printout for this example. 

 
Regression Analysis - Linear model: Y = a+bX                                    

---------------------------------------------------------------------------- 

Dependent variable: GrainYield           Independent variable: Tillers 

---------------------------------------------------------------------------- 

                               Standard            T            Prob.           

Parameter       Estimate         Error           Value          Level           

---------------------------------------------------------------------------- 

Intercept        4242.13        250.649        16.9245        0.00000           

Slope            4.55536        1.13757        4.00445        0.00708           

---------------------------------------------------------------------------- 

                           Analysis of Variance                                 

---------------------------------------------------------------------------- 

Source             Sum of Squares     Df  Mean Square   F-Ratio  Prob. Level   

Model                   260252.06      1    260252.06      16.0      0.00708   

Residual                97377.944      6    16229.657                           

---------------------------------------------------------------------------- 

Total (Corr.)           357630.00      7                                        

Correlation Coefficient = 0.853061          R-squared =  72.77 percent         

Stnd. Error of Est. = 127.396                                                 

 

 

Figure 11.9   STATGRAPHICS printout for Example 11.13 
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11.9 Summary 
 

In this chapter we have introduced bivariate relationships and showed how to compute the 
coefficient of correlation, r , a measure of the strength of the linear relationship between two 
variables. We have also presented the method of least squares for fitting a prediction equation 
to a data set. This procedure, along with associated statistical tests and estimations, is called a 
regression analysis. The steps that we follow in the simple linear regression analysis are: 
To hypothesize a probabilistic  straight-line model  y=A + Bx + e. 
To make assumptions on the random error component e. 
To use the method of least squares to estimate the unknown parameters in the deterministic 
component, y=A + Bx. 
To assess the utility of the hypothesized model. Included here are making inferences about the 
slope B, calculating the coefficient of correlation r and the coefficient of determination r2. 

If we are satisfied with the model we used it to estimate the mean y value, E(y), for a given x  

value and to predict an individual y value for a specific x  value 

 

11.10  Exercises 
 
1. Consider the seven data points in the table 
 

x -5 -3 -1 0 1 3 5 

y 0.8 1.1 2.5 3.1 5.0 4.7 6.2 

a) Construct a scatter diagram for the data. After examining the scattergram, do you think 
that x  and y are correlated? If correlation is present, is it positive or negative? 

b) Find the correlation coefficient r and interpret its value. 

c) Find the least squares prediction equation. 

d) Calculate SSE for the data and calculate s2 and s. 

e) Test the null hypothesis that the slope B = 0 against the alternative hypothesis that 

0≠B . Use α = 0.05. 

f) Find a 90% confidence interval for the slope B. 
 
2. In fitting a least squares line to n = 22 data points, suppose you computed the following 

quantities: 

      SSxx = 25   SSyy = 17 SSxy = 20 

      32 == yx   

a) Find the least squares line. 
b) Calculate SSE. 
b) Calculate s2 . 
d) Find a 95% confidence interval for the mean value of y when x = 1. 

e) Find a 95% prediction  interval for y when x = 1. 

f) ) Find a 95% confidence interval for the mean value of y when x = 0. 
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3. A study was conducted to examine the inhibiting properties of the sodium salts of 
phosphoric acid on the corrosion of iron. The data  shown in the table provide a measure of 
corrosion of Armco iron in tap water containing various concentrations of NaPO4 inhibitor: 

 

Concentratio
n of  NaPO4, 

x, parts per 
million 

Measure of 
corrosion 

rate, y 

Concentratio
n of  NaPO4, 

x, parts per 
million 

Measure of 
corrosion 

rate, y 

2.50 7.68 26.20 0.93 

5.03 6.95 33.00 0.72 

7.60 6.30 40.00 0.68 

11.60 5.75 50.00 0.65 

13.00 5.01 55.00 0.56 

19.60 1.43   
 
a) Construct a scatter diagram for the data . 
b) Fit the linear  model y = A + B x + e to the data. 

c) Does the model of part b) provide an adequate fit? Test using α = 0.05. 
d) Construct a 95% confidence interval  for the mean corrosion rate of iron in tape water in 
which  the concentration of NaPO4 is 20 parts per milllion.  
 
 
4. For the relationship between the variables x and y one uses a linear model and for some 

data collected STATGRAPHICS gives the following printout 

 

Regression Analysis - Linear model: Y = a+bX                                     

-------------------------------------------------------------------------------------------------------------- 

Dependent variable: ELECTRIC.Y                  Independent variable: ELECTRIC.X 

-------------------------------------------------------------------------------------------------------------- 

                                            Standard            T            Prob.            

Parameter       Estimate         Error           Value          Level            

-------------------------------------------------------------------------------------------------------------- 

Intercept            279.763        116.445          2.40252        0.04301            

Slope               0.720119      0.0623473        11.5501        0.00000            

-------------------------------------------------------------------------------------------------------------- 

                           Analysis of Variance                                  

------------------------------------------------------------------------------------------------------------- 

Source             Sum of Squares     Df   Mean Square    F-Ratio     Prob. Level    

Model                    798516.89         1      798516.89      133.4         0.00000    

Residual                47885.214         8          5985.652                            

-------------------------------------------------------------------------------------------------------------- 

Total (Corr.)           846402.10        9                                         
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Correlation Coefficient = 0.971301          R-squared =  94.34 percent           

Stnd. Error of Est. = 77.367 

 

 

Figure 11.10  STATGRAPHICS printout for Exercise 11.4 

. 
a) Identify the least squares model fitted to the data. 
b) What are the values of SSE and s2 for the data? 

c) Perform a test of  model adequacy. Use α = 0.05. 
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Chapter 12   Multiple regression  
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12.1. Introduction: the general linear model 

The models for a multiple regression analysis are similar to simple regression  model except 
that they contain more terms.  

Example 12.1  The researchers in the international rice research institute suppose that Grain 
Yield , y, relates to Plant Height, x1, and Tiller Number, x2,  by the linear model  

E(y) = B0 + B1x1 + B2 x2. 

Example 12.2  Suppose we think that the mean time E(y) required to perform a data-processing 
job increases as the computer utilization increases and that relationship  is curvilinear. Instead 
of using the straight line model E(y) = A + Bx1  to model the relationship, we might use the 

quadratic model E(y) = A + B1x1 + B2x1
2
, where x1 is a variable measures computer utilization.  

A quadratic model often referred to as a second-order linear model in contrast to a straight line 
or first-order model. 
 
If, in addition, we think that the mean time required to process a job is also related to the size x2 
of the job, we could include x2 in the model. For example, the first-order model in this case is 

E(y) = B0+ B1x1 + B2x2 
and the second-order model is  

E(y) = B0 + B1x1 + B2x2 + B3 x1x2 + B4 x1
2 + B5 x2

2. 

All the models that we have written so far are called linear models, because E(y) is a linear 

function of the unknown parameters B0, B1, B2, ... 
 
The model  

E(y) = A e-
Bx 
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is not a linear model  because E(y) is not a linear function of the unknown model parameters A 

and B.   
Note that by introducing new variables, second-order models may be written in the form of first-
order models. For example,  putting x2 = x1

2, the second-order model  

E(y) = B0 + B1x1 + B2x1
2 

becomes the first-order model  
E(y) = B0 + B1x1 + B2x2. 

 
Therefore, in the future we consider only multiple first-order regression  model. 
 
 

THE GENERAL MULTIPLE  LINEAR MODEL 

 
y = B0 + B1x1 + ... + Bkxk + e, 

where 

y = dependent variable (variable to be modeled – sometimes called 
the   response variable) 

x1, x2, ..., xk  = independent variable ( variable used as a predictor of y) 

e = random error 

Bi  determines the contribution of the independent variable xi  
 
 
  
 

12.2  Model assumptions 
 

ASSUMPTIONS REQUIRED FOR  A  MULTIPLE  LINEAR REGRESSION 
MODEL  
 

1. y = B0 + B1x1 + ... + Bkxk + e, 
where e is random error. 

2. For any given set of values x1, x2, ..., xk, the random error e has a normal 

probability distribution with the mean equal 0 and variance equal σ2. 
3. The random errors are independent. 

 

 

12.3   Fitting the model:  the method of least squares  

 
The method of fitting a multiple regression model is identical to that of fitting the straight-line 
model. 
Suppose we are given the sample data that are presented in Table 12.1. 
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Table 12.1 
 

DATA POINT Y  VALUE x1 x2 ... xk 

1 y1 x11 x21 ... xk1 

2 y2 x12 x22 ... xk2 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

n yn x1n x2n  xkn 

 
We will use the method of least squares and choose estimates of  B0, B1, B2,..., Bk that minimize 
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In order to briefly write the solution of the least squares problem we introduce the matrix 
notations 
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Then we can write the least squares equations in matrix form as 
 

THE LEAST SQUARES MATRIX EQUATION  

 

(X’X )b = X’Y, 

where X’ is the transpose of X 
 

 

. The solution of the least squares equations therefore is 

LEAST SQUARES SOLUTION 

 

b = (X’X)-1XY . 

 

Example 12.3  Refer to Example 12.1 relating Grain Yield , y, to Plant Height, x1, and Tiller 

Number, x2,  by the linear model  

E(y) = B0 + B1x1 + B2 x2. 
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Find the least squares estimates of  B0, B1, B2. The data are shown in Table 12.2 

 

 

Table 12.2  Data for Grain Yield Study 

 

VARIETY 
NUMBER 

GRAIN YIELD, 
kg/ha 

( y ) 

PLANT HEIGHT, 
cm 

( x1 ) 

TILLER, no./hill 

( x2 ) 

1 5755 110.5 14.5 

2 5939 105.4 16.0 

3 6010 118.1 14.6 

4 6545 104.5 18.2 

5 6730 93.6 15.4 

6 6750 84.1 17.6 

7 6899 77.8 17.9 

8 7862 75.6 19.4 

 

Solution  The Y, X and b are shown below 

,,

19.4     75.6    1

17.9     77.8    1

17.6      84.1    1

15.4      93.61

18.2    104.51

14.6     118.11

16.0    105.41

5.14110.51

,

7862
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6750

6730
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6010
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bXY  

After calculations, finally, we obtain b =  ( 6335.59, -23.75, 150.31 )’. 

Thus, the prediction equation is  

y = 6335.59  -23.75 x1 + 150.31 x2. 

Below we include the STATGRAPHICS printout for this example. 

Model fitting results for: GRAIN.Y                        
--------------------------------------------------------------------------------------------------------------------------- 
Independent variable             coefficient        std. error               t-value           sig. level 
-------------------------------------------------------------------------------------------------------------------------- 
CONSTANT                         6335.596495    2942.930958         2.1528           0.0839 
GRAIN.X1                              -23.748104         12.895492        -1.8416           0.1249 
GRAIN.X2                             150.312641       112.069368         1.3412           0.2375 
--------------------------------------------------------------------------------------------------------------------------- 
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R-SQ. (ADJ.) = 0.7474    SE=     340.427774     MAE=     248.149078      DurbWat=  2.337  
Previously:    0.0000                     0.000000                   0.000000                  0.000  
8 observations fitted, forecast(s) computed for 0 missing val. of dep. var.      

 

12.4  Estimating σσσσ2 

We recall that the variances of the estimators of all the B parameters and of ŷ will depend on 

the value  of σ2, the variance of the random error  e that appears in the linear model. Since σ2 

will rarely be known in advance, we must use the sample data to estimate its value. 

ESTIMATOR OF σσσσ2, THE VARIANCE OF  e  IN A MULTIPLE REGRESSION 
MODEL  

 

modelin  parameters  ofNumber 

2

Bn

SSE

r errorfreedom foDegree of 

SSE
s

−
==  
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ii yySSE  

 
   
It can be proved that s2 is an unbiased estimator of  σ2, that is E(s2) = σ2. 

Notice that in softwares SSE often is referred to as Sum of Squares for Error and s2 is refereed 
to as Mean Squares for Error. For example, for the data for Grain Yield Study in Table 12.2 the 
STATGRAPHICS printout is following  

 

 

Analysis of Variance for the Full Regression                   

-------------------------------------------------------------------------------- 

Source               Sum of Squares     DF    Mean Square      F-Ratio   P-value 

-------------------------------------------------------------------------------- 

Model                      2632048.      2       1316024.      11.3557    0.0138 

Error                       579455.      5        115891.                        

-------------------------------------------------------------------------------- 

Total (Corr.)              3211504.      7                                       

                                                                                 

R-squared = 0.819569                               Stnd. error of est. = 340.428 

R-squared (Adj. for d.f.) = 0.747396           Durbin-Watson statistic = 2.33739 

 

 

 We see on this printout that SSE = 579455 and  s2 = 115891. 

 

 

12.5  Estimating and testing hypotheses about the B  parameters 

12.5.1 Properties of the sampling distributions of b0, b1, ..., bk 
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Before making inferences about the B parameters of the multiple linear model we provide some 

properties of the least squares estimators b , which serve the theoretical background for 

estimating and testing hypotheses about B.   

From Section 12.3 we know that the least squares estimators b are computed by the formula 

b = (X’X)-1XY. Now, we can rewrite b in the form  

b = [(X’X)-1X]Y.  

From this form we see that the components of b: b0, b1, ..., bk are linear functions of n normally 

distributed random variables y1, y2,..., yn. Therefore, bi (i =0,1, ..., k) has a normal sampling 
distribution. 
One showed that the least squares estimators provide unbiased estimators of B0, B1, ..., Bk, that 

is, E(bi) = Bi (i = 0,1, ..., k).  
The standard errors and covariances of the estimators are defined by the elements of the matrix 
(X’X)-1. Thus, if we denote 

  

then the standard deviation of the sampling distributions of b0, b1, ..., bk  are  

),...,1,0( kiciibi
== σσ  

where σ is the standard deviation of the random error e. 

The properties of the sampling distributions of the least squares estimators are summarized in 
the box. 

 

THEOREM 12.1 (properties of the sampling distributions of b0, b1, 

..., bk ) 
 
The sampling distribution of bi ( i = 0, 1,..., k ) is normal with: 

mean ii  B) E(b = , variance   c ) V(b iii = ,  

standard deviation: ),...,1,0( kiciibi
== σσ    

The covariance of two parameter estimators is equal to  

 ji c) , bCov(b ijji )(2 ≠= σ . 

 

12.5.2 Estimating and testing hypotheses about the B  parameters 

 

A (1-α)100% confidence interval for a model parameter Bi ( i = 0, 1,..., k ) can be constructed 
using the t statistic  
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where s is an estimate of σ. 
 

A  (1-αααα)100% CONFIDENCE INTERVAL FOR Bi 

bi ± tα/2 ( Estimated standard error of bi )   or 

iii cstb 2/α±  

where tα/2 is based on  [ n – (k+1)] df. 

 

 Similarly, the test statistic for testing the null hypothesis H0: Bi = 0 is 

i

i

b

b
t

 oferror standardEstimated
=  

 
The test is summarized in the box: 
 

TEST OF AN INDIVIDUAL PARAMETER COEFFICIENT IN THE 

MULTIPLE REGRESSION  MODEL y = B0 + B1x1 + ... + Bkxk + e, 

ONE-TAILED TEST 

)0

0:

0:0
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i

ia

i
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BH
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(or 

 

Test statistic: 
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Rejection region 
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where 2/αt   is based on [ n- (k+1)] 

df,  
n = number of observations, 

k= number of independent 
variables  in the model   
 

TWO-TAILED TEST 
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Test statistic: 
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Rejection region 

2/2/ αα tttt >−< or ,  

 

where 2/αt  is based [ n- (k+1)] df, 

n = number of observations, 

k= number of independent variables  
in the model 

The values of  αt  such that  αα =≥ )tP( t  are given in Table 7.4 
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Example 12.4  An electrical utility company wants to predict the monthly power usage of a 
home as a function of the size of the home based on the model  

y = B0 + B1x + B2x
2
 + e. 

Data are shown in Table 12.3. 
 

 

Table 12.3 Data for Power Usage 
Study 

 
SIZE OF HOME 

x, square feet 

MONTHY USAGE 

y, kilowatt-hours 

1290 1182 

1350 1172 

1470 1264 

1600 1493 

1710 1571 

1840 1711 

1980 1804 

2230 1840 

2400 1956 

2390 1954 

 

a. Find the least squares estimators of B0, B1, B2. 
b. Compute the estimated standard error for b1.  
c. Compute the value of the test statistic  for testing H0: B2 = 0. 

d. Test H0: B2 = 0 against Ha: B2 ≠ 0. State your conclusions. 
 
Solution We use computer with the software STATGRAPHICS to do this example. Below is a 
part of the printout of the procedure “ Multiple regression “. 
 
 
 

                     Model fitting results for: ELECTRIC.Y                       

-------------------------------------------------------------------------------- 

Independent variable             coefficient  std. error     t-value   sig.level 

-------------------------------------------------------------------------------- 

CONSTANT                        -1303.382558  415.209833     -3.1391      0.0164 

ELECTRIC.X                          2.497984     0.46109      5.4176      0.0010 

ELECTRIC.X * ELECTRIC.X            -0.000477    0.000123     -3.8687      0.0061 

-------------------------------------------------------------------------------- 

R-SQ. (ADJ.) = 0.9768  SE=      46.689335  MAE=      32.230298  DurbWat=  2.094  

Previously:    0.9768           46.689335            32.230298            2.094  

10 observations fitted, forecast(s) computed for 0 missing val. of dep. var. 
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Figure 12.1 STATGRAPHICS printout for Example 12.4 

 
From the printout we see that 
a. The least squares model  are y = -1303.382558 + 2.497884 x – 0.000477 x2. 
b. The estimated standard error for b1 is 0.461069 ( in std.error column) 
c. The value of the test statistic  for testing H0: B2 = 0 is  t = –3.8687. 

d. At significance level α = 0.05, for df = [10 – (2+1)] =7 we have tα/2 = 2.365. Therefore, we will 
reject H0: B2 = 0 if t < -2.365 or t >2.365. Since the observed value of t  = –3.8687 is less 

than   -2.365, we reject H0, that is, x
2 contributes information for the prediction of y. 

 
Below we include also a printout from SPSS for the Example 12.4. 

 

Coefficients 

Unstandardized 
Coefficients 

95% Confidence  
Interval for B 

 

 

Model 
B Std. Error 

 

 

t 

 

 

Sig. 
Lower 
Bound 

Upper 
Bound 

(Constant) -1303.383 415.210 -3.139 .016 -2285.196 -321.570 

X 2.498 .461 5.418 .001 1.408 3.588 

1 

 

 X2 -4.768E-04 .000 -3.869 .006 -.001 .000 

 
Figure  12.2  A part of  SPSS printout for Example 12.4 

 

12.6. Checking the utility of a model  
 
Conducting t-tests on each B parameter in a model is not a good way to determine whether a 

model  is contributing information for the prediction  of y. If we were to conduct a series of t-tests 
to determine whether the individual variables are contributing to the predictive relationship . it is 
very likely that we would make one or more errors  in deciding which terms to retain in the 
model  and which to exclude. 
To test the utility of a multiple regression  model, we will need a global test (one that 
encompasses all the B parameters). We would like to find some statistical quantity that 
measures how well the model fits the data.  
We begin with the easier problem – finding a measure  of how well a linear model  fits a set of 
data. For this we use the multiple regression equivalent of r2, the coefficient of determination for 
the straight line model  (Chapter 11). 
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Definition 12.1 

The multiple coefficient of determination R2 is defined as 

yySS

SSE
R −= 12  

where 
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iyy

n

i

ii yySSyySSE  

and iŷ  is the predicted value of yi for the multiple regression model.  

 
From the definition we see that R2 = 0 implies a complete lack of fit of the model to the data, , R2 
= 1 implies a perfect fit with the model passing through every data point. In general, the larger 
the value of R2, the better the model fits the data.  
R2 is a sample statistic that tells how well the model fits the data , and thereby represents a 
measure  of the utility of the entire model . It can be used to make inferences about the utility of 
the model for predicting y values for specific settings of the independent variables.  
  
 

TESTING THE OVERALL UTILITY OF THE MODEL 

E(y) = B0 + B1x1 + ... + Bkxk  

 
H0 : B1 = B2 = ...= Bk = 0 ( Null hypothesis: y doesn’t depend on any xi ) 

Ha : At least one Bi ≠ 0    ( Alternative hypothesis: y depends an at least one of the 
xi’s. 
Test statistic: 
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Errorfor  SquareMean 

Modelfor  SquareMean 
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==
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kSS

knR
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F   

Rejection region: F > Fα , where Fα is value that locate area α in the upper tail of 
the F-distribution with ν1 = k and ν2 = n - (k+1), 
n = Number of observations, k = Number of parameters in the model (excluding B0 ) 

R2 = Multiple coefficient of determination.  
 

 
Example 12.5  Refer to Example 12.4. Test to determine whether the model contributes 
information for the prediction of  the monthly power usage. 

Solution For the electrical usage example, n = 10, k = 2 and n – ( k+1) = 7. At the significance 

level α = 0.05 we will reject H0 : B1 = B2 = 0 if F > F0.05. where ν1 = 2 and ν2 = 7, or F > 4.74. 
From the computer printout ( see Figure 12.3 )  we find that the computed F is 190.638.  Since 

this value greatly exceeds 4.74 we reject H0 and conclude that at least one of the model  

coefficients B1 and B2  is nonzero. Therefore, this F test indicates that the second order model y 

= B0 + B1x + B2x
2 + e, is useful for predicting electrical usage. 
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Analysis of Variance for the Full Regression                   
----------------------------------------------------------------------------------------------------------------------- 
Source               Sum of Squares     DF    Mean Square      F-Ratio   P-value 
----------------------------------------------------------------------------------------------------------------------- 
Model                       831143.            2        415571.            190.638    0.0000 
Error                        15259.3             7        2179.89                        
----------------------------------------------------------------------------------------------------------------------- 
Total (Corr.)             846402.            9                                       
                                                                                 
R-squared = 0.981972                                          Stnd. error of est. = 46.6893 
R-squared (Adj. for d.f.) = 0.976821            Durbin-Watson statistic = 2.09356 

 

 

Figure 12.3  STATGRAPHICS Printout for Electrical Usage Example 
 
 

Example 12.6  Refer to Example 12.3. test the utility of the model E(y) = A + B1x1 + B2x2. 
 
Solution  From the SPSS Printout ( Figure 12.4) we see that the F value  is 11.356 and the 
corresponding observed significance level is 0.014. Thus, at the significance level greater than 
0.014 we reject the null hypothesis, and conclude that the linear model E(y) = A + B1x1 + B2x2 is 
useful for prediction of the grain yield. 
 
 

ANOVA 

Model 

 

Sum of 
Squares 

 

df Mean 
Square 

F Sig. 

1Regression

Residual

Total

2632048.15
3 

579455.347 

3211503.50
0 

2

5

7

1316024.07
6

115891.069

11.356 .014

 
Figure  12.4  SPSS Printout for Grain Yield Example 

 

12.7. Using the model for estimating and prediction 
 
After checking the utility of the linear model and finding it to be useful for prediction and 
estimation, we may decide use it for those purposes. Our methods for prediction and estimation 
using any general model are identical to those discussed in Section 11.7 for the simple straight-
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line model. We will use the model to form a confidence interval  for the mean E(y) for a given 

value x* of x, or a prediction interval for a future value of y for a specific x*. 
 
The procedure for forming a confidence interval for E(y) is shown in following box.   
 
 

A  (1-αααα)100% CONFIDENCE INTERVAL FOR  E(y) 

*1*

2/ )'()'(ˆ xXXxsty −± α  

where 
**

22

*

110
ˆ

kk xbxbxbby ++++= Λ  

( ) '1 **

2

*

1

*

kxxxx Λ=  is the given value  of x, 

s and (X’X)-1 are obtained from the least squares analysis, 

2/αt   is based on the number of degrees of freedom associated with s, namely, [n-

(k+1)]  
 

  
The procedure for forming a prediction  interval for y  for a given x* is shown in following 
box.   
 
 
 

A  (1-αααα)100% PREDICTION  INTERVAL FOR  y 

*1*

2/ )'()'(1ˆ xXXxsty −+± α  

where 
**

22

*

110
ˆ

kk xbxbxbby ++++= Λ  

( ) '1 **

2

*

1

*

kxxxx Λ=  is the given value  of x, 

s and (X’X)-1 are obtained from the least squares analysis, 

2/αt    is based on the number of degrees of freedom associated with s, namely, [n-

(k+1)]  
 

 

12.8 Multiple  linear regression: An overview example 

 In the previous sections we have presented the basic elements necessary to fit and use  a 
multiple linear  regression  model . In this section we will assemble these elements by applying 
them to an example. 

Example 12.7  Suppose a property appraiser wants to model the relationship between the sale 
price of a residential property in a mid-sized city and the following  three independent variables: 
(1) appraised land value  of the property, 
(2) appraised value  of improvements (i.e., home value ) 
(3) area of living space on the property (i.e., home size) 

Consider the linear model  
 y = B0 + B1x1 + B2x2 + B3x3 + e 
where 
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y = Sale price (dollars) 

x1 = Appraised land value ( dollars) 

x2 = Appraised improvements ( dollars) 

x3 = Area (square feet) 

In order to fit the model, the appraiser selected a random sample of n = 20 properties from the 
thousands of properties that were sold in a particular year. The resulting data are given in Table 
12.4. 
 
 

Table 12.4 Real Estate Appraisal Data  
 

Property 
# (Obs.) 

Sale price,  

y 

Land 

value,  x1  

Improvement

s value , x2 

Area,    

x3 

1 68900 5960 44967 1873 
2 48500 9000 27860 928 
3 55500 9500 31439 1126 
4 62000 10000 39592 1265 
5 116500 18000 72827 2214 
6 45000 8500 27317 912 
7 38000 8000 29856 899 
8 83000 23000 47752 1803 
9 59000 8100 39117 1204 

10 47500 9000 29349 1725 
11 40500 7300 40166 1080 
12 40000 8000 31679 1529 
13 97000 20000 58510 2455 
14 45500 8000 23454 1151 
15 40900 8000 20897 1173 
16 80000 10500 56248 1960 
17 56000 4000 20859 1344 
18 37000 4500 22610 988 
19 50000 3400 35948 1076 
20 22400 1500 5779 962 

 
Step 1  Hypothesize the form of the linear model  

y = B0 + B1x1 + B2x2 + B3x3 + e 

Step 2  Use the sample data to find least squares prediction equation. Using the formulas 
given in Section 12.3 we found 

321 53.13824.08145.028.1470ˆ xxxy +++= .  

This is the same result obtained by computer using STATGRAPHICS (see Figure 12.5)  

Step 3   Compute an estimator, s2, for the variance σσσσ2  of the random error e : 

)1(

2

+−
=

kn

SSE
s  

where 
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ii yySSE . 

STATGRAPHICS gives s = 7919.48 (see  Stnd. error of est. in Figure 12.6) 
 
Step 4 Check the utility of the model  
 
a) Does the model fits the data well?  
    For this purpose calculate the coefficient of determination   

yySS

SSE
R −= 12  

 You can see in the printout in Figure 12.6 that SSE = 1003491259 ( in column “Sum of Squares” 

and row “Error”) and SSyy = 9783168000 ( in  column “Sum of Squares” and row “Total”), and R2 
is R-squared =0.897427. This large value of R2 indicates that the model  provides a good fit to 
the  n = 20 sample data points. 
 
b) Usefulness of the model  

Test H0 : B1 = B2 = ...= Bk = 0 ( Null hypothesis) against Ha : At least one Bi ≠ 0      
 ( Alternative hypothesis). 
Test statistic: 
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F  

In the printout F= 46.6620, the observed significance level for this test is 0.0000 (under the 
column P-value ). This implies that we would reject the null hypothesis for any level, for example 
0.01. Thus, we have strong evidence to reject H0 and conclude that the model is useful for 
predicting the sale price of residential properties. 
  
 

                      Model fitting results for: ESTATE.Y                        

-------------------------------------------------------------------------------- 

Independent variable             coefficient  std. error     t-value   sig.level 

-------------------------------------------------------------------------------- 

CONSTANT                         1470.275919 5746.324583      0.2559      0.8013 

ESTATE.X1                            0.81449    0.512219      1.5901      0.1314 

ESTATE.X2                           0.820445    0.211185      3.8850      0.0013 

ESTATE.X3                           13.52865     6.58568      2.0543      0.0567 

-------------------------------------------------------------------------------- 

R-SQ. (ADJ.) = 0.8782  SE=    7919.482541  MAE=    5009.367657  DurbWat=  1.242  

Previously:    0.0000            0.000000             0.000000            0.000  

20 observations fitted, forecast(s) computed for 0 missing val. of dep. var.   

 

 

Figure 12.5   STATGRAPHICS Printout for Estate Appraisal Example  
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 Analysis of Variance for the Full Regression                   

 ------------------------------------------------------------------------------- 

 Source               Sum of Squares     DF    Mean Square      F-Ratio   P-value 

 -------------------------------------------------------------------------------- 

 Model                   8779676741.      3    2926558914.      46.6620    0.0000 

 Error                   1003491259.     16      62718204.                        

 -------------------------------------------------------------------------------- 

 (Total (Corr.)           9783168000.     19                                       

                                                                                 

 R-squared = 0.897427                               Stnd. error of est. = 7919.48 

 R-squared (Adj. for d.f.) = 0.878194           Durbin-Watson statistic = 1.24161 

 
 

Figure 12.6  STATGRAPHICS Printout for Estate Appraisal Example 

 
 
Step 5 Use the model for estimation and prediction  
 

(1) Construct a confidence interval for E(y) for particular values of the independent 

variables. 

Estimate the mean sale price, E(y), for a property with x1 = 15000, x2 = 50000 and    x3 =  1800, 
using 95% confidence interval. Substituting these particular values of  the independent variables 
into the least squares prediction equation yields the predicted value equal 79061.4. In the 
printout reproduced in Figure 12.7 the 95% confidence interval  for the sale price corresponding 
to the given (x1, x2, x3) is  (733379.3,  84743.6).  
 

Regression results for ESTATE.Y 

 

Observation   

  Number      

  
Observed  

    Values  

    

Fitted  

    Values  

  

Lower 95% 
CL  

for  means 

 

   

Upper 95% 
CL 

 for means 

 

1 68900 68556.7                               

2 48500 44212.9                               

3 55500 50235.2                               

4 62000 59212                               

5 116500 105834                               

6 45000 43143.7                               

7 38000 44643.6                               

8 83000 83773.6                               

9 59000 56449.5                               

10 47500 56216.8                               

11 40500 54981                               

12 40000 54662.4                               
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13 97000 98977.1                               

14 45500 42800.4                               

15 40900 41000.1                               

16 80000 82686.9                               

17 56000 40024.4                               

18 37000 37052                               

19 50000 48289.7                               

20 22400 20447.9                               

21             79061.4 73379.3 84743.6 

 

 

Figure 12.7  STATGRAPHICS Printout for estimated mean 
and corresponding confidence interval for x1 = 15000, x2 = 
50000 and    x3 =  1800 

 
(2) Construct a confidence interval for prediction y for particular values of the 

independent variables. 
For example, construct a 95% prediction interval for y with x1 = 15000, x2 = 50000 and    x3 =  
1800. 
The printout reproduced in Figure 12.8 shows that the prediction interval for y with the given x is 
(61333.4, 96789.4). 
 

We see that the prediction interval for a particular value of y is wider than the confidence interval  
for the mean value.  
 

Regression results for ESTATE.Y 

 

Observation   

  Number      

  
Observed  

    Values  

    

Fitted  

    Values  

  

Lower 95% CL  

for forecasts  

   

Upper 95% CL 

 for forecasts 

1 68900 68556.7                               

2 48500 44212.9                               

3 55500 50235.2                               

4 62000 59212                               

5 116500 105834                               

6 45000 43143.7                               

7 38000 44643.6                               

8 83000 83773.6                               

9 59000 56449.5                               

10 47500 56216.8                               

11 40500 54981                               

12 40000 54662.4                               
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13 97000 98977.1                               

14 45500 42800.4                               

15 40900 41000.1                               

16 80000 82686.9                               

17 56000 40024.4                               

18 37000 37052                               

19 50000 48289.7                               

20 22400 20447.9                               

21             79061.4 61333.4 96789.4 

 

 

Figure 12.8  STATGRAPHICS Printout for estimated mean and 
corresponding prediction  interval for x1 = 15000, x2 = 50000 and    
 x3 =  1800 

 

12.8. Model building: interaction models 
 
Suppose the relationship between the dependent variable y and the independent x1 and x2 is 

described by first-order linear model E(y) = B0 + B1x1 + B2 x2. When the values of one variable, 

say x2, are fixed then E(y) is a linear function of the other variable (x1):  

E(y) = (B0 +  B2 x2) + B1x1 . 

Therefore, the graph of E(y) against x1 is a set of parallel straight lines.  
For example, if  

E(y)=1 + 2x1 – x2 ,  

the  graphs of E(y) for x2 = 0, x2 = 2 and x2 = -3 are depicted in Figure 12.9. 
 
When this situation occurs ( as it always does for a first-order model), we say that the 
relationship  between E(y) and any one independent variable does not depend on the value  of 
the other independent variable(s)   in the model – that is, we say that the independent 
variables do not interact. 
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Figure 12.9  Graphs of E(y) = 1 + 2x1 – x2 versus x1 for fixed values of x2  
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However, if the relationship between E(y)  and x1 does, in fact, depend on the value of x2 held 

fixed, then the first-order model is not appropriate for predicting y. In this case we need another 
model  that will take into account this dependence. This model is illustrated in the next example 

 

Example 12.8  Suppose that the mean value E(y) of a response y is related to two quantitative 

variables x1  and x2  by the model  

 E(y) = 1 + 2x1 – x2 + x1x2. 

Graph the relationship  between  E(y) and x1 for x2 = 0, 2 and –3. Interpret the graph. 
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Figure 12.10  Graphs of E(y) = 1 + 2x1 – x2 + x1x2  
versus x1 for fixed values of x2 

 
Solution  For fixed values of x2, E(y) is linear functions of x1.  Graphs of the straight lines of E(y) 
for    
x2 = 0, 2 and –3 are depicted in Figure 12.10. Note that the slope of each line is represented by 
2+ x2 . The effect of adding a term involving the product x1x2 can be seen in the figure. In 

contrast to Figure 12.9, the lines relating E(y) to x1 are no longer parallel. The effect on E(y) of a 

change in x1 (i.e. the slope) now depends on the value of x2 . 

 When this situation occurs, we say that x1 and x2  interact.. The cross-product term, x1x2, is 
called an interaction term and the model  

E(y) = B0 + B1x1 + B2x2 + B3x1x2  

is called an interaction model with two independent variables.  
Below we suggest a practical procedure for building a interaction model. 
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Procedure to build a interaction model for the relationship between E(y) 

and two independent variables x1 and x2  

 
1. If from observations it is known that the rate of change of E(y) in x1 

depends on x2  and vice versa, then the interaction model  

E(y) = B0 + B1x1 + B2x2 + B3x1x2 
      is hypothesized. 
2. Fit the model to the data. 
3. Check if the model fits the data well. 
4. Test whether the model  is useful for predicting y i.e., test hypothesis H0 : 

B1 = B2 =  B3 = 0 ( Null hypothesis) against Ha : At least one Bi ≠ 0                
( Alternative hypothesis). 

5. If model is useful for predicting y (i.e. reject H0 ), test whether the 
interaction term contributes significantly to the model: 

               H0 :  B3 = 0 ( no interaction between  x1 and x2 ) 

               Ha :  B3 ≠ 0 (x1 and x2 interact) 
 
  

12.9. Model building: quadratic models 
 

A quadratic (second-order) model  in a single quantitative independent 
variable 

 
E(y) = B0 + B1x + B2x

2 

where  B0 = y-intercept of the curve 

           B1 = shift parameter  

           B2 = rate of curvature 
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Procedure to build a quadratic model for the relationship between E(y) 

and independent variables x 

 
1. State the hypothesized model  
      E(y) = B0 + B1x + B2x

2 

2. Fit the model to the data. 
3. Check if the model fits the data well. 
4. Test whether the model  is useful for predicting y i.e., test hypothesis H0 : 

B1 = B2 = = 0 ( Null hypothesis) against Ha : At least one Bi ≠ 0    ( 
Alternative hypothesis). 

5. If model is useful for predicting y (i.e. reject H0 ), test whether the second-
order  term contributes significantly to the model: 

               H0 :  B2 = 0  

               Ha :  B ≠ 0.  
 

 
 

12.11 Summary 
 
In this chapter we have discussed some of the methodology of multiple regression analysis, a 
technique for modeling a dependent variable y  as a function of several independent variables 

kxxx ,...,, 21 . The steps employed in a multiple regression analysis are much the same as those 

employed in a simple regression analysis: 

1. The form of the probabilistic model is hypothesized. 

2. The appropriate model assumptions are made. 

3. The model coefficients are estimated  using the method of least squares. 

4. The utility of the model is checked using the overall F-test and t-tests on individual B-
parameters. 

5. If the model is deemed useful and the assumptions are satisfied, it may be used to make 
estimates and to predict values of y to be observed in the future. 

 
 

12.12  Exercises 
 
1. Suppose you fit the first-order multiple regression  model  
 y = B0 + B1x1 + B2x2 + e 
to n = 20 data points and obtain the prediction equation  

21 92.01.34.6ˆ xxy ++=  

The estimated standard deviations of the sampling distributions of b1, b2 ( least squares 
estimators of B0, B1)  are 2.3 and 0.27, respectively. 

a) Test H0:   B1 = 0 against Ha: B1 >0. Use α = 0.05. 
b) Test H0:  B2 = 0 against Ha: B2 >0. Use α = 0.05. 
c) Find a 95% confidence interval for B1. Interpret the interval. 

d) Find a 99% confidence interval for B2. Interpret the interval. 
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Suppose you fit the first-order multiple regression  model  
 y = B0 + B1x1 + B2x2 + B3x3 + e 

 to n = 20 data points and obtain R2 = 0.2632. Test the null hypothesis H0: B1 = B2 =B3 =0               

against the alternative hypothesis that at least one of the B parameters in nonzero. Use  α = 
0.05. 
Plastics made under different environmental conditions are known to have differing strengths. A 
scientist would like to know which combination of temperature and  pressure yields a plastic with 
a high breaking strength. A small preliminary experiment was run at two pressure levels and two 
temperature levels. The following model is proposed: 
E(y) = B0 + B1x1 + B2x2 
where 
y = Breaking strength (pounds) 

x1 = Temperature ( 0F) 

x2 
 = Pressure ( pounds per square inch). 

A sample of n = 16 observations yield 

21 2.19.48.226ˆ xxy ++=  

      with sb1 = 1.11, sb2 = 0.27. 
    Do the data indicate that the pressure is important predictor of breaking strength?  
    Test using   α = 0.05. 
Suppose you fit the interaction model  
E(y) = B0 + B1x1 + B2x2 + B3x1x2 

in n = 32 data points and obtain the following results:  

SSyy = 479   SSE = 21 b3 = 10,  sb3 = 4. 
a) Find R2 and interpret its value. 
b) Is the model adequate for predicting y? Test at α = 0.05. 
c) Use a graph to explain the contribution for the x1x2 term to the model. 

d) Is there evidence that x1 and x2 interact? Test at α = 0.05. 
The researchers in the international rice research institute in the Philippines conducted a study 
on the Yield Response of Rice Variety IR661-1-170 to Nitrogen Fertilizer. They obtained the 
following data  
 
 

Pair Number Grain Yield, 

kg/ha, y 

Nitrogen Rate, 

kg/ha, x 

1 4878 0 

2 5506 30 

3 6083 60 

4 6291 90 

5 6361 120 

   
and suggested the quadratic model    

  E(y) = B0 + B1x + B2x
2 
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 The  portions of STATGRAPHICS printouts are shown below. 
a) Identify the least squares model fitted to the data. 
b) What are the values of SSE and s

2
 for the data? 

c) Perform a test of overall model adequacy. Use α = 0.05. 
d) Test whether the second-order  term contributes significantly to the model. Use α = 0.05. 
 

Model fitting results for: NITROGEN. y 

Independent variable              coefficient   std. error      t-value    sig.level 

CONSTANT                4861.457143 47.349987 102.6707 0.0001 

x              26.64619 1.869659 14.2519 0.0049 

x *x -0.117857 0.014941 -7.8884 0.0157 

R-SQ. (ADJ.) = 0.9935   SE=      50.312168  MAE=      25.440000  DurbWat=  3.426 

5 observations fitted, forecast(s) computed for 0 missing val. of dep. var. 

 
 

Analysis of Variance for the Full Regression 

Source              Sum of Squares    DF     Mean Square     F-Ratio    P-value 

Model              1564516 2 782258 309.032 0.0032 

Error              5062.63 2 2531.31                     

Total (Corr.)      1569579 4    

R-squared = 0.996775 Stnd. error of est. = 50.3122 
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Chapter 13  Nonparametric statistics 

 

CONTENTS 

 
13.1 Introduction 
13.2 The sign test for a single population 
13.3 Comparing two populations based on independent random samples: Wilcoxon rank sum test 
13.4 Comparing two populations based on matched pairs: the  Wilcoxon signed ranks test 
13.5 Comparing population using a completely randomized design:  The Kruskal-Wallis H test 
13.6 Rank Correlation: Spearman’s rs statistic  
13.7 Summary 
13.8  Exercises 
---------------------------------------------------------------------------------------------------------------- 

13.1. Introduction 
 

The majority of hypothesis tests ( t- and F-tests) discussed so far have made inferences about 
population parameters, such as the mean and the proportion. These parametric tests have used 
the parametric statistics of samples that came from the population being tested. To formulate 
these tests, we made restrictive assumptions  about the populations from which we drew our 
samples. In each case of Chapter 9, for example, we assumed that our samples either were 
large or came from normally distributed populations. But populations are not always normal. 
And even if a goodness-of-fit test indicates that a population is approximately normal, we can 
not always be certain we’re right, because the testis not 100 percent reliable.  Clearly, there are 
certain situations in which the use of the normal curve is not appropriate.   
 
An another case in which the t- and F-tests are inappropriate is when the data are not 
measurements but can be ranked in order of magnitude. For example, suppose we want to 
compare the ease of operation of two types of computer software based on subjective 
evaluations by trained observers. Although we can not give an exact value to the variable Ease 
of operation of the software package, we may be able to decide that package A is better than 

package B. If packages A and B are evaluated by each of ten observers, we have the standard 
problem of comparing the probability distributions for two populations of ratings – one for 
package A and one for package B. But the t-test of Chapter 9 would be inappropriate, because 
the only data  that can be recorded are preferences; that is, each observer decides either that A 

is better than B or vice versa. 
 

For the two types of the situations statisticians have developed useful techniques called 
nonparametric methods or nonparametric statistics. The nonparametric counterparts of the t- 
and F-tests compare the relative locations of the probability distributions of the sampled 
populations, rather than specific parameters of these populations (such as the means or 
variances). Many nonparametric methods use the relative ranks of the sample observations 
rather than their actual numerical values.      
A large number of nonparametric tests exist, but this chapter will examine only a few of the 
better known and more widely used ones. 
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13.2. The sign test for a single population 
  

Recall from Chapter 9 that small-sample procedures for testing a hypothesis about a population 
mean, require that the population have an approximately normal distribution. For situations in 
which we collect a small sample (n < 30) from a non-normal distribution, the t-testis not valid 
and we must resort to a nonparametric procedure. The simplest nonparametric technique to 
apply in this situation is the sign test. The sign test is specifically designed for testing 
hypotheses about the median of any continuous population. Like the mean, the median is a 
measure of the center, or location, of the distribution; therefore, the sign test is sometimes 
referred to as a test for location. 
 
The theoretical background of the sign test follows. 
Let x1, x2, ..., xn  be a random sample form a population with unknown median M. Suppose we 

want to test the null hypothesis H0: M = M0 against the one-side alternative Ha: M > M0. From 
Definition 3.2 we know that the median is a number such that half the area under the 
probability distribution lies to the left of M and half lies to the right. Therefore, the probability that 

a x-value selected from the population is larger than M is 0.5, i.e., P(xi > M) = 0.5. If, in fact, the 

null hypothesis is true, then we should expect to observe approximately half the sample x-value 

greater than M= M0. 

The sign test utilizes the test statistic S, where 

S = { number of values xi that exceed M0}. 

Notice that S depends only on the sign (positive or negative) of the difference xi - M0. That is, 

we simply count the number of positive (+) signs among the differences xi - M0.  If S is “too 

large” the we will reject H0 in favor of Ha: M > M0. 

The rejection region for the sign test is derived as follows.  Let each sample difference xi - M0 
denote the outcome of a single trial in an experiment consisting of n identical trials. If we call a 
positive difference a “Success” and a negative difference a “Failure”, then S is the number of 

successes in n trials. Under H0 the probability of observing a success on any one trial is 

p = P(Success) = P(xi - M0 > 0) = P(xi > M0) = 0.5 

Since the trials are independent, the properties of a binomial distribution, listed in Section 5.3, 
are satisfied. Therefore, S has a binomial distribution with parameters n and  p = 0.5. We can 
use this fact to calculate the observed significance level (p-value ) of the sign test.   
 
The procedure for the sign test is presented in the following box.  

SIGN TEST FOR A POPULATION MEDIAN 

ONE-TAILED TEST 

):

:

00

00

MMMMH

MMH

a <>

=

(or 
 

Test statistic: 
S =  Number of  sample 

observations greater than M0 

( or S =  Number of  sample 

observations less than M0 ) 
 

TWO-TAILED TEST 

0

00

:

:

MMH

MMH

a ≠

=
 

Test statistic: 

S = max ( S1, S2), 
where  S1 = Number of  sample 

observations greater than M0, 

S2 = Number of  sample 

observations less than M0 
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Observed significance level: 

p-value = P(S ≥ Sc)  

[ Note: By definition S2 = n – S1] 
Observed significance level: 

p-value =2 P(S ≥ Sc)  
 

where Sc is the computed value  of the test statistic  and S has a binomial 

distribution with parameters n and  p = 0.5. 

Rejection region: Reject H0 if α > p-value.  
 
 

Example 13.1  Suppose from a population the following sample is randomly selected: 
41  33  43   52   46   37   44   49   53   30. 
Do the data provide sufficient evidence to indicate that the median percentage of the population 
is greater than 40? Test using α = 0.05. 

Solution  We want to test  

H0:  M = 40 
Ha:  M > 40  
using the sign test. The test statistic is  
S = {Number of  sample observations greater than 40}  

ha s binomial distribution with n =10 and p = 0.5.  

The computed test statistic Sc = 7 and p-value = P(S ≥ 7) = 1 – P(S ≤ 6) = 1 – 0.828 = 0.172. 
Since p-value > α = 0.05, we can not reject the null hypothesis. That is, there is insufficient 
evidence to indicate the median percentage of the population exceeds 40. 
 
Recall from Section 5.8 that a normal distribution with the mean µ = np and the variance σ2 

=np(1-p) can be used to approximate the binomial distribution for large n. When p = 0.5, the 
normal approximation performs reasonably well even for n as small as 10 (see Figure 5.6 or 
Table 5.4). 
 Thus, for n ≥ 10 we can conduct the sign test using the familiar standard normal  z-statistic. 
    

 

 

 

SIGN TEST BASED ON A LARGE SAMPLE  )10≥n (  

ONE-TAILED TEST 

):

:

00

00

MMMMH

MMH

a <>

=

(or 
 

 

TWO-TAILED TEST 

0

00

:

:

MMH

MMH

a ≠

=
 

 
Test statistic: 

n

nS

n

nS

S

SES
z

5.0

5.0

)5.0)(5.0(

5.0

)(

)( −
=

−
=

−
=

σ
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S =  Number of  sample 

observations greater than M0 

( or S =  Number of  sample 

observations less than M0 ) 

 

S = max ( S1, S2), 

where  S1 = Number of  sample 

observations greater than M0, 

S2 = Number of  sample 

observations less than M0 

[ Note: By definition S2 = n – S1] 

Rejection region: 

)αα zzzz −<> (or   

Rejection region: 

   )2/2/ αα zzzz >−< (or    

where  αz  and  2/αz  are tabulated values given in any table of normal 

curve areas.  

 
 

Example 13.2  Refer to Example 13.1 using the sign test based on z-statistic.  
 
Solution  For this example the software STATGRAPHICS provides the following printout. 
 
 

Tests for Location                                

--------------------------------------------------------------------------- 

Data: 41 33 43  52 46 37 44 49 53 30                                            

                                                                                

Hypothesized median: 40                                                         

                                                                                

Test based on: Signs                                                            

                                                                                

Sample median = 43.5                                                            

Number of values above hypothesized median = 7                                  

Number of values below hypothesized median = 3                                  

Expected number = 5                                                             

Large sample test statistic Z = 0.948683                                        

Two-tailed probability of equaling or exceeding Z = 0.34278                     

                                                                                

NOTE:  10 observations.  0 values equal to hypothesized median ignored.  

   

 

 

Figure 13.1  STATGRAPHICS printout  for Example 13.2. 

 

From the printout we see that the computed statistic zc = 0.948683 and  34278.0)( =≥ czzP . 

Therefore  17139.0)( =≥ czzP , that is, p-value = 0.17139.   

Since p-value > α = 0.05, we can not reject the null hypothesis. That is, there is insufficient 
evidence to indicate the median percentage of the population exceeds 40. 
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13.3  Comparing two populations based on independent random   
        samples: Wilcoxon rank sum test 

 

In Chapter 9 we presented parametric tests (tests about population parameters) based on the z- 

and the t-statistics, to test for a difference between two population means. Recall that the mean 
of a population measures the location of the population distribution. Another measure of the 
location of the population distribution is the median M. Thus, if the data  provides sufficient 

evidence to indicate that M1 > M2, we imagine the distribution for the population 1 shifted to right 
of population 2. 
The equivalent nonparametric test is not a test about the difference between  population means. 
Rather, it is a test to detect whether distribution 1 is shifted to the right of distribution 2 or vice 
versa. The test based on independent random  samples of n1 and n2 observations from the 
respective populations, is known as the Wilcoxon rank sum test. 
To use the Wilcoxon rank sum test, we first rank all (n1 + n2 ) observations, assigning a rank of 1 
to the smallest, 2 to the second smallest, and so on.  Tied  observations (if they occur) are 
assigned ranks equal to the average of the ranks of the tied observations. For example, if the 
second and the third ranked observations were tied, each would be assigned the rank 2.5.  The 
sum of the ranks, called a rank sum, is then calculated for each sample. If the two distributions 
are identical, we would expect the same rank sums, designated as T1 and T2, to be nearly 

equal. In contrast, if one rank sum – say, T1 – is much larger than the other, T2, then the data  
suggest that the distribution for population 1 is shifted to the right of the distribution for 
population 2. The procedure for conducting a Wilcoxon rank sum test is summarized in the 
following box. 

 

 

WILCOXON RANK SUM TEST FOR A SHIFT IN POPULATION 
LOCATIONS: 

INDEPENDENT RANDOM SAMPLES  

ONE-TAILED TEST 

H0:  The sampled populations 
have  identical probability 
distributions  
Ha: The probability distribution for 
population 1 is shifted to the right 
of that for population 2 

TWO-TAILED TEST 

H0:  The sampled populations have              
identical probability distributions  
Ha: The probability distribution for 
population 1 is shifted either to the 
left or to the right of that for 
population 2 

Rank the n1 + n2 observations in the two samples from the smallest (rank 

1) to the largest ( rank n1 + n2 ). Calculate T1 and T2, the rank sums 
associated with sample  1 and sample  2, respectively. Then calculate 
the test statistic. 

Test statistic: 

     if or     if 122211 nnTnnT ≤<  

Test statistic: 

     if    ; if 122211 nnTnnT ≤≤ . We 

will denote this rank sum as T. 
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Rejection region: 

11 TTT U  if ≥  is test statistic; or  

22 TTT L  if ≤  is test statistic 

Rejection region: 

LU TTTT ≤≥ or   ,  

where TU and TL are obtained from Table 1 of Appendix D 

 
Example 13.3  Independent random samples were selected from two populations. The data are 
shown in Table 13.1. Is there sufficient evidence to indicate that  population 1 is shifted to the 
right of population 2. Test using α = 0.05. 
 
 
Table 13.1  Data for Example  13.3 

Sample from 
Population 1 

Sample from 
Population 2 

17 10 
14 15 
12 7 
16 6 
23 13 
18 11 
10 12 
8 9 

19 17 
22 14 

 
Solution  The ranks of the 20 observations from lowest to highest, are shown in Table 13.2. 
We test  
H0:  The sampled populations have  identical probability distributions  
Ha: The probability distribution for population 1 is shifted to the right of that for population 2 

The test statistic T2 =78. Examining Table 13.3 we find that the critical values, corresponding to    

n1 = n2 =10 are TL = 79 and TU = 131. Therefore, for one-tailed test at α = 0.025, we will reject 
H0      if T2 ≤ TL, i.e., reject H0    if T2 ≤ 79. Since the observed value of the test statistic, T2 =78 
<79 we reject H0 and conclude ( at α = 0.025) that the probability distribution for population 1 is 
shifted to the right of that for population 2. 
 
 
 
 
 
 

Table 13.2 Calculations of rank sums for Example 
13.3 

Sample from 
Population 1 

Sample from Population 
2 

Raw data Rank Raw data  Rank 
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17 15.5 10 5.5 

14 11.5 15 13 

12 8.5 7 2 

16 14 6 1 

23 20 13 10 

18 17 11 7 

10 5.5 12 8.5 

8 3 9 4 

19 18 17 15.5 

22 19 14 11.5 

 T1 = 132  T2 = 78 

 

 

Table 13.3   A  Partial Reproduction of Table 1 of Appendix D 

Critical values of  TL and TU for the Wilcoxon Rank Sum Test:         Independent 
samples 

a. Alpha = 0.025 one-tailed; alpha = 0.05 two-tailed 

 n1 

n2  

3 4 5 6 7 8 9 10 

  TL TU  TL TU  TL TU  TL TU  TL TU  TL TU  TL TU   TL TU  

3  5 16 6 18 6 21 7 23 7 26 8 28 8 31 9 33 

4  6 18 11 25 12 28 12 32 13 35 14 38 15 41 16 44 

5  6 21 12 28 18 37 19 41 20 45 21 49 22 53 24 56 

6  7 23 12 32 19 41 26 52 28 56 29 61 31 65 32 70 

7  7 26 13 35 20 45 28 56 37 68 39 73 41 78 43 83 

8  8 28 14 38 21 49 29 61 39 73 49 87 51 93 54 98 

9  8 31 15 41 22 53 31 65 41 78 51 93 63 108 66 114 

10  9 33 16 44 24 56 32 70 43 83 54 98 66 114 79 131 

 

 

Many nonparametric test statistics have sampling distributions that are approximately normal 
when  n1  and n2  are large. For these situations we can test hypotheses using the large-sample   

z-test. 
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WILCOXON RANK SUM TEST FOR LARGE SAMPLES ) and 1010(
21
≥≥ nn   

ONE-TAILED TEST 

H0:  The sampled populations have              
identical probability distributions  
Ha: The probability distribution for 
population 1 is shifted to the right of that 
for population 2 
( or population 1 is shifted to the left of 
population 2 ) 

TWO-TAILED TEST 

H0:  The sampled populations have              
identical probability distributions  
Ha: The probability distribution for 
population 1 is shifted either to the left or 
to the right of that for population 2 

Test statistic: 

12

)1(

2

)1(

2121

1121

1

++






 ++
−

=
nnnn

nnnn
T

z  

 

Rejection region: 

)αα zzzz −<> (or    

Rejection region: 

  2/2/ αα zzzz >−< or    

where αz   and 2/αz  are tabulated values given in Table 1 of  Appendix C 

 
 

Example 13.4  Refer to Example 13.3.  Using the above large-sample z-test check whether  
there is sufficient evidence to indicate that  population 1 is shifted to the right of population 2. 
Test using α = 0.05. 
 
Solution  We do this example with the help of computer using STATGRAPHICS.  The printout 
is given in Figure 13.2. 
 

Comparison of Two Samples                             

-----------------------------------------------------------------------

--------- 

Sample 1: 17 14 12 16 23 18 10 8 19 22                                          

                                                                                

Sample 2: 10 15 7 6 13 11 12 9 17 14                                            

                                                                                

Test: Unpaired                                                                  

                                                                                

Average rank of first group = 13.2 based on 10 values.                          

Average rank of second group = 7.8 based on 10 values.                          

Large sample test statistic Z = -2.00623                                        

Two-tailed probability of equaling or exceeding Z = 0.0448313                   

                                                                                

NOTE:  20 total observations.                              

 

 

Figure 13.2  STATGRAPHICS printout  for Example 13.4 
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From the printout we see that the computed test statistic zc = -2.00623 and the two-tailed 

probability  0448313.0)( =≥ cz|z|P . Therefore, 022415.0)( =≤ czzP . Hence, at significance 

level α < 0.023 we reject the null hypothesis and conclude that  the probability distribution for 
population 1 is shifted to the right of that for population 2 at this significance level.  
 

13.4. Comparing two populations based on matched pairs: 
        the Wilcoxon signed ranks test 
 
Recall from Chapter 9 that the analysis of matched-pairs data  is based on the differences within 
the matched pairs of observations. The Wilcoxon signed ranks test is a nonparametric test to 
detect shifts in locations for population probability distributions. The test is summarized in the 
box. 
 

WILCOXON SIGNED RANKS TEST:  MATCHED PAIRS 

ONE-TAILED TEST 

H0:  The sampled populations 
have              identical probability 
distributions  
Ha: The probability distribution for 
population 1 is shifted to the right 
of that for population 2 

TWO-TAILED TEST 

H0:  The sampled populations have              
identical probability distributions  
Ha: The probability distribution for 
population 1 is shifted either to the 
left or to the right of that for 
population 2 

Calculate the differences within each of the n matched pairs of 

observations. Then rank the absolute values of the n differences from 

smallest (rank 1) to the highest (rank n) and calculate the rank sum −T  of 

the negative differences and the rank  sum +T  of the positive 
differences.      

Test statistic: 

 −T , the rank sum  of the negative 
differences  

Test statistic: 

 )min( +−= , TTT  

Rejection region: 

0TT ≤−
 

Rejection region: 

0TT ≤  

where T0 is given in  Table 2 of Appendix D 

[Note: differences equal to 0 are eliminated and the number n of 
differences is reduced accordingly. Tied absolute differences receive 
ranks equal to the average of the ranks they would have received had 
they not been tied.]    
  
 
Example 13. 5  Suppose that a company wants to know the opinion of customers about the 
quality of its product before and after introducing a new technology. The company selects 
randomly  10 customers and each of them is given a sample of the product before (B) and after 
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(A) introducing the new technology. Each customer rates the quality of each product on a scale 
from 1 to 10. The results of the experiment are shown in Table 13. . Is there sufficient evidence 
to indicate that the product after introducing the new technology is rated higher than the one 
before new technology. 
Test using α = 0.05. 
 
 

Table 13.4   Product quality ratings 

Product Customer 

A B 

Difference 
( A – B ) 

Absolute 
value  

| A – B| 

Rank of  
| A – B| 

1 6 4 2 2 5 
2 8 5 3 3 7.5 
3 4 5 -1 1 2 
4 9 8 1 1 2 
5 4 1 3 3 7.5 
6 7 9 -2 2 5 
7 6 2 4 4 9 
8 5 3 2 2 5 
9 6 7 -1 1 2 
10 8 2 6 6 10 

T
+
 = Sum of positive ranks = 46 

T
-
 = Sum of negative ranks = 9 

 
 
Solution  We must test the hypotheses: 

H0: The sampled populations have  identical probability distributions  
Ha: The probability distribution for population 1 (A) is shifted to the right of that for population 2 

(B). 

We will use T-  as the test statistic and reject H0  if T
- ≤ T0 . 

For our example, the computed value T- = 9. Examining Table 13.5 in the column corresponding 

to a one-tailed test, the row corresponding to α = 0.05, and the column for n = 10, we read T0 = 

11. Since T- = 9 < 11 we reject H0 and conclude that there is sufficient evidence to indicate that 

the probability distribution of population A is shifted to the right of the probability distribution of 

population B, that is, after introducing the new technology the product is rated higher than 
before. 
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Table 13.5   A Partial Reproduction of Table 2 of Appendix D 

Critical values of T0 in the Wilcoxon Matched Pairs Signed Ranks Test 

α ONE-

TAILED 

α TWO-

TAILED n=5 n=6 n=7 n=8 n=9 n=10 

 0.05 0.1 1 2 4 6 8 11 

 0.025 0.05  1 2 4 6 8 

0.01 0.02   0 2 3 5 

0.005 0.01    0 2 3 

  n=11 n=12 n=13 n=14 n=15 n=16 

  0.1 14 17 21 26 30 36 

0.025 0.05 11 14 17 21 25 30 

0.01 0.02 7 10 13 16 20 24 

0.005 0.01 5 7 10 13 16 19 

  n=17 n=18 n=19 n=20 n=21 n=22 

  0.1 41 47 54 60 68 75 

0.025 0.05 35 40 46 52 59 66 

0.01 0.02 28 33 38 43 49 56 

0.005 0.01 23 28 32 37 43 49 

  n=23 n=24 n=25 n=26 n=27 n=28 

  0.1 83 92 101 110 120 130 

0.025 0.05 73 81 90 98 107 117 

0.01 0.02 62 69 77 85 93 102 

0.005 0.01 55 61 68 76 84 92 

 
 The Wilcoxon signed ranks test for large samples 
 

The Wilcoxon signed ranks test statistic has a sampling distribution that is approximately normal 
when the number n of pairs is large – say, n ≥ 25. This large sample nonparametric matched-
pairs test is summarized in the following box. 
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WILCOXON SIGNED RANK SUM TEST FOR LARGE SAMPLES ( n ≥≥≥≥ 25)  

ONE-TAILED TEST 

H0:  The sampled populations 
have              identical probability 
distributions  
Ha: The probability distribution for 
population 1 is shifted to the right 
of that for population 2 
( or population 1 is shifted to the 
left of population 2 ) 

TWO-TAILED TEST 

H0:  The sampled populations have              
identical probability distributions  
Ha: The probability distribution for 
population 1 is shifted either to the left 
or to the right of that for population 2 

Test statistic: 

[ ]
24/)]12(10([

4/)1(

++

+−
=

+

nnn

nnT
z  

Rejection region: 

 )αα zzzz −<> (or    

Rejection region: 

 2/2/ αα zzzz >−< or    

where αz   and 2/αz  are tabulated values given in any table of normal curve 

areas. 

( See Table 1 of Appendix C ) 
 
Example 13.6  Suppose from  each of two populations we select a sample. They are 30  
matched pairs 
 
Sample 
1 

4  5  6  4  7  8  6  9  7  4  10  7  6  8  5  4  6  7  9  7  4  6  7   9  6 10  9  
7  8  5 

Sample 
2 

5  6  7  8  5  9  6  8  3  7  5    7  5  8  9  4  6  8  4  6  7  9 10  6  8   5  7  
8  9  6 

 
Use the Wilcoxon signed ranks test to check whether the probability distributions of the 
populations are identical. 
 
Solution  For this example using STATGRAPHICS we obtain the following printout. 
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Comparison of Two Samples                             

-------------------------------------------------------------------------- 

Sample 1: 4 5 6 4 7 8 6 9 7 4 10 7 6 8 5 4 6 7 9 7 4 6 7 9 6 10 9 7 8 5         

                                                                                

Sample 2: 5 6 7 8 5 9 6 8 3 7 5 7 5 8 9 4 6 8 4 6 7 9 10 6 8 5 7 8 9 6          

                                                                                

Test: Ranks                                                                     

                                                                                

Number of positive differences = 10 with average rank = 15.4                    

Number of negative differences = 15 with average rank = 11.4                    

Large sample test statistic Z = 0.242162                                        

Two-tailed probability of equaling or exceeding Z = 0.80865                    

                                                                                

NOTE:  30 total pairs.  5 tied pairs ignored.                            

 

 

Figure 13.3  STATGRAPHICS printout  for Example 13.6 

 From the printout we see that p-value for two-tailed test is 0.80865. This is not small. Therefore, 
we can not reject the hypothesis that the probability distributions of the populations are identical. 
 
 

 13.5. Comparing population using a completely randomized design:  
The Kruskal-Wallis H test 

 

In Chapter 10 we compare the means of k populations based on data  collected according to a 

completely randomized design. The analysis of variance F-test, used to test the null hypothesis 
of equality of means, is based on the assumption that the populations are normally distributed 
with common variance σ2. 
The Kruskal-Wallis H-test is the nonparametric equivalent of the analysis  of variance  F-test. It 

tests the null hypothesis that all k populations possess the same probability distribution against 
the alternative hypothesis that the distributions differ in location – that is, one or more of the 
distributions are shifted to the right or left of each other. the advantage of the Kruskal-Wallis H-
test is that we need make no assumptions about the nature of the sampled populations. 
A completely randomized design specifies that we select independent random  samples of n1, 

n2, ..., nk observations form the k populations. To conduct the test, we first rank  all n = n1+ n2+ 

...+ nk observations and compute the rank  sums, R1, R2, ..., Rk for the k samples. The ranks of 
tied observations are averaged in the same manner as for the Wilcoxon rank sum test. Then, if 
H0 is true, and if the sample  sizes, n1, n2, ..., nk, each equal 5 or more, then the test statistic  

)1(3
)1(

12

1

2

+−
+

= ∑
=

n
n

R

nn
H

k

i

i   

will have a sampling distribution that can be approximated by a chi-square distribution with (k – 

1) degrees of freedom. Large values of H imply rejection of H0. Therefore, the rejection  region 

for the test is 2

αχ>H  where 2

αχ  is the value that locates α  in the upper tail of the chi-square 

distribution. 
The test is summarized in the following  box. 
 

KRUSKAL-WALLIS H- TEST FOR COMPARING k POPULATION PROBABILITY 
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DISTRIBUTIONS 

H0:  The k population probability distributions are identical 
Ha:  At least two of the k population probability distributions differ in location 
Test statistic:  

)1(3
)1(

12

1

2

+−
+

= ∑
=

n
n

R

nn
H

k

i

i  

where 
ni = Number of observations in sample i 

Ri = Rank sum of sample i, where the rank of each observation is computed 

according to its relative magnitude in the totality of data  for the k samples 

 n = n1+ n2+ ...+ nk 
Rejection region: 

2

αχ>H    with df = k –1 

Assumptions:   

1. The k samples are random  and independent 

2. ni ≥ 5 for each i 
3. The observations can be ranked. 

 No assumptions have to be made about the shape of the population probability 
distribution.  
 

 
 
 
Example 13.7 Independent random samples of three different brands of magnetron tubes were 
subjected to stress testing, and the number of hours each operated without repair was recorded. 
Although these times do not represent typical lifetimes, they do indicate how well the tubes can 
withstand extreme stress.. The data are shown in the table. Experience  has shown that the 
distributions of lifetimes for manufactured  products are usually non-normal.  
 

A B C 

36 49 71 
48 33 31 
5 60 140 

67 2 59 
53 55 42 

 
Use the Kruskal-Wallis H-test to determine whether evidence exists to conclude that the brands 

of magnetron tubes tend to differ in length of life under stress. Test using α = 0.05. 
Solution  The first step in performing the Kruskal-Wallis H-test is to rank the n = 15 
observations in the complete data  set. The ranks and rank sums for three samples are shown 
in Table 13.6 
 
 
  
 



 ccxxxvi 

 
Table 13.6  Ranks and Rank Sums for Example 13.7 

A RANK  B RANK C RANK 

36 5 49 8 71 14 
48 7 33 4 31 3 
5 2 60 12 140 15 

67 13 2 1 59 11 
53 9 55 10 42 6 

 R1 =36  R2 

=35 
 R3 

=49 
      

 
We want to test the null hypothesis 
H0: The population probability distributions lifetimes under stress are identical for three brands 
of magnetron tubes 
against the alternative hypothesis 
Ha : At least two of the population probability distributions differ in location using the test statistic  

22.1)16(3
5

)49(

5

)35(

5
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The rejection region for the H-test is 2

αχ>H   with df = k –1 = 3 –1 = 2. For α = 0.05 and df = 2,     

99147.52 =αχ . Since the computed value of H =1.22  is less than 5.99147 we can not reject H0. 

There is insufficient evidence to indicate a difference  in location among the distributions of 
lifetimes for the three brands of magnetron tubes.     
 
For this example the STATGRAPHICS printout is given in Figure 13.3. In the printout we see 
that Test statistic = 1.22,   Significance level  = 0.543351. Therefore, at significance level α = 
0.05 we can not reject the hypothesis H0. 
 
 

 

Kruskal-Wallis analysis of LIFELEN. lengths by LIFELEN. brand           

-------------------------------------------------------------------- 

Level           Sample Size     Average Rank                                    

-------------------------------------------------------------------- 

A                     5            7.20000                                      

B                     5            7.00000                                      

C                     5            9.80000                                      

-------------------------------------------------------------------- 

Test statistic = 1.22  Significance level  = 0.543351             

 

 
 

 

Figure 13.4  STATGRAPHICS printout  for Example 13.7 
 
 

13.6. Rank Correlation: Spearman’s rs statistic  
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Several different nonparametric statistics have been developed to measure and to test for 
correlation between two random  variables. One of these statistics is the Spearman’s rank 
correlation coefficient rs. 
The first step in finding rs is to rank the values of each of the variables separately; ties are 
treated  by averaging  the tied ranks. Then rs is computed in exactly the same way as the simple 

correlation coefficient r. The only difference is that the values of x and y that appear in the 
formula for rs denote the ranks of the raw data rather than the raw data  themselves. 
 

Formulas for computing  Spearman’s rank correlation coefficient 

 
Rank the values for each of the variables  and let x and y denote the ranks of a pair 
of observations. Then 
 

yyxx

xy

s
SSSS

SS
r =  

where 

∑∑∑ −−=−=−= ))((,)(,)( 22 yyxxSSyySSxxSS xyyyxx  

When there are no ties, the formula for rs, reduces to 

)1(

6
1

2

2

−
−= ∑

nn

d
rs  

where d is the difference between  the values of x and y corresponding to a pair of 
observations. This simple formula will provide a good approximation to rs when the 
number of ties in the ranks is small. 
 

  
 
The nonparametric test of hypothesis for rank correlation is shown in the box. 
 

Spearman’s Nonparametric Test for Rank Correlation 

ONE-TAILED TEST 

H0: There is no correlation 
between the ranked pairs 
Ha: Ranked pairs are positively 
correlated 
(or Ranked pairs are negatively 
correlated ) 

TWO-TAILED TEST 

H0: There is no correlation between 
the ranked pairs 
Ha: Ranked pairs are correlated 

Test statistic: rs 

 
Test statistic: rs 

 

Rejection region: 

rs ≥ r0 ( or rs ≤ -r0 ) 

Rejection region: 

rs ≥ r0  or  rs ≤ -r0  
where  the value of r0  is given in Table 3 of Appendix D 
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Example 13.8  A large manufacturing firm wants to determine  whether  a relationship exists 
between the number of works-hours an employee misses per year and the employee’s annual 
wages ( in thousands of dollars ). A sample  of 15 employees produced the data  shown in 
Table 13.7.  

 

Table 13.7  Data for Example 13.8 

EMPLOYEE HOURS WAGES 

1 49 15.8 

2 36 17.5 

3 127 11.3 

4 91 13.2 

5 72 13.0 

6 34 14.5 

7 155 11.8 

8 11 20.2 

9 191 10.8 

10 6 18.8 

11 63 13.8 

12 79 12.7 

13 43 15.1 

14 57 24.2 

15 82 13.9 

 
a) Calculate Spearman’s rank correlation  coefficient  as a measure of the strength of the 

relationship  between work-hours missed and annual wages. 
b) Is there sufficient evidence to indicate that work-hours missed decrease as annual wages 

increases , i.e., that work-hours missed and annual wages are negatively correlated? Test 
using α = 0.01. 

 
Solution  
a) First we rank the values of work-hours missed and rank the values of  the annual salaries. 

Let these rankings are  xi  and yi, respectively, and they are shown in Table 13.8.  The next 
step is  

 
 

Table 13.8  Calculations for Example 13.8  

EMPLOYEE HOURS RANK WAGES RANK di di
2 

1 49 6 15.8 11 -5 25 

2 36 4 17.5 12 -8 64 
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3 127 13 11.3 2 11 121 

4 91 12 13.2 6 6 36 

5 72 9 13.0 5 4 16 

6 34 3 14.5 9 -6 36 

7 155 14 11.8 3 11 121 

8 11 2 20.2 14 -12 144 

9 191 15 10.8 1 14 196 

10 6 1 18.8 13 -12 144 

11 63 8 13.8 7 1 1 

12 79 10 12.7 4 6 36 

13 43 5 15.1 10 -5 25 

14 57 7 24.2 15 -8 64 

15 82 11 13.9 8 3 9 

     ∑di
2=1038 

 

 
b) To calculate the differences di = xi – yi  ( i = 1, 2, ..., 15 ). These differences di and their 

squares are shown in the table. Since there are no ties, we calculate rs by the formula 
 

      854.0
)224(15

)1038(6
1

)1(

6
1

2

2

−=−=
−

−= ∑
nn

d
rs  

This large negative value  of rs implies that a negative correlation  exists between  work-
hours missed and annual wages in the sample  of 15 employees. 

c) To test H0: No correlation exists between work-hours missed and annual wages in the 

population against H1: Work-hours missed and annual wages are negatively correlated, we 
use rs as the test statistic  and obtain the critical value r0  from Table  
This table gives the critical values of r0 for an upper-tailed test, i.e., a test to detect a positive 
rank correlation. For our example, α = 0.01, n =15, the critical value is r0 = 0.623. Therefore, 
we reject the null hypothesis in favor of the alternative hypothesis if the computed rs statistic 
is less or equal –0.623.  Since our computed rs = -0.854 < -0.623, we reject H0 and conclude 
that there is ample evidence to indicate that work-hours missed decrease as annual wages 
increases. 
 

Below we reproduce the STATGRAPHICS printout for our example. In this printout we see that 
the rank correlation coefficient between the variable HOURS (work-hours missed ) and the 
variable WAGES (annual wages) is –0.8536 and the significance level is 0.0014. Since the 
observed significance level is very small, it is naturally to reject the null hypothesis. 
 
 

Spearman Rank Correlations                               

------------------------------------------------------------------------- 

                    HOURS      WAGES                                            
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HOURS              1.0000    -0.8536                                            

                  (   15)    (   15)                                            

                   1.0000     0.0014                                            

                                                                                

WAGES             -0.8536     1.0000                                            

                  (   15)    (   15)                                            

                   0.0014     1.0000                                            

                                                                                

-------------------------------------------------------------------------              

Coefficient  (sample size)  significance level                     

 

 

 

Figure 13.4  STATGRAPHICS printout  for Example 13.8 

13.7 Summary 
 
We have presented several useful nonparametric techniques for testing the location of a single 
population, or for comparing two or more populations. Nonparametric techniques are useful 
when the underlying assumptions for their parametric counterparts are not justified or when it is 
impossible to assign specific values to the observations.  Nonparametric methods provide more 
general comparisons of populations than parametric methods, because they compare the 
probability distributions of the populations rather than specific parameters. 
Rank sums are the primary tools of nonparametric statistics. The Wincoxon rank sum test can 
be used to compare two populations based on independent random samples, and Wincoxon 
signed ranks test  can be used for a matched-pairs experiment. The Kruskal-Wallis H-test is 

applied when comparing k populations using a completely randomized design. 
 

13.8  Exercises 
 
1. Suppose you want to use the sign test to test the null hypothesis that the population median 

equals 75, i.e., H0: M = 75. Use the table of binomial probabilities to find the observed 

significance level (p-value ) of the test for each of the following situations: 

a) Ha: M > 75, n = 5, S = 2 

b) Ha: 75≠M , n = 15, S = 9 

c) Ha: M < 75, n = 10, S = 7 
 

2. A random sample  of 8 observations from a continuous population resulted in the following: 

17   16.5   20  18.2   19.6   14.9   21.1   19.4    

Is there sufficient evidence to indicate that the population median differs from 20? test using     
α = 0.05. 

3. Independent random variables were selected from two populations. The data are shown in 
the table 

 
Sample from  

population 1 
15 16 13 14 12 17   

Sample from  

population 2 
6 13 8 9 7 5 4 10 
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a) Use the Wilcoxon rank sum test to determine whether  the data  provide sufficient 
evidence  
to indicate a shift in the locations of the probability distributions of the sampled 
populations. Test using α = 0.05. 
b) Do the data  provide sufficient evidence to indicate that the probability distribution for 
population 1 is shifted to the right of the probability distribution for population 2? Use the 
Wilcoxon rank sum test with α = 0.05. 

4. The following  data show employee’ rates of defective work before and after a change in 
wage incentive plan. Compare the two sets of data to see if the change lowered the 
defective units produced (Use the Wilcoxon signed rank test for a matched pairs design with 
α = 0.01) 

 

Before 8 7 6 9 7 10 8 6 5 8 10 8 

After 6 5 8 6 9 8 10 7 5 6 9 5 

5. The following table shows sample  retail prices for three brands of shoes. Use the Kruskal-
Wallis test to determine if there is any difference among the retail prices of the brands 
throughout the country. Use 0.05 level of significance. 

 
Brand 
A 

$89 90 92 81 76 88 85 95 97 86 100 

Brand 
B 

$78 93 81 87 89 71 90 96 82 85  

Brand 
C 

$80 88 86 85 79 80 84 85 90 92  

 
6. A random sample of seven pairs of observations are recorded on two variables, X and  Y. 

The data are shown in the table. use Spearman’s nonparametric  test for rank correlation  to 
answer the following : 
a) Do the data provide sufficient evidence to conclude that the rank  correlation  between  X 

and Y is greater than 0? Test using α = 0.05. 
b) Do the data provide sufficient evidence to conclude that the rank  correlation  between  X 

and Y is not  0? Test using α = 0.05. 
 
X 65 57 55 38 29 43 49 

Y 58 61 58 23 34 38 37 

 
7. Below are ratings of aggressiveness (X) and amount of sales in the last year (Y) for eight 

salespeople. Is there a significant rank correlation between the two measures? Use the 0.05 
significance level. 

 
X 30 17 35 28 42 25 19 29 

Y 35 31 43 46 50 32 33 42 
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Table 1 

  

 

 
 

       

Appendix C          

Normal Curve 
Areas    

 
     

           

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549

0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

0             z  
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Table 2        

Appendix C Critical Values for Student's t 

1 3.078 6.314 12.706 31.821 63.657 318.310 636.620 

2 1.886 2.920 4.303 6.965 9.925 22.326 31.598 

3 1.638 2.353 3.182 4.541 5.841 10.213 12.924 

4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 

5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 

7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 

8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 

9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 

12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 

13 1.350 1.771 2.160 2.650 3.102 3.852 4.221 

14 1.345 1.760 2.145 2.624 2.977 3.787 4.140 

15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 

17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 

18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 

19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 

20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 

21 1.323 1.721 2.080 2.528 2.831 3.527 3.819 

22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 

23 1.319 1.714 2.069 2.500 2.807 3.485 3.767 

24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 

25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 

27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 

28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 

29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 

30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 

60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 

∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291 
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Table 1 Critical values of  TL and TU for the Wincoxon Rank Sum Test: Independent 
samples 
a. Alpha = 0.025 one-tailed; alpha = 0.05 two-tailed     

  n1 

n2   

3 4 5 6 7 8 9 10 

 TL TU  TL TU  TL TU  TL TU  TL TU  TL TU  TL TU    TU  

3 5 16 6 18 6 21 7 23 7 26 8 28 8 31 9 33 

4 6 18 11 25 12 28 12 32 13 35 14 38 15 41 16 44 

5 6 21 12 28 18 37 19 41 20 45 21 49 22 53 24 56 

6 7 23 12 32 19 41 26 52 28 56 29 61 31 65 32 70 

7 7 26 13 35 20 45 28 56 37 68 39 73 41 78 43 83 

8 8 28 14 38 21 49 29 61 39 73 49 87 51 93 54 98 

9 8 31 15 41 22 53 31 65 41 78 51 93 63 108 66 114 

10 9 33 16 44 24 56 32 70 43 83 54 98 66 114 79 131 

                   

a. Alpha = 0.05 one-tailed; alpha = 0.10 two-tailed     

  n1 

n2   

3 4 5 6 7 8 9 10 

 TL TU  TL TU  TL TU  TL TU  TL TU  TL TU  TL TU  TL TU  

3 6 15 7 17 7 20 8 22 9 24 9 27 10 29 11 31 

4 7 17 12 24 13 27 14 30 15 33 16 36 17 39 18 42 

5 7 20 13 27 19 36 20 40 22 43 24 46 25 50 26 54 

6 8 22 14 30 20 40 28 50 30 54 32 58 33 63 35 67 

7 9 24 15 33 22 43 30 54 39 66 41 71 43 76 46 80 

8 9 27 16 36 24 46 32 58 41 71 52 84 54 90 57 95 

9 10 29 17 39 25 50 33 63 43 76 54 90 66 105 69 111 

10 11 31 18 42 26 54 35 67 46 80 57 95 69 111 83 127 
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Table 2   Critical values of T0 in the Wincoxon Matched Pairs 
Signed Ranks Test 

 

Alpha Alpha  

ONE-TAILED TWO-TAILED n=5 n=6 n=7 n=8 n=9 n=10  

0.05 0.1 1 2 4 6 8 11  

0.025 0.05   1 2 4 6 8  

0.01 0.02     0 2 3 5  

0.005 0.01       0 2 3  

    n=11 n=12 n=13 n=14 n=15 n=16  

  0.1 14 17 21 26 30 36  

0.025 0.05 11 14 17 21 25 30  

0.01 0.02 7 10 13 16 20 24  

0.005 0.01 5 7 10 13 16 19  

    n=17 n=18 n=19 n=20 n=21 n=22  

  0.1 41 47 54 60 68 75  

0.025 0.05 35 40 46 52 59 66  

0.01 0.02 28 33 38 43 49 56  

0.005 0.01 23 28 32 37 43 49  

    n=23 n=24 n=25 n=26 n=27 n=28  

  0.1 83 92 101 110 120 130  

0.025 0.05 73 81 90 98 107 117  

0.01 0.02 62 69 77 85 93 102  

0.005 0.01 55 61 68 76 84 92  

    n=29 n=30 n=31 n=32 n=33 n=34  

  0.1 141 152 163 175 188 201  

0.025 0.05 127 137 148 159 171 183  

0.01 0.02 111 120 130 141 151 162  

0.005 0.01 100 109 118 128 138 149  

    n=35 n=36 n=37 n=38 n=39    

  0.1 214 228 242 256 271    

0.025 0.05 195 208 222 235 250    

0.01 0.02 174 186 198 211 224    

0.005 0.01 160 171 183 195 208    

    n=40 n=41 n=42 n=43 n=44 n=45  

  0.1 287 303 319 336 353 371  

0.025 0.05 264 279 295 311 327 344  

0.01 0.02 238 252 267 281 297 313  

0.005 0.01 221 234 248 262 277 292  

    n=46 n=47 n=48 n=49 n=50    

  0.1 389 408 427 446 466    

0.025 0.05 361 379 397 415 434    

0.01 0.02 329 345 362 380 398    

0.005 0.01 307 323 339 365 373    
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Table 3 Critical values of Spearman's  Rank Correlation 
Coefficient 

The alpha-values correspond to a one-tailed test of Null 
hypothesis. The value should be doubled for two-tailed tests 

n alpha=0.05 alpha=0.025 alpha=0.01 alpha=0.005 

5 0.900    

6 0.829 0.886 0.943  

7 0.714 0.786 0.893  

8 0.643 0.738 0.833 0.881 

9 0.600 0.683 0.783 0.833 

10 0.564 0.648 0.745 0.794 

11 0.523 0.623 0.736 0.818 

12 0.497 0.591 0.703 0.780 

13 0.475 0.566 0.673 0.745 

14 0.457 0.545 0.646 0.716 

15 0.441 0.525 0.623 0.689 

16 0.425 0.507 0.601 0.666 

17 0.412 0.490 0.582 0.645 

18 0.399 0.476 0.564 0.625 

19 0.388 0.462 0.549 0.608 

20 0.377 0.450 0.534 0.591 

21 0.368 0.438 0.521 0.576 

22 0.359 0.428 0.508 0.562 

23 0.351 0.418 0.496 0.549 

24 0.343 0.409 0.485 0.537 

25 0.336 0.400 0.475 0.526 

26 0.329 0.392 0.465 0.515 

27 0.323 0.385 0.456 0.505 

28 0.317 0.377 0.448 0.496 

29 0.311 0.370 0.440 0.487 

30 0.305 0.364 0.432 0.478 

 



 ccxlix 

Index 
 

A 
Additive rule of probabilities, 4.6 

Alternative hypothesis, 8.2 

Analysis of variance, 10.4  

 completely randomized design, 10.6 

 one-way, 10.6 

 randomized block design, 10.7 

Arithmetic mean, 3.3 

Axiomatic construction of the theory of probability, 4.4 

 

B 
Bar graph, 2.4 

Bayes’s  formula, 4.6 

Bernoulli process, 5.4 

Biased estimator, 10.7 

Bimodal distribution, 3.3 

Binomial probability distribution, 5.4 

 normal approximation to, 5.8 

Bivariate relationships, 11.1 

Box plot, 3.7 

 

C 
Categorical data, 10.1  

Central limit theorem, 6.4 

Central tendency, 3.3 

Chebyshev’s theorem, 3.4 

Chi-square distribution, 7.9, 9.6 

Chi-square test, 10.1, 10.2 

Class 

 frequency, 2.5, 2.6 

 interval, 2.6 

 relative frequency , 2.6 

 



 ccl 

Classical definition of probability, 4.4 

Coefficient of correlation, 11.6  

Coefficient of determination, 11.6, 12.6  

Coefficient of  multiple determination, 12.6  

Coefficient of variation, 3.4 

Conditional probability, 4.5 

Confidence interval, 7.2  

Contingency table, 10.2 

Continuous data, 2.6  

Continuous probability distribution, 5.6 

Continuous random variable, 5.1, 5.6 

Correlation analysis, 11.6  

Cummulative frequency distribution, 2.7 

 

 

 

D 
Data 

 grouped, 3.1, 3.8  

 qualitative, 2.3, 2.4 

 quantitative, 2.5, 2.6 

 raw, 3.8 

Degree of freedom, 7.3 

Dependent variable, 11.1 

Descriptive statistics, 1.3 

Direct relationship, 11.1  

Discrete data, 2.6  

Discrete probability distribution, 5.2 

Discrete random variable 5.1, 5.2, 5.3 

Dispersion, 3.2, 3.4 

Distribution 

 bimodal, 3.3 

 binomial, 5.4 

 chi-square, 7.9 

 frequency, 2.6  
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 normal, 5.8 

 Poisson,  5.5 

 probability, 5.2 – 5.8 

 sampling, 6.1, 6.3 

 standard normal probability, 5.8 

 Student’s, 7.3 

E 
Empirical Rule, 3.4 

Error 

 of Type I,  8.3 

 of Type II,  8.3 

Estimator 

 error variance, least squares line, 11.4 

  error variance, multiple regression, 12.4  

Events, 4.1 

 certain, 4.3 

complementary, 4.3 

 equally likely, 4.4 

 impossible, 4.3 

 independent, 4.3 

 simple, 4.3, 4.4 

 mutually exclusive, 4.3 

 non-mutually exclusive, 4.3  

Expected value, 5.3, 5.7  

Experiment, 4.1 

Exponential random variable, 5.9 

 

F 
F probability distribution, 9.7, 10.6 

F statistic, 9.7  

Factor level 

Frequency distribution, 2.6, 2.7 

Frequency polygon,2.7 
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G 
General linear model, 12.1  

Geometric mean, 3.3 

Goodness-of-fit test, 10.2 

 

H 
Highly suspect outlier, 2.7 

Histogram, 2.7 

Hypothesis 

 alternative, 8.2 

 null, 8.2 

 one-tailed, 8.2 

 two-tailed, 8.2 

Hypothesis testing, 8.1 

 

I 
Independence, 4.5 

Independent events, 4.5 

Independent variables, 11.1  

Inferential statistics, 1.3  

Inner fences, 3.7 

Interaction model, 12.8  

Intersection of events, 4.1 

Interquartile range, 3.5 

Inverse relationship, 11.1  

 

 

K 

Kruskal-Wallis test, 13.5 

Kurtosis, 3.6 

 

L 
Least squares 

estimates, 11.3 

line, 11.3 
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matrix equation,12.3  

method of, 11.3, 12.3 

prediction  equation, 11.3, 12.3   

Level of significance, 8.3 

Linear relationship, 11.6  

Linear regression model, 11.2, 12.2  

Lower quartile, 3.5 

 
M 
Matched pairs, 7.6  

Mean, 3.3 

Median, 3.3 

Measure of central tendency, 3.3 

Measure of dispersion, 3.4 

Measure of location, 3.3 

Method of least squares, 11.3, 12.3  

Midquartile, 3.5 

Mode, 3.3 

Model 

first-order, 12.1 

probabilistic, 11.2, 12.2 

quadratic, 12.9 

second-order, 12.1 

Model building, 12.8, 12.9 

Multiple coefficient of determination, 12.6  

Multiple regression analysis, 12.1  

Multiplication rule for probability, 4.6 

Mutually exclusive events, 4.3 

 

N 
Nonparametric methods, 13.1-13.7 

Kruskal-Wallis test, 13.5 

Sign test for a population median, 13.2 

Spearman’s rank correlation coefficient, 13.6 

Wilcoxon rank sum test, 13.3 
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Wilcoxon signed ranks test, 13.4 

Nonparametric statistics, 13.1-13.7 

Normal probability distribution, 5.8 

Null hypothesis, 8.2 

Numerical descriptive measures, 3.2, 5.3 

 

O 
Objective of statistics, 1.1 

Ogive, 2.7, 2.8 

One-tailed test, 8.2 

Outer fences, 3.7 

Outlier, 3.7  

 

P 
Parameters, 3.2 

Percentage relative, 2.6 

Pie chart, 2.4 

Point estimate, 7.1 

Poisson random variable, 5.5 

Poisson probability distribution, 5.5 

Population, 1.2 

Prediction equation, 11.3, 12.3  

Prediction interval (regression ), 11.7, 12.7  

multiple, 12.7 

single, 11.7 

Probabilistic model, 11.2, 12.2  

Probability 

axiomatic definition, 4.4  

classical definition, 4.4 

conditional, 4.5 

statistical definition, 4.4 

total, 4.6 

unconditional, 4.5 

Q 
Quadratic model, 12.9  
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Qualitative data, 2.2 –2.4 

Quantitative data, 2.2, 2.5, 2.5  

Quartiles, 3.5 

 

R 
Random sample, 6.2  
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Rank correlation coefficient, 13.6  

Rank sum, 13.3 

Regression analysis  

multiple, 11.1 

simple, 12.1 

Regression models, 11.2, 12.2 

Relative frequency, 2.6  

Relative frequency distribution, 2.6 
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S 
Sample space, 4.3 

Sampling distribution, 6.1 
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Simple linear regression, 11.2  
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 nonparametric, 11.3 

summary, 3.9 
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T 
t distribution, 7.3 
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Two-tailed test, 8.2 
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U 
Unconditional probability, 4.5 

Uniform random variable, 5.9 
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Utility of model, 11.7, 12.6  

 
V 
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Wilcoxon rank sum test, 13.3 

Wilcoxon signed ranks  test, 13.4 

 

Z 
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