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P R E F A C E  

Obesity threatened, and we've had to consider putting the book on a diet. We've added only'one 
chapter this time around, Multilevel Linear Modeling (Chapter 15). and some spiffy new techniques 
for dealing with missing data (in Chapter 4). Otherwise, we've mostly streamlined and said good- 
bye to some old friends. We've forsaken the Time-Series Analysis chapter in the text, but you'll be 
able to download it from the publisher's web site at www.ablongman.com/tabachnick5e. Another 
sadly forsaken old friend is SYSTAT. We still love the program, however, for its right-to-the-point 
analyses and terrific graphics, and are pleased that most of the graphics have been incorporated into 
SPSS. Although absent from demonstrations, features of SYSTAT, and any other programs we've 
cut, still appear in the last sections of Chapters 5 through 16, and in online Chapter 18, where pro- 
grams are compared. We've changed the order of some chapters: canonical correlation seemed rather 
difficult to appear as early as it did, and survival analysis seemed to want to snuggle up to logistic 
regression. .Act~lally, the order doesn't seem to matter much: perusal of syllabi on the Web convinces 
us that professors feel free to present chapters in any order they choose-and that's fine with us. 

Multilevel linear modeling (MLM) seems to have taken the world by storm; how did we ever 
live without it? Real life is hierarchical-students come to us within classrooms, teachers work 
within different schools, patients share wards and nursing staff, and audiences attend different per- 
formances. We hardly ever get to break these groups apart for research purposes, so we have to deal 
with intact groups and all their shared experiences. MLM lets us do this without violating all of the 
statistical assumptions we learned to know and hate. Now that SAS and SPSS can deal with these 
models, we're ready to tackle the real world. Hence, a new chapter. 

SAS and SPSS also now offer reasonable ways to impute illissing data through multiple- 
imputation techniques and fii_llly assess miscing data patterns, respectively. We expanded Chapter 4 
to detnonstrate these enhancements. SPSS and SAS keep adding goodies, which we'll try to show 
off. As before, we adapt our syntax from Windows menus whenever possible, and all of our data sets 
are available on the book's web page (www.ablongman.com/tabachnick5e). We've also paid more 
attention to effect sizes and, especially, confidence intervals around effect sizes. Michael Simpson of 
[he Austraiian Nationai University has kindiy given us permission to include some nifty SPSS and 
SAS syntax and data files in our web page downloads. Jim Steiger and Rachel Fouladi have gra- 
ciously given us permission to include their DOS program that finds confidence intervals around R? 

One thing we'll never change is our practical bent, focusing on the benefits and lirriitations of 
applications of a technique to a data set-when, why, and how to do it. The math is wonderful, and 
we suggest (but don't insist) that students follow along through section four of each chapter using 
readily available software for matrix manipulations or spreadsheets. But we still feel that under- 
standing the math is not enough to insure appropriate analysis of data. And our readers assure us that 
they really are able to apply the techniques without a great deal of attention to the math of section 
four. Our small-sample examples remain silly; alas, our belly dancing days are over. As for our most 
recent reviewers, kindly provided by our publisher, we had the three bears checking out beds: too 
hard, too soft, and just right. So we've not changed the tone or level of difficulty. 

Some extremely helpful advice wax offered by S t e ~ e  Osterlincl of the Univerxity of 
Missouri-Columbia and Jeremy Jewel of Southern Illinois University-Edwal-dsville. We also 

xxvii 
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heartily thank Lisa Harlow of the Un~versity of Rhodr: I.\land. who wrote an extenhibe. in\i?htful 
review of the entire fourth edition of 011s book in Sti.~l(~t~[i.ll l  E ~ I I L I I I ~ I I  M o ~ i ~ l i ~ z g  in 7002.  LVr asain 
thank the reviewers of earlier editions of our book, but fears of breaking the backs of current students 
dissuade us from listing them all once more. You know who you are; we still care. Our thanks to the 
reviewers of this edition: Joseph Benz, University of Nebraska-Kearney; Stanley Cohen, West Vir- 
ginia University; Michael Granaas, University of South Dakota; Marie Hammond. Tennessee State 
University at ~ashv i l l e ;  Josephine Korchmaros, Southern Illinois University; and Scott Roesch, San 
Diego State University. 

As always, the improvements are largely due to reviewers and those colleagues who have taken 
the time to email us with suggestions and corrections. Any remaining errors and lack of clarity are 
due to us alone. As always, we hope the book provides a few smiles as well as help in analyzing data. 

Barbara G. Tabachnick 
Linda S. Fidell 



C H A P T E R  

Introduction 

1 .  Multivariate Statistics: Why? 

Multivariate statistics are increasingly popular techn~ques used for anaiyzing compiicated data sets. 
They provide analysis when there are many independent variables (IVs) and/or many dependent 
variables (DVs), all correlated with one another to varying degrees. Because of the difficulty of 
addressing complicated research questions with univariate analyses and because of the availability 
of canned software for performing multivariate analyses, multivariate statistics have become widely 
used. Indeed, a standard univariate statistics course only begins to prepare a student to read research 
literature or a researcher to produce it. 

But how much harder are the multivariate techniques? Compared with the multivariate meth- 
ods, univariate statistical methods are so straightforward and neatly structured that it is hard to 
believe they once took so much effort to master. Yet many researchers apply and correctly interpret 
results of intricate analysis of variance before the grand structure is apparent to them. The same can 
be true of multivariate statistical methods. Although we are delighted if you gain insights into the full 
multivariate general linear model,( we have accomplished our goal if you feel comfortable selecting 
and setting up multivariate analyses and interpreting the computer output. 

Multivariate methods are more complex than univariate by at least an order of magnitude. But 
for the most part, the greater complexity requires few conceptual leaps. Familiar concepts such as 
sampling distributions and homogeneity of variance simply become more elaborate. 

Multivariate models have not gained popularity by accident--or even by sinister design. Their 
growing popularity parallels the greater complexity of contemporary research. In psychology, for 
example, we are less and less enamored of the simple, clean, laboratory study in which pliant, first- 
year college students each provides us with a single behavioral measure on cue. 

1.1.1 The Domain of Multivariate Statistics: Numbers of IVs 
and DVs 

Multi~ariatc statistical methods are an extension of univariate and bivariate statistics. Multivariate 
statistics are the cnmplere or general case, whereas univariate and bivariate statistics are cpecial cases 

'Chapter 17 attempts to foster such insights 
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perform a single analysis instead oft: series of univari~ite or bi\.asinte anaiyses. 
Variables are roughly dichoton~ized into two major types-independent and dependent. Inde- 

pendent variables (IVs) are the differing conditions (treatment vs. placebo) to which you expose your 
subjects, or characteristics (tall or short) that the subjects themselves bring into the research situa- 
tion. IVs are usually considered predictor variables because they predict the DVs-the response or 
outcome variables. Note that IV and DV are defined within a research context; a DV in one research 
setting may be an IV in another. 

Additional t e k s  for IVs and DVs are predictor-criterion, stimulus-response, task-performance, 
or simply input-output. We use IV and DV throughout this book to identify variables that belong on 
one side of an equation or the other, without causal implication. That is, the terms are used for conve- 
nience rather than to indicate that one of the variables caused or determined the size of the other. 

The term univariclte statistics refers to analyses in which there is a single DV. There may be, 
however, more than one IV. For example, the amount of social behavior of graduate students (the 
DV) is studied as a function of course load (one IV) and type of training in social skills to which stu- 
dents are exposed (another IV). Analysis of variance is a commonly used univariate statistic. 

Blviirtaie siiiilsiies fieqileniiy refers io anaiysis or' two variabies where neither is an experi- 
mental IV and the desire is simply to study the relationship between the variables (e.g., the relation- 
ship between income and amount of education). Bivariate statistics, of course, can be applied in an 
experimental setting, but usually they are not. Prototypical examples of bivariate statistics are the 
Pearson product-moment correlation coefficient and chi square analysis. (Chapter 3 reviews univari- 
ate and bivariate statistics.) 

With multivariate statistics, you simultaneously analyze multiple dependent and multiple inde- 
pendent variables. This capability is important in both nonexperimental (correlational or survey) and 
experimental research. 

1.1.2 Experimental and Nonexperimental Research 

A critical distinction between experimental and nonexperimental research is whether the researcher 
manipulates the levels of the IVs. In an experiment, the researcher has control over the levels (or con- 
ditions) of at least one IV to which a subject is exposed by determining what the levels are, how they 
are implemented, and how and when cases are assigned and exposed to them. Further, the experi- 
menter randomly assigns subjects to levels of the IV and controls all other influential factors by hold- 
ing them constant, counterbalancing, or randomizing their influence. Scores on the DV are expected to 
be the same, within random variation, except for the influence of the IV (Campbell & Stanley. 1966). 
If there are systematic differences in the DV associated with levels of the IV, these differences are 
attributed to the IV. 

For example, if groups of undergraduates are randomly assigned to the same material but dif- 
ferent types of teaching techniques, and afterward some groups of undergraduates perform better 
than others, the difference in performance is said, with some degree of confidence. to be caused by 
the difference in teaching technique. In this type of research, the terms independent and dependent 
have obvious meaning: the value of the DV depends on the manipulated level of the IV. The IV is 
manipulated by the experimenter and the score on the DV depends on the level of the IV. 



In noneuperimental !correlational or wrvey) rewarcli. the le\els o f  the IV(s) are not manipu- 
lated by the researcher. The researcher can Jttfi~ie the IV. but has no c~ti t rol  O L ~ K  the ahsignment of 
subjects to levels of it. For example, groups of people may be categorized into geographic area of res- 
idence (Northeast, Midwest, e t ~ . ) ,  but only the definition of the variable is under researcher control. 
Except for the military or prison, place of residence is rarely subject to manipulation by a researcher. 
Nevertheless, a naturally occurring difference like this is often considered an IV and is used to pre- 
dict some other b~nex~eri inental  (dependent) variable such as income. In this type of research. the 
distinction between IVs and DVs is usually arbitrary and many researchers prefer to call IVs predic- 
tors and DVs criterion variables. 

In nonexperimental research, it is very difficult to attribute causality to an IV. If there is a sys- 
tematic difference in a DV associated with levels of an IV, the two variables are said (with some 
degree of confidence) to be related, but the cause of the relationship is unclear. For example, income 
as a DV might be related to geographic area, but no causal association is implied. 

Nonexperimental research takes many forms, but a common example is the survey. Typically, 
many people are surveyed, and each respondent provides answers to many questions, producing a 
large number of variables. These variables are usually interrelated in highly complex ways, but uni- 
variate and bivariate statistics are not sensitive to this complexity. Bivariate correlations between aii 
pairs of variables, for example, could not reveal that the 20 to 25 variables measured really represent 
only two or three "supervariables." 

Or, if a research goal is to distinguish among subgroups in a sample (e.g., between Catholics 
and Protestants) on the basis of a variety of attitudinal variables, we could use several univariate t 
tests (or analyses of variance) to examine group differences on each variable separately. But if the 
variables are related, which is highly likely, the results of many t tests are misleading and statistically 
suspect. 

With the use of multivariate statistical techniques, complex interrelationships among variables 
are revealed and assessed in statistical inference. Further, it is possible to keep the overall Type I 
error rate at, say, 5%. no matter how many variables are tested. 

Although most multivariate techniques were developed for use in nonexperimental research, 
they are also useful in experimental research in which there may be multiple IVs and multiple DVs. 
With multiple IVs, the research is usually designed so that the IVs are independent of each other and 
a straightforward correction for numerous statistical tests is available (see Chapter 3).  With multiple 
DVs, a problem of inflated error rate arises if each DV is tested separately. Further, at least some of 
the DVs are likely to be correlated with each other, so separate tests of each DV reanalyze some of 
the same variance. Therefore, multivariate tests are used. 

Experimental research designs with multiple DVs were unusual at one time. Now, however, 
with attempts to make experimental designs more realistic, and with the availability of computer pro- 
grams, experiments often have several DVs. It is dangerous to run an experiment with only one DV 
and risk missing the impact of the IV because the most sensitive DV is not measured. Multivariate 
statistics help the experimenter design more efficient and more realistic experiments by allowing 
measurement of multiple DVs without violation of acceptable levels of Type I error. 

One of the few considerations not relevant to choice of stnti.rtica1 technique is whether the data 
are experimenta! or correlational. The statistical methods "work" whether the researcher manipulated 
the levels of the IV. But attribution of causality to results is cn~cially affected by the experimental- 
nonexperimental distinction. 
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1.1.3 Computers and hlultivariate Statistics 

One answer to the question "Why multivariate statistics'?" is that the techniques are now accessible 
by computer. Only the most dedicated number cruncher would consider doing real-life-sized prob- 
lems in multivariate statistics without a computer. Fortunately, excellent multivariate programs are 
available in a number of computer packages. 

Two packages are demonstrated in this book. Examples are based on programs in SPSS (Sta- 
tistical Package for the Social Sciences) and SAS. 

If you have hccess to both packages, you are indeed fortunate. Programs within the packages 
do not completely overlap, and some problems are better handled through one package than the 
other. For example, doing several versions of the same basic analysis on the same set of data is par- 
ticularly easy with SPSS whereas SAS has the most extensive capabilities for saving derived scores 
from data screening or from intermediate analyses. 

Chapters 5 through 16 (the chapters that cover the specialized multivariate techniques) and Chap- 
ter 18 (available at www.ablongman.com/tabachnick5e) offer explanations and illustrations of a variety 
of programs2 within each package and a comparison of the features of the programs. We hope that once 
you understand the techniques, you will be able to generalize to virtually any mu!tivxlriate program. 

Recent versions of the programs are implemented in Windows, with menus that implement 
most of the techniques illustrated in this book. All of the techniques may be implemented through 
syntax, and syntax itself is generated through menus. Then you may add or change syntax as desired 
for your analysis. For example, you may "paste" menu choices into a syntax window in SPSS, edit 
the resulting text, and then run the program. Also, syntax generated by SPSS menus is saved in the 
"journal" file (spss.jn1) which also may be accessed and copied into a syntax window. Syntax gener- 
ated by SAS menus is recorded in a "log" file. The contents may then be copied to an interactive win- 
dow, edited, and run. Do not overlook the help files in these programs. Indeed, SAS and SPSS now 
provide the entire set of user manuals on CD, often with more current information than is available 
in printed manuals. 

Our demonstrations in this book are based on syntax generated through menus whenever fea- 
sible. We would love to show you the sequence of menu choices, but space does not permit. And, for 
the sake of parsimony, we have edited program output to illustrate the material that we feel is the 
most important for interpretation. We have also edited out some of the unnecessary (because it is 
default) syntax that is generated through menu choices. 

With commercial computer packages, you need to know which version of the package you are 
using. Programs are continually being changed, and not all changes are immediately implemented at 
each facility. Therefore, many versions of the various programs are simultaneously in use at differ- 
ent institutions; even at one institution, more than one version of a package is sometimes available. 

Program updates are often corrections of errors discovered in earlier versions. Occasionally, 
though, there are major revisions in one or more programs or a new program is added to the package. 
Sometimes defaults change with updates, so that output looks different although syntax is the same. 
Check to find out which version of each package you are using. Then be sure that the manual you are 
using is consistent with the version in use at your facility. Also check updates for error correction in 
previous releases that may be relevant to some of your previous runs. 

Except where noted, this book reviews Windows versions of SPSS Version 13 and SAS Ver- 
sion 9.1. Information on availability and versions of software, macros, books, and the like changes 
almost daily. We recommend the Internet as a source of "keeping up." 

'We have retained descriptions of features of SYSTAT in these sections despite the removal of detailed demonstration\ of that 
program in this edition. 



1.14 Garbage In, Roses Out? 

The trick in multivariate statistics is not in computation; that is easily done as discu~sed above. The 
trick is to select reliable and valid measurements, choose the appropriate program, use it correctly, 
and know how to interpret the output. Output from commercial computer programs, with their beau- 
tifully formatted tables, graphs, and matrices, can make garbage look like roses. Throughout'this 
book, we try to suggest clues that reveal when the true message in the output more closely resembles 
the fertilizer than the flowers. 

Second, when you use multivariate statistics, you rarely get as close to the raw data as you do 
when you apply univariate statistics to a relatively few cases. Errors and anomalies in the data that 
would be obvious if the data were processed by hand are less easy to spot when processing is entirely 
by computer. But the computer packages have programs to graph and describe your data in the sim- 
plest univariate terms and to display bivariate relationships among your variables. As discussed in 
Chapter 4, these programs provide preliminary analyses that are absolutely necessary if the results of 
multivariate programs are to be believed. 

There are also certain costs associated with the benefits of using multivariate procedures. Ben- 
efits of increased flexibility in research design, for instance, are sometimes paralleled by increased 
ambiguity in interpretation of results. In addition, multivariate results can be quite sensitive to which 
analytic strategy is chosen (cf. Section 1.2.4) and do not always provide better protection against sta- 
tistical errors than their univariate counterparts. Add to this the fact that occasionally you still cannot 
get a firm statistical answer to your research questions, and you may wonder if the increase in com- 
plexity and difficulty is warranted. 

Frankly, we think it is. Slippery as some of the concepts and procedures are, these statistics 
provide insights into relationships among variables that may more closely resemble the complexity 
of the "real" world. And sometimes you get at least partial answers to questions that could not be 
asked at all in the univariate framework. For a complete analysis, making sense of your data usually 
requires a judicious mix of multivariate and univariate statistics. 

And the addition of multivariate statistical methods to your repertoire makes data analysis a lot 
more fun. If you liked univariate statistics, you will love multivariate  statistic^!^ 

1.2 Some Useful Definitions 

In order to describe multivariate statistics easily, it is useful to review some common terms in research 
design and basic statistics. Distinctions were made in preceding sections between IVs and DVs &id 
between experimentai and nonexperimental research. Additienal terms that are encountered repeat- 
edly in the book but not necessarily related to each other are described in this section. 

1.2.1 Continuous, Discrete, and Dichotomous Data 

In applying statistical techniques of any sort, it is important to consider the type of measurement and 
the nature of the correspondence between numbers and the events that they represent. The distinction 
made here is among continuous, discrete, and dichototnous variables; you may prefer to substitute 
the terms intrrvcll or y~l~lntitutivr for cot7ritluo~r.\ and tlortzinr~l. ~ , ~ z t ~ g o t - i c ~ ~ l  or q~inlitntil '~ for (iirC1oto- 
mnus and discrete. 

' ~ o n ' t  even th ink  about it. 
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Conti~?uous variable\ are measured on a ccale that changes calues m~oothlk rather than II! step\. 
Continuous variables take on any u l u e  within the range of the hcale. and the \ i ~ e  of the number 
retlects the amount of the variable. Precision is limited by the measuring instrument, not by the nature 
of the scale itself. Some examples of continuous variables are time as measured on an old-fashioned 
analog clock face. annual income, age, temperature, distance, and grade point average (GPA). . 

Discrete variables take on a finite and usually small number of values, and there is no smooth 
transition from one value or category to the next. Examples include time as displayed by a digital 
clock, continents, categories of religious affiliation, and type of community (rural or urban). 

Sometimes aiscrete variables are used in multivariate analyses as if continuous if there are 
numerous categories and the categories represent a quantitative attribute. For instance, a variable that 
represents age categories (where, say, 1 stands for 0 to 4 years, 2 stands for 5 to 9 years, 3 stands for 
10 to 14 years, and so on up through the normal age span) can be used because there are a lot of cat- 
egories and the numbers designate a quantitative attribute (increasing age). But the same numbers 
used to designate categories of religious affiliation are not in appropriate form for analysis with 
many of the techniques%ecause religions do not fall along a quantitative continuum. 

Discrete variables composed of qualitatively different categories are sometimes analyzed after 
being changed into a number of dichotomous or two-!eve! variables (e.g., Catholic vs. son-Cath~lic,  
Protestant vs. non-Protestant, Jewish vs. non-Jewish, and so on until the degrees of freedom are 
used). Recategorization of a discrete variable into a series of dichotomous ones is called dummy vari- 
able coding. The conversion of a discrete variable into a series of dichotomous ones is done to limit 
the relationship between the dichotomous variables and others to linear relationships. A discrete 
variable with more than two categories can have a relationship of any shape with another variable, 
and the relationship is changed arbitrarily if assignment of numbers to categories is changed. 
Dichotomous variables, however, with only two points, can have only linear relationships with other 
variables; they are, therefore, appropriately analyzed by methods using correlation in which only lin- 
ear relationships are analyzed. 

The distinction between continuous and discrete variables is not always clear. If you  add 
enough digits to the digital clock, for instance, it becomes for all practical purposes a continuous 
measuring device, whereas time as measured by the analog device can also be read in discrete cate- 
gories such as hours or half hours. In fact, any continuous measurement may be rendered discrete (or 
dichotomous) with some loss of information, by specifying cutoffs on the continuous scale. 

The property of variables that is crucial to application of multivariate procedures is not the type 
of measurement so much as the shape of distribution, as discussed in Chapter 4 and elsewhere. Non- 
normally distributed continuous variables and dichotomous variables with very uneven splits 
between the categories present problems to several of the multivariate analyses. This issue and its 
resolutior, are disciissed at some length in Chapter 4. 

Another type of measurement that is used sometimes produces a rank order (ordinal) scale. 
This scale assigns a number to each subject to indicate the subject's position vis-8-vis other subjects 
along some dimension. For instance, ranks are assigned to contestants (first place, second place, 
third place, etc.) to provide an indication of who was best-but not by how much. A problem with 
ordinal measures is that their distributions are rectangular (one frequency per number) instead of 
normal. unless tied ranks are permitted and they pile up in the middle of the distribution. 

'some tnultivariate techl i iq~~es ie.g.. logi\ t ic regres.;ion, SEM) are clpproprlate for al l  type, ot  var~ables 
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In practice. we often treat variables as ~ t '  they are continuous when the underlying scale is 
thought to be continuous but the measured scale actually 1s ordinal. the number of  categories is 

large-say, seven or more-and the data meet other assumptions of the analysis. For instance, the 
number of correct items on an objective test is technically not continuous because fractional values 
are not possible, but it is thought to measure some underlying continuous variable such as course 
mastery. Another example of a variable with ambiguous measurement is one measured on a Likert- 
type scale in which consumers rate their attitudes toward a product as "strongly like," "moderately 
like," "mildly like,'' "neither like nor dislike," "mildly dislike," "moderately dislike," or "strongly 
dislike." As mentioned previously, even dichotomous variables may be treated as if continuous under 
some conditions. Thus, we often use the term "contirz~ious" throughout the remainder of this book 
whether the measured scale itself is continuous or the variable is to be treated as if continuous. We 
use the term "discrete" for variables with a few categories, whether the categories differ in type or 
quantity. 

1.2.2 Samples and Populations 

Samples are measured in order to make generaiizatiotib about popillations. Ideal!y, samp!es 2re 
selected, usually by some random process, so that they represent the population of interest. In real 
life, however, populations are frequently best defined in terms of samples, rather than vice versa; the 
population is the group from which you were able to randomly sample. 

Sampling has somewhat different connotations in nonexperimental and experimental research. 
In nonexperimental research, you investigate relationships among variables in some predefined pop- 
ulation. Typically, you take elaborate precautions to ensure that you have achieved a representa- 
tive sample of that population; you define your population: then do your best to randomly sample 
from it.5 

In experimental research, you attempt to create different populations by treating subgroups 
from an originally homogeneous group differently. The sampling objective here ih to ensure that all 
subjects come from the same population before you treat them differently. Random sampling con- 
sists of randomly assigning subjects to treatment groups (levels of the IV) to ensure that, before dif- 
ferential treatment, all subsamples come from the same population. Statistical tests provide evidence 
as to whether, after treatment, all samples still come from the same population. Generalizations 
about treatment effectiveness are made to the type of subjects who participated in the experiment. 

1.2.3 Descriptive and Inferential Statistics 

Descriptive statistics describe samples of subjects in terms of variables or combinations of variables. 
Inferential statistical techniques test hypotheses about differences in populations on the basis of 
measurements made on samples of subjects. If reliable differences are found, descriptive statistics 
are then used to provide estimations of central tendency, and the like, in the population. Descriptive 
statistics used in this way are called parameter estimates. 

Use of inferential and descriptive statistics is rarely an either-or proposition. We are usually 
interested in both describing and making inferences about a data set. We describe the data. find 

S~trategies l o r  random sampling are Jiscussed in rnany sources, including Levy and I-elnenshou i 1990). Rea and Parker 
( 1997). and de Vaus (2002). 



8 C H A P T E R  I 

reliable clifferences or relationah~p\. and ehtlrnate population ~alueh for the reliable findings. H o & -  
ever. there are more restrictions on inference than there are on description. Many ~~ss~imptions of 
multivariate statistical methods are necessary only for inference. If simple description of the sample 
is the major goal, many assumptions are relaxed, as discussed in Chapters 5 through 16 and 18 
(online). 

1.2.4 Orthogonality: Standard and Sequential Analyses 

Orthogonality is a'perfect nonassociation between variables. If two variables are orthogonal, know- 
ing the value of one variable gives no clue as to the value of the other; the correlation between them 
is zero. 

Orthogonality is often desirable in statistical applications. For instance, factorial designs for 
experiments are orthogonal when two or more IVs are completely crossed with equal sample sizes 
in each combination of levels. Except for use of a common error term, tests of hypotheses about main 
effects and interactions are independent of each other; the outcome of each test gives no hint as to the 
outcome of the others. In orthogonal experimental designs with random assignment of subjects, 
manipulation of the levels of the IV, and good cnntro!~, changes i~ va!ue of the DV can be unam- 
biguously attributed to various main effects and interactions. 

Similarly, in multivariate analyses, there are advantages if sets of IVs or DVs are orthogonal. 
If all pairs of IVs in a set are orthogonal, each IV adds, in a simple fashion, to prediction of the DV. 
Consider income as a DV with education and occupational prestige as IVs. If education and occupa- 
tional prestige are orthogonal, and if 35% of the variability in income may be predicted from educa- 
tion and a different 45% is predicted from occupational prestige, then 80% of the variance in income 
is predicted from education and occupational prestige together. 

Orthogonality can easily be illustrated in Venn diagrams, as shown in Figure 1 .  I. Venn dia- 
grams represent shared variance (or correlation) as overlapping areas between two (or more) circles. 
The total variance for income i c  one circle. The section with hori~ontal stripes represents thc part of 
income predictable from education, and the section with vertical stripes represents the part pre- 
dictable from occupational prestige; the circle for education overlaps the circle for income 35% and 
the circle for occupational prestige overlaps 45%. Together. they account for 80% of the variability 
in income because education and occupational prestige are orthogonal and do not themselves over- 
lap. There are similar advantages if a set of DVs is orthogonal. The overall effect of an IV can be par- 
titioned into effects on each DV in an additive fashion. 

FIGURE 1.1 Venn diagram for Y 
(income), Xi (education), and X z  

(occupational prestige). 
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Usually. howe~er. the variables are crJrrelated with each other (nonorthoponal). IV\ !n noneu- 
perimental desipns are often correlated naturally: in experimental designs. IV become correlated 
when unequal numbers of subjects are measured in different cells of the design. DVs are usually cor- 
related because individual differences among subjects tend to be consistent over many attributes. 

When variables are correlated, they have shared or overlapping variance. In the example of 
Figure 1 :2, education and occupational prestige correlate with each other. Although the independent 
contribution made by education is still 35% and that by occupational prestige is 4596, their joint con- 
tribution to prediction of income is not 80% but rather something smaller due to the overlapping area 
shown by the ari-ow in Figure 1.2(a). A major decision for the multivariate analyst is how to handle 
the variance that is predictable from more than one variable. Many multivariate techniques have at 
least two strategies for handling it; some have more. 

In standard analysis, the overlapping variance contributes to the size of summary statistics of 
the overall relationship but is not assigned to either variable. Overlapping variance is disregarded in 
assessing the contribution of each variable to the solution. Figure 1.2(a) is a Venn diagram of a stan- 
dard analysis in which overlapping variance is shown as overlapping areas in circles; the unique con- 
tributions of X I  and X2 to prediction of Yare shown as horizontal and vertical areas, respectively, and 
the total relationship between i.' and the colnbination of X I  and X, is those two areas plus the area 
with the arrow. If X I  is education and X2 is occupational prestige, then in standard analysis, X I  is 
"credited with" the area marked by the horizontal lines and X2 by the area marked by vertical lines. 
Neither of the IVs is assigned the area designated with the arrow. When X I  and X2 substantially over- 
lap each other, very little horizontal or vertical area may be left for either of them despite the fact that 
they are both related to l! They have essentially knocked each other out of the solution. 

Sequential analyses differ in that the researcher assigns priority for entry of variables into 
equations, and the first one to enter is assigned both unique variance and any overlapping variance it 
has with other variables. Lower-priority variables then are assigned on entry their unique and any 
remaining overlapping variance. Figure 1.2(b) shows a sequential analysis for the same case as Fig- 
ure 1.2(a). where X ! (education) is given priority over X 2  (occupational prestige). The total variance 
explained is the same as in Figure 1.2(a), but the relative contributions of X I  and X 2  have changed; 

Area represents variance 
in relationship that contributes 
to solution but is assigned to 
neither X, nor X, 

(a) Standard analysis (b) Sequential analysis in  which 
X, is given priority over X,  

FIGURE 1.2 Standard (a) and sequential (h) analyses of the relationship 
between Z: X,, and X z .  Horizontal shading depicts variance assigned to XI. 

Vertical shading depicts variance assigned to X L .  
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education nou \how\ cl htroriger ~.elation\h~p uith Income than in  the st;lndal-d analyhb. wht.re;is the 
relation between occupational prestige and income remains the same. 

The choice of strategy for dealing with overlapping variance is not trivial. I f  variables are cor- 
related, the overall relationship remains the same but the apparent importance of variables to the 
solution changes depending on whether a standard or a sequential strategy is used. If the multivari- 
ate procedures have a reputation for unreliability, it is because solutions change, sometimes dramat- 
ically, when different strategies for entry of variables are chosen. However. the strategies also ask 
different questions of the data, and it is incumbent on the researcher to determine exactly which 
question to ask. We try to make the choices clear in the chapters that follow. 

1.3 Linear Combinations of Variables 

Multivariate analyses combine variables to do useful work such as predict scores or predict group 
membership. The combination that is formed depends on the relationships among the variables and 
the goals of analysis, but in most cases. the combination that is formed is a linear combination. A lin- 
ear combination is one in which each variable is assigned a weight (e.g.. W i ) ,  and then products of 
weights and variable scores are summed to predict a score on a combined variable. In Equation I. I, 
Y '  (the predicted DV) is predicted by a linear combination of X I  and X ,  (the IVs). 

If, for example, Y '  is predicted income, X I  is education, and X,  is occupational prestige, the 
best prediction of income is obtained by weighting education (XI)  by W I  and occupational prestige 
(X,) by W, before summing. No other values of W i  and W, produce as good a prediction of income. 

Notice that Equation 1.1 includes neither X  or X ,  raised to powers (exponents) nor a product 
of X i  and X, .  This seems to severely restrict multivariate solutions until one realizes that X I  could 
itself be a of two different variables or a single variable raised to a power. For example, X I  
might be education squared. A multivariate solution does not produce exponents or cross-products of 
IVs to improve a solution, but the researcher can include Xs that are cross-products of IVs or are IVs 
raised to powers. Inclusion of variables raised to powers or cross-products of variables has both the- 
oretical and practical implications for the solution. Berry (1993) provides a useful discussion of 
many of the issues. 

The size of the W  values (or some function of them) often reveals a great deal about the rela- 
tionship between Dt' and iVs. if, for instance, the W value for some IV is zero, the IV is not needed 
i n  the best DV-TV relationship. 0: if s=me IV has a large W value, then the i'v' tends to be important 
to the relationship. Although complications (to be explained later) prevent interpretation of the mul- 
tivariate solution from the sizes of the W  values alone, they are nonetheless important in most multi- 
variate procedures. 

The combination of variables can be considered a supervariable, not directly measured but 
worthy of interpretation. The supervariable may represent an underlying dimension that predicts 
something or optimizes some relationship. Therefore, the attempt to understand the meaning of the 
combination of IVs is worthwhile in many multivariate analyses. 

In the search for the best weights to apply in combining variables, computers do not try out all 
possible sets of weights. Various algorithms have been developed to compute the weights. Most 
algorithms involve n~anipulation of a correlation matrix, a variance-covariance matrix, or a sum-of- 
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squares and cross-products matrlx. Section I .h describes these matrices In \el-? simple term\ ancl 
shows their development from a \.cry small data set. Appendix A describes some terms and manipu- 
lations appropriate to matrices. In the fourth sections of Chapters 5 through 16 and I8 (online). a 
small hypothetical sample of data is analyzed by hand to show how the weights are derived for each 
analysis. Though this information is useful for a basic understanding of multivariate statistics, it is 
not necessary for applying multivariate techniques fruitfully to your research questions and may, 
sadly, be skippe'd by those who are math aversive. 

1.4 Number and Nature of Variables to Include 

Attention to the number of variables included in analysis is important. A general rule is to get the best 
solution with the fewest variables. As more and more variables are included, the solution usually 
improves, but only.slightly. Sometimes the improvement does not compensate for the cost in degrees 
of freedom of including more variables, so the power of the analyses diminishes. 

A second problem is ovetj5tting. With overfitting, the solution is very good, so good in fact, 
that it is unlikely to generaiize to a popillatioii. Overfitting occgrs when too many variables are 
included in an analysis relative to the sample size. With smaller samples, very few variables can be 
analyzed. Generally, a researcher should include only a limited number of uncorrelated variables in 
each analysis,6 fewer with smaller samples. We give guidelines for the number of variables that can 
be included relative to sample size in the third section of Chapters 5-16 and 18. 

Additional considerations for inclusion of variables in a multivariate analysis include cost, 
availability, meaning, and theoretical relationships among the variables. Except in analysis of struc- 
ture, one usually wants a small number of valid, cheaply obtained, easily available, uncorrelated 
variables that assess all the theoretically important dimensions of a research area. Another important 
consideration is reliability. How stable is the position of a given score in a distribution of scores when 
measured at different times or in different ways'! Unreliable variables degrade an analysis whereas 
reliable ones enhance it. A few reliable variables give a more meaningful solution than a large num- 
ber of less reliable variables. Indeed, if variables are sufficiently unreliable, the entire solution may 
retlect only measurement error. Further considerations for variable selection are mentioned as they 
apply to each analysis. 

1.5 Statistical Power 

A critical issue in designing any study is whether there is adequate power. Power, as you may reca!!, 
represents the probability that effects that actually exist have a chance of producing statistical sig- 
nificance in your eventual data analysis. For example, do you have a large enough sample size to 
show a significant relationship between GRE and GPA if the actual relationship is fairly large? What 
if the relationship is fairly small? Is your sample large enough to reveal significant effects of treat- 
ment on your DV(s)? Relationships among power and errors of inference are discussed in Chapter 3. 

Issues of power are best considered in the planning state of a study when the researcher deter- 
mines the required sample size. The researcher estimates the size of the anticipated effect (e.g., an 
expected mean difference). the variability expected in assessment of the effect, the desired alpha 

"The exceptions are analysis of structure. such as factor analysis. in  which numerow correlated variables are measured 
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level (ordinarily 0.05). m d  the desired power (often ,801. Thehe four estimates are required to deter- 
mine necessary sample size. Failure to consider power in the planning stage often results in failure 
to find a significant effect (and an unpublishable study). The interested reader may wish to consult 
Cohen (1 965, 1988). Rossi ( 1990), or Sedlnleier and Giperenzer ( 1989) for more detail. 

There is a great deal of software available to help you estimate the power available with various 
sample sizes for various statistical techniques, and to help you determine necessary sample size given 
a desired level of power (e.g., an 80% probability of achieving a significant result if an effect exists) 
and expected sizes of relationships. One of these programs that estimates power for several techniques 
is PASS (NCSS, 2002). Many other programs are reviewed (and sometimes available as shareware) on 
the Internet. Issues of power relevant to each of the statistical techniques are discussed in chapters cov- 
ering those techniques. 

1.6 Data Appropriate for Multivariate Statistics 

An appropriate data set for multivariate statistical methods consists of values on a number of vari- 
ables for each of several subjects or cases. For continuous variables, the values are scores on vari- 
ables. For example, if the continuous variable is the GRE (Graduate Record Examination), the values 
for the various subjects are scores such as 500,650,420, and so on. For discrete variables, values are 
number codes for group membership or treatment. For example, if there are three teaching tech- 
niques, students who receive one technique are arbitrarily assigned a "I," those receiving another 
technique are assigned a "2," and so on. 

1.6.1 The Data Matrix 

The data matrix is an organization of scores in which rows (lines) represent subjects and columns 
represent variables. An example of a data matrix with six subjects7 and four variables is in Table 1.1. 
For example, X I  might be type of teaching technique, X ,  score on the GRE, X 3  GPA, and X4 gender, 
with women coded 1 and men coded 2. 

Data are entered into a data file with long-term storage accessible by computer in order to 
apply computer techniques to them. Each subject starts with a new row (line). Information identify- 
ing the subject is typically entered first, followed by the value of each variable for that subject. 

TABLE 1.1 A Data Matrix of Hypothetical Scores 

Student X~ X2 x3 x4 

' ~ o r r n a l l ~ ,  of  course. there are many more than six jubjects. 
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Scores for each variable are ttnterecl in the harnc. order fat- each subject. If there are ~nnre  data for each 
subject than can be accommodated on a single line. the data are continued on additional lines. but :ill 

of the data for each subject are kept together. All of the computer package manuals probide infor- 
mation on. setting up a data matrix. 

In this example, there are values for every variable for each subject. This is not always the case 
with research in the real world. With large numbers of subjects and variables, scores frequently are 
missing on some variables for some subjects. For instance, respondents may refuse to answer some 
kinds of questions, or some students may be absent the day that one of the tests is given, and so forth. 
This creates missing values in the data matrix. To deal with missing values, first build a data file in 
which some symbol is used to indicate that a value on a variable is missing in data for a subject. The 
various programs have standard symbols, such as a dot ( . ), for this purpose. You can use other sym- 
bols, but it is often just as convenient to use one of the default symbols. Once the data set is available, 
consult Chapter 4 for various options to deal with this messy (but often unavoidable) problem. 

1.6.2 The Correlation Matrix 

Most readers are familiar with R, a correlation matrix. R is a square, symmetrical matrix. Each row 
(and each colun~n) represents a different variable, and the value at the intersection of each row and 
column is the correlation between the two variables. For instance, the value at the intersection of the 
second row, third column, is the correlation between the second and the third variables. The same cor- 
relation also appears at the intersection of the third row, second column. Thus, correlation matrices 
are said to be symmetrical about the main diagonal, which means they are mirror images of them- 
selves above and below the diagonal going from top left to bottom right. For this reason, it is common 
practice to show only the bottom half or the top half of an R matrix. The entries in the main diagonal 
are often omitted as well, since they are all ones--correlations of variables with themse~ves .~  

Table 1.2 shows the correlation matrix for X 2 ,  X3, and X4 of Table 1.1. The .85 is the correla- 
tion between X 2  and Xj,  and it appears twice in the matrix (as do other<). Other correlations are as 
indicated in the table. 

Many programs allow the researcher a choice between analysis of a correlation matrix and 
analysis of a variance-covariance matrix. If the correlation matrix is analyzed, a unit-free result is pro- 
duced. That is, the solution reflects the relationships among the variables but not in the metric in which 
ihey ate ~neaaured. If the metric of the scores is somewhat iubitrary, analysis of R is appropriate. 

TABLE 1.2 Correlatior. Matrix for Part 
of Hypothetical Data for Table 1.1 

X~lternatively,  other ~nfortnation such as standard de\iations is inserted. 
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1.6.3 The Variance-Covariance hlatriu 

I f ,  on the other hand. scores are measured along a meaningful scale. i t  is sornctirne< appropriate t o  
analyze a variance-covariance matrix. A variance-covariance matrix. Z, is also square and symmet- 
rical, but the elements in the main diagonal are the variances of each variable. and the off-diagonal 
elements are covariances between pairs of different variables. 

Variances, as you recall, are averaged squared deviations of each score from the mean of the 
scores. Becatise ihe'deviations are averaged, the number of scores included in computation of a vari- 
ance is not relevant, but the metric in which the scores are measured is. Scores measured in large 
numbers tend to have large numbers as variances: scores measured in small numbers tend to have 
small variances. 

Covariances are averaged cross-products (the deviation between one variable and its mean 
times the deviation between a second variable and its mean). Covariances are similar to correlations 
except that they, like variances, retain information concerning the scales in which the variables are 
measured. The variance-covariance matrix for the continuous data of Table I .  1 appears in Table 1.3. 

1.6.4 The Sum-of-Squares and Cross-Products Matrix 

This matrix, S, is a precursor to the variance-covariance matrix in which deviations are not yet aver- 
aged. Thus, the size of the entries depends on the number of cases as well as on the metric in which 
the elements were measured. The sum-of-squares and cross-products matrix for X 2 ,  X 3 ,  and X4 in 
Table I. 1 appears in Table 1.4. 

The entry in the major diagonal of the S matrix is the sum of squared deviations of scores from 
the mean for that variable, hence, "sum of squares," or SS. That is, for each variable, the value in the 
major diagonal is 

where i =  1,2, ..., N 
N = the number of subjects 
j = the variable identifier 

Xrj  = the score on variable j by subject i 
Xi  = the mean of all scores on the jth variable 

TABLE 1.4 Sum-of-Squares and Cross- 
TABLE 1.3 Variance-Covariance Matrix Products Matrix for Part of Hypothetical 
for Part of Hypothetical Data of Table 1.1 Data of Table 1.1 
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For example. for  .YI. the mean 15 1 .5. 7 he \utn o f  scluared deviations dl-ound the mtxn and the 
diagonal value for the ~ariable is 

6 z (X,, -%) '=(I  - 1.5)'+ ( 2  - 1.5)'+ (1 - IS) '+  (2 - IS)'+ ( 1  - 1.5)" ( 2  - 1.5)' 
i= l 

= 1.50 

The off-diagonal elements of the sum-of-squares and cross-products matrix are the cross-products- 
the sum of products (SP)-of the variables. For each pair of variables, represented by row and col- 
umn labels in Table 1.4, the entry is the sum of the product of the deviation of one variable around its 
mean times the deviation of the other variable around its mean. 

where j identifies the first variable, k identifies the second variable, and all other terms 
are as detined in Equation 1.1. (Note that if j = k ,  Equation 1.3 becomes identical to 
Equation 1.2.) 

For example, the cross-product term for variables X2 and X 3  is 

Most computations start with S and proceed to T, or R. The progression from a sum-of-squares 
and cross-products matrix to a variance-covariance matrix is simple. 

The variance-covariance matrix is produced by dividing every element in the sum-of-squares and 
cross-products matrix by N - 1, where N is the number of cases. 

The correlation matrix is derived from an S matrix by dividing each s u n  of squares by itself 
(to produce the Is in the main diagonal of R) and each cross-product of the S matrix by the square 
root of the product of the sum of squared deviations around the mean for each of the variables in the 
pair. That is, each cross-product is divided by 

where terms are defined as in Equation 1.3. 

For some multivariate operations, i t  is not necessary to feed the data matrix to a computer pro- 
gram. Instead, an S or an R matrix is entered, with each row (representing a variable) starting a new 
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line. Often. considerable computing tlrnr and euprnw are sa\ed h~ entering one or the other of the\c: 
matrlce\ rather than ram dat,~. 

1.6.5 Residuals 

Often a goal of analysis or test of its efficiency is its ability to reproduce the values of a DV or the 
correlation matrix of a set of variables. For example, we might want to predict scores on the GRE (X, 
of Table I. 1) from knowledge of GPA (X3) and gender (XJ. After applying the proper statistical 
operations-a multiple regression in this case-a predicted GRE score for each student is computed 
by applying the proper weights for GPA and gender to the GPA and gender scores for each student. 
But because we already obtained GRE scores for our sample of students, we are able to compare the 
predicted with the obtained GRE score. The difference between the predicted and obtained values is 
known as the residual and is a measure of error of prediction. 

In most analyses, the residuals for the entire sample sum to zero. That is, sometimes the pre- 
diction is too large and sometimes it is too small, but the average of all the errors is zero. The squared 
value of the residuals, however, provides a measure of how good the prediction is. When the predic- 
tions are close to the obtained values, the squared errors are small. The way that the residuals are dis- 
tributed is of further interest in evaluating the degree to which the data meet the assumptions of 
multivariate analyses, as discussed in Chapter 4 and elsewhere. 

1.7 Organization of the Book 

Chapter 2 gives a guide to the multivariate techniques that are covered in this book and places them 
in context with the more familiar univariate and bivariate statistics where possible. Included in Chap- 
ter 2 is a flow chart that organizes statistical techniques on the basis of the major research quebtions 
asked. Chapter 3 provides a brief review of univariate and bivariate statistical techniques for those 
who are interested. 

Chapter 4 deals with the assumptions and limitations of multivariate statistical methods. 
Assessment and violation of assumptions are discussed, along with alternatives for dealing with vio- 
lations when they occur. Chapter 4 is meant to be referred to often, and the reader is guided back to 
it frequently in Chapters 5 through 16 and 18 (online). 

Chapters 5 through 16 and 18 (online) cover specific multivariate techniques. They include 
descriptive, conceptual sections as well as a guided tour through a real-world data set for which the 
analysis is appropriate. The tour includes an example of a Results s ec t i~n  describing the outcome of 
the statistical analysis appropriate for submission to a professional journal. Each technique chapter 
inciudes a comparison of computer programs. You may want to vary the order in which you cover 
these chapters. 

Chapter 17 is an attempt to integrate univariate, bivariate, and multivariate statistics through 
the multivariate general linear model. The common elements underlying all the techniques are 
emphasized, rather than the differences among them. Chapter 17 is meant to pull together the mate- 
rial in the remainder of the book with a conceptual rather than pragmatic emphasis. Some may wish 
to consider this material earlier, for instance. immediately after Chapter 2. 
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A Guide to Statistical 
Techniques 
Using the Book 

2.1 Research Questions and Associated 
Techniques 

This chapter organizes the statistical techniques in this book by major research question. A dec~s~on 
tree at the end of this chapter leads you to an appropriate analysis for your data. On the basis of your 
major research question and a few characteristics of your data set, you determine which statistical 
techniquets) is appropriate. The first, most important criterion for choosing a technique is the major 
research question to be answered by the statistical analysis. Research questions are categorized here 
into degree of relationship among variables, significance of group differences, prediction of group 
membership, structure, and questions that focus on the time course of events. This chapter empha- 
sizes differences in research questions answered by the different techniques described in nontechni- 
cal terms, whereas Chapter 17 provides an integrated overview of the techniques with some basic 
equations used in the multivariate general linear model.' 

2.1.1 Degree of Relationship among Variables 

If the major purpose of analysis is to assess the associations among two or more variables, some form 
of correlarion/regression or chi square is appropriate. The choice arnolig five different statistical tech- 
niques is made by determining the number of independent and dependent variables, the nature of the 
variables (continuous or discrete), and whether any of the IVs are best conceptualized as c~variates.~ 

2.1.1.1 Bivarzate r 

Bivariate correlation and regression, as reviewed in Chapter 3, assess the degree of relationship 
between two continuous variables such as belly dancing skill and years of musical training. Bivari- 
ate correlation measures the association between two variables with no distinction necessary 
between 1V and DV. Bivariate regression, on the other hand, predicts a score on one variable from 
knowledge of the score on another variable (e.g., predicts skill in belly dancing as measured by a 
s i ~ g l e  index such as knowledge of steps, from a single predictor such as years of musical training). 

'YOU may find it helpful to read Chapter 17 now instead of  waiting fcr !he end. 

'1f the effects of some IVs are assessed after the effects of other 1Vs are statistically removed, the latter are called covc~ricites. 
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The predicted \;u.i;lble i \  corlsiclerecl the DV. ~ v h e r e a  the preci~ctor I \  c~)n\~dt.l-ecl the It'. Bt\ari:rtr 
correlation and resression are not rnult~\::riatt' techniques. but the) ;ire intepratecf into the ycneral lin- 
ear tnodel In Chapter 17. 

Multiple correlation assesses the degree to which one continuous variable (the DV) is related to a set 
of other (usually) continuous variables (the IVs) that have been combined to create a new, compos- 
ite variable. Multiple correlation is a bivariate correlation between the original DV and the compos- 
ite variable created from the IVs. For example, how large is the association between belly dancing 
skill and a number of IVs such as years of musical training, body flexibility, and age? 

Multiple regression is used to predict the score on the DV from scores on several IVs. In the 
preceding example, belly dancing skill measured by knowledge of steps is the DV (as it is for bivari- 
ate regression), and we have added body flexibility and age to years of musical training as IVs. Other 
examples are prediction of success in an educational program from scores on a number of aptitude 
tests, prediction of the sizes of earthquakes from a variety of geological and electromagnetic vari- 
ables, or stock market behavior from a variety of political and economic variables. 

As for bivariate corre!aLion and regression, multiple correlation emphasizes the degree of rela- 
tionship between the DV and the IVs, whereas multiple regression emphasizes the prediction of the 
DV from the IVs. In multiple correlation and regression, the IVs may or may not be correlated with 
each other. With some ambiguity, the techniques also allow assessment of the relative contribution of 
each of the IVs toward predicting the DV, as discussed in Chapter 5.  

2.1.1.3 Sequential R 

In sequential (sometimes called hierarchical) multiple regression, 1Vs are given priorities by the 
researcher before their contributions to prediction of the DV are assessed. For example, the researcher 
might first assess the effects of age and flexibility on belly dancing skill before looking at the contri- 
bution that years of musical training makes to that skill. Differences among dancers in age and flexi- 
bility are statistically "removed before assessment of the effects of years of musical training. 

In the example of an educational program, success of outcome might first be predicted from 
variables such as age and IQ. Then scores on various aptitude tests are added to see if prediction of 
outcome is enhanced after adjustment for age and IQ. 

In general, then, the effects of IVs that enter first are assessed and removed before the effects 
of IVs that enter later are assessed. For each IV in a sequential multiple regression, higher-priority 
iVs act as covariates for lower-priority IVs. The degree of relationship between the DV and the IVs 
is reassessed at each step =f the sequence. That is, multiple correlation is re-computed as each new 
IV (or set of IVs) is added. Sequential multiple regression, then, is also useful for developing a 
reduced set of IVs (if that is desired) by determining when IVs no longer add to predictability. 
Sequential multiple regression is discussed in Chapter 5 .  

2.1.1.4 Canonical R 

In canonical correlation, there are several continuous DVs as well as several continuous IVs, and the 
goal is to assess the relationship between the two cets of varirtbles. For example, we might study the 
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relationship between a number ot 1ndiie5 of belly danc~ng \kill (the DVs. such as knouledgr of 
steps, ability to play finger- cymbals. respunsi\~eness to the music) and the IVs (flexibility. niusic;ll 
training, and age). Thus, canonical correlation adds DVs (e.s., further indices of belly dancing shill) 
to the single index of skill used in bivariate and multiple correlation. so that there are multiple DVs 
as well as multiple IVs in canonical correlation. 

Or we might ask whether there is a relationship among achievements in arithmetic, reading. 
and spelling as. measured in elementary school and a set of variables retlecting early childhood 
development (e.g., age at first speech, walking, toilet training). Such research questions are answered 
by canonical correlation, the subject of Chapter 12. 

2.1.1.5 Multiway Frequency Analysis 

A goal of multiway frequency analysis is to assess relationships among discrete variables where 
none is considered a DV. For example, you might be interested in the relationships among gender, 
occupational category, and preferred type of reading material. Or the research question might involve 
relationships among gender, categories of religious affiliation, and attitude toward abortion. Chap- 
ter 16 deals with multiway frequency analysis. 

When one of the variables is considered a DV with the rest serving as IVs, multiway frequency 
analysis is called logit analysis, as described in Section 2.1.3.3. 

2.1.1.6 Multilevel Modeling 

In many research applications, cases are nested in (normally occurring) groups, which may, in turn, 
be nested in other groups. The quintessential example is students nested in classrooms which are, in 
turn, nested in schools. (Another common example involves repeated measures where, for example, 
scores are nested within students who are, in turn, nested in classrooms, and then nested in schoo1s.j 
However, students in the same classroom are likely to have scores that correlate more highly than 
those of students in general. This creates problems with an analysis that pools all students into one 
very large group, ignoring classroom and school designations. Multilevel modeling (Chapter 15) is 
a somewhat complicated but increasingly popular strategy for analyzing data in these situations. 

2.1.2 Significance of Group Differences 

When subjects are randomly assigned to groups (treatments), the major research question usually is 
the extent t~ which statistically significant mean differences on DVs are associated with group mem- 
bership. Once significant differences are found, the researcher often assesses the degree of reiation- 
ship (effect size or strength of association) between IVs and DVs. 

The choice among techniques hinges on the number of IVs and DVs and whether some vari- 
ables are conceptualized as covariates. Further distinctions are made as to whether all DVs are mea- 
sured on the same scale and how within-subjects IVs are to be treated. 

2.1.2.1 Orze- Way ANOVA and t Test 

These two statistics, reviewed in Chapter 3, are strictly univariate in nature and are adequately cov- 
ered in moFt standard statistical texts. 
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2.1.2.2 One- Way ANCOK4 

One-way analysis of covariance is desisned to assess group differences on a s~ngle DV after the 
effects of one or more covariates are statistically removed. Covariates are chosen because of their 
known association with the DV; otherwise, there is no point to their use. For example, age and degree 
of reading disability are usually related to outcome of a program of educational therapy (the DV). If 
groups are formed by randomly assigning children to different types of educational therapies (the 
IV), it is useful to remove differences in age and degree of reading disability before examining the 
relationship between outcome and type of therapy. Prior differences among children in age and read- 
ing disability are used as covariates. The ANCOVA question is: Are there mean differences in out- 

: come associated with type of educational therapy after adjusting for differences in age and degree of 
reading disability? 

ANCOVA gives a more powerful look at the IV-DV relationship by minimizing error variance 
(cf. Chapter 3). The stronger the relationship between the DV and the covariate(s), the greater the 
power of ANCOVA over ANOVA. ANCOVA is discussed in Chapter 6. 

ANCOVA is also used to adjust for differences among groups when groups are naturally occur- 
ring and random assignment to them is not possible. For example, one might ask if attitude toward 
abortion (the DV) varies as a function of religious affiliation. However, it is not possible to randomly 
assign people to religious affiliation. In this situation, there could easily be other systematic differ- 
ences among groups, such as level of education, that are also related to attitude toward abortion. 
Apparent differences among religious groups might well be due to differences in education rather than 
differences in religious affiliation. To get a "purer" measure of the relationship between attitude and 
religious affiliation, attitude scores are first adjusted for educational differences, that is, education is 
used as a covariate. Chapter 6 also discusses this somewhat problematical use of ANCOVA. 

When there are more than two groups, planned or post hoc comparisons are available in 
ANCOVA just as in ANOVA. With ANCOVA, selected and/or pooled group means are adjusted for 
differences on covariates before differences in means on the DV are assessed. 

2.1.2.3 Factorial ANOVA 

Factorial ANOVA, reviewed in Chapter 3, is the subject of numerous statistics texts (e.g., Brown, 
Michels, & Winer, 1991; Keppel & Wickens, 2004; Myers & Well, 2002; Tabachnick & Fidell, 
2007) and is introduced in most elementary texts. Although there is only one DV in factorial 
ANOVA, its place within the general linear model is discussed in Chapter 17. 

2.1.2.4 Factoriai A NCOVA 

Factorial ANCOVA differs from one-way ANCOVA only in that there is more than one IV. The desir- 
ability and use of covariates are the same. For instance, in the educational therapy example of Sec- 
tion 2.1.2.2, another interesting IV might be gender of the child. The effects of gender, type of 
educational therapy and their interaction on outcome are assessed after adjusting for age and prior 
degree of reading disability. The interaction of gender with type of therapy asks if boys and girls dif- 
fer as to which type of educational therapy is more effective after adjustment for covariates. 
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2.1.2.5 Notelling's T' 

Hotelling's T ?  is used when the IV has only two groups and there are several DL'>. For example. 
there might be two DVs, such as score on an academic achievement test and attention span in the 
classroom, and two levels of type of educational therapy, emphasis on perceptual training versus 
emphasis on academic training. It is not legitimate to use separate t tests for each DV to look for dif- 
ferences between groups because that inflates Type I error due to unnecessary multiple significance 
tests with (likely) correlated DVs. Instead, Hotelling's T ?  is used to see if groups differ on the two 
DVs combined. The researcher asks if there are non-chance differences in the centroids (average on 
the combined DVs) for the two groups. 

Hotelling's T~ is a special case of multivariate analysis of variance, just as the t test is a spe- 
cial case of univariate analysis of variance, when the IV has only two groups. Multivariate analysis 
of variance is discussed in Chapter 7. 

2.1.2.6 One- Wuy MANOVA 

Multivariate analysis of variance evaluates differences among centroids (composite means) tor a set 
of DVs when there are two or more levels of an IV (groups). MANOVA is useful for the educational 
therapy example in the preceding section with two groups and also when there are more than two 
groups (e.g., if a nontreatment control group is added). 

With more than two groups, planned and post hoc comparisons are available. For example, if 
a main effect of treatment is found in MANOVA, it might be interesting to ask post hoc if there are 
differences in the centroids of the two groups given different types of educational therapies, ignoring 
the control group, and, possibly, if the centroid of the control group differs from the centroid of the 
two educational therapy groups combined. 

Any number of DVs may be used; the procedure deals with correlations among them, and the 
entire analysis is accomplished within the preset level for Type I error. Once statistically significant 
differences are found, techniques are available to assess which DVs are influenced by which IV. For 
example, assignment to treatment group might affect the academic DV but not attention span. 

MANOVA is also available when there are within-subject IVs. For example, children might be 
measured on both DVs three times: 3,6,  and 9 months after therapy begins. MANOVA is discussed 
in Chapter 7 and a special case of it (profile analysis, In which the within-subjects IV is treated mul- 
tivariately) in Chapter 8. Profile analysis is an alternative to one-way between-subjects MANOVA 
when the DVs are all measured on the same scale. Discriminant analysis is an alternative to one-way 
between-subjects designs, as described in Section 2. i.3.1 and Chapter 9. 

2.1.2.7 One- Way MANCOVA 

In addition to dealing with multiple DVs, multivariate analysis of variance can be applied to prob- 
lems when there are one or more covariates. In this case, MANOVA becomes multivariate analysis 
of covariance-MANCOVA. In the educational therapy example of Section 2.1.2.6, it might be 
worthwhile to adjust the DV scores for pretreatment differences in academic achievement and 
attention span. Here the covariates are pretests of the DVs, a classic use of covariance analysis. 
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After adjustment for pretreatlnent >cores. differences in  posttest \cores I DVs)  can be 1nnl-c clearly 
attributed to treatment (the two types of  educational therapies plus control group that make LIP 
the IV). 

In the one-way ANCOVA example of religious groups in Section 2.1.2.2, i t  might be interesting 
to test political liberalism versus conservatism and attitude toward ecology. as well as attitude toward 
abortion, to create three DVs. Here again, differences in attitudes might be associated with both dif- 
ferences in religion and differences in education (which, in turn, varies with religious affiliation). In 
the context of MANCOVA, education is the covariate. religious affiliation the IV, and attitudes the 
DVs. Differences .in attitudes among groups with different religious affiliations are assessed after 
adjustment for differences in education. 

If the IV has more than two levels, planned and post hoc comparisons are useful, with adjust- 
ment for covariates. MANCOVA (Chapter 7) is available for both the main analysis and comparisons. 

2.1.2.8 Factorial MANOVA 

Factorial MANOVA is the extension of MANOVA to designs with more than one IV and multiple 
DVs. For example, gender (a between-subjects IV) might be added to type of educational therapy 
(another between-subjects IV) with both academic achievement and attention span used as DVs. In 
this case, the analysis is a two-way between-subjects factorial MANOVA that provides tests of 
the main effects of gender and type of educational therapy and their interaction on the centroids of 
the DVs. 

Duration of therapy (3, 6, and 9 months) might be added to the design as a within-subjects IV 
with type of educational therapy a between-subjects IV to examine the effects of duration, type of 
educational therapy, and their interaction on the DVs. In this case, the analysis is a factorial 
MANOVA with one between- and one within-subjects IV. 

Comparisons can be made among margins or cells in the design, and the influence of various 
effects on combined or individual DVs can be assessed. For instance, the researcher might plan (or 
decide post hoc) to look for linear trends in ccores associated with duration of therapy for each type 
of therapy separately (the cells) or across all types of therapies (the margins). The search for linear 
trend could be conducted among the combined DVs or separately for each DV with appropriate 
adjustments for Type I error rate. 

Virtually any complex ANOVA design (cf. Chapter 3) with multiple DVs can be analyzed 
through MANOVA, given access to appropriate computer programs. Factorial MANOVA is covered 
in Chapter 7. 

it is sometimes desirable to incorporate one or more covariates into a factorial MANOVA design to 
produce factorial MANCOVA. For example, pretest scores on academic achievement and attention 
span could serve as covariates for the two-way between-subjects design with gender and type of 
educational therapy serving as IVs and posttest scores on academic achievement and attention span 
serving as DVs. The two-way between-subjects MANCOVA provides tests of gender, type of edu- 
cational therapy, and their interaction on adjusted, combined centroids for the DVs. 

Here again procedures are available for comparisons among groups or cells and for evaluating 
the influences of IVs and their interactions on the various DVs. Factorial MANCOVA is discussed in 
Chapter 7. 



2.1.2.10 PI-ojile Anuly.sis oj' Repented ,tleasiires 

A special form of PVIXNOVA is a\.ailable when all of the DVs are measured on the hame scale (01. on 
scales with the same psychon~etric properties) and you want to know if groups differ on the scales. 
For example, you might use the subscales of the Profile of Mood States as DVs to assess whether 
mood profiles differ between a group of belly dancers and a group of ballet dancers. 

There are two ways to conceptualize this design. The first is as a one-way between-subjects 
design in which the IV is the type of dancer and the DVs are the Mood States subscales; one-way 
MANOVA provides a test of the main effect of type of dancer on the combined DVs. The second way 
is as a profile study with one grouping variable (type of dancer) and the several subscales; profile 
analysis provides tests of the main effects of type of dancer and of subscales as well a s  their interac- 
tion (frequently the effect of greatest interest to the researcher). 

If there is a grouping variable and a repeated measure such as trials in which the same DV is 
measured several times, there are three ways to conceptualize the design. The first is as a one-way 
between-subjects design with several DVs (the score on each trial); MANOVA provides a test of the 
main effect of the grouping variable. The second is as a two-way between- and within-subjects 
design: ANOVA provides tests of groups, trials, and their interaction, but with some very restrictive 
assumptions that are likely to be violated. Third is as a profile study in which profile analysis pro- 
vides tests of the main effects of groups and trials and their interaction, but without the restrictive 
assumptions. This is sometimes called the multivariate approach to repeated-measures ANOVA. 

Finally, you might have a between- and within-subjects design (groups and trials) in which sev- 
eral DVs are measured on each trial. For example, you might assess groups of belly and ballet dancers 
on the Mood States subscales at various points in their training. This application of profile analysis is 
frequently referred to as doubly multivariate. Chapter 8 deals with all these forms of profile analysis. 

2.1.3 Prediction of Group Membership 

In research where groups are identified, the emphasis is frequently on predicting group membership 
from a set of variables. Discriminant analysis, logit analysis, and logistic regression are designed to 
accomplish this prediction. Discriminant analysis tends to be used when all IVs are continuous and 
nicely distributed, logit analysis when IVs are all discrete, and logistic regression when IVs are a mix 
of continuous and discrete andlor poorly distributed. 

2.1.3.1 One- Way Discriminant Analysis 

In one-way discriminant analysis, the goal is to predict membership in groups (the DV) from a set of 
IVs. For example, the researcher r~ igh t  wan: to predict category nf religious affiliation from attitude 
toward abortion, liberalism versus conservatism, and attitude toward ecological issues. The analysis 
tells us if group membership is predicted at a rate that is significantly better than chance. Or the 
researcher might try to discriminate belly dancers from ballet dancers from scores on Mood States 
subscales. 

These are the same questions as those addressed by MANOVA, but turned around. Group mem- 
bership serves as the IV in MANOVA and the DV in discriminant analysis. If groups differ signifi- 
cantly on a set of variables in MANOVA, the set of variables significar~tly predicts group membership 
in discriminant analysis. One-way between-subjects designs can be fruitfully analyzed through either 
procedure and are often best analyzed with a combination ot both procedures. 
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'4s in M.ANOV.4. there are technique\ for assessins the cuntr~but~on of varioi~\ IV\  to preci~c- 
tion of group membership. For example. the major source of discrimination among religiou~ group5 
might be abortion attitude. with little predictability contributed b j  political and ecological attitudes. 

In addition, discriminant analysis offers classification procedures to evaluate how well indi- 
vidual cases are classified into their appropriate groups on the basis of their scores on the IVs. One- 
way discriminant analysis is covered in Chapter 9. 

2.1.3.2 Sequential One- Way Discriminant Analysis 

Sometimes IVs are assigned priorities by the researcher, so their effectiveness as predictors of group 
membership is evaluated in the established order in sequential discriminant analysis. For example, 
when attitudinal variables are predictors of religious affiliation, variables might be prioritized 
according to their expected contribution to prediction, with abortion attitude given highest priority, 
political liberalism versus conservatism second priority, and ecological attitude lowest priority. 
Sequential discriminant analysis first assesses the degree to which religious affiliation is predicted 
from abortion attitude at a better-than-chance rate. Gain in prediction is then assessed with addition 
of political attitude, and then with addition of ecological attitude. 

Sequential analysis provides two types of useful information. First, it is helpful in eliminating 
predictors that do not contribute more than predictors already in the analysis. For example, if politi- 
cal and ecological attitudes do not add appreciably to abortion attitude in predicting religious affili- 
ation, they can be dropped from further analysis. Second, sequential discriminant analysis is a 
covariance analysis. At each step of the hierarchy, higher-priority predictors are covariates for lower- 
priority predictors. Thus, the analysis permits you to assess the contribution of a predictor with the 
influence of other predictors removed. 

Sequential discriminant analysis is also useful for evaluating sets of predictors. For example, 
if a set of continuous demographic variables is given higher priority than an attitudinal set in predic- 
tion of group membership, one can see if attitudes significantly add to prediction after adjustment for 
demographic differences. Sequential discriminant analysis is discussed in Chapter 9. However, it is 
usually more efficient to answer such questions through sequential logistic regression, particularly 
when some of the predictor variables are continuous and others discrete (see Section 2.1.3.5). 

2.1.3.3 Multiway Frequency Analysis (Logit) 

The logit form of multiway frequency analysis may be used to predict group membership when all 
of the predictors are discrete. For example, you might want to predict whether someone is a belly 
dancer (the DV) from knowledge of gender. occupational category, and preferred type of reading 
material (science fiction, romance, history, statistics). 

Tnis technique allows evaluation of the odds that a case is in one group (e.g., belly dancer) 
based on membership in various categories of predictors (e.g., female professors who read science 
fiction). This form of multiway frequency analysis is discussed in Chapter 16. 

2.1.3.4 Logistic Regression 

Logistic regression allows prediction of group membership when predictors are continuous, discrete, 
or a combination of the two. Thus, i t  is an alternative to both discriminant analysis and logit analy- 
sis. For example. prediction of whether someone is a belly dancer may be based on gender, occupa- 
tional category, preferred type of reading material, and age. 



X Guide to Statistical Techniques 25 

Logistic regression allows one rv evaluate the odclh (or probability) of msrnber5hip in  one o f  
the groups (e.p.. belly dancer) based on the combination of values of the predictor variable5 (e.g.. i- 
year-old female professors who read science f ction). Chapter 10 covers logistic regression analysis. 

2.1.3.5 Sequeiztial Logistic Regression 

As in sequential discriminant analysis, sometimes predictors are assigned priorities and then 
assessed in terms of their contribution to prediction of group membership given their priority. For 
example, one can assess how well preferred type of reading material predicts whether someone is a 
belly dancer affer adjusting for differences associated with age, gender, and occupational category. 
Sequential logistic regression is also covered in Chapter 10. 

2.1.3.6 Factorial Discriminant Analysis 

If groups are formed on the basis of more than one attribute, prediction of group membership from a 
set of IVs can be performed through factorial discriminant analysis. For example, respondents might 
be classified on the basis of both gender and religious affiliation. One could use attitudes toward abor- 
tion, politics, and ecology to predict gender (ignoring religion) or religion (ignoring gender), or both 
gender and religion. But this is the same problem as addressed by factorial MANOVA. For a number 
of reasons, programs designed for discriminant analysis do not readily extend to factorial arrange- 
ments of groups. Unless some special conditions are met (cf. Chapter 9), it is usually better to 
rephrase the research question so that factorial MANOVA can be used. 

2.1.3.7 Sequential Factorial Discriminant Analysis 

Difficulties inherent in factorial discriminant analysis extend to sequential arrangements of predictors. 
Usually, however, questions of interest can readily be rephrased in terms of factorial MANCOVA. 

2.1.4 Structure 

Another set of questions is concerned with the latent structure underlying a set of variables. Depend- 
ing on whether the search for structure is empirical or theoretical, the choice is principal components, 
factor analysis, or structural equation modeling. Principal components is an empirical approach, 
whcreas factor arialysis and structural equaticn modeling tend to be theoretical approaches. 

2.1.4.1 Principal Components 

If sceres or! numerous variables are available from a group of subjects, the researcher might ask if 
and how the variables group together. Can the variables be combined into a smaller number of super- 
variables on which the subjects differ? For example, suppose people are asked to rate the effective- 
ness of numerous behaviors for coping with stress (e.g., "talking to a friend," "going to a movie." 
"jogging," "making lists of ways to solve the problem"). The numerous behaviors may be empiri- 
cally related to just a few basic coping mechanisms, such as increasing or decreasing social contact, 
engaging in physical activity, and instrumental manipulation of stress producers. 

Principal components analysis uses the correlations among the variables to develop a small set 
of components that empirically summarizes the correlations among the variables. It provides a 
description of the relationship rather than a theoretical analysis. This analysis is discussed in Chap- 
ter 13. 
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2.1.4.2 Factor A~znlysis 

When there is a theory about underlyins structure or ~ h r n  the rehearcher want5 to tinderstand under- 
lying structure, factor analysis is often used. In this case, the researcher believes that responses to 
many different questions are driven by just a few underlying structures called jifilc.tors. In the exam- 
ple of mechanisms for copi'ng with stress, one might hypothesize ahead of time that there are two 
major factors: general approach to problems (escape vs. direct confrontation) and use of social sup- 
ports (withdrawing'from people vs. seeking them out). 

Factor analysis is useful in developing and assessing theories. What is the structure of person- 
ality? Are there soine basic dimensions of personality on which people differ? By collecting scores 
from many people on numerous variables that may reflect different aspects of personality, 
researchers address questions about underlying structure through factor analysis, as discussed in 
Chapter 13. 

2.1.4.3 Structural Equation Modeling 

Structural equation modeling combines factor analysis. canonical correlation, and multiple regres- 
sion. Like factor analysis, some of the variables can be latent, whereas others are directly observed. 
Like canonical correlation, there can be many IVs and many DVs. And like multiple regression, the 
goal may be to study the relationships among many variables. 

For example, one may want to predict birth outcome (the DVs) from several demographic, per- 
sonality, and attitudinal measures (the IVs). The DVs are a mix of several observed variables such as 
birth weight, a latent assessment of mother's acceptance of the child based on several measured atti- 
tudes, and a latent assessment of infant responsiveness; the IVs are several demographic variables 
such as socioeconomic status, race, and income, several latent IVs based on personality measures, 
and prebirth attitudes toward parenting. 

The technique evaluates whether the model provides a reasonable fit to the data and the con- 
tribution of each of the IVs to the DVc. Comparisons among alternative models are also posbible, as 
well as evaluation of differences between groups. Chapter 14 covers structural equation modeling. 

2.1.5 Time Course of Events 

Two techniques focus on the time course of events. Survivallfailure analysis asks how long it takes 
for something to happen. Time-series analysis looks at the change in a DV over the course of time. 

2.1.5.1 SurvivaUFailure Analysis 

Survivallfailure analysis is a family of techniques dealing with the time it takes for something to hap- 
pen: a cure, a failure, an employee leaving, a relapse, a death, and so on. For example, what is the life 
expectancy of someone diagnosed with breast cancer? Is the life expectancy longer with chemother- 
apy? Or, in the context of failure analysis, what is the expected time before a hard disk fails? Do 
DVDs last longer than CDs? 

Two major varieties of survival/failure analysis are life tables, which describe the course of 
survival of one or more groups of cases, for example, DVDs and CDs; and determination of whether 
survival time is influenced by some variables in a set. The latter technique encompasses a set of 
regression techniques in which the DV is survival time. Chapter I I covers this analysis. 
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2.1.5.2 Tirne-Series Analysis 

Time-series analysis is used when the DV is meaau~~ed over a Lery large number of time periods-at 
least 50; time is the major 1V. Time-series analysis is used to forecast future events (stock markets' 
indices. crime statistics, etc.) based on a long series of past events. Time-series analysis also is used 
to evaluate the effect of an intervention, such as implementation of a water-conservation program, by 
observing water usage for many periods before and after the intervention. Chapter 18 is available on 
the publisher's website (www.ablongman.com/tabachnick5e). 

2.2 Some Further Comparisons 

When assessing the degree of relationship among variables, bivariate r is appropriate when only two 
variables (one DV and one IV) are involved, while multiple R is appropriate when there are several 
variables on the 1V side (one DV and several IVs). The multivariate analysis adjusts for correlations 
that are likely present among the IVs. Canonical correlation is available to study the relationship 
between several DVs and several IVs, adjusting for correlations among all of them. These techniques 
are usually applied to continuous (and dichotomous) variables. When all variables are discrete, n~ul -  
tiway frequency analysis (vastly expanded chi square) is the choice. 

Numerous analytic strategies are available to study mean differences among groups, depend- 
ing on whether there is a single DV or multiple DVs, and whether there are covariates. The familiar 
ANOVA (and ANCOV.4) is used with a single DV while MANOVA (and MANCOVA) is used when 
there are multiple DVs. Essentially, MANOVA uses weights to combine multiple DVs into a new 
DV and then performs ANOVA. 

A third important issue when studying mean differences among groups is whether there are 
repeated measures (the familiar within-subjects ANOVA). You may recall the restrictive and often- 
\~iolated assumption of sphericity with this type of ANOVA. The two multivariate extensions of 
repeated-measures ANOVA (profile analysis of repeated measures and doubly multivariate profile 
analysis) circumvent this assumption by combining the DVs; MANOVA combines different DVs 
while profile analysis combines the same DV measured repeatedly. Another variation of profile 
analysis (called here profile analysis of repeated measures) is a multivariate extension of the famil- 
iar "mixed" (between-within-sub.jects) ANOVA. None of the multivariate extensions is quite as pow- 
erful as its univariate "parent." 

The DV in both discriminant analysis and logistic regression is a discrete variable. In discrimi- 
nant analysis, t'ne iVs are usuailjl coiiti i iu~fi~ vaiiables. A ccmp!icatic?n xises with discriminant analy- 
sis whea the DV h2s more than two groups because there can be as many ways to distinguish the groups 
from each other as are there are degrees of freedom for the DV. For example, if there are three levels of 
the DV, there are two degrees of freedom and therefore two potential ways to combine the IVs to sep- 
arate the levels of the DV. The first combination might, for instance, separate members of the first 
group from the second and third groups (but not them from each other); the second combination might, 
then, separate members of group two from group three. Those of you familiar with comparisons in 
ANOVA probably recognize this as a familiar process for working with more than two groups; the dif- 
ference is that in ANOVA you create the comparison coefficients used in the analysis while in discrim- 
inant analysis, the analysis tellsyou how the groups are best discriminated from each other (if they are). 

Logistic regression analyzes a discrete DV. too. but the IVs are often a mix of continuous 
and discrete variables. For that reason, the goal is to predict the probability that a case will fall into 
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various levels of  the DV rather than youp  ~nernhcrship. per \e. In thix way. the anltlya~s closely 
resenibles the familiar chi-squlu-t. analy\is. In  lozistic regreuion. as in all ~nul t i~ ;~r ia te  techniques. 
the IVs are combined, but in an exponent rather than directly. That makes the analyses conceptually 
more difficult. but well worth the effort, especially in the medical/biological sciences where risk 
ratios, a product of logistic regression, are routinely discussed. 

There are several procedures for examining structure (that become increasingly "specula- 
tive"). Two very closely aligned techniques are principal components and factor analyses. These 
techniques are interesting because there is no DV (or, for that matter, IVs). Instead, there is just a 
bunch of variables, with the goal of analysis to discover which of them "go" together. The idea is that 
some latent, underlying structure (e.g., several different factors representing components of person- 
ality) is driving similar responses to correlated sets of questions. The trick for the researcher is to 
divine the "meaning" of the factors that are developed during analysis. Principal components pro- 
vides an empirical solution while factor analysis provides a more theoretical solution. 

Structural equation modeling combines multiple regression with factor analysis. There is a DV 
in this technique, but the IVs can be both discrete and continuous, both latent and observed. That is, the 
researcher tries to predict the values on an observed DV (continuous or discrete) using both observed 
variables (continuous and discrete) and latent ones (factors derived from many observed variables dur- 
ing the analysis). Structural equation modeling is undergoing rapid development at present, with 
expansion to MANOVA-like analyses, sophisticated procedures for handling missing data, and the like. 

Multilevel modeling assesses the significance of variables where the cases are nested into dif- 
ferent levels (e.g., students nested in classes nested in schools; patients nested in wards nested in hos- 
pitals). There is a DV at the lowest (student) level, but some IVs pertain to students, some to classes, 
and some to schools. The analysis takes into account the (likely) higher correlations among scores of 
students nested in the same class and of classes nested in the same school. Relationships (regres- 
sions) developed at one level (e.g., predicting student scores on the SAT from parental educational 
level) become the DVs for the next level, and so on. 

Finally, we present two techniques for analyzing the time course of events, survival analysis and 
time-series analysis. One underlying IV for both of these is time; there may be other IVs as well. In 
survival analysis, the goal is often to determine whether a treated group survives longer than an 
untreated group given the current standard of care. (In manufacturing, it is called failure analyses, and 
the goal, for instance, is to see if a part manufactured from a new alloy fails later than the part manu- 
factured from the current alloy.) One advantage of this technique, at least in medicine, is its ability to 
analyze data for cases that have disappeared for one reason or another (moved away, gone to another 
clinic for treatment, died of another cause) before the end of the study; these are called censored cases. 

Time-series ana!ysis tracks the patiern of the DV over muitipie measurements (at least 50) and 
may or may not have an IV. If there is an IV, the goa! is to determine if the pattern seen in the DV over 
time is the same for the group in one level of the IV as for the group in the other level. The IV can be 
naturally occurring or manipulated. 

Generally, statistics are like tools-you pick the wrench you need to do the job. 

2.3 A Decision Tree 

A decision tree starting with major research questions appears in Table 2.1. For each question. choice 
among techniques depends on number of IVs and DVs (sometimes an arbitrary distinction) and 
whether some variables are usefully viewed as covariates. The table also briefly describes' analytic 
goals associated with some techniques. 



T.4BI.E 2.1 Choosing among Statistical Techniques 

Major Number (Kind) Number (Kind) 
Research of Dependent of Independent Analytic 
Question Variables Variables Covariates Strategy 

Goal of 
Analysis 

(continuous) Bivariate r combination of 11's 

None-Multiple R to optimally predict Multiple 

(continuous)< Some-Sequential multiple R 

Multiple 
Canonical R a linear combination 

of DVs with a linear 
among 
variables 

One (may be 
repeated) \ ~ , " ~ ~ P , ' ~ o u s  and 

combinations of DVs 
Multilevel modeling and IVs at one level 

discrete; cases and \ IVq are nested, 
to serve as DVs at 

b e a t e  a log-linear ' Multiple (discrete) combination of IVs --------- Multiway frequency 
to optimally predict 

analysis 
category frequencies. 

None -- 
One-way ANOVA or , One (discrete) t test Determine reliability 

One ( Some- One-way ANCOVA of mean group 
(continuous) \ None - Factorial ANOVA differences 

Multiple (discrete)< 
Some- Factorial ANCOVA 

One-way MANOVA 
,One (discrete) / None- or Hotelling's T' Create a linear --r 

Multiple \ Some- one-way M A N C O V A - ~  combination of Dvs 
continuous) 

None - Factorial MANOVA -4 to maximize mean 

Multiple (discrete) groiip differences. Significance < Some- Factorial MANCOVA 4 
of group h L 

differences 
- Multiple (one Profile analysis of 

(continuous) discrete within S) repeated measures Create linear 

I\ / combinations of DVs 

\\ Multiple I to maximize mean 

(contin~~ousl - One (discrete) Profile analysi.; group differences and 
commensurate) differences hetween 

levels of w~thin- \ Multiple - Multiple (one discrete Doubly-multivariate subjects 1Vs. 
(continuous) within S) profile analysis 
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T.4RI.E 2 .  I Continued 

Number Number 
Major (Kind) of (Kind) of 
Research Dependent Independent Analytic Goal of 
Question Variables Variables Covariates Strategy Analysis 

One-way < None - 
Multiple 
(continuous) 

/ Some - 

/ b e a t e  a log-linear 
Multiple Multiway 

,One f-- (discrete) analysis (logit) IVs to optimal1 y 
(discrete) predict DV. 

Prediction 

membership 

Of \ Multiple Logistic 
'Create a iinear \ (continuous <None- regression 
combination of 
the log of the 

and/or Sequential logistic odds of being in  
discrete) Some - 

regression one group. i 
Factorial Create a linear 

Multiple < None - 
Multiple discriminant 

(discrete) (continuous) IVs to maximize 
Some-- . 

discriminant function (DVs). 

:ion of 
lximize 
'ferences 

Multiple 
Factor analysis 

(continuous -Multiple (latent) 
(theoretical) combinations of 

observed) observed variables 

Multiple Multiple (continuous 
observed) (empirical) 

Structure 
combinations of 

Multiple , observed 2nd 

\ (continuous Multiple (continuous Structural equation latent I V ~  to 
observed obsei-ved and/or latent) modeling 1 predict linear 
and/or latent) I combinations of 

observed and 
latent DVs. L 
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T,\Bl,E 2.1 Continued 

Number N uni be r 
Major (Kind) of (Kind) of 
Research Dependent Independent Analytic Goal of 
Question Variables Variables Covariates Strategy Analysis 

I t e r m i n e  how 
Survival analysis long it  takes for 

/None - 
None - 

(life tables) something to 

One (time) 

combination of 
One or None o r  Survival analysis 
more some (with predictors) 

IVs and CVs to 

Time predict time to an 

course of 
events \ 

w e n t .  

F e d i c t  future 
None or Time-series - 

some (forecasting) basis of past 

(continuous) 
One or more \ None o r  Time-series (including - 

some (intervention) DV changes with 
time) 

The paths in Table 2.1 are only recommendations concerning an analytic strategy. Researchers 
frequently discover that they need two or more of these procedures or, even more frequently, a judi- 
cious mix of univariate and multivariate procedures to answer fully their research questions. We rec- 
ommend a tlexible approach to data analysis in which both univariate and multivariate procedures 
are used to clarify the results. 

2.4 Technique Chapters 

Chapters 5 through 16 and Chapter 18 (online), the basic technique chapters, follow a common for- 
mat. First, the technique is described and the general purpose briefly discussed. Then the specific 
kinds of questions that can be answered through application of that technique are listed. Next, both 
the theoretical and practical limitations of the technique are discussed; this section lists assumptions 
particularly associated with the technique, describes methods for checking the assumptions for your 
data set, and gives suggestions for dealing with violations. Then a small hypothetical data set is used 
to illustrate the statistical development of the procedure. Most of the data sets are deliberately silly 
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and too ma l l  to produce \~gn~ticant  differc.nce\. I t  I!; recommended that student5 f o l l o ~ ~  the matrix 
calci~lations tising a matrix algebra program available in SPSS. SXS/IhlL. or a spt-eaclshret prosram 
such as Excel or Quattro. Simple analyses by both computer packages follow. 

The next section describes the major types of the techniques, when appropriate. Then some of 
the most important issues to be considered when using the technique are covered, including special 
statistical tests, data snooping, and the like. 

The next section shows a step-by-step application of the technique to actual data gathered, as 
described in Appendix B. Because the data sets are real, large, and fully analyzed, this section is 
often more difficult than the preceding sections. Assumptions are tested and violations dealt with, 
when necessary. Major hypotheses are evaluated, and follow-up analyses are performed as indicated. 
Then a Results section is developed, as might be appropriate for submission to a professional jour- 
nal. The Results section is in APA format; we recommend close attention to the publication manual 
(APA, 2001) for advice about clarity, simplification of presentation, and the like. These Results sec- 
tions provide a model for presentation to a fairly sophisticated audience. It is a good idea to discuss 
the analysis technique and its appropriateness early in the Results section when writing for an audi- I 

ence that is expected to be unfamiliar with the technique.When more thar, one major type of tech- 
! 

nique is available, there are additional complete examples using real data. Finally, a detailed 
comparison of features available in the SPSS, SAS, and SYSTAT programs is made. 

In working with these technique chapters, it is suggested that the studentlresearcher apply the 
various analyses to some interesting large data set. Many data banks are readily accessible through 
computer installations. 

Further, although we recommend methods of reporting multivariate results, it may be inappro- 
priate to report them fully in all publications. Certainly, one would at least want to mention that uni- 
variate results were supported and guided by multivariate inference. But the details associated with 
a full disclosure of multivariate results at a colloquium, for instance, might require more attention 
than one could reasonably expect from an audience. Likewise, a full multivariate analysis may be 
more than some journals are willing to print. 

2.5 Preliminary Check of the Data 

Before applying any technique, or sometimes even before choosing a technique, you should deter- 
mine the fit between your data and some very basic assumptions underlying most of the multivariate 
statistics. Though each technique has specific assumptions as well, most require consideration of 
materiai in Chapter 4. 
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Review of Univariate 
and Bivariate Statistics 

This chapter provides a brief review of univariate and bivariate statistics. Although it is probably too 
"dense" to be a good source from which to learn, it is hoped that it will serve as a useful reminder of 
material already mastered and will help in establishing a common vocabulary. Section 3.1 goes over 
the logic of the statistical hypothesis test, and Sections 3.2, 3.3, and 3.4 skim many topics in analy- 
sis of variance and are background for Chapters 6 to 9. Section 3.5 summarizes correlation and 
regression, which are background for Chapters 5, 12, 14. and 15, and Section 3.6 summarizes chi 
square which is background for Chapters 10, 14, and 16. 

3.1 Hypothesis Testing 

Statistics are used to make rational decisions under conditions of uncertainty. Inferences (decisions) 
are made about populations based on data from samples that contain incomplete information. Dif- 
ferent samples taken from the same population probably differ from one another and from the popu- 
lation. Therefore, inferences regarding the population are always a little risky. 

The traditional solution to this problem is statistical decision theory. Two hypothetical states 
of reality are set up, each represented by a probability distribution. Each distribution represents an 
alternat~ve hypothesis about the true nature of events. Given sample results, a best guess is made as to 
which distribution the sample was taken from using formalized statistical rules to define "best." 

3 . 1  One-Sample z Test as Prototype 

Statistical decision theory is most easily illustrated through a one-sample z test, using the standard 
normal distribution as the model for two hypothetical states of reality. Suppose there is a sample of 25 
IQ scores and a need to decide whether this sample of scores is a random sample of a "normal" pop- 
ulation with p = 100 and a = 15, or a random sample from a population with p = 108 and a = 15. 

First, note that hypotheses are tested about means, not individual scores. Therefore, the distri- 
butions representing hypothetical states of reality are distributions of means rather than distributions 
of individual scores. Distributions of means produce "sampling distributions of means" that differ sys- 
tematically from distributions of individual scores: the mean of a populat~on d~stribution. j ~ .  is equal 
to the mean of a sampling distribution, ,LL, but the $tandard deviation of a population of individual 
scores, o, is not equal to the standard deviation of a sampling distribution, cry.  Sampling distributions 
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have smaller standard deviations than distributions of scores, and the decrease is related to N, the 
sample size. For the sample, then, 

The question being asked, then, is, "Does our mean, taken from a sample of size 25, come from 
a sampling distribution with py = 100 and cry = 3 or does it come from a sampling distribution with 
py = 108 and oy = 3?'Figure 3.l(a) shows the first sampling distribution, defined as the null 
hypothesis, Ho,  that is, the sampling distribution of means calculated from all possible samples of 
size 25 taken from a population where ,u = I00 and a = 15. 

The sampling distribution for the null hypothesis has a special, fond place in statistical decision 
theory because it alone'is used to define "best guess." A decision axis for retaining or rejecting Ho cuts 
through the distribution so that the probability of rejecting No by mistake is small. "Small" is defined 
probabilistically as a; an error in rejecting the null hypothesis is referred to as an a, or Type I, error. 
There is little choice in picking a. Tradition and journal editors decree that it is .05 or smaller, mean- 
ing that the null hypothesis is rejected no more than 5% of the time when it is true. 

b 

With a table of areas under the standard normal distribution (the table of z scores or standard 
normal deviates), the decision axis is placed so that the probability of obtaining a sample mean above 
that point is 5% or less. Looking up 5% in Table C.1, the z corresponding to a 5% cutoff is 1.645 
(between 1.64 and 1.65). Notice that the z scale is one of two abscissas in Figure 3.1 (a). if the deci- 
sion axis is placed where z = 1.645, one can translate from the z scale to the Y scale to properly posi- 
tion the decision axis. The transformation equation is 

Equation 3.2 is a rearrangement of terms from the z test for a single sample:' 

Applying Equation 3.2 to the example, 

The null hypothesis that the mean IQ of the sampling distribution is 100 is rejected if the mean 
IQ of the sample is equal to or greater than 104.935; call it 105. 

Frequently, this is as far as the model is taken-the null hypothesis is either retained or 
rejected. However, if the null hypothesis is rejected, it is rejected in favor of an alternative hypothe- 

'The more usual procedure for testing a hypothe\is about a single mean is to .;olve for: on the basis o f  the \ample mean and 
\tanda~-d dev~at~on to \ee ~f the \ample mean 1s \uff ic~ently far away trom the mean o f  the jarnuling di~tr ibut ion uncler the null 
hypothes~s. I f :  IS 1.645 or larger. the null hypothesis IS rejected. 
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"Ho"  / "Ha' 

CT-- = 3 Y Decision I axis 

FIGURE: 3.1 Sampling distribution for means with N = 25 
and o = 15 under two hypotheses: (a) Ho: ,u = 100 and 

(b) Ha: 11 = 108. 

sis, H,, . The alternative hypothesis is not always stated explicit~y,~ but when it is, one can evaluate 
the probability of retaining the null hypothesis when it should be rejected because H,, is true. 

This second type of error is called a P,  or Type 11, error. Because in the example the p for H,  is 
108, the sampling distribution of means for H,, can be graphed, as shown in Figure 3.1 (b). The deci- 
sion axis is placed with regard to HO,  so we need to find the probability associated with the place it 
cresses Ha.  The first step is to find z corresponding to an IQ score of 105 in a distribution with 
p~ = 108 and ~7 = 3. Applying Equation 3.3, we find that 

By looking up i = - 1.00, about 16% of the time sample means are equal to or less than 105 
when the population p = 108 and the alternative hypothesis is true. Therefore, P = .16. 

'Often, the alternative hypothesis i h  simply that the sample i s  taken from a popul,it~on that is not equal ((1 the population rep- 
resented by the null hypothesis. There is no attempt to \pecify "not equal to." 
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Ho and Hu represent a l t e rna t~~e  realit~cs. only one of which is true. When the researcher is 
forced to decide whether to retain or rzJect Ho. four things can happen. If the null hypothesis is true. 
a correct decision is made if the researcher retains Ho and an error is made if the researcher rejects it. 
If the probability of making the wrong decision is n, the probability of making the right decision is 
1 - a. If, on the other hand, H,, is true, the probability of making the right decision by rejecting Ho 
is 1 - 0. and the probability of making the wrong decision is 0. This information is summarized in a 
"confusion matrix" (aptly named, according to beginning statistics students) showing the probabili- 
ties of each of these four outcomes: 

Reality 

Ho Y,  
I 

Statistical 
"H.." 

decision I I 

For the example, the probabilities are 

Reality 

Ho Ha 

Statistical 
.'Ho7' 
"HCZ1' 

decision 

3.1.2 Power 

The lower right-hand cell of the confusion matrix represents the most desirable outcome and the 
power of the research. Usually, the researcher believes that H, is true and hopes that the sample data 
lead to rejection of Ho. Power is the probability of rejecting HO when H, is true. In Figure 3.l(b), 
power is the portion of the Ha distribution that falls above the decision axis. Many of the choices in 
designing research are made with an eye toward increasing power because research with low statis- 
tical power usually is not worth the effort. 

Figure 3.1 and Equations 3.1 and 3.2 suggest some ways to enhance power. One obvious way 
to increase power is to move the decision axis to the left. However, it cannot be moved far or Type I 
error rates reach an unacceptable level. Given the choice between .05 and .O1 for a error, though, a 
decision in favor or' .05 increases power. A second strategy is to move the curves farther apart by 
applying a stronger treatment. Other strategies involve decreasing the standard deviation of the Sam- 
pling distributions either by decreasing variability in scores (e.g., exerting greater experimental con- 
trol) or by increasing sample size, N. 

This model for statistical decisions and these strategies for increasing power generalize to 
other sampling distributions and to tests of hypotheses other than a single sample mean against a 
hypothesized population mean. 

There is occasionally the danger of too much power: The null hypothesis is probably never 
exactly true and any sample is likely to be slightly different from the population value. With a large 
enough sample, rejection of Ho is virtually certain. For that reason, a "minimal meaningful differ- 
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rnce" and acceptable effect s ~ l e  should guide the selection of ,ampie size (K~rk.  1995 j .  The \ample 
size should be large enough to be likely to reveal a minimal meaningful ciit'ferencc. Rejection of the 
null hypothesis may be trivial if the sample is large enough to reveal any difference whatever. This 
issue is considered further in Section 3.4. 

3.1.3 Extensions of the Model 

The 2 test for the difference between a sample mean and a population mean readily extends to a z test 
of the difference.between two sample means. A sampling distribution is generated for the difference 
between means under the null hypothesis that p,  = p, - and is used to position the decision axis. The 
power of an alternative hypothesis is calculated with reference to the decision axis, just as before. 

When population variances are unknown, it is desirable to evaluate the probabilities using Stu- 
dent's t rather than z, even for large samples. Numerical examples of use of t to test differences 
between two means.are available in most univariate statistics books and are not presented here. The 
logic of the process, however, is identical to that described in Section 3.1.1. 

3.1.4 Controversy Surrounding Significance Testing 

While the statistical significance test is pervasive in the social sciences, its use is not without con- 
troversy. The latest round of arguments against use of statistical significance testing began with an 
article by Carver in 1978, updated in 1993. In these articles, Carver argues that the significance test, 
used by itself. does not answer most research questions. These articles, and many others in a rather 
large literature, are summarized by McLean and Ernest (1998). The significance test, they assert, 
tells whether the result was likely obtained by chance, but does not convey information about the 
practical importance of the difference (effect size), the quality of the research design, the reliability 
and validity of the measures, the fidelity of the treatment, and whether the results are replicable. 
Thus, a significance test is properly only one among many criteria by which a finding is assessed. 

Because of the controversy, the Task Force on Statistical Inference was convened by the Amer- 
ican Psychological Association in 1996 and produced a final report in 1999 (Wilkinson et al., 1999). 
In it, the authors stress the importance of the factors listed above, along with the importance of data 
screening prior to analysis. Like those who oppose use of statistical significance testing, they urge 
reporting effect size, and particularly confidence intervals around effect size estimates. We take this 
recommendation to heart in the chapters that follow and try to provide guidance regarding how that 
is to be accomp!ished. Another approach (Cummings and Finch, 2005) involves plots of means with 
error bars as a way of accomplishing statistical inference by eye. They propose "7 rules of eye to 
guide the inferential use of figures with error bars" (p. 170). 

3.2 Analysis of Variance 

Analysis of variance is used to compare two or more means to see if there are any statistically sig- 
nificant differences among them. Distributions of scores for three hypothetical samples are provided 
in  Figure 3.2. Analysis of variance evaluates the differences among means relative to the dispersion 
in the sampl~ng distributions. The null hypothesis is that j ; ,  = ,LL._ = . . .  = ,uk as estimated from - - - 
Y 1 2  = Y = . . . = Yk, with k equal to the number of means being compared. 
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YI F'* Y3 
Score on Y 

FIGURE 3.2 Idealized frequency distribution of 
three samples and their means. 

Analysis of variance (ANOVA) is really a set of analytic procedures based on a comparison of 
two estimates of variance. One estimate comes from differences among scores within each group; 
this estimate is considered random or error variance. The second estimate comes from differences in 
group means and is considered a reflection of group differences or treatment effects plus error. If 
these two estimates of variance do not differ appreciably, one concludes that all of the group means 
come from the same sampling distribution of means, and that the slight differences among them are 
due to random error. If, on the other hand, the group means differ more than expected, it is concluded 
that they were drawn from different sampling distributions of means, and the null hypothesis that the 
means are the same is rejected. 

Differences among variances are evaluated as ratios, where the variance associated with dif- 
ferences among sample means is in the numerator, and the variance associated with error is in the 
denominator. The ratio between these two variances forms an F distribution. F distributions change 
shape depending on degrees of freedom in both numerator and denompinator of the F ratio. Thus, 
tables of critical F; for testing the null hypothesis, depend on two degree-of-freedom parameters (cf. 
Appendix C, Table C.3). 

The many varieties of analysis of variance are conveniently summarized in terms of the parti- 
tion of sums of squares, that is, sums of squared differences between scores and their means. A sum 
of squares (SS) is simply the numerator of a variance, s2. 

The square root of variance is standard deviation, S,  the measure of variability that is in the 
metric of the original scores. 
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3.2.1 One-Way Between-Subjects ANOVA 

DV scores appropriate to one-way between-subjects ANOW uith zq~ual , I  arc: presenteci in a table. 
with k columns representing groups (levels of the IV) and 1 1  scores within each group.3 T ~ b l e  3.1 
shows how subjects are assigned to groups within this design. 

Each column has a mean, 1;;. , where j = 1 ,  2,. . ., k levels of treatment. Each score is designated 
.I 

Y.., where i = 1, 2,. . ., rz scores within each treatment. Each case provides a single score on the DV. 
'J 

The symbol GM represents the grand mean of all scores over all groups. 
The difference between each score and the grand mean (qj - GM) is considered the sum of 

two component differences, the difference between the score and its own group mean and the differ- 
ence between that mean and the overall mean. 

This result is'achieved by first subtracting and then adding the group mean to the equation. Each 
term is then squared and summed separately to produce the sum of squares for error and the sum of 
squares for treatment, respectively. The basic partition holds because, conveniently, the cross-product 
terms produced by squaring and summing cancel each other out. Across all scores, the partition is 

Each of these terms is a sum of squares (SS)-a sum of squared differences between scores 
(with means sometimes treated as scores) and their associated means. That is, each term is a special 
case of Equation 3.5. 

The term on the left of the equation is the total sum of squared differences between scores and 
the grand mean, ignoring groups wilh which scores are associaled, designated SStotal. The first term 
on the right is the sum of squared devlatlons between each score and its group mean. When summed 
over all groups, it becomes the sum of squares within groups, SSWg. The last term is the sum of 

TABLE 3.1 Assignment of Subjects in a One-Way 
Between-Subjects ANOVA 

I Treatment I 

"Throughout the book. tt i \  used t'or .;ample slze w l t h~n  a single g ~ o u p  ,)r- cell. ~ n d  h' I i~sed fol. total sample \ i r e  
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\q~~iu-ed deviations between each :roup mean and the grand mean. the sum of q u a r e  hetween 
groups. SS),,. Ecluation .3.8 is also symbolized as 

SS,, ,,, = ss,,., -i- ss,, (3.9) 

Degrees of freedom in ANOVA partition the same way as sums of squares: 

Total degrees of freedom are the number of scores minus 1. The 1 df is lost when the grand 
mean is estimated. Therefore, 

Within-groups degrees of freedom are the number of scores minus k, lost when the means for 
each of the k groups are estimated. Therefore, 

Between-groups degrees of freedom are k "scores" (each group mean treated as a score) minus 
1, lost when the grand mean is estimated, so that 

Verifying the equality proposed in Equation 3.10, we get 

As in the partition of sums of squares, the term associated with group means is subtracted out of the 
equation and then added back in. 

Another common notation for the partition of Equation 3.7 is 

as shown in Table 3.2(a). In this notation, the total sum of squares is partitioned into a sum of squares 
due to the k groups, S S K  , and a sum of squares due to subjects within the groups, SSs(,]. (Netice that 
the order of terms on the right side of the equation is the reverse of that in Equation 3.9.) 

TABLE 3.2 Partition of Sums of Squares and Degrees of Freedom for Several ANOVA Designs 

(a) One-way between-subjects ANOVA 



TAR1.E 3.2 Continued 

(c) One-way within-subjects ANOVA 

S S ~  S S~ SS,, 
d f = k -  1, .s -  1, (s- l ) ( k -  I) 

(d) One-way matched-randomized ANOVA 

Ttota' i 

(e) Factorial within-subjects ANOVA 

A SSB SSAB SSs S S SA SSSB S S s ~ ~  
df = ( I -  I .  6 -  1, (a-  I -  I )  s- I ,  (s- i)(a- I), (A - l ) (h -  I ) ,  ( 5 -  i)(a- I ) @ - -  1 )  

(0 Mixed within-between-subjects ANOVA 

;st 

- 
SS, S s s , ~ . ,  SST SSGT SSTS 

"For all SS ,,,,;,,, df = N - I 



42 C H A P T E R  3 

The di~ision of a \ L I I I ~  of \qu;~rc\ by degrees of freedom produces variance, called mean square 
( M S ) ,  in  ANOVA. Variance. then. I S  1111 "average" sum of squareh. XNOVX produces three ~ariances: 
one associated with total variab~lity among scores.  IS,,,,,: one associated with variability within 
groups, MS,,., or MSSS.(K); and one associated with variability between groups, MShR or MSK. MSK 
and MSsS.(K, provide the variances for an F ratio to test the null hypothesis that ,u, = , L L ~  = ... = P k  : 

Once F is computed, it is tested against critical F obtained from a table, such as Table C.3, with 
numerator df = k - 1 and denominator df = N - k at a desired alpha level. If obtained F exceeds 
critical F: the null hypothesis is rejected in favor of the hypothesis that there is a difference among 
the means in the k groups. 

Anything that increases obtained F increases power. Power is increased by decreasing the error 
variability or increasing the sample size in the denominator (MSs(K)) or by increasing differences 
among means in the numerator (MSK). 

3.2.2 Factorial Between-Subjects ANOVA 

If groups are formed along more than one dimension, differences among means are attributable to 
more than one source. Consider an example with six groups, three of women and three of men, in 
which the DV is scores on a final examination in statistics. One source of variation in means is due 
to gender, SSG. If the three groups within each gender are exposed to three different methods of 
teaching statistics, a second source of differences among means is teaching method, SST. The final 
source of known differences among means is the interaction between gender and teaching methods, 
SSGT. The interaction tests whether effectiveness of teaching methods varies with gender. 

Allocation of subjects in this design is shown in Table 3.3. Sums of squares and degrees of 
freedom are part~t~oned as In Table 3.2(b). Error is estimated by variation in scores within each of the 
six cells, SSS(GT). Three null hypotheses are tested using the F distribution. 

The first test asks if means for men and women are likely to have come from the same sam- 
pling distribution of means. Scores are averaged across teaching methods to eliminate that source of 
variability. Gender differences are tested in the F ratio: 

Rejection of the null hypothesis supports an interpretation of differences between women and men 

in performance on the final exam. 
The second test asks if means from the three teaching methods are likely to have come from 

the same sampling distribution of means, averaged across women and men. This is tested as 

Rejection of the null hypothes~s supports an interpretation of differences in effectiveness of the three 
teaching methods. 
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TABLE 3.3 Assignment of Subjects in 
a Factorial Between-Sub,jects Design 

Teaching 
Techniques 

The third test asks if the cell means, the means for women and the means for men within each 
teaching method, are likely to have come from the same sampling distribution of difS"erences between 
means. 

GI 
Gender 

G2 

Rejection of the null hypothesis supports an interpretation that men and women differ regarding the 
most effective teaching methods. 

In each case, the estimate of normally occurring variability in test scores, error, is MSs(Gr), or 
within-cell variance. In each case, critical F is read from a table with appropriate degrees of freedom 
and desired alpha. and if obtained F (Equation 3.16, 3.17, or 3.18) is greater than critical I;: the null 
hypothesis is rejected. When there is an equal number of scores in each cell, the three tests are inde- 
pendent (except for use of a common error term): the test of each main effect (gender and teaching 
method) is not related to the test of the other main effect or the test of the interaction. 

In a one-way between-subjects design (Section 3.2. I), k - 1 degrees of freedom are used to 
test the null hypothesis of differences among groups. If k is equal to the number of cells in a two-way 
design, tests of G, and GT use up the k - 1 degrees of freedom. With proper partitioning, then, of 
a two-way factorial design, you get three tests for the price of one. 

With higher-order "ui~een-subjects f~ctoria! designs. variation due to differences among 
groups is pxtitiened into main effects for each IV, two-way interactions between each pair of IVs, 
three-way interactions among each trio of IVs, and so on. In any between-subjects factorial design, 
error sum of squares is the sum of squared differences within each cell of the design. 

3.2.3 Within-Subjects ANOVA 

I 

s3 

s4 

In some designs, the means that are tested are derived from the same subjects measured on different 
occasions, as shown in Table 3.4, rather than from different groups of ~ u b j e c t s . ~  In these designs, 

'This design is also called repeated measures, one \core per cell, randomized  block^ matched-randomized changeover. or 
crossover. 

s5 

S6 

s7 

S8 

s9 

Sl, 

Sl I 

s,, 



44 C H A P T E R  3 

T.AB1.E 3.4 Assigtlmerlt of Sub,jects in a 
One-Way Within-Subjects Design 

Treatment 

K ,  K2 K3 

computation of sum of squares and mean square for the effect of the IV is the same as for the 
between-subject designs. However, the error term is further partitioned into individual differences 
due to subjects, SS,, and interaction of individual differences with treatment, SSsK Because sub- 
jects are measured repeatedly, their effect as a source of variability in scores is estimated and sub- 
tracted from SSs(K), the error term in a corresponding between-subjects design. The interaction of 
individual differences with treatment, MSSK, is used as the error term: 

The partition of sums of squares for a one-way within-subjects design with k levels is shown in Table 
3.2(c). where s is the number of subjects. 

MSsK i s  used as the error term because once SSS is subtracted, no variation is left within cells 
of the design-there is, in fact, only one score per cell. The interaction of individual differences with 
treatment is all that remains to serve as an estimate of error variance. If there are individual differ- 
ences among subjects in scores, and if individuals react similarly to the IV, the interaction is a good 
estimate of error. Once individual differences are subtracted, the error term is usually smaller than 
the error term in a corresponding between-subjects design, so the within-subjects design is more sen- 
sitive than the between-subjects design. 

But if there are no consistent individual differences in  score^,^ or if there is an interaction 
between subjects and treatment, the error term may be larger than that of a between-subjects design. 
The statistical test is then conservative. it is more difficult to reject the nul! hypethesis of no differ- 
ence between means, and the power of the test is reduced. Because Type I error is unaffected, the sta- 
tistical test is not in disrepute, but, in this case, a within-subjects design is a poor choice of research 
design. 

A within-subjects analysis is also used with a matched-randomized blocks design, as shown in 
Table 3.5 and Table 3.2(d). Subjects are first matched on the basis of variables thought to be highly 

' ~ o t i c e  that the degrees of freedom for error. (k  - I )(s - I ) .  are fewer than in the between-subjects design. Unless the reduc- 
tion in  error variance due to \~~btract ion of SSS i s  \i~bstantial, the losz of degrees of freedom ma) overcome the gain due to 
mailer SS when I S  computed. 
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related to the DV. Subject.; are then divided into blocks. with as many subjects with111 each bluch a, 
there are levels of the IV. Finally, members of each block are randomly assigned to levels of the IV. 
Although the subjects in each block are actually different people. they are treated statistically as if 
they were the same person. In the analysis, there is a test of the IV, and a test of blocks (the same as 
the test of subjects in the within-subjects design), with the interaction of blocks and treatment used 
as the error term. Because matching is used to produce consistency in performance within blocks and 
the effect of blocks is subtracted from the error term, this design should also be more sensitive than 
the between-subjects design. It will not be, however, if the matching fails. 

Factorial 'within-subjects designs, as shown in Table 3.6, are an extension of the one-way 
within-subjects design. The partition of a two-way within-subjects design is in Table 3.2(e). 

In the analysis, the error sum of squares is partitioned into a number of "subjects-by-effects" 
interactions just as the sum of squares for effects is partitioned into numerous sources. It is common 
(though not universal) to develop a separate error term for each F test; for instance, the test of the 
main effect of A is . 

For the main effect of B, the test is 

and for the interaction, 

For higher-order factorial designs, the partition into sources of variability grows prodigiously, 
with an error term developed for each main effect and interaction tested. 

TABLE 3.5 Assignment of Subjects in 
a Matched-Randomized Design' 

TABLE 3.6 Assignment of Subjects in a 
Factnria! Within-Subjects Design 

Treatment Treatment A 

Bl 
Blocks B2 

"Where subjects in the wme block have been 
matched on some relevant variable 

Bl 
S I  Sl Sl 

Treatment B s2 s2 s2 

8 2  
Sl Sl 

S,  s2 S2 
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There is controversy in hithin-subject analyses concerning conwrvatism of the F tests and 
whether separate error terms should be used. In addiri~n, i f  the repeated measurements are on single 
subjects. there are often carry-over effects that limit generalizability to situations where subjects are 
tested repeatedly. Finally, when there are more than two levels of the IV. the analysis has the assump- 
tion of sphericity. One component of sphericity-homogeneity of covariance-roughly speaking, is 
the assumption that subjects "line up" in scores the same for all pairs of levels of the IV. If some pairs 
of levels are close in time (e.g., trial 2 and trial 3) and other pairs are distant in time (e.g., trial 1 and 
trial lo), the assumption is often violated. Such violation is serious because Type I error rate is 
affected. Sphericity is discussed in greater detail in Chapters 7 and, especially, 8, and in Tabachnick 
and Fidell (2006) and Frane (1980). 

For these reasons, within-subjects ANOVA is sometimes replaced by profile analysis, where 
repetitions of DVs are transformed into separate DVs (Chapter 8) and a multivariate statistical test is 
used. 

3.2.4 Mixed Between-Within-Subjects AN OVA^ 
Often in factorial designs, one or more IVs are measured between subjects, whereas other IVs are 
measured within subjects.' The simplest example of the mixed between-within-subjects design 
involves one between-subjects and one within-subjects IV, as shown in Table 3.7.8 

To show the partition, the total SS is divided into a source attributable to the between-subjects 
part of the design (Groups), and a source attributable to the within-subjects part (Trials), as shown in 
Table 3.2(f). Each source is then further partitioned into effects and error components: between- 
subjects into groups and subjects-within-groups error term; and within-subjects into trials, the 
group-by-trials interaction; and the trial-by-subjects-within-groups error term. 

TABLE 3.7 Assignment of Subjects in 
a Between-Within-Subjects Design 

Trials 

6 ~ h i s  design is also called a split-plot, repeated-measures, or randomized-block factorial design. 

'Mixed designs can also have "blocks" rather than repeated measures on individual subjects as the within-subjects segment 
of the design. 

XWhen the between-subjects variables are based on naturally occumng differences amonp subjects (e.g., age. sex). the design 
I S  said to be "blocked" on the subject variables. This IS a different use of the term blocks from that of the preceding section. In 
a mixed design, both kinds uf blocking can occur. 
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As more between-sub-iects IVs are added. between-subjects main effects and ~ntrracrionh 
expand the between-subjects part of the partition. For all the between-subjects effects. there is a sin- 
gle error term consisting of variance among s~~bjec ts  contined to each combination of the between- 
subjects IVs. As more within-subjects IVs are added, the within-subjects portion of the design 
expands. Sources of variability include main effects and interactions of within-subjects IVs and 
interactions of between- and within-subjects IVs. Separate error terms are developed for each source 
of variability in the within-subjects segment of the d e ~ i g n . ~  

Problems associated with within-subjects designs (e.g., homogeneity of covariance) carry over 
to mixed designs, and profile analysis is sometimes used to circumvent some of these problems. 

3.2.5 Design Complexity 

Discussion of analysis of variance has so far been limited to factorial designs where there are equal 
numbers of scores in each cell, and levels of each IV are purposely chosen by the researcher. Several 
deviations from these straightforward designs are possible. A few of the more common types of 
design complexity are mentioned below, but the reader actually faced with use of these designs is 
referred to one of the more complete analysis of variance texts such as Brown et al. (1991), Keppel 
& Wickens (2004), Myers and Well (2002), and Tabachnick and Fidell(2007). 

3.2.5.1 Nesting 

In between-subjects designs, subjects are said to be nested within levels of the IV. That is, each sub- 
ject is confined to only one level of each IV or combination of IVs. Nesting also occurs with IVs 
when levels of one IV are confined to only one level of another IV, rather than factorially crossing 
over the levels of the other IV. 

Take the example where the IV is various levels of teaching methods. Children within the 
same classroom cannot be randomly assigned to different methods but whole classrooms can be 
so assigned. The design is one-way between-subjects where teaching methods is the IV and class- 
rooms serve as subjects. For each classroom, the mean score for all children on the test is obtained. 
and the means serve as DVs in one-way ANOVA. 

If the effect of classroom is also assessed, the design is nested or hierarchical, as shown in 
Table 3.8(a). Classrooms are randomly assigned to and nested in teaching methods, and children are 
nested in classrooms. The error term for the test of classroom is subjects within classrooms and 
teaching method, ar,d the error t e r n  for the test of teaching method is classrooms within teaching 
technique. Nested models also are analyzed through multilevel modeling (Chapter 15). 

3.2.5.2 Latin-Square Designs 

The order of presentation of levels of an IV often produces differences in the DV. In within-subjects 
designs, subjects become practiced or fatigued or experiment wise as they experience more levels of 
the IV. In between-subjects designs, there are often time-of-day or experimenter effects that change 

4.. Subjects" arc no longer available us ahource of vnrlance for ~naly\is .  Because subjects are confined to levels of the between- 
subjects variable(s), differences between subjects in each group are used to estin~ate error f o r  testing variance associated with 
between-subjects variables. 
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T.ARI,E 3.8 Some Complex .%NO\,A Designs 

(a )  ,Vested designs ( 6 )  Latirz-square designs" 

Teaching Techniques Order 

Classroom 1 Classroom 2 Classroom 3 

Classroom 4 Classroom 5 Classroom 6 

'Classroom 7 Classroom 8 Classroom 9 

"Where the three levels of treatment A are experienced by different subjects in different orders, as indicated. 

scores on the DV. To get an uncontam~nated look at the effects of the IV, it is important to  counter- 
balance the effects of increasing experience, time of day, and the like, so that they are independent of 
levels of the IV. If the within-subjects IV is something like trials, counterbalancing is not possible 
because the order of trials cannot be changed. But when the IV is something like background color 
of slide used to determine if background color affects memory for material on the slide, a Latin- 
square arrangement is often used to control order effects. 

A Latin-square design is shown in Table 3.8(b). If A ,  is a yellow background, A2 a blue back- 
ground, and A j  a red background, then subjects are presented the slides in the order specified by the 
Latin square. The first subject is presented the slide with the blue background, then yellow, then red. 
The ~econd  subject is presented with yellow, then red, then blue, and so on. The yellow slide ( A l )  

appears once in first position. once in second, and once in third, and so on for the other colors, so that 
order effects are distributed evenly across the levels of the IV. 

The simple design of Table 3.8(b) produces a test of the IV (A), a test of subjects (if desired), 
and a test of order. The effect of order (like the effect of subjects) is subtracted out of the error term, 
leaving it smaller than it is when order effects are not analyzed. The error term itself is composed of 
fragments of interactions that are not availahe for analysis because effects are not fully crossed in 
the design. Thus, the design is more sensitive than a comparable between-subjects design when there 
are order effects and no interactions and less sensitive when there are no order effects but there are 
interactions. Consult Tabachnick anc! Fidell (2007) e r  ene of the other ANC'VA texts for greater 
detail on this fascinating topic. 

3.2.5.3 Unequal n and Nonorthogonality 

In a simple one-way between-subjects ANOVA, problems created by unequal group sizes are rela- 
tively minor. Computation is slightly more difficult, but that is no real disaster, especially if analysis 
is by computer. However, as group sizes become more discrepant, the assumption of homogeneity of 
variance is more important. If the group with the smaller n has the larger variance, the F test is too 
liberal, leading to increased Type I error rate and an intlated alpha level. 

In factorial designs with more than one between-subjects IV, unequal sample sizes in each cell 
create difticulty in computation and ambiguity of results. With unequal tz, a factorial design is 
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nonorthogonal. Hypotheses about main egects and interact~onb are not independent. and \i111ls ot' 
squares are not additive. The various sources of variability contain overlapping variance. and the 
same variance can be attributed to more than one source, as discussed in Chapter 1. If effects are 
tested without taking the overlap into account, the probability of a Type I error increases because sys- 
tematic variance contributes to more than one test. A variety of strategies are available to deal with 
the problem, none of them completely satisfactory. 

The simplest strategy is to randomly delete cases from cells with greater n until all cells are 
equal. If unequal n is due to random loss of a few subjects in an experimental design originally set up 
for equal n, deleTion is often a good choice. An alternative strategy with random loss of subjects in an 
experimental design is an unweighted-means analysis, described in Chapter 6 and ANOVA textbooks 
such as Tabachnick and Fidell(2007). The unweighted-means approach has greater power than ran- 
dom deletion of cases and is the preferred approach as long as computational aids are available. 

But in nonexperimental work, unequal n often results from the nature of the population. Dif- 
ferences in sample.sizes reflect true differences in numbers of various types of subjects. To artifi- 
cially equalize n is to distort the differences and lose generalizability. In these situations, decisions 
are made as to how tests of effects are to be adjusted for overlapping variance. Standard methods for 
adjusting tests of effects with unequal n are discussed in Chapter 6. 

3.2.5.4 Fixed and Random Effects 

In all the ANOVA designs discussed so far, levels of each IV are selected by the researchers on the 
basis of their interest in testing significance of the IV. This is the usual fixed-effects model. Some- 
times, however, there is a desire to generalize to a population of levels of an IV. In order to general- 
ize to the population of levels of the IVs, a number of levels are randomly selected from the 
population, just as subjects are randomly selected from the population of subjects when the desire is 
to generalize results to the population of subjects. Consider, for example, an experiment to study 
effects of word f a m i ~ i a r i t ~ ' ~  on recall where the desire is to generalize results to all levels of word 
familiarity. A finite set of familiarity levels is randomly selected from the population of familiarity 
levels. Word familiarity is considered a random-effects IV. 

The analysis is set up so that results generalize to levels other than those selected for the exper- 
iment-generalize to the population of levels from which the sample was selected. During analysis, 
alternative error terms for evaluating the statistical significance of random-effects TVs are used. 
Although computer programs are available for analysis of random-effects IVs, use of them is fairly 
rare. The interested reader is referred to one of the more sophisticated ANOVA texts, such as Tabach- 
nick and Fidell(2007) or Brown et al. (i99i), for a full discussioa of the raxdcm-effects nodel  

3.2.6 Specific Comparisons 

When an IV has more than one degree of freedom (more than two levels) or when there is an inter- 
action between two or more IVs, the overall test of the effect is ambiguous. The overall test, with 
k - 1 degrees of freedom, is pooled over k - 1 single-degree-of-freedom subtests. If the overall test 
is significant, so usually are one or more of the subtests, but there is no way to tell which one(s). To 
find out which single-degree-of-freedom subtests are significant, comparisons are performed. 

loword fa~niliarity is usually operationallzed by frequency of usage of words in the English language. 



50 C H A P T E R  3 

In analysis. degrees of frzeciorii are be\t thought  ot a\  ;I nonrenewable re\out.ci. The) dre ana- 
lyzed once with conventional alpha levels. but further analjieh requirc very stringent alpha le~~zls .  
For this reason, the best strategy is to pl~un the analjhih verb carefully so th;~t the [nost interesting 
comparisons are tested with conventional alpha levels. Unexpected iindings or less interesting 
effects are tested later with stringent alpha levels. This is the strategy used by the researcher who has 
been working in an area for a while and knows precisely what to look for. 

Regrettably, research is often more tentative; so the researcher "spends" the degrees of freedom 
on omnibus (routine) ANOVA testing main effects and interactions at conventional alpha levels and 
then snoops the single-degree-of-freedom comparisons of significant effects at stringent alpha levels. 
Snooping through data after results of ANOVA are known is called conductirzg post lzoc conlpnrisons. 

We present here the most flexible method of conducting comparisons, with mention of other 
methods as they are appropriate. The procedure for conducting comparisons is the same for planned 
and post hoc comparisons up to the point where an obtained F is evaluated against a critical F 

3.2.6.1 Weighting Coefficients for Comparisons 

Comparison of treatment means begins by assigning a weighting factor (wj to each of the cell or mar- 
ginal means so the weights reflect your null hypotheses. Suppose you have a one-way design with k 
means and you want to make comparisons. For each comparison, a weight is assigned to each mean. 
Weights of zero are assigned to means (groups) that are left out of a comparison, although at least 
two of the means must have nonzero weights. Means that are contrasted with each other are assigned 
weights with opposite signs (positive or negative) with the constraint that the weights sum to zero, 
that is, 

- - -  
For example, consider an IV with four levels, producing Yl, Y,, Y3, and q. If you want 

to test the hypothesis that pi - ,L[- = 0, weighting coefficients are 1, 0, - !, 0, producing - - 17 + 07 + (- I)& + OY,. Y2 and <are left out while TI is compared with Y3. Or if you want to test 
the null hypothesis that ( p ,  + ,u,)/2 - ,u3 = 0 (to compare the average of means from the first two 
groups with the mean of the third group leaving out the fourth group), weighting coefficients are 1/2, 
1/2, - 1 , 0  (or any multiple of them, such as 1, 1, -2, O), respectively. Or if you want to test the null 
hypothesis that (,ul + ,u,)/2 - ( p 3  + ,u4)/2 = 0 (to compare the average mean of the first two 
groups with the average mean of the last two groups), the weighting coefficients are 1/2, 1/2, - 1/2, 
- 1/2 (er 1, 1, -!, - 1). 

The idea behind the test is that the sum of the weighted means is equal to zero when the null 
hypothesis is true. The more the sum diverges from zero, the greater the confidence with which the 
null hypothesis is rejected. 

3.2.6.2 Orthogonality of Weighting Coefficients 

In a design with an equal number of cases in each group, any pair of comparisons is orthogonal if the 
sum of the cross-products of the weights for the two comparisons is equal to zero. For example. in 
the following three comparisons. 
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Comparison I 1 -- I 0 

Comparison 2 1/2 1/2 - 1 

Comparison 3 1 0 - 1  

the sum of the cross-products of weights for comparison 1 and comparison 2 is 

(1>(1/2) + (- 1)(1/2) + (())(-I) = 0 

Therefore, the two comparisons are orthogonal. 
Comparison 3, however, is orthogonal to neither of the first two comparisons. For instance, 

checking it against comparison 1, 

In general, there are as many orthogonal comparisons as there are degrees of freedom. Because 
k = 3 in the example, df = 2. There are only two orthogonal comparisons when there are three lev- 
els of an IV, and only three orthogonal comparisons when there are four levels of an IV. 

There are advantages to use of orthogonal comparisons, if they suit the needs of the research. 
First, there are only as many of them as there are degrees of freedom, so the temptation to "over- 
spend" degrees of freedom is avoided. Second, orthogonal comparisons analyze nonoverlapping 
variance. If one of them is significant, it has no bearing on the significance of another of them. Last, 
because they are independent, if all k - 1 orthogonal comparisons are performed, the sum of the sum 
of squares for the comparisons is the same as the sum of squares for the IV in omnibus ANOVA. That 
is, the sum of squares for the effect has been completely broken down into the k - 1 orthogonal com- 
parisons that comprise it. 

3.2.6.3 Obtained F for Comparisons 

Once the weighting coefficients are chosen, the following equation is used to obtain F for the com- 
parison if sample sizes are equal in each group: 

where n, = the number of scores in each of the means to be compared, 

(x ~ ~ 7 ) ~  = the squared sum of the weighted means, 

w,? = the sum of the squared coefficients. 

MS,,,,, = the mean square for error in the ANOVA. 

The numerator of Equation 3.23 is both the sum of squares and the mean square for the comparison 
because a comparison has only one degree of freedom. 
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For factorial designs. coniparixons are done on e~ther marginal or cell tne;ins, corresponding Lo 
comparisons on main effects and interactions, respectively. The number of scores per mean and the 
error term follow from the ANOVA design used. However. if comparisons art: made on within- 
subjects effects, i t  is customary to develop a separate error term for each comparison. just as separate 
error terms are developed for omnibus tests of within-subjects IVs. 

Chapter 6 has much more information on comparisons of both main effects and interactions, 
including syntax for performing them through some of the more popular computer programs. 

Once you have obtained F for a comparison, whether by hand calculation or computer, the 
obtained F is compared with critical F to see if it is statistically reliable. If obtained F exceeds criti - 
cal E the null hypothesis for the comparison is rejected. But which critical F is used depends on 
whether the comparison is planned or performed post hoc. 

3.2.6.4 Critical F for Planned Comparisons 

If you are in the enviable position of having planned your comparisons prior to data collection, and 
if you have planned no more of them than you have degrees of freedom for effect, critical F is 
obtained from the tables just as in routine ANOVA. Each comparison is tested against critical F at 
routine alpha with one degree of freedom in the numerator and degrees of freedom associated with 
the MS,,,,, in the denominator. If obtained F is larger than critical E the null hypothesis represented 
by the weighting coefficients is rejected. 

With planned comparisons, omnibus ANOVA is not performed;" the researcher moves 
straight to comparisons. Once the degrees of freedom are spent on the planned comparisons, how- 
ever, it is perfectly acceptable to snoop the data at more stringent alpha levels (Section 3.2.6.5), 
including main effects and interactions from omnibus ANOVA if they are appropriate. 

Sometimes, however, the researcher cannot resist the temptation to plan more comparisons 
than dezrees of freedom for effect. When there are too many tests, even if comparisons are planned, 
the a level across all tests exceeds the a level for any one test and some adjustment of a for each test 
is needed. It is common practice to use a Bonferroni-type adjustment where slightly more stringent 
a levels are used with each test to keep a across all tests at reasonable levels. For instance, when 5 
comparisons are planned, if each one of them is tested at a = .01, the alpha across all tests is an 
acceptable .05 (roughly .O1 times 5 ,  the number of tests). However, if 5 comparisons are each tested 
at a = .05, the alpha across all tests is approximately .25 (roughly .05 times 5)-unacceptable by 
most standards. 

If you want to keep overall a at, say, . lo ,  and you have 5 tests to perform, you can assign each 
of them a = .02, or you can assign two of them a = .!I4 with the other three eval~ated at a = .G:, for 
an overall Type I error rate of roughly .11. The decision about how to apportion a through the tests is 
also made prior to data collection. 

As an aside, it is important to realize that routine ANOVA designs with numerous main effects 
and interactions suffer from the same problem of inflated Type I error rate across all tests as planned 
comparisons where there are too many tests. Some adjustment of alpha for separate tests is needed 
in big ANOVA problems as well, if all effects are evaluated even if the tests are planned. 

' ' Y ~ L I  might perform rout~ne IINOVIZ to compute the crrot terrrl(5) 
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3.2.6.5 Critical F for Post Hoc Cor~zpa.risotzs 

If you are unable to plan your comparisons and choose to start with routine ANOVA instead. you 
want to follow up significant main effects (with more than two levels) and interactions with post hoc 
comparisons to find the treatments that are different from one another. Post hoc comparisons are 
needed to provide adjustment to a level because of two considerations. The first is that you have 
already spent your degrees of freedom, and your "cheap" cr level, conducting routine ANOVA; there- 
fore, you run into rapidly increasing overall error rates if you conduct additional analyses without 
adjustment. Second, you have already seen the means, and it is much easier to identify comparisons 
that are likely to be significant. These mean differences, however, may have come from chance fluc- 
tuations in the data unless you have some theoretical reason to believe they are real-and if you 
believe they are real, you should plan to test them ahead of time. 

Many procedures for dealing with an inflated Type I error rate are available as described in 
standard ANOVA texts such as Tabachnick and Fidell(2007). The tests differ in the number and type 
of comparisons they permit and the amount of adjustment required of a. The tests that permit more 
numerous conlparisons have correspondingly more stringent adjustments to critical E For instance, 
the Dunnett test, which compares the mean from a single control group with each of the means of the 
other groups, in turn, has a less stringent correction than the Tukey test, which allows all pairwise 
comparisons of means. The name of this game is to choose the most liberal test that permits you to 
perform the comparisons of interest. 

The test described here (Scheffii, 1953) is the most conservative and most flexible of the pop- 
ular methods. Once critical F is computed with the Scheffk adjustment, there is no limit to the num- 
ber and complexity of comparisons that can be performed. You can perform all pairwise comparisons 
and all combinations of treatment means pooled and contrasted with other treatment means, pooled 
or not, as desired. Some possibilities for pooling are illustrated in Section 3.2.6.1. Once you pay the 
"price" in conservatism for this flexibility, you might as well conduct all the comparisons that make 
sense, given your research design. 

The Scheffii method for computing critical F for a comparison on marginal means is 

where F '  is adjustcd critical F: ( k  - 1)  is degrees of frecdom for the effect, 2nd F, is 
tabled F with k - 1 degrees of freedom in the numerator and degrees of freedom associ- 
ated with the error term in the denominator. 

If obtained F is larger than critical F,, the null hypothesis represented by the weighting coeffi- 
cients for the comparison is rejected. (See Chapter 8 for a more extended discussion of the appropri- 
ate correction.) 

3.3 Parameter Estimation 

If  a statistically significant difference among means is found. one is usually interested in reporting the 
likely population value for each mean. Since sample nieans are unbiased estimators of popillation 
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means. the hest guess about the hire o f  LL popi~lat~on mean ( p ,  is the mean ot'thts \ample I-antlonily 
selected frorn that population. In most reports o f  research. therefore. sample n1ea11 C . ; ~ I L I ~ ~  are reported 
along with statistical results. 

Sample means are only estimations of population means. They are unbiased because they are 
systen~atically neither large nor small, but they are rarely precisely at the population value-and 
there is no 'way to know when they are. Thus, the error in estimation, the familiar confidence inter- 
val of introductory statistics, is often reported along with the estimated means. The size of the confi- 
dence interval depends on sample size, the estimation of population variability, and the degree of 
confidence one wi'shes to have in estimating /i. Alternatively, cell standard deviations or standard 
errors are presented along with sample means so that the reader can compute the confidence interval 
if it is desired. 

3.4 Effect Size12 

Although significance testing, comparisons, and parameter estimation help illuminate the nature of 
group differences, they do not assess the degree to which the IV(s) and DV are related. It is impor- 
tant to assess the degree of relationship to avoid publicizing trivial results as though they had practi- 
cal utility. As discussed in Section 3.1.2, overly powerful research sometimes produces results that 
are statistically significant but realistically meaningless. 

Effect size reflects the proportion of variance in the DV that is associated with levels of an IV. 
It assesses the amount of total variance in the DV that is predictable from knowledge of the levels of 
the IV. If the total variances of the DV and the IV are represented by circles as in a Venn diagram, 
effect size assesses the degree of overlap of the circles. Statistical significance testing assesses the 
reliability of the association between the TV and DV. Effect size measures how rnc~clz association 
there is. 

A ioiigh estimate of effect size is available for any ANOVA through litZ (eta squared). 

When there are two levels of the IV, r"s the (squared) point biserial correlation between the contin- 
uous variable (the DV) and the dichotomous variable (the two levels of the IV). l 3  After finding a sig- 
nificant main effect or iiiteraciion, ii2 shows the proportion of variance in the DV (SStOtaI) attr~butable 
to the effect (SSeFfec:). In a balanced, equa!-n design, r12s are additive; the sum of q2 for all significant 
effects is the proportion of variation in the DV that is predictable from knowledge of the IVs. 

This simple popular measure of effect size is flawed for two reasons. The first is that r12 for a 
particular IV depends on the number and significance of other IVs in the design. q2 for an IV tested 

[?This is also called strerlgtl~ of c~lssocicctin,~ or trecltnzent mccgnitclde. 

" ~ l l  effect slze values are associated with the particular levels of the IV used in the research and do not generalize to other 
levels 



in a one-\bay debign is likely to be larger than for the same IV in a two-way design where the ,)[her 
IV and the interaction ir:c~-ease the S ~ L Z  of the totai ~ariance. especially if one or both of the additional 
effects are large. This is because the denominator ofl12 contains systematic variance t'or other effects 
in addition to error variance and systematic variance for the effect of interest. 

Therefore, an alternative form of $,  called partial t12. is available in which the denominator 
contains only variance attributable to the effect of interest plus error. 

Partial r12 = 
''effect 

''effect + ''error 

With this alternative, q-2s for all significant effects in the design do not sum to proportion of system- 
atic variance in the DV. Indeed, the sum is sometimes greater than 1.00. It is imperative, therefore, to 
be clear in your report when this version of q-2 is used. 

A second flaw is that 112 describes proportion of systematic variance in a sample with no 
attempt to estimate proportion of systematic variance in the population. A statistic developed to esti- 
mate effect size between IV and DV in the population is h2 (omega squared). 

This is the additive form of G2, where the denominator represents total variance, not just vari- 
ance due to effect plus error, and is limited to between-subjects analjsis of variance clesigrls wit/? 
equal sample sizes in all cells. Forms of Lb2 are available for designs containing repeated measures 
(or randomized blocks), as described by Vaughn and Corballis (1969). 

A separate measure of effect size is computed and reported for each main effect and interac- 
tion of interest in a design. Confidence intervals also may be developed around efFect sizes using 
recent software (Smithson, 2003; Steiger and Fouladi, 1992). These are demonstrated in subsequent 
chapters. 

Effect sizes described can range from 0 to 1 because they are proportions of variance. Another 
type of effect size is Cohen's d, basically a difference between standardized means (i.e., means 
divided by their common standard deviation). That measure becomes less convenient in multivariate 
designs in which comparisons are more complex than simply the difference between two means. 
Further, Cohen (1988) shows equations for converting d to v2. Therefore, the measures described in 
this book are based on v2. 

A frequent question is "Do I have (or expect to ti nd) a big effect?" The answer to chis question 
depends on the research area and type of study. Simple experiments typically account for less vari- 
ance than do nonexperimental studies (nature generally exhibits more control over people than we 
do in our roles as experimenters). Clinical/personality/social psychology and education tend to have 
smaller effects than found in sociology, economics, and perception/physiological psychology. 
Cohen (1988) has presented some guidelines for small (v2 = .01), medium (11' = .09), and large 
(v' = .25) effects. These guidelines apply to experiments and social/clinical areas of psychology; 
larger values could be expected for nonexperimental research. sociology, and the more physiologi- 
cal aspects of psychology. 
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3.5 Bivariate Statistics: Correlation 
and Regression 

Effect size as described in Section 3.4 is assessed between a continuous DV and discrete levels of 
an IV. Frequently, however, a researcher wants to measure the effect size between two continuous 
variables where the IV-DV distinction is blurred. For instance, the association between years of edu- 
cation and income is of interest even though neither is manipulated and inferences regarding causal- 
ity are not possible. Correlation is the measure of the size and direction of the linear relationship 
between the two variables, and squared correlation is the measure of strength of association between 
them. 

Correlation is used to measure the association between variables; regression is used to predict 
one variable from the other (or many others). However, the equations for correlation and bivariate 
regression are very similar, as indicated in what follows. 

3.5.1 Correlation 

The Pearson product-moment correlation coefficient, r; is easily the most frequently used measure of 
association and the basis of many multivariate calculations. The most interpretable equation for 
Pearson r is 

where Pearson r is the average cross-product of standardized X and Y variable scores. 

Y -7 
2, = - 

x - x 
S 

and Zx = --- 
S 

and S is as defined in Equations 3.4 and 3.6. 
Pearson r is independent of scale of measurement (because both X and Y scores are converted 

to standard scores) and independent of sample size (because of division by N). The value of r ranges 
between 1 1 .OO and 2 1.00, where values close to .OO represent no linear relationship or predictability 
between the X and Y variables. An r value of + 1.00 or - 1 .OO indicates perfect predictability of one 
score when the other is known. When correlation is perfect, scores for all subjects in the X distribu- 
tion have the same relative positions as corresponding scores in the Y di~tribution.'~ 

The raw score form of Equation 3.28 also sheds light on the meaning of r: 

"when curl-elation 1s perfect. L x  = L ,  t o r  each palr, and the numerator of Equat~on 5.78 IS, In ettec~. ~ L ~ L , .  Becauhe 
E z ~  = N - I ,  Equation 5.28 reduces to (N - I ) / ( N  - I ). or 1.00. 
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Pearson I .  is the covariance beiween S and i'relativc to r the square root of the product o t )  the .Y and 
Y variances. Only the numerators of variance and covariance equations appear in Equ:ltion -3.79 
because the denominators cancel each other out. 

3.5.2 Regression 

Whereas correlation is used to measure the size and direction of the linear relationship between two 
variables, regression is used to predict a score on one variable from a score on the other. In bivariate 
(two-variable) ?egression (simple linear regression) where Y is predicted from X, a straight line 
between the two variables is found. The best-fitting straight line goes through the means of X and Y 
and minimizes the sum of the squared distances between the data points and the line. 

To find the best-fitting straight line, an equation is solved of the form 

where Y '  is the predicted score, A is the value of Y when X is 0.00, B is the slope of the line (change 
in Y divided by change in X), and X is the value from which Y is to be predicted. 

The difference between the predicted and the observed values of Y at each value of X repre- 
sents errors of prediction or residuals, The best-fitting straight line is the line that minimizes the 
squared errors of prediction. 

To solve Equation 3.30, both B and A are found. 

The bivariate regression coefficient, B, is the ratio of the covariance of the variables and 
the variance of the one from which predictions are made. 

Note the differences and similarities between Equation 3.29 (for correlation) and Equation 
3.3 1 (for the regression coefficient). Both have the covariance between the variables as a numerator 
but differ in denominator. In correlation, the variances of both are used in the denominator. In regres- 
sion, the variance of the predictor variable serves as the denominator; if Y is predicted fromX, X vari- 
ance is the denominator, whereas if X is predicted from X Y variance is the denominator. To complete 
the solution, the valse of the intercept, A, is a!se ca!a~lated. 

The intercept is the mean of the observed value of the predicted variable minus the prod- 
uct of the regression coefficient times the mean of the predictor variable. 

Figure 3.3 illustrates many of the relationships among slopes, intercepts, predicted scores, and 
residuals. 

The intercept for the small data set is 2.16; at a value of zero on the X axis, the regression line 
crosses the Y axis at 2.16. The slope is .60; when the value on the X axis increases by 1 unit, the value 
on the Y axis goes up .60 units. The equation for the predicted Y score (Equation 3.30 above) is 
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Linear Reg1 

FIGURE 3.3 Slopes, intercepts, predicted 
scores, and residuals in bivariate regression; 

figure created using SPSS graphs. 

Y '  = 2.16 + .60X. For an X score of 4, the predicted Y score is [2.16 + .60(4) =] 4.56. This is the 
value indicated by the up arrow in the figure. But 5 is the actual Y score associated with an X score 
of 4 in the data set. The residual, then, for the X score of 4 is the difference between the actual Y score 
and the predicted Y score (5 - 4.56 = .44). The bracket indicates the residual for this value in the data 
set. Linear regression minimizes the squared residuals across the whole data set. 

3.6 Chi-Square Analysis 

Analysis of variance examines the relationship between a discrete variable (the IV) and a continuous 
variable (the DV), correlation and regression examine the relationship between two continuous vari- 
ables, and the chi-square Q2) test of independence is used to examine the relationship between two 
discrete variables. If, for instance, one wants to examine a potential relationship between region of 
the country (Northeast, Southeast, Midwest, South, and West) and approval versus disapproval of 
current political leadership. ,y2 is the appropriate analysis. 



In z2 analys~s, the null hypothesi.; generates expected frequencies against which obserbed fre- 
quencies are tested. If the observed frequencies are similar to the expected frequencies, then the 
value of z2 is small and the null hypothesis is retained; if they are sufficiently different, then the value 
of z' is large and the null hypothesis is rejected. The relationship between the size of ;CZ and the dif- 
ference in observed and expected frequencies can be seen readily from the computational equation 
for (Equation,3.33), which follows. 

where f, represents observed frequencies, and F, represents the expected frequencies in each cell. 
Summation is over all the cells in a two-way table. 

Usually, the expected frequencies for a cell are generated from its row sum and its column sum. 

Cell F, = (row sum)(column  sum)/^ (3.34) 

When this procedure is used to generate the expected frequencies, the null hypothesis tested is that 
the variable on the row (say, region of the country) is independent of the variable on the column (atti- 
tude toward current political leadership). If the fit to the observed frequencies is good (so that X2 is 
small), then one concludes that the two variables are independent; a poor fit leads to a large x2, rejec- 
tion of the null hypothesis, and the conclusion that the two variables are related. 

The techniques discussed in this chapter for making decisions about differences, estimating 
population means, assessing association between two variables, and predicting a score on one vari- 
able from a score on another are important to, and widely used in, the social and behavioral sciences. 
They form the basis for most undergraduate-and some graduate-statistics courses. It is hoped that 
this brief review reminds you of material already mastered, so that, with common background and 
language, we begin in earnest the study of multivariate statistics. 
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Cleaning Up Your Act 
Screening Data Prior to Analysis 

This chapter deals with a set of issues that are resolved after data are collected but before the main 
data analysis is run. Careful consideration of these issues is time consuming and sometimes tedious; 
it is common, for instance, to spend many days in careful examination of data prior to running the 
main analysis that, itself, takes about 5 minutes. But consideration and resolution of these issues 
before the main analysis are fundamental to an honest analysis of the data. 

The first issues concern the accuracy with which data have been entered into the data file and 
consideration of factors that could produce distorted correlations. Next, missing data, the bane of 
(almost) every researcher, are assessed and dealt with. Next, many multivariate procedures are based 
on assumptions; the fit between your data set and the assumptions is assessed before the procedure 
is applied. Transforn~ations of variables to bring them into compliance with requirements of analy- 
sis are considered. Outliers, cases that are extreme, create other headaches because solutions are 
unduly intluenced and sometimes distorted by them. Finally, perfect or near-perfect correlations 
among variables can threaten a multivariate analysis. 

This chapter deals with issues that are relevant to most analyses. However, the issues are not 
all applicable to all analyses all the time; for instance, multiway frequency analysis (Chapter 16) and 
logistic regression (Chapter lo), procedures that use log-linear techniques, have far fewer assump- 
tions than the other techniques. Other analyses have additional assumptions that are not covered in 
this chapter. For these reasons, assumptions and limitations specific to each analysis are reviewed in 
the third section of the chapter describing the analysis. 

There are differences in data screening for grouped and ungrouped data. If you are performing 
multiple regression, canonical correlation, factor analysis, or structural equation modeling, where 
subjects are not subdivided into groups, there is one procedure for screening data. If you are per- 
forming analysis of covariance, multivariate analysis of variance or covariance, profile analysis, dis- 
criminant analysis, or multilevel modeling where subjects are in groups, there is another procedure 
for screening data. Differences in these procedures are illustrated by example in Section 4.2. Other 
analyses (survival analysis and time-series analysis) sometimes have grouped data and often do not, 
so screening is adjusted accordingly. 

You may find the material in this chapter difficult from time to time. Sometimes i t  is necessary 
to refer to material covered in subsequent chapters to explain some issue. material that is more under- 
standable after those chapters are studied. Therefore, you may want to read this chapter now to get 
an overview of the tasks to be accomplished prior to the main data analysis and then read ~t again 
after mastering the remaining chapters. 



4.1 Important Issues in Data Screening 

4.1.1 Accuracy of Data File 

The best way to ensure the accuracy of a data file is to proofread the original data against the com- 
puterized data file in the data window. In SAS, data are most easily viewed in the Interactive Data 
Analysis window. With a small data file, proofreading is highly recommended, but with a large data 
file, it may not be possible. In this case, screening for accuracy involves examination of descriptive 
statistics and graphic representations of the variables. 

The first step with a large data set is to examine univariate descriptive statistics through one of 
the descriptive programs such as SPSS FREQUENCIES, or SAS MEANS or UNIVARIATE or 
Interactive Data Analysis. For continuous variables, are all the values within range? Are means and 
standard deviations plausible? If you have discrete variables (such as categories of religious affilia- 
tion), are there any out-of-range numbers? Have you accurately programmed your codes for missing 
values? 

4.1.2 Honest Correlations 

Most multivariate procedures analyze patterns of correlation (or covariance) among variables. It is 
important that the correlations, whether between two continuous variables or between a dichoto- 
mous and continuous variable, be as accurate as possible. Under some rather common research con- 
ditions, correlations are larger or smaller than they should be. 

4.2.2.1 Inflated Correlation 

When composite variables are constructed from several individual items by pooling responses to 
individual items, correlations are inflated i f  some items are reused. Scales on personality inventories, 
measures of socioeconomic status, health indices, and many other variables in social and behavioral 
sciences are often composites of several items. If composite variables are used and they contain, in 
part, the same items, correlations are inflated; do not overinterpret a high correlation between two 
measures composed, in part, of the same items. If there is enough overlap, consider using only one 
of the composite variables in the analysis. 

4.1.2.2 Deflated Correlation 

Sample correlations may be lower than population correlations when there is restricted range in sam- 
pling of cases or very uneven splits in the categories of dichotomous variables.' Problems with dis- 
tributions that lead to lower correlations are discussed in Section 4.1.5. 

A falsely small correlation between two continuous variables is obtained if the range of 
responses to one or both of the variables is restricted in the sample. Correlation is a measure of the 
extent to which scores on two variables go up together (positive correlation) or one goes up while the 
other goes down (negative correlation). If the range of scores on one of the variables is narrow 
because of restricted sampling, then it is effectively a constant and cannot correlate highly with 

' A  very jrnall coefficient o t  determination (standard deviationlmean) wnq alzo aswciated with lower correlation\ when corn- 
putel-s had less coniputatio~ial accuracy. However, computational accuracy i \  50 high in modern statistical packages that the 
problem is unlikely to occur. unless. perhaps. to astronomers. 
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another variable. In a study o f  succes:; In  graduate school. f u r  instance. quantitative ability could not 
emerge as highly correlated with other variables i f  all ttudents had about the same hish scores In 

quantitative skills. 
When a correlation is too small because of restricted range in sampling, you can estimate its 

magnitude in a nonrestricted sample by using Equation 4.1 if you can estimate the standard devia- 
tion in the nonrestricted sample. The standard deviation in the nonrestricted sample is estimated from 
prior data or from knowledge of the population distribution. 

where FX, = adjusted correlation 

r,(xy) = correlation between X and Y with the range of X truncated 

S, = unrestricted standard deviation of X 

St(,, = truncated standard deviation of X 

Many programs allow analysis of a correlation matrix instead of raw data. The estimated cor- 
relation is inserted in place of the truncated correlation prior to analysis of the correlation matrix. 
(However, insertion of estimated correlations may create internal inconsistencies in the correlation 
matrix, as discussed in Section 4.1.3.3.) 

The correlation between a continuous variable and a dichotomous variable, or between two 
dichotomous variables (unless they have the same peculiar splits), is also too low if most (say, over 
90%) responses to the dichotomous variable fall into one category. Even if the continuous and dichoto- 
mous variables are strongly related in the population, the highest correlation that could be obtained is 
well below 1. Some recommend dividing the obtained (but deflated) correlation by the maximum it 
could achieve given the split between the categories and then using the resulting value in subsequent 
analyses. This procedure is attractive, but not without hazard, as discussed by Comrey and Lee (1 992). 

4.1.3 Missing Data 

Missing data is one of the most pervasive problems in data analysis. The problem occurs when rats 
die, equipment malfunctions, respondents become recalcitrant, or somebody goofs. Its seriousness 
depends on the pattern of missing data, how much is missing, and why it is missing. Recent sum- 
maries of issues surrounding missing data are provided by Schafer and Graham (2002) and by Gra- 
ham, Cumsille, and Elek-Fisk (2003). 

The pattern of missing data is more important than the amount missing. Missing values scat- 
tered randomly through a data matrix pose less serious problems. Nonrandomly missing values, on 
the other hand, are serious no matter how few of them there are because they affect the generaliz- 
ability of results. Suppose that in a questionnaire with both attitudinal and demographic questions 
several respondents refuse to answer questions about income. It is likely that refusal to answer ques- 
tions about income is related to attitude. If respondents with missing data on income are deleted, the 
sample values on the attitude variables are distorted. Some method of estimating income is needed 
to retain the cases for analysis of attitude. 

Missing data are characterized as MCAR (missing completely at random), MAR (missing at 
random, called ignorable nonresponse), and MNAR (missing not at random or nonignorable). The 
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distribution of missing data is unpredictable ir? blCAR. the best of all possible worlds if data inuct be 
missing. The pattern of missing data is predictable from other variables in the data set when data are 
MAR. In NMAR, the missingness is related to the DV and, therefore. cannot be ignored. 

If only a few data points. say, 5% or less, are missing in a random pattern from a large data set, 
the problems are less serious and almost any procedure for handling missing values yields similar 
results. If, however, a lot of data are missing from a small to moderately sized data set, the problems 
can be very serious. Unfortunately, there are as yet no firm guidelines for how much missing data can 
be tolerated for a sample of a given size. 

Although the temptation to assume that data are missing randomly is nearly overwhelming, the 
safest thing to do is to test it. Use the information you have to test for patterns in missing data. For 
instance, construct a dummy variable with two groups, cases with missing and nonmissing values on 
income, and perform a test of mean differences in attitude between the groups. If there are no differ- 
ences, decisions about how to handle missing data are not so critical (except, of course, for inferences 
about income). If there are significant differences and 112 is substantial (cf. Equation 3.25), care is 
needed to preserve the cases with missing values for other analyses, as discussed in Section 4.1.3.2. 

SPSS MVA (Missing Values Analysis) is specifically designed to highlight patterns of missing 
values as well as to replace them in the data set. Table 4.1 shows syntax and output for a data set with 
missing values on ATTHOUSE and INCOME. A TTEST is requested to see if missingness is related 
to any of other variables, with cu = .05 and tests done only for variables with at least 5 PERCENT of 
data missing. The EM syntax requests a table of correlations and a test of whether data are missing 
completely at random (MCHR). 

The Univariate Statistics table shows that there is one missing value on ATTHOUSE and 26 
missing values on INCOME. Separate Variance t Tests show no systematic relationship between 
missingness on INCOME and any of the other variables. ATTHOUSE is not tested because fewer 
than 5% of the cases have missing values. The Missing Patterns table shows that Case number 52, 
among others, is missing INCOME. indicated by an S in the table. Case number 253 is missing 
ATTHOUSE. The last table shows EM Correlations with missing values filled in using the EM 
method, to be discussed. Below the table is Little's MCAR test of whether the data are missing com- 
pletely at random. A statistically nonsignificant result is desired: p = .76 indicates that the probabil- 
ity that the pattern of missing diverges from randomness is greater than .05, so that MCAR may be 
inferred. 

MAR can be inferred if the MCAR test is statistically significant but missingness is predictable 
from variables (other than the DV) as indicated by the Separate Variance t Tests. MNAR is 
inferred if the r test shows that missingness is related to the DV. 

The decision about how to handle missing data is important. At best, the decision is among 
several bad alternatives, several of which are discussed in the subsections that foliow. 

4.1.3.1 Deleting Cases or Variables 

One procedure for handling missing values is simply to drop any cases with them. If only a few cases 
have missing data and they seem to be a random subsample of the whole sample, deletion is a good 
alternative. Deletion of cases with missing values is the default option for most programs in the SPSS 
and SAS packages.' 

'~ecause  this is the de fa~~ l t  option. numerous cabes can be deleted w~thout the researcher'> knowledge. For this reawn. ~t is 
important to check the number of cases in your analyses to rnake sure that all of the desired cases are used. 
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T,ABLE 4.1 SPSS hl\!A Syntas and Output  for 5Iissing Data 

MVA 
timedrs attdrug atthouse income mstatus race emplmnt 
iTTEST PROB PERCENT=5 
IMPATTERN 
/EM. 

MVA 

Univariate Statistics 

aNumber of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

bindicates that the interquartile range (IQR) is zero. 

TIMEDRS 
ATTDRUG 
ATTHOUSE 
INCOME 
MSTATUS 
RACE 
EMPLMNT 

Separate Variance t Testsa 

N 

465 
465 
464 
439 
465 
465 
465 

For each quantitative variable, pairs of groups are formed by indicator variables 
(present, missing). 

alndicator variables with less than 5% missing are not displayed. 

Mean 

7.90 
7.69 

23.54 
4.21 
1.78 
1.09 
.47 

h 

t 
d f 
P(2-tail) 

w # Present 
z # Missing 
8 Mean(Present) 
Z Mean(Missing) 

cn 
K 
a 
w 
5 
F 

.2 
32.2 
.846 
439 
26 

7.92 
7.62 

Std. 
Deviation 

10.948 
1.156 
4.484 
2.41 9 

.416 

.284 

.500 

3 
a: 
n 
t- 
k 

-1.1 
29.6 
.289 
439 

I 26 
7.67 
7.88 

cn 
3 

o B 8  cn 
I 

-1 .o 
29.0 
.346 
439 

26 
1.77 
1.85 

W 
V) 

3 
0 
I 
t- 
k 
-.2 

28.6 
.851 
438 
26 

23.53 
23.69 

Missing 

W 
Z 
0 
5 

. 

. 

. 
439 

0 
4.21 

. 

K 
Q 

-.4 
27.3 
.662 
439 
26 

1.09 
1.12 

Count 

0 
0 
1 

26 
0 
0 
0 

No. of Extremesajb 

t- z 
f 
a 
2 
W 

-1.1 
28.0 
.279 
439 
26 
.46 
,518 

Percent 

.O 

.O 

.2 
5.6 

.O 

.O 

.O 

Low 

0 
0 
4 
0 

0 

High 

34 
0 
0 
0 

0 



Cleaning u p  \ir,i~r ~ c t  65 

TABLE 4.1 Continued 

Missing Patterns (cases with missing values) 

- indicates an extreme low value, and + indicates an extreme high 
value. The range used is (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

aCases and variables are sorted on missing patterns. 

Case 

52 
64 
69 
77 
118 
135 
161 
172 
173 
174 
181 
196 
203 
236 
240 
258 
304 
321 
325 
352 
378 
379 
409 
419 
421 
435 
253 

? 

, 
C .- 
c n ,  
fn . - 
I 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
! 
1 
1 

.- 
fn 
.- fn = 

14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 
14.3 

Miss~ng and Extreme Value 
Patternsa 

a c n a v )  
n r  

I 
+ 

+ 

a 3 3  

2 ' - a  

1 
+ 

I 

, a $ W 3 8  
Z F G I ~ ~ & Z  

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

0 

- 
- 
- 
- 
- 

- 
- 
- 
- 
- 

- I 

S 
S 
S 
S 
S 
S 
S 
S 

- - I +  I + 
- 

I 
8 

S 
S 
S 
S 
S 

- - I 
- 
- 
- 
- 
+ 
- 
- 
- 
+ 
- 

a 

I s  

S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 
S 

W 

S J W  

S I 
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7;\BI,E 1.1 Continued 

EM Estimated Statistics 

EM Correlationsa 

alittle's MCAR test: Chi Square = 19.550, DF = 12, Sig. = 0.76. 

timedrs 
attdrug 
atthouse 
income 
mstatus 
race 
emplmnt 

If missing values are concentrated In a few variables and those variables are not critical to the 
analysis, or are highly correlated with other, complete variables, the variable(s) with missing values 
are profitably dropped. 

But if missing values are scattered throughout cases and variables, deletion of cases can mean 
substantial loss of subjects. This is particularly serious when data are grouped in an experimental 
design because loss of even one case requires adjustment for unequal n (see Chapter 6). Further, the 
researcher who has expended considerable time and energy collecting data is not likely to be eager 
to toss some out. And as previously noted, if cases with missing values are not randomly distributed 
through the data, distortions of the sample occur if they are deleted. 

4.1.3.2 Estimating Missing Data 

A second option is to estimate (impute) missing values and then use the estimates during data analy- 
sis. There are several popular schemes for doing so: using prior knowledge; inserting mean values; 
using regression; expectation-maximization; and multiple imputation. 

Prior knowledge is used when a researcher replaces a missing value with a value from a well- 
educated guess. If the researcher has been working in an area for a while, and if the sample is large 
and the number of missing values small, this is often a reasonable procedure. The researcher is often 
confident that the value would have been about at the median, or whatever, for a particular case. 
Alternatively, the researcher can downgrade a continuous variable to a dichotomous variable (e.g., 
"high" vs. "low") to predict with confidence into which category a case with a missing value falls. 
The discrete variable replaces the continuous variable in the analysis, but it has less information than 
the continuous variable. An option with longitudinal data is to apply the 1 s t  observed value to fill in 
data misjing at a later point In  tlme However, t h ~ s  requlres the expectation that there are no change< 
over tlme 

E 
0 
0 
.- C 

1 
-.466 

.I05 
-.006 

a, 
vl 
3 
0 
s + m 

1 
.002 

-.030 
-.038 
-.023 

r 
. U 
ii! .- 
C1 

1 
,104 
.I28 
.050 

-.065 
-.035 

.059 

0) 

2 
B 
C m 

1 
.023 

-.005 
-.006 

.019 

.085 

vl 
3 
C 

7 + z 

1 
-.035 

.234 

a, 
0 
2 

1 
-.081 

C 

E - 
2 
a, 

1 



B E  4 .  hlissing Data Options .Available in Some Computer Programs 
I-- I 

I I Program i 

aWith ornl\uon ot group ident~ticat~nn 

b ~ a y  be done by generdting multiple tiles through the EM method and computing add~tional statlstlcs. 

CFor preparation ot data prlor to multiple imputation, provides misslng values tor one random Imputation 

Remaining options for imputing missing data are available through software. Table 4.2 shows 
programs that implement missing data procedures. 

Meun substitution has been a popular way to estimate missing values, although it is less com- 
monly used now that more desirable methods are feasible through computer programs. Means are cal- 
culated from available data and used to replace missing values prior to analysis. In the absence of all 
other information, the mean is the best guess about the value of a variable. Part of the attraction of this 
procedure is that it is conservative; the mean for the distribution as a whole does not change and the 
resezircher is not required to guess at missing values. On the other hand, the variance of a variable is 
reduced because the mean is closer to itself than to the missing value it replaces, and the correlation 
the variable has with other variables is reduced because of the reduction in variance. The extent of ioss 
in variance depends on the amount of missing data and on the actual values that are missing. 

A compromise is to insert a group mean for the missing value. If, for instance, the case with a 
missing value is a Republican, the mean value for Republicans is computed and inserted in place of 
the missing value. This procedure is not as conservative as inserting overall mean values and not as 
liberal as using prior knowledge. However, the reduction in within-group variance can make differ- 
ences among groups spuriously large. 

Many programs have provisions for inserting mean values. SAS STANDARD allows a data set 
to be created with missing values replaced by the mean on the variable for complete cases. SOLAS 
MDA, a program devoted to missing data analysis, produces data sets in which group means are used 

L 

Strategy 
SPSS 
MVA 

. 
No 

No 

Regression 

EM 

 NO^ 

Mean 
substi- 
tution 

Grand 
mean 

- 

Group 
mean 

SOLAS 
MDA 

Group 
Means" 

Group 
Means 

No 

No 

Multiple 
Imputation 

Regression 

Expectation 
Maximization 

(EM) 

Multiple 
imputation 

SPSS 
REGRESSION 

MEAN 
S U B S m ' I O N  

No 

No 

No 

No 

NORM 

No 

No 

No 

Yesc 

Yes 

SAS 
STANDARD 

REPLACE 

No 

No 

No 

No 

SASMI 
and 

MIANALYZE 

No 

No 

No 

PROC MI 
with 

NMPUTE= 

Yes 

AMOS. 
EQS, 
and 

LISREL 

No 

No 

No 

Yes 

No 
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to replace nli\<inp value\. SPSS KEGRESSION permit\ XIEANSUBSTITLTTION. Ancl. of coui-ir. 
transformation instructions can be used with any program t o  replace any defined \,slue of a \ariablr 
(including a missing code) with the mean. 

Regression (see Chapter 5 )  is a more sophisticated method for estimating missing values. 
Other variables are used as IVs to write a regression equation for the variable with miss~ng data serv- 
ing as DV. Cases with complete data generate the regression equation; the equation is then used to 
predict missing values for incomplete cases. Sometimes the predicted values from a first round of 
regression are inserted for missing values and then all the cases are used in a second regression. The 
predicted values f6r the variable with missing data from round two are used to develop a third equa- 
tion, and so forth, until the predicted values from one step to the next are similar (they converge). The 
predictions from the last round are the ones used to replace missing values. 

An advantage to regression is that it is more objective than the researcher's guess but not as 
blind as simply inserting the grand mean. One disadvantage to use of regression is that the scores fit 
together better than they should; because the missing value is predicted from other variables, it is 
likely to be more consistent with them than a real score is. A second disadvantage is reduced vari- 
ance because the estimate is probably too close to the mean. A third disadvantage is the requirement 
that good IVs be available in the data set; if none of the other variables is a good predictor of the one 
with missing data, the estimate from regression is about the same as simply inserting the mean. 
Finally, estimates from regression are used only if the estimated value falls within the range of val- 
ues for complete cases; out-of-range estimates are not acceptable. Using regression to estimate miss- 
ing values is convenient in SPSS MVA. The program also permits adjustment of the imputed values 
so that overconsistency is lessened. 

Expectation maximization (EM) methods are available for randomly missing data. EM forms a 
missing data correlation (or covariance) matrix by assuming the shape of a distribution (such as nor- 
malj for the partially missing data and basing inferences about missing values on the likelihood under 
that distribution. It is an iterative procedure with two steps-expectation and maximization-for each 
iteration. First, the E step finds the conditional expectation of the "missing" data, given the observed 
values and current estimate of the parameters, such as correlations. These expectations are then sub- 
stituted for the missing data. Second, the M step performs maximum likelihood estimation as though 
the missing data had been filled in. Finally, after convergence is achieved, the EM variance-covariance 
matrix may be provided andlor the fi lled-in data saved in the data set. 

However, as pointed out by Graham et al. (2003), analysis of an EM-imputed data set is biased 
because error is not added to the imputed data set. Thus, analyses based on this data set have inap- 
propriate standard errors for testing hypotheses. The bias is greatest when the data set with imputed 
values filled in is analyzed, h i t  bias exists even when a variance-covariance or correiation matrix is 
used as input. Nevertheless, these imputed data sets can be u s e f ~ l  fcr evaluating assl;mptions and for 
exploratory analyses that do not employ inferential statistics. Analysis of EM-imputed data sets also 
can provide insights when amounts of missing data are small if inferential statistics are interpreted 
with caution. 

SPSS MVA performs EM to generate a data set with imputed values as well as  variance- 
covariance and correlation matrices, and permits specification of some distributions other than nor- 
mal. SPSS MVA also is extremely helpful for assessing patterns of missing data, providing t tests to 
predict missingness from other variables in the data set, and testing for MCAR, as seen in Table 4.1. 

Structural equations modeling (SEM) programs (cf. AMOS, EQS. and LISKEL ir, Chapter 13) 
typically have their own built-in imputation procedures which are based on EM. The programs do 
not produce data sets with imputed values but utilize appropriate standard errors in their analyses. 
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SAS. KORILI. and SOLAS ILIDA Call be used to create an EM-111ipi1ted data iet by running the 
MI procedure with 171 I number of imputations) = I .  but analysis of the imputed data set is subject to 
the same cautions as noted for SPSS MVA. The EM variance-covariance matrix produced by NORM 
builds in appropriate standard errors, so that analyses based on those matrices are unbiased (Graham 
et al., 2003). Little and Rubin (1987) discuss EM and other methods in detail. EAI through SPSS 
MVA is demonstrated in Section 10.7. I. 1. 

Multiple inzputation also takes several steps to estimate missing data. First, logistic regression 
(Chapter 10) is used when cases with and without a missing value on a particular variable form the 
dichotomous DV. You determine which other variables are to be used as predictors in the logistic 
regression, which in turn provides an equation for estimating the missing values. Next, a random 
sample is taken (with replacement) from the cases with complete responses to identify the distribu- 
tion of the variable with missing data. 

Then several (m) random samples are taken (with replacement) from the distribution of the vari- 
able with missing data to provide estimates of that variable for each of m newly created (now complete) 
data sets. Rubin (1996) shows that five (or even three in some cases) such samples are adequate in many 
situations. You then perform your statistical analysis separately on the ?n. new data sets and report the 
average parameter estimates (e.g., regression coefficients) from the multiple runs in your results. 

Advantages of multiple imputation are that it can be applied to longitudinal data (e.g., for within- 
subjects IVs or time-series analysis) as well as data with single observations on each variable, and that 
it retains sampling variability (Statistical Solutions, Ltd., 1997). Another advantage is that it makes no 
assumptions about whether data are randomly missing. This is the method of choice for databases that 
are made available for analyses outside the agency that collected the data. That is, multiple data sets are 
generated, and other users may either make a choice of a single data set (with its inherent bias) or use 
the multiple data sets and report combined results. Reported results are the mean for each parameter 
estimate over the analyses of multiple data sets as well as the total variance estimate, which includes 
variance within imputations and between imputations-a measure of the true uncertainty in the data set 
caused by missing data (A. McDonnell, personal co~nn~unication, August 24, 1999). 

SOLAS MDA performs multiple imputation directly and provides a ROLLUP editor that com- 
bines the results from the newly created complete data sets (Statistical Solutions, Ltd., 1997). The edi- 
tor shows the mean for each parameter and its total variance estimate, as well as within- and 
between-imputations variance estimates. The SOLAS MDA manual demonstrates multiple imputa- 
tions with longitudinal data. Rubin (1996) provides further details about the procedure. With SPSS 
MVA, you apply your method m times via the EM procedure, using a random-number seed that 
changes for each new data set. Then you do your own averaging to establish the final parameter esti- 
mate. 

NORM is a freely distributed program for multiple imputation avaiiable oa the Internet 
(Schafer, 1999). The program currently is limited to normally distributed predictors and encom- 
passes an EM procedure to estimate parameters, provide start values for the data augmentation step 
(multiple imputation), and help determine the proper number of imputations. A summary of the 
results of the multiple data sets produced by data augmentation is available as are the multiple data 
sets. 

Newer versions of SAS use a three-step process to deal with multiple imputation of missing 
data. First, PROC MI provides an analysis of missing data patterns much like that of SPSS MVA 
(Table 4.1 ) but without the MCAR diagnosis or t tests to predict missingness from other variables. 
At the same time, a data set is generated with m subsets (default rn = 5 )  with different imputations 
of missing data in each subset. A column indicating the imputation number (e.g., 1 to 5) is added to 
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the data set. biext. the dexired nnalykis module 1s run (e.2.. REG. GLM. or MIXED) with h b n t a  [hat 
requests a separate analysis for each imputation number- and with son~e  (but not all) results ;~dded to 
a data file. Finally. PROC MIANALYZE is run i)n the data fiie of results which combines the 1 1 1  sets 
of results into a single summary report.-' Graham and colleaguzs (2003) report that n1 typically 
ranges from 5 to 20. Rubin ( 1  996) suggests that often 3 to 5 imputations are adequate, as long as the 
amount of.missing data is fairly small. He also asserts that any m > 1 is better than just one imputed 
data set. SAS MI and MIANALYZE are demonstrated in Section 5.7.4, where guidelines are given 
for choice of m. 

SPSS MVA may be used to create multiple data sets with different imputations by running EM 
.imputation m times with different random number seeds. However, you are then on your own for 
combining the results of the multiple analyses, and there is no provision for developing appropriate 
standard errors. Rubin (1987) discusses multiple imputation at length. 

Other methods, such as hot decking, are available but they require specialized software and 
have few advantages in most situations over other imputation methods offered by SAS, SOLAS, and 
NORM. 

4.1.3.3 Using a Missing Data Correlation Matrix 

Another option with randomly missing data involves analysis of a missing data correlation matrix. 
In this option, all available pairs of values are used to calculate each of the correlations in R. A vari- 
able with 10 missing values has all its correlations with other variables based on 10 fewer pairs of 
numbers. If some of the other variables also have missing values, but in different cases, the number 
of completz pairs of variables is further reduced. Thus, each correlation in R can be based on a dif- 
ferent number and a different subset of cases, depending on the pattern of missing values. Because 
the standard error of the sampling distribution for r is based on N, some correlations are less stable 
than others in the same correlation matrix. 

But that is not the only problem. In a correlation matrix based on complete data, the sizes of 
some correlations place constraints on the sizes of others. In particular, 

The correlatron between variables I and 2, r 1 2 ,  cannot be smaller than the value on the left or 
larger than the value on the right in a three-variable correlation matrix. If r 1 3  = .60 and r23 = .40, 
then r12 cannot be smaller than - .49 or larger than .97. If, however, r ,  2 ,  r23, and r , are all based 
on different subsets of cases because of missing data, the v a l ~ e  for r , ,  can ge out ~f range. 

Most multivariate statistics involve calculation of elgenvalues and eigenvectors from a corre- 
lation matrix (see Appendix A). With loosened constraints on size of correlations in a missing data 
correlation matrix, eigenvalues sometimes become negative. Because eigenvalues represent vari- 
ance, negative eigenvalues represent something akin to negative variance. Moreover, because the 
total variance that is partitioned in the analysis is a constant (usually equal to the number of vari- 
ables), positive eigenvalues are inflated by the size of negative eigenvdlues, resulting in inflation of 
variance. The statistics derived under these conditions can be quite distorted. 

However, with a large sample and only a few missing values, eigenvalues are often all positive 
even if some correlations are based on $lightly d~fferent pairs of cases Under these conditions. a 

'Output ic especially \par\e for procedures other than SAS REG 
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missing data correlation matrix pro\ ide\ a I-easonable muiti\ariate solution .lnd ha5 the adkxntage of 

using all available data. Use of thih option for the mishing data pi.oblem should not he rejected out of 
hand but should be used cautiously with a wary eye to negative eigenvalues. 

A missing value correlation matrix is prepared through the PAIRWISE deletion option in some 
of the SPSS programs. It is the default option for SAS CORR. If this is not an option of the program 
you want to run, then generate a missing data correlation matrix through another program for input 
to the one you are using. 

4.1.3.4 Treating Missing Data as Data 

It is possible that the fact that a value is missing is itself a very good predictor of the variable of inter- 
est in your research. If a dummy variable is created when cases with complete data are assigned 0 
and cases with missing data I ,  the liability of missing data could become an asset. The mean is 
inserted for missing values so that all cases are analyzed, and the dummy variable is used as simply 
another variable in inalysis, as discussed by Cohen, Cohen, West, and Aiken (2003, pp. 43 1 4 5  1). 

4.1.3.5 Repeating Analyses with and without Missing Data 

If you use some method of estimating missing values or a missing data correlation matrix, consider 
repeating your analyses using only complete cases. This is particularly important if the data set is 
small, the proportion of missing values high, or data are missing in a nonrandom pattern. If the results 
are similar, you can have confidence in them. If they are different, however, you need to investigate 
the reasons for the difference, and either evaluate which result more nearly approximates "reality" or 
report both sets of results. 

4.1.3.6 Choosing among Methods for Dealirlg with Missing Data 

The first step in dealing with missing data is to observe their pattern to try to determine whether data 
are randomly missing. Deletion of c a m  is a reasonable choice if the pattern appears random and if 
only a very few cases have missing data, and those cases are missing data on different variables. 
However, if there is evidence of nonrandomness in the pattern of missing data, methods that preserve 
all cases for further analysis are preferred 

Deletion of a variable with a lot of missing data is also acceptable as long as that variable is not 
critical to the analysis. Or, if the variable is important, use a dummy variable that codes the fact that 
the scores are missing coupled with mean substitution io preserve the variable and make it possib!e 
to analyze all cases and variables. 

It ir; best to avoid mean substitution unless the proportion of missing values is very small and 
there are no other options available to you. Using prior knowledge requires a great deal of confidence 
on the part of the researcher about the research area and expected results. Regression methods may 
be implemented (with some difficulty) without specialized software but are less desirable than EM 
methods. 

EM methods sometimes offer the simplest and most reasonable approach to imputation of 
rnissing data, as long as your preliminary analysis provides evidence that scores are missing ran- 
domly ( M C A R  oi- MAR).  Use of an EM covariance matrix. if the technique permits i t  as input. pro- 
vides a less biased analysis a data set with imputed values. However. iinless the EM program provides 
appropriate standard errors (as per the SEM programs of Chapter 14 or NORM), the strategy should 
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be limited to data sets in which there 1s not a great deal of rn~ssinz data. and inferential reiultz (e.g.. 
p values) are interpreted with caution. EM is especially appropriate for techniclues that do not rely on 
inferential statistics, such as exploratory factor analysis (Chapter 1-3). Better yet i b  to incorporate EM 
methods into multiple imputation. 

Multiple imputation is currently considered the most respectable method of dealing with miss- 
ing data. It has the advantage of not requiring MCAR (and perhaps not even MAR) and can be used 
for any form of GLM analysis, such as regression, ANOVA, and logistic regression. The problem is 
that it is more difficult to implement and does not provide the full richness of output that is typical 
with other methods. 

Using a missing data correlation matrix is tempting if your software offers it as an option for your 
analysis because it requires no extra steps. It makes most sense to use when missing data are scattered 
over variables, and there are no variables with a lot of missing values. The vagaries of missing data cor- 
relation matrices should be minimized as long as the data set is large and missing values are few. 

Repeating analyses with and without missing data is highly recommended whenever any 
imputation method or a missing data correlation matrix is used and the proportion of missing values 
is high--especially if the data set is small. 

4.1.4 Outliers 

An outlier is a case with such an extreme value on one variable (a univariate outlier) or such a strange 
combination of scores on two or more variables (multivariate outlier) that it distorts statistics. Con- 
sider, for example, the bivariate scatterplot of Figure 4.1 in which several regression lines, all with 
slightly different slopes, provide a good fit to the data points inside the swarm. But when the data 
point labeled A in the upper right-hand portion of the scatterplot is also considered, the regression 
coefficient that is computed is the one from among the several good alternat~ves that provides the 
best fit to the extreme case. The case is an outlier because it has much more impact on the value of 
the regression coefficient than any of those inside the swarm. 

Outliers are found in both univariate and multivariate situations, among both dichotomous and 
continuous variables, among both IVs and DVs, and in both data and results of analyses. They lead to 

FIGURE 1.1 Bivariate scatterplot for 
showing impact of an outlier. 
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both Type I and rype I1 errors. frequentl!~ wi th  no clue 4s to which effect the! have in a palticular anal)- 
sis. And they lead to results that do not generalize except to another \ample with the same kind of outliec 

There are four reasons for the presence of an outlier. First is incorrect data entry. Cases that are 
extreme should be checked carefully to see that data are correctly entered. Second is failure to spec- 
ify missing-value codes in computer syntax so that missing-value indicators are read as real data. 
Third is that the outlier is not a member of the population from which you intended to sample. If the 
case should not have been sampled, it is deleted once it is detected. Fourth is that the case is from the 
intended population but the distribution for the variable in the population has more extreme values 
than a normal distribution. In this event, the researcher retains the case but considers changing the 
value on the variable(s) so that the case no longer has as much impact. Although errors in data entry 
and missing values specification are easily found and remedied, deciding between alternatives three 
and four, between deletion and retention with alteration, is difficult. 

4.1.4.1 Detecting Univariate and Multivariate Outliers 

Univariate outliers are cases with an extreme value on one variable; multivariate outliers are cases 
with an unusual combination of scores on two or more variables. For example, a 15-year-old is per- 
fectly within bounds regarding age, and someone who earns $45,000 a year is in bounds regarding 
income, but a 15-year-old who earns $45,000 a year is very unusual and is likely to be a multivariate 
outlier. Multivariate outliers can occur when several different populations are mixed in the same 
sample or when some important variables are omitted that, if included, would attach the outlier to the 
rest of the cases. 

Univariate outliers are easier to spot. Among dichotomous variables, the cases on the "wrong" 
side of a very uneven split are likely univariate outliers. Rummel (1970) suggests deleting dichoto- 
mous variables with 90-10 splits between categories, or more, both because the correlation coeffi- 
cients between these variables and others are truncated and because the scores for the cases in the 
small category are more intluential than those in the category with numerous cases. Dichotomous 
variables with extreme splits are easily found in the programs for frequency distributions (SPSS 
FREQUENCIES, or SAS UNIVARIATE or Interactive Data Analysis) used during routine prelimi- 
nary data screening. 

Among continuous variables, the procedure for searching for outliers depends on whether data 
are grouped. If you are going to perform one of the analyses with ungrouped data (regression, canon- 
ical correlation, factor analysis, structural equation modeling, or some forms of time-series analy- 
sis), univariate and multivariate outliers are sought among all cases at once, as illustrated in Sections 
4.2. !. 1 (univa:iate) and 4.2.1.4 (mu!tivariate). If you are going to perform one of the analyses with 
grouped data (ANCOVA, MANOVA or MANCOVA, profile analysis, discriminant analysis, logistic 
regression, survival analysis, or multilevel modeling) outliers are sought separateiy within each 
group, as illustrated in Sections 4.2.2.1 and 4.2.2.3. 

Among continuous variables, univariate outliers are cases with very large standardized scores, 
z scores, on one or more variables, that are disconnected from the other z scores. Cases with stan- 
dardized scores in excess of 3.29 ( p  < .001, two-tailed test) are potential outliers. However, the 
extremeness of a standardized score depends on the size of the sample; with a very large N, a few 
standardized scores in excess of 3.29 are expected. Z scores are available through SPSS EXPLORE 
or DESCRIPTIVES (where ,- scores are saved in the data file), and SAS STANDARD (with 
MEAN = 0 and STD = I ) .  Or you can hand-calculate : scores from any output that provides means. 
standard deviations. and maximum and minimum scores. 
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As an alternative or in addition to inspection of z scores, there are graphical methods for find- 
ing univariate outliers. Helpful plots are histograms, box plots, normal probability plots. or detrended 
normal probability plots. Histograms of variables are readily understood and available and may reveal 
one or more univariate outliers. There is usually a pileup of cases near the mean with cases trailing away 
in either direction. An outlier is a case (or a very few cases) that seems to be unattached to the rest of 
the distribution. Histograms for continuous variables are produced by SPSS FREQUENCIES (plus 
SORT and SPLIT for grouped data), and SAS UNIVARIATE or CHART (with BY for grouped data). 

Box plots are simpler and literally box in observations that are around the median; cases that 
fall far away from the box are extreme. Normal probability plots and detrended normal probability 
plots are very useful for assessing normality of distributions of variables and are discussed in that 
context in Section 4.1 S.1. However, univariate outliers are visible in these plots as points that lie a 
considerable distance from others. 

Once potential univariate outliers are located, the researcher decides whether transformations 
are acceptable. Transformations (Section 4.1.6) are undertaken both to improve the normality of dis- 
tributions (Section 4.1.5.1) and to pull univariate outliers closer to the center of a distribution, 
thereby reducing their impact. Transformations, if acceptable, are undertaken prior to the search for 
multivariate outliers because the statistics used to reveal them (Mahalanobis distance and its vari- 
ants) are also sensitive to failures of normality. 

Mahalanobis distance is the distance of a case from the centroid of the remaining cases where 
the centroid is the point created at the intersection of the means of all the variables. In most data sets, 
the cases form a swarm around the centroid in multivariate space. Each case is represented in the 
swarm by a single point at its own peculiar combination of scores on all of the variables, just as each 
case is represented by a point at its own X, Y combination in a bivariate scatterplot. A case that is a 
multivariate outlier, however, lies outside the swarm, some distance from the other cases. Maha- 
lanobis distance is one measure of that multivariate distance and it can be evaluated for each case 
using the X2 distribution. 

Mahalanobis distance is tempered by the patterns of variances and covariances among the vari- 
ables. It gives lower weight to variables with large variances and to groups of highly correlated vari- 
ables. Under some conditions, Mahalanobis distance can either "mask" a real outlier (produce a false 
negative) or "swamp" a normal case (produce a false positive). Thus, it is not a perfectly reliable indi- 
cator of multivariate outliers and should be used with caution. 

Mahalanobis distances are requested and interpreted in Sections 4.2.1.4 and 4.2.2.3, and 
numerous other places throughout the book. A very conservative probability estimate for a case 
being an outlier, say, p < .001 for the X2 value, is appropriate with Mahalanobis distance. 

Other statistical measures used to identify multivariate outliers are leverage, discrepancy, 2nd 
influence. Although developed in the context of multiple regression (Chapter 5), the three measures 
are now availabie for some of the other analyses. Leverage is related to Mahalanobis distance (or vari- 
ations of it in the "hat" matrix) and is variously called HATDIAG, RHAT, or hii. Although leverage is 
related to Mahalanobis distance, it is measured on a different scale so that significance tests based on 
a X2 distribution do not apply.4 Equation 4.3 shows the relationship between leverage-hii-and 
Mahalanobis distance. 

Mahalanobis distance = (N - I)(hii - I /N)  

'~unneborg i 1994) suggests that outliers be defined as cases with h, r 3 ( k / ~ , ) .  
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Or. as is sometimes more useful, 

h..  = Mahalanobis distance 1 +-  
N - 1  N 

The latter form is handy if you want to find a critical value for leverage at a: = .OO 1 by translating the 
critical X2 value for Mahalanobis distance. 

Cases with high leverage are far from the others, but they can be far out on basically the same 
line as the other cases, or far away and off the line. Discrepancy measures the extent to which a case 
is in line with the others. Figure 4.2(a) shows a case with high leverage and low discrepancy; Figure 
4.2(b) shows a case with high leverage and high discrepancy. In Figure 4.2(c) is a case with low 
leverage and high discrepancy. In all of these figures, the outlier appears disconnected from the 
remaining scores. 

Influence is a'product of leverage and discrepancy (Fox, 1991). It assesses change in regres- 
sion coefficients when a case is deleted; cases with influence scores larger than 1.00 are suspected of 
being outliers. Measures of influence are variations of Cook's distance and are identified in output as 
Cook's distance, modified Cook's distance, DFFITS, and DBETAS. For the interested reader, Fox 
(199 1, pp. 29-30) describes these terms in more detail. 

Leverage and/or Mahalanobis distance values are available as statistical methods of outlier 
detection in both statistical packages. However, recent research (e.g., Egan and Morgan, 1998; Hadi 
and Simonoff, 1993; Rousseeuw and van Zomeren, 1990) indicates that these methods are not per- 
fectly reliable. Unfortunately, alternative methods are computationally challenging and not readily 
available in statistical packages. Therefore, multivariate outliers are currently most easily detected 
through Mahalanobis distance, or one of its cousins, but cautiously. 

Statistics assessing the distance for each case, in turn, from all other cases, are available 
through SPSS REGRESSION by evoking Mahalanobis, Cook's, or Leverage values through the 
Save command in the Regression menu; these values are saved as separate columns in the data 
file and examined using standard descriptive procedures. To use the regression program just to find 
outliers, however, you must specify some variable (such as the case number) as DV, to find outliers 

(a) High leverage, 
low discrepancy, 

moderate influence 

(b) High leverage, 
high discrepancy, 

high influence 

(c) Low leverage, 
high discrepancy, 

moderate influence 

FIGURE 4.2 The relationships among leverage, discrepancy, 
and influence. 
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among the \et ot ~ ~ r ~ a b l e q  of Interest. cons~derecl IV\  XlteriiL~t~~ely. the I0 ~ a \ e \  u ~ t h  1'11ge\t bIah'1- 
lanob~\ d~stance are pnnted out by SPSS REGRESSIOK u\lng the RESIDUALS subcorn~n~i~id. ,I\ 

demonstrated In Sect~on 4.2.1.1. 
S.4S regression programs provide a leverage, h,, , value for each case that converts eas~ly to 

Mahalanobis distance (Equation 4.3). These values are also saved to the data file and examined using 
standard statistical and graphical techniques. 

When multivariate outliers are sought in grouped data, they are sought within each group sep- 
arately. SPSS and SAS REGRESSION require separate runs for each group, each with its own error 
term. Programs in olther packages, such as SYSTAT DISCRIM and BMDP7M, provide Mahalanobis 
distance for each case using a within-groups error term, so that outliers identified through those pro- 
grams may be different from those identified by SPSS and SAS REGRESSION. 

SPSS DISCRIMINANT provides outliers in the solution. These are not particularly helpful for 
screening (you would not want to delete cases just because the solution doesn't fit them very well), 
but are useful to evaluate generalizability of the results. 

Frequently, some multivariate outliers hide behind other multivariate outliers--outliers are 
known to mask other outliers (Rousseeuw and van Zomeren, 1990). When the first few cases identi- 
fied as outliers are deleted, the data set becomes more consistent and then other cases become 
extreme. Robust approaches to this problem have been proposed (e.g., Egan and Morgan, 1998; Hadi 
and Simonoff, 1993; Rousseeuw and van Zomeren, 1990), but these are not yet Implemented in pop- 
ular software packages. These methods can be approximated by screening for multivariate outliers 
several times, each time dealing with cases identified as outliers on the last run, until finally no new 
outliers are identified. But if the process of identifying ever more outliers seems to stretch into infin- 
~ty,  do a trial run with and without outliers to see if ones identified later are truly influencing results. 
If not, do not delete the later-identified outliers. 

4.1.4.2 Describing Outliers 

Once multivariate outliers are identified, you need to discover why the cases are extreme. (You 
already know why univariate outliers are extreme.) It is important to identify the variables on which 
the cases are deviant for three reasons. First, this procedure helps you decide whether the case is 
properly part of your sample. Second, if you are going to modify scores instead of delete cases, you 
have to know which scores to modify. Third, it provides an indication of the kinds of cases to which 
your results do not generalize. 

If there are only a few multivariate outliers, it is reasonable to examine them individually. If 
there are several, you can examine them as a group to see if there are any variables that separate the 
group of outliers from the rest of the cases. 

Whether you are trying to describe one or a group of outliers, the trick is to create a dummy 
grouping variable where the outlier(s) has one value and the rest of the cases another value. The 
dummy variable is then used as the grouping DV in discriminant analysis (Chapter 9) or logistic 
regression (Chapter lo), or as the DV in regression (Chapter 5). The goal is to identify the variables 
that distinguish outliers from the other cases. Variables on which the outlier(s) differs from the rest 
of the cases enter the equation; the remaining variables do not. Once those variables are identified, 
means on those variables for outlying and nonoutlying cases are found through any of the routine 
descriptive programs. Description of outliers is illustrated in Sections 4.2.1.4 and 4.2.2.3. 
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4.1.4.3 Redrtcing the I~zfluerzce o f  Outliers 

Once univariate outliers have been identified, there are several strategies tor reduc~ng their impact. 
But before you use one of them, check the data for the case to make sure that they are accurately 
entered into the data file. If the data are accurate, consider the possibility that one variable is respon- 
sible for most of the outliers. If so, elimination of the variable would reduce the number of outliers. 
If the variable is highly correlated with others or is not critical to the analysis, deletion of it is a good 
alternative. 

If neither of these simple alternatives is reasonable, you must decide whether the cases that are 
outliers are properly part of the population from which you intended to sample. Cases with extreme 
scores, which are, nonetheless, apparently connected to the rest of the cases, are more likely to be a 
legitimate part of the sample. If the cases are not part of the population, they are deleted with no loss 
of generalizability of results to your intended population. 

If you decid.e that the outliers are sampled from your target population, they remain in the 
analysis, but steps are taken to reduce their impact-variables are transformed or scores changed. 

A first option for reducing impact of univariate outliers is variable transformation, undertaken 
to change the shape of the distribution to more nearly normal. In this case, outliers are considered 
part of a nonnormal distribution with tails that are too heavy so that too many cases fall at extreme 
values of the distribution. Cases that were outliers in the untransformed distribution are still on the 
tails of the transformed distribution, but their impact is reduced. Transformation of variables has 
other salutary effects, as described in Section 4.1.6. 

A second option for univariate outliers is to change the score(s) on the variable(s) for the outly- 
ing case(s) so that they are deviant, but not as deviant as they were. For instance, assign the outlying 
case(s) a raw score on the offending variable that is one unit larger (or smaller) than the next most 
extreme score in the distribution. Because measurement of variables is sometimes rather arbitrary 
anyway, this is often an attractive alternative to reduce the impact of a univariate outlier. 

Transformation or score alteration may not work for a truly multivariate outlier because the 
problem is with the combination of scores on two or more variables, not with the score on any one 
variable. The case is discrepant from the rest in its combinations of scores. Although the number of 
possible multivariate outliers is often substantially reduced after transformation or alteration of 
scores on variables, there are sometimes a few cases that are still far away from the others. These 
cases are usually deleted. If they are aliowed to remain, it is with the knowledge that they may dis- 
tort the results in almost any direction. Any transformations, changes of scores, and deletions are 
reported in the Results section together with the rationale. 

4.1.4.4 Outliers in a Solution 

Some cases may not fit well within a solution; the scores predicted for those cases by the selected 
model are very different from the actual scores for the cases. Such cases are identified after. an analy- 
sis is completed, not as part of the screening process. To identify and eliminate or change scores for 
such cases before conducting the major analysis make the analysis look better than it should. There- 
fore, conducting the major analysis and then "retrofitting" is a procedure best limited to exploratory 
analysis. Chapters that describe techniques for ungrouped data deal with outliers in the solution 
when discussing the limitations of the technique. 
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4.1.5 Normality, Linearity, and Homoscedasticity 

Underlying some multivariate procedures and most statistical tests of their outcornea is the assump- 
tion of multivariate normality. Multivariate normality is the assumption that each variable and all lin- 
ear combinations of the variables are normally distributed. When the assumption is met, the 
residualsS of analysis are also normally distributed and independent. The assumption of multivariate 
normality is not readily tested because it is impractical to test an infinite number of linear combina- 
tions of variables for normality. Those tests that are available are overly sensitive. 

The assumption of multivariate normality is made as part of derivation of many significance 
tests. Although it is tempting to conclude that most inferential statistics are robust6 to violations of 
the assumption, that conclusion may not be ~ a r r a n t e d . ~  Bradley (1982) reports that statistical infer- 
ence becomes less and less robust as distributions depart from normality, rapidly so under many con- 
ditions. And even when the statistics are used purely descriptively, normality, linearity, and 
homoscedasticity of variables enhance the analysis. The safest strategy, then, is to use transforma- 
tions of variables to improve their normality unless there is some compelling reason not to. 

The assumption of multivariate normality applies differently to different multivariate statistics. 
For analyses when subjects are not grouped, the assumption applies to the distributions of the vari- 
ables themselves or to the residuals of the analyses; for analyses when subjects are grouped, the 
assumption applies to the sampling distributions8 of means of variables. 

If there is multivariate normality in ungrouped data, each variable is itself normally distributed 
and the relationships between pairs of variables, if present, are linear and homoscedastic (i.e., the 
variance of one variable is the same at all values of the other variable). The assumption of multivari- 
ate normality can be partially checked by examining the normality, linearity, and homoscedasticity 
of individual variables or through examination of residuals in analyses involving predi~tion.~ The 
assumption is certainly violated, at least to some extent, if the individual variables (or the residuals) 
are not normally distributed or do not have pairwise linearity and homoscedasticity. 

For grouped data, it is the sampling distributions of the means of variables that are to be nor- 
mally distributed. The Central Limit Theorem reassures us that, with sufficiently large sample sizes, 
sampling distributions of means are normally distributed regardless of the distributions of variables. 
For example, if there are at least 20 degrees of freedom for error in a univariate ANOVA, the F test 
is said to be robust to violations of normslity of variables (provided that there are no outliers). 

A 

5~esiduals are leftovers. They are the segments of scores not accounted for by the multivariate analysis. They are also called 
"errors" between predicted and obtained scores where the analysis provides the predicted scores. Note that the practice of 
using a dummy DV such as case number to investigate multivariate outl~ers will not produce meaningful residuals plots. 

6 ~ o b u s t  means that the researcher is led t~ correctly reject the nu!! hypothesis at a given alpha levei ihe right number of times 
even if the distributions do not meet the assumptions of analysis. Often, Monte Carlo procedures are used where a distribution 
with some known properties is put into a computer, sampled from repeatedly, and repeatedly analyzed; the researcher studies 
the rates of retention and rejection of the null hypothesis against the known properties of the distribution in the computer. 

'The univariate F test of mean differences, for example, is frequently said to be robust to violation of assumptions of normal- 
ity and homogeneity of variance with large and equal samples, but Bradley (1984) questions this generalization. 

8~ sampling distribution is a distribution of statistics (not of raw scores) computed from random samples of a given size taken 
repeatedly from a population. For example, in univariate ANOVA, hypotheses are tested with respect to the sampling distri- 
bution of means (Chapter 3). 

9~na lys i s  of residuals to screen for normality, Ilneanty, and homoscedast~clty In mult~ple regression is discussed in Section 
5.3.2.1. 
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These issues are discussed again in the third sectlons of Chapters 5 through 16 and 18 (onl~ne) 
as they apply directly to one or another of the multivariate procedures. For nonparametric procedures 
such as multiway frequency analysis (Chapter 16) and logistic regression (Chapter 10). there are no 
distributional assumptions. Instead, distributions of scores typically are hypothesized and observed 
distributions are tested against hypothesized distributions. 

4.1 S.1 Normality 

Screening continuous variables for normality is an important early step in almost every multivariate 
analysis, particularly when inference is a goal. Although normality of the variables is not always 
required for analysis, the solution is usually quite a bit better if the variables are all normally distrib- 
uted. The solution is degraded, if the variables are not normally distributed. and particularly if they 
are nonnormal in very different ways (e.g., some positively and some negatively skewed). 

Normality of variables is assessed by either statistical or graphical methods. Two components 
of normality are skewness and kurtosis. Skewness has to do with the symmetry of the distribution; a 
skewed variable is a variable whose mean is not in the center of the distribution. Kurtosis has to do 
with the peakedness of a distribution; a distribution is either too peaked (with short, thick tails) or too 
flat (with long, thin tails).1° Figure 4.3 shows a normal distribution, distributions with skewness, and 
distributions with nonnormal kurtosis. A variable can have significant skewness, kurtosis, or both. 

When a distribution is normal, the values of skewness and kurtosis are zero. If there is positive 
skewness, there is a pileup of cases to the left and the right tail is too long; with negative skewness. 
there is a pileup of cases to the right and the left tail is too long. Kurtosis values above zero indicate 
a distribution that is too peaked with short, thick tails, and kurtosis values below zero indicate a dis- 
tribution that is too flat (also with too many cases in the tails)." Nonnormal kurtosis produces an 
underestimate of the variance of a variable. 

There are significance tests for both skewness and kurtosis that test the obtained value against 
null hypotheses of zero. For instance, the standard error for skewness is approximately 

where .N is the number of cases. The obtained skewness value is then compared with zero using the 
z distribution, where 

and S is the value reported for skewness. The standard error for kurtosis is approximately 

'@1f you decide that outliers are sampled from the intended population but that there are too many cases in the tails, you are 
saying that the distribution from which the outliers are sampled has kurtosis that departs from normal. 

I1The equation for kurtosis gives a value of 3 when the distribution is normal, but all of the statistical packages subtract 3 
before printing kurtosis so that the expected value is zero. 
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Positive kurtosis Negative kurtosis 

FIGURE 4.3 Normal distribution, distributions with 
skewness, and distributions with kurtoses. 

and the obtained kurtosis value is compared with zero using the z distribution, where 

and K is the value reported for kurtosis. 
Conventional but conservative (.01 or .001) alpha levels are used to evaluate the significance 

of skewness and kurtosis with small to moderate samples, but if the sample is large, it is a good idea 
to look at the shape of the distribution instead of using formal inference tests. Because the standard 
errors for both skewness and kurtosis decrease with larger N, the null hypothesis is likely to be 
rejected with large samples when there are only minor deviations from normality. 

In a large sample, a variable with statistically significant skewness often does not deviate 
enough from normality to make a substantive difference in the analysis. In other words, with large 
samples, the significance level ofskewness is not as important as its actual size (worse the farther from 
zero) and the visual appearance of the distribution. In a large sample, the impact of departure from 
zero kurtosis also diminishes. For example, underestimates of variance associated with positive kur- 
tosis (distributions with short, thick tails) disappear with samples of 100 or more cases; with negative 
kurtosis, underestimation of variance disappears with samples of 200 or more (Waternaux, 1976). 



Values for skewness and kurtcis~s are mailable In  several progranls. SPSS FREQUENCIES. 
for instance, prints as options skewness. kurtosis. and their standard errors. and. in addition. super- 
imposes a normal distribution over a frequency histograin for a variable if HISTOGRAM = 
NORMAL is specified. DESCRIPTIVES and EXPLORE also print skewness and kurtosis statistics. 
A histogram or stem-and-leaf plot is also available in SAS UNIVARIATE." 

Frequency histograms are an important graphical device for assessing normality, especially 
with the normal distribution as an overlay, but even more helpful than frequency histograms are 
expected normal probability plots and detrended expected normal probability plots. In these plots, 
the scores are ranked and sorted; then an expected normal value is computed and compared with the 
actual normal value for each case. The expected normal value is the z score that a case with that rank 
holds in a normal distribution; the normal value is the z score it has in the actual distribution. If the 
actual distribution is normal, then the points for the cases fall along the diagonal running from lower 
left to upper right, with some minor deviations due to random processes. Deviations from normality 
shift the points away from the diagonal. 

Consider the expected normal probability plots for ATTDRUG and TIMEDRS through SPSS 
PPLOT in Figure 4.4. Syntax indicates the VARIABLES we are interested in are attdrug and timedrs. 
The remaining syntax is produced by default by the SPSS Windows menu system. As reported in Sec- 
tion 4.2.1.1, ATTDRUG is reasonably normally distributed (kurtosis = -0.447, skewness = 

-0.123) and TIMEDRS is too peaked and positively skewed (kurtosis = 13.101, skewness = 3.248, 
both significantly different from 0). The cases for ATTDRUG line up along the diagonal, whereas 
those for TIMEDRS do not. At low values of TIMEDRS, there are too many cases above the diago- 
nal, and at high values. there are too many cases below the diagonal, reflecting the patterns of skew- 
ness and kurtosis. 

Detrended normal probability plots for TIMEDRS and ATTDRUG are also in Figure 4.4. These 
plots are similar to expected normal probability plots except that deviations from the diagonal are 
plotted instead of values along the diagonal. In other words, the linear trend tiom lower left to upper 
right is removed. If the distribution of a variable is normal, as is ATTDRUG, the cases distribute them- 
selves evenly above and below the horizontal line that intersects the Y axis at 0.0, the line of zero devi- 
ation from expected normal values. The skewness and kurtosis of TIMEDRS are again apparent from 
the cluster of points above the line at low values of TIMEDRS and below the line at high values of 
TIMEDRS. Normal probability plots for variables are also available in SAS UNIVARIATE and SPSS 
MANOVA. Many of these programs also produce detrended normal plots. 

If you are going to perform an analysis with ungrouped data, an alternative to screening vari- 
ables prior to analysis is cnnducting the analysis and then screening the residuals (the differences 
between the predicted and obtained DV values). If normality is present, the residuals are normally 
and independently distributed. That is, the differences between predicted and obtained scores-the 
errors-are symmetrically distributed around a mean value of zero and there are no contingencies 
among the errors. In multiple regression, residuals are also screened for normality through the 
expected normal probability plot and the detrended normal probability plot. l 3  SPSS REGRESSION 

"1n structural equation modeling (Chapter 14). skewness and kurtosis for each variable are available in EQS and Mardia's 
Coefticient (the multivariate kurtosis measure) is available in EQS. PRELIS, and CALIS. In addition, PRELIS can be used to 
deal with nonnormality through alternative correlation coefficients. such as polyserial or polychoric (cf. Section 14.5.6). 

I 3 ~ o r  grouped data, residuals have the same shape as within-group distributions because the predicted value is the mean, and 
subtracting a constant does not change the shape of the distribution. Many of the programs for grouped data plot the within- 
group distribution as an option. as discussed in the next few chapters when relevant. 
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FIGURE 4.4 Expected normal probability plot and detrended normal probability plot for 
ATTDRUG and TIMEDRS. SPSS PPLOT syntax and output. 

provides this diagnostic technique (and others, as discussed in Chapter 5) .  If the residuals are nor- 
mally distributed, the expected normal probability plot and the detrended normal probability plot 
look just the same as they do i f  a variable is normally distributed. Ln regression, if the residuals plot 
looks normal, there is no reason to screen the individual variables for normality. 
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.Although residuals will reveal departures from normality. the analyst has to rebist ternptatlon ro 
look at the rest of the o u t p ~ ~ t  to avoid "tinkering" with variables and casea to produce an anticipated 
result. Because screening the variables should lead to the same conclusions as screening residuals. it 
may be more objective to make one's decisions about transformations, deletion of outliers, and the 
like, on the basis of screening runs alone rather than screening through the outcome of ana1ysis.l: 

With ungrouped data, if nonnormality is found, transformation of variables is considered. 
Common transformations are described in Section 4.1.6. Unless there are compelling reasons not to 
transform, it is probably better to do so. However, realize that even if each of the variables is nor- 
mally distributed, or transformed to normal, there is no guarantee that all linear combinations of the 
variables are normally distributed. That is, if variables are each univariate normal, they do not nec- 
essarily have a multivariate normal distribution. However, it is more likely that the assumption of 
multivariate normality is met if all the variables are normally distributed. 

4.1.5.2 Linearity 

The assumption of linearity is that there is a straight-line relationship between two variables (where 
one or both of the variables can be combinations of several variables). Linearity is important in a 
practical sense because Pearson's r only captures the linear relationships among variables; if there 
are substantial nonlinear relationships among variables, they are ignored. 

Nonlinearity is diagnosed either from residuals plots in analyses involving a predicted variable 
or from bivariate scatterplots between pairs of variables. In plots where standardized residuals are 
plotted against predicted values, nonlinearity is indicated when most of the residuals are above the 
zero line on the plot at some predicted values and below the zero line at other predicted values (see 
Chapter 5) .  

Linearity between two variables is assessed roughly by inspection of bivariate scatterplots. If 
both var~ables are normally distributed and linearly related, the scatterplot is oval-shaped. If one of 
the variables is nonnormal, then the scatterplot between this variable and the other is not oval. Exam- 
ination of bivariate scatterplots is demonstrated in Section 4.2.1.2, along with transformation of a 
variable to enhance linearity. 

However, sometimes the relationship between variables is simply not linear. Consider, for 
instance, number of symptoms and dosage of drug, as shown in Figure 4.5(a). It seems likely that 
there are lots of symptoms when the dosage is low, only a few symptoms when the dosage is moder- 
ate, and lots of symptoms again when the dosage is high. Number of symptoms and drug dosage are 
cu1vi1inear:y related. One alternative in this case is to use the square of number of symptoms to rep- 
resent the curvilinear relationship instead of number of symptoms in the analysis. Another alterna- 
tive is to recode dosage into two dummy variables (high vs. low on one dummy variable and a 
combination of high and low vs. medium on another dummy variable) and then use the dummy vari- 
ables in place of dosage in analysis.15 The dichotomous dummy variables can only have a linear rela- 
tionship with other variables, if, indeed, there is any relationship at all after recoding. 

Often, two variables have a mix of linear and curvilinear relationships, as shown in Figure 
4.5(b). One variable generally gets smaller (or larger) as the other gets larger (or smaller) but there is 

'.'We realire t h ~ t  others (e.g., Berry. 1993: Fox. 199 1 ) have very different views about the wisdom of screening from residuals. 

' j ~  nonlinear analytic strategy is most appropriate here. such as nonlinear regression through SAS NLIN, but such strategies 
are beyond the scope of this book. 
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Low Moderate High 

DOSAGE 

(a) Curvilinear 

Low Moderate High 

DOSAGE 

(b) Curvilinear + linear 

FIGURE 4.5 Curvilinear relationship and curvilinear 
plus linear relationship. 

also a curve to the relationship. For instance, symptoms might drop off with increasing dosage, but 
only to a point; increasing dosage beyond the point does not result in further reduction or increase in 
symptoms. In this case, the linear component may be strong enough that not much is lost by ignor- 
ing the curvilinear component unless it has important theoretical in~plications. 

Assessing linearity through bivariate scatterplots is reminiscent of reading tea leaves, espe- 
cially with small samples. And there are many cups of tea if there are several variables and all possi- 
ble pairs are examined, especially when subjects are grouped and the analysis is done separately 
within each group. If there are only a few variables, screening all possible pairs is not burdensome; 
if there are numerous variables, you may want to use statistics on skewness to screen only pairs that 
are likely to depart from linearity. Think, also, about pairs of variables that might have true nonlin- 
earity and examine them through bivariate scatterplots. Bivariate scatterplots are produced by SPSS 
GRAPH. and SAS PLOT, among other pro, orams. 



4.1 S.3 Hontoscedasticity, Hornogerteity of Variance, arzd Hornogerteity 
of Variance-Covariance Matrices 

For ungrouped data, the assumption of homoscedasticity is that the variability in scores for one con- 
tinuous variable is roughly the same at all values of another continuous variable. For grouped data, 
this is the same as the assumption of homogeneity of variance when one of the variables is discrete 
(the grouping variable), the other is continuous (the DV): the variability in the DV is expected to be 
about the same at all levels of the grouping variable. 

Homoscedasticity is related to the assumption of normality because when the assumption of 
multivariate normality is met, the relationships between variables are homoscedastic. The bivariate 
scatterplots between two variables are of roughly the same width all over with some bulging toward 
the middle. Homoscedasticity for a bivariate plot is illustrated in Figure 4.6(a). 

Heteroscedasticity, the failure of homoscedasticity, is caused either by nonnormality of one of 
the variables or by the fact that one variable is related to some transformation of the other. Consider, 
for example, the relationship between age ( X , )  and income ( X 2 ) ,  as depicted in Figure 4.6(b). Peo- 
ple start out making about the same salaries, but with increasing age, people spread farther apart on 
income. The relationship is perfectly lawful, but it is not homoscedastic. In this example, income is 
likely to be positively skewed and transformation of income is likely to improve the homoscedastic- 
ity of its relationship with age. 

Another source of heteroscedasticity is a greater error of measurement at some levels of an IV. 
For example, people in the age range 25 to 45 might be more concerned about their weight than peo- 
ple who are younger or older. Older and younger people would, as a result, give less reliable esti- 
mates of their weight, increasing the variance of weight scores at those ages. 

It should be noted that heteroscedasticity is not fatal to an analysis of ungrouped data. The iin- 
ear relationship between variables is captured by the analysis, but there is even more predictability if 
the heteroscedasticity i s  accounted for. If it is not, the analysis is weakened. hut not invalidated. 

(a) Homoscedasticity with both 
variables normally distributed 

(b) Heteroscedasticity with 
skewness on X, 

FIGURE 4.6 Bivariate scatterplots under conditions of homoscedasticity 
and heteroscedasticity. 
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When da t~ t  are grouped. hornoscc.dasticity is known as homogeneity of wriance. ,A y e a t  deal 
of research has assessed the robustness (or lack thereof) of AKOVA and ANOVA-like analyses to 
violation of homogeneity of variance. Recent guidelines have become more stringent than earlier, 
more cavalier ones. There are formal tests of homogeneity of variance but most too strict because 
they also assess normality. (An exception is Levene's test of honiogeneity of variance, which is not 
typically sensitive to departures from normality.) Instead, once o~itliers are eliminated, homoseneity 
of variance is assessed with F,,, in conjunction with sample-size ratios. 

F,,, is the ratio of the largest cell variance to the smallest. If sample sizes are relatively equal 
(within a ratio of 4 to 1 or less for largest to smallest cell size), an F,,, as great as LO is acceptable. 
As the cell size discrepancy increases (say, goes to 9 to 1 instead of 4 to I ) ,  an F,,, as small as 3 is 
associated with inflated Type I error if the larger variance is associated with the smaller cell size 
(Milligan, Wong, and Thompson, 1987). 

Violations of homogeneity usually can be corrected by transformation of the DV scores. Inter- 
pretation, however, is then limited to the transformed scores. Another option is to use untransformed 
variables with a more stringent a level (for nominal a = .05. use .025 with moderate violation and .O1 
with severe violation). 

The multivariate analog of homogeneity of variance is homogeneity of variance-covariance 
matrices. As for univariate homogeneity of variance, inflated Type I error rate occurs when the great- 
est dispersion is associated with the smallest sample size. The formal test used by SPSS, Box's M, is 
too strict with the large sample sizes usually necessary for multivariate applications of ANOVA. Sec- 
tion 9.7.1.5 demonstrates an assessment of homogeneity of variance-covariance matrices through 
SAS DISCRIM using Bartlett's test. SAS DISCRIM permits a stringent LY level for determining het- 
erogeneity, and bases the discriminant analysis on separate variance-covariance matrices when the 
assumption of homogeneity is violated. 

4.1.6 Common Data Transformations 

Although data transformations are recommended as a remedy for outliers and for failures of nor- 
mality, linearity, and homoscedasticity, they are not universally recommended. The reason is that an 
analysis is interpreted from the variables that are in it, and transformed variables are sometimes 
harder to interpret. For instance, although IQ scores are widely understood and meaningfully inter- 
preted, the logarithm of IQ scores may be harder to explain. 

Whether transformation increases difficulty of interpretation often depends on the scale in 
which the variabie is measured. If the scale is meaningfui or widely used, transformation often hin- 
ders interpretation, but if the scale is somewhat arbitrary anyway (as is often the case), transforma- 
tion does not notably increase the difficulty of interpretation. 

With ungrouped data, it is probably best to transform variables to normality unless interpretation 
is not feasible with the transformed scores. With grouped data, the assumption of normality is evaluated 
with respect to the sampling distribution of means (not the distribution of scores) and the Central Limit 
Theorem predicts normality with decently sized samples. However, transformations may improve the 
analysis and may have the further advantage of reducing the impact of outliers. Our recommendation, 
then, is to consider transformation of variables in all situations unless there is some reason not to. 

If you decide to transform, i t  i s  important to check that the variable is normally or near- 
normally distributed after transformation. Often you need to try first one transformation and then 
another until you find the transformation that produces the skewness and kurtosis values nearest 
zero, the prettiest picture, and/or the fewest-outliers. 



With allnost rbery data set in c~Ii1i.11 \ L C  hacc used tranxtorni~ltion~. the ~.esifIts of analyxix !I;ILC' 
been substantially improved. This is particularly true when some ~ariables are skewed and others are 
not, or variables are skewed very differently prior to transformation. However, if all the variables are 
skewed to about the same moderate extent, improvements of analysis with transformation are often 
marginal. 

With grouped data, the test of mean differences after transformation is a test of differences 
between medians in the original data. After a distribution is normalized by transformation, the mean 
is equal to the median. The transformation affects the mean but not the median because the median 
depends only on rank order of cases. Therefore, conclusions about means of transformed distribu- 
tions apply to medians of untransformed distributions. Transformation is undertaken because the dis- 
tribution is skewed and the mean is not a good indicator of the central tendency of the scores in the 
distribution. For skewed distributions, the median is often a more appropriate measure of central ten- 
dency than the mean, anyway, so interpretation of differences in medians is appropriate. 

Variables differ in the extent to which they diverge from normal. Figure 4.7 presents several 
distributions together with the transformations that are likely to render them normal. If the distri- 
bution differs moderately from normal. a square root transformation is tried first. If the distribution 

TRANSFORMATION 

r r,l 
Square root Reflect and square root 

Logarithm Reflect and logarithm 

Inverse Reflect and inverse 

FIGURE 4.7 Original distributions and common 
transformations to produce normality. 
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differs substantially. a log transformation is tried. if the distribution differs severely. the inverse is 
tried. According to Bradley (1982). the inverse 1s the best of several alternatives for J-shaped distri- 
butions, but even it may not render the distribution normal. Finally, if the departure from normality 
is severe and no transformation seems to help, you may want to try dichotomizing the variable. 

The direction of the deviation is also considered. When distributions have positive skewness, as 
discussed earlier, the long tail is to the right. When they have negative skewness, the long tail is to the left. 
If there is negative 'skewness, the best strategy is to reflect the variable and then apply the appropriate 
transformation for positive skewness. l6 To reflect a variable, find the largest score in the distribution and 
add one to it to f o m  a constant that is larger than any score in the distribution. Then create a new variable 
by subtracting each score from the constant. In this way, a variable with negative skewness is converted 
to one with positive skewness prior to transformation. When you interpret a reflected variable, be sure to 
reverse the direction of the interpretation as well (or consider rereflecting it after transformation). 

Remember to check your transformations after applying them. If a variable is only moderately 
positively skewed, for.instance, a square root transformation may make the variable moderately neg- 
atively skewed, and there is no advantage to transformation. Often you have to try several transfor- 
mations before you find the most helpful one. 

Syntax for transforming variables in SPSS and SAS is given in Table 4.3.17 Notice that a con- 
stant is also added if the distribution contains a value less than one. A constant (to bring the small- 
est value to at least one) is added to each score to avoid taking the log, square root, or inverse of 
zero. 

Different software packages handle missing data differently in various transformations. Be 
sure to check the manual to ensure that the program is treating missing data the way you want it to in 
the transformation. 

It should be clearly understood that this section merely scratches the surface of the topic of 
transformations, about which a great deal more is known. The interested reader is referred to Box 
and Cox (1964) or Mosteller and Tukey (1977) for a more flexible and challenging approach to the 
problem of transformation. 

4.1.7 Multicollinearity and Singularity 

Multicollinearity and singularity are problems with a correlation matrix that occur when variables 
are too highly correlated. With multicollinearity, the variables are very highly correlated (say, .90 and 
above); with singularity, the variables are redundant; one of the variables is a combination of two or 
more of the other variables. 

For example, scores on the Wechsler Adult Intelligence Scale (the WAIS) and scores on the 
Stanford-Binet Intelligence Scale are likely to be multicollinear because they are two similar mea- 
sures of the same thing. But the total WAIS IQ score is singular with its subscales because the total 
score is found by combining subscale scores. When variables are multicollinear or singular, they 

''Remember, however, that the interpretation of a reflected variable is just the opposite of what it was; if big numbers meant 
good things prior to reflecting the variable, big numbers mean bad things afterwards. 

"~ogari thmlc (LO) and power (PO) tranaformatiorls are also available in  PRELLS for variables used in structural equation 
modeling (Chapter 14). A ;I (GA) value is specified for power transformations; for example, ;' - 112 provides a square root 
transform (PO GA = 5) .  
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TABLE 1.3 Syntax for Common Data Transformations 

SPSS COMPUTE SASa DATA Procedure 

Moderate 
positive 
skewness . NEWX=SQRT(X) NEWX=SQRT(X) 

Substantial 
positive . 
skewness NEWX=LG1 O(X) NEWX=LOGIO(X) 

With zero NEWX=LG1 O(X + C) NEWX=LOGIO(X + C )  
Severe positive 

skewness NEWX=l/X NEWX=I / X  

L-shaped 
With zero NEWX=l/(X + C) NEWX=I/(X+C) 

Moderate 
negative 
skewness NEWX=SQRT(K - X) NEWX=SQRT(K-X) 

Substantial 
negative 
skewness NEWX=LG1 O(K - X) NEWX=LOGlO(K-XI 

Severe negative 
skewness 
J-shaped NEWX=I/(K - X) N E W X = l  /(K-X) 

C = a constant added to each score so that the smallest score is I .  

K = a constant from which each score is subtracted so that the smallest score is 1;  usually equal to the largest score + I. 

"Also may be done through SAS Interactive Data Analysis. 

contain redundant information and they are not all needed in the same analysis. In other words, there 
are fewer variables than it appears and the correlation matrix is not of fuli rank because there are not 
really as many variables as columns. 

Either bivariate or multivariate correlations can create multicollinearity or singularity. If a 
bivariate correlation is too high, it shows up in a correlation matrix as a correlation above .90, and, 
after deletion of one of the two redundant variables, the problem is solved. If it is a multivariate cor- 
relation that is too high, diagnosis is slightly more difficult because multivariate statistics are needed 
to find the offending variable. For example, although the WAIS IQ is a combination of its subscales, 
the bivariate correlations between total IQ and each of the subscale scores are not all that high. You 
would not know there was singularity by examination of the correlation matrix. 

Multicollinearity and singularity cause both logical and statistical problems. The  logical prob- 
lem is that unless you are doing analysis of structure (factor analysis, principal components analysis, 
and structural-equation modeling), it is not a good idea to include redundant variables in the same 
analysis. They are not needed and, because they inflate the size of error terms, they actually weaken 
an analysis. Unless you are doing analysis of structure or are dealing with repeated measures of the 
same variable (as in various forms of ANOVA including profile analysis), think carefully before 



90 C H A P T E R  4 

includ~ng two variables with a b~vanate correlation of, say, .70 or more in the same analys~s. You 
might omit one of the vanables or you might create a composite score from the redundant variables. 

The statistical problems created by singularity and multicollinearity occur at much higher cor- 
relations (.90 and higher). The problem is that singularity prohibits, and multicollinearity renders 
unstable, matrix inversion. Matrix inversion is the logical equivalent of division; calculations requir- 
ing division (and there are many of them-see the fourth sections of Chapters 5 through 16 and 18) 
cannot be performed on singular matrices because they produce determinants equal to zero that can- 
not be used as divisors (see Appendix A). Multicollinearity often occurs when you form cross- 
products or powers of variables and include them in the analysis along with the original variables, 
unless steps are taken to reduce the multicollinearity (Section 5.6.6). 

With multicollinearity, the determinant is not exactly zero, but it is zero to several decimal 
places. Division by a near-zero determinant produces very large and unstable numbers in the inverted 
matrix. The sizes of numbers in the inverted matrix fluctuate wildly with only minor changes (say, in 
the second or third decimal place) in the sizes of the correlations in R. The portions of the multivari- 
ate solution that flow from an inverted matrix that is unstable are also unstable. In regression, for 
instance, error terms get so large that none of the coefficients is significant (Beny, 1993). For exam- 
ple, when r is .9, the precision of estimation of regression coefficients is halved (Fox, 199 1). 

Most programs protect against multicollinearity and singularity by computing SMCs for the 
variables. SMC is the squared multiple correlation of a variable where it serves as DV with the rest 
as IVs in multiple correlation (see Chapter 5). If the SMC is high, the variable is highly related to the 
others in the set and you have multicollinearity. If the SMC is 1, the variable is perfectly related to 
others in the set and you have singularity. Many programs convert the SMC values for each variable 
to tolerance (1 - SMC) and deal with tolerance instead of SMC. 

Screening for singularity often takes the form of running your main analysis to see if the 
computer balks. Singularity aborts most runs except those for principal components analysis (see 
Chapter 13), where matrix inversion is not required. If the run aborts, you need to identify and delete 
the offending variable. A first step is to think about the variables. Did you create any of them from 
others of them: for instance, did you create one of them by adding together two others? If so, dele- 
tion of one removes singularity. 

Screening for multicollinearity that causes statistical instability is also routine with most pro- 
grams because they have tolerance criteria for inclusion of variables. If the tolerance (1 - SMC) is 
too low, the variable does not enter the analysis. Default tolerance levels range between .O1 and 
.0001, so SMCs are .99 to .9999 before variables are excluded. You may wish to take control of this 
process, however, by adjusting the tolerance level (an option with many programs) or deciding your- 
self which variable(s) to delete instead of letting the program make the decision on purely statistical 
grounds. For this you need SMCs for each variable. Note that SMCs are not evaluated separately for 
each group if you are analyzing grouped data. 

SMCs are available through factor analysis and regression programs in all packages. PRELIS 
provides SMCs for structural equation modeling. SAS and SPSS have incorporated collinearity 
diagnostics proposed by Belsely, Kuh, and Welsch (1980) in which a conditioning index is produced, 
as well as variance proportions associated with each variable, after standardization, for each root (see 
Chapters 12 and 13 and Appendix A for a discussion of roots and dimensions). Two or more variables 
with large variance proportions on the same dimension are those with problems. 

Condition index is a measure of tightness or dependency of one variable on the others. The 
condition index is monotonic with SMC, but not linear with it. A high condition index is associated 
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with variance inflation In the standard error of the parameter estimate for a variable. When its \tan- 
dard error becomes very large, the parameter estimate is highly uncertain. Each root (dimension) 
accounts for some proportion of the variance of each parameter estimated. A collinearity problem 
occurs when a root with a high condition index contributes strongly (has a high variance proportion) 
to the variance of two or more variables. Criteria for multicollinearity suggested by Belsely et al. 
(1980) are a conditioning index greater than 30 for a given dimension coupled with variance propor- 
tions greater than .50 for at least two different variables. Collinearity diagnostics are demonstrated 
in Section 4.2.1.6. 

There are'several options for dealing with collinearity if it is detected. First, if the only goal of 
analysis is prediction, you can ignore it. A second option is to delete the variable with the highest 
variance proportion. A third option is to sum or average the collinear variables. A fourth option is to 
compute principal components and use the components as the predictors instead of the original vari- 
ables (see Chapter 13). A final alternative is to center one or more of the variables, as discussed in 
Chapters 5 and 15; if multicoliinearity is caused by forming interactions or powers of continuous 
variables. 

4.1.8 A Checklist and Some Practical Recommendations 

Table 4.4 is a checklist for screening data. It is important to consider all the issues prior to the fun- 
damental analysis lest you be tempted to make some of your decisions on the basis of how they influ- 
ence the analysis. If you choose to screen through residuals, you cannot avoid doing an analysis at 
the same time; however, in these cases, you concentrate on the residuals and not on the other features 
of the analysis while making your screening decisions. 

TABLE 4.4 Checklist for Screening Data 

1. Inspect univariate descriptive statistics for accuracy of input 

a. Out-of-range values 

b. Plausible means and standard deviations 

c. Univariate outliers 

2. Evaluate amount and distribution of missing data; deal with problem 

3. Check pairwise plots for nonlinearity and heteroscedasticity 

4. Identify and deal with nonnormal variables and univariate outliers 

a. Check skewness and kurtosis, probability plots 

b. Transform variables (if desirable) 

c. Check results of transformation 

5. Identify and deal with multivariate outliers 

a. Variables causing multivariate outliers 

b. Descr~ption of mult~variate outlier4 

6. Evaluate variables for multicollinearity and singulanty 
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The order In which xreenlnp tahes place IS important becauw the ciecl\~on\ th'lt you mahe at 
one step ~ntluence the outcomes of later $teps. In a wuation where you have both nonnormal variables 
and potential univariate outliers, a fundamental decision is whether you would prefer to transform 
variables, delete cases, or change scores on cases. If you transform variables first, you are likely to find 
fewer outliers. If you delete or modify the outliers first, you are likely to find fewer variables with 
nonnormality. 

Of the two choices, transformation of variables is usually preferable. It typically reduces the 
number of outliers. It is likely to produce normality, linearity, and homoscedasticity among the vari- 
ables. It increases the likelihood of multivariate norniality to bring the data into conformity with one 
of the fundamental assumptions of most inferential tests. And on a very practical level, it usually 
enhances the analysis even if inference is not a goal. On the other hand, transformation may threaten 
interpretation, in which case all the statistical niceties are of little avail. 

Or, if the impact of outliers is reduced first, you are less likely to find variables that are skewed 
because significant skewness is sometimes caused by extreme cases on the tails of the distributions. 
If you have cases that are univariate outliers because they are not part of the population from which 
you intended to sample, by all means delete them before checking distributions. 

Last, as will become obvious in the next two sections, although the issues are different, the 
runs on which they are screened are not necessarily different. That is, the same run often provides 
you with information regarding two or more issues. 

4.2 Complete Examples of Data Screening 

Evaluation of assumptions is somewhat different for ungrouped and grouped data. That is, if you are 
going to perform multiple regression, canonical correlation, factor analysis, or structural equation 
modeling on ungrouped data, there is one approach to screening. If you are going to perform uni- 
variate or multivariate analysis of variance (including profile analysis), discriminant analysis, or 
multilevel modeling on grouped data, there is another approach to screening.'' 

Therefore, two complete examples are presented that use the same set of variables taken from 
the research described in Appendix B: number of visits to health professionals (TIMEDRS), atti- 
tudes toward drug use (ATTDRUG), attitudes toward housework (AmHOUSE), INCOME, marital 
status (MSTATUS), and RACE. The grouping variable used in the analysis of grouped data is current 
employment status (EMPLMNT). l 9  Data are in files labeled SCREEN.". 

Where possible in these examples, and for illustrative purposes, screening for ungrouped data 
is performed using SPSS, and screening for grouped data is performed using SAS programs. 

4.2.1 Screening Ungrouped Data 

A flow diagram for screening ungrouped data appears as Figure 4.8. The direction of flow assumes 
that data transformation is undertaken, as necessary. If transformation is not acceptable, then other 
procedures for handling outliers are used. 

"lf you are using multiway frequency analy\~s or logistic regression, there are far fewer asstimptlons than with these other 
analyses. 

''This is a motley collection of variables chosen primarily for their statistical properties. 
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FIGURE 4.8 Flow diagram for screening ungrouped data. 

4.2.1.1 Accuracy of Input, Missing Data, Distributions, and Univariate Outliers 

A check on accuracy of data entry, missing data, skewness, and kurtosis for the data set is done 
through SPSS FREQUENCIES, as shown in Table 4.5. 

The minimum and maximum values, means, and standard deviations of each of the variables 
are inspected for plausibility. For instance, the Minimum number of visits to health professionals 
(TIMEDRS) is 0 and the Maximum is 8 1, higher than expected but found to be accurate on check- 
ing the data sheets.1° The Mean for the variable is 7.901, higher than the national average but not 
extremely so, and the standard deviation (Std. Deviation) is 10.948. These values are all reasonable, 
nq are the values on the other variable$. For instance, the ATTDRUG variable is constructed with a 
range of 5 to 10, so it is reassuring to find these values as Minimum and Maximum. 

"'The wornan with this number of visits was terminally i l l  when she was interviewed. 



TABLE 4.5 Syntax and SPSS FREQUENCIES Output Showing Descriptive Statistics and Histograms for Ungrouped ~ a t a  

FREQUENCIES 
VARIABLES=timedrs attdrug atthouse income mstatus race 
/FORMAT=NOTABLE 
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS 
SEKURT 
/HISTOGRAM NORMAL 
/ORDER= ANALYSIS 

Statistics 

Whether 
currently 
married 

465 
0 

1.78 
.416 
.I73 

-1.346 
.I13 
-.I90 
,226 

1 
2 

Income 

439 
26 

4.21 
2.41 9 
5.851 
.582 
.I17 
-.359 
.233 

1 
10 

Race 

465 
0 

1.09 
.284 
,081 
2.914 
.I13 
6.521 

.226 
1 
2 

A 

N Valid 
Missing 

Mean 
Std. Deviation 
Variance 
Skewness 
Std. Error of Skewness 
Kurtosis 
Std. Error of Kurtosis 
Minimum 
Maximum 

Attitudes 
toward 

medication 

465 
0 

7.69 
1.156 
1.337 
-. 123 

1 .I13 
-.447 
.226 
5 
10 

Visits to 
health 

professionals 

465 
0 

7.90 
10.948 

1 19.870 
3.248 
.I13 

13.101 
,226 
0 
81 

Attitudes 
toward 

housework 

464 
1 

23.54 
4.484 
20.1 02 
-.457 
.I13 
1.556 
.226 
2 
35 
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TABLE 4.5 Continued 

Histogram 
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Whether currently married 

Race 
700 , I 
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Race 

Mean = 1.09 
Std. Dev. = 0.284 
N = 465 
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TIMEDRS shows no Missing cases but has strong pos~tive Skewness (3.248). The signiti- 
cance of Skewness i s  evaluated by dividing i t  by Std. Error of Skewness. as in Equation 4.5. 

to reveal a clear departure from symmetry. The distribution also has significant Kurtosis as evalu- 
ated by Equation 4.7, 

The departures from normality are also obvious from inspection of the difference between fre- 
quencies expected under the normal distribution (the superimposed curve) and obtained frequencies. 
Because this variable'is a candidate for transformation, evaluation of univariate outliers is deferred. 

ATTDRUG, on the other hand, is well behaved. There are no Missing cases, and Skewness 
and Kurtosis are well within expected values. ATTHOUSE has a single missing value but is otherwise 
well distributed except for the two extremely low scores. The score of 2 is 4.8 standard deviations 
below the mean of ATTHOUSE (well beyond the p = .001 criterion of 3.29, two-tailed) and is dis- 
connected from the other cases. It is not clear whether these are recording errors or if these two women 
actually enjoy housework that much. In any event, the decision is made to delete from further analy- 
sis the data from the two women with extremely favorable attitudes toward housework. 

Information about these deletions is included in the report of results. The single missing value 
is replaced with the mean. (Section 10.7.1.1 illustrates a more sophisticated way of dealing with 
missing data in SPSS when the amount missing is greater than 5%.) 

On INCOME, however, there are 26 cases with Missing values-more than 5% of the sample. 
If INCOME is not critical to the hypotheses, we delete it in subsequent analyses. If INCOME is 
important to the hypotheses, we could replace the missing values. 

The two remaining variables are dichotomous and not evenly split. MSTATUS has a 362 to 
103 split, roughly a 3.5 to 1 ratio, that is not particularly disturbing. But RACE, with a split greater 
than 10 to 1 is marginal. For this analysis, we choose to retain the variable, realizing that its associ- 
ation with other variables is deflated because of the uneven split. 

Table 4.6 shows the distribution of ATTHOUSE with elimination of the univariate outliers. The 
mean for ATTHOUSE changes to 23.634, the value used to replace the missing ATTHOUSE score in 
subsequent analyses. The case with a missing value on ATT'HOUSE becomes complete and available 
for use in all computations. The COMPUTE instructions filter out cases with values equal to or less than 
2 on ATTHOUSE (univariate outliers) and the RECODE instruction sets the missing value to 23.63. 

At this point, we have investigated the accuracy of data entry and the distributions of all vari- 
ables, determined the number of missing values, found the mean for replacement of missing data, 
and found two univariate outliers that, when deleted, result in N = 463. 

4.2.1.2 Linearity and Homoscedasticity 

Because of nonnormality on at least one variable, SPSS GRAPH is run to check the bivariate plots 
for departures from linearity and homoscedasticity, as reproduced in Figure 1.9. The variables 



T.1BLE -1.6 Syntax and SPSS FREQUENCIES Output Showing Descriptive Statistics and 
Histograms for ATTHOUSE uith Unikariate Outliers Deleted 

USE ALL. 
COMPUTE filter-$=(atthouse > 2). 
VARIABLE LABEL filter-$ 'atthouse > 2 (FILTER)'. 
VALUE LABELS filter-$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter-$ (f1 .O). 
FILTER BY filter-$. 
EXECUTE. . 
RECODE 
atthouse (SYSMIS=23.63). 

EXECUTE. 
FREQUENCIES 
VARIABLES=atthouse /FORMAT=NOTABLE 
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS 
SEKURT 
/HISTOGRAM NORMAL 
/ORDER= ANALYSIS. 

Frequencies 

Statistics 

Attitudes toward housework 
- - 

N Valid 
Missing 

Mean 
Std. Dev~at~on 
Variance 
Skewness 
Std. Error of Skewness 
Kurtosis 
Std. Error of Kurtosis 
Minimum 
Maximum 

Histogram 

50 0 

0 15 20 25 30 35 

Attitudes toward housework 

Mean = 23.63 
Std. Dev. = 4.258 
N = 463 

picked as worst case are those with the most discrepant distributions: TIMEDRS, which has the 
greatest departure from normality, and ATTDRUG, which is nicely distributed. (The SELECT IF 
instruction eliminates the univariate outliers on ATTHOUSE.) 

In Figure 4.9, ATTDRUG is along the Y axis; turn the page so that the Y axis becomes the X 
axis and you can see the symmetry of the ATTDRUG distribution. TIMEDRS is along the X axis. The 
asymmetry of the distribution is apparent from the pileup of scores at low values of the variable. The 
overall shape of the scatterplot is not oval; the variables are not linearly related. Heteroscedasticity 
is evident in the greater variability in ATTDRUG scores for low than high values of TIMEDRS. 
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USEALL. 
COMPUTE frlter-$=(atthouse -= 2) 
VARIABLE LABEL filter-$ 'atthouse -= 2 (FILTER)' 
VALUE LABELS filter-$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter-$ (fl.O). 
FILTER BY filter-$. 
EXECUTE. 
GRAPH 
/SCATTERPLOT(BIVAR)=timedrs WITH attdrug 
/MISSING=LISTWISE. 

Graph 

4 1 I I I I I 

- 20 0 20 40 60 80 100 
Visits to health professionals 

FIGURE 4.9 Assessment of linearity through bivariate scatterplots, as produced by 
SPSS GRAPH. This indicates ATTDRUG is normal; TIMEDRS is nonnormal. 

4.2.1.3 Transjormation 

Variables are transformed prior to searching for multivariate outliers. A logarithmic transformation is 
applied to TIMEDRS to overcome strong skewness. Beca~~se the smallest value on the variable is zero, 
one is added to each score as the transformation is performed, as indicated in the COMPUTE state- 
ment. Table 4.7 shows the distribution of TIMEDRS as transformed to LTIMEDRS. 

Skewness is reduced from 3.248 to 0.221 and Kurtosis is reduced from 13.101 to -0.183 by 
the transformation. The frequency plot is not exactly pleasing (the frequencies are still too high for 
small scores), but the statistical evaluation of the distribution is much improved. 

Figure 4.10 is a bivariate scatterplot between ATTDRUG and LTIMEDRS. Although still not 
perfect, the overall shape of the scatterplot is more nearly oval. The nonlinearity associated with non- 
normality of one of the variables is "fixed" by transformation of the variable. 



Cls;uiinp L;p Y'oilr Act 99 

TABLE -1.7 S?ntau and SPSS FREQC'ENCIES Output Showing Descripti\e Statistics and 
Histograms for TISIEDRS after Logarith~nic Transform 

COMPUTE ltimedrs = IglO(timedrs+l). 
EXECUTE. 
FREQUENCIES 
VARIABLES=ltimedrs /FORMAT=NOTABLE 
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS 
SEKURT 
/HISTOGRAM NORMAL 
/ORDER = ANALYSIS. 

Frequencies 

Statistics 

ltimedrs 

N Valid 
Missing 

Mean 
Std. Deviation 
Variance 
Skewness 
Std. Error of Skewness 
Kurtosis 
Std. Error of Kurtosis 
Minimum 
Maximum 

Histogram 

70 I 

0.00 0.50 1.00 1 .so 2.00 

ltirnedrs 

Mean = 0.7424 
Std. Dev. = 0 41579 
N = 463 

4.2.1.4 Detecting Multivariate Outliers 

The 463 cases, with transformation applied to LTIMEDRS, are screened for multivariate outliers 
through SPSS REGRESSION (Table 4.8) using the RESIDUALS=OUTLIERS(MAHAL) syntax 
added to menu choices. Case labels (SUBNO) are used as the dummy DV, convenient because mul- 
tivariate outliers among IVs are unaffected by the D V . ~ '  The remaining VARIABLES are considered 
independent variables. 

The criterion for multivariate outliers is Mahalanobis distance at p < .001. Mahalanobis dis- 
tance is evaluated as X2 with degrees of freedom equal to the number of variables, in this case five: 
LTIMEDRS, ATTDRUG, ATTHOUSE, MSTATUS, and RACE. Any case with a Mahal. Distance 
in Table 4.8 greater than ~ y ~ ( 5 )  = 20.5 15 (cf. Appendix C, Table C.4), then, is a multivariate outlier. 
As shown in Table 4.8, cases 1 17 and 193 are outliers among these variables in this data set. 

 or a multiple-~.egres\~o~l nnaly\i.;. the a c t ~ ~ a l  DV would he used here rather than SUBNO a.; a dummy DV. 



GRAPH 
/SCATTERPLOT(BIVAR) = ltimedrs WITH attdrug 
/MISSING=LISTWISE. 
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FIGURE 4.10 Assessment of linearity after log transformation of 
TIMEDRS, as produced by SPSS GRAPH. 

There are 461 cases remaining if the two multivariate outliers are deleted. Little is lost by delet- 
ing the additional two outliers from the sample although transformation is an alternative because they 
are not particularly disconnected from the remaining cases. It is also necessary to determine why the 
two cases are multivariate outliers, to know how their deletion limits generalizability, and to include 
that information in the Results section. 

4.2.1.5 Variables Causing Cases to Be Outliers 

SPSS REGRESSION is used to identify the combination of variables on which case 1 17 (subject num- 
ber 137 as found in the data editor) and case 193 (subject number 262) deviate from the remaining 462 

TABLE 4.8 Syntax and Selected SPSS REGRESSION Output for Multivariate Outliers 
and Multicollinearity 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT subno 
/METHOD=ENTER attdrug atthouse mstatus race ltimedrs 
/RESIDUALS=OUTLIERS(MAHAL). 



TABLE 4.8 Continued 
- 

Regression 
Collinearity Diagnosticsa 

Condition 
Index Model Dimension 

1 1 

Eigenvalue 

5.656 

Wependent Variable: Subject number 

Variance Proportions . 

Outlier Statisticsa 

(Constant) 

.oo 

.OO 

.OO 

.OO 

.OO 

.99 

Wependent Variable: Subject number 
0 
w 

Attitudes 
toward 

housework 

.oo 

.OO 

.01 

.29 

.41 

.29 

Attitudes 
toward 

medication 

.oo 

.OO 

.OO 

.03 

.53 

.43 

Statistic 

21.837 
20.650 
19.968 
18.499 
18.469 
17.51 8 
17.373 
17.172 
16.942 
16.723 

Mahal. Distance 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Whether 
currently 
married 

.oo 

.01 

.29 

.46 

.06 

.18 

Case Number 

117 
193 
435 
99 

335 
292 
58 
71 

102 
196 

Race 

.oo 

.02 

.66 

.16 

.04 

.12 

ltimedrs 

"01 
.92 
.01 
.06 
.OO 
.OO 



TABLE 1.9 SPSS REGRESSION Syntax and Partial Output Showing Variables 
Causing the 117th Case to Be an Outlier 

COMPUTE dummy = 0. 
EXECUTE. 
IF (subno=137) dummy = I. 
EXECUTE. 
REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS 
/CRITERIA=PIN(.OS) POUT(.10) 
/NOORIGIN 
/DEPENDENT dummy 
/METHOD=STEPWISE attdrug atthouse emplmnt mstatus race Itimedrs. 

aDependent Variable: DUMMY 

Model 

1 (Constant) 
race 

2 (Constant) 
race 
Attitudes toward 
medication 

3 (Constant) 
race 
Attitudes toward 
medication 
ltimedrs 

cases. Each outlying case is evaluated in a separate SPSS REGRESSION run after a dummy variable 
is created to separate the outlying case from the remaining cases. In Table 4.9, the dummy vaiable for 
subject 137 is created in the COMPUTE instruction with dummy = 0 and if (subno=137) dummy 
= 1.  With the dummy variable as the DV and the remaining variables as IVs, you can find the variables 
that distinguish the outlier from the other cases. 

For the 1 17th case (subno=l37),  RACE, ATTDRUG, and LTIMEDRS show up as significant 
predictors of the case (Table 4.10). 

Variables separating case 193 (subno=262) from the other cases are RACE and LTIMEDRS. 
The final step in evaluating outlying cases is to determine how their scores on the variables that cause 
them to be outliers differ from the scores of the remaining sample. The SPSS LIST and DESCRIP- 
TIVES procedures are used, as shown in Table 4.1 1. The LIST procedure is run for each outlying 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

Beta 

.I49 

.I51 

-.I11 

6 

-.024 
,024 

.009 

.025 

-.004 

Std. Error 

,008 
.008 

.016 
,007 

.002 

t 

-2.881 
3.241 

.577 
3.304 

-2.419 

.003 

.026 

-.005 

.012 

Sig. 

.004 

.001 

,564 
.001 

.016 

,169 
3.481 

-2.681 
2.360 

,866 
.001 

.008 

.019 

.016 1 

.007 

.002 

.005 

.I59 

-.I23 
109  
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T'IBLE 4.10 SPSS REGRESSION Syntax and Partial Output Showing Variables 
Causing the 193rd Case to Be an Outlier 

IF (subno=137) dummy = 0. 
EXECUTE. 
IF (subno=262) dummy = 1. 
EXECUTE. 
REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT dummy 
/METHOD=STEPWISE attdrug atthouse emplmnt mstatus race Itimedrs. 

aDependent Variable: DUMMY 

TABLE 4.11 Syntax and SPSS Output Showing Variable Scores for Multivariate Outliers 
and Descriptive Statistics for All Cases 

Model 

1 (Constant) 
race 

2 (Constant) 
race 
ltimedrs 

LlST VARIABLES=subno attdrug atthouse mstatus race ltimedrs 
/CASES FROM 1 17 TO 1 17. 

LlST VARIABLES=subno attdrug atthouse mstatus race ltimedrs 
/CASES FROM 193 TO 193. 

DESCRIPTIVES attdrug atthouse mstatus race Itimedrs. 

t 

-2.881 
3.241 

-3.787 
3.436 
2.634 

List 

Sig. 

.004 

.001 

.OOO 

.001 

.009 

subno attdrug atthouse mstatus race ltimedrs 

137 5 2 4 2 2 1.49 

Standardized 
Coefficients 

Beta 

.I49 

158 
121  

Unstandardized 
Coefficients 

Number of cases read: 117 Number of cases listed: 1 

B 

-.024 
.024 

-.036 
.026 
.014 

List 

Std. Error 

.008 

.008 

.009 

.007 
,005 

subno attdrug atthouse mstatus race ltimedrs 

Number of cases read: 193 Number of cases listed: 1 

(continued) 
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TABLE 1.11 Continued 

Descriptives 

Descriptive Statistics 

case to show its values on all the variables of interest. Then DESCRIPTIVES is used to show the 
average values for the remaining sample against which the outlying cases are compared.22 

The 117th case is nonwhite on RACE, has very unfavorable attitudes regarding use of drugs 
(the lowest possible score on ATTDRUG), and has a high score on LTIMEDRS. The 193rd case is 
also nonwhite on RACE and has a very high score on LTIMEDRS. There is some question, then, 
about the generalizability of subsequent findings to nonwhite women who make numerous visits to 
physicians, especially in combination with unfavorable attitude toward use of drugs. 

4.2.1.6 Multicollinearity 

Attitudes toward medication 
Attitudes toward housework 
Whether currently married 
race 
ltimedrs 
Valid N (listwise) 

Evaluation of multicollinearity is produced in SPSS through the STATISTICS COLLIN instruction. 
As seen by the Collinearity Diagnostics output of Table 4.8, no multicollinearity is evident. 
Although the last root has a Condition index that approaches 30, no dimension (row) has more than 
one Variance Proportion greater than S O .  

Screening informationas it might be described in a Results section of a journal article appears I 

next. 

Maximum 

10 
35 
2 
2 

1.91 

Results 

N 

463 
463 
463 
463 
463 
463 

Prior to analysis, number of visits to health professionals, 

attitude toward drug use, attitude toward housework, income, mar- 

ital status, and race were examined through various SPSS programs 

for accuracy of data entry, missing values, and fit between their 

Minimum 

5 
11 
1 
1 

.OO 

Mean 

7.68 
23.63 

1.78 
1.09 

.7424 

17 --These values are equal to those shown in the earlier FREQUENCIES runs but for deletion of the two univariate outliers 

Std. 
Deviation 

1.158 
4.258 

.413 

.284 
.41579 



distributions and the assumptions of multivariate analysis. The 

single missing value on attitude toward housework was replaced by 

the mean for all cases, while income, with missing values on more 

than 5% of the cases, was deleted. The poor split on race (424 to 

41) truncates its correlations with other variables, but it was 

retained for analysis. To improve pairwise linearity and to reduce 

the extreme skewness and kurtosis, visits to health professionals 

was logarithmically transformed. 

Two cases with extremely low z scores on attitude toward 

housework were found to be univariate outliers; two other cases 

were identified through Mahalanobis distance as multivariate out- 

liers with p < .001.23 All four outliers were deleted, leaving 461 

cases for analysis. 

4.2.2 Screening Grouped Data 

Fol [his example, the cases are divided into two  groups according to thc EMPLMNT (employment 
status) variable; there are 246 cases who have paid work (EMPLMNT = 1) and 2 19 cases who are 
housewives (EMPLMNT = 0). For illustrative purposes, variable transformation is considered inap- 
propriate for this example, to be undertaken only if proved necessary. A flow diagram for screening 
grouped data appears in Figure 4.1 1. 

4.2.2.1 Accuracy of Input, Missing Data, Distributions, Homogeneity of Variance, 
and Univariate Outliers 

SAS MEANS and Interactive Data Analysis provide descriptive statistics and histograms, respec- 
tively, for each group separately, as shown in Table 4.12. Menu choices are shown for SAS Interactive 
Data Analysis because no SAS log file is provided. Note that data must be sorted by EMPLMNT 
group before analyzing separately by groups. As with ungrouped data, accuracy of input is judged by 
plausible Means and Std Devs and reasonable Maximum and Minimum values. The distributions are 
judged by their overall shapes within each group. TIMEDRS is just as badly skewed when grouped as 
when ungrouped, but this is of less concern when dealing with sampling distributions based on over 

'?case 1 17 was nonwhite with very unfavorable attitudes regarding use of drugs but numerous v~si ts  to physlclans. Case 193 
was also nonwhite with numerous visits to physicians. Results of analysis may not generalize to nonwhite women with 
numerous visits to physicians. particularly if they have vely unfavorable attitudes toward use of drugs. 
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Search~ng for. Programs Flow Diagram 
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FIGURE 4.11 Flow diagram for screening grouped data. 

200 cases unless the skewness causes nonlinearity among variables or there are outliers. ATTDRUG 
remains well distributed within each group. As shown in Table 4.12, the ATTHOUSE variable is nicely 
distributed as well, but the two cases in the employment status = 0 (paid workers) group with very low 
scores are outliers. With scores of 2, each case is 4.48 standard deviations below the mean for her 
group-beyond the a = .001 criterion of 3.29 for a two-tailed test. Because there are more cases in the 
group of paid workers, it is decided to delete these two women with extremely favorable attitudes 
toward housework from further analysis and to report the deletion in the Results section. There is also 
a score missing within the group of women with paid work. ATTDRUG and most of the other variables 
have 246 cases in this group, but ATTHOUSE has only 245 cases. Because the case with the missing 
value is from the larger group, it is decided to delete the case from subsequent analyses. 



TABLE 4.12 Syntax and Selected SAS MEANS and SAS Interactive Data Analysis Output Showing (a) Descriptive Statistics and (b) 
Histograms for Grouped Data 

p r o c  s o r t  d a t a  = S A S U S E R . S C R E E N ;  
b y  EMPLMNT;  

r u n ;  
p r o c  m e a n s  d a t a = S A S U S E R . S C R E E N  v a r d e f = D F  

N  N M I S S  M I N  MAX MEAN VAR S T D  SKEWNESS K U R T O S I S ;  
v a r  T I M D R S  A T T D R U G  A T T H O U S E  I N C O M E  M S T A T U S  RACE ; 

b y  EMPLMNT;  
r u n ;  

C u r r e n t  e m p l o y m e n t  status=O------------------------------------ 

V a r i a b l e  L a b e l  

T h e  MEANS P r o c e d u r e  
N  N M i s s  M i n i m u m  

TIMEDRS V i s i t s  t o  h e a l t h  p r o f e s s i o n a l s  2 4 6  0  0  
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  2 4 6  0  5 . 0 0 0 0 0 0 0  
ATTHOUSE A t t i t u d e s  t o w a r d  h o u s e w o r k  2  4  5  1  2 . 0 0 0 0 0 0 0  
INCOME I n c o m e  c o d e  2  3  5  1 1  1 . 0 0 0 0 0 0 0  
MSTATUS C u r r e n t  m a r i t a l  s t a t u s  2 4 6  0  1 . 0 0 0 0 0 0 0  
RACE E t h n i c  a f f i l i a t i o n  2  4  6  0  1 . 0 0 0 0 0 0 0  

M a x i m u m  Wean 

81 .OOOOOOO 7 . 2 9 2 6 8 2 9  
1 0 . 0 0 0 0 0 0 0  7 . 5 9 3 4 9 5 9  
3 4 . 0 0 0 0 0 0 0  2 3 . 6 4 0 8 1 6 3  
1 0 . 0 0 0 0 0 0 0  4 . 2 3 8 2 9 7 9  

2 . 0 0 0 0 0 0 0  1 . 6 8 6 9 9 1 9  
2 . 0 0 0 0 0 0 0  1 . 1 0 9 7 5 6 1  

V a r i a b l e  L a b e l  V a r i a n c e  S t d  D e v  S k e w n e s s  K u r t o s i s  

TIMEDRS V i s i t s  t o  h e a l t h  p r o f e s s i o n a l s  1 2 2 . 4 5 2 7 6 2 6  1 1 . 0 6 5 8 3 7 6  3 . 8 7 1 6 7 4 9  1 8 . 0 7 6 5 9 8 5  
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  1 . 2 3 8 1 6 1 6  1 . 1 1 2 7 2 7 1  - 0 . 1 4 7 9 5 9 3  - 0 . 4 7 2 4 2 6 1  
ATTHOUSE A t t i t u d e s  t o w a r d  h o u s e w o r k  2 3 . 3 3 7 6 7 1 5  4 . 8 3 0 9 0 7 9  - 0 . 6 8 2 8 2 8 6  2 . 1 6 1  4 0 7 4  
INCOME I n c o m e  c o d e  5 . 9 5 1 5 1 8 5  2 . 4 3 9 5 7 3 4  0 . 5 7 3 3 0 5 4  - 0 . 4 2 8 7 4 8 8  
MSTATUS C u r r e n t  m a r i t a l  s t a t u s  0 . 2 1 5 9 1 1 7  0 . 4 6 4 6 6 3 0  - 0 . 8 1 1 4 4 6 5  - 1 . 3 5 2 6 1 8 2  
RACE E t h n i c  a f f i l i a t i o n  0 . 0 9 8 1 0 8 5  0 . 3 1 3 2 2 2 8  2 . 5 1 2 2 2 2 3  4 . 3 4 6 5 3 3 1  

-- -.. 

.................................... C u r r e n t  e m p l o y m e n t  status=l------------------------------------ 

V a r i a b l e  L a b e l  N  N  M i s s  M i n i m u m  M a x i  mum Mean 

TIMEDRS 

ATTDRUG 
ATTHOUSE 
INCOME 
MSTATUS 
RACE 

-4 

V i s i t s  t o  h e a l t h  p r o f e s s i o n a l s  21  9  0  0  6 0 . 0 0 0 0 0 0 0  
A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  21 9 0  5 . 0 0 Q 0 0 0 0  1 0 . 0 0 0 0 0 0 0  
A t t i t u d e s  t o w a r d  h o u s e w o r k  2 1 9  0  1 1 . 0 0 0 0 0 0 0  3 5 . 0 0 0 0 0 0 0  
I n c o m e  c o d e  2 0 4  1 5  1 . 0 0 0 0 0 0 0  1 0 . 0 0 0 0 0 0 0  
C u r r e n t  m a r i t a l  s t a t u s  2 1 9  0  1  .OOOOOOO 2 . 0 0 0 0 0 0 0  
E t h n i c  a f f i l i a t i o n  2 1 9  0  1 . 0 0 0 0 0 0 0  2 . 0 0 0 0 0 0 0  

- 
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TABLE 4.12 Continued 
- 

~ L M N T  Current employment status = I 

On INCOME, however. i t  i q  the smaller group, housewives, with the greater number of miss- 
ing values; within that group almost 7% of the cases do not have INCOME scores. INCOME, then, 
is a good candidate for variable deletion, although other remedies are available should deletion seri- 
ously interfere with hypothesis testing. 

The splits in the two dichotomous variables, MSTATUS and RACE, are about the same for 
grouped as for ungrouped data. The splits for both MSTATUS (for the housewife group) and for 
RACE (both groups) are disturbing, but we choose to retain them here. 

For the remaining analyses, INCOME is deleted as a variable, and the case with the missing 
value as well as the two univariate outliers on ATTHOUSE are deleted, leaving a sample size of 462: 
243 cases in the paid work group and 2 19 cases in the housewife group. 

Because cell sample sizes are not very discrepant, variance ratios as great as 10 can be toler- 
ated. All F,,,,, are well below this criterion. As an example, for the two groups for ATTDRUG, 
F;,,,, = 1.1971 1.1 13 = 1.16. Thus, there is no concern about violation of homogeneity of variance 
nor of homogeneity of variance-covariance matrices. 



d a t a  S A S U S E R . S C R E E N X ;  
s e t  S A S U S E R . S C R E E N ;  
i f  A T T H O U S E  < 3 t h e n  d e l e t e ;  

r u n ;  

l . O p e n  SAS I n t e r a c t i v e  D a t a  A n a l y s i s  w i t h  a p p r o p r i a t e  d a t a  s e t  ( h e r e  
SASUSER.SCREENX). 

2 . C h o o s e  A n a l y z e  a n d  t h e  S c a t t e r  P l o t  ( Y  X I .  
3 . S e l e c t  Y v a r i a b l e :  ATTDRUG. 
4 . S e l e c t  X v a r i a b l e :  TIMEDRS. 
5.117 G r o u p  b o x ,  s e l e c t  EMPLMNT. 
6.117 O u t p u t  d i a l o g  b o x ,  s e l e c t  Names, Y A x i s  V e r t i c a l ,  V e r t i c a l  A x i s  a t  

L e f t ,  a n d  H o r i z o n t a l  A x i s  a t  B o t t o m .  

I .... - - .- - - - ---- 
If 

0 20 40 
-if 
60 

kl T l MEDRS 
- ---- > 

FIGURE 4.12 Syntax for creating reduced data set through SAS DATA and SAS Interactive Data 
Analysis setup and output showing within-group scatterplot of ATTDRUG vs. TIMEDRS. 

4.2.2.2 Linearity 

Because of the poor distribution on TIMEDRS, a check of scatterplots is warranted to see if TIME- 
DRS has a linear relationship with other variables. There is no need to check for linearity with 
MSTATUS and RACE because variables with two levels have only linear relationships with other 
variables. Of the two remaining variables, ATTHOUSE and ATTDRUG, the distribution of 
ATTDRUG differs most from that of TIMEDRS after univariate outliers are deleted. 

Appropriately checked first, then, are within-group scatterplots of ATTDRUG versus TIME- 
DRS. Figure 4.12 shows syntax for creating the data set with extreme cases and missing data on 
ATTHOUSE deleted (SASUSER.SCREENX) and the setup and output for creating the scatterplots. 

In the within-group scatterplots of Figure 4.12, there is ample evidence of skewness in the 
bunching up of scores at low values of TIMEDRS, but no suggestion of nonlinearity for these vari- 
ables in the group of paid workers or housewives. Because the plots are acceptable, there is no evi- 
dence that the extreme skewness of TIMEDRS produces a harmful departure from linearity. Nor is 
there any reason to expect nonlinearity with the symmetrically distributed ATTHOUSE. 



TABLE 4.13 Syntax for SAS REG and Selected Portion of Output 
File for Identification of Multivariate Outliers 

p r o c  r e g  d a t a = S A S U S E R . S C R E E N X ;  
b y  E M P L M N T  
m o d e l  E M P L M N T  = T I M E D R S  A T T D R U G  A T T H O U S E  M S T A T U S  R A C E ;  
o u t p u t  o u t = S A S U S E R . S C R N - L E V  H=H;  

run; 

4.2.2.3 Multivariate Outliers 

Multivariate outliers within the groups are sought using SAS REG with EMPLMNT as the DV. 
Because outliers are sought only among IVs, the choice of the DV is simply one of convenience. 
Mahalanobis distance is unavailable directly but may be calculated from leverage values, which are 
added to the data file. Table 4.13 shows SAS REG syntax and a selected portion of the output data 
file (SASUSER.SCRN-LEV) that provides leverage (H) for each case from the centroid of each 
group. Missing data and univariate outliers have already been omitted (see syntax for Figure 4.12). 

Critical values of Mahalanobis distance with 5 variables at cu = .001 is 20.5 15 (Appendix C, 
Table (2.4). Equation 4.3 is used to convert this to a critical leverage value for each group. 

For housewives: 



T.4BLE 4.14 SAS Syntax for Transformation of TI3lEDRS: 
Syntax for S.AS REG and Selected Portion of Output File 

d a t a  S A S U S E R . S C R E E N T ;  
s e t  S A S U S E R . S C R E E N X ;  
L T I M E D R S  = C O ~ I O ( ~ L T I M E D R S  + 1 )  ; 

run; 
p r o c  r e g  d a t a = S A S U S E R . S C R E E N T ;  

b y  E M P L M N T ;  
m o d e l  E M P L M N T  = L T I M E D R S  A T T D R U G  A T T H O U S E  M S T A T U S  R A C E ;  
o u t p u t  o u t = s a s u s e r . S c r n C e v 2  H=H; 

run; 

! 
and for the paid work group: 

The data set is shown for the first cases for the paid workers (group = 0). The last column, labeled 
H, shows leverage values. The 21st case, SUBNO #48 is a multivariate outlier among paid workers. 

Altogether, 15 cases (about 3%) are identified as multivariate outliers: 3 paid workers and 10 
housewives. Although this is not an exceptionally large number of cases to delete, it is worth inves- 
tigating alternative strategies for dealing with outliers. The univariate summary statistics for 
TIMEDRS in Table 4.12 show a Maximum score of 81, converting to a standard I 

score of ; = (8 1 - 7.293)/11.066 = 6.66 among those with PAIDWORK and z = 4.76 among 
HOUSEWIFEs; the poorly distributed variable produces univariate outliers in both groups. The 
skewed histograms of Table 4.13 suggest a logarithmic transformation of TIMEDRS. 

Table 4.14 shows output from a second run of SAS REG identical to the run in Table 4.13 
except that TIMEDRS is replaced by LTIMEDR, its logarithmic transform (transformation syntax is 



TABLE 1.15 SAS DATA Syntax for Forming the Dummy DV and Limiting Data to Housewives; 
Syntax and Partial SAS REG Output Showing Variables Causing SUBNO #262 to Be an Outlier 
among Housewives 

d a t a  S A S U S E R . S C R E E N D ;  
s e t  S A S U S E R . S C R E E N T ;  

D U M M Y  = 0; 
i f  S U B N O = 2 6 2  t h e n  D U M M Y = I ;  
i f  E M P L M N T = O  t h e n  d e l e t e ;  
run; 

p r o c  r e g  D A T A = S A S U S E R . S C R E E N D ;  
m o d e l  D U M M Y  = L T I M E D R  A T T D R U G  A T T H O U S E  M S T A T U S  R A C E /  

s e l e c t i o n = F O R W A R D  S L E N T R Y = 0 . 0 5 ; ;  
run; 

T h e  REG P r o c e d u r e  

Mode 1  : M O D E L 1  

D e p e n d e n t  V a r i a b l e :  D U M M Y  

F o r w a r d  S e l e c t i o n :  S t e p  2  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  E s t i m a t e  E r r o r  T y p e  I 1  SS F V a l u e  P r  > F 

I n t e r c e p t  - 0 . 0 9 7 2 9  0 . 0 2 1 6 7  0 . 0 8 3 8 2  2 0 . 1 6  < . 0 0 0  1  
LTIMEDR 0 . 0 2 6 9 0  0 . 0 0 9 9 5  0 . 0 3 0 4 1  7 . 3 1  0 . 0 0 7 4  
R A C E  0 . 0 7 6 3 8  0 . 0 1 7 9 1  0 . 0 7 5 6 5  1 8 . 1 9  <. 0 0 0 1  

B o u n d s  o n  c o n d i t i o n  n u m b e r :  1 . 0 1 0 5 ,  4 . 0 4 2 2  ...................................................................... 
No o t h e r  v a r i a b l e  m e t  t h e  0 .0500  s i g n i f i c a n c e  l e v e l  f o r  e n t r y  i n t o  t h e  m o d e l .  

shown). The 21st case no longer is an outlier. With the transformed variable, the entire data set con- 
tains only five multivariate outliers, all of them in the housewife group. One of these, SUBNO #262 
was also identified as a multivariate outlier in the ungrouped data set.24 

4.2.2.4 Variables Causing Cases to Be Outliers 

Identification of the variables causing outliers to be extreme proceeds in the same manner as for 
ungrouped data except that the values for the case are compared with the means for the group the 
case comes from. For subject number 262, a paid worker, the regression run is limited to paid work- 
ers, as shown in Table 4.15. First, Table 4.15 shows the SAS DATA syntax to create a dummy vari- 
able in which SUBNO #262 forms one code of the dummy variable and the remaining housewives 
form the other code. The dummy variable then serves as the DV in the SAS REG run. The table 

'"ate that these are different multivariate outliers than found by software used in earlier editions of this book. 
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TABLE 4.16 Syntax and SAS MEANS Output Showing Descriptive Statistics for Housewife Group 

d a t a  S A S U S E R - S C R E E N D ;  
s e t  S A S U S E R - S C R E E N T ;  

i f  E M P L M N T = O  t h e n  d e l e t e ;  
run;  

p r o c  m e a n s  ~ ~ ~ ~ = s A s u s E R . S C R E E N D  
N  M E A N  S T D ;  

v a r  L T I M E D R  A T T D R U G  M S T A T U S  R A C E ;  
b y  E M P L M N T ;  

run;  
...................... C u r r e n t  e m p l o y m e n t  status=l---------------------- 

T h e  MEANS P r o c e d u r e  

V a r i a b l e  L a b e l  N Mean S t d  D e v  

LTIMEDR 219  0 . 7 6 5 7 8 2 1  0 . 4 4 1 4 1 4 5  
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  2 1 9  7 . 7 8 9 9 5 4 3  1 . 1 9 6 9 7 2 3  
MSTATUS C u r r e n t  m a r i t a l  s t a t u s  2 1 9  1  .a812785  0 . 3 2 4 2 0 1  5  
RACE E t h n i c  a f f i l i a t i o n  2 1 9  1 . 0 6 3 9 2 6 9  0 . 2 4 5 1 8 3 2  

shows that the same variables cause this woman to be an outlier from her group as from the entire 
sample: She differs on the combination of RACE and LTIMEDRS. 

Regression runs for the other four cases are not shown, however the remaining four cases all 
differed on RACE. In addition, one case differed on ATTDRUG and another on MSTATUS. 

As with ungrouped data, identification of variables on which cases are outliers is followed by 
an analysis of the scores on the variables for those cases. First, Table 4.16 shows the means on the 
three variables involved in outlying cases, separately by employment group. The data set is consulted 
for these values for the five outliers. 

The data set shows that scores for subject number 262 are 2 for RACE and 1.763 for LTIME- 
DRS. For subject number 45, they are 2 for RACE and 1 (single) for MSTATUS. For subject num- 
ber 119, they are 2 for RACE and 10 for ATTDRUG. For subject numbers 103 and 582, they are 2 
for RACE. Thus all of the outliers are non-Caucasian housewives. A separate run of descriptive sta- 
tistics for housewives (not shown) reveals that only 14 of the housewives in the sample of 219 are 
non-Caucasian. One of them also has an unusually large number of visits to health professionals, one 
is unmarried, and one has exceptionally unfavorable attitudes regarding use of drugs. 

4.2.2.5 Multicollinearity 

The collinearity diagnostics of a SAS REG run are used to assess multicollinearity for the two 
groups, combined (Table 4.17) after deleting the five multivariate outliers. 

Screening information as it might be described in a Results section of a journal article appears 
next. 
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TABLE 4.17 Sytnax and Selected XIulticollinrarity Output Prom SAS REG. 

d a t a  S A S U S E R . S C R E E N T ;  
s e t  S A S U S E R . S C R E E N T ;  
i f  s u b n o = 4 5  o r  subno=103 o r  subno=19 o r  s u b n o = 2 6 2  o r  

s u b n o = 5 8 2  t h e n  d e l e t e ;  
run; 
p r o c  r e g  d a t a = S A S U S E R . S C R E E N F ;  

m o d e l  S U B N O =  A T T D R U G  A T T H O U S E  M S T A T U S  R A C E  L T I M E D R /  C O L L I N ;  
run; 

C o L L i n e a r i t y  D i a g n o s t i c s  

Number  E i g e n v a l u e  C o n d i t i o n  I n d e x  

1  5 . 6 6 3 2 3  1 . 0 0 0 0 0  
2  0 . 2 0 6 8 2  5 . 2 3 2 8 2  
3  0 . 0 5 6 1  8  1 0 . 0 3 9 9 7  
4  0 . 0 4 2 4 6  1 1 . 5 4 9 5 3  
5  0 . 0 2 4 6 3  1 5 . 1 6 3 1 9  
6  0 . 0 0 6 6 8  2 9 . 1 2 1 9 9  

Number I n t e r c e p t  ATTDRUG ATTHOUSE MSTATUS R A C E  LTIMEDR 

1  0 . 0 0 0 2 6 4 4 7  0 . 0 0 0 6 6 6 8 1  0 . 0 0 0 9 2 3 2 3  0 . 0 0 1 4 9  0 . 0 0 1 7 2  0 . 0 0 5 8 3  
2 0 . 0 0 0 9 0 2 2 9  0 . 0 0 1 6 3  0 . 0 0 1 6 9  0 . 0 1 2 0 8  0 . 0 1 7 1 4  0 . 9 1 9 8 4  
3 0 . 0 0 0 3 3 3 8 2  0 . 0 0 0 9 7 6 9 7  0 . 0 0 3 0 8  0 . 3 4 9 3 2  0 . 6 1 7 4 2  0 . 0 0 4 2 4  
4  0 . 0 0 3 7 4  0 . 0 3 5 6 2  0 . 3 0 1 9 6  0 . 3 9 7 7 1  0 . 1 9 5 2 7  0 . 0 6 4 5 8  
5  0 . 0 0 3 9 3  0 . 5 4 4 4 1  0 . 4 0 6 7 2  0 . 0 5 7 9 8  0 . 0 4 2 7 9  0 . 0 0 4 1 6  
6 0 . 9 9 0 8 2  0 . 4 1 6 7 0  0 . 2 8 5 6 3  0 . 1 8 1 4 2  0 . 1 2 5 6 7  0 . 0 0 1 3 6  

Results 

Prior to analysis, number of visits to health professionals, 

attitude toward drug use, attitude toward housework, income, 

marital status, and race were examined through various SAS pro- 

grams for accuracy of data entry, missing values, and fit 

between their distributions and the assumptions of multivariate 

analysis. The variables were examined separately for the 246 

employed women and the 219 housewives. 

A case with a single missing value on attitude toward house- 

work was deleted from the group of employed women, leaving 245 
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cases in that group. Income, with missing values on more than 5% 

of the cases, was deleted. Pairwise linearity was checked using 

within-group scatterplots and found to be satisfactory. 

Two cases in the employed group were univariate outliers 

because of their extremely low z scores on attitude toward 

housework;' these cases were deleted. By using Mahalanobis dis- 

tance with p < .001, derived from leverage scores, 15 cases 

(about 3%) were identified as multivariate outliers in their own 

groups. Because several of these cases had extreme z scores on 

visits to health professionals and because that variable was 

severely skewed, a logarithmic transformation was applied. With 

the transformed variable in the variable set, only five cases 

were identified as multivariate outliers, all from the employed 

With a11 seven outliers and the case with missing values 

deleted, 24 cases remained in the employed group and 214 in the 

group of housewives. 

2 5 ~ 1 1  the outliers were non-Caucasian housewives. Thus, 36% (511 4) of the non-Caucasian housewives were outliers. One of 
them also had an unusually large number of visits to health professionals, one was unmarried, and one had excrptionally unfa- 
vorable attitudes regarding use of drugs. Thus, results may not generalize to non-Caucasian housewives. particularly those 
who are unmarried, make frequent visits to physicians, and have very unfavorable attitudes toward use of drugs. 
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Multiple Regression 

5.1 General Purpose and Description 

Regression analyses are a set of statistical techniques that allow one to assess the relationship 
between one DV and several IVs. For example, is reading ability in primary grades (the DV) related 
to several IVs such as perceptual development, motor development, and age? The terms regression 
and correlation are used more or less interchangeably to label these procedures although the term 
regression is often used when the intent of the analysis is prediction, and the term correlation is used 
when the intent is simply to assess the relationship between the DV and the IVs. 

Multiple regression is a popular technique in many disciplines. For example, Stefl-Mabry 
(2003) used standard multiple regression to study satisfaction derived from various sources of infor- 
mation (word-of-mouth, expert oral advice, internet, print news, nonfiction books, and radioltelevi- 
sion news). Forty vignettes were developed with high and low levels of information and high and low 
consistency; individual regression analyses were performed for each of the 90 professional partici- 
pants and then their standardized regression coefficients were averaged. The normative participant 
was most satisfied by expert oral advice, with nonfiction books and word-of-mouth next in order to 
produce satisfaction. Participants were consistent in the satisfaction they derived from various 
sources in various vignettes. 

Baldry (2003) used sequential/hierarchical regression to study whether exposure to parental 
inierpersonal violence contributed to bullying behavior above and beyond prediction afforded by 
demographic variables and parental child abuse. In the first step, gender (being a boy) and age (being 
older) were significantly related to bullying; in the second step, child abuse by the father (but not the 
mother) added to prediction of bullying behavior. In the final step, mother's violence against father 
significantly contributed to prediction, although father's violence against mother did not.' The full 
model was significant, but accounted for only 14% of the variance in bullying behaviors. 

Regression techniques can be applied to a data set in which the IVs are correlated with one 
another and with the DV to varying degrees. One can, for instance, assess the relationship between a 
set of IVs such as education, income, and socioeconomic status with a DV such as occupational pres- 
tige. Because regression techniques can be used when the IVs are correlated, they are helpful both in 
experimental research when, for instance, correlation among IVs is created by unequal numbers of 
cases in cells, and in observational or survey research when nature has "manipulated" correlated 
variables. The flexibility of regression techniques is, then, especially useful to the researcher who is 

'without a report of the full correlations. it is difficult to know which variables in the same step of the analysis might have 
"knocked each other out." 
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interestzd in real-~orlci or crrq co~nplic~itrd prohierl~s that cannot be rnraningt'ully reduced to 
orthogonal designa in  a laboratory setting. 

iVlultiple regression is an extension of bivariate regression (see Section 3.5.2) in which several 
IVs instead of just one are combined to predict a value on a DV for each subject. The result of regres: 
sion is a generalization of Equation 3.30 that represents the best prediction of a DV from several con- 
tinuous (or dichotomous) IVs. The regression equation takes the following form: 

where Y '  is the predicted value on the DV, A is the Y intercept (the value of Y when all the X values 
are zero), the Xs represent the various IVs (of which there are k), and the Bs are the coefficients 
assigned to each of the IVs during regression. Although the same intercept and coefficients are used 
to predict the values on the DV for all cases in the sample, a different Y '  value is predicted for each 
subject as a result of inserting the subject's own X values into the equation. 

The goal of regression is to arrive at the set of B values, called regression coeficients, for the 
IVs that bring the Y values predicted from the equation as close as possible to the Y values obtained 
by measurement. The regression coefficients that are computed accomplish two intuitively appeal- 
ing and highly desirable goals: they minimize (the sum of the squared) deviations between pre- 
dicted and obtained Y values and they optimize the correlation between the predicted and obtained Y 
values for the data set. In fact, one of the important statistics derived from a regression analysis is the 
multiple-correlation coefficient, the Pearson product-moment correlation coefficient between the 
obtained and predicted Y values: R = ryy,  (see Section 5.4.1). 

Regression techniques consist of standard multiple regression, sequential (hierarchical) 
regression, and statistical (stepwise) regression. Differences between these techniques involve the 
way variables enter the equation: what happens to variance shared by variables and who determines 
the order in which variables enter the equation? 

5.2 Kinds of Research Questions 

The primary goal of regression analysis is usually to investigate the relationship between a DV and 
several IVs. As a preliminary step, one determines how strong the relationship is between the DV and 
IVs; then, with some ambiguity, one assesses the importance of each of the IVs to the relationship. 

A more complicated goal might be to investigate the relationship between a DV and some IVs 
with the effect of other IVs statistically eliminated. Researchers often use regression to perform what 
is essentially a covariates analysis in which they ask if some critical variable (or variables) adds any- 
thing to a prediction equation for a DV after other IVs-the covariates-have already entered the 
equation. For example, does gender add to prediction of mathematical performance after statistical 
adjustment for extent and difficulty of mathematical training? 

Another strategy is to compare the ability of several competing sets of IVs to predict a DV. Is 
use of Valium better predicted by a set of health variables or by a set of attitudinal variables? 

All too often, regression is used to find the best prediction equation for some phenomenon -- 

regardless of the meaning of the variables in the equation, a goal met by statistical (stepwise) regres- 
sion. In the several varieties of statistical regression, statistical criteria alone, computed from a sin- 
gle sample, determine which IVs enter the equation and the order in which they enter. 



Regression analyses can be used with either contir\uous or dichotomous IVs. A variable that is 

initially discrete can be used if it is first converted into a set of dichoto~nous variables (numbering 
one fewer than the number of discrete categories) by dummy variable coding with 1s and 0s. For 
example, consider an initially discrete variable assessing religious affiliation in which 1 stands for 
Protestant, 2 for Catholic, 3 for Jewish, and 4 for none or other. The variable may be converted into 
a set of three new variables (Protestant = 1 vs. non-Protestant = 0, Catholic = 1 vs. non-Catholic = 
0, Jewish = 1 vs'. non-Jewish = O), one variable for each degree of freedom. When the new variables 
are entered into regression as a group (as recommended by Fox, 199 l ) ,  the variance due to the orig- 
inal discrete IV'is analyzed, and, in addition, one can examine effects of the newly created dichoto- 
mous components. Dummy variable coding is covered in glorious detail in Cohen et al. (2003, 
Section 8.2). 

ANOVA (Chapter 3) is a special case of regression in which main effects and interactions are 
a series of dichotomous IVs. The dichotomies are created by dummy-variable coding for the purpose 
of performing a statistical analysis. ANOVA problems can be handled through multiple regression, 
but multiple-regression problems often cannot readily be converted into ANOVA because of corre- 
lations among IVs and the presence of continuous IVs. If analyzed through ANOVA, continuous IVs 
have to be rendered discrete (e.g., high, medium, and low), a process that often results in loss of 
information and unequal cell sizes. In regression, the full range of continuous IVs is maintained. 
Simple ANOVA through regression is covered briefly in Section 5.6.5 and in detail for a variety of 
ANOVA models in Tabachnick and Fidell (2007). 

As a statistical tool, regression is very helpful in answering a number of practical questions, as 
discussed in Sections 5.2.1 through 5.2.8. 

5.2.1 Degree of Relationship 

How good is the regression equation'? Does the regression equation really provide better-than-chance 
prediction? 1s the multiple correlation really any different from zero when allowances for naturally 
occumng fluctuations in such correlations are made? For example, can one reliably predict reading 
ability given knowledge of perceptual development, motor development, and age? The statistical 
procedures described in Section 5.6.2.1 allow you to determine if your multiple correlation is reli- 
ably different from zero. 

5.2.2 Importance of IVs 

If the multiple correlation is different from zero, you may want to ask which IVs are important in the 
equation and which IVs are not. For example, is knowledge of motor development helpful in pre- 
dicting reading ability or can we do just as well with knowledge of only age and perceptual devel- 
opment? The methods described in Section 5.6.1 help you to evaluate the relative importance of 
various IVs to a regression solution. 

5.2.3 Adding IVs 

Suppose that you have just computed a regression equation and you want to know whether you can 
improve your prediction of the DV by adding one or more IVs to the equation. For example. is 
prediction of a child's reading ability enhanced by adding a variable reflecting parental interest in 



reading to the three IVs already included in the equation? A test for improvement of the multiple cor- 
relation after addition of one new ~ariable is given in Section 5.6.1.2, and for improvement after 
addition of several new variables in Section 5.6.2.3. 

5.2.4 Changing IVs 

Although the regression equation is a linear equation (i.e., it does not contain squared values, cubed 
values, cross-products of variables, and the like), the researcher may include nonlinear relationships 
in the analysis by redefining IVs. Curvilinear relationships, for example, can be made available for 
analysis by squaring or raising original IVs to a higher power. Interaction can be made available for 
analysis by creating a new IV that is a cross-product of two or more original IVs and including it with 
the originals in the analysis. It is recommended that IVs be centered (replacing original scores with 
deviations from their mean) when including interactions or powers of IVs (cf. Section 5.6.6). 

For an example of a curvilinear relationship, suppose a child's reading ability increases with 
increasing parental interest up to a point, and then levels off. Greater parental interest does not result 
in greater reading ability. If the square of parental interest is added as an IV, better prediction of a 
child's reading ability could be achieved. 

Inspection of a scatterplot between predicted and obtained Y values (known as residuals analy- 
sis-see Section 5.3.2.4) may reveal that the relationship between the DV and the IVs also has more 
complicated components such as curvilinearity and interaction. To improve prediction or because of 
theoretical considerations, one may want to include some of these more complicated ZVs. Procedures 
for using regression for nonlinear curve fitting are discussed in Cohen et al. (2003). There is danger, 
however, in too liberal use of powers or cross-products of IVs; the sample data may be overfit to the 
extent that results no longer generalize to a population. 

5.2.5 Contingencies among IVs 

You may be interested in the way that one IV behaves in the context of one, or a set, of other IVs. 
Sequential regression can be used to adjust statistically for the effects of some IVs while examining 
the relationship between an especially interesting IV and the DV. For example, after adjustment for 
differences in perceptual development and age, does motor development predict reading ability? 
This procedure is described in Section 5.5.2. 

5.2.6 Comparing Sets of IVs 

Is prediction of a DV from one set of IVs better than prediction from another set of IVs? For exam- 
ple, is prediction of reading ability based on perceptual and motor development and age as good as 
prediction from family income and parental educational attainments? Section 5.6.2.5 demonstrates a 
method for comparing the solutions given by two sets of predictors. 

5.2.7 Predicting DV Scores for Members of a New Sample 

One of the more important applications of regression involves predicting scores on a DV for subjects 
for whom only data on IVs are available. This application is fairly frequent in personnel selection for 
employment, selection of students for graduate training, and the like. Over a fairly long period, a 



researcher collects data on a DV. say, success in graduate school, and on several IV\. say. i111der- 
graduate GPA. GRE verbal scores. and GRE math scores. Regression analysis is performed and the 
regression equation obtained. If the 1Vs are strongly related to the DV, then, for a new sample of 
applicants to graduate school. regression coefficients are applied to IV scores to predict success in 
graduate school ahead of time. Admission to graduate school may, in fact, be based on prediction of 
success through regression. 

The generalizability of a regression solution to a new sample is checked within a single large 
sample by a procedure called cross-validation. A regression equation is developed from a portion of 
a sample and then applied to the other portion of the sample. If the solution generalizes, the reyres- 
sion equation predicts DV scores better than chance for the new cases, as well. Section 5.5.3 demon- 
strates cross-validation with statistical regression. 

5.2.8 Parameter Estimates 

Parameter estimates in multiple regression are the unstandardized regression coefficients (B weights). 
A B weight for a particular IV represents the change in the DV associated with a one-unit change in 
that IV, all other IVs held constant. Suppose, for example, we want to predict graduate record exam 
(GRE) scores from grade point averages (GPA) and our analysis produces the following equation: 

(GRE)' = 200 + 100 (GPA) 

B = 100 tells us that for each one-unit increase in GPA (e.g., from a GPA of 2.0 to one of 3.0), 
we expect a 100-point increase in GRE scores. Sometimes this is usefully expressed in terms of per- 
centage of gain in the DV. For example, assuming the mean GRE is 500, an increase of one grade 
point represents a 20% (100/500) average increase in GRE. 

Accuracy of parameter estimates depends on agreement with the assumptions of multiple- 
regression analysis (cf. Section 5.3.2.43, including the assumption that IVs are measured without 
error. Therefore, interpretation has to be tempered by knowledge of the reliability of the IVs. You 
need to be cautious when interpreting regression coefficients with transformed variables, because the 
coefficients and interpretations of them apply only to the variable after transformation. 

5.3 Limitations to Regression Analyses 

Attention to issues surrounding assumptions of regression analysis has become a growth industry, 
partly because of the relative simplicity of regression compared to the multivariate techniques and 
partly because of the extensive use of multiple regression in all facets of science and commerce. A 
glance at the myriad of diagnostic tests available in regression programs confirms this view. How- 
ever, it should also be noted that many of the popular diagnostic tests are concerned with poor fit of 
regression models to some cases-outliers in the solution-rather than tests conducted as part of 
screening. 

This discussion barely skims the surface of the goodies available for screening your data and 
assessing the fit of cases to your solution, but should adequately cover most gross violations of 
assumptions. Berry (1993) and Fox ( 199 1 ) offer some other interesting insights into regression 
assumptions and diagnostics. 



5.3.1 Theoretical Issues 

Regression analyses reveal relationships among variables but do not inlply that the relationhhips are 
causal. Demonstration of causality is a logical and experimental, rather than statistical, problem. An 
apparently strong relationship between variables could stem from many sources, including the influ- 
ence of other, currently unmeasured variables. One can make an airtight case for causal relationship 
among variables only by showing that manipulation of some of them is followed inexorably by 
change in others when all other variables are controlled. 

Another problem for theory rather than statistics is inclusion of variables. Which DV should be 
~ised, and how is it to be measured'? Which IVs should be examined, and how are they to be mea- 
sured? If one already has some IVs in an equation, which IVs should be added to the equation for the 
most improvement in prediction? The answers to these questions can be provided by theory, astute 
observation, good hunches, or sometimes by careful examination of the distribution of residuals. 

There are, however, some general considerations for choosing IVs. Regression will be best 
when each IV is strongiy correlated with the DV but uncorrelated with other IVs. A general goal of 
regression, then, is to identify the fewest IVs necessary to predict a DV where each IV predicts a sub- 
stantial and independent segment of the variability in the DV. 

There are other considerations to selection of variables. If the goal of research is manipulation 
of some DV (say, body weight), it is strategic to include as IVs variables that can be manipulated 
(e.g., caloric intake and physical activity) as well as those that cannot (e.g., genetic predisposition). 
Or, if one is interested in predicting a variable such as annoyance caused by noise for a neighbor- 
hood, it is strategic to include cheaply obtained sets of IVs (e.g., neighborhood characteristics pub- 
lished by the Census Bureau) rather than expensively obtained ones (e.g., attitudes from in-depth 
interviews) if both sets of variables predict equally well. 

It should be clearly understood that a regression solution is extremely sensitive to the combi- 
nation of variables that is included in it. Whether an IV appears particularly important in a solution 
depends on the other IVs in the set. If the IV of interest is the only one that assesses some important 
facet of the DV, the IV wiii appear important; if the IV of interest is only one of several that assess 
the same important facet of the DV, it usually will appear less important. An optimal set of IVs is the 
smallest reliable, uncorrelated set that "covers the waterfront" with respect to the DV." 

Regression analysis assumes that IVs are measured without error, a clear impossibility in most 
social and behavioral science research. The best we can do is choose the most reliable IVs possible. 
More subtly, it is assumed that important unmeasured IVs, which contribute to error, are not corre- 
lated with any of the measured IVs. If, as Berry (1993) points out, an unmeasured IV is correlated 
with a measured IV, then the components of error are correlated with the measured IV, a violation of 
the assumption of independence of errors. Worse, the relationship between an unmeasured IV and a 
measured IV can change the estimates of the regression coefficients; if the relationship is positive, 
the coefficient for the measured IV is overestimated; if negative, underestimated. If the regression 
equation is to accurately reflect the contribution of each IV to prediction of the DV, then, all of the 
relevant IVs have to be included. 

Analysis of residuals provides information important to both theoretical and practical issues in 
multiple regression analysis. Judicious inspection of residuals can help identify variables that are 
degrading rather than enhancing prediction. Plots of residuals identify failure to comply with distri- 

? ~ n e c h t  (personal com~nunication. 2003) points to a potential problem of overtitt~ng i f  the first few "good" IVY are .selected 
Crom a very large pool of potential IVs; the regression can be too good due to chance factors alone. 
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butional assumption\. .And residuals help identify cases that are outliers in the regression solut~on- 
cases poorly fit by the model. Procedures for examining residuals for normality, hon~osceclasticity. 
and the like are the same as those for examining any other variable. as discussed in  Chapter 4 and i n  
Section 5.3.2.4. 

5.3.2 Practical Issues 

In addition to theoretical considerations, use of multiple regression requires that several practical 
matters be attended to, as described in Sections 5.3.2.1 through 5.3.2.4. 

The cases-to-IVs ratio has to be substantial or the solution will be perfect-and meaningless. With 
more IVs than cases, one can find a regression solution that completely predicts the DV for each 
case, but only as an artifact of the cases-to-IV ratio. 

Required sample size depends on a number of issues, including the desired power, alpha level, 
number of predictors, and expected effect sizes. Green (1991) provides a thorough discussion of 
these issues and some procedures to help decide how many cases are necessary. Some simple rules 
of thumb are N 2 50 + 8m (where m is the number of IVs) for testing the multiple correlation and 
N r 104 + m for testing individual predictors. These rules of thumb assume a medium-size rela- 
tionship between the IVs and the DV, CY = .05 and ,6 = .20. For example, if you plan six predictors, 
you need 50 + (8)(6) = 98 cases to test regression and 104 + 6 = 1 10 cases for testing individual 
predictors. If you are interested in both the overall correlation and the individual IVs, calculute N 
both ways and choose the larger number of cuses. Alternatively, you can consult one of the software 
programs that are available for estimating power in multiple regression, such as SAS POWER, SPSS 
Sample Power, or P,4SS (NCSS, 2002) or those available on the Internet (entering "statistical power" 
in your search engine or browser should produce a wealth of helpful programs, many of them free). 

A higher cases-to-IV ratio is needed when the DV is skewed, a small effect size is anticipated, 
or substantial measurement error is expected from less reliable variables. That is, if the DV is not 
normally distributed and transformations are not undertaken, more cases are required. The size of 
anticipated effect is also relevant because rriore cases are needed to demonstrate a small effect than 
a large one. The following, more complex, rule of thumb that takes into account effect size is based 
on Green (1991): N r ( 8 / f 2 )  + ( m  - I ) ,  where j" = .02, .15, and .35 for small, medium, and large 
effects, respectively, f = pr2/(1 - pr2) ,  where pr2 is the expected squared partial correlation for 
the IV with the smallest expected effect of interest. Finally, if variables are less reliable, measure- 
ment error is larger and more cases are needed. 

It is also possible to have too many cases. As the number of cases becomes quite large, almost 
any multiple correlation will depart significantly from zero. even one that predicts negligible vari- 
ance i n  the DV. For both statistical and practical reasons, then, one wants to measure the smallest 
number of cases that has a decent chance of revealing a relationship of a specified size. 

I f  statisticul (stepwise) regression is to be used, even more cases are needed. A cases-to-IV 
ratio of 40 to 1 is reasonable because statistical regression can produce a solution that does not gen- 
eralize beyond the sample unless the sample is large. An even larger sample is needed in statistical 
regression if cross-validation (deriving the solution with some of the cases and testing it  on the oth- 
ers) is used to test the generalizability of the solution. Cross-validation is illustrated in Section 5.5.3. 



If you cannot measure as many cases 3s you \vvuld like. these al-r some jtrate2ic.s that may 
help. You can delete some IVs or create one (or more than one) IV that is d composite of several oth- 
ers. The new, composite IV is used in the analysis in place of the original IVs. 

Be sure to verify that the analysis included as many cases as you think it should have. By 
default, regression programs delete cases for which there are missing values on any of the variables 
that can result in substantial loss of cases. Consult Chapter 4 if you have missing values and wish to 
estimate them rather than delete the cases. 

5.3.2.2 Absence'of Outliers among the ZVs and on the DV 

Extreme cases have too much impact on the regression solution and also affect the precision of esti- 
mation of the regression weights (Fox, 199 1). With high leverage and low discrepancy (Figure 4.2), the 
standard errors of the regression coefficients are too small; with low leverage and high discrepancy, the 
standard errors of the regression coefficients are too large. Neither situation generalizes well to popu- 
lation values.  heref fore, outliers should be deleted, rescored, or the variable transformed. See Chapter 
4 for a summary of general procedures for detecting and dealing with univariate and multivariate out- 
liers using both statistical tests and graphical methods, including evaluation of disconnectedness. 

In regression, cases are evaluated for univariate extremeness with respect to the DV and each 
IV. Univariate outliers show up in initial screening runs (e.g., with SPSS FREQUENCIES or SAS 
Interactive Data Analysis) as cases far from the mean and unconnected with other cases on either plots 
or :-scores. Multivariate outliers among the IVs are sought using either statistical methods such as 
Mahalanobis distance (through SPSS REGRESSION or SAS GLM as described in Chapter 4j or by 
using graphical methods. 

Screening for outliers can be performed either prior to a regression run (as recommended in 
Chapter 4) or through a residuals analysis after an initial regression run. The problems with an initial 
regression run are, first, the temptation to make screening decisions based on desired outcome, and, 
second, the overfitting that may occur if outliers in the solution are deleted along with outliers among 
the variables. It seems safer to deal with outliers among the variables in initial screening runs, and 
then determine the fit of the solution to the cases. 

Regression programs offer more specialized tests for identifying outliers than most programs 
for the other techniques. SPSS REGRESSION provides Mahalanobis distance for multivariate out- 
liers; SAS GLM provides leverage. 

5.3.2.3 Absence of Multicollinearity and Singularity 

Calculation of regression coefficients requires inversion of the matrix of correlations among the IVs 
(Equation 5.6), an inversion that is impossible if IVs are singular and unstable if they are multi- 
collinear, as discussed in Chapter 4. Either of these problems can occur either because the IVs them- 
selves are highly correlated, or because you have included interactions among IVs or powers of IVs 
in your analysis. In the latter case, the problem can be minimized by centering the variables, as dis- 
cussed in Section 5.6.6. 

Singularity and multicollinearity can be identified in screening runs through perfect or very 
high squared n~ultiple correlations (SMC) among IVs (where each IV in turn serves as DV and the 
others are IVs). or very low tolerances ( 1  - SMC). or through multicollinearity diagnostics. as illus- 
trated in Chapter 4.j 

3 ~ o r  an extended discussion of the complicated relationship between outliers and collinearity, see Fox ( I  99 I )  



In  repression. multicullineurity 1s a ! w  \ignaled by very large (relative to the scale of the van- 
ables) standard errors f(or regression coefficients. Berry (1993) reports that when 1. is 0.9. the stan- 
dard errors of the regression coefficients are doubled; when multicollinearity is present, none of the 
regression coefficients may be significant because of the large size of standard errors. Even toler- 
ances as high as .5 or .6 may pose difficulties in testing and interpreting regression coefficients. 

Most multiple-regression programs have default values for tolerance (1 - SMC) that protect 
the user against 'inclusion of multicollinear IVs. If the default values for the programs are in place, 
IVs that are very highly correlated with IVs already in the equation are not entered. This makes sense 
both statistically and logically because the IVs threaten the analysis due to inflation of regression 
coefficients and because they are not needed due to their correlations with other IVs. 

If variables are to be deleted, however, you probably want to make your own choice about 
which IV to delete on logical rather than statistical grounds by considering issues such as the relia- 
bility of the variables or the cost of measuring the variables. You may want to delete the least reliable 
variable, for instance, rather than the variable identified by the program with very low tolerance. 
With a less reliable IV deleted from the set of IVs, the tolerance for the IV in question may be suffi- 
cient for entry. 

If multicollinearity is detected but you want to maintain your set of IVs anyway, ridge regres- 
sion might be considered. Ridge regression is a controversial procedure that attempts to stabilize 
estimates of regression coefficients by inflating the variance that is analyzed. For a more thorough 
description of ridge regression, see Dillon and Goldstein (1984, Chapter 7). Although originally 
greeted with enthusiasm (cf. Price, 19??), serious questions about the procedure have been raised by 
Rozeboom ( 1979), Fox ( 199 l ) ,  and others. If, after consulting this literature, you still want to employ 
ridge regression. it is available through SAS REG and as a macro in SPSS. 

5.3.2.4 Normality, Linearity, Homoscedasticity of Residuals 

Routine preanalysis screening procedures of Chapter 4 may be used to assess normality. linearity. 
and hornoscedasticity. Regression programs, however, also offer an assessment of the three assump- 
tions simultaneously through analysis of residuals produced by the programs. 

Examincltion of iiesiduals scatterplots provides a test cf czss~imptions ojnormality, Linearity, 
und homoscedasticity between predicted DV scores and errors c?fprediction. Assurnptions of analy- 
sis are that the resid~lals (differences between obtained anc! predicted DV scores) are rlnrrn:i!ly dis- 
tributed about the predicted DV scores, that residuals have a straight-line relationship with predicted 
DV scores, and that the variance of the residuals about predicted DV scores is the same for all pre- 
dicted scores."hen these assumptions are met, the residuals appear as in Figure 5.  I (a). 

Residuals scatterplots may be examined in lieu of or after initial screening runs. If residuals 
scatterplots are examined in lieu of initial screening, and the assumptions of analysis are deemed 
met, further screening of variables and cases is unnecessary. That is, if the residuals show normality, 
linearity, and homoscedasticity; if no outliers are evident; if the number of cases is sufficient; and if 
there is no evidence of multicollinearity or singularity, then regression requires only one run. (Par- 
enthetically, we might note that we have never, in many years of multivariate analyses with many 
data sets, found this to be the case.) If, on the other hand, the residuals scatterplot from an initial run 
!ooks awful, further screening via the procedures in Chapter 4 is warranted. 

"Note that there are no distributional assumption? about the lVs, other than their I-elationsh~p with the DV. However, a prediction 
equation often is enhanced if IVh are normally distributed. priinarily because linearity between the IV and DV is enhanced. 
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Predicted Y '  Predicted Y '  

FIGURE 5.1 Plots of predicted values of the DV (Y') 
against residuals showing (a) assumptions met, (b) failure 
of normality, (c) nonlinearity, and (d) heteroscedasticity. 

Residuals scatterplots are provided by all the statistical programs discussed in this chapter. All 
provide a scatterplot in which one axis is predicted scores and the other axis is errors of prediction. 
Which axis is which, however, and whether the predicted scores and residuals are standardized dif- 
fer from program to program. 

SPSS and SAS provide the plots directly in their regression programs. In SPSS, both predicted 
scores and errors of prediction are standardized; in SAS. they are not. In any event. it is the overall 



shape of the scatterplot that is c ~ f  interebt. It'nll :issumptlons are [net. the residual wi l l  be nearl!. rcc- 

tangularly distributed with a concentration of \cores along the center. As mentioned eilr11t.r. Figure 
5.l(a) illustrates a distribution in which all assumptions are met. 

The assumption of normality is that errors of prediction are normally distributed around each 
and every predicted DV score. The residuals scatterplot should reveal a pileup of residuals in the 
center of the plot at each value of predicted score and a normal distribution of residuals trailing off 
symmetrically from the center. Figure 5. l (b) illustrates a failure of normality. with a skewed distri- 
bution of residuals. 

Linearity'of relationship between predicted DV scores and errors of prediction is also as- 
sumed. If nonlinearity is present, the overall shape of the scatterplot is curved instead of rectangular, 
as shown in Figure 5.l(c). In this illustration, errors of prediction are generally in a negative direc- 
tion for low and high predicted scores and in a positive direction for medium predicted scores. Typ- 
ically, nonlinearity of residuals can be made linear by transforming IVs (or the DV) so that there is a 
linear relationship between each IV and the DV. If, however, there is a genuine curvilinear relation- 
ship between an IV and the DV, it may be necessary to include the square of the IV in the set of IVs. 

Failure of linearity of residuals in regression does not invalidate an analysis so much as weaken 
it. A curvilinear relationship between the DV and an IV is a perfectly good relationship that is not 
completely captured by a linear correlation coefficient. The power of the analysis is reduced to the 
extent that the analysis cannot map the full extent of the relationships among the IVs and the DV. 

The assumption of homoscedasticity is the assumption that the standard deviations of errors of 
prediction are approximately equal for all predicted DV scores. Heteroscedasticity also does not 
invalidate the analysis so much as weaken it. Homoscedasticity means that the band enclosing the 
residuals is approximately equal in width at all values of the predicted DV. Typical heteroscedastic- 
ity is a case in which the band becomes wider at larger predicted values, as illustrated in Figure 
5.l(d). In this illustration, the errors of prediction increase as the size of the prediction increases. 
Serious heteroscedasticity occurs when the spread in standard deviations of residuals around pre- 
dicted values is three times higher for the widest spread as for the most narrow spread (Fox, 199 1 ) .  
Heteroscedasticity may occur when some of the variables are skewed and others are not. 'Transfor- 
mation of the variables may reduce or eliminate heteroscedasticity. 

Heteroscedasticity can also result from interaction of an IV with another variable that is not 
part of the regression equation. For example, it may be that increasing variability in income with age 
is associated with education; tor those with higher education, there is greater growth in income with 
age. Including education as well as age as predictors of income will strengthen the model as well as 
eliminate heteroscedasticity. 

Another remedy is to use weighted (generalized) least squares regression, available as an 
option in all major regression programs. In this procedure, you weight the regression by the variance 
of the variable that produces the heteroscedasticity. For example, if you know that variance in the DV 
(e.g., income) increases with increasing values of an IV (e.g., age), you weight the regression by age. 
This latter remedy is less appealing than inclusion of the "interacting" variable (education), but may 
be more practical if you cannot identify or measure the interacting variable, or if the heteroscedas- 
ticity is a result of measurement error. 

Under special and somewhat rare conditions, significance tests are available for linearity and 
homoscedasticity. Fox (199 1 ,  pp. 64-66) summarizes some of these significance tests for failure of 
linearity and heteroscedasticity. useful when some of the IVs are discrete with only a few categories. 
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5.3.2.5 Independence of' Errors 

Another assun~ption of regression. testable through rec;lduals an~tlysis. is that errors of prediction are 
independent of one another. In some instances. this assumption is violated as a function of something 
associated with the order of cases. Often "something" is time or distance. For example, time pro- 
duces nonindependence of errors when subjects who are interviewed early in a survey exhibit more. 
variability of response because of interviewer inexperience with a questionnaire. Distance produces 
nonindependence of errors when subjects who are farther away from a toxic source exhibit more 
variable reactions. Nonindependence of errors is, then, either a nuisance factor to be eliminated or of 
considerable research interest. 

Nonindependence of errors associated with order of cases is assessed by entering cases in 
order and requesting a plot of residuals against sequence of cases. The associated Durbin-Watson 
statistic is a measure of autocorrelation of errors over the sequence of cases, and, if significant, indi- 
cates nonindependence of errors. Positive autocorrelation makes estimates of error variance too 
small, and results in inflation of the Type I error rate. Negative autocorrelation makes the estimates 
too large, and results in loss of power. Details on the use of this statistic and a test for its significance 
are given by Wesolowsky (1976). If nonindependence is found, consult Dillon and Goldstein (1984) 
for the options available to you. 

5.3.2.6 Absence of Outliers in the Solution 

Some cases may be poorly fit by the regression equation. These cases lower the multiple correlation. 
Examination of these cases is informative because they are the kinds of cases that are not well 
predicted by your solution. 

Cases with large residuals are outliers in the solution. Residuals are available in raw or stan- 
dardized form-with or without the outlying case deleted. A graphical method based on residuals 
uses leverage on the X axis and residuals on the Y axis. As in routine residuals plots, outlying cases 
in the solution fall outside the swarm of points produced by the remainder of the cases. 

Examine the resicl~iulsplnt. If outlying cases are evident, identify them through the list of stan- 
dardized residuals for individual cases. The statistical criterion for identifying an outlier in the solu- 
tion depends on the sample size; the larger the saruple, the more likely that one or more residuals are 
present. When N < 1000, a criterion of p = .001 is appropriate; this p is associated with a standard- 
ized residuals in excess of about 23.3. 

5.4 Fundamental Equations 
for Multiple Regression 

A data set appropriate for multiple regression consists of a sample of research units (e.g., graduate 
students) for whom scores are available on a number of IVs and on one DV. An unrealistically small 
sample of hypothetical data with three IVs and one DV is illustrated in Table 5.1. 

Table 5.1 contains scores for six students on three IVs: a measure of professional motivation 
(MOTIV), a composite rating of qualifications for admissions to graduate training (QUAL), and a 
composite rating of performance in graduate courses (GRADE). The DV is a rating of performance 
on graduate comprehensive exams (COMPR). We ask how well we can predict COMPR from scores 
on MOTIV. QUAL, and GRADE. 
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TABLE 5.1 Small Sample of Hypothetical Data for Illustration 
of klultiple Correlation 

- 

Case No. MOTIV(X, )  QUAL (X,)  GRADE ( X 3 )  COMPR (Y ) 

1 14 19 19 18 

2 11 1 I 8 9 

3 8 10 14 8 

4 13 5 10 8 

5 10 9 8 5 

6 10 7 9 12 

Mean . 11.00 10.17 11.33 10.00 

Standard deviation 2.191 4.834 4.367 4.5 17 

A sample of six cases is highly inadequate, of course, but the sample is sufficient to illustrate 
the calculation of multiple correlation and to demonstrate some analyses by canned computer pro- 
grams. The reader is encouraged to work problems involving these data by hand as well as by avail- 
able computer programs. Syntax and selected output for this example through SPSS REGRESSION 
and SAS REG appear in Section 5.4.3. A variety of ways are available to develop the "basic" equa- 
tion for multiple correlation. 

5.4.1 General Linear Equations 

One way of developing multiple correlation is to obtain the prediction equation for Y '  in order to 
compare the predicted value of the DV with obtained X 

where Y '  is the predicted value of Y, A is the value of Y '  when all Xs are zero, B1 to Bk 
represent regression coefficients, and X ,  to Xk represent the IVs. 

The best-fitting regression coefficients produce a prediction equation for which squared dif- 
ferences between Y and Y ' are at a minimum. Because squared errors of prediction-(Y - Y ')2--are 
minimized, this solution is called a least-squares solution. 

In the sample problem, k = 3. That is, there are three IVs available to predict the DV, COMPR. 

(COMPR)' = A + BM (MOTIV) + BQ (QUAL) + BG (GRADE) 

To predict a student's COMPR score, the available IV scores (MOTIV, QUAL, and GRADE) 
are multiplied by their respective regression coefficients. The coefficient-by-score products are 
summed and added to the intercept, or baseline, value (A). 
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Differences among the obser\ed ~ a l u e s  of the DV (,n. the mean of Y (7 ), and the predicted val- 
ues of Y ( Y ' )  are cunimed and squared, yielding estiliiates of variation attributable to different 
sources. Total sum of squares for Y is partitioned into a sum of squares due to regression and a sum 
of squares left over or residual. 

ss, = SS,,, + ss,,, 

Total sum ofsquares of Y: 

ss, = Z ( Y  -Y)2  

is, as usual, the sum of,squared differences between each individual's observed Y score and the mean 
of Y over all N cases. The sum of squares for regression 

SS,, = ( Y '  - T12 

is the portion of the variation in Y that is explained by use of the IVs as predictors. That is, it is the 
sum of squared differences between predicted Y '  and the mean of Y because the mean of Y is the best 
prediction for the value of Y in the absence of any useful IVs. Sum-of-squares residual 

is the sum of squared differences between observed Y and the predicted scores, Y I ,  and represents 
errors in prediction. 

The squared multiple correlation is 

The squared multiple correlation, R ~ ,  is the proportion of sum of squares for regression 
in the total sum of squares for Y 

The squared multiple correlation is, then, the proportion of variation in the DV that is pre- 
dictable from the best linear combination of the IVs. The multiple correlation itself is the correlation 
between the obtained and predicted Y values; that is, R = ryy , .  

Total sum of squares (SSy) is calculated directly from the observed values of the DV. For 
example, in the sample problem, where the mean on the comprehensive examination is 10, 



To find the remaining sources of variation, it is necessary to solve the prediction equation (Equation 
5 .  i ) for Y '. which means finding the best-titring .3 and H,.  The most direct method of deriving the 
equation involves thinking of multiple correlation in terms of individual correlations. 

5.4.2 Matrix Equations 

Another way of looking at R~ is in terms of the correlations between each of the IVs and the DV. The 
squared multiple correlation is the sum across all IVs of the product of the correlation between the 
DV and IV and'the (standardized) regression coefficient for the IV. 

where each ryi = correlation between the DV and the ith IV 

pi = standardized regression coefficient, or beta weight5 

The standardized regression coefficient is the regression coefficient that would be applied to 
the standardized X i  value-the z-score of the X i  value-to predict standardized Y '. 

Because rvi are calculated directly from the data, computation of R' involves finding the stan- 
dardized regression coefficients ( P I )  for the k IVs. Derivation of the k equations in k unknowns is 
beyond the scope of this book. However, solution of these equations is easily illustrated using matrix 
algebra. For those who are not familiar with matrix algebra, the rudiments of it are available in 
Appendix A. Sections A.5 (matrix multiplication) and A.6 (matrix inversion or division) are the only 
portions of matrix algebra necessary to follow the next few steps. We encourage you to follow along 
using specialized matrix programs such as SAS IML, MATLAB, SYSTAT MATRIX, or SPSS 
MATRIX, or ctandard spreadsheet programs such as Quattro Pro or Excel. 

In matrix form: 

where R . = row matrix of correlations betweer? the DV and the k IVs 
Y l  

Bi = column matrix of standardized regression coefficients for the same k IVs 

The standardized regression coefficients can be found by inverting the matrix of correlations 
among IVs and multiplying that inverse by the matrix of correlations between the DV and the IVs. 

where Bi = column matrix of standardized regression coefficients 

R; ' = inverse of the matrix of correlations among the IVs 

Ri, = column matrix of correlations between the DV and the IVs 

' b  is used to indicate a sample standardized regression coeftic~ent rather than a population estimate of the ~~nstandardi/zd 
coeftic~ent consistent with usage In software packages. 
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T.ABLE 5.1. Correlations among IVs and the DV for Sample Data 
in Table 5.1 

MOTIV QUAL GRADE I COMPR 

R , ,  COMPR ,58613 .73284 .75043 1 1.00000 

MOTIV t .00000 .39658 .3763 1 
QUAL ,39658 1.00000 ,78329 
GRADE .3763 1 3 3 2 9  1 .OOOOO 

TABLE 5.3 Inverse of Matrix of Intercorrelations 
among IVs for Sample Data in Table 5.1 

,58613 
.73284 
,75043 

MOTIVE QUAL GRADE 

MOTIVE 1.20255 -0.3 1684 -0.20435 
QUAL -0.3 1684 2.67 1 13 - 1.97305 
GRADE -0.20435 - 1.97305 2.62238 

Because multiplication by an inverse is the same as division, the column matrix of correlations 
between the IVs and the DV is divided by the correlation matrix of IVs. 

These equations: then, are used to calculate R~ for the sample COMPR data from Table 5.1. 
All the required correlations are in Table 5.2. 

Procedures for inverting a matrix are amply demonstrated elsewhere (e.g., Cooley & Lohnes, 
197 1; Harris, 2001) and are typ~cally available in computer installations and spreadsheet programs. 
Because the procedure is extremely tedious by hand, and becomes increasingly so as the matrix 
becomes larger, the inverted matrix for the sample data is presented without calculation in Table 5.3. 

From Equation 5.6, the Bj matrix is found by postmultiplying the R i '  matrix by the RiY 
matrix. 

so that /Ilzl = 0.3 19, /IQ = 0.29 1, and PG = 0.402, Then, from Equation 5.5, we obtain 

'similar equations can be solved in terms of I: (variance-covariance) matrices or S (sum-of-squares and cross-product) matri- 
ceh as well as correlat~on matrlce\. I f  x or S rnatrlces are ~ ~ s e d ,  the regression coeffic~ents are unstanciard~zed coeftic~ents, as 
in Equation 5. I. 
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In this example, 70% of the variance in graduate comprehensive exam scores is predictable &om 
knowledge of motivation, admission qualifications, and graduate course performance. 

Once the standardized regression coefficients are available, they are used to write the equation 
for the predicted values of COMPR ( Y  '). If z-scores are used throughout, the beta weights (Pi) are 
used to set up the prediction equation. The equation is similar to Equation 5.1 except that there is no 
A (intercept) and both the IVs and predicted DV are in standardized form. 

If, instead, the equation is needed in raw score form, the coefficients must first be transformed 
to unstandardized Bi coefficients. 

Unstandardized coefficients (Bi) are found by multiplying standardized coefficients 
(beta weights-Pi) by the ratio of standard deviations of the DV and IV, where Si is the 
standard deviation of the ith IV and Sy is the standard deviation of the DV, and 

The intercept is the mean of the DV less the sum of the means of the IVs multiplied by 
their respective unstandardized coefficients. 

For the sample problem of Table 5.1 : 

The prediction equation for raw COMPR scores, once scores on MOTIV, QUAL, and GRADE 
are known, is 

(COMPR)' = -3.72 + 0.65X(MOTIV) + 0.272(QUAL) + 0.416(GRADE) 
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I f  a graduate itudent has ratlnps of 12. 14. and 15. respect~vely. on hlO'I'IV. QL'AL. and 
GRADE. the predicted rating on COMPR is 

(COMPR)' = -4.72 + 0.658 (12) + 0.272 (14) + 0.4 16(15) = 13.22 

The prediction equation also shows that for every one-unit change in GRADE, there is a change of 
about 0.4 point on COMPR if the values on the other IVs are held constant. 

5.4.3 Computer Analyses of Small-Sample Example 

Tables 5.4 and 5.5 demonstrate syntax and selected output for computer analyses of the data in Table 
5.1, using default values. Table 5.4 illustrates SPSS REGRESSION. Table 5.5 shows a run through 
SAS REG. 

TABLE 5.4 Syntax and Selected SPSS REGRESSION Output for Standard Multiple 
Regression on Sample Data in Table 5.1 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA 
/CRITERIA=PIN(.05) POUT(. 10) 
/NOORIGIN 
/DEPENDENT compr 
/METHOD=ENTER motiv qua1 grade 

Regression 
Model Summary 

Std. Error 
of the 

Model 

3.8961 

apredictors: (Constant), GRADE, MOTIV, QUAL 

AN OVA^ 

apredictors: (Constant), GRADE, MOTIV, QUAL 

bDependent Variable: COMPR 

L 

Model 

1 Regression 
Residual 
Total 

i 

Sum of 
Squares 

71.640 
30.360 

102.000 

df 

3 
2 
5 

Mean 
Square 

23.880 
15.180 

F 

1.573 

Sig. 

.41 l a  

. 
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TABLE 5.4 Continued 

Coeff icientsa 

TABLE 5.5 Syntax and SAS REG Output for Standard Multiple Regression 
on Sample Data of Table 5.1 

p r o c  r e g  data=SASUSER.SS-REG; 
m o d e l  COMPR= SUBJNO MOTIV QUAL GRADE; 

r un ;  

Model 

1 (Constant) 
MOTlV 
QUAL 
GRADE 

The REG P r o c e d u r e  
M o d e l  : MODEL1 

Dependen t  V a r i a b l e :  COMPR 

Number o f  O b s e r v a t i o n s  Read 
Number o f  O b s e r v a t i o n s  Used  
Number o f  O b s e r v a t i o n s  w i t h  M i s s i n g  V a l u e s  

S o u r c e  

Unstandardized 
Coefficients 

A n a l y s i  s  o f  V a r i a n c e  

Standardized 
Coefficients 

Beta 

.319 

.291 

.402 

B 

Sum o f  Mean 
D F S q u a r e s  S q u a r e  F V a l u e  P r  > F 

Std. Error 

Mode 1  3 71.64007 23.88002 1.57 0.4114 
E r r o r  2 30.35993 25.17997 
C o r r e c t e d  T o t a l  5 102.00000 

t 

-.521 
.755 
.462 
.644 

R o o t  MSE 3.8961 5 R-Squa r e  0.7024 
D e p e n d e n t  Mean 10.00000 A d j  R-Sq 0.2559 
Coe f  f Va r 38.961 48 

Sig. 

.654 
,529 
.690 
.586 

-4.722 1 9.066 
.658 .872 

P a r a m e t e r  E s t i m a t e s  

.272 

.416 

P a r a m e t e r  S t a n d a r d  
V a r i a b l e  D F E s t i m a t e  E r r o r  t V a l u e  P r  > I t 1  

.589 

.646 

I n t e r c e p t  1 -4.72180 9.06565 -0.52 0.6544 
MOTIV 1 0.65827 0.87213 0 .75  0.5292 
QUAL 1 0.27205 0.58911 0.46 0.6896 
GRADE 1 0.41603 C .  6461 9 0.64 0.5857 
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I n  SPSS REGRESSION. the DV is specltied as compr. METHOD=ENTER, follvued by the 
list of IVs, is the instruction that specifies standard multiple regression. 

In standard multiple regression, results are given for only one step in the Model Summary 
table. The table includes R, R', adjusted R' (see Section 5.6.3) and Std. Error of the Estimate, the 
standard error of the predicted score, Y '. Then the ANOVA table shows details of the F test of the 
hypothesis that multiple regression is zero (see Section 5.6.2.1). The following are the regression 
coefficients and their significance tests, including B weights, the standard error of B (Std. Error), P 
weights (Beta), t tests for the coefficients (see Section 5.6.2.2), and their significance levels (Sig.). 
The term (Constant) refers to the intercept (A). 

In using SAS REG for standard multiple regression, the variables for the regression equation 
are specified in the M O D E  L statement, with the DV on the left side of the equation and the IVs on the 
right. 

In the ANOVA table, the sum of squares for regression is called M o d  e 1 and residual is called 
E  r r o r. Total SS and df are in the row labeled C T o  t a 1. Below the ANOVA is the standard error 
of the estimate, shown as the square root of the error term, MS,, (Root MSE). Also printed are the 
mean of the DV ( D  e p Me a n), R ~ ,  adjusted R2, and the coefficient of variation (C o e f f Va r)- 
defined here as 100 times the standard error of the estimate divided by the mean of the DV. The sec- 
tion labeled Pa r a me t e r E  s t i ma t e s includes the usual B coefficients in the Pa r a me t e r 
E  s t i ma t e column, their standard errors, t tests for those coefficients and significance levels 
(Pr > Itl). Standardized regression coefficients are not printed unless requested. 

Additional features of these programs are discussed in Section 5.8. 

5.5 Major Types of Multiple Regression 

There are three major analytic strategies in multiple regression: standard multiple regression, 
sequential (hierarchical) regression, and statistical (stepwise) regression. Differences among the 
strategies involve what happens to overlapping variability due to correlated IVs and who determines 
the order of entry of IVs into the equation. 

Consider the Venn diagram in Figure 5.2(a) in which there are three IVs and one DV. IV, and 
IV2 both correlate substantially with the DV and with each other. IV3 correlates to a lesser extent 
with the DV and to a negligible extent with IV2. R~ for this situation is the area a + b + c + d + e. 
Area LI comes unequivocally from IV , ; area c unequivocally from IV, ; area e from IV3. However, 
there is ambiguity regarding areas b and d. Both areas could be pedicteh from either of two IVs; area 
b from either IV, or IV2, area d from either IV2 or IV3. To which IV should the contested area be 
assigned? The interpretation of analysis can be drastically affected by choice of strategy because the 
apparent importance of the various IVs to the solution changes. 

5.5.1 Standard Multiple Regression 

The standard model is the one used in the solution for the small-sample graduate student data in 
Table 5.1. In the standard, or simultaneous, model, all IVs enter into the regression equation at once; 
each one is assessed as if it had entered the regression after all other IVs had entered. Each IV is eval- 
uated in terms of what i t  adds to prediction of the DV that is different from the predictability afforded 
by all the other 1Vs. 
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FIGURE 5.2 Venn diagrams illustrating (a) overlapping 
variance sections; and allocation of overlapping variance in 
(b) standard multiple regression, (c) sequential regression, 

and (d) statistical (stepwise) regression. 

Consider Figure 5.2(b). The darkened areas of the figure indicate the variability accorded each 
of the IVs when the procedure of Section 5.6.1.1 is used. IV, "gets credit" for area a, IV2 for area c, 
and IV3 for area e. That is, each IV is assigned only the area of its unique contribution. The overlap- 
ping areas, b and d, contribute to R ~ ,  but are not assigned to any of the individual IVs. 

In standard multiple regression, it is possible for a variable like IV, to appear unimportant in 
the solution when it actually is highly correlated with the DV. If the areaof that correlation is whit- 
tled away by other IVs, the unique contribution of the IV is often very small despite a substantial cor- 
relation with the DV. For this reason, both the full correlation and the unique contribution of the TV 
need to be considered in interpretation. 
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Standard rnultiplz regression i \  handled i n  the SPSS pachage by the REGRESSION progr:un. 
as are all other types of mi~ltiple regrc.ssion. .A selected part o f o i ~ t p ~ ~ t  is given In T ~ ~ b l e  5.4 for the sani- 
ple problem of Table 5.1. (Full interpretation of program output is available in substantive examples 
presented later in this chapter.) SAS REG is used for standard analyses, as illustrated in Table 5.6. 

5.5.2 Sequential Multiple Regression 

In sequential regression (sometimes called hierarchical regression), IVs enter the equation in an 
order specified by the researcher. Each IV (or set of !Vs) is assessed in terms of what it adds to the 
equation at its own point of entry. Consider the example in Figure 5.2(c). Assume that the researcher 
assigns IV, first entry, IV, second entry, and IV3 third entry. In assessing importance of variables by 
the procedure of Section 56.1.2. IV, "gets credit" for areas n and b. IV2 for areas c and d, and IV3 
for area e. Each IV is assigned the variability, unique and overlapping, left to it at its own point of 
entry. Notice that the apparent importance of IV2 would increase dramatically if it were assigned first 
entry and, therefore, "got credit" for b, c, and d. 

The researcher normally assigns order of entry of variables according to logical or theoretical i 

considerations. For example, IVs that are presumed (or manipulated) to be causally prior are given 
higher priority of entry. For instance, height might be considered prior to amount of training in 
assessing success as a basketball player and accorded a higher priority of entry. Variables with 
greater theoretical importance could also be given early entry. 

Or the opposite tack could be taken. The research could enter manipulated or other variables of 
major importance on later steps, with "nuisance" variables given higher priority for entry. The lesser, 
or nuisance, set is entered first; then the major set is evaluated for what i t  adds to the prediction over 
and above the lesser set. For example, we might want to see how well we can predict reading speed 
(the DV) from intensity and length of a speed-reading course (the major IVs) while holding constant 
initial differences in reading speed (the nuisance IV). This is the basic analysis of covariance problem 
in regression format. 

IVs can be entered one at a time or in blocks. The analysis proceeds in steps, with information 
about variables both in and out of the equation given in computer output at each step. Finally, after 
all variables are entered, summary statistics are provided along with the information available at the 
last step. 

In the SPSS package, sequential regression is performed by the REGRESSION program. SAS 
REG also has interactive modes in which individual IVs can be entered sequentially. 

Syntax and selected output are shown for the sample problem of Table 5.1 using SPSS 
REGRESSION. In Table 5.6, with higher priority given to admission qualifications and course per- 
formance, and lower priority given to motivation, the sequence is indicated by having two ENTER 
instructions, one for each step of the model. CHANGE is added to STATISTICS to provide a table 
that shows the gain in prediction afforded by motiv, once qua1 and grade are in the model. SPSS 
REGRESSION sequential analysis is interpreted in detail in Section 5.7.3. 

5.5.3 Statistical (Stepwise) Regression 

Statistical regression (sometime$ generically called stepwise regression) is a controversial pro- 
cedure. in which order of entry of variables is based solely on statistical criteria. The meaning or 



T i B L E  5.6 Syntax and Selected SPSS REGRESSION Outpt~t for Sequential hlultiple Regression 
on Sample Data in 'Table 5. I 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA CHANGE 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT compr 
/METHOD=ENTER qua1 grade /METHOD=ENTER motiv. 

Regression 
Model Summarv 

apredictors: (Constant), GRADE, QUAL 
bpredictors: (Constant), GRADE, QUAL, MOTlV 

Model 

1 
2 

apredictors: (Constant), GRADE, QUAL 
bpredictors: (Constant), GRADE, QUAL, MOTlV 
CDependent Variable: COMPR 

Coefficientsa 

R 

.786a 

.838b 

Model 

1 Regression 
Residual 
Total 

2 Regression 
Residual 
Total 

aDependent Variable: COMPR 
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R Square 

. .618 
.702 

Sum of 
Squares 

62.992 
39.008 

102.000 

71.640 
30.360 

102.000 

Model 

1 (Constant) 
QUAL 
GRADE 

2 (Constant) 
QUAL 
GRADE 
MOTlV 

z 

Adjusted 
R Square 

,363 
.256 

df 

2 
3 
5 

3 
2 
5 

Unstandardized 
Coefficients 

Std. Error 
of the 

Estimate 

3.6059 
3.8961 

Mean 
Square 

31.496 
13.003 

23.880 
15.180 

Standardized 
Coefficients 

Beta 

.375 
,456 

,291 
,402 
.319 

B 

1.084 
,351 
.472 

-4.722 
.272 
.416 
,658 

Std. Error 

4.441 
.537 
.594 

9.066 
.589 
,646 

I 872 

Change Statistics 

F 

2.422 

1.573 

t 

.244 
,653 
.795 

-.521 
.462 
.644 
,755 

Sig. 

.236a 

.41 lb 

Sig. 

.823 
,560 
.485 

.654 
,690 
.586 
,529 

R Square 
Change 

.618 

.085 

df2 

3 
2 

Sig. F 
Change 

.236 
,529 

F Change 

2.422 
570  

dfl 

2 
1 
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on1n:ended split is 80% for the stati~tical regression analysih and the remainin: 20'': as the cross- 
validation sample (SYST.AT Software Inc.. 7004. p. 11- 16). After the statistical regression on the 
larger subsample is run, predicted scores art: created for the smaller cross-validation sample using 
the regression coefficients produced by the analysis. Finally, predicted scores and actual scores are 
correlated to find R' for the smaller sample. A large discrepancy between R' for the smaller and 
larger samples indicates overfitting and lack of generalizability of the results of the analysis. 

Tables 5.7.and 5.8 show cross-validation with statistical regression through SAS. There is for- 
ward selection on an 80% sample of a hypothetical data set with the same variables as in Section 5.4, 
but with 100 cases, followed by cross-validation using the remaining 20% of the cases. Syntax in 
Table 5.7 first creates the two random samples, with the 80% sample coded 1 and the 20% sample 
coded 0. Then the two samples are formed, SAMP80 and SAMP20. Then the 80% sample 
(SAMP80) is selected for the statistical regression run. 

The output shows that only MOTIV and GRADE enter the equation. QUAL does not reliably 
add to prediction of COMPR over and above that produced by the other two IVs when order of entry 
is chosen by a statistical criterion for this sample of 77 cases. (Note that the 80% random sample 
actually produced 77 rather than 80 cases.) 

Syntax in Table 5.8 shows the creation of predicted scores for the 20% cross-validation sam- 
ple, followed by a request for a correlation between predicted (PREDCOMP) and actual (COMPR) 
scores for that sample. The prediction equation is taken from the last section of Table 5.7. The first 
two lines turn off the selection of the 80% sample and turn on the selected of the cross-validation 
sample. 

The correlation between predicted and actual scores is squared (R2 = . 90417~  = .81752) to 
compare it with R' = .726 for the larger sample. In this case, the cross-validation sample is better 
predicted by the regression equation than the sample that generated the equation. This is an unusual 
result, but one that would make a researcher breathe a sigh of relief after using statistical regression. 

SPSS REGRESSION provides statistical regression in a manner similar to that of sequential 
regression. However, STEPWISE is chosen as the METHOD, rather than ENTER. 

Another option to avoid overfitting is bootstrapping, available in SPSS using a macro available 
when the pack is installed: oms-bootstrapping.sps. Instructions are available within the macro. 
Bootstrapping is a process by which statistics (e.g., regression weights) are generated over a very 
large number of replications, with samples drawn with replacement from a data set. For example, 
there might be 1,000 bootstrap samples of 6 cases drawn from the smaii-sample data set of 6 cascs. 
Each case may be drawn more than once, or not at all, because of replacement. In a given sample, for 
instance, case 1 might be drawn twice, case 2 drawn twice, case 3 drawn once, case 4 drawn once, and 
cases 5 and 6 not drawn. Descriptive statistics and histograms are then viewed for the requested sta- 
tistics. For example, a 1,000-replication bootstrap of the small-sample data set yielded an average 
intercept of -4.74 and average B weights of 0.68, -0.12, and 1.07. Values for QUAL and GRADE 
are very different from the values of Section 5.4 for such a small sample. 

At the very least, separate analyses of two halves of an available sample should be conducted 
to avoid overfitting, with conclusions limited to results that are consistent for both analyses. 

On the other hand, statistical regression is a handy (and acceptable) procedure for determining 
which variables are associated with the difference between an outlier and remaining cases, as shown 
in Sections 4.2.1 and 4.2.2. Here, there is no intent to generalize to any population-use of statisti- 
cal regression is just to describe some characteristics of the sample. 
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T.\BI,E 5.7 Forward Statistical Regression on an 80% Subsample. Slntax and Selected S.\S REG 
Output 

d a t a  SASUSER.REGRESSX; 
s e t  SASUSER.CROSSVAL; 

s a m p  = 0; 
i f  u n i f o r m ( 1 3 0 6 8 )  < . 8 0  t h e n  s a m p  = 1; 

r u n ;  
d a t a  SASUSER.SAMP80;  

- s e t  SASUSER.REGRESSX; 
w h e r e  s a m p  = 1; 

d a t a  SASUSER.SAMP20;  
s e t  SASUSER.REGRESSX; 
w h e r e  s a m p  = 0; 

r u n ;  
p r o c  r e g  da ta= 'SASUSER.SAMP80 ;  

m o d e l  COMPR= M O T I V  QUAL GRADE/ s e l e c t i o n =  FORWARD; 
r u n ;  

The REG P r o c e d u r e  
Mode 1 : MODEL1 

D e p e n d e n t  V a r i a b l e :  COMPR 

Number o f  O b s e r v a t i o n s  Read 
Number o f  O b s e r v a t i o n s  Used  

F o r w a r d  S e l e c t i o n :  S t e p  1 

V a r i a b l e  GRADE E n t e r e d :  R-Square  = 0.5828 a n d  C ( p >  = 52.7179 

A n a l y s i s  o f  V a r i a n c e  

S o u r c e  
Sum o f  Mean 

D F S q u a r e s  S q u a r e  F V a l u e  P r  > F 

Mode 1  1 797 -72241 797.72241 104.77 <.0001 
E r r o r  75 571.04564 7.61394 
C o r r e c t e d  T o t a l  76 1368.76805 

P a r a m e t e r  S t a n d a r d  
V a r i a b l e  E s t i m a t e  E r r o r  Type  I 1  SS F V a l u e  P r  > F 

I n t e r c e p t  1.19240 0.95137 11.96056 1.57 0 .2140 
GRADE 0.79919 0.07808 797.72241 104.77 <. 0001 

Bounds  o n  c o n d i t i o n  number :  1, 1 .................................................................... 
F o r w a r d  S e l e c t i o n :  S t e p  2 

V a r i a b l e  MOTIV E n t e r e d :  R-Square  = 0.7568 a n d  C(p> = 2.2839 
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TABLE 5.7 Continued 

Source 

A n a l y s i s  o f  V a r i a n c e  

Sum o f  Mean 
D F Squares Square F Va lue P r  > F 

Mode 1  2  1035.89216 517.94608 115.14 <.0001 
E r r o r  74 332.87589 4.49832 
C o r r e c t e d  T o t a l  76 1368.76805 

Parameter  S tandard  
V a r i a b l e  E s t i m a t e  E r r o r  Type I 1  S S  F Va lue P r  > F 

I n t e r c e p t  -5.86448 1.21462 104.86431 23.31 <. 0001 
MOTIV 0.78067 0.10729 238.16975 52.95 <.0001 
G R A D E  0.65712 0.06311 487.6851 6  108.41 <. 0001 

5.5.4 Choosing among Regression Strategies 

To simply assess relationships among variables and answer the basic question of nlultiple correla- 
tion, the method of choice is standard multiple regression. However, standard multiple regression is 
atheoretical-a shotgun approach. Reasons for using sequential regression are theoretical or for test- 
ing explicit hypotheses. 

TABLE 5.8 Correlation between Predicted and Actual Scores on Comprehension. 
Syntax and Selected SAS CORR Output 

d a t a  SASUSER.PRED20; 
s e t  SASUSER.SAMP20 

PREDCOMP = - 5 . 8 6 4 4 8  + 0 . 7 8 0 6 7 * M O T I V  + 0.65712*GRADE 
r u n ;  
p r o c  c o r r  data=SASUSER.PREDZO PEARSON; 

v a r  COMPR PREDCOMP; 
r u n ;  

The  C O R R  P r o c e d u r e  
P e a r s o n  C o r r e l a t i o n  C o e f f i c i e n t s ,  N  = 2 3  

P r o b  > Irl u n d e r  HO: Rho=O 

COMPR PREDCOMP 

COMPR 1 . 0 0 0 0 0  0 . 9 0 4 1 7  
< .  0 0 0 1  

PREDCOMP 0 . 9 0 4 1 7  1 . 0 0 0 0 0  
< .  0 0 0 1  
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Seqi~ential regression ;lllo~v\ the researcher to control the advancement of the regress~on 
process. Importance of IVs in the prediction equation is determined by the re.;earcher according to 
logic or theory. Explicit hypotheses are tested about proportion of variance ~lttributable to some 1Vh 
after variance due to IVs already in the equation is accounted for. 

Although there are similarities in programs used and output produced for sequential and sta- 
tistical regression, there are fundamental differences in the way that IVs enter the prediction equa- 
tion and in the interpretations that can be made from the results. In sequential regression, the 
researcher controls entry of variables, whereas in statistical regression, statistics computed from 
sample data control order of entry. Statistical regression is, therefore, a model-building rather than 
model-testing procedure. As an exploratory technique, it may be useful for such purposes as elimi- 
nating variables that are clearly superfluous in order to tighten up future research. However, clearly 
superfluous IVs will show up in any of the procedures. Also, results of statistical regression can be 
very misleading unless based on samples that are large and highly representative of the population of 
interest. When multicollinearity or singularity is present, statistical regression may be helpful in 
identifying multicollinkar variables, as indicated in Chapter 4. 

For the example of Section 5.4, in which performance on graduate comprehensive exam 
(COMPR) is predicted from professional motivation (MOTIV), qualifications for graduate training 
(QUAL), and performance in graduate courses (GRADE), the differences among regression strate- 
gies might be phrased as follows. If standard multiple regression is used, two fundamental questions 
are asked: (1) What is the size of the overall relationship between COMPR and the set of IVs: 
MOTIV, QUAL, and GRADE? (2) How much of the relationship is contributed uniquely by each IV? 
If sequential regression is used, with QUAL and GRADE entered before MOTIV, the question is: 
Does MOTIV significantly add to prediction of COMPR after differences among students in QUAL 
and GRADE have been statistically eliminated? If statistical regression is used, one asks: What is the 
best linear combination of IVs to predict the DV in this sample? 

5.6 Some Important Issues 

5.6.1 Importance of IVs 

If the IVs are uncorrelated with each other, assessment of the contribution of each of them to muiti- 
ple regression is straightforward. IVs with bigger correlations or higher standardized regression 
coefficients are more important to the solution than those with lower (absolute) values. (Because 
unstandardized regression coefficients are in a metric that depends on the metric of the original vari- 
ables, their sizes are harder to interpret. A large regression coefficient for an IV with a low correla- 
tion with the DV can also be misleading because the IV predicts the DV well only after another IV 
suppresses irrelevant variance, as shown in Section 5.6.3.) 

If the IVs are correlated with each other, assessment of the importance of each of them to 
regression is more ambiguous. The correlation between an IV and the DV reflects variance shared 
with the DV, but some of that variance may be predictable from other IVs. 

To get the most straightforward answer regarding the importance of an IV to regression, one 
needs to consider the type of regression it is, and both the full and unique relationship between the 
IV and the DV. This section reviews several of the issues to be considered when assessing the impor- 
tance of an IV to standard multiple. sequential, or statistical regression. In all cases, one needs to 
compare the total relationship of the IV with the DV, the unique relationship of the IV with the DV, 
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\ 

Standard Multiple Sequential 
r f  IV, ( a + b ) / ( a + b + c + d )  ( a + b ) /  ( a + b + c + d )  

IV, ( c + b ) / ( a + b + c + d )  (c+b) / ( a + b + c + d )  

sr f  I V , a l ( a + b + c + d )  ( a + b )  / ( a + b + c + d )  
IV, c l ( a + b + c + d )  c / ( a + b + c + d )  

pr2 IV, a l ( a + d )  
IV, c /  (c+d)  

FIGURE 5.3 Areas representing squared 
correlation, squared semipartial correlation, and 
squared partial correlation in standard multiple 

and sequential regression (where IV, is given 
priority over IVJ. 

and the correlations of the IVs with each other in order to get a complete picture of the function of 
an IV in regression. The total relationship of the IV with the DV (correlation) and the correlations of 
the IVs with each other are given in the correlation matrix. The unique contribution of an IV to pre- 
dicting a DV is generally assessed by either partial or semipartial correlation. 

For standard multiple and sequential regression, the relationships between correlation, partial 
correlation, and semipartial correlation are given in Figure 5.3 for a simple case of one DV and two 
IVs. In the figure, squared correlation, partial correlation, and semipartial correlation coefficients are 
defined as areas created by overlapping circles. Area a + b + c + d is the total area of the DV and 
reduces to a value of 1 in many equations. Area b is the segment of the variability of the DV that can 
be explained by either IV, or IV2 and is the segment that creates the ambiguity. Notice that it is the 
denominators that change between squared semipartial and partial correlation. 

In a partial correlation, the contribution of the other IVs is taken out of both the IV and the DV. 
In a semipartial correlation, the contribution of other IVs is taken out of only the IV. Thus, squared 
semipartial correlation expresses the unique contribution of the IV to the total variance of the DV. 
Squared semipartial correlation (sr?) is the more useful measure of importance of an I V . ~  The inter- 
pretation of sr? differs. however, depending on the type of multiple regression employed. 

'~rocedures for obtaining partial correlations are available in earlier editions of this book but are omitted In this edition. 
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5.6.1.1 Starzdard :Multiple Regression 

In standard multiple regrehsion, ,sf: for an IL' i:, the amount by which R' i:, r-educed if that 1V is 
deleted from the regression equation. That is, s r ;  represents the unique contribution of the 1V to R' 
in that set of IVs. 

When the IVs are corrilated: squared semipartial correlations do not necessarily sum to mul- 
tiple R2. The sum of srf is usually smaller than R2 (although under some rather extreme circum- 
stances, the sum can be larger than R'). When the sum is smaller, the difference between R? and the 
sum of sr" for all IVs represents shared variance, variance that is contributed to R2 by two or more 
IVs. It is rather common to find s~bstantial R2, with sr; for all IVs quite small. 

Table 5.9 summarizes procedures for finding sr: (and for both standard multiple and 
sequential regression through SPSS and SAS. 

SPSS and SAS provide versions of sr; as part of their output. If you use SPSS REGRESSION, 
sr, is optionally available as Part Correlations by requesting STATISTICS = ZPP (part and partial 
correlations on the Statistics menu). SAS REG provides squared semipartial correlations when 
SCORR2 is requested (from the parameter estimates menu: Print Type I1 squared semipartial cor- 
relations). 

In all standard multiple-regression programs, F, (or T, )  is the significance test for sr12, p r f ,  B,, 
and p,,  as discussed in Section 5.6.2. 

5.6.1.2 Sequential or Statistical Regression 

In these two forms of regression, srl? is interpreted as the amount of variance added to R' by each IV 
at the point that it enters the equation. The research question is, How much does this IV add to mul- 
tiple R2 after IVs with higher priority have contributed their share to prediction of the DV? Thus, the 
apparent importance of an IV is very likely to depend on its point of entry into the equation. In 
sequential and statistical regression, the sr,? do, indeed, sum to R'; consult Figure 5.2 if you want to 
review this point. 

As reviewed in Table 5.9, SPSS REGRESSION provides squared semipartial correlations as 
part of output for sequential and statistical regression when CHANGE statistics are r e q u e ~ t e d . ~  For 
SPSS. sr: is R Square Change for each IV in the Model Summary table (see Table 5.6). 

SAS REG (for sequential regression) provides R~ for each step. You can calculate sr; by sub- 
traction between subsequent steps. 

5.6.2 Statistical Inference 

This section covers significance tests for multiple regression and for regression coefficients for indi- 
vidual IVs. A test, F,,, , is also described for evaluating the statistical significance of adding two or 
more IVs to a prediction equation in sequential or statistical analysis. Calculations of confidence 
limits for unstandardized regression coefficients and procedures for comparing the predictive capac- 
ity of two different sets of IVs conclude the section. 

When the researcher is using statistical regression as an exploratory tool, inferential proce- 
dures of any lund may be inappropriate. Inferential procedures require that the researcher have a 

'1f you requzht one of the ztatih~ical ~regreshiun optiunb ~n PROC REG. quared  semlpal-tial col-relat~ons wtll be pr~nted  out in 
a summary table as Partial R'k*2. 
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TABLE 5.9 Procedures for Finding stf and ,vq2 through SPSS and SAS for 
Standard Alultiple and Sequential Regression 

Standard Multiple Regression 

SPSS REGRESSION STATISTICS ZPP STATISTICS ZPP 
Part Partial 

SAS REG S C O R R Z  P C O R R Z  

Sequential Regression 

SPSS REGRESSION R Square Change Not available 
in Model Summary 
table 

SAS REG S C O R R I  P C O R R I  

hypothesis to test. When statistical regression is used to snoop data, there may be no hypothesis, even 
though the statistics themselves are available. 

5.6.2.1 Test for Multiple R 

The overall inferential test in multiple regression is whether the sample of scores is drawn from a 
population in which multiple R is zero. This is equivalent to the null hypothesis that all correlations 
between DV and IVs and all regression coefficients are zero. With large N, the test of this hypothe- 
sis becomes trivial because it is almost certain to be rejected. 

For standard multiple and sequential regression, the test of this hypothesis is presented in all 
computer outputs as analysis of variance. For sequential regression (and for standard multiple 
regression performed through stepwise programs), the analysis of variance table at the last step gives 
the relevant information. The F ratio for mean square regression over mean square residual tests the 
significance of multiple R. Mean square regression is the sum of squares for regression in Equation 
5.2 divided by k degrees of freedom; mean square residual is the sum of squares for residual in the 
same equation divided by (N - k - 1) degrees of freedom. 

If you insist on inference in statistical regression, adjustments are necessary because all poten- 
tial IVs do not enter the equation and the test for R~ is not distributed as F. Therefore, the analysis of 
variance table at the last step (or for the "best" equation) is misleading; the reported F is biased so 
that the F ratio actually reflects a Type I error rate in excess of a. 

Wilkinson and Dallal(198 1) have developed tables for critical R~ when forward selection pro- 
cedures are used for statistical addition of variables and the selection stops when the F-to-enter for 
the next variable falls below some preset value. Appendix C contains Table C.5 that shows how large 
multiple R~ must be to be statistically significant at .05 or .O1 levels, given N, k,  and F, where N is 
sample size, k is the number of potential IVs, and F is the minimum F-to-enter that is specified. 
F-to-enter values that can be chosen are 2, 3, or 4. 

For example, for a statistical regression in which there are 100 subjects, 20 potential IVs, and 
an F-to-enter value of 3 chosen for the solution, a multiple R? of approximately . I9  is required to be 
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considered significantlq different from zero at u = .05 (and approximately .26 at n = . O l ) .  Wilkinson 
and Dallai report that linear interpolation on IV and h: works weil. However. they caution against 
extensive extrapolation for values of 1V and k beyond those given in the table. In sequential regres- 
sion, this table is also used to find critical R2 values if a post hoc decision is made to terminate regres- 
sion as soon as R2. reaches statistical significance, if the appropriate F-to-enter is substituted for R2. 
probability value as the stopping rule. 

Wilkinson and Dallal recommend forward selection procedures in favor of other selection 
methods (e.g., stepwise selection). They argue that, in practice, results using different procedures are 
not likely to be substantially different. Further, forward selection is computationally simple and effi.- 
'cient, and allows straightforward specification of stopping rules. If you are able to specify in advance 
the number of variables you wish to select, an alternative set of tables is provided by Wilkinson 
(1979) to evaluate significance of multiple R2 with forward selection. 

After looking at the data, you may wish to test the significance of some subsets of IVs in pre- 
dicting the DV where ,a subset may even consist of a single IV. If several post hoc tests like this are 
desired, Type I errors become increasingly likely. Larzelere and Mulaik (1977) recommend the fol- 
lowing conservative F test to keep Type I error rate below alpha for all combinations of IVs: 

where R: is the squared multiple (or bivariate) correlation to be tested for significance, and k is the 
total number of IVs. Obtained F is compared with tabled F, with k and (N - k - 1) degrees of free- 
dom (Table C.3). That is, the critical value of F for each subset is the same as the critical value for 
the overall multiple R. 

In the sample problem of Section 5.4, the bivariate correlation between MOTIV and COMPR 
(from Table 5.2) is tested post hoc as follows: 

<n6132/3 *a"" 

F =  
(1 - .58613~)/2 

= 0.349, with df = 3 , 2  

which is obviously not significant. (Note that results can be nonsensical with very small samples.) 

5.6.2.2 Test of Regression Components 

In standard multiple regression, for each IV, the same significance test evaluates Bi, Pi, pri ,  and sri .  
The test is straightforward, and results are given in computer output. In SPSS, ti tests the unique con- 
tribution of each IV and appears in the output section labeled Coefficients (see Table 5.4). Degrees 
of freedom are 1 and dfEs, which appears in the accompanying ANOVA table. In SAS REG, or 5 
values are given for each IV, tested with df,,, from the analysis of variance table (see Tables 5.5 and 
5.6). 

Recall the limitations of these significance tests. The significance tests are sensitive only to 
the unique variance an IV adds to R2. A very important IV that shares variance with another IV in 
the analysis may be nonsignificant although the two IVs in combination are responsible in large part 
for the size of R'. An IV that is highly correlated with the DV but has a nonsignificant regression 
coefficient may have suffered just such a fate. For this reason, it is important to report and interpret 



Multiple Regression 149 

r;r in addition to F, for each IV. as shown later in Table 5.13. summarizing the results of a complrtc 
example. 

For statistical and sequential regression, assessment of contribution of variables is more com- 
plex, and appropriate significance tests may not appear in the computer output. First, there is inher- 
ent ambiguity in the testing of each variable. In statistical and sequential repression, tests of sr: are 
not the same as tests of the regression coefficients (Bi and p i ) .  Regression coefficients are indepen- 
dent of order of entry of the IVs, whereas sr? depend directly on order of entry. Because sr: reflects 
"importance" as typically of interest in sequential or statistical regression, tests based on sr: are 
discussed here.9 

SPSS and SAS provide significance tests for srf in summary tables. For SPSS, the test is F 
Change-F ratio for change in R2-that is accompanied by a significance value, Sig F Change. If 
you use SAS REG, you need to calculate F for sr: as found by subtraction (cf. Section 5.6.1.2) using 
the following equation: 

The 5 for each IV is based on sr? (the squared semipartial correlation), multiple R2 at 
the final step, and residual degrees of freedom from the analysis of variance table for the 
final step. 

Note that these are incremental F ratios, Fin,, because they test the incremental change in R~ as vari- 
ables in each step are added to prediction. 

5.6.2.3 Test of Added Subset of IVs 

For sequential and statistical regression, one can test whether a block of two or more variables sig- 
nificantly increases R~ above the R2 predicted by a set of variables already in the equation. 

where &,, is the incremental F ratio; ~t~ is the multiple R2 achieved with the new block 
of IVs in the equation; R:, is the multiple R* without the new block of IVs in the equa- 
tion; m is the number of IVs in the new block; and df,,, = ( N  - k - l )  is residual 
degrees of freedom in the final analysis of variance table. 

Both R t i  and R:, are found in the summary table of any program that produces one. The null hypoth- 
esis of no increase in R2 is tested as F with rn and dfres degrees of freedom. If the null hypothesis is 
rejected, the new block of IVs does significantly increase the explained variance. 

 or comb~ned \tandard-sequential regression, it might be desirable to use the "~tandard" method for all IVs simply to main- 
tain consistency. Lf so, be sure to report that the F test is for regression coeffic~ents. 
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Althouyh this is a poor examplc becausr onl) one variable IS  in  the n e ~ .  blocL, we can use the 
sequential exan~ple in  Table 5.6 to test whether NIOTIV adds significantly to the variance contributed 
by the first two variables to enter the equation. QUAL and GRADE. 

F = 
(.70235 - .61757)/1 

= 0.570 with df = 1, 2 
"Ic (1 - .70235)/2 

Because only one variable was entered, this test is the same as F Change for Model 2 in Table 5.6 
in the Model Summary output. Thus, 4,, can be used when there is only one variable in the block, 
but the information is already provided in the output. Indeed, as noted previously, any test of a step 
in a sequential model is a form of F,, . 

5.6.2.4 Confidence Limits around B and Multiple R~ 

To estimate population values, confidence limits for unstandardized regression coefficients (Bi) are 
calculated. Standard errors of unstandardized regression coefficients, unstandardized regression 
coefficients, and the critical two-tailed value o f t  for the desired confidence level (based on N - 2 
degrees of freedom, where N is the sample size) are used in Equation 5.12. 

The 1 - a confidence limits for the unstandardized regression coefficient for the ith IV 
(CLB,) are the regression coefficient (Bi) plus or minus the standard error of the regres- 
sion coefficient (SEB,)  times the critical value oft ,  with (N - 2) degrees of freedoin at 
the desired level of a. 

If 95% confidence limits are requested, they are given in SPSS REGRESSION output in the 
segment of output titled Coefficients. With other output or when 99% confidence limits are desired, 
Equation 5.12 is used. Unstandardized regression coefficients and the standard errors of those coef- 
ficients appear in the sections labeled Coefficients or Parameter Estimates. 

For the example in Table 5.4, the 95% confidence limits for GRADE, with df = 4, are 

CL,, = 0.416 2 0.646(2.78) = 0.416 + 1.796 = - 1.380 -- 2.212 

If the confidence interval contains zero, one retains the null hypothesis that the population regression 
coefficient is zero. 

Confidence limits around R2 also are calculated to estimate population values. Steiger and 
Fouladi (1992) have provided a computer program R2 (included with data sets for this book) to find 
them. The Confidence Interval is chosen as the Option, and Maximize Accuracy is chosen as the 
Algorithm. Using the R* value of ,702, Figure 5.4a shows setup values of 6 observations, 4 variables 
(including 3 IVs plus the DV) and probability value of .95. As seen in Figure 5.4b, the R2 program 
provides 95% confidence limits from .OO to .89. Again, inclusion of zero suggests no statistically sig- 
nificant effect. 
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FIGURE 5.4 Confidence limits around R~ using Steiger and Fouladi's 
(1992) software: (a) setup and (b) results. 

Software also is available in SAS and SPSS 10 find confidence limits around R* using values 
of the F ratio and degrees of freedom as input. These programs by Smithson (2003), also included 
with the data sets for this book, are demonstrated in Sections 6.6.2, 7.6.2, and elsewhere. 
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5.6.2.5 Comparirzg Two Sets of Predictors 

It is sometimes of interest to know whether one set of IVs predicts a DV better than another set of 
IVs. For example, can ratings of current belly dancing ability be better predicted by personality tests 
or by past dance and musical training? 

The procedure for finding out is fairly convoluted, but if you have a large sample and you are 
willing to develop a data file with a pair of predicted scores for each subject in your sample, a test for 
the significance of the difference between two "correlated correlations" (both correlations are based 
on the same sample and share a variable) is available (Steiger, 1980). (If sample size is small, non- 
independence among predicted scores for cases can result in serious violation of the assumptions 
underlying the test.) 

As suggested in Section 5.4.1, a multiple correlation can be thought of as a simple correlation 
between obtained DVs and predicted DVs; that is, R = ryy,. If there are two sets of predictors, Y,, and 
Yb, (where, for example, Y,, is prediction from personality scores and Yb, is prediction from past train- 
ing), a comparison of'their relative effectiveness in predicting Y is made by testing for the signifi- 
cance of the difference between ryy and ryy , b. For simplicity, let's call these rya and ryb . 1 

To test the difference, we need to know the correlation between the predicted scores from set 
A (personality) and those from set B (training), that is, ryaryb, or, simplified, rub. This is where file 
manipulation procedures or hand entering become necessary. (SPSS REGRESSION saves predicted 
scores to the data file on request, so that you may run multiple regressions for both sets of scores as 
IVs and save them to the same data file.) 

The z test for the difference between r,,, and ryb is 

where N is, as usual, the sample size, 

and zyb = (1/2) ln 
1 - r.. 

and 

where i = (1/2) (rya + ryb). 
So, for the example, if the correlation between currently measured ability and ability as pre- 

dicted from personality scores is .40 (R, = ry, = .40), the correlation between currently measured 
ability and ability as predicted from past training is .50 (Rb = ryh = SO), and the correlation between 
ability as predicted from personality and ability as predicted'from training is .10 (rob = . lo) ,  and 
N = 103, 
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and, finally, 

Because Z" is within the critical values of 51.96 for a two-tailed test, there is no statistically 
significant difference between multiple R when predicting Y from Y; or Y;. That is, there is no statis- 
tically significant difference in predicting current belly dancing ability from past training versus per- 
sonality tests. 

Steiger (1980) and Steiger and Browne ( 1984) present additional significance tests for situa- 
tions where both the DV and the IVs are different, but from the same sample, and for comparing the 
difference between any two correlations within a correlation matrix. 

5.6.3 Adjustment of R~ 

Just as simple r,, from a sample is expected to fluctuate around the value of the correiation in the 
population, sample R is expected to fluctuate around the population value. But multiple R never takes 
on a negative value, so all chance fluctuations are in the positive direction and add to the magnitude 
of R. As in any sampling distribution, the magnitude of chance fluctuations is larger with smaller 
sample sizes. Therefore, R  tends to be overestimated, and the smaller the sample the greater the over- 
estimation. For this reason, in estimating the population value of R, adjustment is made for expected 
inflation in sample R. 

All the programs discussed in Section 5.8 routinely provide adjusted R ~ .  Wherry (1931) pro- 
vides a simple equation for this adjustment, which is called R2 : 

where N = sample size 
k = number of IVs 

R' = squared multiple correlation 



For the w n e  \ample problem 

R 2  = l -- ( I  - .70235)(5 /2)  = ,25588 

as printed out for SPSS, Table 5.4. 
For statistical regression, Cohen et al. (2003) recommend k based on the number of IVs con- 

sidered for inclusion, rather than on the number of IVs selected by the program. They also suggest 
the convention of reporting k 2  = 0 when the value spuriously becomes negative. 

When the number of subjects is 60 or fewer and there are numerous IVs (say, more than 20). 
Equation 5.15 may provide inadequate adjustment for R2. The adjusted value may be off by as much 
as .  I0 (Cattin, 1980). In these situations of small Nand numerous IVs, 

Equation 5.16 (Browne, 1975) provides further adjustment: 

The adjusted R2 for small samples is a function of the number of cases, N, the number of 
IVs, k, and the k 2  value as found from Equation 5.15. 

When N is less than 50, Cattin (1980) provides an equation that produces even less bias but 
requires far more computation. 

5.6.4 Suppressor Variables 

Sometimes you may find an IV that is useful in predicting the DV and in increasing the multiple R2 
by virtue of its correlations with other IVs. This IV is called a suppressor variable because it sup- 
presses variance that is irrelevant to prediction of the DV. Thus, a suppressor variable is defined not 
by its own regression weight, but by its enhancement of the effects of other variables in the set of IVs. 
It is a suppressor only for those variables whose regression weights are increased (Conger, 1974). In 
a fill1 discussion of suppressor variables, Cohen et al. (2003) describe and provide examples of sev- 
eral varieties of suppression. 

For instance, one might administer as IVs two paper-and-pencil tests, a test of ability to list 
dance patterns and a test of test-taking ability. By itself, the first test poorly predicts the DV (say, 
belly dancing ability) and the second test does not predict the DV at all. However, in the context of 
the test of test taking, the relationship between ability to list dance patterns and belly dancing ability 
improves. The second IV serves as a suppressor variable because by removing variance due to abil- 
ity in taking tests, prediction of the DV by the first IV is enhanced. - 

The foregoing is an example of classical suppression (called traditional by Conger, 1974). 
Another type is cooperative or reciprocal suppression, in which IVs correlate positively with the DV 
and correlate negatively with each other (or vice versa). Both 1Vs end up with higher correlations 
with the DV after each IV is adjusted for the other. For example. the ability to list dance patterns and 



prior musical tra1i111?$ nllght be negat~j~ely correlated. ~ ~ l t h o ~ ~ g h  both predict bell? dancing abilit! 
somewhat. In the context of both of the predictors. belly dancing ability is predicted Inore fully than 
expected on the basis of adding the separate predictive ability of the two IVs. 

A third type of suppression occurs when the sign of a regression weight of an IV is the oppo- 
site of what would be expected on the basis of its correlation with the DV. This is negative or net sup- 
pression. Prediction still is enhanced because the magnitude of the effect of the IV is greater 
(although the sign is opposite) in the presence of the suppressor. Suppose that belly dance ability is 
positively predicted by both knowledge of dance steps and previous dance training, and that the IVs 
are positively correlated. The regression weight of previous dance training might turn out to be neg- 
ative, but stronger than would be expected on the basis of its bivariate correlation with belly dance 
ability. Thus, knowledge of dance steps is a negative suppressor for previous dance training. 

In output, the presence of a suppressor variable is identified by the pattern of regression coef- 
ficients and correlations of each IV with the DV. Compare the simple correlation between each IV 
and the DV in the correlation matrix with the standardized regression coefficient (beta weight) for 
the IV. If the beta weight is significantly different from zero, either one of the following two condi- 
tions signals the presence of a suppressor variable: (1) the absolute value of the simple correlation 
between IV and DV is substantially smaller than the beta weight for the IV, or (2) the simple corre- 
lation and beta weight have opposite signs. There is as yet no statistical test available to assess how 
different a regression weight and a simple correlation need to be to identify suppression (Smith, 
Ager, and Williams, 1992). 

It is often difficult to identify which variable is doing the suppression if there are more than 
two or three IVs. If you know that a suppressor variable is present, you need to search for it among 
the regression coefficients and correlations of the IVs. The suppressor is among the ones that are con- 
gruent, where the correlation with the DV and the regression coefficients are consistent in size and 
direction. One strategy is to systematically leave each congruent IV out of the equation and examine 
the changes in rcgression coefficients for the IV(s) with inconsistent regression coefficients and cor- 
relations in the original equation. 

If a suppressor variable is identified, it is properly interpreted as a variable :hat enhances the 
importance of other IVs by virtue of suppression of irrelevant variance in them. If the suppressor is 
not identified. Tzelgov and Henik (1991) suggest an approach in which the focus is on suppression 
situations rather than on specific suppressor variables. 

5.6.5 Regression Approach to ANOVA 

Analysis of variance is a part of the general linear model, as is regression. Indeed, ANOVA can be 
viewed as a form of multiple regression in which the IVs are levels of discrete variables rather than 
the more usual continuous variables of regression. This approach is briefly reviewed here. Interested 
readers are referred to Tabachnick and Fidell (2007) for a fuller description and demonstrations of 
the regression approach to a variety of ANOVA models. 

Chapter 2 reviews the traditional approach to calculation of sums of squares for analysis of 
variance. The regression approach to calculating the same sums of squares involves creating a vari- 
able for each df of the IVs that separates the levels of IVh. For example, a one-way between-subjects 
ANOVA with two levels requires only one variable. X. to separate its levels. If contrast coding is 
used, cases in a ,  are coded as I and cases in L I ,  as - 1 .  as shown in Table 5.10. (There are several - 
other forms of coding, but for many applications, contrast coding works best.) 
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TABLE 5.10 Contrast Coding for a 
One-Way Between-Subjects ANOVA, 
Where .4 Has Two Levels 

Level Y 
ofA Case X (DV Scores) 

When a column for DV scores, Y ,  is added, the bivariate correlation between X and Y, the inter- 
cept, and the regression coefficient, B, can be calculated as per Equations 3.3 i and 3.32. Thus, the 
data set fits within the model of bivariate regression (Equation 3.30). 

- To convert this to ANOVA, total sum of squares is calculated for Y using Equation 3.5, where 
Y is the grand mean of the DV column (equivalent to SS,,,,, of Equation 3.9). Sum of squares for 
regression (effect of A) and residual (error) are also calculated and they correspond to the SSb,? and 
SS,, of Equation 3.10, respectively.1° Degrees of freedom for A is the number of X columns needed 
to code the levels of A (1 in this example). Degrees of freedom total is the number of cases minus 1 
(6 - 1 = 5 here). And degrees of freedom for error is the difference between the other two df 
(5 - I = 4 here). Mean squares and the F ratio are found in the usual manner. 

Additional levels of A make the coding more interesting because more X columns are needed 
to separate the levels of A and the problem moves from bivariate to multiple regression. For exam- 
ple, with three levels of A and contrast coding, you need two X columns, as shown in Table 5.1 1. 

The X I  column codes the difference between a ,  and a2,  with all cases in a j  assigned a code of 
zero. The X2 column combines a l  and a, (by giving all cases in both levels the same code of 1) 
against a3 (with a code of -2). 

In addition to a vector for Y,  then, you have two X vectors, and a data set appropriate for mul- 
tiple regression, Equation 5. l .  Total sum of squares is calculated in the usual way, ignoring group 
membership. Separate sums of squares are calculated for X I  and X 2  and are added together to form 
SSA (as long as orthogonal coding is used-Section 3.2.6.2-and there are equal sample sizes in 
each cell). Sum of squares for error is found by subtraction, and mean squares and the F ratio for the 
omnibus effect of A are found in the usual manner. 

The regression approach is especially handy when orthogonal comparisons are desired 
because those are the codes in the X columns. The difference between this procedure and traditional 
approach to specific comparisons is that the weighting coefficients are applied to each case rather 
than to group means. The sums of squares for the X ,  and X ,  - columns can be evaluated separately to 
test the comparisons represented in those columns. 

"'Details for calculating ANOVA sums of \quares uslng the regression approach are pfovided by Tabachnick and Fidell 
(2007). 



TARI,E 5.1 1 Contrast Coding for a One-Way 
Between-Subjects ANOVA, Where .4 Has Three Levels 

Level Y 
ofA Case X~ X2 (DV Scores) 

$ 1  1 1 

I S2 I 1 

S3 ' 1 I 

~~4 - 1 1 

a, .'5 - I  1 

'6 - 1  1 

S7 0 - 2  

As the ANOVA problem grows, the number of columns needed to code for various IVs and 
their interactions' also grows, as does the complexity of the multiple regression, but the general 
principles remain the same. In several situations. the regression approach to ANOVA is easier to 
understand, if not compute, than the traditional approach. This fascinating topic is explored in great 
(excruciating?) detail in Tabachnick and Fidell (2007). 

5.6.6 Centering When Interactions and Powers of IVs 
Are Included 

Interactions between discrete IVs are common and are discussed in any standard ANOVA text. Inter- 
actions between continuous IVs are less common, but are of interest if we want to test whether the 
regression coefficient or importance of one IV ( X I )  varies over the range of another TV ( X 2 )  If so, 
X ,  - is said to moderate the relationship between X I  and the DV. For example, is the importance of 
education in predicting occupational prestige the same over the range of income? If there is interac- 
tion, the regression coefficient (B) for education in the regression equation depends on income. A 
different regression coefficient for education is needed for different incomes. Think about what the 
interaction would look like if income and education were discrete variables. If income has three lev- 
els (low, middle, and high) and so does education (high school grad, college grad, postgrad degree), 
you could plot a separate line for education at each level of income (or vice versa) and each line 
would have a different slope. The same plot could be generated for continuous variables, except that 
distinct values for income must be used. 

When you want to include interactions of IVs or power of IVs in the prediction equation, they 
can cause problems of multicollinearity unless they have been centered: converted to deviation 
scores co that each variable has a mean of zero (Aiken and West. 1991 ). Note that centering does not 

"Problems in interpreting parameter estimates may occur if  interactions are licted in the regression equation before main 
effects. 
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require that score?, be \tlrndardic.ed. because i t  is not necessary to d~vidr  the score's dev~a t~on  fro111 
its mean by its standard devicltion. Centering an IV does not affect its ~ imple  con-elation ~ i t h  other 
variables, but i t  does affect regression coefticients for interactions or powers of 1Vs included in the 
regression equation. (There is no advantage to centering the DV.) 

Recall from Chapter 4 that computational problems arise when IVs are highly correlated. If the 
IVs with interactions are not centered, their product (as well as higher-order polynomial terms such 
as ~f ) is highly correlated with the component IVs. That is, XIX2 ishighly correlated with both XI  
and with X2; X: is also highly correlated with X I .  Note that the problem with multicollinearity in this 
case is strictly statistical; the logical problems sometimes associated multicollinearity among sup- 
,posedly different predictors are not at issue. In the case of interaction between IVs or powers of an 
IV, multicollinearity is caused by the measurement scales of the component IVs and can be amelio- 
rated by centering them. 

Analyses with centered variables lead to the same unstandardized regression coefficients for 
simple terms in the equation (e.g., B, for X I  and B2 forX2) as when uncentered. The signiticance test 
for the interaction also is the same, although the unstandardized regression coefficient is not (e.g., B, 
for XIX2) .  However, the standardized regression coefficients (P) are different for all effects. If a 
standardized solution is desired, the strategy suggested by Friedrich (1982) is to convert all scores to 
,--scores, including the DV, and apply the usual solution. The computer output column showing 
"unstandardized" regression coefficients (Parameter Estimate, Coefficient, B) actually 
shows standardized regressions coefficients, P. Ignore any output referring to standardized regres- 
sion coefficients. However, the intercept for the standardized solution for centered data is not neces- 
sarily zero, as it always is for noncentered data. 

When interaction terms are statistically significant, plots are useful for interpretation. Plots are 
generated by solving the regression equation at chosen levels of X 2 ,  typically high, medium, and low 
levels. In the absence of theoretical reasons for choice of levels, Cohen et al. (2003) suggest levels 
corresponding to the mean of X2, one standard deviation above and one standard deviation below the 
mean as the n~ediurn, high, and low levels, respectively. Then, for each slope, you substitute the cho- 
sen value of X, in the rearranged regression equation: 

Y '  = ( A  + B2X2) + (B, + B, X2)Xl (5.17) 

where B, is the regression coefficient for the interaction. 
Suppose, for example, that A = 2, BI = 3 ,  B2 = 3.5, B3 = 4, and the X2 value at one standard 

deviation below the mean is -2.5. The regression line for the DV at the low value of X, is 

If X, at one standard deviation above the mean is 2.5 and the regression line for the DV at the high 
value of x2 is 



Multiple Rcgrr5sion 159 

30 ;-- -i 

FIGURE 5.5 Interaction between two continuous 
IVs: XI and X2. 

Figure 5.5 is the resulting plot. Each regression equation is solved for two values of X i  within a rea- 
sonable range of values and the resulting DV values plotted. For this example, the very simplest are 
chosen: X I  = - 1 and X I  = 1 .  For the low value of X2 (-2.5) then, Y '  = 0.25 when X I  = - I and 
Y '  = - 13.75 when X,  = I. For the high value of X, (2.5), Y '  = -2.25 when X I  = - 1 and - 
Y'=23.15whenXI  = I .  

The finding of a signiticant interaction in multiple regression often is followed up by a simple 
effects analysis, just as it is in ANOVA (cf. Chapter 8). In multiple regression, this means that the 
relationship between Y and X I  is tested separately at the chosen levels of X 2 .  Aiken and West ( 199 1 ) 
call this a simple slope analysis and provide techniques for testing the significance of each of the 
slopes, both as planned and post hoc comparisons. 

Aiken and West (199 1) provide a wealth of information about interactions among continuous 
variables, including higher-order interactions, relationships taken to higher-order powers, and deal- 
ing with interactions between d~screte and continuous variables. Their book is highly recommended 
if you plan to do serious work with interactions in multiple regression. Alternatively, Holmbeck 
(1997) suggests use of structural equation modeling (the topic of Chapter 14) when interactions 
between continuous variables (and presumably their powers) are included and sample size is large. 

5.6.7 Mediation in Causal Sequence 

If you have a hypothetical causal sequence of three (or more) variables, the middle variable is con- 
sidered a mediator (indirect effect) that represents at least part of the chain of events leading to 
changes in the DV. For example, there is a relationship between gender and number of visits to health 
care professionals, but what mechanism underlies the relationship? You might propose that the link- 
age is through some aspect of personality. That is, you might hypothesize that gender "causes" some 
differences in personality which, in turn, "cause" women to make more visits to health care profes- 
sionals. Gender, personality, and visits are in causal sequence, with gender the IV, personality the 
mediator, and visits the DV. 
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I 
i Total effect I 

I IV )DV I 
I 

(a) No Mediation 

I I 

(b) Perfect Mediation 

Direct effect 

(c) Partial Mediation 

FIGURE 5.6 Simple mediation. 

As seen in Figure 5.6, the relationship between the IV and the DV is called the total efect .  The 
direct effect is the relationship between the IV and the DV after "controlling for" the mediator. 
According to Baron and Kinney (1986) a variable is confirmed as a mediator if I )  there is a signifi- 
cant relationship between the IV and the DV, 2) there is a significant relationship between the IV and 
the mediator, 3) the mediator still predicts the DV after controlling for the IV, and 4) the relationship 
between the IV and the DV is reduced when the mediator is in the equation. If the relationship 
between the IV and the DV goes to zero when the mediator is in the equation, mediation is said to be 
perfect (or full. or complete, Figure 5.5(b)); if the relationship is diminished, but not to zero, inedia- 
tion is said to be partial (Figure 5.5(c)). 

In the example, personality is a mediator if there is a relationship between gender and visits, 
there is a relationship between gender and personality, personality predicts visits even after control- 
ling for gender, and the relationship between gender and visits is smaller when personality is in the 
equation. If the relationship between gender and visits is plausibly zero when personality is in the 
equation, the mediation is perfect. If the relationship is smaller, but not zero, mediation is partial. In 
this example, you might expect the relationship to be reduced, but not to zero, due to childbearing. 

Note that the three variables (the IV, the mediator. and the DV) are hypothesized to occur in a 
causal sequence. In the example, gender is presumed to "cause" personality which, in turn "causes" 
visits to health care professionals. There are other types of relationships between three variables 
(e.g., interaction, Section 5.6.6) that do not involve a sequence of causal relationships. Note also that 
this discussion is of simple mediation with three variables. As seen in Chapter 14 (Structural Equa- 
tion Modeling), there are many other forms of mediation. For example, there may be more than one 
mediator in a sequence, or mediators may be operating in parallel instead of in sequence. Further, in 
SEM, mediators may be directly measured or latent. 

Sobel ( 1982), among others, present7 a method for tecting the significance of a simple media- 
tor by testing the difference between the total effect and the direct effect. In the example. the medi- 
ating effects of personality are tested as the difference between the relationship of gender and visits 
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with and without consideration of personality. If the relationship between gender and visits is not 
reduced by adding personality to the equation. personality is not a mediator of the relationship. The 
Sobel method requires just one significance test for mediation rather than several as proposed by 
Baron and Kinney and is thus less susceptible to familywise alpha errors. Preacher and Hayes (2004) 
provide both SPSS and SAS macros for following the Baron and Kinney procedure and formally 
testing mediation as recommended by Sobel. They also discuss the assumption of the formal test 
(normality of sampling distribution) and bootstrapping methods for circumventing it. Tests of indi- 
rect effects in SEM are demonstrated in Section 14.6.2. 

5.7 Complete Examples of Regression Analysis 

To illustrate applications of regression analysis, variables are chosen from among those measured in 
the research described in Appendix B, Section B. 1. Two analyses are reported here, both with num- 
ber of visits to health professionals (TIMEDRS) as the DV and both using the SPSS REGRESSION 
program. Files are REGRESS.*. 

The first example is a standard multiple regression between the DV and number of physical 
health symptoms (PHYHEAL), number of mental health symptoms (MENHEAL), and stress from 
acute life changes (STRESS). From this analysis, one can assess the degree of relationship between 
the DV and IVs, the proportion of variance in the DV predicted by regression, and the relative impor- 
tance of the various 1Vs to the solution. 

The second example demonstrates sequential regression with the same DV and IVs. The first 
step of the analysis is entry of PHYHEAL to determine how much variance in number of visits to 
health professionals can be accounted for by differences in physical health. The second step is entry 
of STRESS to determine if there is a significant increase in R~ when differences in stress are added 
to the equation. The final step is entry of MENHEAL to determine if differences in mental health are 
related to number of visits to health professionals after differences in physical health and stress are 
statistically accounted for. 

5.7.1 Evaluation of Assumptions 

Because both analyses use the same variabies, this screening is appropriate for both. 

5.7.1.1 Ratio of Cases to ZVs 

With 465 respondents and 3 IVs, the number of cases is well above the minimum requirement of 107 
( 1  04 + 3) for testing individual predictors in standard multiple regression. There are no missing data. 

5.7.1.2 Normality, Linearity, Homoscedasticity, and Independence of Residuals 

We choose for didactic purposes to conduct preliminary screening through residuals. The initial run 
through SPSS REGRESSION uses untransformed variables in a standard multiple regression to pro- 
duce the scatterplot of residuals against predicted DV scores that appears in Figure 5.7. 

Notice the execrable overall shape of the scatterplot that indicates violation of many of the 
assumptions of regression. Comparison of Figure 5.7 with Figure 5.1(a) (in Section 5.3.2.4) suggests 
further analysis of the distributions of the variables. (It was noticed in passing, although we tried not 
to look, that R~ for this analysis was significant, but only .22.) 
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REGRESSION 
/MISSING LlSTWlSE 
ISTATISTICS COEFF OUTS R ANOVA 
/CRITERIA=PIN(.05) POUT(.I 0) 
/NOORIGIN 
/DEPENDENT timedrs 
METHOD=ENTER phyheal menheal stress 
/SCATTERPLOT=(*ZRESID ,*ZPRED). 

Scatterplot 

Dependent Variable: Visits to health professionals 

- 2 - 1 0 1 2 3 4 
Regression Standardized Predicted Value 

FIGURE 5.7 SPSS REGRESSION syntax and residuals scatterplot for original variables. 

SPSS EXPLORE is used to examine the distributio~is of the variables, as shown in Table 5.12. 
All the variables have significant positive skewness (see Chapter 4), which explains, at least in part, the 
problems in the residuals scatterplot. Logarithmic and square root transformations are applied as 
appropriate, and the transformed distributions checked once again for skewness. Thus, TIMEDRS and 
PHYHEAL (with logarithmic transformations) become LTIMEDRS and LPHYHEAL, whereas 

TABLE 5.12 Syntax and Output for Examining Distributions of Variables through SPSS EXPLORE 

EXAMINE 
VARIABLES=timedrs phyheal menheal stress 
/PLOT BOXPLOT HISTOGRAM NPPLOT 
/COMPARE GROUP 
/STATISTICS DESCRIPTIVES EXTREME 
ICINTERVAL 95 
/MISSING LlSTWlSE 
/N OTOTA L. 



'T.AS1.E 5.12 Continued 

Descriptives 

Visits to health Mean 
professionals 95% Confidence Lower Bound 

Interval for Mean Upper Bound 
5% Trimmed Mean 
Median 
Variance 
Std. Deviation 
Minimum 
Maximum 
Range 
lnterquartile Range 
Skewness 
Kurtosis 

Physical health . Mean 
symptoms 95% Confidence Lower Bound 

Interval for Mean Upper Bound 
5% Trimmed Mean 
Median 
Variance 
Std. Deviation 
Minimum 
Maximum 
Range 
lnterquartile Range 
Skewness 
Kurtosis 

Mental health symptoms Mean 
95% Confidence Lower Bound 
Interval for Mean Upper Bound 
5% Trimmed Mean 
Median 
Variance 
Std. Deviation 
Minimum 
Maximum 
Range 
lnterquartile Range 
Skewness 
Kurtosis 

Stressful life events Mean 
95% Confidence Lower Bound 
Interval for Mean Upper Bound 
5% Trimmed Mean 
Median 
Variance 
Std. Deviation 
Minimum 
Maximum 
Range 
lnterquartile Range 
Skewness 
Kurtosis 

Statistic i Std. Error 

7.90 
6.90 
8.90 
6.20 
4.00 

1 19.870 
10.948 

0 
81 
8 1 
8 

3.248 
13.101 

4.97 
4.75 
5.1 9 
4,79 

,508 

.I13 

.226 

.I11 

5.00 1 
5.704 
2.388 

2 
15 
13 
3 

1.031 
1.124 

6.1 2 
5.74 
6.50 
5.93 
6.00 

,113 
.226 

.I94 

17.586 1 

4.19$ 18 1 
18 
6 

.602 
-.292 

204.22 
191.84 
21 6.59 
195.60 
178.00 

18439.662 
135.793 

0 
920 
920 
180 

1.043 
1.801 

.I13 

.226 

6.297 

,113 
,226 
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TABLE 5.12 Continued 

Extreme Values 

aOnly a partial list of cases with the value 0 are shown in the table of lower extremes. 

bOnly a partial list of cases with the value 12 are shown in the table of upper extremes. 

COnly a partial list of cases with the value 2 are shown in the table of lower extremes. 

Value 

81 
75 
60 
60 
58 

0 
0 
0 
0 
Oa 

15 
14 
! 3 
13 
1 2b 

2 
2 
2 
2 
2C 

18 
18 
18 
17 
17 

0 
0 
0 
0 
Oa 

920 
731 
643 
597 
594 

0 
0 
0 
0 
Oa 

Visits to health Highest 1 
professionals 2 

3 
4 
5 

Lowest 1 
2 
3 
4 
5 

Physical health symptoms Highest 1 
2 
3 
4 
5 

Lowest 1 
2 
3 
4 
5 

Mental health symptoms H~ghest 1 
2 
3 
4 
5 

Lowest 1 
2 
3 
4 
5 

Stressful life events Highest 1 
2 
3 
4 
5 

Lowest 1 
2 
3 
4 
5 

Case Number 

405 
290 
40 

168 
249 

437 
435 
428 
385 
376 

277 
373 
38: 
39 1 
64 

454 
449 
440 
41 9 
41 8 

52 
103 
113 
1 44 
198 

462 
454 
352 
344 
340 

403 
405 
444 
195 
304 

446 
40 1 
387 
339 
328 
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TABLE 5.12 Continued 

Histogram Histogram 

0 20 ' 40 60 80 

Visits to health ~rofess~onals 

Mean = 7.9 
Std. Dev. = 10.948 

20 

N = 465 

0 

0 2 4 6 8 10 12 14 

Physical health symptoms 

Mean = 4.97 
Std. Dev. = 2.388 
N = 465 

Hlstogram Histogram 

50 60 

40 
50 

40 
@ 30 6 

: a 
30 

E 
20 

L 

20 

t o  
Mean=6.12 Mean = 204.22 
Std. Dev. = 4.194 10 Std. Dev. = 135.793 
N = 465 N = 465 

0 0 

0 5 10 15 

Mentai neaitn symptoms 

0 200 400 600 800 

Stressful life events 

STRESS (with a square root transformation) becomes SSTRESS.'~ In the case of MENHEAL, appli- 
cation of the milder square root transformation makes the vanable significantly negatively skewed, so 
no transformation is undertaken. 

Table 5.13 shows output from FREQUENCIES for one of the transformed variables, LTIME- 
DRS, the worst prior to transformation. Transformations similarly reduce skewness in the other two 
transformed variables. 

The residuals scatterplot from SPSS REGRESSION following regression with the trans- 
formed variables appears as Figure 5.8. Notice that, although the scatterplot is still not perfectly rec- 
tangular, its shape is considerably improved over that in Figure 5.7. 

5.7.1.3 Outliers 

Univariale outliers in the DV and in the IVs are sought using output from Table 5.12. The highest val- 
ues in the histograms appear disconnected from the next highest scores for TIMEDRS and STRESS; 

I2Note the DV (TIMEDRS) is transformed to meet the assumptions of mult~ple regression. Transformation of the IVs is 
undertaken to enhance prediction. 
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TABLE 5.13 Syntax and Output for Ekamining Distribution of Transformed 
Variable through SPSS FKEQUENCIES 

FREQUENCIES 
VARIABLES=ltimedrs/ 
/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW 
KURTOSIS 
SEKURT 
/HISTOGRAM NORMAL 
/ORDER =ANALYSIS. 

Statistics Histogram 

ltimedrs 

N Valid 
Missing 

Mean 
Median 
Std. Deviation 
Skewness 
Std. Error of 

Skewness 
Kurtosis 
Std. Error of 

Kurtosis 
I Minimum 

60 

50 

X 2 40 
m 
3 5 

30 
LL 

20 

Mean = 0.741 3 

10 Std. Dev. = 0.41525 
N = 465 

0 

0.00 0.50 1.00 1.50 2.00 

ltimedrs 

from the table of Extreme Values, the two highest values for TIMEDRS (8 1 and 75) have z-scores 
of 6.68 and 6.13, respectively. The three highest values for STRESS (920, 731, and 643) have z- 
scores of 5.27, 3.88, and 3.23, respectively. The highest value for PHYHEAL (15) has a z-score of 
4.20, but it does not appear disconnected from the rest of the distribution. Because there is no reason 
not to, the decision is to transform TIMEDRS and STRESS because of the presence of outliers and 
PHYHEAL because of failure of normality. 

Once variables are transformed, the highest scores for LTIMEDRS (see Table 5.13), LPHY- 
HEAL, and SSTRESS (not shown) no longer appear disconnected from the rest of their distributions; 
the z-scores associated with the highest scores are now 2.81,2.58, and 3.41 respectively. In a sample 
of this size, these values seem reasonable. 

Multivariate outliers are sought using the transformed IVs as part of an SPSS REGRESSION 
run in which the Mahalanobis distance of each case to the centroid of all cases is computed. The ten 
cases with the largest distance are printed (see Table 5.14). Mahalanobis distance is distributed as a 
chi-square (X2) variable, with degrees of freedom equal to the number of IVs. To determine which 
cases are multivariate outliers, one looks up  critical iC2 at the desired alpha level (Table (2.4). In this 
case. critical ,yZ at 0 = ,001 for 3 df is 16.266. Any case with a value larger than 16.266 in the Sta- 
tistic column of the Outlier Statistics table is a multivariate outlier among the IVs. None of the 

Maximum 1.91 
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Scatterplot 

Dependent Variable: ltimedrs 

Regression Standardized Predicted Value 

FIGURE 5.8 Residuals scatterplot following regression with transformed 
variables. Output from SPSS REGRESSION. See Table 5.15 for syntax. 

cases has a value in excess of 16.266. (If outliers are found, the procedures detailed in Chapter 4 are 
followed to reduce their influence.) 

Nste that Figure 5.8 shows no outliers in the solution; none of the standardized residuals 
exceeds 3.29. 

5.7.1.4 Multicollinearity and Singularity 

None of the toierances (1 - SMC) listed in Tabie 5. i4  approaches zero. Coilinearity diagnostics indi- 
cate no cause for concern using the criteria of Section 4.1.7. The REGRESSION run of Table 5.15 
additionally resolves doubts about possible multicollinearity and singularity among the transformed 
IVs. All variables enter the equation without violating the default value for tolerance (cf. Chapter 4). 
Further, the highest correlation among the IVs, between MENHEAL and LPHYHEAL, is .5 1 1.  (If 
multicollinearity is indicated, redundant IVs are dealt with as discussed in Chapter 4.) 

5.7.2 Standard Multiple Regression 

SPSS REGRESSION is used to compute a standard multiple regression between LTIMEDRS (the 
transformed DV), and MENHEAL, LPHYHEAL, and SSTRESS (the IVs), as shown in Table 5.15. 

Included in the REGRESSION output are descriptive statistics, including a correlation table, 
the values of R, R< and adjusted R', and a summary of the analysi, of variance for regression. The 
significance level for R is found in  the ANOVA table with F (3, 46 1 )  = 92.90, p < .001. In the table 
labeled Coefficients are printed unstandardized and standardized regression coefficients with their 
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TABLE 5.14 Syntax and Output from SPSS REGRESSION Showing Slultivariate Outliers 
and Collinearity Diagnostics 

REGRESSION 
/MISSING LISTWISE 
ISTATISTICS COEFF OUTS R ANOVA COLLIN TOL 
/CRITERIA=PIN(.O5) POUT(.I 0) 
/NOORIGIN 
/DEPENDENT ltimedrs 
/METHOD=ENTER lphyheal menheal sstress 
/SCATTERPLOT=(*ZRESID,*ZPRED) 
/RESIDUALS = outliers(maha1). 

Model Dimension 

Collinearity Diagnosticsa 

Variance Proportions 

aDependent Variable: LTIMEDRS 

Outlier Statisticsa 

Eigenvalue 

3.685 
.201 
.076 
.039 

aDependent Variable: LTIMEDRS 

Condition 
Index 

1 .OOO 
4.286 
6.971 
9.747 

significance levels, 95% confidence intervals, and three correlations: Zero-order (matching the 
IV-DV values of the correlation table), semipartial (Part), and partial. 

The significance levels for the regression coefficients are assessed through t statistics, which 
are evaluated against 461 df, or through confidence intervals. Only two of the IVs, SSTRESS and 
LPHYHEAL, contribute significantly to regression with ts of 4.67 and 11.928, respectively. The 
significance of SSTRESS and LPHYHEAL is confirmed by their 95% confidence intervals that do 
not include zero as a possible value. 

Statistic 

14.135 
1 1.649 

Mahal. Distance 1 
2 

Case 
Number 

403 
125 

(Constant) 

.OO 

.06 

.07 

.87 

3 
4 
5 
6 
7 
8 
9 

10 

Mental 
health 

symptoms 

.O1 

.80 

.OO 

.19 

lphyheal 

.OO 

.01 

.25 

.74 

sstress 

.01 

.03 

.85 

.ll 

198 / 10.569 
52 

446 
159 
33 

280 
405 
113 

13.548 
10.225 
9.351 
8.628 
8.587 
8.431 
8.353 
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TABLE 5.15 Standard 3Iultiple Regression Analysis of LTTkIEDRS (the SPSS REGRESSION DV, with 
MENHEAL, SSTRESS, and LPHYHEAL (the IC s). SPSS REGRESSION Syntax and Selected Output 

REGRESSION 
/DESCRIPTIVES MEAN STDDEV CORR SIG N 
/MISSING LISTWISE 
ISTATISTICS COEFF OUTS CI R ANOVA ZPP 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT ltimedrs 
/METHOD=ENTER lphyheal menheal sstress. 

Regression 
Descri~tive Statistics 

I Mean I Deviation 1 N 1 

Correlations 

Itimedrs 
lphyheal 
Mental health symptoms 
sstress 

.7413 1 .41525 1 465 
.20620 465 '?:: 1 4.194 1 465 

13.3995 4.9721 7 465 

Model Summary 

Pearson Correlat~on ltimedrs 
lphyheal 
Mental health symptoms 
sstress 

Sig. ( I  -tailedj ltimedrs 

Mental 
health 

symptoms 

.355 
511 

1 .OOO 
.383 

.OOO 

7' 

apredictors: (Constant), sstress, Iphyheal, Mental health 
symptoms 

7 

sstress 

,359 
,317 
,383 

1 .OOO 

,000 

ltimedrs 

1 . 0 0 0  
,586 
.355 
.359 

Adjusted 
Model 

1 

(continued) 

.OOO 
,000 

465 
465 
465 
465 

1 

lphyheal 
Mental health symptoms 
sstress 

N ltimedrs 
lphyheal 
Mental health symptoms 
sstress 

lphyheal 

586 
1 .OOO 
.511 
,317 

.OOO 

Std. Error 
of the 

,000 
,000 
.OOO 

465 
465 
465 
465 

R 
I 

R Square R square 

.373 .61 4a 

. 1 .OOO 

Estimate 

,3289 .377 

.OOO 

.OOO 

465 
465 
465 
465 

.OOO 

465 
465 
465 
465 



TABLE 5.15 Continued 
- 

apredictors: (Constant), sstress, Iphyheal, Mental health symptoms 
bDependent Variable: ltimedrs 

Model 

1 Regression 
Residual 
Total 

aDependent Variable: ltimedrs 

Sum of 
Squares 

30.146 
49.864 
80.010 

Model 

1 (Constant) 
lphyheal 
Mental health 
symptoms 
sstress 

df 

3 
461 
464 

Unstandardized 
Coefficients 

Mean 
Square 

10.049 
.I08 

Standardized 
Coefficients 

Beta 

516 

.019 

188 

B 

-.I55 
1.040 

.002 

.016 

Std. 
Error 

.058 

.087 

.004 

,003 

F 

92.901 

t 

-2.661 
11.928 

.428 

4.671 

Sig. 

.OOOa 

Sig. 

.008 

.OOO 

.669 

.OOO 

95% Confidence 
Interval for B 

Lower 
Bound 

-.270 
.869 

-.007 

.009 

- 

Correlat~ons 

Upper 
Bound 

-.041 
1.21 1 

.011 

.022 

Zero- 
order 

586 

.355 

.359 

Partla1 

.486 

.020 

,213 

Part 

439 

016 

172 
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Semipartial correlations are labelecl Part in the Coefficients section. These values. when 
squared, indicate the amount by which R' would be reduced if an IV were omitted f ~ o n ~  the equa- 
tion. The sum for the two significant IVs (. 173' + .439' = ,222) is the amount of R' attributable to 
unique sources. The difference between R3 and ucique variance (.377 - ,222 = .155) represents 
variance that SSTRESS, LPHYHEAL, and MENHEAL jointly contribute to RZ. 

Information from this analysis is summarized in Table 5.16 in a form that might be appropri- 
ate for publicatio'n in a professional journal. Confidence limits around R~ are found using Steiger and 
Fouladi's (1992) software, as per Section 5.6.2.4. 

It is noted'from the correlation matrix in Table 5.15 that MENHEAL correlates with LTIME- 
DRS r = .355) but does not contribute significantly to regression. If Equation 5.10 is used post hoc 
to evaluate the significance of the correlation coefficient, 

the correlation between MENHEAL and LTIMEDRS differs reliably from zero; F(3, 46 1 )  = 22.16, 
p < .01. 

Thus, although the bivariate correlation between MENHEAL and LTIMEDRS is reliably dif- 
ferent from zero, the relationship seems to be mediated by, or redundant to, the relationship between 
LTIMEDRS and other IVs in the set. Had the researcher measured only MENHEAL and LTIME- 
DRS; however, the significant correlation might have led to stronger conclusions than are warranted 
about the relationship between mental health and number of visits to health professionals. 

Table 5.17 contains a checklist of analyses performed with standard multiple regression. An 
example of a Results section in journal format appears next. 

TABLE 5.16 Standard Multiple Regression of Health and Stress Variables on Number 
of Visits to Health Professionals 

Visits to Dr. Physical Stress Mental sr2 
Variables (log) (DV) Health (log) (Sq. root) health B p (unique) 

Physical health 
(log) .59 1.040** 0.52 .I9 

Stress (sq. root) .36 .32 .38 0.016** 0.19 .03 
Mental health .36 .5 1 0.002 0.02 

Intercept = -0.155 

Means 0.74 0.65 13.40 6.12 
Standard 

deviations 0.42 0.2 1 4.97 4.19 R2 = .38" 
Adjusted R2 = .37 

R = ,61":l: 

' * p  < .Ol 

Wnique variability = .22; shared variability = .16, 95% confidence limits from .30 to .-I-! 
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TABLE 5.17 Checklist for Standard hlultiple Regression 

I .  Issues 

a. Ratio of cases to IVs and missing data 

b. Normality. linearity, and homoscedasticity of residuals 

c. Outliers 
d. ~ul t icol l inear i t~  and singularity 

e. Outliers in the solution 

2. Major analyses 
a. Multiple R2 and its confidence limits, F ratio 

b. Adjusted multiple R2, overall proportion of variance accounted for 
c. Significance of regression coefficients 

d. Squared semiparti,al correlations 

3. Additional analyses 

a. Post hoc significance of correlations 
b. Unstandardized (B) weights, confidence limits 

c. Standardized ( P )  weights 

d. Unique versus shared variability 

e. Suppressor variables 
f. Prediction equation 

I Results 

I A standard multiple regression was performed between number 

I of visits to health prcfessionals as the dependent variable an6 

I physical health, mental health, and stress as independent vari- 
I ables. Analysis was performed using SPSS REGRESSION and SPSS 

I MPLORE for evaluation of assumptions. 

I Results of evaluation of assumptions led to transformation of 

I the variables to reduce skewness, reduce the number of outliers, 

I and improve the normality, linearity, and homoscedasticity of 

I residuals. A square root transformation was used on the measure of 

I stress. Logarithmic transformations were used on number of visits 

I to health professionals and on physical health. One IV, mental 

I health, was positively skewed without transf ormation and nega- 

I tively skewed with it; it was not transformed. With the use of a 

p < .001 criterion for Mahalanobis distance no outliers among the 



cases were found. No cases had missing data and no suppressor 

variables were found, N = 465. 

Table 5.16 displays the correlations between the variables, 

the unstandardized regression coefficients (B) and intercept, the 

standardized regression coefficients (0) , the semipartial corre- 
lations (sri2) , I? , and adjusted I?. R for regression was signif i- 

cantly different from zero, F(3, 461) = 92.90, p < .001, with R~ 

at .38 and 95% confidence limits from .30 to .44. The adjusted I? 

value of .37 indicates that more than a third of the variability 

in visits to health professionals is predicted by number of physi- 

cal health symptoms, stress, and mental health symptoms. For the 

two regression coefficients that differed significantly from 

zero, 95% confidence limits were calculated. The confidence lim- 

its for (square root of) stress were 0.0091 to 0.0223, and those 

for (log of) physical health were 0.8686 to 1.2113. 

The three IUs in combination contributed another -15 in 

shared variability. Altogether, 38% (37% adjusted) of the vari- 

ability in visits to health professionals was predicted by knowing 

scores on these three IVs. The size and direction of the relation- 

ships suggest that more visits to health professiorals are made 

among women with a large number of physical health symptoms and 

higher stress. Between those two, however, number of physical 

health symptoms is much more important, as indicated by the 

squared semipartial correlations. 

Although the bivariate correlation between (log of) visits to 

health professionals and mental health was statistically different 

from zero using a post hoc correction, r = .36, F(3, 461) = 22.16, p 

< .01, mental health did not contribute significantly to regression. 

Apparently, the relationship between the number of visits to health 

professionals and mental health is mediated by the relationships 

between physical health, stress, and visits to health professionals. 
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5.7.3 Sequential Regression 

The second example ~nvolves the same three IVs entered one at a time in an order determined by the 
researcher. LPHYHEAL is the first IV to enter, followed by SSTRESS and then MENHEAL. The 
main research question is whether information regarding differences in mental health can be used to 
predict visits to health professionals after differences in physical health and in acute stress are statis- 
tically eliminated. In other words, do people go to health professionals for more numerous mental 
health symptoms if they have physical health and stress similar to other people? 

Table 5.18 shows syntax and selected portions of the output for sequential analysis using the 
SPSS REGRESSION program. Notice that a complete regression solution is provided at the end of 

TABLE 5.18 Syntax and Selected Output for SPSS Sequential Regression 

REGRESSION 
/MISSING LISTWISE 
ISTATISTICS COEFF OUTS CI R ANOVA CHANGE 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT ltimedrs 
/METHOD=ENTER lphyheal /METHOD=ENTER sstress /METHOD=ENTER menheal. 

Regression 
Variables ~ntered/Removed~ 

aAll requested variables entered. 
bDependent Variable: ltimedrs 

Model 

1 
2 
3 

Model Summary 

Variables 
Entered 

lphyheala 

apredictors: (Constant), lphyheal 
bpredictors: (Constant), Iphyheal, sstress 
CPredictors: (Constant), Iphyheal, sstress, Mental health symptoms 

Variables 
Removed 

. 

Method 

Enter 
sstressa . 
Mental . 
health 
symptomsa 

Adjusted 
R Square 

.342 

.374 

.373 

Std. Error 
of the 

Estimate 

.3369 

.3286 

.3289 

Model 

1 
2 
3 

Enter 
Enter 

R 

.614b 

.614C 

Change Statistics 

R Square 

,343 
,377 
.377 

Sig. F 
Change 

.OOO 
,000 
.669 

R Square 
Change 

.343 

.033 

.OOO 

F Change 

241.826 
24.772 

.I83 

dfl 

1 
1 
1 

df2 

463 
462 
461 

I 



TABLE 5.18 Continued 

mental health symptoms 
dDependent Variable: ltimedrs 

Coefficientsa 

Model 

1 Regression 
Residual 
Total 

2 Regression 
Residual 
Total 

3 Regression 
Residual 
Total 

.r 

w 
aDependent Variable: ltimedrs cn 

I 

F 

241.826 

139.507 

92.901 

Sig. 

.OOOa 

.OOOb 

.OOOC 

Sum of Squares 

27.452 
52.559 
80.010 

30.1 26 
49.884 
80.010 

30.146 
49.864 
80.010 

t 

-.456 
15.551 

-2.785 
13.546 
4.977 

-2.661 
11.928 
4.671 

.428 

Standardized 
Coefficients 

Beta 

586 

525 
1 93 

516 
.I88 
.019 

Model 

1 (Constant) 
lphyheal 

- 
2 (Contstant) 

lphyheal 
sstress 

3 (Constant) 
lphyheal 
sstress 
Mental health symptoms 

df 

1 
463 
464 

2 
462 
464 

3 
461 
464 

Mean Square 

27.452 
.I14 

15.063 
,108 

10.049 
.I08 

Sig. 

.648 

.OOO 

.006 

.OOO 

.OOO 

.008 

.OOO 

.OOO 

.669 

Unstandardized 
Coefficients 

B 

-2.4 
1.180 

-.I60 
1.057 
1.61 

-.I55 
1.040 
1.57 
1.88 

95% Conf~dence 
Interval for B 

Std. Error 

.052 

.076 

.057 

.078 

.003 

.058 

.087 

.003 

.004 

Lower Bound 

-.I25 
1.031 

-.272 
.9d3 
.010 

-.270 
,869 
.OU9 

-.Od7 

Upper Bound 

,078 
1 329 
- 

- 047 
1.210 

022 
-. -- 

-.041 
1211 
.0%2 
,011 
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TABLE 5.18 Continued 

Excluded VariablesC 

apredictors in the Model: (Constant), lphyheal 
bpredictors in the Model: (Constant), Iphyheal, sstress 
CDependent Variable: ltimedrs 

Model 

1 sstress 
Mental health symptoms 

2 Mental health symptoms 

each step. The significance of the bivariate relationship between LTIMEDRS and LPHYHEAL is 
assessed at the end of step 1,  F ( 1, 463) = 241.83, p < .OO 1. The bivariate correlation is .59, account- 
ing for 34% of the variance. After step 2, with both LPHYHEAL and SSTRESS in the equa- 
tion, F (2, 462) = 139.5 l ,  p < .01, R = .61, and R~ = .38. With the addition of MENHEAL, 
F (3; 46 1) = 92.90, R = .6 1, and R2 = .38. Increments in R2 at each step are read directly from the R 

2 - 2 Square Change column of the Model Summary table. Thus, srLpHYHEAL - .34, srSsTREss = .03, 
and s r i E N H E A L  = .00. 

By using procedures of Section 5.6.2.3, significance of the addition of SSTRESS to the equa- 
tion is ind~cated in the output at the second step (Model 2, where SSTRESS entered) as F for 
SSTRESS in the segment labeled Change Statistics. Because the F value of 24.772 exceeds criti- 
cal F with 1 and 46 1 df (df,,, at the end of anaiysis), SSTRESS is making a significant contribution 
to the equation at this step. 

Similarly, sign~ficance of the addition of MENHEAL to the equation is indicated for Model 3, 
where the F for MENHEAL is .183. Because this F value does not exceed critical F with 1 and 
46 1 df, MENHEAL is not significantly improving R2 at its point of entry. 

The significance levels of the squared semipartial correlations are also available in the Model 
Summary table as F Change, with probability value Sig F Change for evaluating the significance 
of the added IV. 

Thus, there is no significant increase in prediction of LTIMEDRS by addition of MENHEAL 
to the equation if differences in LPHYHEAL and SSTRESS are already accounted for. Apparently, 
the answer is "no" to the question: Do people with numerous mental health symptoms go to health 
professionals more often if they have physical health and stress similar to others? A summary of 
information from this output appears in Table 5.19. 

Table 5.20 is a checklist of items to consider in sequential regression. An example of a Results 
section in journal format appears next. 

Beta In 

193" 
.075a 

.01 gb 

t 

4.977 
1.721 

.428 

Sig. 

.OOO 

.086 

,669 

Partial 
Correlation 

.226 

.080 

.020 

Collinearity 
Statistics 

Tolerance . 
.900 
.739 

.684 
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TABLE 5.19 Sequential Regression of Health and Stress Variables on Number 
of Visits to Health Professionals 

Visits to Dr. Physical Stress Mental srZ 
Variables (log) DV Health (log) (sq. root) Health B SE B P (incretnental) 

Physical health 
(log? .59 1.04 1.04"" 0.52 .34** 

Stress (sq. root) . .36 .32 0.02 0.016** 0.19 .03** 
Mental health .36 .5 1 .38 0.00 0.002 0.02 .OO 

Intercept -0.16 -0.155 

0.74 0.65 13.40 6.12 
Means 
Standard 0.42 0.21 4.97 4.19 R2 = .38" 

deviation Adjusted R2 = .37 
R = .61** 

"95% confidence from .30 to .44. 

*p < .05. 

**p < .01. 

TABLE 5.20 Checklist for Sequential Regression Analysis 

1. Issues 

a. Ratio of cases to IVs and missing data 

b. Normality, linearity, and homoscedasticity of residuals 

c. Outliers 

d. Multicoiiineariiy and singu!arity 

e. Outliers in the solution 

2. Major analyses 

a. Multiple R2, and its confidence limits, F ratio 

b. Adjusted R*, proportion of variance accounted for 

c. Squared semipartial correlations 

d. Significance of regression coefficients 

e. Incremental F 

3. Additional analyses 

a. Unstandardized (B) weights, confidence limits 

b. Standardized (/?) weights 

c. Prediction equation from stepwise analysis 

d. Post hoc significance of correlations 

e. Suppressor variables 

f. Cross-validation (stepwise) 
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Results 

Sequential regression was employed to determine if addition 

of information regarding stress and then mental health symptoms 

improved prediction of visits to health professionals beyond that 

afforded by differences in physical health. Analysis was per- 

formed using SPSS FG3GRESSION and SPSS EXPLORE f or evaluation of 

assumptions. 

These results led to transformation of the variables to 

reduce skewness, reduce the number of outliers, and improve the 

normality, linearity, and homoscedasticity of residuals. A square 

root transformation was used on the measure of stress. Logarithmic 

transformations were used on the numuer of visits to health pro- 

fessionals and physical health. One IV, mental health, was posi- 

tively skewed without transformation and negatively skewed with 

it; it was not transformed. With the use of a p < .001 criterion 

for Mahalanobis distance, no outliers among the cases were identi- 

fied. No cases had missing data and no suppressor variables were 

found, N = 465. 

Table 5.19 displays the correlations between the variables, 

the unstandardized regression coefficients (B) and intercept, the 

standardized regression coefficients ( P ) ,  the semipartial corre- 
lations (sri2), and R, $, and adjusted R~ after entry of all 

three IVs. R was significantly different from zero at the end of 

each step. After step 3, with all IVs in the equation, = .38 

with 95% confidence limits from .30 to .44, F(3, 461) = 92.90, p < 

.01. The adjusted $ value of - 3 7  indicates that more than a third 

of the variability in visits to health professionals is predicted 

by number of physical health symptoms and stress. 
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After step 1, with log of physical health in the equation, 

= .34, Fix (1, 461) = 241.83, p < .001. After step 2, with square 

root of stress added to prediction of (log of) visits to health pro- 

f essionals by (log of) physical health, $ = .38, 

Fix  (1, 461) = 24.77, p < .01. Addition of square root of stress to 

the equation with physical health results in a significant increment. 

in g. After step 3, with mental health added to prediction of vis- 

its by (log of) physical health and square root of stress, R~ = .38 

(adjusted # = .37), Fbc (1, 461) = 0.18. Addition of mental health 

to the equation did not reliably improve R ~ .  This pattern of results 

suggests that over a third of the variability in number of visits to 

health professionals is predicted by number of physical health symp- 

toms. Level of stress contributes modestly to that prediction; num- 

ber of mental health syrrp?toms adds no further prediction. 

5.7.4 Example of Standard Multiple Regression 
with Missing Values Multiply Imputed 

-4 number of cases were randomly deleted from the SASUSER.REGRESS file after transformations 
to create a new file, SASUSER.REGRESSM1, with a fair amount of missing data. Table 5.21 shows 
the first 15 cases of the data set. There are no missing data on the DV, LTIMEDRS. 

Multiple imputation through SAS is a three-step procedure. 

I .  Run PROC MI to create the multiply-imputation data set, with m imputations (subsets) in 
which missing values are imputed from a distribution of missing values. 

2. Run the analysis for each of the imputations (e.g., PROC REG) on the file with m subsets and 
save parameter estimates (regression coefficients) in a second file. 

3. Run PROC MIANALYZE to combine the results of the m analyses into a single set of para- 
meter estimates. 

Table 5.22 shows SAS MI syntax and selected output to create 5 imputations (the default m) 
and save the resulting data set in  SASUSER.ANCOUTM1. The DV is not included in the var list; 
including LTIMEDRS could artificially inflate prediction by letting the DV influence the imputed 
values. Instead, only cases with nonmissing data on the DV are included in the data set. 

The output first shows the missing data patterns, of which there are seven. The first, and most 
common pattern, is complete data with 284 cases (6 1.08% of the 465 cases). The second most com- 
mon pattern is one in whlch MENHEAL is missing, with 69 cases (14.84%). and so on. The table 
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TABLE 5.21 Partial View of SASUSEK.KEGRESSR.11 with hIissing Data 

also shows means on each of the unmissing variables for each pattern. For example, the mean for 
MENHEAL when both SSTRESS and LPHYHEAL are missing is 10, as opposed to the mean for 
MENHEAL when data are complete (6.05). 

The table labeled EM (Posterior Mode) Estimates shows the means and covariances (cf. 
Section 1.6.3) for the first step of multiple imputation, formation of the EM covariance matrix (Sec- 
tion 4.1.3.2). The next table, Multiple lmputation Variance Information, shows the partition of 
total variance for thc vziables with missing data into variance between imputations and variance 
within imputations. That is, how much do the predictors individually vary, on average, within each 
imputed data subset and how much do their means vary among the five imputed data subsets. The 
Relative increase in Variance is a measure of increased uncertainty due to missing data. Notice 
that the variable with the most missing data, MENHEAL, has the greatest relative increase in vari- 
ance. Relative efficiency is related to power; greater relative efficiency is associated with a smaller 
standard error for testing a parameter estimate. Again, the fewer the missing data, the greater the rel- 
ative efficiency. Choice of m also affects relative efficiency.13 Finally, the Multiple Imputation 
Parameter Estimates are the average, minimum, and maximum values for means of the variables 
with missing data averaged over the 5 imputed data sets. The t for HO: is uninteresting, testing 
whether the mean differs from zero. Thus, the mean for MENHEAL varies from 5.95 to 6.16 over 
the five data subsets, with an average of 6.05 with 95% confidence limits from 5.63 to 6.48. 

13Relative efficiency of a parameter estimate depends on m and the amount of missing data. Rubin (1987) provides the fol- 
lowing equation for relative efficiency: 

where 7 is the rate of rnissing data. For example, with m = 5 and 10% of data missing. relattve efficiency is 98% 



TABLE 5.22 Syntax and Selected SAS MI Output to Create Multiply-Imputed Data Set 

p r o c  m i  d a t a = S A S U S E R . R E G R E S S M I  s e e d = 4 5 7 9 2  
o u t = S A S U S E R . R E G O U T M I ;  v a r  L P H Y H E A L  M E N H E A L  S S T R E S S ;  

r u n :  

M i s s i n g  D a t a  P a t t e r n s  

--------- G r o u p  Means---------  

G r o u p  LPHYHEAL MENHEAL SSTRESS F r e q  P e r c e n t  LPHYHEAL MENHEAL SSTRESS 

1  X X X 284 61.08 0 .647020 6 .049296  13.454842 
2  X X 26 5 .59  0.630585 4.884615 . 
3  X X 69 14 .84  0 .646678 . 12.948310 
4  X 12 2.58 0.774916 . 
5 .  X X 56 12 .04  . 6.375000 13.820692 
6 .  X 4  0 .86  . 10 .000000  . 
7 .  X 14  3.01 . 14.053803 

EM ( P o s t e r i o r  Mode)  E s t i m a t e s  

- TYPE- - NAME- LPHYHEAL MENHEAL SSTRESS 
MEAN 0.652349 6 .079942 13 .451916  
COV LPHYHEAL 0.041785 0.441157 0 .310229  
COV MENHEAL 0.441157 17.314557 7 .770443  
COV SSTRESS 0.31 0229 7 .770443 24.269465 

M u l t i p l e  I m p u t a t i o n  V a r i a n c e  I n f o r m a t i o n  
----------------- Variance---------------- 

V a r i a b l e  B e t w e e n  W i t h i n  T o t a l  D F 

LPHYHEAL 0.000006673 0 .000092988 0.0001 01 254.93 
MENHEAL 0.0071 31 0 .037496 0 .046054 88 .567  
SSTRESS 0.002474 0 .052313 0.055281 332 .44  

M u l t i p l e  I m p u t a t i o n  V a r i a n c e  I n f o r m a t i o n  

V a r i a b l e  R e l a t i v e  I n c r e a s e  F r a c t i o n  M i s s i n g  R e l a t i v e  

LPHYHEAL i n  V a r i a n c e  I n f o r m a t i o n  E f f i c i e n c y  

MENHEAL 0.086119 0.082171 0 .983832  
SSTRESS 0.228232 0.199523 0.961 6 2 7  

0.056744 0.055058 0 .989108  

V a r i a b l e  

LPHYHEAL 

MENHEAL 

SSTRESS 

M u l t i p l e  I m p u t a t i o n  P a r a m e t e r  E s t i m a t e s  

Mean S t d  E r r o r  95% C o n f i d e n c e  L i m i t s  D  F 

0.651101 0 .01 0050 0 .63131 0 . 6 7 0 8 9  254.93 
6 .054922 0 .214601 5 .62849 6 . 4 8 1 3 6  88.567 

13.423400 0.235120 12.96089 13 .88591  332.44 

M u l t i p l e  I m p u t a t i o n  P a r a m e t e r  E s t i m a t e s  

t f o r  HO: 

V a r i a b l e  M i n i m u m  Maximum Mu0 Mean=MuO P r  > I t 1  
LPt1YHEAL 0.646559 0 .652602 0  64 .79  <. 0001 

MENHEAL 5.953237 6.160381 0  28.21 <. 0001 

SSTRESS 13 .380532  13.502912 0  57 .09  <. 0001 
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Table 5 .21 \hob\!.; a portion ofthe inipi~ted data set, with the irnputat~on v~u- able r i to i) as \veil 
as missing values tilled in. The latter portion of imputation 1 is shown. along with the first 15 caszs 

of imp~~tation 7. 
The next step is to run SAS REG on the 5 imputations. This is done by including the  by 

- Imputation-- instruction in the syntax, as seen in Table 5.24. The results of the analyses in terms of 
parameter estimates (regression coefficients, B) and variance-covariance matrices are sent to the out- 
put file: REGOUT. . 

All of the imputations show similar results, with F values ranging from 62.55 to 72.39 (all 
p < .0001), but these are considerably smaller than the F = 92.90 of the full-data standard multiple 
regression analysis of Section 5.7.2. Adjusted R~ ranges from .28 to .32, as compared with .37 with 
the full data reported in Table 5.16. 

TABLE 5.23 Partial View of SASUSER.REGOUTM1 with 
Imputation Variable and Missing Data Imputed 



TABLE 5.24 SAS REG Syntax and Selected Output for Multiple Regression on All Five Imputations 

p r o c  r e g  data=SASUSER.REGOUTMI o u t e s t = R E G O U T  c o v o u t ;  
m o d e l  LTIMEDRS = LPHYHEAL MENHEAL SSTRESS; 
b y - I m p u t a t i o n - ;  

run;  

.......................... I m p u t a t i o n  N u m b e r = l - - - - - - - - - - - - - - - - - - - - - - - - - -  

T h e  REG P r o c e d u r e  

M o d e l :  MODEL 1  

D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d  

N u m b e r  o f  O b s e r v a t i o n s  U s e d  

S o u r c e  D  F 

Mode L 3 

E r r o r  461 

C o r r e c t e d  T o t a l  4 6 4 

A n a l y s i s  o f  V a r i a n c e  

Sum o f  Mean 

S q u a r e s  S q u a r e  F V a l u e  P r  > F 

25 -62241 8.54080 72.39 <.0001 

54.38776 0.11798 

80.01017 

R o o t  MSE 0.34348 R - S q u a r e  0.3203 

D e p e n d e n t  Mean 0.74129 A d j  R-Sq 0.3158 

C o e f f  V a r  46.33561 

P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  L a b e l  DF E s t i m a t e  E r r o r  t V a L u e  P r  > I t1  
I n t e r c e p t  I n t e r c e p t  1 -0.10954 0.06239 -1.76 0.0798 

LPHYHEAL LPHYHEAL 1 0 . 9 1 1 1 7  3.09324 9.77 <.0001 

MENHEAL MENHEAL 1 0.00275 0.00467 0.59 0.5566 

SSTRESS SSTRESS 1 0.01800 0.00361 4.98 < . 000 1 
.......................... I m p u t a t i o n  Number=2- - - - - - - - - - - - - - - - - - - - - - - - - -  

T h e  REG P r o c e d u r e  

M o d e l  : MODEL1 

D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d  

N u m b e r  o f  O b s e r v a t i o n s  U s e d  

A n a l y s i s  o f  V a r i a n c e  

Sum o f  Mean 

S o u r c e  D  F S q u a r e s  S q u a r e  F V a l u e  P r  > F  

Mode L 3 23.14719 7.71 573 62.55 <.0001 

E r r o r  461 56.86297 0.12335 

C o r r e c t e d  T o t a l  464 80.01017 
i ~ ~ o r ~ r i n u e d )  
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T..\BLE 5.24 Continued 

R o o t  MSE 0.35121 R - S q u a r e  0.2593 
D e p e n d e n t  Mean 0.74129 A d j  R-Sq 0.2847 
C o e f  f V a r  47.37826 

P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  L  a.b e  1 D  F E s t i m a t e  E r r o r  t V a l u e  P r  > I t 1  
I n t e r c e p t  I n t e r c e p t  1 -0.03392 0.06067 -0.56 0.5764 
LPHYHEAL LPHY HEAL 1 0.79920 0.09270 8.62 <. 0001 
MENHEAL MENHEAL 1 0.00259 0.00481 0.54 0.5902 
SSTRESS SSTRESS 1 0.01770 0.00358 4.94 <. 0001 

.......................... I m p u t a t i o n  Number=3--------------------------  

T h e  REG P r o c e d u r e  

M o d e l :  MODEL 1 
D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d  

N u m b e r  o f  O b s e r v a t i o n s  U s e d  

A n a l y s i s  o f  V a r i a n c e  

S o u r c e  DF Sum o f  S q u a r e s  Mean S q u a r e  F V a l u e  P r  > F 

Mode 1  3 24.2261 6 8.07539 66.74 <.0001 
E r r o r  461 55.78401 0.12101 
C o r r e c t e d  T o t a l  464 80.01 01 7 

R o o t  MSE 0.34786 R - S q u a r e  0.3028 
D e p e n d e n t  Mean 0.74129 A d j  R-Sq 0.2983 
C o e f f  V a r  46.92661 

P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  L a b e l  D  F E s t i m a t e  E r r o r  t V a l u e  P r  > I t 1  
I n t e r c e p t  I n t e r c e p t  1 -0.09996 0.06381 -1.57 0.1179 
LPHYHEAL LPHYHEAL 1 0.86373 0.09238 9.35 <. 0001 
MENHEAL MENHEAL 1 0.00255 0.00464 0.55 0.5826 
SSTRESS S  S  T  R E  S S  1 0.01954 0.00354 5 . 5 1  <. 0001 

.......................... I m p u t a t i o n  Number=4-- - - - - - - - - - - - - - - - - - - - - - - - -  

T h e  REG P r o c e d u r e  

M o d e l :  MODEL 1 

D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d  

N u m b e r  o f  O b s e r v a t i o n s  U s e d  
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TABLE 5.24 Continued 

A n a l y s i s  o f  V a r i a n c e  

S o u r c e  DF Sum o f  S q u a r e s  M e a n  S q u a r e  F  V a l u e  P r  > F 

M o d e l  3 24.27240 8.09080 66.92 <.0001 

E r r o r  4 6 1 55.73777 0.12091 

C o r r e c t e d  T o ' t a l  464 80.01017 

, R o o t  MSE 0.34772 R - S q u a r e  0.3034 

D e p e n d e n t  M e a n  0.74129 A d j  R-Sq 0.2988 

C o e f f  V a r  46.90716 

P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  La.be 1  DF E s t i m a t e  E r r o r  t V a l u e  P r  > I t l  
I n t e r c e p t  I n t e r c e p t  1 -0.07371 0.06260 -1 .I8 0.2396 

LPHYHEAL LPHYHEAL 1 0.87685 0.091 94 9.54 <. 0001 

MENHEAL MENHEAL 1 0.001 38 0.00475 0.29 0.7725 

SSTRESS SSTRESS 1 0.01790 0.00362 4.95 <.0001 

.......................... I m p u t a t i o n  Number=5-- - - - - - - - - - - - - - - - - - - - - - - - -  

T h e  REG P r o c e d u r e  

Mode 1: MODEL1 

D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d :  

N u m b e r  o f  O b s e r v a t i o n s  U s e d :  

A n a l y s i s  o f  V a r i a n c e  

S o u r c e  DF Sum o f  S q u a r e s  Wean S q u a r e  F V a l u e  P r  > F  

Mode 1  3 25.12355 8.37452 70.34 <.  0001 

E r r o r  461 54 -88662 0.11906 

C o r r e c t e d  T o t a l  464 80.01017 

R o o t  MSE 0.34505 R - S q u a r e  0.31 40 

D e p e n d e n t  M e a n  0.74129 A d j  R-Sq 0.3095 

C o e f f  V a r  46.54763 

P a r a m e t e r  E s t i m a t e s  

V a r i a b l e  L a b e l  DF P a r a m e t e r  S t a n d a r d  t V a l u e  P r  > I t1 
I n t e r c e p t  I n t e r c e p t  1 E s t i m a t e  E r r o r  -1.42 0.1569 

LPHYHEAL LPHYHEAL 1 -0.08577 0.06050 9.72 <. 0001 

MENHEAL MENHEAL I 0.88661 0.09123 -0.18 0.8605 

SSTRESS SSTRESS 1 -0.00083306 0.00474 5.37 < . 000 I 
0.01 879 0.00350 
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Table 5.25 shows syntax and output for cornbinins the r e u l t s  of the tiw imputations through 
SAS MIANALYZE. Data from the five imputations are ~ ~ c e d .  Variables are the ones for which Para- 
meter Estimates were sent to the REGOUT data set. 

TABLE 5.25 SAS MIANALYZE Syntax and Output for Combining Parameter Estimates from the 
Results of Five 1tIultiple Regression Analyses 

p r o c  m i a n a l y z e  d a t a = R E G O U T :  
v a r  I n t e r c e p t  LPHYHEAL MENHEAL SSTRESS 

r 'u  n  ; 

T h e  MIANALYZE P r o c e d u r e  

M o d e l  I n f o r m a t i o n  

D a t a  S e t  WORK.REGOUT 

.Number  o f  I m p u t a t i o n s  5  

M u l t i p l e  I m p u t a t i o n  V a r i a n c e  I n f o r m a t i o n  

--------------- V a r i a n c e - - - - - - - - - - - - - - -  

P a r a m e t e r  B e t w e e n  W i t h i n  T o t a l  D F 

I n t e r c e p t  0 . 0 0 0 8 6 6  0 . 0 0 3 8 4 5  0 . 0 0 4 8 8 4  8 8 . 2 8 8  
LPHYHEAL 0 . 0 0 1  7 6 0  0 . 0 0 8 5 2 0  0 . 0 1 0 6 3 1  1 0 1  - 3 7  
MENHEAL 0 . 0 0 0 0 0 2 2 8 6  0 . 0 0 0 0 2 2 3 0 9  0 . 0 0 0 0 2 5 0 5 2  3 3 3 . 6 5  
SSTRESS 0 . 0 0 0 0 0 0 5 8 9  0 . 0 0 0 0 1 2 7 5 6  0 . 0 0 0 0 1 3 4 6 2  1 4 5 3 . 4  

M u l t i p l e  I m p u t a t i o n  V a r i a n c e  I n f o r m a t i o n  

R e l a t i v e  F r a c t i o n  

I n c r e a s e  i n  M i s s i n g  R e l a t i v e  

P a r a m e t e r  V a r i a n c e  I n f o r m a t i o n  E f f i c i e n c y  

I n t e r c e p t  

LPHYHEAL 

MENHEAL 

SSTRESS 

M u l t i p l e  I m p u t a t i o n  P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  E s t i m a t e  S t d  E r r o r  9 5 %  C o n f i d e n c e  L i m i t s  D  F 

I n t e r c e p t  - 0 . 0 8 0 5 8 2  0 . 0 6 9 8 8 8  - 0 . 2 1  9 4 6  0 . 0 5 8 3 0 0  8 8 . 2 8 8  
LPHYHEAL 0 . 8 6 7 5 1  1  0 . 1 0 3 1 0 8  0 . 6 6 2 9 8  1 . 0 7 2 0 4 2  1 0 1  - 3 7  
MENHEAL 0 . 0 0 1  6 8 7  0 . 0 0 5 0 0 5  - 0 . 0 0 8 1  6  0 . 0 1  1 5 3 3  3 3 3 . 6 5  
SSTRESS 0 . 0 1  8 3 8 4  0 . 0 0 3 6 6 9  0 . 0 1 1 1 9  0 . 0 2 5 5 8 1  1 4 5 3 . 4  

M u l t i p l e  I m p u t a t i o n  P a r a m e t e r  E s t i m a t e s  

t f o r  H O :  

P a r a m e t e r  M i n i m u m  M a x i m u m  T h e t a 0  P a r a m e t e r = T h e t a O  P r  > ( t l  

I n t e r c e p t  - 0 . 1 0 9 5 4 5  - 0 . 0 3 3 9 2 2  0  
LPHYHEAL 0 . 7 9 9 1  9 5  0 . 9 1 1 1 6 9  0  
MENHEAL - 0 . 0 0 0 8 3 3  0 . 0 0 2 7 5 0  0  
SSTRESS 0 . 0 1  7 6 9 7  0 . 0 1 9 5 3 9  0  
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Parameter estlinates d~tfer  from tho\? of the standard rnultiple regression of Sect~on 5.7.2 but 
conclusionc do not. Again, only LPHYHEAL and SSTRESS contribute to predict~on of LTIhIEDRS. 
MENHEAL does not. Note that DF are based on the fraction of missing data and HZ: the more data miss- 
ing, the smaller the DF. If a DF value is close to 1, you need greater m because estimates are unstable. 

MIANALYZE does not provide an ANOVA table to assess the results of overall prediction or 
any form of multiple R ~ .  Instead, ranges of results are reported from the PROC REG runs of Table 
5.24. The outcome of this sample multiple imputation analysis is that some power is lost relative to 
the complete data of SASUSER.REGRESS. 

As another comparison, Table 5.26 shows the results of a standard multiple regression using 
only the 284 complete cases of SASUSER.REGRESSM1 (partially shown in Table 5.22). SAS REG 
uses listwise deletion as default, so that cases with missing data on any of the variables are deleted 
before analysis. 

TABLE 5.26 SAS REG Syntax and Output for Standard Multiple 
I Regression with Listwise Deletion of Missing Values 
i 

p r o c  r e g  d a t a = S A S U S E R . R E G R E S S M I  
m o d e l  L T I M E D R S  = L P H Y H E A L  M E N H E A L  S S T R E S S ;  

run; 

T h e  REG P r o c e d u r e  

M o d e l :  MODEL 1  
D e p e n d e n t  V a r i a b l e :  LTIMEDRS LTIMEDRS 

N u m b e r  o f  O b s e r v a t i o n s  R e a d  465  
N u m b e r  o f  O b s e r v a t i o n s  U s e d  2  8 4 
N u m b e r  o f  O b s e r v a t i o n s  w i t h  M i s s i n g  V a l u e s  1 8 1  

A n a l y s i s  o f  V a r i a n c e  

S o u r c e  

Sum o f  Mean 

D F S q u a r e s  S q u a r e  F V a l u e  P r  > F 

Mode 1  3  1 8 . 4 3 4 0 8  6 . 1 4 4 6 9  5 7 . 3 6  < .0009  
E r r o r  2 8 0  2 9 . 9 9 5 1 0  0 . 1 0 7 1 3  
C o r r e c t e d  T o t a l  2 8 3  4 8 . 4 2 9 1  8  

R o o t  MSE 0 . 3 2 7 3 0  R-Squa r e  0 . 3 8 0 6  
D e p e n d e n t  M e a n  0 . 7 8 3 5 4  A d j  R-Sq 0 . 3 7 4 0  
C o e f  f V a r  4 1 . 7 7 2 1  8  

P a r a m e t e r  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  

V a r i a b l e  L a b e  1  D  F E s t i m a t e  E r r o r  t V a l u e  P r  > I t 1  

I n t e r c e p t  I n t e r c e p t  1 -0 .0901  4  0 . 0 7 5 2 9  - 1 . 2 0  0 . 2 3 2 2  

LPHYHEAL LPHYHEAL 1 1  . 0 5 9 7 2  0 . 1 1 1 2 7  9 . 5 2  <.  0 0 0 1  
MENHEAL MENHEAL 1  0 . 0 0 3 9 8  0 . 0 0 5 5 5  0 . 7 2  0 . 4 7 4 1  
SSTRESS SSTRESS 1 0 . 0 1 2 1 9  0 . 0 0 4 3 5  2 . 8 0  0 . 0 0 5 5  



188 C H A P T E R  5 

Additional power in terms of statistical significance is loxt by deleting all caw5 h ~ t h  any ~ni\h- 
ing data. Overall F has been reduced to 57.36 (although 11 remains c. .0001) ancl there IS a larger p 
value for the test of SSTRESS. However, adjusted K' has not been reduced by this strategy, unlike 
that of multiple imputation. Also, in this case, parameter estimates appear to more closely resemble 
those of the analysis of the full data set. 

5.8 Comparison of Programs 

The popularity of multiple regression is reflected in the abundance of applicable programs. SPSS, 
SYSTAT, and SAS each have a single, highly flexible program for the various types of multiple 
regression. The packages also have programs for the more exotic forms of multiple regression, such 
as nonlinear regression, probit regression, logistic regression (cf. Chapter lo), and the like. 

Direct comparisons of programs for standard regression are summarized in Table 5.27. Addi- 
tional features for statistical and sequential regression are summarized in Table 5.28. Features 
include those that are available only through syntax. Some of these features are elaborated in Sec- 
tions 5.7.1 through 5.7.4. 

5.8.1 SPSS Package 

The distinctive feature of SPSS REGRESSION, summarized in Tables 5.27 and 5.28, is flexibility. 
SPSS REGRESSION offers four options for treatment of missing data (described in the on-disk help 
system). Data can be input raw or as correlation or covariance matrices. Data can be limited to a sub- 
set of cases, with residuals statistics and plots reported separately for selected and unselected cases. 

A special option is available so that correlation matrices are printed only when one or more of 
the correlations cannot be calculated. Also convenient is the optional printing of semipartial correla- 
tions for standard multiple regression and 95% confidence intervals for regression coefficients. 

The statistical procedure offers forward, backward, and stepwise selection of variables, with 
several user-modifiable statistical criteria for variable selection. 

A series of METHOD=ENTER subcommands are used for sequentiai regression. Each 
ENTER subcommand is evaluated in turn; the IV or IVs listed after each ENTER subcommand are 
evaluated in that order. Within a single subcommand, SPSS enters the IVs in order of decreasing tol- 
erance. If there is more than one IV in the subcommand, they are treated as a block in the Model 
Summary table where changes in the equation are evaluated. 

Extensive analysis of residuals is available. For example, a table of predicted scores and resid- 
uals can be requested and accompanied by a plot of standardized residuals against standardized pre- 
dicted values of the DV (z-scores of the Y '  values). Plots of standardized residuals against sequenced 
cases are also available. For a sequenced file, one can request a Durbin-Watson statistic, which is 
used for a test of autocorrelation between adjacent cases. In addition, you can request Mahalanobis 
distance for cases as a convenient way of evaluating outliers. This is the only program within the 
SPSS packages that offers Mahalanobis distance. A case labeling variable may be specified, so that 
subject numbers for outliers can be easily identified. Partial residual plots (partialing out all but one 
of the IVs) are available in SPSS REGRESSION. 

The flexibility of input for the SPSS REGRESSION program does not carry over into output. 
The only difference between standard and statistical or sequential regression is in the printing of each 
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TABLE 5.27 Comparison of Programs for Standard hlultiple Regression 

Feature 
SPSS S AS SYSTAT 
REGRESSION REG REGRESS 

Input 

Correlation matrix input 

Covariance matrix input 

SSCP matrix input 

Missing data options 

Regression through the origin 

Tolerance option 

Post hoc hypothesesa 

Optional error terms 

Collinearity diagnostics 

Select subset of cases 

Weighted least squares 

Multivariate multiple regression 

Setwise regression 

Ridge regression 

Identify case labeling variable 

Bayesian regression 

Resampling 

Regression output 

Analysis of variance for 
regression 

Multiple R 

R' 

Adjusted R~ 

Standard error of Y '  

Coefficient of variation 

Correlation matrix 

Significance levels of correlation 
matrix 

Sum-of-squares and cross- 
products (SSCP) matrix 

Covariance matrix 

Means and standard deviations 

Yes 

Yes 

No 

Yes 

ORIGIN 

TOLERANCE 

TEST 

No 

COLLIN 

Yes 

RECiWGT 

No 

No 

No 

RESIDUALS ID 

No 

No 

ANOVA 

R 

R Square 

Adjusted R Square 

Std. Error of the 
Estimate 

No 

Yes 

Yesa 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

NOINT 

SINGULAR 

Yes 

Yes 

COLLIN 

WEIGHT 

Yes 

MTEST 

Yes 

RIDGE 

No 

No 

No 

Analysis of 
Variance 

No 

R-square 

Adj R-sq 

Root MSE 

Coeff Var 

CORR 

No 

USSCP 

No 

Yes 

Yes 

Yes 

Yes 

No 

YesC 

Tolerance 

Yes 

No 

PRINT=MEDIUM 

WEIGHT 

WEIGHT 

No 

No 

Yes 

No 

Yes 

Yes 

Analysis of 
Variance 

Multiple R 

Squared multiple R 

Adjusted Squared 
Multiple R 

Std. error of 
estimate 

No 

No 

No 
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TABLE 5.27 Continued 

SPSS S AS S'L'STAT 
REGRESSION REG REGRESS Feature 

Regression output (continued) 

Matrix of correlation coefficients 
if some not computed Yes 

Yes 

No 

N.A. 

N. A. 

Uncorrected SS 

N.A. 

N.A. 

No 

N for each correlation coefficient 

Sum of squares for each variable 

Unstandardized regression 
coefficients 

Parameter 
Estimate Coefficient 

Standard error of regression 
coefficient Std. Error 

t (F optional) 

Standard Error 

t Value 

Std. Error 

t F o r  t test of regression coefficient 

Significance for regression 
coefficient Sig. 

(Constant) 

P 

CONSTANT Intercept (constantj 

Standardized regression 
coefficient 

Intercept 

Standardized 
Estimate 

No 

Squared Partial 
Corr Type I1 

Squared Semi- 
partial Corr Type 11 

Corr 

Yes 

Beta 

Std. Error 

Partial 

Std. Coef 

No 

No 

Approx. standard error of B 
Partial correlation 

Semipartial correlation or sr,? Part 

Bivariate correlation with DV 

Tolerance 

Variance-covariance matrix for 
unstandardized B coefficients 

Correlation matrix of B 
coefficients 

Correlation matrix for 
unstandardized B coefficients 

95% confidence interval for B 

No 

Yes 

Zero Order 

Yes 

Yes Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes (PRINT=LONG) 

Yes 
(PRINT=MEDIUMj 

Specify alternative variation for CI 
for B No 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Hypothesis matrices 

Collinearity diagnostics 

Residuals 

Predicted scores. residuals and 
standardized residuals Yes 

No 

Data tile 

Data tile 

Yes 

No Partial residuals 
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SPSS S AS SYSTAT 
Feature REGRESSION REG REGRESS 

Residuals (continued) 

95% confidence interval for 
predicted value 

Plot of standardized residuals 
against predicted scores 

Normal plot of residuals 

Durbin-Watson statistic 

Leverage diagnostics 
(e.g., Mahalanobis distance) 

Influence diagnostics 
(e.g., Cook's distance) 

Histograms 

Casewise plots 

Partial plots 

Other plots available 

Yes 

Yes 

Yes 

Mahal. Distance 

Cook's Distance 

Yes 

Yes 

Yes 

Yes 

95% CL Predict 

Yes 

No 

Yes 

Hat Diag H 

Cook's D 

No 

No 

Yes 

Yes 

Summary statistics for residuals Yes Yes 

Save predicted values/residuals Yes Yes 

Note: SAS and SYSTAT GLM can also be used for ctandard mult~ple regression. 

'Does trot use La17elere and Mulatk ( 1977) correction 

'Use Type 11 for \tandard MK. 

'Om~t CONSTANT tram MODEL. 

Yes 

No 

Yes 

Data file (Leverage) 

Data file 

No 

No 

No 

No 

No 

Yes 

step (Model) in each table, and in an extension of the model summary table available through the 
CHANGE instruction. Otherwise, the statistics and parameter estimates are identical. These values, 
however, have different meanings, depending on the type of analysis. For example, you can request 
semipartial correlations (called Part) through the ZPP statistics. But these apply only to standard 
multiple regression. As pointed out in Section 5.6.1, semipartial correlations for statistical or sequen- 
tial analysis appear in the Model Summary table (obtained through the CHANGE statistic) as R 
Square Change. 

5.8.2 SAS System 

Currently, SAS REG is the all-purpose regression program in the SAS system. In addition, GLM can 
be used for regression analysis; it is more flexible and powerful than SAS but also more difficult to 
use. 

SAS REG handles correlation, covariance, or SSCP matrix input but has no options for deal- 
ing with missing data. A case is deleted if it contains any missing values. 
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TAR1.E 5.28 Comparison of Additional Features for Stepwise and/or Sequential Regression 

SPSS SE'STAT 
REGRESSION SAS REG REGRESS Feature 

Input 

Specify stepping algorithm Yes 

FINFOUT 

Yes 

No 

Yes 

FEnterIFRemove Specify F to enter and/or remove 

Specify probability-of F to enter 
and/or remove PINPOUT 

MAXSTEPS 

SLEISLS 

MAXSTEP 

EnterIRemove 

Max step Specify maximum number of steps 

Specify maximum number of 
variables STOP 

Request selection statistics (e.g., 
AIC, Mallow's C,) SELECTION 

ENTER 

ENTER 

ENTER 

No 

Yes 

INCLUDE 

No 

GROUPNAMES 

Yes 

No 

FORCE 

No 

No 

Yes 

Force variables into equation 

Specify order of entry (hierarchy) 

IV sets for entry in single step 

Interactive processing 

Regression Output 

Analysis of variance for 
regression, each step 

Multiple R, each step 

R', each step 

Mallow's Cp, each step 

Analysis of 
Variance 

No 

R-Square 

C(p) 

ANOVA 

R 

R Square 

Mallow's Prediction 
Criterion 

Std. Error of the 
Estimate 

Adjusted R Square 

No" 

R 

R-Square 

No 

Standard error of Y', each step No" 

Adjusted R ~ ,  each step No" 

Variables in equation/Coefficients 
(each step) 

Unstandardized regression 
coefficients 

Standard error of regression 
coefficient 

95% confidence interval for B 

Parameter 
Estimate Coefficient 

Std. Error 

Yes 

Std. Error 

No 

Standardized 
Estimate 

F Value 

P r > F  

Intercept 

No 

Std. Error 

Yes 

Standard regression coefficient 
Beta 

t (F optional) 

Sig. 

(Constant) 

No 

Std. Coef 

F 

'P' 

Constant 

Tol. 

F (or T)  to remove 

p to remove 

Intercept 

Tolerance 
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TABLE 5.28 Continued 

SPSS SYSTAT 
Feature REGRESSION SAS REG REGRESS 

Variables not in equation /Excluded 
Variables (each step) 

Standardized regression 
coefficient for entering Beta In No No 

Partial correlation coefficient for 
entering Partial Correlation No Part. con: 

Tolerance Yes No Yes 

F (or T) to enter t (F optional) No F 

p to enter Sig. Yes 'P' 

Summary tabletchange Statistics 

Multiple R 

R 

Adjusted R2 

Change in R2 (squared semipartial 
correlation) 

Fi nc 

Degrees of freedom for Fine 
P for Fine 
Standard regression coefficient 

Mallow's C,, 

R 

R Square 

Adjusted R Square 

R Square Change 

F Change 

df 1, df2 

Sig. F Change 

Beta 

Mallow's Prediction 
Criterion 

No 

Model R-Square 

No 

Partial R-Square 

F Value 

Number of variables in the 
equaiion No Number Vars In No 

aAvailable by running separate standard multiple regressions for each step. 

In SAS REG, two types of semipartial correlations are available. The sr? appropriate for stan- 
dard multiple regression is the one that uses TYPE I1 (partial) sums of squares (that can also be 
printed). SAS REG also does multivariate multiple regression as a form of canonical correlation 
analysis where specific hypotheses can be tested. 

For statistical regression using SAS REG, the usual forward, backward, and stepwise criteria 
for selection are available, in addition to five others. The statistical criteria available are the proba- 
bility of I; to enter and F to remove an IV from the equation as well as maximum number of vari- 
ables. Interactive processing can be used to build sequential models. 

Several criteria are available for setwise regression. You make the choice of the best subset by 
comparing values on your chosen criterion or on R ~ ,  which is printed for all criteria. No information 
is given about individual IVs in the various subsets. 
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Sequential regression is handleti interactively. In which  an ~nitial ~nociel statement i b  tolloweJ 
by instructions to add one or more variables at each subsequent step. Full output is available at the 
end of each step, but there is no summary table. 

Tables of residuals and other diagnostics, including Cook's distance and hat diagonal (a mea- 
sure of leverage, cf. Equation 4.3), are extensive, but are saved to file rather than printed. However, 
a plotting facility within SAS REG allows extensive plotting of residuals. SAS REG also provides 
partial residual plots where all IVs except one are partialed out. Recent enhancements to SAS REG 
greatly increase plotting capabilities. 

5.8.3 SYSTAT System 

Multiple regression in SYSTAT Version 1 1 is most easily done through REGRESS, although GLM 
also may be used. Statistical regression options include forward and backward stepping. Options are 
also available to modify cw level to enter and remove, change tolerance, and force the first k variables 
into the equation. By choosing the interactive mode for stepwise regression, you can specify indi- 
vidual variables to enter the equation at each step, allowing a simple form of sequential regression. 
This is the only program reviewed that permits standard multiple regression with resampling and 
Bayesian multiple regression. 

Matrix input is accepted in SYSTAT REGRESS, but processing of output of matrices or 
descriptive statistics requires the use of other programs in the SYSTAT package. Residuals and other 
diagnostics are handled by saving values to a file, which can then be printed out or plotted through 
SYSTAT PLOT (a plot of unstandardized residuals against predicted scores is shown in the output). 
In this way, you can take a look at Cook's value or leverage, from which Mahalanobis distance can 
be computed (Equation 4.3), for each case. Or, you can find summary values for residuals and diag- 
nostics through SYSTAT STATS, the program for descriptive statistics. 
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Analysis of Covariance 

6.1 General Purpose and Description 

Analysis of covariance is an extension of analysis of variance in which main effects and interactions 
of IVs are assessed after DV scores are adjusted for differences associated with one or more covari- 
ates (CVs), variables that are measured before the DV and are correlated with it.' The major ques- 
tion for ANCOVA (analysis of covariance) is essentially the same as for ANOVA: Are mean 
differences among groups on the adjusted DV likely to have occurred by chance? For example, is 
there a mean difference between a treated group and a control group on a posttest (the DV) after 
posttest scores are adjusted for differences in pretest scores (the CV)? 

Analysis of covariance is used for three major purposes. The first purpose is to increase the 
sensitivity of the test of main effects and interactions by reducing the error term; the error term is 
adjusted for, and hopefully reduced by, the relationship between the DV and the CV(s). The second 
purpose is to adjust the means on the DV themselves to what they would be if all subjects scored 
equally on the CV(s). The third use of ANCOVA occurs in MANOVA (Chapter 7) where the 
researcher assesses one DV after adjustment for other DVs that are treated as CVs. 

The first use of ANCOVA is the most cornmcn. Ir, an experimental settingj ANCOVA increases 
the power of an F test for a main effect or interaction by removing predictable variance associated 
with CV(s) from the error term. That is, CVs are used to assess the "noise" where "noise" is unde- 
sirable variance in the DV (e.g., individual differences) that is estimated by scores on CVs (e.g., 
pretests). Use of ANCOVA in experiments is discussed by Tabachnick and Fidell(2007). 

An experimental ANCOVA strategy was taken by Copeland, Blow, and Barry (2003), who 
used repeated-measures ANCOVA to investigate the effect of a brief intervention program to reduce 
at-risk drinking on health-care utilization among veterans. Covariates were age, racelethnicity, liv- 
ing alone and educational, as well as pre-intervention utilization. Effects of intervention were exam- 
ined 9 and 18 months after intervention. Veterans were randomly assigned to be presented with either 
a General Health Advice booklet or a Brief Alcohol Intervention booklet. Thus, this was a 2 X 2 
between-within-subjects ANCOVA with two levels of the between-subjects IV, intervention, and two 

'Str~ctly speaking, ANCOVA, like multiple regression. is not a multivariate technique because it involves a single DV. For the 
purposes of this book, however, it is convenient to consider it along w ~ t h  multivariate analyses. 
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levels of the w~thin-subjects IV. tlme of assessment. The intervention booklet was found to increase 
utilization of outpatient care services in the short term, but there was no noticeable effect on long 
term utilization of inpatientJoutpatient services. 

The second use of ANCOVA commonly occurs in nonexperimental situations when subjects 
cannot be randomly assigned to treatments. ANCOVA is used as a statistical matching procedure, 
although interpretation is fraught with difficulty, as discussed in Section 6.3.1. ANCOVA is used pri- 
marily to adjust goup  means to what they would be if all subjects scored identically on the CV(s). 
Differences between subjects on CVs are removed so that, presumably, the only differences that 
.remain are related lo the effects of the grouping IV(s). (Differences could also, of course, be due to 
attributes that have not been used as CVs.) 

This second application of ANCOVA is primarily for descriptive model building: the CV 
enhances prediction of the DV, but there is no implication of causality. If the research question to be 
answered involves causality, ANCOVA is no substitute for running an experiment. 

As an example, suppose we are looking at regional differences in political attitudes where the 
DV is some measure of liberalism-conservatism. Regions of the United States form the IV, say, 
Northeast, South, Midwest, and West. Two variables that are expected to vary with political attitude 
and with geographical region are socioeconomic status and age. These two variables serve as CVs. 
The statistical analysis tests the null hypothesis that political attitudes do not differ with geographi- 
cal region after adjusting for socioeconomic status and age. However, if age and socioeconomic dif- 
ferences are inextricably tied to geography, adjustment for them is not realistic. And, of course, there 
is no implication that political attitudes are caused in any way by geographic region. Further, unreli- 
ability in measurement of the CV and the DV-CV relationship may lead to over- or underadjustment 
of scores and means and, therefore, to misleading results. These issues are discussed in greater detail 
throughout the chapter. 

This nonexperimental ANCOVA strategy was taken by Brambilla et al. (2003), who looked at 
differences in amygdala volumes between 24 adults diagnosed with bipolar disorder and 36 healthy 
controls.' Volumetric measures of amygdala and other structures were performed blindly, with semi- 
automated software. Covariates were age, gender and intracranial volume. The researchers found 
significantly larger left amygdala volumes for bipolar patients compared with controls, but no sig- 
nificant differences between the two groups in the other temporal lobe structures. 

Serum cholesterol concentrations were examined in violent and nonviolent female suicide 
attempters by Vevera, iukor, Morcinek, and Papeieovi (2003). Their sample consisted of three 
groups of women admitted to a psychiatric department in a retrospective case-control design: 19 
women with a history of violent suicide attempts, 51 with a history of nonviolent attempts, and 70 
nonsuicidal "controls" matched by psychiatric diagnosis and actual age. Scheffi-adjusted post-hoc 
tests found significantly lower cholesterol levels in violent-suicide attempters than nonviolent 
attempters or nonsuicidal women. No significant difference was found between the latter two groups. 

In the third major application of ANCOVA, discussed more fully in Chapter 7, ANCOVA is 
used to interpret IV differences when several DVs are used in MANOVA. After a multivariate analy- 
sis of variance, it is frequently desirable to assess the contribution of the various DVs to significant 
differences among IVs. One way to do this is to test DVs, in turn, with the effects of other DVs 

?we cringe at this common but m~sleading use of .'control" We prefer using "comparison" group here and reserving the term 
control for those randomly assigned to a control group. 
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removed. Removal of the effects of other DV\ 14 acconipl~\hed by treating them as CV\ In a proctt 
dure called a stepdoccn arlcll\sls. 

The statistical operations are identical in all three major appllcat~ons ot ANCOVA. As in 
ANOVA, variance in scores is partitioned into variance due to differences between groups and variance 
due to differences within groups. Squared differences between scores and various means are summed 
(see Chapter 3) and these sums of squares, when divided by appropriate degrees of freedom, provide 
estimates of variance attributable to different sources (main effects of IVs, interactions between IVs, 
and error). Ratios of variances then provide tests of hypotheses about the effects of IVs on the DV. 

However, in ANCOVA, the regression of one or more CVs on the DV is estimated first. Then 
DV scores and means are adjusted to remove the linear effects of the CV(s) before analysis of vari- 
ance is performed on these adjusted values. 

Lee (1975) presents an intuitively appealing illustration of the manner in which ANCOVA 
reduces error variance in a one-way between-subjects design with three levels of the IV (Figure 6.1). 
Note that the vertical axis on the right-hand side of the figure illustrates scores and group means in 
ANOVA. The error term is computed from the sum of squared deviations of DV scores around their 
associated group means. In this case, the error term is substantial because there is considerable 
spread in scores within each group. 

0 2 4 6 8 10 12 14 16 18 20 
Covariate (X) 

ma ,  oa, .a, 

ATreatment means A Adjusted means 

FIGURE 6.1 Plot of hypothetical data. The 
straight lines with common slope are those that 

best fit the data for the three treatments. The data 
points are also plotted along the single vertical line 
on the right as they would be analyzed in ANOVA. 

Source: From Experimental Design and Analysis by Wayne 
Lee. Copyright 0 1975 by W.H. Freeman and Company. 
Used with permission. 
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When the \ame ,core\ are analyzed ~n ANCOVA. a regre45ion 11ne 1s found tir\t that relates the 
DV to the CV. The error term is based on the (sum of squared) deb~dtions of the DV \core\ from the 
regression line runnlng through each group mean Instead of from the means themselves. Consider 
the score in the lower left-hand corner of Figure 6.1. The score is near the regression line (a small 
deviation for error in ANCOVA) but far from the mean for its own group (a large deviation for error 
in ANOVA). '4s long as the slope of the regression lines is not zero, ANCOVA produces a smaller 
sum of squares for error than ANOVA. If the slope is zero, error sum of squares is the same as in 
ANOVA but error mean square is larger because CVs use up degrees of freedom. 

CVs can be used in all ANOVA designs-factorial between-subjects, within-subjects, mixed 
within-between, nonorthogonal, and so on. Analyses of these more complex designs are readily 
available in only a few programs, however. Similarly, specific comparisons and trend analysis of 
adjusted means are possible in ANCOVA but not always readily available through the programs. 

6.2 Kinds of Research Questions 

As with ANOVA, the question in ANCOVA is whether mean differences in the DV between groups 
are larger than expected by chance. In ANCOVA, however, one gets a more precise look at the IV- 
DV relationship after removal of the effect of CV(s). 

6.2.1 Main Effects of IVs 

Holding all else constant, are changes in behavior associated with different levels of an IV larger than 
expected through random fluctuations occurring by chance? For example, is test anxiety affected by 
treatment, after holding constant prior individual differences in test anxiety? Does political attitude 
vary with geographical region, after holding constant differences in socioeconomic status and age? 
The procedures described in Section 6.4 answer this question by testing the null hypothesis that the 
IV has no systematic effect on the DV. 

With more than one IV, separate statistical tests are available for each one. Suppose there is a 
second IV in the political attitude example, for example, religious affiliation, with four groups: 
Protestant, Catholic, Jewish, and none-or-other. In addition to the test of geographic region, there is 
also a test of differences in attitudes associated with religious affiliation after adjustment for differ- 
ences in socioeconomic status and age. 

6.2.2 Interactions among IVs 

Holding all else constant, does change in behavior over levels of one IV depend on levels of another 
IV? That is, do IVs interact in their effect on behavior? (See Chapter 3 for a discussion of inter- 
action.) For the political attitude example where religious affiliation is added as a second IV, are dif- 
ferences in attitudes over geographic region the same for all religions, after adjusting for 
socioeconomic status and age? -. 

Tests of interactions, while interpreted differently from main effects, are statistically similar, 
as demonstrated in Section 6.6. With more than two TVs, numerous interactions are generated. 
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Except for common error terms. each ~nteraction ia te4teci separately troni other interaction\ arid 
from main effect>. All testa art: independent when sample sizes in  all groups are equal and the design 
is balanced. 

6.2.3 Specific Comparisons and Trend Analysis 

When statistically significant effects are found in a design with more than two levels of a single IV, 
it is often desirable to pinpoint the nature of the differences. Which groups differ significantly from 
each other? Or, is there a simple trend over sequential levels of an IV? For the test anxiety example, 
we ask whether (1) the two treatment groups are more effective in reducing test anxiety than the 
waiting-list control, after adjusting for individual differences in test anxiety; and if (2) among the two 
treatment groups, desensitization is more effective than relaxation training in reducing test anxiety, 
again after adjusting for preexisting differences in test anxiety? 

i 
I These two questions could be asked in planned comparisons instead of asking, through routine 

ANCOVA, the omnibus question of whether means are the same for all three levels of the IV. Or, with 
I 

some loss in sensitivity, these two questions could be asked post hoc after finding a main effect of the 
IV in ANCOVA. Planned and post hoc comparisons are discussed in Section 6.5.4.3. 

6.2.4 Effects of Covariates 

Analysis of covariance is based on a linear regression (Chapter 5) between CV(s) and the DV, but 
there is no guarantee that the regression is statistically significant. The regression can be evaluated 
statistically by testing the CV(s) as a source of variance in DV scores, as discussed in Section 6.5.2. 
For instance, consider the test anxiety example where the CV is a pretest and the DV a posttest. To 
what extent is it possible to predict posttest anxiety from pretest anxiety, ignoring effects of differ- 
ential treatment? 

6.2.5 Effect Size 

If a main effect or interaction of IVs is reliably associated with changes in the DV, the next logical 
question is: How much? How much of the variance in the adjusted DV scores-adjusted for [he 
CV(s)--is associated with the IV(s)? In the ieai anxiely exarrlple, if a iiiaiil effect is fourid between 
the means for desensitization, relaxation training, and control group, one then asks: What proportion 
of variance in the adjusted test anxiety scores is attributed to the IV? Effect sizes and their confidence 
intervals are demonstrated in Sections 6.4.2,6.5.4.4, and 6.6.2. I. 

6.2.6 Parameter Estimates 

If any main effects or interactions are statistically significant, what are the estimated population 
parameters (adjusted mean and standard deviation or confidence interval) for each level of the IV or 
combination of levels of the IVs? How do group scores differ, on the average, on the DV, after adjust- 
ment for CVs? For the test anxiety example, if there is a main effect of treatment, what is the aver- 
age adjusted posttest anxiety score in each of the three groups? The reporting of parameter estimates 
is demonstrated In Sectron 6.6. 
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6.3 Limitations to Analysis of Covariance 

6.3.1 Theoretical Issues 

As with ANOVA, the statistical test in no way assures that changes in the DV were caused by the IV. 
The inference of causality is a logical rather than a statistical problem that depends on the manner in' 
which subjects are ,assigned to levels of the IV(s), manipulation of levels of the IV(s) by the 
researcher, and the controls used in the research. The statistical test is available to test hypotheses 
from both nonexperimental and experimental research, but only in the latter case is attribution of 
causality justified. 

Choice of CVs is a logical exercise as well. As a general rule, one wants a very small number 
of CVs, all correlated with the DV and none correlated with each other. The goal is to obtain maxi- 
mum adjustment of the DV with minimum loss of degrees of freedom for error. Calculation of the 
regression of the DV on the CV(s) results in the loss of one degree of freedom for error for each CV. 
Thus the gain in poweryrom decreased sum of squares for error may be offset by the loss in degrees 
of freedom. When there is a substantial correlation between the DV and a CV, increased sensitivity 
due to reduced error variance offsets the loss of a degree of freedom for error. With multiple CVs, 
however, a point of diminishing returns is quickly reached, especially if the CVs correlate with one 
another (see Section 6.5.1). 

In experimental work, a frequent caution is that the CVs must be independent of treatment. It 
is suggested that data on CVs be gathered before treatment is administered. Violation of this precept 
results in removal of some portion of the effect of the IV on the DV-that portion of the effect that 
is associated with the CV. In this situation, adjusted group means may be closer together than unad- 
justed means. Further, the adjusted means may be difficult to interpret. 

In nonexperimental work, adjustment for prior differences in means associated with CVs is 
appropriate. If the adjustment reduces mean differences on the DV, so be it-unadjusted differences 
reflect unwanted influences (other than the IV) on the DV. In other words, mean differences on a CV 
associated with an IV are quite legitimately corrected for as long as the CV differences are not 
caused by the IV (Overall & Woodward, 1977). 

When ANCOVA is used to evaluate a series of DVs after MANOVA, independence of the 
"CVs" and the IV is not required. Because CVs are actually DVs, it is expected that they be depen- 
dent on the IV. 

In all uses ofANCOVA, however, adjusted means must be interpreted with great caution because 
the adjusted mean DV score may not correspond to any situation in the real world. Adjusted means are 
the means that would have occurred if all subjects had the same scores on the CVs. Especially in non- 
experimental work, such a situation may be so unrealistic as to make the adjusted values meaningless. 

Sources of bias in ANCOVA are many and subtle and can produce either under- or overadjust- 
ment of the DV. At best, the nonexperimental use of ANCOVA allows you to look at IV-DV rela- 
tionships (noncausal) adjusted for the effects of CVs, as measured. If causal inference regarding 
effects is desired, there is no substitute for random assignment of subjects. Don't expect ANCOVA 
to permit causal inference of treatment effects with nonrandomly assigned groups. If random assign- 
ment is absolutely impossible, or if it breaks down because of nonrandom loss of subjects, be sure to 
thoroughly ground yourself in the literature regarding use of ANCOVA in such cases, starting with 
Cook and Campbell ( 1  979). 

Limitations to generalizability apply to ANCOVA as they do to ANOVA or any other statisti- 
cal test. One can generalize only to those populations from which a random sample is taken. 
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ANCOVA may. in some litnited sense. somettines adjust for a failure to randomly ashipn the <ample 
to groups. but i t  does not affect the relationship between the sample and the population to which otlc: 

can generalize. 

6.3.2 Practical Issues 

The ANCOVA model assumes reliability of CVs, linearity between pairs of CVs and between CVs 
and the DV, and homogeneity of regression, in addition to the usual ANOVA assumptions of nor- 
mality and homogeneity of variance. 

6.3.2.1 Unequal Sample Sizes, Missing Data, and Ratio of Cases to IVs 

If scores on the DV are missing in a between-subjects ANCOVA, this is reflected as the problem of 
unequal n because.al1 IV levels or combinations of IV levels do not contain equal numbers of cases. 
Consult Section 6.5.4.2 for strategies for dealing with unequal sample sizes. If some subjects are 
missing scores on CV(s), or if, in within-subjects ANCOVA, some DV scores are missing for some 
subjects, this is more clearly a missing-data problem. Consult Chapter 4 for methods of dealing with 
missing data. 

Sample sizes in each cell must be sufficient to ensure adequate power. Indeed, the point of 
including covariates in an analysis often is to increase power. There are many software programs 
available to calculate required sample sizes depending on desired power and anticipated means and 
standard deviations in an ANOVA. Try a "statistical power" search on the Web to find some of them. 
These are easily applied to ANCOVA by substituting anticipated adjusted means or expected differ- 
ences between adjusted means. 

6.3.2.2 Absence of Outliers 

Within each group, univariate outliers can occur in the DV or aiiy one of the CVs. Mu!tiv~iate out- 
liers can occur in the space of the DV and CV(s). Multivariate outliers among DV and CV!s) can pro- 
duce heterogeneity of regression (Section 6.3.2.7), leading to rejection of ANCOVA or at least 
unreasonable adjustment of the DV. If the CVs are serving as a convenience in most analyses, rejec- 
tion of ANCOVA because there are muitivariate outliers is hardiy convenient. 

Consult Chapter 4 for methods dealing with univariate outliers in the DV or CV(s) and multi- 
variate outliers among the DV and CV(s). Tests for univariate and multivariate outliers within each 
group are demonstrated in Section 6.6.1. 

6.3.2.3 Absence of Multicollinearity and Singularity 

If there are multiple CVs, they should not be highly correlated with each other. Highly correlated 
CVs should be eliminated, both because they add no adjustment to the DV over that of other CVs and 
because of potential computational difficulties if they are singular or multicollinear. Most programs 
for ANCOVA automatically guard against statistical multicollinearity or singularity of CVs, how- 
ever logical problems with redundancy among CVs occur far short of that criterion. For purposes of 
ANCOVA, uny CV with n syuuretl m~ilriple correlation ( S M C )  in e,rce.r.y of . j O  mczy he considered 
red~in~lunt clntl delrte~i frornfurther uncllysis. Calculation of SMCs among CVs is demonstrated in 
Section 6.6.1.5. 
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6.3.2.4 iVormnality of Sampling L)istriblctions 

As in all ANOVA, i t  is as~ulned that the sampling distribution!, ut' means. as described i n  Chapter 3. 
are normal within each group. Note that it is the sampling distributions of means and not the raw 
scores within each cell that need to be normally distributed. Without knowledge of population val- 
ues, or production of actuaI sampling distributions of means, there is no way to test this assumption. 
However, the central limit theorem suggests that, with large samples, sampling distributions are nor- 
mal even if raw scores are not. With relatively equal sample sizes irz groups, no outliers, and two- 
tailed tests, robustness is expected with 20 degrees of freedom for error: (See Chapter 3 for 
calculation of error degrees of freedom.) 

Larger samples are necessary for one-tailed tests. With small, unequal samples or with outliers 
present, it may be necessary to consider data transformation (cf. Chapter 4). 

6.3.2.5 Homogeneity of Variance 

It is assumed in ANCOVA that the variance of DV scores within each cell of the design is a separate 
estimate of the same population variance. In ANCOVA the covariances are also evaluated for homo- 
geneity of variance. If a CV fails the test, either a more stringent test of main effects and interactions 
is required (e.g., a = .025 instead of .05) or the CV is dropped from the analysis. Section 4.1.5.3 pro- 
vides guidelines and formal tests for evaluating homogeneity of variance, and remedies for violation 
of the assumption. 

6.3.2.6 Linearity 

The ANCOVA model is based on the assumption that the relationship between each CV and the DV 
and the relationships among pairs of CVs are linear. As with multiple regression (Chapter S ) ,  viola- 
tion of this assumption reduces the power of the statistical test; errors in statistical decision making 
are in a conservative direction. Error terms are not reduced as fully as they might be, optimum match- 
ing of groups is not achieved, and group means are incompletel) adjusted. Section 3.5.1.2 discusses 
methods for assessing iinearity. 

Where curvilinearity is indicated, it may be corrected by transforming some of the CVs. Or, 
because of the difficulties in interpreting transformed variables, you may consider eliminating a CV 
that produces nonlinearity. Or a higher-order power of the CV can be used to produce an alternative 
CV that incorporates nonlinear influences. 

6.3.2.7 Homogeneity of Regression 

Adjustment of scores in ANCOVA is made on the basis of an average within-cell regression coeffi- 
cient. The assumption is that the slope of the regression between the DV and the CV(s) within each 
cell is an estimate of the same population regression coefficient, that is, that the slopes are equal for 
all cells. 

Heterogeneity of regression implies that there is a different DV-CV(s) slope in some cells of 
the design, or, that there is an interaction between IV(s) and CV(s). If IV(s) and CV(s) interact, the 
relationship between the CV(s) and the DV is different at different levels of the IV(s), and the CV 
adjustment that is needed for various cells is different. Figure 6.2 illustrates, for three groups, perfect 
homogeneity of regression (equality of $lopes) and extreme heterogeneity of regression (inequality 
of slopes). 
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I I 

Covariate ( X )  Covariate ( X )  

(a) ~omogeneity of regression (slopes) (b) Heterogeneity of regression (slopes) 

FIGURE 6.2 DV-CV regression lines for three groups plotted on the same 
coordinates for conditions of (a) homogeneity and (b) heterogeneity of regression. 

I fa between-s~ibjects design is wed,  test the assumption of homogeneity of regression accord- 
ing to procedures described in Section 6.5.3. Ifany other design is used, and interaction between IVs 
and CVs is suspected, ANCOVA is inappropriate. If there is no reason to suspect an IV-CV interac- 
tion with complex designs, it is probably safe to proceed with ANCOVA on the basis of the robust- 
ness of the model. Alternatives to ANCOVA are discussed in Section 6.5.5. 

6.3.2.8 Reliability of Covariates 

It is assumed in ANCOVA that CVs are measured without error; that they are perfectly reliable. In 
the case of such variables as sex and age, the assumption can usually be justified. With self-report of 
demographic variables, and with variables measured psychometrically, such assumptions are not so 
easily made. And variables such as attitude may be reliable at the point of measurement, but fluctu- 
ate over short periods. 

In experimental research. unreliable CVs lead to loss of power and a conservative statistical 
test through iifideradjustment of the errnr term. In nonexperimental applications, however, unreliable 
CVs can lead to either under- or overadjustment of the means. Group means may be either spread too 
far apart (Type I error) or compressed too closely together (Type I1 error). The degree of error 
depends on how unreliable the CVs are. i n  nonexperimenrni research, limit CL's to those that can be 
iizeilsni-ed relic~lilj: (r,, > .8). 

If fallible CVs are absolutely unavoidable, they can be adjusted for unreliability. However, 
there is no one procedure that produces appropriate adjustment under all conditions nor is there even 
agreement about which procedure is most appropriate for which application. Because of this dis- 
agreement, and because procedures for correction require use of sophisticated programs, they are not 
covered in this book. The interested reader is referred to Cohen et al. (2003) or to procedures dis- 
cussed by St. Pierre (1 978). 

6.4 Fundamental Equations for Analysis 
of Covariance 

In the simplest application of analysis of covariance there is a DV score, a grouping variable ( IV) ,  
and a CV score for each subject. An example of such a small hypothetical data set is in Table 6.1. The 





The total sum of squared differences between scores on Y (the DV) and the grand mean 
(GWI) is partitioned into two components: sum of squared differences between group 
means (7) and the grand mean (i.e.. systematic or between-groups variability); and sum 
of squared difierences between individual scores (qj)  and their respective group means 
(i.e., error). 

In ANCOVA, there are two additional partitions. First, the differences between CV scores and 
their GM are partitioned into between- and within-groups sums of squares: 

The total sum of squared differences on the CV (X) is partitioned into differences 
between groups and differences within groups. 

Similarly, the covariance (the linear relationship between the DV and the CV) is partitioned into 
sums of products associated with covariance between groups and sums of products associated with 
covariance within groups. 

- 
A sum of squares involves taking deviations of scores from means (e.g., X ,  - Xj or Y - y ) ,  

J J 
squaring them, and then summing the squares over all subjects; a sum of products involves taking 
two deviations from the same subject (e.g., both Xii - Xj and yj - q), multiplying them together 
(instead of squaring), and then summing the products over all subjects (Section 1.6.4). As discussed 
in Chapter 3, the means that are used to produce the deviations are different for the different sources 
of variance in the research design. 

The partitions for the CV (Equation 6.2) and the partitions for the association between the CV 
and DV (Equation 6.3) are used to adjust the sums of squares for the DV according to the following 
equations: 

ss;, = SS,, - 
r (spb, + SP,,)~ ( s P , ~ , ) ~ ~  

ksbg6, + SS,,, - G I  
The adjusted between-groups sum of squares (SS;,?) is found by subtracting from the 
unadjusted between-groups sum of squares a term based on sums of squares associated 
with the CV, X, and sums of products for the linear relationship between the DV and the 
C v. 

(SP, 1' ss;, = SS,, - -- 

s s w ,  (,x) 

The adjusted within-groups sum of squares (SS:,,~) is found by subtracting from the 
unadjusted within-groups sum of squares a term based on within-groups sums of squares 
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and products associated with the C V  .~nd with the linear relationship between the DV 
and the CV. 

This can be expressed in an alternate form. The adjustment for each score consists of subtracting 
from the deviation of that score from the grand mean a value that is based on the deviation of the cor- 
responding CV from the grand mean on the CV, weighted by the regression coefficient for predict- 
ing the DV from the CV. Symbolically, for an individual score: 

(Y - Y ') = ( Y  - GM,) - By, ,  (X - GM,c) (6.6) 

The adjustment for any subject's score (Y - Y ' )  is obtained by subtracting from the 
unadjusted deviation score ( Y  - GM?,) the individual's deviation on the CV (X - GM,,) 
weighted by the regression coefficient, B ,  , . 

Once adjusted sums of squares are found, mean squares are found as usual by dividing by 
appropriate degrees of freedom. The only difference in degrees of freedom between ANOVA and 
ANCOVA is that in ANCOVA the error degrees of freedom are reduced by one for each CV because 
a degree of freedom is used up in estimating each regression coefficient. 

For computational convenience, raw score equations rather than deviation equations are 
provided in Table 6.2 for Equations 6.4 and 6.5. Note that these equations apply only to equal-n 
designs. 

When applied to the data in Table 6.1. the six sums of squares and products are as follows: 

SS,,, = (100)" (98)? + (10.5)~ + (92)' + (99)' + (108)' + (95)' + (80)' + (82)' 





These values are conveniently summarired in :I .;urn-of-squares and cross-products rnatriu ( c f  

Chapter 1 ) .  For the between-groups \uins of squares ~lnd cross-products, 

The first entry (first' row and first column) is the sum of squares for the CV and the last (second row, 
second column) is the sum of squares for the DV; the sum of products is shown in the off-diagonal 
portion of the matrix. For the within-groups sums of squares and cross-products, arranged similarly, 

From these values, theadjusted sums of squares are found as per Equations 6.4 and 6.5. 

6.4.2 Significance Test and Effect Size 

These values are entered into a source table such as Table 6.3, Degrees of freedom for between- 
groups variance are k - 1, and for within-groups variance N  - k - c. ( N  = total sample size, k = 

number of levels of the IV, and c = number of CVs.) 
As usual, mean squares are found by dividing sums of squares by appropriate degrees of free- 

dom. The hypothesis that there are no differences among groups is tested by the F ratio formed by 
dividing the adjusted mean square between groups by the adjusted mean square within groups. 

From a standard F table, we find that the obta i~ed  F of 6.13 exceeds the critical F of 5.73 at 
a = .05 with 2 and 5 df. We therefore reject the null hypothesis of no change in WRAT reading scores 
associated with the three treatment levels, after adjustment for pretest reading scores. 

TABLE 6.3 Analysis of Covariance for Data of Table 6.1 

Source of Variance Adjusted SS df MS F 

Between groups 366.202 2 183.101 6.13* 

Within groups 149.439 5 29.888 
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TABLE 6.4 Analysis of Variance for Data of Table 6.1 

Source of Variance SS d f MS F 

Between groups 432.889 2 216.444 4.52 
Within groups 287.333 6 47.889 

The effect size then is assessed using q2. 

For the sample data, 

We conclude that 71% of the variance in the adjusted DV scores (WRAT-R) is associated with treatment. 
Confidence intervals around q2, a form of R ~ ,  are available through the Smithson (2003) SPSS or 
SAS files. Section 6.6.2 demonstrates use of the Smithson's SAS program for finding effect sizes and 
their confidence limits. Section 7.6.2 demonstrates use of Smithson's SPSS program for finding 
effect sizes and their confidence limits. Using NoncF3.sps, the 95% confidence interval for partial q2 
ranges from 0 to .83. 

ANOVA for the same data appears in Table 6.4. Compare the results with those of ANCOVA 
in Table 6.3. ANOVA produces larger sums of squares, especially for the error term. There is also one 
more degree of freedom for error because there is no CV. However, in ANOVA the null hypothesis is 
retained while in ANCOVA it is rejected. Thus, use of the CV has reduced the "noise" in the error 
term for this example. 

ANCOVA extends to factorial and within-subjects designs (Section 6.5.4. l),  unequal n (Sec- 
tion 6.5.4.2), and multiple CVs (Section 6.5.2). In all cases, the analysis is done on adjusted, rather 
than raw, DV scores. 

6.4.3 Computer Analyses of Small-Sample Example 

Tables 6.5 and 6.6 demonstrate analyses of covariance of this small data set using SPSS GLM and 
SAS GLM. Minimal output is requested for each of the programs, although much more is available 
upon request. 

In SPSS GLM UNIANOVA (General Factorial in the menu), the DV (POST) is specified in 
the ANOVA paragraph followed BY the IV (TREATMNT) WITH the CV (PRE) as seen in Table 
6.5. Some default syntax generated by the menu system (but not necessary for analysis) is not shown 
here. 

The output is an ANOVA source table with some extraneous sources of variation. The only 
sources of interest are PRE, TREATMNT, and Error ( s / A ) .  Sums of squares for PRE and 
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TABLE 6.5 Syntax and Selected SPSS GLhI Output for Analysis of Covariance 
on Sample Data in T'dble 6.1 

UNIANOVA 
POST BY TREATMNT WITH PRE 
/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
/DESIGN = PRE TREATMNT 

Univariate Analysis of Variance 

Tests of Between-Subjects Effects 

Dependent Variable: POST 

aR Squared = .793 (Adjusted R Squared = ,668) 

TREATMNT are adjusted for each other when Type Ill Sums of Squares (the default in GLM) are 
used. The Error sum of squares also is adjusted (compare with Table 6.3). The Corrected Total is 
inappropriate for calculating Y12; instead form an adjusted total by summing the adjusted SS for 
TREATMNT and Error (Eq. 6.7). The R Squared and Adjusted R Squared shown here are not 
measures of effect size for treatment. 

SAS GLM requires the IV to be specified in the c 1 a s s instruction. Then a mode 1 instruc- 
tion is set up, with the DV on the left side of the equation, and the IV and CV on the right side as seen 
in Table 6.6. Two source tables are provided, one for the problem as a regression and the other for the 
problem as a more standard ANOVA, both with the same E r r o r term. 

The first test in the regression table asks if there is significant prediction of the DV by the com- 
bination of the IV and the CV. The output resembles that of standard multiple regression (Chapter 5) 
and includes R - S q u a r e  (also inappropriate), the unadjusted M e  a n on P 0 S T  (the DV), the R o o t 
MS E (square root of the error mean square), and C o e  f f V a r the coeficient of variation ( 100 times 
the Roo t M S E divided by the mean of the DV). 

In the ANOVA-like table, two forms of tests are given by default, labeled T y p e  I S S and 
T y  p e  I I I S S. The sums of squares for T  R E A T M N T  are the same in both forms because both 
adjust treatment for the CV. In T y p e  I I I S S the sum of squares for the CV (P R E)  is adjusted 

Source 

Corrected Model 
Intercept 
PRE 
TREATMNT 
Error 
Total 
Corrected Total 

Type Ill 
Sum of 

Squares 

570.784" 
29.103 

137.895 
366.201 
149.439 

82707.000 
720.222 

df 

3 
1 
1 
2 
5 
9 
8 

Mean 
Square 

190.261 
29.1 03 

137.895 
183.101 
29.888 

F 

6.366 
.974 

4.614 
6.126 

Sig. 

.037 

.369 

.084 

.045 



TABLE 6.6 Syntax and SAS CLhI Output for Analysis of Covariance 
on Sample Data in Table 6.1 

p r o c  g l m  data=SASUSER.SS-ANCOV; 
c l a s s  TREATMNT; 
m o d e l  POST = PRE TREATMNT 

run ;  

G e n e r a l  L i n e a r  M o d e l s  P r o c e d u r e  
C l a s s  L e v e l  I n f o r m a t i o n  

C l a s s  L e v e l s  V a l u e s  

TREATMNT 3 1 2 3  

Number o f  O b s e r v a t i o n s  Read 9 
Number o f  O b s e r v a t i o n s  Used  9 

D e p e n d e n t  V a r i a b l e :  POST 

S o u r c e  
Sum o f  Mean 

D F S q u a r e s  S q u a r e  F V a l u e  P r  > F 

Mode 1  3 570 .7835036 190 .261  1679  6 . 3 7  0 .0369  
E r r o r  5 149.43871 87 29 .8877437 
C o r r e c t e d  T o t a l  8 720 .2222222  

R-Square C o e f f  Var  Roo t  MSE POST Mean 

0 .79251  0 5 .727906 5 .466968 95 .444444  

S o u r c e  

PRE 
TREATMNT 

D F Type  I SS Mean S q u a r e  F V a l u e  P r  > F 

S o ~ r c e  D F  Type  111 SS Mean Squa re  F V a l u e  P r  > F 

PRE 1 137.89461 47 137 .89461 47 4 . 6 1  0 .0845 
TREATMNT 2 366.201 2282 183 .10061 41 6 . 1 3  0 .0452  

for treatment, but the sum of squares for the CV is not adjusted for the effect of treatment in T y p e  
I S S .  

6.5 Some Important Issues 

6.5.1 Choosing Covariates 

One wants to use an optimal set of CVs if several are available. When too many CVs are used and 
they are correlated with each other, a point of diminishing returns in adjustment of the DV is quickly 
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reached. Po%er is reduced because numerou\ correlated CV\ subtract degrees ot treedom from the 
error term while not removlng commensurate sums of square4 for srror Prel~m~nary analys~s of the 
CVs improves chances of p~cking a good set. 

Statistically, the goal is to identify a small set of CVs that are uncorrelated with each other but 
correlated with the Dl'. Conceptually, one wants to select CVs that adjust the DV for predictable but 
uilwanted sources of variability. It may be possible to pick the CVs on theoretical grounds or on the 
basis of knowledge of the literature regarding important sources of variability that should be 
controlled. 

If theory is unavailable or the literature is insufficiently developed to provide a guide to impor- 
tant sources of variability in the DV, statistical considerations assist the selection of CVs. One strat- 
egy is to look at correlations among CVs and select one from among each of those groups of potential 
CVs that are substantially correlated with each other, perhaps by choosing the one with the highest 
correlation with the DV. Alternatively, stepwise regression may be used to pick an optimal set. 

If N is large and power is not a problem, it may still be worthwhile to find a small set of CVs 
for the sake of parsimony. Useless CVs are identified in the first ANCOVA run. Then further runs are 
made, each time eliminating CVs, until a small set of useful CVs is found. The analysis with the 
smallest set of CVs is reported, but mention is made in the Results section of the discarded CV(s) and 
the fact that the pattern of results did not change when they were eliminated. 

6.5.2 Evaluation of Covariates 

CVs in ANCOVA can themselves be interpreted as predictors of the DV. From a sequential regres- 
sion perspective (Chapter 5), each CV is a high-priority, continuous IV with remaining IVs (main 
effects and interactions) evaluated after the relationship between the CV and the DV is removed. 

Significance tests for CVs assess their utility in adjusting the DV. If a CV is significant, it pro- 
vides adjustment of the DV scores. For the example in Table 6.5, the CV, PRE, does not provide sig- 
nificant adjustment to the DV, POST, with F(1, 5) = 4.61, p > .05. PRE is interpreted in the same 
way as any IV in multiple regression (Chapter 5). 

With multiple CVs, all CVs enter the multiple regression equation at once and, as a set, are 
treated as a standard multiple regression (Section 5.5.1). Within the set of CVs, the significance cf 
each CV is assessed as if it entered the equation last; only the unique relationship between the CV 
and the DV is tested for significance after overlapping variability with other CVs, in their relation- 
ship with the DV, is removed. Therefore, although a CV may be significantly correlated with the DV 
when considered individually, it may add no significant adjustment to the DV when considered last. 
When interpreting the utility of a CV, it is necessary to consider correlations among CVs, correla- 
tions between each CV and the DV, and significance levels for each CV as reported in ANCOVA 
source tables. Evaluation of CVs is demonstrated in Section 6.6. 

Unstandardized regression coefficients, provided by most canned computer programs on 
request, have the same meaning as regression coefficients described in Chapter 5. However, with 
unequal n, interpretation of the coefficients depends on the method used for adjustment. When 
Method 1 (standard multiple regression-see Table 6.10 and Section 6.5.4.2) is used, the signifi- 
cance of the regression coefficients for CVs is assessed as if the CV entered the regression equation 
after all main effects and interactions. With other methods, however, CVs enter the equation first, or 
after main effects but before interactions. The coefficients are evaluated at whatever point the CVs 
enter the equation. 



6.5.3 Test for Homogeneity of Regression 

The assumption of homogeneity of regression is that the slopes of the regression of the DV on the 
CV(s) (the regression coefficients or B weights as described in Chapter 5) are the same for all cells 
of a design. Both homogeneity and heterogeneity of regression are illustrated in Figure 6.2. Because 
the average of the slopes for all cells is used to adjust the DV, it is assumed that the slopes do not dif- 
fer significant1y.either from one another or from a single estimate of the population value. If the null 
hypothesis of equality among slopes is rejected, the analysis of covariance is inappropriate and an 
alternative strakgy as described in Sections 6.3.2.7 and 6.5.5 should be used. 

Hand calculation of the test of homogeneity of regression (see, for instance, Keppel & Wick- 
ens, 2004, or Tabachnick and Fidell, 2007) is extremely tedious. The most straightforward program 
for testing homogeneity of regression is SPSS MANOVA (available only in syntax mode.) 

Special language is provided for the test in SPSS MANOVA, as shown in Table 6.7. The inclu- 
sion of the IV by CV interaction (PRE BY TREATMNT) as the last effect in the DESIGN instruc- 
tion, after the CV and the IV, provides the test for homogeneity of regression. Placing this effect last 
and requesting METHOD=SEQUENTIAL ensures that the test for the interaction is adjusted for the 
CV and the IV. The ANALYSIS instruction identifies POST as the DV. The test for PRE BY 
TREATMNT shows that there is no violation of homogeneity of regression: p = .967. 

Programs based on the general linear model (SPSS and SAS GLM) test for homogeneity of 
regression by evaluating the CV(s) by IV(s) interaction (e.g., PRE by TREATMNT) as the last effect 
entering a model (Chapter 5). 

6.5.4 Design Complexity 

Extension of ANCOVA to factorial between-subjects designs is straightforward as long as sample 
sizes within cells are equal. Partitioning of sources of variance follows ANOVA (cf. Chapter 3) with 

TABLE 6.7 SPSS MANOVA Syntax and Selected Output for Homogeneity of Regression 

MANOVA 
POST BY TREATMNT(1,3) WITH PRE 
/PRINT=SIGNIF(BRIEF) 
/ANALYSIS = POST 
/METHOD=SEQUENTIAL 
/DESIGN PRE TREATMNT PRE BY TREATMNT. 

Manova 

Tests of Significance for POST using SEQUENTIAL Sums of Squares 
Source of Variation SS DF MS F Sig of F 

WITHIN+RESIDUAL 1 4 6 . 1 5  3 4 8 . 7 2  
PRE 204.58 1 204 .58  4 .20  .I33 
TREATMNT 366.20 2  1 8 3 . 1 0  3 .76  . I 5 2  
PRE BY TREATMNT 3 . 2 9  2 1 . 6 4  . 0 3  - 9 6 7  
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"subjects nested within cells" as the simple error term. Sums of squares are a(justed for the average 
association between the CV and the DV in each cell. just as they are for the one-way design demon- 
strated in Section 6.4. 

There are, however, two major design complexities that arise: within-subjects IVs, and unequal 
sample sizes in the cells of a factorial design. And, just as in ANOVA, contrasts are appropriate for a 
significant IV with more than two levels and assessment of effect size is appropriate for all effects. 

6.5.4.1 Within-Su bjects and Mixed Within-Between Designs 

Just as a DV can be measured once or repeatedly, so also a CV can be measured once or repeatedly. 
In fact, the same design may contain one or more CVs measured once and other CVs measured 
repeatedly. 

A CV that is measured only once does not provide adjustment to a within-subjects effect 
because it provides the same adjustment (equivalent to no adjustment) for each level of the effect. 
The CV does, however, adjust any between-subjects effects in the same design. Thus ANCOVA with 
one or more CVs measured once is useful in a design with both between- and within-subjects effects 
for increasing the power of the test of between-subjects IVs. Both between- and within-subjects 
effects are adjusted for CVs measured repeatedly. 

ANOVA and ANCOVA with repeated measures (within-subjects effects) are more compli- 
cated than designs with only between-subjects effects. One complication is that some programs can- 
not handle repeatedly measured CVs. A second complication is the assumption of sphericity, as 
discussed in Chapter 8 (which also discusses alternatives in the event of violation of the assumption). 
A third complication (more computational than conceptual) is development of separate error terms 
for various segments of within-subjects effects. 

6.5.4.1.1 Same Covariate(s) for all Cells 
There are two approaches to analysis of designs with at least one within-subjects IV, the tra- 

ditional approach and the general linear model approach. In the traditional approach, the within- 
subjects effects in the designs are not adjusted for CVs. In the GLM approach, the repeated measures 
are adjusted by the interaction uf the CV(s) with the within-subjects effects. SPSS MANOVA takes 
the traditional approach to ANCOVA.~ Programs labeled GLM in SAS and SPSS use the general lin- 
ear model approach. All programs provide adjusted marginal and cell means. Tabachnick and Fidell 
(2007) show examples for both these approaches. It is not clear that the GLM strategy generally 
makes much sense or enhances power in ANCOVA. There is usually no a priori reason to expect 
a different relationship between the DV and CV for different levels of the within-subjects IV(s). If no 
such relationship is present, the loss of degrees of freedom for estimating this effect could more than 
offset the reduction in sum of squares for error and result in a less powerful test of the within-subjects 
effects. When using a GLM program, you could rerun the analysis without the CV to obtain the tra- 
ditional within-subjects portion of the source table. 

6.5.4.1.2 Varying Covnriate(s) over Cells 
There are two common designs where covariates differ for cells: matched randomized blocks 

designs where cases in the cells of a within-subjects IV actually are different cases (cf. Section 

'~ovariates that do not vary over tr iai  In with~n-subjects designs are listed in parentheses after WITH (see Table 6.7). 



' 1 's.8 uo!l3as u! pelap u! passnss!p s! anss! s !y~ . p a ~ e [ o ! ~  aq ~qS!w A)! 
-3payds ley) aAa!Iaq 01 uoseal s! aJaq1 j! palueuem s! 's!sh~ew puaJl se y3ns 's!s~[eue sl3arqns-u!yl!~ 
alepeA!un e 01 aA!)vuJaqe awos ' a ~ o ~ a ~ a q ~  'AI ~13arqns-u?y]!~ aql jo slaAal OM) uayl aJow am aJaq] 
J! IueAalaJ 'dn~as s!q~ Su!sn A)!3!~aqds JOJ lsal ou s! aJayl ' J ~ A ~ M ~ H  .@sap s l~arqns-u!y~!~ e u! alqe 
- p e a  IOU A[p.?nsn 'AI ur! se 3 s v 3 JO lsal e sap!AOJd alqel a3~nos ~ T E )  svs aql 'ARM s!ql pasn 

.~ndlno l!wq 01 
palsanba~ an? (cs  s)  sa~enbs jo swns 111 a d h ~  'wJa1 Joua ay) s! uo!l3e~a)u! hq 8 5 ~ 3  ay) 'palsanba~ 
aJe suo!)3v~alu! ou asne3aa .s!sAleue s!yl ~ o j  lndlno pue dnlas ~ 7 9  svs S M O ~ " ~ ~  a1qeL 

.s!sAleue s!y) JOJ pa8uaue las q e p  1e~paq)odAy e s ~ o y s  8.9 a1qeL 
' ~ A I  sdno~2-paz!ruopue~ sle!Jl p w  sase3 yloq Su!~ap!suo3 Aq palaInurIs s! uS!sap s)3a[qns-u!ql!m 
ayL 'awl q3ea uo aJe a~o3s  A a  pue 'a~o3s ala!~e~o3 'Jaqrunu IepL 'le!~) y3ea JOJ auo 'sau!l OM) seq 
ase? y3ea 'aldurexa s!yl loti 'aug ale~edas e uo ale Ia!e y3ea JOJ SluauraJnseaur alayrn s a w  %u!mas 
-3JdaJ AI auo y l ! ~  @sap sdno~2-paz!wopuel e se dn )as s! w a ~ q o ~ d  ayl 'pea1suI ' ~ 1  s13arqns-u!y)!~ 
ayl JO 1aAal y3ea y ) ! ~  saSuey3 ley1 ale!~c~o3 e Su!.Qoads JOJ xn1uAs ~ y a d s  ou ,aAey s q g a o m  
a8XIM S S ~ S  pue sure~Sold ~ 7 9  ' J ~ A ~ M O H  ' ( ~ ' 9  a1qq aas) UO!I~IIJISU! ~ 1 1 ~  ayj ~ a y ~ a s a y l  
-uand lnoylrfi pals![ ale s1alzaI s13arqns-u!y1!~ JaAo AJEA I E ~ I  sale!JeAos 'QAONVM s s d s  UI 

.sl3ajja ~ [ e  103 JaM0d Su!suequa u! lnjasn A11e!1ua~od aJe .<ayl ' ( s j ~ 1  slsarqns 
-LI!~I!M ay1 jo sla.4al JOJ .~aj~!p salr!!~c~o3 ayl uayM ' ~ 1  s13arqns-u!q11~ aql JO IaAal q3ca JOJ aSucq3 
y s ~ q ~  'saIcIJc.403 st? s ~ a  /CI!.IOI.I~ ~aq8!y sasn slshlaul: u~opdals  t? .uo!l!ppt? u] .is),j] s13arqnc;-u!yl!~ 

jo 12231 14.7~3 jo UC)I I I : J IS ! I I ILLI~~~  01 J O I . I ~  P ~ < S ~ C ; Y V ~ . I  SI ;)1t?!.It?.\o? 341 aJ3q.n su2!sap puv ' (E 'Z 'E  



V) 
aJ r O r  V) 4 N W  
L M a r  V) In0001 
m N C O F  + r W  
3 m o o r  w - r m  
U V \ r r  +I W O N  
V) w m r  H m m o  

m b ' 0  L a 7 r  b 
't . O .  m m  o, . . .  
0  In .r > o a m m o  

m a c u  yc X m o  
E N N M  't r I- r 
3 ' t .  
V) aJ m  

0  r 
U 

U 
aJ 
+J 

0, 0 
U - L a ,  
L  a J 0 L  
3 U L L  
0  O L O  
V) E W U  



An,iIys~\  of Co\.l~.~,uncc. 2 17 

TABLE 6.9 Continued 

The GLM P r o c e d u r e  
L e a s t  S q u a r e s  Means 

T Y LSMEAN 
1 10.3575606 
2 15.0868839 

The GLM P r o c e d u r e  

L e v e l  o f  ------------y------------ ------------x------------ 
T N Mean S t d  Dev Mean S t d  Dev 

6.5.4.2 Unequal Sample Sizes 

Two problems arise in a factorial design if cells have unequal numbers of scores. First, there is ambi- 
guity regarding a marginal mean from cells with unequal n. Is the marginal mean the mean of the 
means. or is the marginal mean the mean of the scores? Second, the total sums of squares for all 
effects is greater than SS,,,,, and there is ambiguity regarding assignment of overlapping sums of 
squares to sources. The design has become nonorthogonal and tests for main effects and interactions 
are no longer independent (cf. Section 3.2.5.3). The problem generalizes directly to ANCOVA. 

If equalizing cell sizes by random deletion of cases is undesirable, there are a number of strate- 
gies for dealing with unequal n. The choice among strategies depends on the type of research. Of the 
three major methods described by Overall and Spiegel (1969), Method 1 is usually appropriate for 
experimental research, Method 2 for survey or nonexperimental research, and Method 3 for research 
in which the researcher has clear priorities for effects. 

Table 6.10 summarizes research situations calling for different methods and notes some of the 
jargon used by various sources. As Table 6.10 reveals, there are a number of ways of viewing these 
methods; the terminoiogy associated with these viewpoints by different authors is quite different 
and, sometimes. seemingly contradictory. Choice of method affects adjusted (estimated) means as 
well as significance tests of effects. 

Differences in these methods are easiest to understand from the perspective of multiple regres- 
sion (Chapter 5). Method 1 is like standard multiple regression with each main effect and interaction 
assessed after adjustment is made for all other main effects and interactions, as well as for CVs. The 
same hypotheses are tested as in the unweighted-means approach where each cell mean is given 
equal weight regardless of its sample size. Interactions are listed after their constituent main effects 
even in Method 1, because order of listing may affect parameter estimates. This is the recommended 
approach for experimental research unless there are reasons for doing otherwise. 

Reasons include a desire to give heavier weighting to some effects than others because of 
importance, or because unequal population sizes have resulted from treatments that occur naturally. 
(If a design intended to be equal-n ends up grossly unequal, the problem is not type of adjustment 
but, more seriously, differential dropout.) 

Method 2 imposes a hierarchy of testing effects where main effects are adjusted for each other 
and for CVs, while interactions are adjusted for main effects, for CVs, and for same- and lower-level 



218 C H A P T E R  6 

TABLE 6.10 Terminology for Strategies for .Adjustment for Unequal Cell Size 

Overall and 
Research Type Spiegel(1969) SPSS GLM SPSS MANOVA S AS 

I. Experiments designed to Method 1 METHOD= 
be equal-n, with random SSTY PE(3) 
dropout. All cells equally -(default) 
important. METHOD= 

SSTY PE(4)" 

2. Nonexperimental research Method 2 METHOD= 
in which sample sizes reflect SSTY PE(2) 
importance of cells. Main 
effects have equal priority.b 

3. Like number 2 above, Method 3 METHOD= 
except all effects have SSTYPE(1) 
unequai priority. 

METHOD= T Y P E  
UNIQUE- I I I and 
(default) T Y P E  

I V" 

METHOD= T Y P E  
EXPERIMENTAL I I 

METHOD= T Y P E  I 
SEQUENTIAL 

Types 111 and [V differ only if there are missing cells. 

b ~ h e  programs take different approaches to adjustment for interaction effects. 

interactions. (The SAS implementation also makes adjustments for some higher order effects.) The 
order of priority for adjustment emphasizes main effects over interactions and lower-order interac- 
tions over higher-order interactions. This is labeled METHOD=EXPERIMENTAL in SPSS MANOVA 
although it is normally used in nonexperimental work when there is a desire to weight marginal 
means by the sizes of samples in cells from which they are computed. The adjustment assigns heav- 
ier weighting to cells with larger sample sizes when computing marginal means and lower-order 
interactions. Method 3 allows the researcher to set up the sequence of adjustment of CVs, main 
effects, and interactions. 

All programs in the reviewed packages perform ANCOVA with unequal sample sizes. SAS 
GLM and SPSS MANOVA and GLM provide for design complexity and flexibility in adjustment for 
unequal n. 

Some researchers advocate use of Method I always. Because Method 1 is the most conserva- 
tive, you are unlikely to draw criticism by using it. On the other hand, you risk loss of power with a 
nonexperimental design and perhaps interpretability and generalizability by treating all cells as if 
they had equal sample sizes. 

6.5.4.3 Specific Comparisons and Trend Analysis 

If there are more than two levels of an IV, the finding of a significant main effect or interaction in 
ANOVA or ANCOVA is often insufficient for full interpretation of the effects of IV(s) on the DV. The 
omnibus F test of a main effect or interaction gives no information as to which means are signiti- 
cantly different from which other means. With a qualitative IV (whose levels differ in kind) the 
researcher generates contrast coefficients to compare some adjusted mean(s) against other adjusted 



means. With a quantitative IV (whose levels differ in amount rather than in  kind). trend coefficient5 
I are used to see if adjusted means of the DV follow a linear or quadratic pattern, say. over increabing 
I 

levels of the IV. 
As with ANOVA (Chapter 3), specific comparisons or trends can be either planned as part of 

i 
the research design, or tested post hoc as part of a data-snooping procedure after omnibus analyses 
are completed. For planned comparisons, protection against inflated Type I error is achieved by run- 
ning a small number of comparisons instead of omnibus F (where the number does not exceed the 
available degrees of freedom) and by working with an orthogonal set of coefticients. For post hoc 
comparisons, (he probability of Type I error increases with the number of possible comparisons, so 
adjustment is made for inflated a error. 

Comparisons are achieved by specifying coefficients and running analyses based on these 
coefficients. The comparisons can be simple (between two marginal or cell means with the other 
means left out) or complicated (where means for some cells or margins are pooled and contrasted 
with means for other cells or margins, or where coefficients for trend-linear, quadratic, etc.-are 
used). The difficulty of conducting comparisons depends on the complexity of the design and the 
effect to be analyzed. Comparisons are more difficult if the design has within-sub_iects IVs, either 

i alone or in combination with between-subjects IVs, where problems arise from the need to develop 
I 

a separate error term for each comparison. Comparisons are more difficult for interactions than for 
main effects because there are several approaches to comparisons for interactions. Some of these 
issues are reviewed in Section 8.5.2. 

Pairwise tests of adjusted means are also available through options in SPSS MANOVA and 
SAS GLM. In addition, SAS GLM provides several tests that incorporate post hoc adjustments, such 
as Bonferroni. 

Table 6.1 1 shows syntax and location of output for orthogonal contrasts and pairwise compar- 
isons with a request for Tukey adjustment though SPSS MANOVA and GLM, and SAS GLM. 

The orthogonal comparisons are based on coefficients for testing the linear and quadratic 
trends of TREATMNT, r e ~ p e c t i v e l ~ . ~  (Because the IV in this sample is not quantitative, trend analy- 
sis is inappropriate; trend coefficients are used here for illustration only.) Note that the first (linear) 
comparison also is a "pairwise" comparison; the first (treatment I j group is compared with the third 
(control) group. 

The printed output of all the programs assumes that orthogonal comparisons are planned. Oth- 
erwise, some adjustment needs to be made by hand for inflation of Type I error rate when post hoc 
tests are done. Equation 3.24 shows the Scheffi adjustment for a single IV. Obtained F is compared 
with an adjusted critical F produced by multiplying the tabled F value (in this case 5.79 for 2 and 
5 df, a = .05) by the degrees of freedom associated with the number of cells, or k - 1. For this exam- 
ple, the adjusted critical F value is 2(5.79) = 1 1.58, and the difference between the first treatment 
group and the control group (F = 1 1.00) fails to reach statistical significance, although it did so as a 
planned comparison. 

In designs with more than one IV, the size of the Scheffk adjustment to critical F for post hoc 
comparisons depends on the degrees of freedom for the effect being analyzed. For a two-way design, 
for example, with IVs A and B, adjusted critical F for A is tabled critical F for A multiplied by (a - 1) 
(where a is the number of levels of .4); adjusted critical F for B is tabled critical F for B multiplied 

'Coeffic~ents for orthogonal polyno~nials are available in most standard ANOVA texts wch as Tabachn~ck and Fidell (7,007). 
Keppel & Wickens (2004), or Brown et al. i 1991 ). 
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TABLE 6.11 Syntax for Orthogonal Comparisons and Pairwise Comparisons with 'kkey Adjustment 

Type of Comparison Program Syntax Section of Output Name of EtTert 

Orthogonal SPSS GLM UNIANOVA 
POST BY TREATMNT WlTH PRE 
/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
ILMATRIX "LINEAR" TREATMNT 1 0 -1 
ILMATRIX "QUADRATIC" TREATMNT 1 -2 1 
/DESIGN = PRE TREATMNT. 

SPSS MANOVA MANOVA 
POST BY TREATMNT(1,3) WlTH PRE 
/METHOD = UNIQUE 
/PARTITION (TREATMNT) 
/CONTRAST(TREATMNT)=SPECIAL(l 1 1, 

1 0 -1, 
1 -2 1) 

/ANALYSIS POST 
/DESIGN = PRE TREATMNT(1) TREATMNT(2). 

SAS GLM PROC GLM DATA=SASUSER.SS-ANCOV; 
CLASS TREATMNT; 
MODEL POST = TREATMNT PRE; 
CONTRAST 'LINEAR' TREATMNT 1 0 -1; 
CONTRAST 'QUADRATIC' TREATMNT 1 -2 1; 

run; 

Custom Contrast 
Hypothesis 
Tests: 

Test Results 

Tests of TREATMNT ( 1 ) , 
significance TREATMNT ( 2 ) 
for POST 
using UNIQUE 
sums of 
squares 

C o n t r a s t  L i n e a r ,  
q u a d r a t  i c 

Pairwise with PSS GLM Tukey adjustment not available with covariates" 
Tukey 

SPSS MANOVA Pairwise comparisons with adjustments not available. 

SAS GLM PROC GLM DATA=SASUSER.SS-ANCOV ; L e a s t  i l j  
CLASS TREATMNT; 
MODEL POST = TREATMNT PRE ; 

S q u a r e s  
M e a n s  f o r  

LSMEANS TREATMNT / ADJUST=TUKEY P ; e f f e c t  
RUN; TREATMNT 

"LSD, S~dak,  and Bonierron~ 



by ( 1 7  - 1):  adjusted critical F I'os the AB interaction is tabled critical F for the interaction multipliect 
by ( ( 1  - I)(h - I ) . "  

If appropriate programs are unavailable, hand calculations for specific comparisons (including 
pairwise comparisons) are not particularly difficult, as long as sample sizes are equal for each cell. 
Equation 3.23 is for hand calculation of comparisons; to apply it. obtain the adjusted cell or marginal 
means and the error mean square from an omnibus ANCOVA program. 

6.5.4.4 Effect Size 

Once an effect is found to be statistically significant, the next logical question is: How important is 
the effect? It is becoming common now to report effect sizes and their confidence limits even when 
effects are not statistically significant. Importance is usually assessed as the percentage of variance 
in the DV that is associated with the IV. For one-way designs, the strength of association between an 
effect and DV (i.e.,.effect size) for adjusted sums of squares is found using Equation 6.7. For factor- 
ial designs, one uses an extension of Equation 6.7. 

The numerator for v2 is the adjusted sum of squares for the main effect or interaction being 
evaluated; the denominator is the total adjusted sum of squares. The total adjusted sum of squares 
includes adjusted sums of squares for all main effects, interactions, and error terms but does not 
include components for CVs or the mean, which are typically printed out by computer programs. To 
find the strength of association between an effect and the adjusted DV scores, then, 

In multifactorial designs, the size of r2 for a particular effect iq ,  in part, dependent on the 
strength of other effects in the design. In a design where there are several main effects and interac- 
tions, r2 for a particular effect is diminished because other effects increase the size of the denomina- 
tor. An alternative method of computing r2 (partial r2)  uses in the denominator only the adjusted sum 
of squares for the effect being tested and the adjusted sum of squares for the appropriate error term 
for that effect (see Chapter 3 for appropriate error terms). 

partial r2 = "Lffect 

SSLffect + SSLrror 

Confidence intervals around partial q2 (equivalent to v2 in a one-way design) are demonstrated 
in Section 6.6.2.1. 

6.5.5 Alternatives to ANCOVA 

Because of the stringent limitations to ANCOVA and potential ambiguity in interpreting results of 
ANCOVA, alternative analytical strategies are often sought. The availability of alternatives depends 

'The adjusted critical F for an inter~ction is insufficient if  a great many post hoc compari\ons are undertaken: it should suf- 
fice. however, if a moderate number are performed. I f  a great many are undertaken, multiply by iih - I instead of 
(u -  I ) ( / > -  I ) .  
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on such issues as the scale of measurement of the CVls)  and the DV. the time that elapses between 
measurement of the CV and assignnient to treatment. and the ciifticulty of ~nterpreting results. 

When the CV(s) and the DV are measured on the same scale. two alternatives are available: use 
of difference (change) scores and conversion of the pretest and posttest scores into a within-subjects 
IV. In the first alternative, the difference between a pretest score (the previous CV) and a posttest 
score (the previous DV) is computed for each subject and used as the DV in ANOVA. If the research 
question is phrased in terms of "change," then difference scores provide the answer. For example, 
suppose self-esteem is measured both before and after a year of either belly dance or aerobic dance 
classes. If difference scores are used, the research question is: Does one year of belly dance training 
change self-esteem scores more than participation in aerobic dance classes? If ANCOVA is used, the 
research question is: Do belly dance classes produce greater self-esteem than aerobic dance classes 
after adjustment for pretreatment differences in self-esteem? 

A problem with change scores and mixed ANOVA is ceiling and floor effects (or, more gener- 
ally, skewness). A change score (or interaction) may be small because the pretest score is very near the 
end of the scale and no treatment effect can change it very much, or it may be small because the effect 
of treatment is small-the result is the same in either case and the researcher is hard pressed to decide 
Sctweeii them. Further, when the DV is skeiiied, a chaiige in a meal aiso produces a change in the shape 
of the distribution and a potentially misleading significance test (Jamieson and Howk, 1992). Another 
problem with difference scores is their potential unreliability. They are less reliable than either the pre- 
or posttest scores, so they are not to be recommended unless used with a highly reliable test (Harlow, 
2002). If either ANCOVA or ANOVA with change scores is possible, then, ANCOVA is usually the bet- 
ter approach when the data are skewed and transformations are not undertaken (Jamieson, 1999). 

When CVs are measured on any continuous scale, other alternatives are available: randomized 
blocks and blocking. In the randomized-block design, subjects are matched into blocks-equated- 
on the basis of scores on what would have been the CV(s). Each block has as many subjects as the 
number of levels of the IV in a one-way design or number of cells in a larger design (cf. Section 
3.2.3). Subjects within each block are randomly assigned to levels or cells of the IV(s) for treatment. 
In the analytic phase, subjects in the same block are treated as if they were the same person, in a 
within-subjects analysis. 

Disadvantages to this approach are the strong assumption of sphericity of a within-subjects 
analysis and the loss of degrees of freedom for error without commensurate loss of sums of squares 
for error if the variables used to block are not highly related to the DV. In addition, implementation 
of the randomized-block design requires the added step of equating subjects before randomly assign- 
ing them to treatment, a step that may be inconvenient, if not impossible, in some applications. 

Another alternative is use of blocking. Subjects are measured on potential CV(s) and then 
grouped according to their scores (e.g., into groups of high, medium, and low self-esteem on the 
basis of pretest scores). The groups of subjects become the levels of another full-scale IV that are 
crossed with the levels of the IV(s) of interest in factorial design. Interpretation of the main effect of 
the IV of interest is straightforward and variation due to the potential CV(s) is removed from the esti- 
mate of error variance and assessed as a separate main effect. Furthermore, if the assumption of 
homogeneity of regression would have been violated in ANCOVA, it shows up as an interaction 
between the blocking IV and the IV of interest. 

Blocking has several advantages over ANCOVA and the other alternatives listed here. First, i t  
has none of the assumptions of ANCOVA or within-subjects ANOVA. Second, the relationship 
between the potential CV(s) and the DV need not be linear (blocking is less powerful when the CV- 
DV relationship is linear); curvilinear relationships can be captured in ANOVA when three (or more) 



levels of run IV are ~nalyred.  Blocking. tlit'n. is preferable to ANCOVA in  rnany hituationx. and par- 
ticularly for experimental, rather than correlational. research. 

Blocking can also be expanded to multiple CVs. That is, several new IVs. one per CV, can be 
developed through blocking and, with some difficulty, crossed in factorial design. However, as the 
number of IVs increases, the design rapidly becomes very large and cumbersome to implement., 

For some applications, however, ANCOVA is preferable to blocking. When the relationship 
between the DV and the CV is linear, ANCOVA is more powerful than blocking. And, if the assump- 
tions of ANCOVA are met, conversion of a continuous CV to a discrete IV can result in loss of 
information. Fin'ally, practical limitations may prevent measurement of potential CV(s) sufficiectly 

: in advance of treatment to accomplish random assignment of equal numbers of subjects to the cells 
of the design. When blocking is attempted after treatment, sample sizes within cells are likely to be 
highly discrepant, leading to the problems of unequal n. 

In some applications, a combination of blocking and ANCOVA may turn out to be best. Some 
potential CVs are used to create new IVs, while others are analyzed as CVs. 

A final alternative is multilevel modeling (MLM) (Chapter 15). MLM has no assumption of 
homogeneity of regression; heterogeneity is dealt with by creating a second level of analysis con- 
sisting of groups and specifying that groups may have different slopes (relationships between the DV 
and DVs) as well as different intercepts (means on the DV). 

6.6 Complete Example of Analysis 
of Covariance 

The research described in Appendix B, Section B.l ,  provides the data for this illustration of 
ANCOVA. The research question is whether attitudes toward drugs are associated with current 
employment status and/or religious aftiliation. Files are ANCOVA.'K. 

Attitude toward drugs (ATTDRUG) serves as the DV, with increasingly high scores reflecting 
more favorable attitudes. The two IVs, factorially combined, are: current employment status 
(EMPLMNT) with two levels, (1) employed and (2) unemployed; and religious affiliation (RELI- 
GION) with four levels, ( I )  none-or-other, (2) Catholic, (3) Protestant, and (4) Jewish. 

In examining other data for this sample of women, three variables stand out that could be 
expected to relate to attitudes toward drugs and might obscure effects of employment status and reli- 
gion. These variables are general state of physical health, mental health, and the use of psychotropic 
drugs. In order to control for the effects of these three variables on attitudes toward drugs, they are 
treated as CVs. CVs, then, are physical health (PHYHEAL), mental health (MENHEAL), and sum 
of all psychotropic drug uses, prescription and over-the-counter (PSYDRUG). For all three CVs, 
larger scores reflect increasingly poor health or more use of drugs. 

The 2 X 4 analysis of covariance, then, provides a test of the effects of employment status, reli- 
gion, and their interaction on attitudes toward drugs after adjustment for differences in physical 
health, mental health, and use of psychotropic drugs. Note that this is a form of ANCOVA in which 
no causal inference can be made. 

6.6.1 Evaluation of Assumptions 

These variables are examined with respect to practical lim~tations of ANCOVA as described in Sec- 
tion 6.3.2. 
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6.6.1.1 Unequal n and Missing Data 

SAS MEANS provides an Initial bcreening run to look at descr~pt~ve jtatlatlcs for DV dnd CVs for 
the eight groups. Three women out of 465 failed to provide information on religious affiliation (not 
5hown). Because RELIGION is one of the IVs for which cell sizes are unequal in any event, the three 
cases are dropped from analysis. Output for the DV and the three CVs is shown in Table 6.12 for the 
first two groups: RELIGION = 1 EMPLMNT = l(employed women who report other or no reli- 
gious affiliation) and RELIGION = 3 EMPLMNT = 2 (unemployed Protestant women). Sample 
sizes for the eight groups are in Table 6.13. 

The cell-size approach (Method 3 of Section 6.5.4.2) for dealing with unequal n is chosen for 
this study. This method weights cells by their sample sizes, which, in this study, are meaningful 
because they represent population sizes for the groups. Religion is given higher priority to reflect its 
temporally prior status to employment. 

6.6.1.2 Normality 

Table 6.12 shows positive skewness for some variables. Because the assumption of normality applies 
to the sa~ilpiing distribution of ilieaiis, and not to the raw scores, skewness by itself poses no prob- 
lem. With the large sample size and use of two-tailed tests, normality of sampling distributions of 
means is anticipated. 

6.6.1.3 Linearity 

There is no reason to expect curvilinearity considering the variables used and the fact that the vari- 
ables, when skewed, are all skewed in the same direction. Had there been reason to suspect curvilin- 
earity, within-group scattergrams would have been examined through a SAS PLOT run. 

6.6.1.4 Outliers 

The maximum values in the SAS MEANS run of Table 6.13 show that, although no outliers are evi- 
dent for the DV, several cases are univariate outliers for two of the CVs, PHYHEAL and PSYDRUG. 
Note, for example, that z = (43 - 5.096)/8.641 = 4.39 for the largest PSYDRUG score among 
unemployed protestant women. Positive skewness is also visible for these variables. 

To facilitate the decision between transformation of variables and deletion of outliers, separate 
regression analyses are run on the eight groups through SAS REG, with a request for the h (leverage) 
statistic. Critical X2 at a = .001 with 3 covariates is 16.266. This is translated into critical values for 
leverage for each of the eight groups based on their sample sizes (Table 6.13), using Equation 4.3, as 
seen in Table 6.14. For example, 

+-=- 1 Mahalanobis distance 1 16.266 + - = 0.3832 h.. = 
N - 1  N 45 46 

for the first group, employed women with none-or-other affiliation. 

Table 6.15 shows syntax and a portion of the output data set with leverage values as produced 
by SAS REG. The D A T A  step insures that the cases with missing data on the IVs are not included in 
the analysis. Only the three CVs are included in the calculation of leverage values; use of ATTDRUG 
as a DV has no effect on the calculations. 



TABLE 6.12 Syntax and Partial Output of Screening Run for Distributions and Univariate Outliers Using SAS MEANS 

p r o c  s o r t  d a t a  = SASUSER.ANCOVA; 
b y  RELIGION EMPLMNT; 

run;  

p r o c  means d a t a  = SASUSER.ANCOVA v a r d e f = D F  
N NMISS MIN M A X  MEAN V A R  STD SKEWNESS KURTOSIS; 
v a r  ATTDRUG PHYHEAL MENHEAL PSYDRUG; 
b y  RELIGION EMPLMNT; 

run ;  

------------------- R e l i g i o u s  a f f i l i a t i o n = l  C u r r e n t  employment  s t a t u s = l  .................... 
N  

V a r i a b l e  L a b e l  N  M i s s  Minimum Max i m u m  
......................................................................................... 
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  4 6  0  5 .0000000 10.0000000 
PHYHEAL P h y s i c a l  h e a l t h  symptoms 4 6  0  2 .0000000 9 .0000000 
MENHEAL M e n t a l  h e a l t h  symptoms 4 6  0  0  17.0000000 
PSYDRUG Use o f  p s y c h o t r o p i c  d r u g s  4 6  0  0  32.0000000 

V a r i a b l e  L a b e l  Mean V a r i a n c e  S t d  Dev 
-------------------------------------------------------,---------------------------------- 

ATTDRUG A t t i t u d e s  t o u a r d  u s e  o f  m e d i c a t i o n  7.67391 30 1 .8246377 1  -350791 5  
PHYHEAL P h y s i c a l  h e a l t h  symptoms 5 -0652174  3 .5734300 1 .8903518 
MENHEAL M e n t a l  h e a l t h  symptoms 6.5434783 16.4314010 4.0535665 
PSYDRUG Use o f  p s y c h o t r o p i c  d r u g s  5.3478261 58.631 8841 7 .6571 459 

V a r i a b l e  L a b e l  Skewness K u r t o s i s  
........................................................................... 
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  -0.2741 204 -0.6773951 
PHYHEAL P h y s i c a l  h e a l t h  symptoms 0.3560510 -0 .9003343 
MENHEAL M e n t a l  h e a l t h  symptoms 0.6048430 0 .1683358 
PSYDRUG Use o f  p s y c h o t r o p i c  d r u g s  1 .6761585 2 .6270392 
------------------------------------------------.-------------------------- 



TABLE 6.12 Continued 

----------------- R e l i g i o u s  a f f i l i a t i o n = 3  C u r r e n t  e m p l o y m e n t  s t a t u s = 2  - -7 - - - - - - - - - - - - - -  

N  
V a r i a b l e  L a b e l  N  M i  s s  M in imum Maximum 
----------------------------------------------------.------------------------------- 
ATTDRUG A t t i t u d e s  t o w a r d  u s e  

o f  m e d i c a t i o n  8 3 0 5.0000000 10.0000000 
PHYHEAL P h y s i c a l  h e a l t h  symptoms 8 3 0 2.0000000 13.0000000 
MENHEAL M e n t a l  h e a l t h  symptoms 8 3 0 0 16.0000000 
PSYDRUG Use o f  p s y c h o t r o p i c  d r u g s  8 3 0 0 43.0000000 

V a r i a b l e  L a b e l  Mean V a r i a n c e  S t d  Dev 
.......................................................................................... 
ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  7.8433735 I -4263885 1.1943151 
PHYHEAL P h y s i c a l  h e a l t h  symptoms 5.3734940 7.7246547 2.7793263 
MENHEAL M e n t a l  h e a l t h  symptoms 6.31 32530 20.21 77490 4.49641 5 1  
PSY DRUG Use o f  p s y c h o t r o p i c  d r u g s  5.0963855 74.6735234 8.641 3843 

V a r i a b l e  L a b e  1  Skewness  K u r t o s i s  

ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  -0.1299988 -0.361 61 68 
PHYHEAL P h y s i c a l  h e a l t h  symptoms 0.8526678 0.2040353 
MENHEAL M e n t a l  h e a l t h  symptoms 0.40681 14 -0.8266558 
PSY DRUG Use o f  p s y c h o t r o p i c  d r u g s  2.3466630 5.871 7433 



TABLE 6.13 Sample Sizes for Eight Groups 

Religious Affiliation 

Employment None-or- 
Status Other Cntlzolic Prntestnrzt Jervisll 

Employed ' 46 63 92 44 
Unemployed 30 56 83 48 

TABLE 6.14 Critical Leverage Values for Each Group 

Religious Affiliation 

Employment None-or- 
Status Other Caihoiic Protesiani Jewish 

Employed 0.3832 0.2782 0.1896 0.4010 
Unemployed 0.5942 0.3 136 0.2104 0.3669 

Table 6.15 shows that subject number 213 is a multivariate outlier with a leverage value of 
0.3264 in the unemployed Catholic group, which has a critical value of 0.3 136. (Note that case num- 
bers are for the sorted data file with 3 cases deleted.) Altogether, four cases are multivariate outliers 

I in four different groups. 
I This is a borderline case in terms of whether to transform variables or delete outliers-some- 

where between "few" and "many." A log transform of the two skewed variables is undertaken to see if 
outliers remain after transformation. LPSYDRUG is created as the logarithm of PSYDRUG (incre- 
mented by 1 since many of the values are at zero) and LPHYHEAL as the logarithm of PHYHEAL. 1 

I 
See Table 4.3 for SAS DATA syntax for transforming variables. Transformed as well a s  original vari- 

I ables are saved into a file labeled ANC-LEVT. 
A second run of SAS REG (not shown) with the three CVs (two of them transformed) revealed 

no outliers at a = .OO 1. All four former outliers are within acceptable distance from their groups once 
the two CVs are transformed. The decision is to proceed with the analysis using the two transformed 
CVs rather than to delete cases, although the alternative decision is also acceptable in this situation. 

6.6.1.5 Multicollinearity and Singularity 

SAS FACTOR provides squared multiple correlations for each variable as a DV with the remaining 
variables acting as IVs. This is helpful for detecting the presence of multicollinearity and singularity 
among the CVs, as seen in Tabie 6.16 for the transformed variables. There is no danger of multi- 
collinearity or singularity because the largest S M C  ( R ~ )  = .30. In any event, SAS GLM guards 
against statistical problems due to multicollinearity. 
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TABLE 6.15 Test for blultivariate Outliers. SAS REG Syntax 
and Selected Portion of Output Data Set 

d a t a  SASUSER.ANC-LEV; 
s e t  S A S U S E R . A N C O V A ;  
i f  RELIGION =. o r  EMPLMNT =. t h e n  d e l e t e ;  

run;  
p r o c  reg; 

by  RELIGION EMPLMNT; 
model ATTDRUG= PHYHEAL MENHEAL PSYDRUG; 
o u t p u t  out=SASUSER.ANC-LEV h=LEVERAGE; 

run; 

TABLE 6.16 Check for Multicollinearity Through SAS FACTOR. Syntax and Selected Output 

p r o c  f a c t o r  data=SASUSER.ANC-LEVT p r i o r s  = smc; 
v a r  LPHYHEAL MENHEAL LPSYDRUG; 

run;  

The FACTOR P r o c e d u r e  
I n i t i a l  F a c t o r  Method:  P r i n c i p a l  F a c t o r s  

P r i o r  Communa l i t y  E s t i m a t e s :  S M C  

LPHYHEAL MENHEAL LPSY DRUG 
0.30276222 0.2848371 2 0.16531 267 

6.6.1.6 Homogeneity oJ'Variance 

Sample variances are available froni a SAS MEANS run with the transformed variables. requesting 
only sample sizes, means, and variances, partially shown in Table 6.17. For the DV, tind the largest 
and smallest variances over the groups. For example, the variance for ATTDRUG in the employed 



TABLE 6.17 Sample Sizes, Means, and Variances for Transformed Variables Through SAS MEANS. Syntax and Selected Output 

p r o ~  means data=SASUSER.ANC-LEVT vardef=DF 
N M E A N  VAR; 
v a r  ATTDRUG LPHYHEAL MENHEAL LPSYDRUG; 
b y  RELIGION EMPLMNT; 

run; 

------------- R e l i g i o u s  a f f i l i a t i o n = l  C u r r e n t  employment s t a t u s = l  ------------- 

The M E A N S  P r o c e d u r e  

V a r i a b l e  L a b e l  N Mean V a r i a n c e  
______-____-_______------------------------------------------------------------ 
ATTDRUG A t t i t u d e s  t o w a r d  use o f  m e d i c a t i o n  46 7.67391 30 1 .8246377 
LPHYHEAL 4 6 0.673321 5 0.0289652 
MENHEAL M e n t a l  h e a l t h  symptoms 4 6 6.5434783 16.4314010 
LPSY DRUG 4 6 0.4881 946 0.28671 48 

------------- R e l i g i o u s  a f f i l i a t i o n = 2  C u r r e n t  employment s t a t u s = l  ------------- 
V a r i a b l e  L a b e l  N Mean V a r i a n c e  
............................................................................... 
A T T D R U G  A t t i t u d e s  t o w a r d  use  o f  m e d i c a t i o n  63 7.6666667 0.9677419 
LPHYHEAL 6 3 0.6095463 0.0477688 
MENHEAL M e n t a l  h e a l t h  symptoms 6 3 5.841 2698 22.5873016 
LPSY D R U G  6 3 0.3275272 0.1631570 
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Catholic group = ,968 ithe sniallest variance). The largest variance IS fo r  the first group (employed 
with no or other religious affiliation). with .F' = 1.825. The variance ratio (q,,,,) = 1.89, well 
below the criterion of LO: 1 .  There is no need for a formal test of homogeneity of variance with this 
variance ratio since the ratio of sample sizes is less than 4: 1 (92130 = 3.07), and there are no out- 
liers. Tests for homogeneity of variance among CVs likewise show no concern for heterogeneity cf 
variance. 

6.6.1.7 Homogeneity of Regression 

Homogeneity of regression is not tested automatically in any analysis of variance programs in 
SAS. However, it can be evaluated by forming interactions between effects (main effects and in- 
teractions) and covariates through the ANCOVA procedure demonstrated in the next section. 
Although covariates cannot be pooled, each covariate can be evaluated separately. Thus, the tests 
for homogeneity of regression will be demonstrated in Section 6.6.2 after the main analysis of 
covariance. 

6.6.1.8 Reliability of Covariates 

The three CVs, MENHEAL, PHYHEAL, and PSYDRUG, were measured as counts of symptoms or 
drug use-"have you ever . . . ?'I t  is assumed that people are reasonably consistent in reporting the 
presence or absence of symptoms and that high reliability is likely. Therefore no adjustment in 
ANCOVA is made for unreliability of CVs. 

6.6.2 Analysis of Covariance 

6.6.2.1 Main Analysis 

The program chosen for the major two-way analysis of covariance is SAS GLM. The cell size 
weights (Table 6.10, number 3, Method 3, SSTYPE I) approach to adjustment of unequal n is cho- 
sen for this set of survey data. Ease of use, then, makes SAS GLM a convenient program for this 
unequal-n data set. 

Syntax and selected output from application of SAS GLM to these data appear in Table 6.18. 
The mode 1 instruction shows the DV on the left of the equation and the CVs and IVs on the right. 
Order of entry for Type I sums of squares follows the order on the right side of the equation. 

Source tables for both Type I and Type I11 sums of squares are shown in Table 6.18. Type I11 
sums of squares, which are adjusted for all other effects, are used to evaluate covariates. Type I sums 
of squares, which are adjusted for all previous but not following effects, are used to evaluate main 
effects of religious affiliation and employment status and their interaction. 

In this example, the main effect of religion reaches statistical significance, F(3, 45 1 )  = 2.86, 
p = .0366. The only CV that reaches statistical reliability is LPSYDRUG. F(1, 45 1) = 39.09, 
p < .000 1 .  The source table is summarized in Table 6.19. 



TABLE 6.18 Syntax and Selected Output from SAS GLM Analysis of Covariance Run 

p r o c  g l m  data=SASUSER.ANC-LEU; 
c l a s s  RELIGION EMPLMNT; 
m o d e l  ATTDRUG = LPHYHEAL MENHEAL LPSYDRUG RELIGION EMPLMNT RELIGION*EMPLMNT; 

r u n ;  

The GLM P r o c e d u r e  

D e p e n d e n t  V a r i a b l e :  ATTDRUG A t t i t u d e s  t o w a r d  u s e  o f  m e d i c a t i o n  

S o u r c e  

Mode l 

E r r o r  

Sum o f  
D F S q u a r e s  Mean S q u a r e  F V a l u e  P r  > F 

C o r r e c t e d  T o t a l  461 61 7 .861  471 9  

R-Square  C o e f f  V a r  R o o t  MSE ATTDRUG Mean 

S o u r c e  D F Type  I SS Mean S q u a r e  F V a l u e  P r  > F 

LPHYHEAL 1  9 .908401 38 9 .90840138  8 . 2 9  0 .0042  
MENHEAL 1  0 .13429906  0 .13429906  0 .11  0 .7377  
LPSYDRUG 1  45.72530836 45.72530836 38.25 < .0001 
RELIGION 3  10.25921 450 3 .41 97381 7  2 .86  0 .0366  
EMPLMNT 1  3.78463591 3 .78463591 3.17 0 . 0 7 5 9  
RELIGION*EMPLMNT 3  8 .87091  941 2 .9569731 4  2 .47  0 .0611  

S o u r c e  D F Type  111 SS Mean S q u a r e  F V a l u e  P r  > F 

LPHYHEAL 1  0 .62999012 0 .62999012 0 . 5 3  0 .4683  
MENHEAL 1  1 .42886911 1  -4288691 1  1 - 2 0  0 .2749  
LPSYDRUG 1  46 .73742309  46 .73742309  3 9 . 0 9  < .0001 
RELIGION 3 12 .19374680  4 .06458227 3 .40  0 .0178  
EMPLMNT 1  1 .07961 032 1  -07961 032 0 . 9 0  0 .3425  
RELIGION*EMPLMNT 3 8 .87091  941 2 .9569731 4  2 .47  0 .0611 
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TABLE 6.19 Analysis of Covariance of Attitude Toward Drugs 

Source of Variance .4djusted SS df hIS F 

Religious affiliation 
En~ployment status (adjusted for religious affiliation) 
Interaction 
Covariates (adjusted for all effects) 

Physical health (log) 
Mental health 
Drug uses (log) 

Error 

Entries in the sum of squares column of the source table are used to calculate partial 112 as a mea- 
sure uf effect size for main effects and the interaction (Sections 6.4 and 6.5.4.4). For RELIGION: 

partial v12 = 
10.259 

10.259 + 539.179 
= -02 

Table 6.20 shows the use of the Smithson (2003) procedure to find partial I?2 and its confidence 
limits for all the effects, whether statistically significant or not. Confidence limits for effect sizes as 
well as partial v2 are found by adding values of the syntax file: NoncF2.sas. Table 6.20 shows a por- 
tion of the syntax file with added values shaded. Filled in values (from Table 6.19) are, respectively, 
E numerator df, denominator df, and the proportion for the desired confidence interval, here .95, 
respectively, These replace the default values filled into NoncF2.sas. Effects appear in Table 6.20 in 
the following order: RELIGION, EMPLMNT, and the interaction. The output column labeled rsq is 
partial rI2; lower and upper confidence limits are labeled rsqlow and rsqupp, respectively. 

Thus, the 95% confidence interval for the size of the RELIGION effect using the Smithson 
(2003) SAS procedure ranges from .OO to .04. Effect size for employment status is .O1 with a 95% 
confidence interval ranging from .00 to .03. For the interaction, partial v2 = .02 also, with a 95% 
confidence interval ranging from .OO to .04. 

Unadjusted and adjusted (Le a s t S q u a r e s )  marginal means and confidence intervals for 
RELIGION are shown in Table 6.21, provided by SAS GLM. These could be requested in the main 
ANCOVA run. 

Note that unadjusted means are provided for CVs as well as the DV. Because no a priori 
hypotheses about differences among religious groups were generated, planned comparisons are not 
appropriate. A glance at the four adjusted means in Table 6.21 suggests a straightforward interpreta- 
tion; the none-or-other group has the least favorable attitude toward use of psychotropic drugs, the 
Catholic group the most favorable attitude, and the Protestant and Jewish groups an intermediate atti- 
tude. In the absence of specific questions about differences between means, there is no compelling 
reason to evaluate post hoc the significance of these differences, although they certainly provide a 
rich source of speculation for future research. Relevant means are summarized in Table 6.22. Means 
with 95% confidence limits are in Figure 6.3. 
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TABLE 6.21 Adjusted and Unadjusted >lean Attitude toward Drugs for Four Categories of 
Religion. SAS GLM Syntax and Selected Output 

p r o c  g l m  data=SASUSER.ANC-LEVT; 
c l a s s  RELIGION EMPLMNT; 
mode l  ATTDRUG = LPHYHEAL MENHEAL LPSYDRUG RELIGIONIEMPLMNT; 
means RELIGION; 
Lsmeans RELIGION; 

run; 

L e v e l  o f  ---------- ATTDRUG--------- --------- LPHYHEAL--------- 
RELIGION N  Mean S t d  Dev Mean S t d  Dev 

L e v e l  o f  --------- MENHEAL---------- --------- LPSYDRUG--------- 

RELIGION N  Mean S t d  Dev Mean S t d  Dev 

L e a s t  S q u a r e s  Means 

ATTDRUG 
RELIGION LSMEAN 

RELIGION 
ATTDRUG 

LSMEAN 95% C o n f i d e n c e  L i  m i  t s  



T.AI3I.E 6.22 Adjusted and Unadjusted Xlean Attitude 
'Toward Drugs for Four Categories of Religious Affiliation 

Religion Adjusted Mean Unadjusted Mean 

None-or-other 7.4 1 7.45 
Catholic 7.92 7.84 
Protestant 7.66 7.67 
Jewish 7.64 7.7 1 

Least Squares Means 

99 

1 2 3 4 

Religion 

FIGURE 6.3 Adjusted means for attitude 
toward drug use with error bars representing 

the 95% confidence interval for the mean. 
Graph produced through SYSTAT 11. 

6.6.2.2 Evaluation of Covariates 

Information about utility of covariates is provided in Table 6.18 where only LPSYDRUG was seen 
to adjust the DV, ATTDRUG, after adjustment for all other covariates and effects is taken into 
account. Table 6.23 shows the pooled within-cell correlations among the DV and CVs as produced 
by SAS GLM. These correlations are adjusted for differences among cells-the bivariate correla- 
tions are found within each cell and then averaged (pooled). However, the correlations are not 
adjusted for each other. The run is done as a MANOVA, with the DV and CVs all treated as multiple 
CVs. This way, relationships among all four variables are shown. The p r i n t e instruction requests 
the pooled within-cell correlation table. The noun i instruction limits the output. 
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TABLE 6.23 Pooled Within-Cell Correlations anlong the DV and CVs. SAS GLhI 
Syntax and Selected Output 

p r o c  gLm data=SASUSER.ANC-LEVT; 
c t a s s  RELIGION EMPLMNT; 
m o d e l  ATTDRUG LPHYHEAL MENHEAL LPSYDRUG = 

RELIGIONIEMPLMNT / n o u n i ;  
manova h = - a l l -  / p r i n t e ;  

run;  

P a r t i a l  C o r r e l a t i o n  C o e f f i c i e n t s  f r o m  t h e  E r r o r  SSCP M a t r i x  / P r o b  > ) r l  

D F  = 454 ATTDRUG LPHYHEAL MENHEAL LPSYDRUG 

ATTDRUG 1 .OOOOOO 0.121 087 0.064048 0.301193 
0.0097 0.1726 <. 0001 

LPHYHEAL 0.121087 1.000000 0.509539 0.364506 
0.0097 <. 0001 c. 0001 

MENHEAL 0.064048 0.509539 1.000000 0.333499 
0.1726 <. 0001 <. 0001 

LPSYDRUG 0.301193 0.364506 0.333499 1.000000 
<. 0001 <. 0001 <. 0001 

TABLE 6.24 Pooled Within-Cell Correlations among Three Covariates 
and the Dependent Variable, Attitude Toward Drugs 

Physical Mental Drug Uses 
Health (LOG) Health (LOG) 

Altitude toward d r ~ ~ g s  .121:% .064 .30 1 :k 

Physical health (LOG) .5 10" .365* 
Mental health .333* 

'"7 < .o 1 

Table 6.23 shows that both LPHYHEAL and LPSYDRUG are related to the DV, ATTDRUG. 
However, only LPSYDRUG is effective as a covariate once adjustment is made for the other CVs and 
effects, as seen in Table 6.18. Table 6.23 shows the reason why; LPHYHEAL and LPSYDRUG are 
themselves related. According to the criteria of Section 6.5.1, then, use of MENHEAL as a covariate 
in future research is not warranted (it has, in  fact. lowered the power of this analysis) and use of 
LPHYHEAL is questionable. Table 6.24 summarizes the pooled within-cell correlations. 



WBI,E 6.15 Analysis of Cobariance for Evaluating Honiogeneitj of Regression. S;\S GI,k[ Sj  ntax 
and Selected Output 

p r o c  g l r n  d a t a = S A S U S E R . A N C - L E V T ;  
c l a s s  R E L I G I O N  EMPLMNT;  
m o d e l  A T T D R U G  = R E L I G I O N I E M P L M N T  LPHYHEALlRELIGIONlEMPLMNT 

LPSYDRUGlRELIGIONlEMPLMNT M E N H E A L I R E L I G I O N I E M P L M N T ;  
run; 

S o u r c e  D  F 

R E L I G I O N  
E M P L M N T  
R E L I G I O N * E M P L M N T  
L P H Y  H E A L  
L P H Y H E A L * R E L I G I O N  
L P H Y H E A L * E M P L M N T  
L P H Y H E * R E L I G I * E M P L M N  
L P S Y D R U G  
L P S Y D R U G * R E L I G I O N  
L P S Y D R U G * E M P L M N T  
L P S Y D R * R E L I G I * E M P L M N  
M E N H E A L  
M E N H E A L * R E L I G I O N  
M E N H E A L * E M P L M N T  
M E N H E A * R E L I G I * E M P L M N  

T y p e  I11 S S  M e a n  S q u a r e  F V a l u e  

6.6.2.3 Homogeneity of Regression Run 

The SAS GLM run to test for homogeneity of regression (Table 6.25) adds all interactions be- 
tween effects and CVs to the analysis of Table 6.18. A hierarchical notation is used in which effects 
separated by a " I " include interactions and all lower order effects. For example M EN H E A L I 
R E L I G I 0 N  I EM P LM N T includes MENHEAL, RELIGION, EMPLMNT, MENHEAL'FRELIGION, 
MENHEAL*EMPLMNT, RELIGION*EMPLMNT, and MENHEAL"RELIGI0N"EMPLMNT. 

Effects of interest here are those which interact with CVs. Only one of them, 
LPSYDRUG*RELIGION*EMPLOYMENT is statistically significant at a = .05, suggesting differ- 
ent relationships between ATTDRUG and LPSYDRUG among the eight groups of women. How- 
ever, a more stringent alpha criterion than .05 is advisable for the multitude of tests produced by this 
method of evaluating homogeneity of regression. (Indeed, an SPSS MANOVA run, which pools the 
covariates into a single test, showed no violation of the assumption.) 

A checklist for analysis of covariance appears as Table 6.26. An example of a Results section, 
in journal format, follows for the analysis described above. 
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TABLE 6.26 Checklist for :inalysis of Covariance 
- - 

1 .  Issue\ 

a. Unequal sample size and missing data 

b. Within-cell outliers 

c. Normality 

d. Homogeneity of variance 

e. Within-cell linearity 

f. Homogeneity of regression 

g. Reliability of CVs 

2. Major analyses 

a. Main effect(s) or planned comparison. If significant: Adjusted marginal means and standard 
deviations or standard errors or confidence intervals 

b. Interactions or planned comparisons. If significant: Adjusted cell means and 5tandard deviations or 
standard errors or confidence intervals (in table or interaction graph) 

c. Effect sizes with confidence intervals for all effects 

3. Additional analyses 

a. Evaluation of CV effects 

b. Evaluation of ~ntercorrelations 

c. Post hoc comparisons (if appropriate) 

d. Unadjusted marginal and/or cell means (if significant main effect andlor interaction) if 
nonexperimental dpplication 

Results 

A 2 x 4 between-subjects analysis of covazia.xce was perfom.& 

on attitude toward drugs. Independent variables consisted of current 

employment status (employed and unemployed) and religious identifi- 

cation (None-or-other, Catholic, Protestant, and Jewish), factori- 

ally combined. Covariates were physical health, mental health, and 

the sum of psychotropic drug uses. Analyses were perfonned by SAS 

GLM, weighting cells by their sample sizes to adjust for unequal n. 

Results of evaluation of the assumptions of normality of sarn- 

pling distributions, linearity, homogeneity of variance, homogene- 

ity of regression, and reliability of covariates were satisfactory. 

Presence of outliers led to transformation of two of the covari- 

ates. Logarithmic transforms were made of physical health and the 



sum of psychotropic drug uses. No outliers remained after trans- 

formation. The original sample of 465 was reduced to 462 by three 

women who did not provide information as to religious affiliation. 

After adjustment by covariates, attitude toward drugs varied 

significantly with religious affiliation, as summarized in -19, with 

F ( 3 ,  451) = 2.86, p < .05. The strength of the relationship between 

adjusted attitudes toward drugs and religion was weak, however, with 

q2 = -02, 95% confidence limits from .OO to .04. The adjusted mar- 

ginal means; as displayed in Table 6.22 and, with 95% confidence 

interval, in Figure 6.2, show that the most favorable attitudes 

toward drugs were held by Catholic women, and least favorable atti- 

tudes by women who either were unaffiliated with a religion or iden- 

tified with some religion other than the major three. Attitudes 

among Protestant and Jewish women were almost identical, on average, 

for this sample, and fell between those of the two other groups. 

No statistically significant main effect of current employment 

status was found. Nor was there a significant interaction between 

employment status and religion after adjustment for covariates. For 

employment, partial q2 = -01 with 95% confidence limits from .OO to 

.03. For the interaction, partial q2 = .02 with 95% confidence limits 

from .OO to .04. 

Pooled within-cell correlations among covariates and attitude 

toward drugs are shown in Table 6.24. Two of the covariates, loga- 

rithm of physical health and logarithm of drug use, were signifi- 

cantly associated with the dependent variable. However, only 

logarithm of drug use uniquely adjusted the attitude scores, 

F(1, 451) = 39.09, p < .01, after covariates were adjusted for 

other covariates, main effects, and interaction. The remaining 

two covariates, mental health and logarithm of physical health, 

provided no statistically significant unique adjustment. 
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6.7 Comparison of Programs 

For the novice, there is a bewildering array of canned computer programs in SPSS (REGRESSION, 
GLM, and MANOVA), and SYSTAT (ANOVA, GLM, and REGRESS) packages for ANCOVA. For 
our purposes, the programs based on regression (SYSTAT REGRESS and SPSS REGRESSION) are 
not discussed because they offer little advantage over the other, more easily used programs. 

SAS has a single general linear model program designed for use with both discrete and con- 
tinuous variables. This program deals well with ANCOVA. Features of eight programs are described 
in Table 6.27. 

6.7.1 SPSS Package 

Two SPSS programs perform ANCOVA: GLM and MANOVA. Both programs are rich and highly 
flexible. Both provide a great deal of information about adjusted and unadjusted statistics, and have 
alternatives for dealing with unequal n. They are the only programs that offer power analyses and 
effect sizes in the form of partial r12. Also avzi!ab!e in GLM are p!ots ef means. I'v<ANOVA shines in 
its ability to test assumptions such as homogeneity of regression (see Section 6.5.3). It provides 
adjusted cell and marginal means; specific comparisons and trend analysis are readily available. 
However, SPSS does not facilitate the search for multivariate outliers among the DV and CV(s) in 
each group. Only a measure of influence, Cook's distance, is available in GLM (leverage values pro- 
duced do not differ within cells). 

6.7.2 SAS System 

SAS GLM is a program for univariate and multivariate analysis of variance and covariance. SAS 
GLM offers analysis of complex designs, several adjustments for unequal n, a test for sphericity for 
within-subjects ITJs, a full array of descriptive statistics (upon request), and a wide varlety of post 
hoc tests in addition to user-specified comparisons and trend analysis. Although there is no example 
of a test for homogeneity of regression in the SAS manual, the procedures described in Section 
6.6.2.3 can be followed. 

6.7.3 SYSTAT System 

SYSTAT ANOVA Version 11 is an easily used program which handles all types of ANOVA and 
ANCOVA. In addition, SYSTAT GLM is a multivariate general linear program that does almost 
everything that the ANOVA program does, and more, but is not always quite as easy to set up. 
MANOVA is a recent addition to the menu, but brings forth the same dialog box as GLM. All three 
programs handle repeated measures and post hoc comparisons. For some unknown reason, spheric- 
ity tests are not available for repeated measures in "long" output. The programs provide a great deal 
of control over error terms and comparisons. Cell means adjusted for CVs are produced and plotted. 
The program also provides leverage values which may be converted to Mahalanobis distance, as per 
Equation 4.3. The program provides adjustment for violation ofsphericity in within-subject designs. 

The major advantage in using SYSTAT GLM over ANOVA is the greater flexibility with 
unequal-n designs. Only method I is available in the ANOVA program. GLM allows specitication of a 
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TABLE 6.27 Comparison of Selected Programs for Analysis of Covariance 

SYSTAT ANOVA," 
GLM," and 
MANOVAa 

SPSS 
GLM 

SPSS 
MANOVAa 

SAS 
GLNIa Feature 

Input 

Maximum number of IVs No limit 

Yes 

Yes 

EPS 

10 

Yes 

Yes 

No 

NO limit No limit 

Yes NO(' 

Yes Yes 

SINGULAR Yes 

Choice of unequal-n adjustment 

Within-subjects IVs 

Specify tolerance 

Specify separate variance error 
term for contrasts 

Resampling . 

Yes Yes 

No Yes 

Output 

Source table Yes 

Yes 

%. 

N 0 

Yes 

- 7  r es * 7 Yes 
Yes No Unadjusted cell means 

Confidence interval for unadjusted 
cell means No 

Yes 

Yes 

EMMEANS 

Yes 

Yes 

Yes 

PMEANS 

No No 

Yes No 

Yes No 

LSMEAN PRINT MEDIUM 

Unadjusted marginal means 

Cell standard deviations 

Adjusted cell means 

Standard errors or SDs for adjusted 
cell means Yes 

Yes 
STDERR PRINT MEDIUM 
LSMEAN N O  Adjusted marginal means 

Standard error for adjusted 
marginal means Yes 

OFOWER 

ETASQ 

Yes 

P W E R  

POWER 

STDERR NO 

No" No 

No No 

Power analysis 

Effect sizes 

Test for equality of slope 
(homogeneity of regression) for 
multiple covariates No 

Yes 

Yes 

No 

Yes 

YesC 

Yes 

Yes 

No Yes 

Yes Yes 

Yes Yes 

Yes No 

Post hoc tests with adjustment 

User-specified contrasts 

Hypothesis SSCP matrices 

Pooled within-cell error SSCP 
matrices 

Hypothesis covariance matrices 

Pooled within-cell covariance 
matrix 

Yes 

Yes 

Yes No 

No No 

Yes 

Yes 

No No 

No No 
(continued) 

Group covariance matrices 
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TABLE 6.27 Continued 
- -- 

Feature 

SYSTAT ANOVA" 
SPSS SPSS SAS GLNl,aand 
GLM MANOVAa GLhla MANOVAa 

Output (coiztinued) 

Pooled within-cell correlation 
matrix No Yes Yes No 

Group correlation matrices No Yes No No 

Covariance matrix for adjusted 
group means No No Data file No 

Regression coefficient for each CV Yes Yes Yes No 

Regression coefficient, for each cell No No Yes No 

Multiple R andlor R2 Yes Yes Yes Yes 

Test for homogeneity of variance Yes Yes No No 

Test for sphericity Yes Yes Yes No 

Adjustment for heterogeneity of 
covariance Yes Yes Yes yesf 

Predicted values and residuals Yes Yes Yes Data tile 

Plots of means Yes No No Yes 

Multivariate intluence and/or 
leverage statistics by cell No No No Data file 

"Additional features described in Chapter 7 (MANOV.4). 

bAvailable through the CONSPLUS procedure. 

CBonferroni and Scheffk confidence intervals. 

*Some flexibility is possible in GLM. 

ePower analysis for ANCOVA is in a separate program: GLMPOWER. 

[ ~ o t  available in "long" output. 

MEANS model, which, when WEIGHTS are applied to cell means, provides a weighted means analy- 
sis. The manual also describes the multiple models that can be estimated to provide sums of squares 
that correspond to the four SS types of adjustments for unequal n. GLM is also the only SYSTAT pro- 
gram set up for simple effects and such designs as Latin square, nesting, and incomplete blocks. 
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Multivariate Analysis 
of Variance and Covariance 

7.1 ~enera l  .purpose and Description 

Multivariate analysis of variance (MANOVA) is a generaiization of ANOVA to a situation in which 
there are several DVs. For example, suppose a researcher is interested in the effect of different types 
of treatments on several types of anxieties: test anxiety, anxiety in reaction to minor life stresses, and 
so-called free-floating anxiety. The IV is different treatment with three levels (desensitization, relax- 
ation training, and a waiting-list control). After random assignment of subjects to treatments and a 
subsequent period of treatment, subjects are measured for test anxiety, stress anxiety, and free- 
floating anxiety. Scores on all three measures for each subject serve as DVs. MANOVA is used to ask 
whether a combination of the three anxiety measures varies as a function of treatment. MANOVA is 
statistically identical to discriminant analysis, the subject of Chapter 9. The difference between the 
techniques is one of emphasis only. MANOVA emphasizes the mean differences and statistical sig- 
nificance of differences among groups. Discriminant analysis emphasizes prediction of group mem- 
bership and the dimensions on which groups differ. 

ANOVA tests whether mean differences among groups on a single DV are likely to have 
occurred by chance. MANOVA iests whether meax digerences 2mong groups on a combination of 
DVs are likely to have occurred by chance. In MANOVA, a new DV that maximizes group dift'erences 
is created from the set of DVs. The new DV is a linear combination of measured DVs, combined so as 
to separate the groups as much as possible. ANOVA is then performed on the newly created DV. As in 
ANOVA, hypotheses about means in MANOVA are tested by comparing variances-hence multi- 
variate analysis of variance. 

In factorial or more complicated MANOVA, a different linear combination of DVs is formed 
for each main effect and interaction. If gender of subject is added to the example as a second IV, one 
combination of the three DVs maximizes the separation of the three treatment groups, a second com- 
bination maximizes separation of women and men, and a third combination maximizes separation of 
the cells of the interaction. Further, if the treatment IV has more than two levels, the DVs can be 
recombined in yet other ways to maximize the separation of groups formed by comparisons.' 

MANOVA has a number of advantages over ANOVA. First, by measuring several DVs instead 
of only one, the researcher improves the chance of discovering what i t  is that changes as a result of 
different treatments and their interactions. For instance, desensitization may have an advantage over 

'The linear combinations themselves are of interest in discriminant analys~s (Chapter 9). 

243 
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relaxation tralnlng or wa~trng-llst control. but only on teat anxiety: the effect is micfing if test anwetv 
isn't one of your DVs. A second advantage of bIANOVA over a \erres of ANOVAs when there are fev- 
era1 DVs is protection against inflated Type I error due to mult~ple tests of (likely) correlated DVs. 

Another advantage of MANOVA is that, under certain, probably rare conditions, it may reveal 
differences not shown in separate ANOVAs. Such a situation is shown in Figure 7.1 for a one-way 
design with two levels. In this figure, the axes represent frequency distributions for each of two DVs, 
Yl and Y,. Notice that from the point of view of either axis, the distributions are sufficiently over- 
lapping that a mean difference might not be found in ANOVA. The ellipses in the quadrant, however, 
represent the distributions of Yl and Y2 for each group separately. When responses to two DVs are 
considered in combination, group differences become apparent. Thus, MANOVA, which considers 
DVs in combination, may occasionally be more powerful than separate ANOVAs. 

But there are no free lunches in statistics, either. MANOVA is a substantially more compli- 
cated analysis than ANOVA. There are several important assumptions to consider, and there is often 
some ambiguity in interpretation of the effects of IVs on any single DV. Further, the situations in 
which MANOVA is more powerful than ANOVA are quite limited; often MANOVA is considerably 
less powerful than ANOVA, particularly in finding significant group differences for a particular DV. 
Thus, our recommendation is te think very carefdly abmt the need for more than one DV in iight of 
the added complexity and ambiguity of analysis and the likelihood that multiple DVs may be redun- 
dant (see also Section 7.5.3). Even moderately correlated DVs diminish the power of MANOVA. 
Figure 7.2 shows a set of hypothetical relationships between a single IV and four DVs. DV1 is highly 
related to the IV and shares some variance with DV2 and DV3. DV2 is related to both DV1 and DV3 
and shares very little unique variance with the IV, although by itself in a univariate ANOVA might be 
related to the IV. DV3 is somewhat related to the IV, but also to all of the other DVs. DV4 is h i g h l y ,  

FIGURE 7.1 Advantage of MANOVA, which 
combines DVs, over ANOVA. Each axis 

represents a DV; frequency distributions 
projected to axes show considerable overlap, 
while ellipses, showing DVs in combination, 

do not. 
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FIGURE 7.2 Hypothetical relationships 
among a single IV and four DVs. 

related to the iV and shares oniy a little bii of variance tirith DV3. Thus, DV2 is completely redun- 
dant with the other DVs, and DV3 adds only a bit of unique variance to the set. However, DV2 would 
be useful as a CV if that use made sense conceptually. DV2 reduces the total variance in DV1 and 
DV2, and most of the variance reduced is not related to the IV. Therefore, DV2 reduces the error vari- 
ance in DV 1 and DV3 (the variance that is not overlapping with the IV). 

Multivariate analysis of covariance (MANCOVA) is the multivariate extension of ANCOVA 
(Chapter 6). MANCOVA asks if there are statistically significant mean differences among groups 
after adjusting the newly created DV for differences on one or more covariates. For the example, sup- 
pose that before treatment subjects are pretested on test anxiety, minor stress anxiety, and free- 
floating anxiety. When pretest scores are used as covariates, MANCOVA asks if mean anxiety on the 
composite score differs in the three treatment groups, after adjusting for preexisting differences in 
the three types of anxieties. 

MANCOVA is useful in the same ways as ANCOVA. First, in experimental work, it serves as 
a neise-reducing device where variance associated with the covariate(s) is removed from error vari- 
ance; smaller error variance provides a more powerful test of mean differences among groups. Sec- 
ond, in noncxpcrimcn:al wctrk, MAPJCOVA provides statistical matching of groups when random 
assignment to groups is not possible. Prior differences among groups are accounted for by adjusting 
DVs as if all subjects scored the same on the covariate(s). (But review Chapter 6 for a discussion of 
the logical difficulties of using covariates this way.) 

ANCOVA is used after MANOVA (or MANCOVA) in Roy-Bargmann stepdown analysis 
where the goal is to assess the contributions of the various DVs to a significant effect. One asks 
whether, after adjusting for differences on higher-priority DVs serving as covariates, there is any sig- 
nificant mean difference among groups on a lower-priority DV. That is, does a lower-priority DV 
provide additional separation of groups beyond that of the DVs already used? In this sense, 
ANCOVA is used as a tool in interpreting MANOVA results. 

Although computing procedures and programs for MANOVA and MANCOVA are not as well 
developed as for ANOVA and ANCOVA, there is in theory no limit to the generalization of the 
model, despite complications that arise. There is no reason why all types of designs-one-way, fac- 
torial, repeated measures, nonorthogonal, and so on--cannot be extended to research with several 
DVs. Questions of effect size, specific comparisons, and trend analysis are equally interesting with 



C H A P T E R  7 

MANOVA. In addition. there i b  the question of importance c.f DV\-that i \ ,  ~vhich DV\ ;Ire affected 
by the IVs and which are not. 

MANOVA developed in the tradition of ANOVA. Traditionally, MANOVA was applied to 
experimental situations where all, or at least some, IVs are manipulated and subjects are randomly 
assigned to groups, usually with equal cell sizes. Discriminant analysis (Chapter 9) developed in the. 
context of nonexperimental research where groups are formed naturally and are not usually the same 
size. MANOVA asks if mean differences among groups on the combined DV are larger than 
expected by chance; discriminant analysis asks if there is some combination of variables that reliably 
separates groups. But there is no mathematical distinction between MANOVA and discriminant 
analysis. At a practical level, computer prograrris for discriminant analysis are more informative but 
are also, for the most part, limited to one-way designs. Therefore, analysis of one-way MANOVA is 
deferred to Chapter 9 and the present chapter covers factorial MANOVA and MANCOVA. 

Mason (2003) used a 2 x 5 between-subjects MANOVA to investigate male and female high 
school students' beliefs.about math. The six scales serving as DVs were in agreement with items con- 
cerning ability to solve difficult math problems, need for complex procedures for word problems, 
importance of understanding concepts, importance of word problems, effect of effort, and usefulness 
of math in everyday life. Multivariate tests of both main effects were statistically significant, but the 
interaction was not, Post hoc Tukey HSD tests were used to investigate the individual DVs. Belief in 
usefulness of math and need for complex procedures increased over the grades; belief in ability to 
solve difficult problems increased from the first to second year and then decreased. Girls were found 
to be more likely to believe in the importance of understanding concepts than boys. 

A more complex MANOVA design was employed by Pisula (2003) who studied responses to 
novelty in high- and low-avoidance rats. IVs were sex of rat, subline (high vs. low avoidance), and 8 
time intervals. Thus, this was a 2 x 2 x 8 mixed between-between-within MANOVA. DVs were four 
durations spent inside various zones, duration of object contact, duration of floor sniffing, and num- 
ber of walking onsets. Multivariate results were not reported, but the table of (presumably! univari- 
ate F tests suggests significant results for all effects except the sex by suh!ine interaction. A!! DVs 
showed significant differences over trials. All DVs associated with time spent inside various zones 
also showed significant differences between high- and low-avoidance sublines, as did number of 
walking ornets. Duration of object contact and number of waiking onsets showed sex differences. All 
DVs except walking onsets also showed significant two-way interactions, and duration of object con- 
tact showed a significant three-way interaction. 

A MANCOVA approach was taken by Hay (2003) to investigate quality of life variables in 
bulimic eating disorders. Two types of disorders were identified: regular binge eating and extreme 
weight control. These each were compared with a non-eating-disordered group in separate MAN- 
COVAs. It is not clear why (or if) these were not combined into a single three-group one-way MAN- 
COVA with planned comparisons between each eating-disorder group and the comparison group. 
Covariates were age, gender, income level, and BMI (body mass index). Three sets of DVs (physical 
and mental health components of SF-36 scores, eight SF-36 subscale scores, and six utility AqoL 
scores) were entered into three separate MANCOVAs for each of the comparisons, resulting in a total 
of 6 MANCOVAs. The emphasis in interpretation was on variance explained ( r 2 )  for each analysis. 
For example, 23% of the variance in mental and physical scores was associated with regular binge 
eating after adjusting for CVs, but only 5% of the variance was associated with extreme weight 
control behaviors. Similarly, binge eating was associated with greater variance in SF-36 subscale 
scores and in AqoL scores than were extreme weight control behavior. 



7.2 Kinds of Research Questions 

The goal of research using MANOVA is to discover whether behavior. as reflected by the DVs. is 
changed by manipulation (or other action) of the IVs. Statistical techniques are currently available 
for answering the types 9f questions posed in Sections 7.2.1 through 7.2.8. 

7.2.1 Main Effects of IVs 

Holding all else'constant, are mean differences in the composite DV among groups at different Izv- 
els of an IV larger than expected by chance? The statistical procedures described in Sections 7.4.1 
and 7.4.3 are designed to answer this question, by testing the null hypothesis that the IV has no sys- 
tematic effect on the optimal linear combination of DVs. 

As in ANOVA, "holding all else constant" refers to a variety of procedures: (1) controlling the 
effects of other IVs by "crossing over" them in a factorial arrangement, (2) controlling extraneous 
variables by holding them constant (e.g., running only women as subjects), counterbalancing their 
effects, or randomizing their effects, or (3) using covariates to produce an "as if constant" state by 
statistically adjusting for differences on covariates. 

In the anxiety-reduction example, the test of main effect asks: .4re there mean differenceq 
in anxiety-measured by test anxiety, stress anxiety, and free-floating anxiety-associated with 
differences in treatment? With addition of covariates, the question is: Are there differences in anxiety 
associated with treatment, after adjustment for individual differences in anxiety prior to treatment? 

When there are two or more IVs, separate tests are made for each IV. Further, when sample 
sizes are equal in all cells, the separate tests are independent of one another (except for use of a com- 
mon error term) so that the test of one IV in no way predicts the outcome of the test of another 1V. If 
the example is extended to include gender of subject as an IV, and if there are equal numbers of sub- 
jects in all cells. the des~gn produces tests of the main effect of treatment and of gender of subject, 
the two tests independent of each other. 

7.2.2 Interactions among IVs 

Holding all else constant, does change in the DV over levels of one IV depend on the level of another 
IV? The test of interaction is similar to the test of main effect, but interpreted differently, as discussed 
more fully in Chapter 3 and in Sections 7.4.1 and 7.4.3. In the example, the test of interaction asks: 
Is the pattern of response to the three types of treatments the same for men as it is for women? If the 
interaction is significant, it indicates that one type of treatment "works better" for women while 
another type "works better" for men. 

With more than two IVs, there are multiple interactions. Each interaction is tested separately 
from tests of other main effects and interactions, and these tests (but for a common error term) are 
independent when sample sizes in all cells are equal. 

7.2.3 Importance of DVs 

I f  there are significant differences for one or more of the main effects or interactions, the researcher usu- 
ally asks which of the DVs are changed and which are unaffected by the IVs. If the main effect of treat- 
ment is significant, it may be that only test anxiety is changed while stress anxiety and free-floating 
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anxiety do not differ with treatment. Ax mentioned in Section 7.1. Roy-Bargmann stepdown analysis i h  

often used where each DV is assebsed in ANCOVA with higher-priority DVs serving as covariates. 
Stepdown analysis and other procedures for assessing importance of DVs appear in Section 7.5.3. 

7.2.4 Parameter Estimates 

Ordinarily, marginal means are the best estimates of population parameters for main effects and cell 
means are the best estimates of population parameters for interactions. But when Roy-Bargrnann step- 
down analysis is used to test the importance of the DVs, the means that are tested are adjusted means 
rather than sample means. In the example, suppose free-floating anxiety is given first, stress anxiety 
second, and test anxiety third priority. Now suppose that a stepdown analysis shows that only test anx- 
iety is affected by differential treatment. The means that are tested for test anxiety are not sample 
means, but sample means adjusted for stress anxiety and free-floating anxiety. In MANCOVA, addi- 
tional adjustment is made for covariates. Interpretation and reporting of results are based on both 
adjusted and sample means, as illustrated in Section 7.6. In any event, means are accompanied by 
some measure of variability: standard deviations, standard errors, andlor confidence intervals. 

7.2.5 Specific Comparisons and Trend Analysis 

If an interaction or a main effect for an IV with more than two levels is significant, you probably want 
to ask which levels of main effect or cells of interaction are different from which others. If, in the 
example, treatment with three levels is significant, the researcher would be likely to want to ask if the 
pooled average for the two treated groups is different from the average for the waiting-list control, 
and if the average for relaxation training is different from the average for desensitization. Indeed, the 
researcher may have planned to ask these questions instead of the omnibus F questions about treat- 
ment. Similarly, if the interaction of gender of subject and treatment is significant. you may want to 
ask if there is a significant difference in the average response of women and men to, for instance, 
desensitization. 

Specific comparisons and trend analysis are discussed more fully in Sections 7.5.4, 3.2.6, 
6.5.4.3, and 8.5.2. 

7.2.6 Effect Size 

If a main effect or interaction reliably affects behavior, the next logical question is: How much? What 
proportion of variance of the linear combination of DV scores is attributable to the effect? You can 
determine, for instance, the proportion of the variance in the linear combination of anxiety scores 
that is associated with differences in treatment. These procedures are described in Section 7.4.1. Pro- 
cedures are also available for finding the effect sizes for individually significant DVs as demon- 
strated in Section 7.6, along with confidence intervals for effect sizes. 

7.2.7 Effects of Covariates 

When covariates are used, the researcher normally wants to assess their utility. Do the covariates pro- 
vide statistically significant adjustment and what is the nature of the DV-covariate relationship? For 



example. when pretests o f  tcst. mess. and  free-tluating anxiety are used ah co\,asiate.;. to what degree 
does each covariate adjust the coinposite DV'! Assessment of c ~ ~ a r i a t t ' s  is demonbtl-:~ted in Section 
7.6.3.1. 

7.2.8 Repeated-Measures Analysis of Variance 

MANOVA is an alternative to repeated-measures ANOVA in which responses to the levels of the 
within-subjects IV are simply viewed as separate DVs. Suppose, in the example, that measures of 
test anxiety are taken three times (instead of measuring three different kinds of anxiety once), before, 
immediately after, and 6 months after treatment. Results could be analyzed as a two-way ANOVA, 
with treatment as a between-subjects IV and tests as a within-subject IV, or as a one-way MANOVA, 
with treatment as a between-subjects IV and the three testing occasions as three DVs. 

As discussed in Sections 3.2.3 and 8.5.1, repeated measures ANOVA has the often-violated 
assumption of sphericity. When the assumption is violated, significance tests are too liberal and 
some alternative to ANOVA is necessary. Other alternatives are adjusted tests of the signiticance of 
the within-s~~hjects IV (e.g.. Huynh-Feldt), decomposition of the repeated-measures IV into an 
orthogonal series of single degree of freedom tests (e.g., trend analysis), and profile analysis of 
repeated measures (Chapter S). 

7.3 Limitations to Multivariate Analysis 
of Variance and Covariance 

7.3.1 Theoretical Issues 

As with all other procedures, attribution of causality to 1Vs is in no way assured by the statistical test. 
This caution is especially reievani because MANOT~'A, as an extensior. of ANOVPP, stems from 
experimental research where IVs are typically manipulated by the experimenter and desire for causal 
inference provides the reason behind elaborate controls. But the statistical test is available whether 
or not IVs are manipulated, subjects randomly assigned, and controls implemented. Therefore, the 
inference that significant changes in the DVs are caused by concomitant changes in the IVs is a log- 
ical exercise, not a statistical one. 

Choice of variables is also a question of logic and research design rather than of statistics. Skill 
is required in choosing IVs and levels of IVs, as well as DVs that have some chance of showing 
effects of the IVs. A further consideration in choice of DVs is the extent of likely correlation among 
them. The best choice is a set of DVs that are uncorrelated with each other because they each mea- 
sure a separate aspect of the influence of the IVs. When DVs are correlated, they measure the same 
or similar facets of behavior in slightly different ways. What is gained by inclusion of several mea- 
sures of the same thing? Might there be some way of combining DVs or deleting some of them so 
that the analysis is simpler'? 

In addition to choice of number and type of DVs is choice of the order in which DVs enter a 
stepdown analysis if Roy-Bargmann stepdown 1" is the method chosen to assess the importance of 
DVs (see Section 7.5.3.7). Priority is usually giver1 to more important DVs or to DVs that are con- 
sidered causally prior to others in theory. The choice is not trivial because the significance of a DV 
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may well depend on how high a priority i t  is given. juht as in serl~rential inultiple regression the sig- 
nificance of an IV is likely to depend on its position in the sequence. 

When MANCOVA is used, the same limitations apply as in ANCOVA. Consult Sections 6.3.1 
and 6.5 for a review of some of the hazards associated with interpretation of designs that include 
covariates. 

  in all^, the usual limits to generalizability apply. The results of MANOVA and MANCOVA 
generalize only to those populations from which the researcher has randomly sampled. And although 
MANCOVA may, in some very limited situations, adjust for failure to randomly assign subjects to 
groups, MANCOVA does not adjust for failure to sample from segments of the population to which 
one wishes to generalize. 

7.3.2 Practical Issues 

In addition to the theoretical and logical issues discussed above, the statistical procedure demands I 

consideration of some practical matters. 

7.3.2.1 Unequal Sample Sizes, Missing Data, and Power 

Problems associated with unequal cell sizes are discussed in Section 6.5.4.2. Problems caused by 
incomplete data (and solutions to them) are discussed in Chapters 4 and 6 (particularly Section 
6.3.2.1). The discussion applies to MANOVA and, in fact, may be even more relevant because, as 
experiments are complicated by numerous DVs and, perhaps, covariates, the probability of missing 
data increases. 

In addition, when using MANOVA, it is necessary to have more cases than DVs in every cell. 
With numerous DVs this requirement can become burdensome, especially when the design is com- 
plicated and there are numerous cells. There are two reasons for the requirement. The first is associ- 
ated with the assumption of homogeneity of variance-covariance matrices (see Section 7.3.2.4). If a I 

cell has more DVs than cases, the cell becomes singular and the assumption is untestable. If the cell 
has only one or two more cases than DVs, the assumption is likely to be rejected. Thus MANOVA as 
an analytic strategy may be discarded because of a failed assumption when the assumption failed 
because the cases-to-DVs ratio is too low. 

Second, the power of the analysis is lowered unless there are more cases than DVs in every cell 
because of reduced degrees of freedom for error. One likely outcome of reduced power is a non- 
significant multivariate F, but one or more significant univariate Fs (and a very unhappy researcher). 
Sample sizes in each cell must be sufficient in any event to ensure adequate power. There are many 
software programs available to calculate required sample sizes depending on desired power and 
anticipated means and standard deviations in an ANOVA. An Internet search for "statistical power" 
reveals a number of them, some of which are free. One quick-and-dirty way to apply these is to pick 
the DV with the smallest expected difference that you want to show statistical significance-your 
minimum significant DV. One program specifically designed to assess power in MANOVA is 
GANOVA (Woodward, Bonett, & Brecht, 1990). Another is NCSS PASS (2002), which now 
includes power analysis for between-subjects MANOVA. Required sample size also may be esti- 
mated through SPSS MANOVA by a process of successive approximation. For post hoc estimates of 
power at a glven sample size, you compute a constant weighting variable. we~ght cases by that vari- 
able, and rerun the analysis until deslred power 1s ach~eved (Davld P. Nichols, SPSS, personal com- 



munication, April 19. 3005). Platris input is usrf'~i1 for a prior1 estimates of 4;1niple 5 i ~ e  using SPSS 
MANOVA (D' Amico, Neilands, LYL Zambarano, 200 I ). 

Power in MANOVA also depends on the relationships among DVs. Power for the multivariate 
test is highest when the pooled within-cell correlation among two DVs is high and negative. The 
multivariate test has much less power when the correlation is positive, zero, or moderately negative. 
An intetesting thing happens, however, when one of two DVs is affected by the treatment and the 
other is not. The higher the absolute value of the correlation between the two DVs, the greater the 
power of the multivariate test (Woodward et al., 1990). 

7.3.2.2 Multivariate Normality 

Significance tests for MANOVA, MANCOVA, and other multivariate techniques are based on the 
multivariate normal distribution. Multivariate normality implies that the sampling distributions of 
means of the various DVs in each cell and all linear combinations of them are normally distributed. 
With univariate F and large samples, the central limit theorem suggests that the sainpling distribu- 
tion of means approaches normality even when raw scores do not. Univariate F is robust to modest 
v~olations of normaiity as iong as there are at least 20 degrees of freedom f ~ r  error in a iinivariate 
ANOVA and the violations are not due to outliers (Section 4.1.5). Even with unequal rz and only a 
few DVs, a sample size of about 20 in the smallest cell should ensure robustness (Mardia, 197 1). In 
Monte Carlo studies, Seo, Kanda, and Fujikoshi (1995) have shown robustness to nonnormality in 
MANOVA with overall N = 40 ( n  = 10 per group). 

With small, unequal samples, normality of DVs is assessed by reliance on judgment. Are the 
individual DVs expected to be fairly normally distributed in the population? If not, is some transfor- 
mation likely to produce normality? With a nonnormally distributed covariate consider transformation 
or deletion. Covariates are often included as a convenience in reducing error, but it is hardly a conve- 
nience if it reduces power. 

7.3.2.3 Absence of Outliers 

One of the more serious limitations of MANOVA (and ANOVA) is its sensitivity to outliers. Espe- 
cially worrisome is that an outlier can produce either a Type 1 or a Type II error, with no clue in the 
analysis as to which is occurring. Therefore, it is highly recommended that a test for outliers accom- 
pany any use of MANOVA. 

Several programs are available for screening for univariate and multivariate outliers (cf. Chapter 
4). Run tests for iinivaricite and multivariate outliers for each cell of the design separately and change, 
transform, or eliminate them. Report the change, transformation, or deletion of outlying cases. Screen- 
ing runs for within-cell univariate and multivariate outliers are shown in Sections 6.6.1.4 and 7.6.1.4. 

7.3.2.4 Homogeneity of Variance-Covariance Matrices 

The multivariate generalization of homogeneity of variance for individual DVs is homogeneity of 
variance-covariance matrices as discussed in Section 4 .1 .5 .3 .~  The assumption is that variance- 
covariance matrices within each cell of the design are sampled from the same population variance- 

'ln MANOVA. homogeneity of variance tor each of the DV< 1s also assumed. See Sect~on 8.3.2.4 tor di\cuxion and 
recollimendatio~is. 



cov:lriance matrix and can reasonablj be pooled to create :\ bingle estiniate of error.' If the uithin-cell 
error matrices are heierogeneous, the pooled matrix is misleading as an estimate of error variance. 

The following guidelines for testing this assumption in MANOVA are based on a generalization 
of a Monte Carlo test of robustness for T' (Hakstian, Roed. & Lind, 1979). If sample sizes are equal, 
robustness of significance tests is expected; disreg&d the outcome of BOX'S M test, a notoriously sen-. 
sitive test of homogeneity of variance-covariance matrices available through SPSS MANOVA. 

However, if sample sizes are unequal and Box's M test is significant at p < .OO 1. then robust- 
ness is not guaranteed. The more numerous the DVs and the greater the discrepancy in cell sample 
sizes, the greater the potential distortion of alpha levels. Look at both sample sizes and the sizes of 
the variances and covariances for the cells. If cells with larger samples produce larger variances and 
covariances, the alpha level is conservative so that null hypotheses can be rejected with confidence. 
If, however, cells with smaller samples produce larger variances and covariances, the significance 
test is too liberal. Null hypotheses are retained with confidence but indications of mean differences 
are suspect. Use Pillai's criterion instead of Wilks' lambda (see Section 7.5.2) to evaluate multivari- 
ate significance (Olson, 1979); or equalize sample sizes by random deletion of cases, if power can be 
maintained at reasonable levels. 

7.3.2.5 Linearity 

MANOVA and MANCOVA assume linear relationships among all pairs of DVs, all pairs of covari- 
ates, and all DV-covariate pairs in each cell. Deviations from linearity reduce the power of the sta- 
tistical tests because (1) the linear combinations of DVs do not maximize the separation of groups 
for the IVs, and (2) covariates do not maximize adjustment for error. Section 4.1 .5.2 provides guide- 
lines for checking for and dealing with nonlinearity. If serious curvilinearity is found with a covari- 
ate, consider deletion; if curvilinearity is found with a DV, consider transformation-provided, of 
course, that increased difficulty in interpretation of a transformed DV is worth the increase in power. 

7.3.2.6 Homogeneity of Regression 

In Roy-Bargmann stepdown analysis (Section 7.5.3.23 and in MANCOVA (Section 7.4.3) it is I 
I 

assumed that the regression between covariates and DVs in one group is the same as the regression in 
other groups so that using the average regression to adjust for covariates in all groups is reasor~able. 

In both MANOVA and MANCOVA, if Roy-Bargmann stepdown analysis is used, the irnpor- 
tance of a DV in a hierarchy of DVs is assessed in ANCOVA with higher-priority DVs serving as 
covariates. Homogeneity of regression is required for each step of the analysis, as each DV, in turn, 
joins the list of covariates. If heterogeneity of regression is found at a step, the rest of the stepdown 
analysis is uninterpretable. Once violation occurs, the IV-"covariate" interaction is itself interpreted 
and the DV causing violation is eliminated from further steps. 

In MANCOVA (like ANCOVA) heterogeneity of regression implies that there is interaction 
between the IV(s) and the covariates and that a different adjustment of DVs for covariates is needed 
in different groups. If interaction between IVs and covariates is suspected, MANCOVA is an 
inappropriate analytic strategy, both statistically and logically. Consult Sections 6.3.2.7 and 6.5.5 for 
alternatives to MANCOVA where heterogeneity oi regression is found. 

' ~ o n ' t  confuse this assurnptlon w ~ t h  the assumptcon of s p h e r ~ c ~ t y  that is relevant tu repeated-rnea\ure\ ANOVA or MANOVA. 
as discussed in Section 6.5.4.1 and 8.5.1, 
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For ~LI.~IVOVA, rrst,/01. .stc~ptlo\i,i~ l~orr~o,qrilrin of'i.c~gi.e.v.siol~, clrltl I\.I,-\NCOVA, tc.vr f i ~ r  o\,ri-- 
(dl aizcl strpclo\i,r~ homogerleirj. c!f'~-egir.~sion. These procedures are demonstrated in Section 7.6.1.6. 

7.3.2.7 Reliability of Covariates 

In MANCOVA as in ANCOVA, the F test for mean differences is more powerful if covariates are 
reliable. If covariates are not reliable, either increased Type I or Type I1 errors can occur. Reliability 
of covariates is discussed more fully in Section 6.3.2.8. 

In Roy-Bargmann stepdown analysis where all but the lowest-priority DV act as covariates in 
assessing other DVs, unreliability of any of the DVs (say, r,, < .8) raises questions about stepdown 
analysis as well as about the rest of the research effort. WhenDVs are unreliable, use another method 
for assessing the importance of DVs (Section 7.5.3) and report known or suspected unreliability of 
covariates and high-priority DVs in your Results section. 

7.3.2.8 Absence.of Multicollinearity and Singularity 

When correlations among DVs are high, one DV is a near-linear combination of other DVs; the DV 
provides information that is redundant to the information available in one or more of the other DVs. 
It is both statistically and logically suspect to include all the DVs in analysis and the ~isual sol~ition 
is deletion of the redund~lnt DCi However, if there is some compelling theoretical reason to retain all 
DVs, a principal components analysis (cf. Chapter 13) is done on the pooled within-cell correlation 
matrix, and component scores are entered as an alternative set of DVs. 

SAS and SPSS GLM protect against multicollinearity and singularity through computation of 
pooled within-cell tolerance ( 1 - SMC) for each DV; DVs with insufficient tolerance are deleted from 
analysis. In SPSS MANOVA, singularity or multicollinearity may be present when the determinant of 
the within-cell correlation matrix is near zero (say, less than .0001). Section 4.1.7 discusses multi- 
collinearity and \ingularity and has quggest~onc for ~dentlfy~ng the redundant variable(s). 

7.4 Fundamental Equations for Multivariate 
Analysis of Variance and Covariance 

7.4.1 Multivariate Analysis of Variance 

A minimum data set for MANOVA has one or more IVs, each with two or more levels, and two or 
more DVs for each subject within each combination of IVs. A fictitious small sample with two DVs 
and two IVs is illustrated in Table 7.1. The first IV is degree of disability with three levels-mild, 
moderate, and severe-and the second is treatment with two levels-treatment and no treatment. 
These two IVs in factorial arrangement produce six cells; three children are assigned to each cell so 
there are 3 X 6 or 18 children in the study. Each child produces two DVs: score on the reading subtest 
of the Wide Range Achievement Test (WRAT-R) and score on the arithmetic subtest (WRAT-A). In 
addition an IQ score is given in parentheses for each child to be used as a covariate in Section 7.4.3. 

The test of the main effect of treatment asks: Disregarding degree of disability, does treatment 
affect the composite score created from the two subtests of the WRAT? The test of interaction asks: 
Does the effect of treatment on a difference cornposite score from the two subtests differ as a func- 
tion of degree of disability'? 
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TABK.E 7.1 Small-Sample Data for Illustration of ;lIultivariate Analysis of Yariance 

Mild iCIoderate Severe 

WRAT-R CVRAT-A ( IQ)  WRAT-R WMT-A ( IQ)  WRAT-R WHAT-A ( IQ)  

115 108 (110) 100 I05 (115) 89 7 8 (99) 
Treatment 98 I05 (102) 105 95 (98) 100 85 ( 102) 

107 98 (100) 95 98 (100) 90 95 (100) 

90 92 (108) 70 80 (100) 65 62 (101) 
Control 85 95 (115) 85 68 (99) 80 70 (95) 

80 8 1 (95) 78 82 (105) 72 73 (102) 

The test of the main effect of disability is automatically provided in the analysis but is trivial 1 

in this example. The question is: Are scores on the WRAT affected by degree of disability? Because 
degree of disability is at least partially defined by difficulty in reading andlor arithmetic, a significant I 

effect provides no useful information. On the other hand, the absence of this effect would lead us to 
question the adequacy of classification. 

The sample size of three children per cell is highly inadequate for a realistic test but serves to 
illustrate the techniques of MANOVA. Additionally, if causal inference is intended, the researcher 
should randomly assign children to the levels of treatment. The reader is encouraged to analyze these 
data by hand and by computer. Syntax and selected output for this example appear in Section 7.4.2 
for several appropriate programs. 

MANOVA follows the model of ANOVA where variance in scores is partitioned into variance 
attributable to difference among scores within groups and to differences among groups. Squared dif- 
ferences between scores and various means are summed (see Chapter 3); these sums of squares, 

i 

when divided by appropriate degrees of freedom, provide estimates of variance attributable to dif- 1 
ferent sources (main effects of IVs, interactions among IVs, and error). Ratios of variances provide 
tests of hypotheses about the effects of IVs on the DV. 

In MANOVA, however, each subject has a score on each of several DVs. When several DVs 
for each subject are measured, there is a matrix of scores (subjects by DVs) rather than a simple set 
of DVs within each group. Matrices of difference scores are formed by subtracting from each score 
an appropriate mean; then the matrix of differences is squared. When the squared differences are 
summed, a sum-of-squares-and-cross-products matrix, an S matrix, is formed, analogous to a sum of 
squares in ANOVA (Section 16.4). ~ e t e r m i n a n t s ~  of the various S matrices are found, and ratios 
between them provide tests of hypotheses about the effects of the IVs on the linear combination of 
DVs. In MANCOVA, the sums of squares and cross products in the S matrix are adjusted for covari- 
ates, just as sums of squares are adjusted in ANCOVA (Chapter 6). 

The MANOVA equation for equal n is developed below through extension of ANOVA. The 
simplest partition apportions variance to systematic sources (variance attributable to differences 

"A determinant, as described in Appendix A, can be viewed as a measure o f  generalized variance for a matrix. 





256 C H A P T E R  7 

For MANOVA. there is no \ingle DC' but rather 3 column matrix (or vector) of YX,,,  ~ a l ~ ~ e s o t '  
scores on each DV. For the example in Table 7.1, column matrices of Y scores for the three children 
in the tirst cell of the design (mild disability with treatment) are 

Similarly, there is a column matrix of disability-Dk-means for mild, moderate, and severe 
levels of D, with one mean in each matrix for each DTJ. 

where 95.83 is the mean on WRAT-R and 96.50 is the mean on WRAT-A for children with mild dis- 
l 

ability, averaged over treatment and control groups. 
M~trices fer tre~tme~t-T,,-means, aversged sver cf?i!dren with a!! !eve!s of disability are 

Similarly, there are six matrices of cell means (DTk,) averaged over the three children in each group. 
Finally, there is a single matrix of grand means (GM), one for each DV, averaged over all chil- 

dren in the experiment. 

! 
As illustrated in Appendix A. differences are found by simpiy subtracting one matrix from another, j 

to produce difference matrices. The matrix counterpart of a difference score, then, is a difference 
matrix. To produce the error term for this example, the matrix of grand means (GM) is subtracted 
from each of the matrixes of individual scores (yk,). Thus for the first child in the example: 

In ANOVA, difference scores are squared. The matrix counterpart of squaring is multiplication 
by a transpose. That is, each column matrix is multiplied by its corresponding row matrix (see 
Appendix A for matrix transposition and multiplication) to produce a sum-of-squares and cross- I 

products matrix. For example, for the first child in the first group of the design: 



Multivariate Analy\.is of Variance and Cov;lriance 257 

These matrices are then surnmcd ober subjects and over groups, just as squared differences are 
summed in univariate AN OVA."^^ order of summing and squaring is the same in MANOVA as in 
ANOVA for a comparable design. The resulting matrix (S) is called by vanous names: sum-of- 
squares and cross-products, cross-products, or sum-of-products. The MANOVA partition of sums- 
of-squares and cross-products for our factorial example is represented below in a matrix form of 
~ ~ u a t i o n  7.3: 

= n k t ( ~ x  - GM)(D, - G M ) ' + ~ , ~ ( T , , , -  GM)(T,  - GM)' 
k m 

The total cross-products matrix (Stota,j is partitioned into cross-products matrices for 
differences associated with degree of disability, with treatment, with the interaction 
between disability and treatment, and for error-subjects within groups (S,(,,,). 

For the example in Table 7.1, the four resulting cross-products matrices6 are 

Notice that all these matrices are symmetrical, with the elements top left to bottom right diagonal 
representing sums of squares (that, when divided by degrees of freedom, produce variances), and 
with the off-diagonal elements representing sums of cross products (that, when divided by degrees 
of freedom, produce covariances). In this example, the first element in the major diagonal (top left to 
bottom right) is the sum of squares for the first DV, WRAT-R, and the second element is the sum of 

highly recommend using a matrix algebra program, such as a spreadsheet or SPSS MATRIX, MATLAB, or SAS IML, 
to follow the more complex matrix equations to come. 

6Numbers producing these matrlces were carried to 8 digits hefore rounding. 
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\quare\ for the second DV, WRAT-A The off-d~dgondi element5 are the \urn\ ot cro5s-product4 
between WRAT-R and WRAT-A. 

In ANOVA, sums of squares are divided by degrees of freedom to produce variances. or mean 
squares. In MANOVA, the matrix analog of variance is a determinant (see Appendix A); the deter- 
minant is found for each cross-products matrix. In ANOVA, ratios of variances are formed to test 
main effects and interactions. In MANOVA, ratios of determinants are formed to test main effects 
and interactions when using Wilks' lambda (see Section 7.5.2 for additional criteria). These ratios 
follow the general form 

Wilks' lambda (A) is the ratio of the determinant of the error cross-products matrix to the 
determinant of the sum of the error and effect cross-products matrices. 

To find Wilks' lambda, the within-groups matrix is added to matrices corresponding to main 
effects aiid iiiieracdoiis before deteriiiiiiaiits are foiiiib. For the exarlpie, tiie iiiatiix prodiiced by 
adding the SDT matrix for interaction to the S S ( D T ,  matrix for subjects within groups (error) is 

For the four matrices needed to test main effect of disability, main effect of treatment, and the 
treatment-disability interaction, the determinants are 

At this point a source table, similar to the source table for ANOVA, is useful, as presented in 
Table 7.2. The first column lists sources of variance; in this case the two main effects and the inter- 
action. The error term does not appear. The second column contains the value of Wilks' lambda. 

Wilks' lambda is a ratio of determinants, as described in Equation 7.4. For example, for the 
interaction between disability and treatment, Wilks' lambda is 

Tables for evaluating Wilks' lambda directly are rare, however, an approximation to F has been 
derived that closely fits A. The last three columns of Table 7.2, then, represent the approximate F val- 
ues and their associated degrees of freedom. 
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TABLE 7.2 blultivariate .-lrlalysis of Variance of WRAT-R 
and WRAT-.A Scores 

Source of Wilks' Multivariate 
Variance Lambda dfl dfi F 

Treatment 13772 2.00 1 1 .OO 34.43570"'" 

Disability .25526 4.00 22.00 5.38602" 

Treatment by disability .90807 4.00 22.00 0.27 170 

*p <.01. 

"*(, < ,001. 

The following procedure for calculating approximate F (Rao, 1952) is based on Wilks' lambda 
and the various degrees of freedom associated with it. 

\ / ~ r  \ 

Approximate F (df 

where df and df2 are defined below as the degrees of freedom for testing the F ratio, and y is 

A is defined in Equation 7.4, and s is7 

where p 1s the number of DVs, and dfeffect is the degrees of freedom for the effect being tested. And 

and 

where df,,,, is the degrees of freedom associated with the error term. 

For the test of interaction in the sample problem, we have 

p = 2 the number of DVs 

dfeRect = 2 the number of treatment levels minus 1 times the number of disability levels 
minus 1 or ( t  - I)(d - 1) 

df,,,, = 12 the number of treatment levels times the number of disability levels times the 
quantity n - I (where n is the number of scores per cell for each DV)-that is, 
df,,,,, = d t  (n - I ) 

'when p = 1. we have univariate ANOVA. 
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Approximate F (4, 22) = (.i:liii) - (7) = 0.27 17 

This approximate F value is tested for significance by using the usual tables of F at selected a. 
In this example, the interaction between disability and treatment is not statistically significant with 4 
and 22 df, because the observed value of 0.27 17 does not exceed the critical value of 2.82 at a = .05. 

Following the same procedures, the effect of treatment is statistically significant, with the 
observed value of 34.44 exceeding the critical value of 3 98 with 2 and 1 ! df, rv = .O. The effect ~f 
degree of disability is also statistically significant, with the observed value of 5.39 exceeding the crit- 
ical value of 2.82 with 4 and 22 df, a: = .05. (As noted previously, this main effect is not of research 
interest, but does serve to validate the classification procedure.) In Table 7.2, significance is indi- 
cated at the highest level of cu reached, following standard practice. 

A measure of effect size is readily available from Wilks' lambda.' For MANOVA: 

This equation represents the variance accourited for by the best linear combination of DVs as 
explained below. 

In a one-way analysis. according to Equation 7.4, Wilks' lambda is the ratio of (the determi- 
nant of) the error matrix and (the determinant of) the total sum-of-squares and cross-products matrix. 
The determinant of the error matrix-A-is the variance not accounted for by the combined DVs so 
1 - A is the variance that is accounted for. 

Thus, for each statistically significa~t effect, the proportion of variance accounted for is easily 
calculated using Equation 7.8. For example, the main effect of treatment: 

In the example, 86% of the variance in the best linear combination of WRAT-R and WRAT-A 
scores is accounted for by assignment to levels of treatment. The square root of v12 (7 = .93) is a form 
of correlation between WRAT scores and assignment to treatment. 

However, unlike r12 in the analogous ANOVA design, the sum of 172 for all effects in MANOVA 
may be greater than 1 .O because DVs are recombined for each effect. This lessens the appeal of an 
interpretation in terms of proportion of variance accounted for, although the size of 112 is still a mea- 
sure of the relative importance of an effect. 

%n alternative measure ofefiect slze is canon~cal correlation, printed out by some computer programs. Canonical correlation is 
the correlation between the optimal linear combination of IV levels and the optimal linear combination of DVs where optimal is 
chosen to maximize the correlation between combined IVs and DVs. Canonical correlation as a general procedure is discussed 
in Chapter 12, and the relation between canonical correlation and MANOVA is discussed briefly in Chapter 17. I 
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Another difficulty in using this form of 17' is that effects tend to be much larger in the multi- 
variate than in the univariate case. Therefore, a recommended alternative, when s > 1 is 

partial r12 = 1 - Alls (7.9) 

I 
I Estimated effect size is reduced to .63 with the use of partial r12 for the current data, a more rea- 

sonable assessment. Confidence limits around effect sizes are in Section 7.6. 

7.4.2 Computer Analyses of Small-Sample Example 

Tables 7.3 through 7.5 show syntax and selected minimal output for SPSS MANOVA, SPSS GLM, 
and SAS GLM, respectively. 

In SPSS MANOVA (Table 7.3) simple MANOVA source tables, resembling those of ANOVA, 
are printed out when PRINT=SIGNIF(BRIEF) is requested. After interpretive material is printed 
(not shown), the source table is shown, labeled Tests using UNIQUE sums of squares and 
WITHIN+RESIDUAL. WITHIN+RESIDUAL refers to the pooled within-cell error SSCP matrix 
(Section 7.4.1) plus any effects not tested, the error term chosen by default for MANOVA. 

For the example, the two-way MANOVA source table consists of the two main effects and the 
interaction. For each source, you are given Wilks' lambda, Approximate (multivariate) F with 
numerator and denominator degrees of freedom (Hyp. DF and Error DF, respectively), and the 
probability level achieved for the significance test. 

Syntax for SPSS GLM is similar to that of MANOVA, except that levels of IVs are not shown 
in parentheses. METHOD, INTERCEPT, and CRITERIA instructions are produced by the menu 
system by default. 

Output consists of a source table that includes four tests of the multivariate effects, Pillai's, 
Wilks', Hotelling's, and Roy's (see Section 7.5.2 for a discussion of these tests). All are identical 
.;*.he:: there are only two !evels of a hetween-sub-jects IV. The results of Wilks' Lambda test match 
those of SPSS MANOVA in Table 7.3. This is followed by univariate tests on each of the DVs, in the 

TABLE 7.3 MANOVA on Small-Sample Example through SPSS MANOVA 
(Syntax and Outpit) 

MANOVA 
WRATR WRATA BY TREATMNT(1,2) DISABLTY(1,3) 
/PRINT=SIGNIF(BRIEF) 
/DESIGN = TREATMNT DISABLTY TREATMNT*DISABLTY. 

Multivariate Tests of Significance 
Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term 
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

TREATMNT . I 3 8  3 4 . 4 3 6  2 . 0 0  1 1 . 0 0 0  . 0 0 0  
DISABLTY . 2 5 5  5 . 3 8 6  4 . 0 0  2 2 . 0 0 0  . 0 0 4  
TREATMNT * DISABLTY . 9 0 8  . 2 7 2  4 . 0 0  2 2 . 0 0 0  . 8 9 3  



262 C H A P T E R  7 

TABLE 7.4 LL1ANOV.A on Small-Sample Example through SPSS GLlZI (Syntax and Selected Output) 

G LM 
wratr wrata BY treatmnt disablty 
/METHOD = SSTYPE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
/DESIGN = treatmnt disablty treatmnt*disablty. 

General Linear Model 

Between-Subjects Factors 

Multivariate TestsC 

Treatment 1 .OO 

type 2.00 

Degree oi i .OO 

2.00 

3.00 

aExact statistic 
bThe statistic is an upper bound on F that yields a lower bound on the significance level. 
CDesign: Intercept+Treatmnt+Disablty+Treatmnt * Disablty 

Value Label 

'Treatment 

Control 

Miid 

Moderate 

Severe 

N 

9 

9 

6 

6 

6 

Sig. 

.OOO 

Effect 

Intercept Pillai's Trace 
Wi i~s '  Lambda 
Hotelling's Trace 
Roy's Largest Root 

Treatmnt Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

Disablty Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

Treatmnt Pillai's Trace 
* disablty Wilks' Lambda 

Hotelling's Trace 
Roy's Largest Root 

Error 
d f 

11 .OOO 

Value 

.998 

.002 
488.687 
488.687 

.862 
138 

6.261 
6.261 

.750 

.255 
2.895 
2.887 

.092 

.908 

.I01 

.098 

F 

2687.77ga 

Hypothesis 
d f 

2.000 
2687.779" 2.000 11.000 .OOO 
2687.771" 2 . 0 0 0  11.000 0 0 0  
2687.77ga 2.000 11.000 .OOO 

000 
.OOO 
.OOO 
.OOO 

.019 

.004 

.001 

.OOO 

.882 
,893 
.905 
.571 

11.000 
11 .OOO 
11.000 
11.000 

24.000 
22.000 
20.000 
12.000 

24.000 
22.000 
20.000 
12.000 

I 

34.436a 
34.436" 
34.436= 
34.436a 

3.604 
5. 386" 
7.238 

1 7.323b 

.290 

.272a 
,252 
.588b 

2.000 
2.000 
2.000 
2.000 

4.000 
4.000 
4.000 
2.000 

4.000 
4.000 
4.000 
2.000 



TABLE 7.4 Continued 
-- - - - - -- - - -- 

Tests of Between-Subjects Effects 

aR Squared = .828 (Adjusted R Squared = .756) 
bR Squared = ,832 (Adjusted R Squared = .762) 

d f 

5 
5 

1 
1 

1 
1 

2 
2 

2 
2 

12 
12 

18 
18 

17 
17 

b 

Source Dependent Variable 

Corrected Model WRAT - Reading 
WRAT - Arithmetic 

Intercept WRAT - Reading1 
WRAT - Arithmetic 

Treatmnt WRAT - Reading 
WRAT - Arithmetic 

Disablty WRAT - Reading 
WRAT - Arithmetic 

Treatmnt * Disablty WRAT - Reading 
WRAT - Arithmetic 

- 
Error WRAT - Reading 

WRAT - Arithmetic 

Total WRAT - Reading 
WRAT - Arithmetic 

Corrected Total WRAT - Reading 
WRAT - Arithmetic - 

Sig. 

.OOO 

.OOO 

,000 
.OOO 

.OOO 
,000 

,018 
.001 

.977 
,571 

Mean 
Square 

522.756 
534.756 

142934.222 
136938.999 

2090.889 
1494.222 

260.389 
563.389 

1.056 
26.389 

45.333 
44.944 

Type Ill Sum 
of Squares 

261 3.778a 
2673.778b 

142934.222 
136938.889 

2090.889 

- 
1494.222 

520.778 

- 
1 126.778 

2.1 11 
52.778 

544.000 
539.333 

146092.000 
1401 52.000 

31 57.778 
3213.1 11 

F 

1 1.531 
11.898 

31 52.961 
3046.848 

46.123 
33.246 

5.744 
12.535 

.023 

.587 
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table labeled Tests of Between-Subjects Effects The format of the table followc that of univari- 
ate ANOV.4 (see Table 6.5). Note that interpretation of hIANOV,4 through univariate ANOVAs / l o t  

recommended (cf. Section 7.5.3.1). 
In SAS GLM (Table 7.5) IVs are defined in a c 1 a s s instruction and the mode 1 instruction 

defines the DVs and the effects to be considered. The noun i instruction suppresses printing of 
descriptive statistics and univariate F tests. The ma nova h = -a 1 1- instruction requests tests of all 
main effects and interactions listed in the mode 1 instruction, and s h o r t  condenses the printout. 

The output begins with some interpretative information (not shown), followed by separate sec- 
tionsfor TREATMNT, D I S A B L T Y ,  and T R E A T M N T * D I S A B L T Y .  Eachsource tableis preceded 
by information about characteristic roots and vectors of the error SSCP matrix (not shown-these 
are discussed in Chapters 9, 12, and 13), and the three df parameters (Section 7.4.1). Each source 
table shows results of four multivariate tests, fully labeled (cf. Section 7.5.2). 

7.4.3 Multivariate Analysis of Covariance I 

In MANCOVA, the linear combination of DVs is adjusted for differences in the covariates. The 
adjusted linear combination of DVs is the combination that would be obtained if all participants had 
the same scores on the covariates. For this example, pre-experimental IQ scores (listed in parenthe- 
ses in Table 7.1) are used as covariates. 

In MANCOVA the basic partition of variance is the same as in MANOVA. However, all the 
matrices-&,, Dk, T,, DTkm, and GM-have three entries in our example; the first entry is the 
covariate (IQ score) and the second two entries are the two DV scores (WRAT-R and WRAT-A). For 
example, for the first child with mild disability and treatment, the column matrix of covariate and DV 
scores is 

y111 = 

Ll08] (WRAT-A) 

As in MANOVA, difference matrices are found by subtraction, and then the squares and cross- 
products matrices are found by multiplying each difference matrix by its transpose to form the S 
matrices. 

At this point another departure from MANOVA occurs. The S matrices are partitioned into 
sections corresponding to the covariates, the DVs, and the cross-products of covariates and DVs. For 
the example, the cross-products matrix for the main effect of treatment is 

The lower right-hand partition is the ST matrix for the DVs (or SF') and is the same as the ST 
matrix developed in Section 7.4.1. The upper left matrix is the sum of squares for the covariate 
(or SF'). (With additional covanates, this segment becomes a full sum-of-squares and cross- 
products matrix.) Finally, the two off-diagonal segments contain cross-products of covariates and 
DVS (or SF 'I). 
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TABLE 7.5 kI.\NOV.I on Small-Sample Example through SAS GLAl 
(Syntax and Selected Output) 

p r o c  g l m  data=SASUSER.SS-MANOV; 
c l a s s  TREATMNT DISABLTY; 
m o d e l  WRATR WRATA=TREATMNT DISABLTY TREATMNTkDISABLTY / n o u n i ;  
manova h= -a l l -  / s h o r t ;  

run ;  

MANOVA T e s t  C r i t e r i a  a n d  E x a c t  F S t a t i s t i c s  f o r  
t h e  H y p o t h e s i s  o f  NO O v e r a l l  TREATMNT E f f e c t  

H = Type  111 SSCP M a t r i x  f o r  TREATMNT 
E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num D F  Den DF P r  > F 

W i l k s '  lambda 0.137721 39 34.44 2 '11 <.OGOI 
P i  1 l a i  ' s  T r a c e  0.86227861 34 .44  2 11 <.0001 
H o t e l l i n g - L a w l e y  T r a c e  6.26103637 34.44 2 11 <.0001 
Roy ' s  G r e a t e s t  Roo t  6.261 03637 34.44 2 11 <.0001 

C h a r a c t e r i s t i c  R o o t s  a n d  V e c t o r s  o f :  E I n v e r s e  * H, w h e r e  
H = Type  111 SSCP M a t r i x  f o r  DISABLTY 

E  = E r r o r  SSCP M a t r i x  

C h a r a c t e r i s t i c  
R o o t  P e r c e n t  

C h a r a c t e r i s t i c  V e c t o r  V t E V = l  
WRATR WRATA 

MANOVA T e s t  C r j t e r i a  and F A p p r o x i m a t i n n s  f o r  
t h e  H y p o t h e s i s  o f  NO O v e r a l l  DISABLTY E f f e c t  

H = Type  I11 SSCP M a t r i x  f o r  DISABLTY 
E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num D F  Den D F  P r  > F 

W i t k s '  Lambda 0.25526256 5.39 4 22 0.0035 
P i l l a i ' s  T r a c e  0.750481 08 3.60 4 24 0.0195 
H o t e l l i n g - L a w L e y  T r a c e  2.89503407 7 . 7 9  4 12.235  0.0023 
R o y ' s  G r e a t e s t  Roo t  2.88724085 17 .32  2 12 0.0003 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  an  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i l k s '  l ambda i s  e x a c t .  
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TABLE 7.5 Continued 

C h a r a c t e r i s t i c  R o o t s  a n d  V e c t o r s  o f :  E I n v e r s e  * H, w h e r e  
H = Type  I11 SSCP M a t r i x  f o r  TREATMNT*DISABLTY 

E = E r r o r  SSCP M a t r i x  

C h a r a c t e r i s t i c  
R o o t  P e r c e n t  

C h a r a c t e r i s t i c  V e c t o r  V n E V = l  
WRATR WRATA 

MANOVA T e s t  C r i t e r i a  and  F A p p r o x i m a t i o n s  f o r  
t h e  H y p o t h e s i s  o f  NO OveraLL  TREATMNT*DISABLTY E f f e c t  

H = Type I11 SSCP M a t r i x  f o r  TREATMNT*DISABLTY 
E = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F Num D F  Den DF P r  > F 

W iLks '  Lambda 0.90806786 0.27 4 22 0.8930 
P i  L l a i  ' s  T r a c e  0.09219163 0.29 4 24 0.8816 
H o t e l l i n g - L a w l e y  T r a c e  0.10095353 0.27 4 12.235 0.8908 
Roy 's  G r e a t e s t  Roo t  0.09803883 0.59 2 12 0.5706 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i L k s '  Lambda i s  e x a c t .  

I 
Adjusted or S* matrices are formed from these segments. The S* matrix is the sums-of-squares I i 

and the cross-products of DVs adjusted for effects of covariates. Each sGm of squares 2nd each cress- 
product is adjusted by a value that retlects variance due to differences in the covariate. 

In matrix terms, the adjustment is 

The adjusted cross-products matrix S* is found by subtracting from the unadjusted 
cross-products matrix of DVs ( s ( ~ ) )  a product based on the cross-products matrix for 
covariate(s) and cross-products matrices for the relation between the covariates 
and the DVs (s( Y X )  and s ( ~  y ) ) .  

The adjustment is made for the regression of the DVs (Y) on the covariates (X). Because s ( ~ ~ )  
is the transpose of s'~'), their multiplication is analogous to a squaring operation. Multiplying by the 
inverse of s(') is analogous to division. As shown in Chapter 3 for simple scalar numbers, the regres- 
sion coefficient is the sum of cross-products between X and Y,  divided by the sum of squares for X. 
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An adjustment is mads to each S matrix to produce S:: matrices. The S "  nlatrices are Z x 2 
nlatrices, but their entries are usually smaller than those i l l  the original MANOVA S matrices. For the 
example, the reduced S:': matrices are 

Note that, as in the lower right-hand partition, cross-products matrices may have negative val- 
ues for entries other than the major diagonal which contains sums of squares. 

Tests appropriate for MANOVA are applied to the adjusted S* matrices. Ratios of determinants 
are formed to test hypotheses about main effects and interactions by using Wilks' lambda criterion 1 (Equation 7.4). For the example, the determinants of the four matrices needed to  test the three 
hyp~theses (two main effect  and the interaction) are 

The source table for MANCOVA, analogous to that produced for MANOVA, for the sample 
data is in Table 7.6. 

One new item in this source table tha: is not in the MANOV.4 table of Section 7.4.1 is the vari- 
ance in the DVs due to the covariate. (With more than one covariate, there is a line for combined 
covariates and a line for each of the individual covariates.) As in ANCOVA, one degree of freedom 

T.A.BLE 7.6 Multivariate Analysis of Covariance of WRAT-R 
and WRAT-A Scores 

Source of Wilks' Multivariate 
Variance Lambda dfl dfi F 

Covariate 3348.5 2.00 10.00 3.549 13 

Treatment ,13772 2.00 10.00 44.1 1554"* 

Disability 25.526 4.00 22.00 4.92 1 12* 

Treatment by Disability ,90807 4.00 22.OU 0.15997 



for error 1 4  ~~aeci for each covarlate .;o that df, - and r of Equat~on 7.5 are modifiecl. For klANCOV,-\. 
then, 

s = min(1) + q, dfeffect) (7.11) 

where q is the number of covariates and all other terms are defined as in Equation 7.7. 

Approximate F is used to test the significance of the covariate-DV relationship as well as main 
effects and interactions. If a significant relationship is found, Wilks' lambda is used to find the effect 
size as shown in Equations 7.6 or 7.9. 

7.5 Some Important Issues 

7.5.1 MANOVA vs. ANOVAs 

MANOVA works best with highly negatively correlated DVs and acceptably well with moderately 
correlated DVs in either direction (about 1.61 ). For example, two DVs, such as time to complete a 
task and number of errors, might be expected to have a moderate negathe correlation and are best 
analyzed through MANOVA. MANOVA is less attractive if correlations among DVs are very highly 
positive or near zero (Woodward et al., 1990). 

Using very highly positively correlated DVs in MANOVA is wasteful. For example, the effects 
of the Head Start program might be tested in a MANOVA with the WISC and Stanford-Binet as DVs. 
The overall multivariate test works acceptably well, but after the highest priority DV is entered in 
stepdown a.n.a!ysis, tests of remaining DVs are ambiguous. Once that DV beconies a covariate, there 
is no variance remaining in the lower priority DVs to be related to IV main effects or interactions. I 

Univariate tests also are highly misleading, because they suggest effects on different behaviors when I 

actually there is one behavior being measured repeatedly. Better strategies are to pick a single DV 
(preferably the most reliable) or to create a composite score (an average if the DVs are commensu- 
rate or a principal component score if they are not) for use in ANOVA. 

MANOVA also is wasteful if DVs are uncorrelated-naturally, or if they are factor or compo- 
nent scores. The multivariate test has lower power than the univariate and there is little difference 
between univariate and stepdown results. The only advantage to MANOVA over separate ANOVAs 
on each DV is control of familywise Type I error. However, this error rate can be controlled by apply- 
ing a Bonferroni correction (cf. Equation 7.12) to each test in a set of separate ANOVAs on each DV, 
although that could potentially result in a more conservative analysis than MANOVA. 

Sometimes there IS a mix of correlated and uncorrelated DVs. For example, there may be a set 
of moderately correlated DVs related to performance on a task and another set of moderately corre- 
lated DV5 related to attitudes. Separate MANOVAs on each of the two sets of moderately correlated 
DVs are likely to produce the 'most interesting iflterpretations as long as appropriate adjustments are 
made for farn~lywise error rate for the mult~ple MANOVA\. Or one \et rn~ght serve a\ covarlate\ In 
a single MANCOVA. 



7.5.2 Criteria for Statistical Inference 

Several multivariate statistics are available in MANOVA programs to test significance of nuin effects 
and interactions: Wilks' lambda, Hotelling's trace criterion, Pillai's criterion, as well as Roy's gcr cri- 
terion. When an effect has mly two levels (s = 1, 1 df in the uaivariate sense), the F tests for Wilks' 
lambda,' Hotelling's trace, and Pillai's criterion are identical. And usually when an effect has more 
than two levels ('s > 1 and df > 1 in the univariate sense), the F values are slightly different, but either 
all three statistics are signiticant or all are nonsignificant. Occasionally, however, some of the statis- 
tics are significant while others are not, and the researcher is left wondering which result to believe. 

When there is only one degree of freedom for effect, there is only one way to combine the DVs 
to separate the two groups from each other. However, when there is more than one degree of freedom 
for effect, there is more than one way to combine DVs to separate groups. For example, with three 
groups, one way of combining DVs may separate the first group from the other two while the second 
way of combining DVs separates the second group from the third. Each way of combining DVs is a 
dimension along which groups differ (as described in gory detail in Chapter 9) and each generates a 
statistic. 

When there is more than one degree of freedom for effect, Wiiks' lambda, Ho:el!ing's trace cri- 
terion, and Pillai's criterion pool the statistics from each dimension to test the effect; Roy's gcr cri- 
terion uses only the first dimension (in our example, the way of combining DVs that separates the 
first group from the other two) and is the preferred test statistic for a few researchers (Harris, 200 1). 
Most researchers, however, use one of the pooled statistics to test the effect (Olson, 1976). 

Wilks' lambda, defined in Equation 7.4 and Section 7.4.1, is a likelihood ratio statistic that 
tests the likelihood of the data under the assumption of equal population mean vectors for all groups 
against the iikelihood under the assumption that population mean vectors are identical to those of the 
sample mean vectors for the different groups. Wilks' lambda is the pooled ratio of error variance to 
effect variance plus error variance. Hotelling's trace is the pooled ratio of effect variance to error 
variance. Pillai's criterion is simply the pooled effect variances. 

Wilks' lambda, Hotelling's trace, and Roy's gcr criterion are often more powerfui than Piiiai's 
criterion when there is more than one dimension but the first dimension provides most of the sepa- 
ration of groups; iheji are !ess powerfu! wher? separztion of groups is distributed over dimensions. 
But Pillai's criterion is said to be more robust than the other three (Olson, 1979). As sample size 
decreases, unequai n's appear, and the assumption of nomogeneity of variance-covariance matrices 
is violated (Section 7.3.2.2), the advantage of Pillai's criterion in terms of robustness is more impor- 
tant. When the research design is less than ideal, then Pillai's criterion is the criterion of choice. 

In terms of availability, all the MANOVA programs reviewed here provide Wilks' lambda, as 
do most research reports, so that Wilks' lambda is the criterion of choice unless there is reason to use 
Pillai's criterion. Programs differ in the other statistics provided (see Section 7.7). 

In addition to potentially conflicting significance tests for multivariate F is the irritation of a 
nonsignificant multivariate F but a significant univariate F for one of the DVs. If the researcher mea- 
sures only one DV-the right one-the effect is significant, but because more DVs are measured, it 
is not. Why doesn't MANOVA combine DVs with a weight of 1 for the significant DV and a weight 
of zero for the rest? In fact, MANOVA comes close to doing just that, but multivariate F is often not 
as poweti~~l as univariate or stepdown F and significance can be lost. If this happens, about the best 
one can do is report the nonsignificant multivariate F and offer the univariate andlor stepdown result 
as a guide to future research. 
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7.5.3 Assessing DVs 

When a main effect or interaction is significant in MANOVA, the researcher has usually planned to 
pursue the finding to discover which DVs are affec.ted. But the problems of assessing DVs in signif- 
icant multivariate effects are similar to the problems of assigning importance to IVs in multiple 
regression (Chapter 5).  First, there are multiple significance tests so some adjustment is necessary 
for inflated Type I error. Second, if DVs are uncorrelated, there is no ambiguity in assignment of vari- 
ance to them, but if DVs are correlated, assignment of overlapping variance to DVs is problematical. 

73.3.1 Univariate F 

If pooled within-group correlations among DVs are zero (and they never are unless they are formed 
by principal components analysis), univariate ANOVAs, one per DV, give the relevant information 
about their importance. Using ANOVA for uncorrelated DVs is analogous to assessing importance of 
IVs in multiple regression by the magnitude of their individual correlations with the DV. The DVs 1 

that have significant univariate Fs are the important ones, and they can be ranked in importance by ! 
effect size. However, because of inflated Type I error rate due to multiple testing, more stringent 
alpha levels are required. 

Because there are multiple ANOVAs, a Bonferroni type adjustment is made for inflated Type 
I error. The researcher assigns alpha for each DV so that alpha for the set of DVs does not exceed 
some critical value. 

a = I - (1 - cu,)(l - a,) - ...( 1 - ap) (7.12) 

The Type I error rate (a) is based on the error rate for testing the first DV (a,), the sec- 
ond DV (az), and all other DVs to the pth, or last, DV (a,,). 

A!! the alphas c ~ n  be set at the same lwei, or more important D'v7s can be given more liberal I 

alphas. For example, if there are four DVs and a for each DV is set at .01, the overall alpha level I 
according to Equation 7.12 is .039, acceptably below .05 overall. Or if a is set at .02 for 2 DVs, and I 

at .OO 1 for the other 2 DVs, overall cu is .042, also below .05. A close approximation if all ai are to be 
the same is: 

where  if,,, is the family-wise error rate (e.g., .05) andp is the number of tests 
Correlated DVs pose two problems with univariate Fs. First, correlated DVs measure overlap- 

ping aspects of the same behavior. To say that two of them are both "significant" mistakenly suggests 
that the IV affects two different behaviors. For example, if the two DVs are Stanford-Binet IQ and 
WISC IQ, they are so highly correlated that an IV that affects one surely affects the other. The sec- 
ond problem with reporting univariate Fs for correlated DVs is inflation of Type I error rate; with 
correlated DVs, the univariate Fs are not independent and no straightforward adjustment of the error 
rate is possible. In this situation, reporting univariate ANOVAs violates the spirit of MANOVA. 
However, this is still the most common method of interpreting the results of a MANOVA. 

Although reporting univariate F for each DV is a simple tactic, the report should also contain 
the pooled within-group correlations among DVs so the reader can make necessary interpretive 



adjustment\. The pooled ~.~thln-group correlat~on matrlr I \  prob~ded by SPSS hIANOV,L\ 'lnd SAS 
GLM. 

In the example of Table 7.2, there is a s~gniticant multivariate effect of treatment (and of dis- 
ability, although, as previously noted, it is not interesting in this example). It is appropriate to ask 
which of the two DVs is affected by treatment. Univariate ANOVAs for WRAT-R and WRAT-A are in 
Tables 7.7 and 7.8, respectively. The pooled within-group correlation between WRAT-R and WRAT- 
A is ,057 with 12 df. Because the DVs are relatively uncorrelated, univariate F with adjustment of a: 
for multiple tests might be considered appropriate (but note the stepdown results in the following sec- 
tion). There are two DVs, so each is set at alpha .025.9 With 2 and 12 df, critical F is 5.10; with 1 and 
12 df, critical F is 6.55. There is a main effect of treatment (and disability) for both WRAT-R and 
WRAT-A. 

t 7.5.3.2 Roy-Bargmann Stepdown Analysis l o  

1 The problem of correlated univariate F tests with correlated DVs is resolved by stepdown analysis 
(Bock, 1966; Bock & Haggard, 1968). Stepdown analysis of DVs is analogous to testing the impor- 
tance of IVs in multiple regression by sequentiai analysis. Priorities are assigned to DVs according 

! to theoretical or practical considerations.' ' The highest-priority DV is tested in univariate ANOVA, 

TABLE 7.7 Univariate Analysis of Variance of 
WRAT-R Scores 
- 

Source SS d f MS F 

TABLE 7.8 Univariate Analysis of Variance of WRAT-A Scores 

Source SS d f MS F 

'when the design is very complicated and generates many main effects and interactions, further adjustment of a is necessary 
in order to keep overall n under. I5 or so, across the ANOVAs for the DVs. 

'OStepdown analysis can he run in lieu of MANOVA where a cigniticant stepdown F is interpreted as a significant multivari- 
ate effect for the main effect or interaction. 

"It is also possible to assign priority on the basis of statistical criteria such as univariate F. but the analysis suffers all the prob- 
lems inherent in stepwise regression, discussed in Chapter 5. 
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with appropriate adjustment of alpha. The rest of the DVs are tested in a series of ANCOVAs; each 
successive DV is tested with higher-priority DVs as covariates to see what, if anything, it adds to the 
combination of DVs already tested. Because successive ANCOV4s are independent, adjustment for 
inflated Type I error due to multiple testing is the same as in Section 7.5.3.1. 

For the example, we assign WRAT-R scores higher priority since reading problems represent. 
the most common presenting symptoms for learning disabled children. To keep overall alpha below 
.05, individual alpha levels are set at .025 for each of the two DVs. WRAT-R scores are analyzed 
through univariate ANOVA, as displayed in Table 7.7. Because the main effect of disability is not 
interesting and the interaction is not statistically significant in MANOVA (Table 7.2), the only effect 
of interest is treatment. The critical value for testing the treatment effect (6.55 with 1 and 12 df at 
a: = .025) is clearly exceeded by the obtained F of 46.1225. 

WRAT-A scores are analyzed in ANCOVA with WRAT-R scores as covariate. The results of 
this analysis appear in Table 7.9.12 For the treatment effect, critical F with 1 and 11 df at cr = .025 is 
6.72. This exceeds the.obtained F of 5.49. Thus, according to stepdown analysis, the significant 
effect of treatment is represented in WRAT-R scores, with nothing added by WRAT-A scores. 

I 
! 

Note that WRAT-A scores show significant univariate but not stepdown E Because WRAT-A 
scores are not significant in stepdown analysis does not mean they are unaffected by treatment but 
rather that no unique variability is shared with treatment after adjustment for differences in WRAT-R. 
This result occurs despite the relatively low correlation between the DVs. 

This procedure can be extended to sets of DVs through MANCOVA. If the DVs fall into cate- 
gories, such as scholastic variables and attitudinal variables, one can ask whether there is any change 
in attitudinal variables as a result of an IV, after adjustment for differences in scholastic variables. The 
attitudinal variables serve as DVs in MANCOVA while the scholastic variables serve as covariates. 

7.5.3.3 Using Discriminant Analysis 

Discriminant analysis, as discussed more fully in Chapter 9, provldes information useful in assess- l 

ing DVs (DVs are predictors in the context of discriminant analysis). A structure (loading) matrix is i 
produced which contains correlations between the linear combination of DVs that maximizes treat- 

I 
ment differences and the DVs themse!ves. DVs that correlate highly with the combination are more 
important to discrimination among groups. 

TABLE 7.9 Analysis of Covariance of WRAT-A 
Scores, with WRAT-R Scores as the Covariate 

Source SS d f MS F 

Covariate 1.7665 1 1.7665 0.036 1 
D 538.3662 2 269.1831 5.5082 
T 268.308 1 1 268.3081 5.4903 
DT 52.1344 2 26.0672 0.5334 
s(DT) 537.5668 11 48.8679 

"A full stepdown analysis IS produced as an optlon through SPSS MANOVA. For illustratton. however, i t  is helpful to show 
how the analysis develops. 



Discrinlinant analysis also can be u:;ed to test each o f  the DVs in the standard multiple regres- 
sion sense; the effect on each DV is assessed after adjustment for all other DVs. That is, each DV is 
assessed as if it were the last one to enter an equation. This is demonstrated in Section 9.6.4. 

7.5.3.4 Choosing among Strategies for Asessitzg DVs 

You may find the procedures of Sections 9.6.3 and 9.6.4 more useful than univariate or stepdown F 
for assessing DVs when you have a significant multivariate main effect with more than two levels. 
Similarly, you may find the procedures described in Section 8.5.2 helpful for assessment of DVs if 
you have a significant multivariate interaction. 

The choice between univariate and stepdown F is not always easy, and often you want to use 
both. When there is no correlation among the DVs, univariate F with adjustment for Type I error is 
acceptable. When DVs are correlated, as they almost always are, stepdown F is preferable on grounds 
of statistical purity, but you have to prioritize the DVs and the results can be difficult to interpret. 

If DVs are correlated and there is some compelling priority ordering of them, stepdown analy- 
sis is clearly called for, with univariate Fs and pooled within-cell correlations reported simply as sup- 
plemental information. For significant lower-priority DVs, marginal ar?d/nr ce!! mems adjusted for 
higher-priority DVs are reported and interpreted. 

If the DVs are correlated but the ordering is somewhat arbitrary, an initial decision in favor of 
stepdown analysis is made. If the pattern of results from stepdown analysis makes sense in the light of 
the pattern of univariate results, interpretation takes both patterns into account with emphasis on DVs 
that are significant in stepdown analysis. If, for example, a DV has a significant univariate F but a non- 
significant stepdown F, interpretation is straightforward: The variance the DV shares with the IV is 
already accounted for through overlapping variance with one or more higher-priority DVs. This is the 
interpretation of WRAT-A in the preceding section and the strategy followed in Section 7.6. 

But if a DV has a nonsiznificant univariate F and a significant stepdown F, interpretation is 
much more difficult. In the presence oE higher-order DVs as covariates, the DV suddenly takes on 
"importance." In this case, interpretation is tied to the context in wnich the D'v's entered the stepdown 
analysis. It may be worthwhile at this point, especially if there is only a weak basis for ordering DVs, 
to forgo evaluation of statistical significance of DVs and resort to simple description. After finding a 
significant multivariate effect, unadjusted marginal andlor cell means are reported for DVs with high 
univariate Fs but significance levels are not given. 

An alternative to attempting interpretation of either univariate or stepdown F is interpretation of 
loading matrices in discriminant analysis, as discussed in Section 9.6.3.2. This process is facilitated 
when SPSS MANOVA or SAS GLM is used because information about the discriminant functions is 
provided as a routine part of the output. Alternatively, a discriminant analysis may be run on the data. 

Another perspective is whether DVs differ significantly in the effects of IVs on them. For 
example: Does treatment affect reading significantly more than it affects arithmetic? Tests for con- 
trasts among DVs have been developed in the context of meta-analysis with its emphasis on com- 
paring effect sizes. Rosenthal(2001) demonstrates these techniques. 

7.5.4 Specific Comparisons and Trend Analysis 

When there are more than two levels in a significant multivariate main effect and when a DV is 
important to the main effect, the researcher often wants to perform specific comparisons or trend 
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analysis of the DV to pinpoint the source of the significant difference. Similarly. when there is a sig- 
nificant multivariate interaction and a DV is important to the interaction. the researcher follows up 
the finding with comparisons on the DV. Specific comparisons may also be done on multivariate 
effects. These are often less interprstable than comparisons on individual DVs, unless DVs are all 
scaled in the same direction, or are based on factor or principal component scores. Review Sections. 
3.2.6,6.5.4.3, and 8.5.2 for examples and discussions of comparisons. The issues and procedures are 
the same for individual DVs in MANOv4 as in ANOVA. 

Comparisons are either planned (performed in lieu of omnibus F) or post hoc (performed after 
omnibus F to snoop-the data). When comparisons are post hoc, an extension of the Scheffk procedure 
is used to protect against inflated Type I error due to multiple tests. The procedure is very conserva- 
tive but allows for an unlimited number of comparisons. Following Scheffk for ANOVA (see Section 
3.2.6), the tabled critical value of F is multiplied by the degrees of freedom for the effect being tested 
to produce an adjusted, and much more stringent, E If marginal means for a main effect are being 
contrasted, the degrees.of freedom are those associated with the main effect. If cell means are being 
contrasted, our recommendation is to use the degrees of freedom associated with the interaction. 

Various types of contrasts on individual DVs are demonstrated in Sections 8.5.2.1 and 8.5.2.3. 
'The difference between setting up contrasts on individual DVs and setting up contrasts on the combi- 
nation is that all DVs are included in the syntax. Table 7.10 shows syntax for trend analysis and user- 
specified orthogonal contrasts on the main effect of DISABLTY for the small-sample example. The 
coefficients illustrated for the orthogonal contrasts actually are the trend coefficients. Note that SPSS 
GLM requires fractions in part of the LMATRIX command to produce the right answers. 

Use of this syntax also provides univariate tests of contrasts for each DV. None of these con- 
trasts are adjusted for post hoc analysis. The usual corrections are to be applied bminimize inflated - 
Type I error rate unless comparisons are planned (cf. Sections 3.2.6.5, 6.5.4.3, and 8.5.2). 

7.5.5 Design Compiexity 

When between-subjects designs have more than two IVs, extension of MANOVA is straightforward 
as iong as sample sizes are equal within each cell of the design. The partition of variance continues 
to follow ANOVA, with a variance component computed for each main effect and interaction. The 
pooled variance-covariance matrix due to differences among subjects within cells serves as the sin- 
gle error term. Assessment of DVs and comparisons proceed as described in Sections 7.5.3 and 7.5.4. 

Two major design complexities that arise, however, are inclusion of within-subjects IVs and 
unequal sample sizes in cells. 

7.5.5.1 Within-Subjects and Between- Within Designs 

The simplest design with repeated measures is a one-way within-subjects design where the same 
subjects are measured on a single DV on several different occaslons. The design can be complicated 
by addition of between-subjects IVs or more within-subjects IVs. Consult Chapters 3 and 6 for dis- 
cussion of some of the problems that arise in ANOVA with repeated measures. 

Repeated measures is extended to MANOVA when the researcher measures several DVs on sev- 
eral different occasions. The occasions can be viewed in two ways. In the traditional sense. occaslons 
is a within-subjects IV with as many levels as occasions (Chapter 3). Alternatively, each occasion can 



TABLE 7.10 Syntax for Orthogonal Comparisons and Trend Analysis 

Type of Comparison Program Syntax 

Orthogonal SPSS GLM 
GLM WRATR WRATA BY TREATMNT DISABLTY 

/ME:THOD = SSTY PE(3) 
/INTERCEPT = INCLUDE 
/CRITERIA = ALPHA(.05) 
ILMATRIX "LINEAR" DISABLTY 1 0 -1 

TREATMNT*DISABLTY 112 0 -112 112 0 -112 
JLMATRIX "QUADRATIC" DISABLTY 1 -2 1 

TREATMNT*DISABLTY 112 -212 112 112 -212 112 
/DESIGN = TREATMNT DISABLTY TREATMNThDISABLTY. 

SPSS MANOVA 
MANOVA WRATR WRATA BY TREATMNT (1 ,2) DISABLTY (1,3) 

/METHOD = UNIQUE 
/PARTITION (DISABLTY) 
/CONTRAST(DlSABLTY)=SPECIAL(l 1 1, 

1 0-1, 
1-2 1) 

/DESIGN = TRIEATMNT DISABLTY(1) 
DISABLTY(2) TREATMNT BY DISABLTY. 

SAS GLM PROC G1.M DATA=SASUSER. SS-MANOV; 
CLASS TREATMNT DISABLTY; 
MODEL WRATR WRATA = TREATMNT DISABLTY 
TREATMNT*DISABLTY; 
CONTRAST ' L I N E A R '  DISABLTY 1 0 -1; 
CONTRAST 'QUIADRATIC' DISABLTY 1 - 2  1; 
manova h = - a l l - / s h o r t ;  
r u n ;  

Section of Output 

Custom 
Hypothesis 
Tests: 

Multivariate Test 
Results 

EFFECT. . . 
DISABLTY ( 2 ) 

EFFECT. . . 
D I  SABLTY ( 1 ) 

MANOVA T e s t  
C r i t e r i a  .... 
N o  O v e r a l l  
l i n e a r  
( q u a d r a t i c )  
E f f e c t  

Name of Effect 

Wilks' 
Lambda 

Wilks ' 
Lambda 

W i  l k s '  
L a m b d a  
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TABLE 7.10 Continued 

Type of Section of Name of 
Comparison Program Syntax Output Effect 

. . - - .  --.- . ~ . . a . -  ,". . 
Trend SPSS No special syntax; done as any other user- EFFECT. .. Wil ks' 
Analysis GLM specified contrasts. DISABLTY(2) Lambda 

SPSS MANOVA 
EFFECT. . . 

MANOVA WRATR WRATA BY TREATMNT(1,2) DISABLTy 
DISABLTY(1,3) 

/METHOD = UNIQUE 
/PARTITION (DISABLTY) 
/CONTRAST(DISABLTY)= 

POLYNOMIAL (1,2,3) 
/DESIGN = TREATMNT DISABLTY(1) 

DISABLTY (2) 
TREATMNT BY DISABLTY. 

be treated as a separate DV--one DV per occasion (Section 7.2.8). In this latter view, if there is more 
than one DV measured on each occasion, the design is said to be doubly multivariate-multiple DVs 
are measured on multiple occasions. (There is no distinction between the two views when there are 
only two levels of the within-subjects IV.) 

Section 8.5.3 discusses a doubly-multivariate analysis of a small data set with a between- 
subjects 1%' (PROGRAM), a within-subjects IV (MONTH), and two DVs (WTLOSS and ESTEEM), I 
both measured three times. A complete example of a doubly-multivariate design is in Section 8.6.2. 1 

It also is possible to have multiple DVs, but treat the within-subjects IV univariately. This is I 

useful when (1) there are only two levels of the within-subjects IV, (2) there is no concern with vio- l 

lation of sphericity (Sections 3.2.3 and 8.5.1), or (3) a trend analysis is planned to replace the 
omnibus tests of the within-subjects IV and any interactions with the within-subjects IV. All 
programs that do doubly-multivariate analysis also show univariate results, therefore the syntax is 
the same as that used in Section 8.5.3. 

7.5.5.2 Unequal Sample Sizes 

When cells in a factorial ANOVA have an unequal number of scores, the sum of squares for effect 
plus error no longer equals the total sum of squares, and tests of main effects and interactions are cor- 
related. There are a number of ways to adjust for overlap in sums of squares (cf. Woodward & Over- 
all, 1975), as discussed in some detail in Section 6.5.4.2, particularly Table 6.10. Both the problem 
and the solutions generalize to MANOVA. 

All the MANOVA programs described in Section 7.7 adjust for unequal n. SPSS MANOVA 
offers both Method 1 adjustment (METHOD = UNIQUE),  which is default. and Method 3 adjust- 
ment (METHOD = SEQUENTIAL). Method 3 adjustment with survey data through SPSS 
MANOVA is shown in Section 7.6.2. Method 1--called SSTYPE(3)-is the default among four 
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options I n  SPSS GLiCI. 111 SAS GLM. Method 1 (called T Y P E  I I I or T Y P E  I V )  al\o i \  thc default 
among four optlons ava~lable. 

7.6 Complete Examples of Multivariate 
Analysis of Variance and Covariance 

In the research described in Appendix B, Section B. 1, there is interest in whether the means of sev- 
eral of the variables differ as a function of sex role identification. Are there differences in self- 
esteem, introversion-extraversion, neuroticism, and so on associated with a woman's masculinity 
and femininity? Files are MANOVA.". 

Sex role identification is defined by the masculinity and femininity scales of the Bem Sex Role 
Inventory (Bem, 1974). Each scale is divided at its median to produce two levels of masculinity (high 

! 
and low), two levels of femininity (high and low), and four groups: Undifferentiated (low femininity, 
low masculinity). Feminine (high femininity, low masculinity), Masculine (low femininity, high mas- 
cfi!inity), and -4ndmgynn~is (high femininity, high mac;culinity). The design produces a main effect of 
masculinity, a main effect of femininity, and a masculinity-femininity interaction.I3 

DVs for this analysis are self-esteem (ESTEEPvfj, internal versus external locus of control (CON- 
TROL), attitudes toward women's role (ATTROLE), socioeconomic level (SEL2), introversion- 
extraversion (INTEXT), and neuroticism (NEUROTIC). Scales are coded so that higher scores gener- 
ally represent the more "negative" trait: low self-esteem, greater neuroticism, etc. 

Omnibus MANOVA (Section 7.6.2) asks whether these DVs are associated with the two TVs 
(femininity and masculinity) or their interaction. The Roy-Bargmann stepdown analysis, in con- 
junction with the univariate F values, allows us to examine the pattern of relationships between DVs 
and each IV. 

In a second cxample (Section ?.6.3), MANCOV,4 is performed with SEL2, CONTROL, and 
ATTROLE used as covariateb and ESTEEM, INTEXT, and NEUROTIC used as DVs. The research 

I question is whether the three personality DVs vary as a function of sex role identification (the two 
IVs and their interaction) after adjusting for differences in socioeconomic status, attitudes toward 
women's role, and beliefs regarding locus of control of reinforcements. 

7.6.1 Evaluation of Assumptions 

Before proceeding with MANOVA and MANCOVA, we must assess the variables with respect to 
practical limitations of the techniques. 

7.6.1.1 Unequal Sample Sizes and Missing Data 

SPSS FREQUENCIES is run with SORT and SPLIT FILE to divide cases into the four groups. Data 
and distributions for each DV within each group are inspected for missing values, shape, and vari- 
ance (see Table 7.1 1 for output on the CONTROL variable for the Feminine group). The run reveals 
the presence of a case for which the CONTROL score is missing. No datum is missing on any of the 

:'Some would argue with the wisdom of considering masculinity and femininity separate IVs, and of perform~ng a median 
split on them to create groups. This example is used for didactic purposes. 



13 TABLE 7.11 Syntax and Selected SPSS FREQUENCIES Output for MANOVA Variables; 
4 
00 Split by Group 

MISSING VALUES CONTROL (0) 
SORT CASES BY ANDRM. 
SPLIT FILE 
SEPARATE BY ANDRM. 

FREQUENCIES 
VARIABLES=ESTEEM CONTROL ATTROLE S E U  INTEXT NEUROTIC IFORMAT NOTABLE ' 

/STATISTICS=STDDEV VARIANCE MINIMUM MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS 
SEKURT 
HISTOGRAM NORMAL 
/ORDER=ANALYSIS. 

Frequencies Groups4 = Feminine 
Statisticsa 

aGroups-4 = Feminine 

N Valid 
Missing 

Mean 
Std. Devlation 
Varlance 
Skewness 
Std. Error of Skewness 
Kurtos~s 
Std. Error of Kurtosis 
M~nimum 
Max~mum 

Locus of 
control 

1 72 
1 

I 6.7733 
1.26620 

1.603 
.541 
1 8 5  

-.381 
.368 
5.00 

10.00 

Self 
esteem 

173 
0 

16.491 3 
3.48688 

12.158 
.471 
1 8 5  
.651 
.367 
9.00 

28.00 

Attitude 
toward role 
of women 

173 
0 

37.0520 
6.28145 
39.457 

.076 

.I85 
-.204 

.367 
22.00 
55.00 

Socio-economic 
level 

173 
0 

40.402643 
24.659579 

608.095 
-.235 

.I85 
-1.284 

.367 
.OOOOO 

81 .OOOOO 

Introversion- 
extroversion 

173 
0 

1 1.3266 
3.6621 9 

13.41 2 
-.327 

.I85 
-.335 

.367 
2.00 

20.00 

Neuroticlsm 

173 
0 

8 9653 
5 10688 
26 080 

238 
185 

- 689 
367 
00 

23 00 
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TABLE 7.1 1 Continued 

Histogram Locus of control 
Groups-4. Fem~nine 

Locus of control 

Mean = 6.7733 
Std. Dev. = 1.2662 
N = 172 

other DVs for the 369 women who were administered the Bem Sex Role Inventory. Deletion of the 
case with the missing value, then, reduces the available sample size to 368. 

Sample sizes are quite different in the four groups: There are 7 1 Undifferentiated, 172 Ferni- 
nine, 36 Masculine, and 89 Androgynous women in the sample. Because it is assumed that these 
differences in sample size reflect real processes in the population, the sequential approach to adjust- 
ment for unequal n is used with FEM (femininity) given priority over MASC (masculinity), and 
FEM by MASC (interaction between femininity and masculinity). 

The sample size of 368 includes ever 35 cases for each cell of the 2 x 2 between-subjects design, 
more than the 20 df for error suggested to assure multivariate normality of the sampling distribution 
of means, even with unequal sample sizes; there are far more cases than DVs in the smallest cell. Fur- 
ther. the distributions for the fill1 run (of which CONTROL in Table 7.11 is a part) produ- r e  fie came 
for alarm. Skewness is not extreme and, when present, is roughly the same for the DVs. 

Two-tailed tests are automatically performed by the computer programs used. That is, the F 
test looks for differences between means in either direction. 

7.6.1.3 Linearity 

The full output for the run of Table 7.11 reveals no cause for worry about linearity. All DVs in each 
group have reasonably balanced distributions so there is no need to examine scatterplots for each pair 
of DVs within each group. Had scatterplots been necessary, SPSS PLOT would have been used with 
the SORT and SPLIT FILE syntax in Table 7.11. 

7.6.1.4 Outliers 

No univariate outliers were found using a criterion : = / 3.3 / (a = ,001) with the minimum and 
maximum values in the full output of Table 7.1 1. SPSS REGRESSION is used with the split file in 
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place to check for niultivariate outliers within each of the four proup  iTuble 7.12). The RESIDUALS= 
OUTLIERS(MAHAL) instruction produces the 10 most outlying cases for each of the groups. With six 
variables and a criterion a = .001, critical x 2  = 22.458; no multivariate outliers are found. 

7.6.1.5 Homogeneity of Variance-Covariance Matrices 

As a preliminary check for robustness, sample variances (in the full run of Table 7.11) for each DV 
are compared across the four groups. For no DV does the ratio of largest to smallest variance 
approach 10: 1. As a matter of fact, the largest ratio is about 1.5: 1 for the Undifferentiated versus 
Androgynous groups on CONTROL. 

Sample sizes are widely discrepant, with a ratio of almost 5: 1 for the Feminine to Masculine 
groups. However, with very small differences in variance and two-tailed tests, the discrepancy in sarn- 

TABLE 7.12 Mahalanobis Distance Values for Assessing Multivariate Outliers 
(Syntax and Selected Portion of Output from SPSS REGRESSION) 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA 
/CRITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT CASENO 
/METHOD=ENTER ESTEEM CONTROL ATTROLE SEL2 INTEXT NEUROTIC 
/RESIDUALS=OUTLIERS(MAHAL). 

Regression 

Groups-4 = Undifferentiated Groups-4 = Masculine 

Outlier Statisticsalb Outlier Statisticsatb 

aDependent Variable: CASENO 
bGroups-4 = Undifferentiated 

aDependent Variable: CASENO 
bGroups-4 = Masculine 

Statistic -- 
14.975 
14.229 
11.777 
11.577 
11.371 
10.042 
9.378 
9.352 
9.31 8 
8.704 

Mahal. Distance 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Case 
Number 

Mahal. Distance 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
t 

Case 
Number 

277 
276 
249 
267 
25 1 
253 
246 
27 1 
278 
273 

32 
71 
64 
5 

41 
37 
55 
3 
1 

25 

Statistic 

14.294 
11.773 
11.609 
10.993 
9.175 
8.276 
7.984 
7.91 7 
7.406 
7.101 

L 
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T.4BLE 7.12 Continued 

Groups-4 = Feminine Groups-4 = Androgynous 

Outlier Statisticsalb Outlier Statisticsayb 
" .*. . *, %.%.A, ~ - ,  . .,* , . 

aDependent Variable: CASENO aDependent Variable: CASENO 
bGroups-4 = Ferninme bGroups-4 = Androgynous 

ple sizes does not invalidate use of MANOVA. The very sensitive Box's M test for homogeneity of 
dispersion matrices (performed through SPSS MANOVA as part of the major analysis in Table 7.15) 
produces F(63. 63020) = 1.07, p > .05, supporting the conclusion of homogeneity of variance- 
covariance matrices. 

7.6.1.6 Homogeneity o j  Regression 

Because Roy-Bargmann stepdown analysis is planned to assess the importance of DVs after 
MANOVA, a test of homogeneity of regression is necessary for each step of the stepdown analysis. 
Table 7.1 3 shows the SPSS MANOVA syntax for tests of homogeneity of regression where each DV, 
in turn, serves as DV on one step and then becomes a covariate on the next and all remaining steps 
(the split file instruction first is turned off). 

Table 7.13 also contains output for the last two steps where CONTROL serves as DV with 
ESTEEM, ATTROLE, NEUROTIC, and INTEXT as covariates, and then SEL2 is the DV with 
ESTEEM, ATTROLE, NEUROTIC, INTEXT, and CONTROL as covariates. At each step, the rele- 
vant effect is the one appearing last in the column labeled Source of Variation, so that for SEL2 
the F value for homogeneity of regression is F(15, 344) = 1.46, p > .Ol. (The more stringent cutoff 
is used here because robustness is expected.) Homogeneity of regression is established for all steps. 

For MANCOVA, an overall test of homogeneity of regression is required, in addition to step- 
down tests. Syntax for all tests is shown in Table 7.14. The ANALYSIS sentence with three DVs spec- 
ifies the overall test, while the ANALYSIS sentences with one DV each are for stepdown analysis. 
Output for the overall test and the last stepdown test is also shown in Table 7.14. Multivariate output is 
printed for the overall test because there are three DVs; univariate results are given for the stepdown 
tests. All runs show sufficient homogeneity of regression for this analysis. 
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TABLE 7.13 'Test for Homogeneity of Regression for hIANOY4 Stepdown Analysis (Syntax and 
Selected Output for Last Two Tests from SPSS iC1ANOV.A) 

SPLIT FILE 
OFF. 
MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM, MASC(1,2) 

/PRINT=SIGNtF(BRIEF) 
/ANALYSIS=ATTROLE 
IDESIGN=ESTEEM,FEM,MASC,FEM BY MASC, ESTEEM BY FEM BY MASC 
/ANALYSIS=NEUROTIC 
/DESIGN=ATTROLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(ATTROLE,ESTEEM) 

BY FEM + POOL(ATTROLE,ESTEEM) BY MASC + POOL(ATTROLE, 
ESTEEM)BY FEM BY MASC/ 

/ANALYSIS=INTEXT 
/DESIGN=NEUROTIC,ATTFiOLE,ESTEEM,FEM,MASC,FEM BY MASC, POOL(NEUROTIC, 

ATTROLE,ESTEEM) BY FEM + POOL(NEUROTIC,ATTROLE,ESTEEM) 
BY MASC + POOL(NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC 

/ANALYSIS=CONTROL 
/DESIGN=INTEXT,NEUROTIC,ATTROLE,ESTEEM FEM,MASC FEM BY MASC, 

POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM + 
POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC + 
POOL(INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC 

/ANALYSIS=SEL2 
/DESIGN=CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM,FEM,MASCFEM BY MASC, 

POOL(CONTROL,lNTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM + 
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY MASC + 
POOL(CONTROL,INTEXT,NEUROTIC,ATTROLE,ESTEEM) BY FEM BY MASC. 

Tests of Significance for CONTROL using UNIQUE sums of squares 

Source of Variation S S DF MS F Sig of F 

WITHIN+RESIDUAL 
INTEXT 
NEUROTIC 
ATTROLE 
ESTEEM 
FEM 
MASC 
FEM BY MASC 
POOL(1NTEXT NEUROTIC 
ATTROLE ESTEEM) BY 
FEM + POOL(1NTEXT NE 
UROTIC ATTROLE ESTEE 
M) BY MASC + POOL(1N 
TEXT NEUROTIC ATTROL 
E ESTEEM) BY FEM BY 
MASC 
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TABLE 7.13 Continued 

Tests of Significance of SEL2 using UNIQUE sums of squares 

Source of Variation 

WITHIN+RESIDUAL 
CONTROL 
INTEXT 
NEUR 
ATT 
EST 
FEM 
MASC 
FEM BY MASC 
POOL (CONTROL. INTEXT 
NEUROTIC ATTROLE EST 
EEM) BY FEM + POOL (C 
ONTROL INTEXT NEUROT 
IC ATTROLE ESTEEM) B 
Y MASC + POOL(CONTR0 
L INTEXT NEUROTIC AT 
TROLE ESTEEM) BY FEM BY MASC ) 

TABLE 7.11 Tests of Homogeneity of Regression for MANCOVA 
and Stepdown Analysis (Syntax and Partial Output for Overall Tests 
and Last Stepdown Test from SPSS MANOVA) 

F Sig of F 

MP,N@?/A ESTEEM,ATTF?OLE,NEUROTIC.INTEXT,CONTROL,SEL2 BY FEM MASC(1,2) 
/PRINT=SIGNIF(BRIEF) 

/ANALYSIS=ESTEEM,INTEXT,NEUROTiG 
ICESIGN=CONTROL,,4TTROLE1SEL2,FEMh?MASC,FEM BY MASC, 

POOL(CONTROL,ATTROLE,SEL2) BY FEM + 
POOL!CONTROL,ATTROI.E,SEL2) BY MASC + 
POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=ESTEEM 
/DESIGN=CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC, 

POOL(CONTROL,ATTROLE,SEL2) BY FEM + 
POOL(CONTROL,ATTROLE,SEL2) BY MASC + 
POOL(CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=INTEXT 
/DESIGN=ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC,FEM BY MASC, 

POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM + 
POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY MASC + 
POOL(ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC 

/ANALYSIS=NEUROTIC 
/DESIGN=INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2,FEM,MASC7FEM BY MASC, 

POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM+ 
POOL(INTEXT,ESTEEM7C0NTROL,ATTROLE,SEL2) BY MASC + 
POOL(INTEXT,ESTEEM,CONTROL,ATTROLE,SEL2) BY FEM BY MASC. 

(cor~r l r~~ led)  
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TABLE 7.14 Continued 

Multivariate Tests of Signific,ance 
Tests usins UNIQUE sums of squares and WITHIN+RESIDUAL error term 
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

CONTROL 
ATTROLE 
SEL2 
FEM 
MASC 
FEM BY MASC 
POOL ( CONTROL ATTROL 
E SEL2) BY FEM + .PO0 
L(CONTR0L ATTROLE SE 
L2) BY MASC + POOL(C 
ONTROL ATTROLE SEL2) 
BY FEM BY MASC 

Tests of Significance for NEUROTIC using UNIQUE sums of squares 
Source of Variation SS DF MS F Sig of F 

WITHIN+RESIDUAL 
INTEXT 
ESTEEM 
CONTROL 
ATTROLE 
SEL2 
FEN 
MASC 
FEM BY MASC 
POOL (INTEXT ESTEEM C 
ONTROL ATTROLE SEL2) 
BY FEM + POOL (INTEX 
T ESTEEM CONTROL ATT 
ROLE SEL2) BY MASC + 
POOL(1NTEXT ESTEEM 
CONTROL ATTROLE SEL2 
) BY ??EM BY MASC 

7.6.1.7 Reliability of Covariates 

For the stepdown analysis in MANOVA, all DVs except ESTEEM must be reliable because all act as 
iovariates. Based on the nature of scale development and data collect~on procedures. there is no 
reason to expect unreliability of a magnitude harmful to covariance analysis for ATTROLE, NEU- 
ROTIC, INTEXT, CONTROL, and SEL2. These same variables act as true or stepdown covariates 
in the MANCOVA analysis. 



The log-determinant of the pooled within-cells correlation matrix 1s found (through SPSS 
MANOVA syntax in Table 7.15) to be -.4336, yielding a determinant of 2.7 I .  This is sufticiently 
different from zero that multicollinearity is not judged to be a problem. 

7.6.2 Multivariate Analysis of Variance 

Syntax and partial output of omnibus MANOVA produced by SPSS MANOVA appear in Table 7.15. 
The order of IVs listed in the MANOVA statement together with METHOD=SEQUENTIAL sets up 

TABLE 7.15 Multivariate Analysis of Variance of Composite of DVs (ESTEEM, CONTROL, 
ATTROLE, SEL2, INTEXT, and NEUROTIC), as a Function of (Top to Bottom) FEMININITY by 
MASCULINITY Interaction, MASCULINITY, and FEMININITY (Syntax and Selected Output from 
SPSS MANOVA) . 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(I ,2) 
/PRINT=SlGNIF(STEPDOWN), ERROR(COR), 

HOMOGENEITY(BARTLETT,COCHRAN:BOXM) 
/METHOD=SEQUENTIAL 
/DESIGN FEM MASC FEM BY MASC. 

EFFECT.. FEM BY MASC 
Multivariate Tests of Significance (S = 1, M = 2  , N = 1 7 8  1 / 2 )  

Test Name Value Exact F Hypoth. DF Error DF Sig. of F 

~illais .00816 .49230 6.00 359 .00  .814  
Hotellings .00823 .49230 6 .00  359 .00  .814  
Wilks .99184  .49230 6 .00  3 5 9 . 0 0  .814 
Roys .00816 
Note.. F statistics are exact. 
EFFECT.. MASC 
Multivariate Tests of Significance (S = 1, M = 2  , N = 1 7 8  1 / 2 )  

Test Name Value Exact F Hypotk. DF Error DF Sig. of P 

Pillais .24363 19 .27301  6.00 359 .00  . O O O  
Hotellings . 3 2 2 1 1  1 9  - 2 7 3 0 1  6.00 359 .00  . O O O  
Wilks .75637 19 .27301  6.00 359 .00  . O O O  
Roys .24363  
Note.. F statistics are exact. 

EFFECT.. FEM 
Multivariate Tests of Significance (S = 1, M = 2  , N = 178  1 / 2 )  

Test Name Value Exact F Hypoth. DF Error DF S i g :  of F 

Pillais . 0 8 1 0 1  5.27423 6.00 359 .00  - 0 0 0  
Hotellings .08815  5.27423 6.00 359 .00  . O @ O  
Wilks . 91899  5 .27423  6 .00  359 .00  .OD0 
Roys . 0 8 1 0 1  
Note.. F statistics are exact. 
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the priority for testing FEbl before MI\SC' i n  this uneclnal-11 design. Resultc are reported for FEhl by 
MASC. MASC, and FEM. in turn. Tests are reported out in  order of adjustrncnr w h e r e  FEhI by 
MASC is adjusted for both MASC and FEM, and MASC is adjusted for FEM. 

Four multivariate statistics are reported for each effect. Because there is only one degree of 
freedom for each effect, three of the tests-Pillai's, Hotelling's, and Wi1ks'-produce the same F . ' ~  
Both main effects are highly significant, but there is no statistically significant interaction. If desired, 
effect size for the composite DV for each main effect is found using Equation 7.8 (shown in SPSS 
MANOVA as Pillai's value) or 7.9. In this case. full and partial r12 are the same for each of the three 
effects because s =' 1 for all of them. Confidence limits for effect siz,es are found by entering values 
from Table 7.15 (Exact F, Hypoth . DF, Error DF, and the percentage for the desired confidence 
interval) into Smithson's (2003) NoncF.sav and running it through NoncF3.sps. Results are added to 
NoncF.sav, as seen in Table 7.16. (Note that partial q2 also is reported as r2.) Thus, for the main 
effect of FEM, partial v12 = .08 with 95% confidence limits from .02 to .13. For the main effect of I 

1 

MASC, partial q2 = .24 with 95% confidence limits from .16 to .30. For the interaction, partial 
rl2 = .O1 with 95% confidence limits from .OO to .02. 

Because omnibus MANOVA shows significant main effects, it is appropriate to investigate 
I j 

furt'ner the nature of the reiationships among the IVs and DVs. Correlations, univariate Fs, and step- 
down Fs help clarify the relationships. 

The degree to which DVs are correlated provides information as to the independence of behav- 
iors. Pooled within-cell correlations, adjusted for IVs, as produced by SPSS MANOVA through 
PRINT = ERROR(COR), appear in Table 7.17. (Diagonal elements are pooled standard devia- 
tions.) Correlations among ESTEEM, NEUROTIC, and CONTROL are in excess of .30 so stepdown 
analysis is appropriate. 

Even if stepdown analysis is the primary procedure, knowledge of univariate Fs is required to 
correctly interpret the pattern of stepdown Fs. And, although the statistical significance of these F 
values is misleading, investigators frequently are interested in the ANOVA that would have been pro- 

I 

duced if each DV had been investigated in isolation. These univariate analyses are produced auto- 
matically by SPSS MANOVA and shown in Table 7.18 for the three effects in turn: FEM by MASC, i 
MASC, and FEM. F values are substantiai for aii DVs except SEL2 for MASC and ESTEEM, ATT- 

i 
ROLE, and INTEXT for FEM. i 

Finally, Roy-Bargmann stepdown analysis, produced by PRINT=SIGNI F(STEPDOWN), 
allows a statistically pure look at the significance of DVs, in context, with Type I error rate controlled. 

TABLE 7.16 Data Set Output from NoncF3.sps for Effect Size (r2) with 95% Confidence Limits (lr2 
and ur 2) for Interaction, MASC, and FEM, Respectively 

i 

'-'For more complex des~gns. J bingle aourcr table contain~ng all effects call be obta~necl through PRINT=SIGNIF(BRIEF) 
but the table displays only Wilks' lambda. 



TABLE 7.17 Pooled PVithin-Cell Correlations among Six DV5 (Selected Output from SPSS 
MANOVA-See Table 7.15 for Sq ntax) 

WITHIN+RESIDUAL Correlations with Std. Devs. on Diagonal 

ESTEEM ATTROLE NEUROTIC INTEXT CONTROL SEL2 

ESTEEM 3.533 
ATTROLE -145  6.227 
NEUROTIC .358 . 051  4.965 
INTEXT -. 164 . 011  -. 009 3 .587  
CONTROL .348 -. 031  .387 -. 083 1 . 2 6 7  
SEL2 -.035 .016 -. 015 .055 - .084  25 .501  

TABLE 7.18 Univariate Analyses of Variance of Six DVs for Effects of (Top to Bottom) 
FEM by MASC Interaction, Masculinity, and Femininity (Selected Output from 
SPSS MANOVA--See Table 7.15 for Syntax) 
P 

I EFFECT. . FEM BY MASC (Cant . ) 
Univariate F-tests with (1 ,364 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 17.48685 4544.44694 17.48685 12.48474 1 .40066  -237  
ATTROLE 36.79594 14115.1212 36.79594 38.77781 .94889 . 3 3 1  
NEUROTIC .20239 8973.67662 .20239 24.65296 .00821 .928 
INTEXT .02264 4684.17900 -02264 12.86862 ,00176 .967 
CONTROL .89539 584.14258 .89539 1.60479 .55795 .456 
SEL2 353.58143 236708.966 353.58143 650.29936 .54372 . 461  

nn nr FECT. . YASC (Cant . ) 
Univariate F-tests with ( 1 , 3 6 4 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 979.60086 4544.44694 979.60086 12.48474 78.46383 . O O O  
A'TTROTjE 1426.756?5 14115.1212 1426.75675 38.77781 35 .79313 . O O O  
NmTROTIC 179.53396 8973.67662 179.53396 24.65296 7 .28245 .007 
INTEXT 327.40797 4684.17900 327.40797 12.86862 25 .44235 . O O O  
CONTROL 11.85923 584.14258 11 .85923 1 .60479 7 .38991  .007 
SEL2 1105.38196 236708.966 1105.38196 650.29936 1 .69980 . I 9 3  

EFFECT.. FEM (Cont.) 
Univariate F-tests with ( 1 , 3 6 4 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

ESTEEM 101.46536 4544.44694 101.46536 12.48474 8 .12715 -005  
ATTROLE 610.88860 14115.1212 610.88860 38.77781 15 .75356  . O O O  
NEUROTIC 44.05442 8973.67662 44.05442 24.65296 1 .78698  . I 8 2  
INTEXT 87.75996 4684.17900 87.75996 12.86862 6.81968 .009 
CONTROL 2.83106 584.14258 2.83106 1.60479 1 .76414  . I 8 5  
SEL2 9 .00691  236708.966 9 .00691 650.29936 .01385 .906  
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For this study. the following priority order of DVs 1s developed. fro111 most to least important: 
ESTEEM. ATTROLE, NEUROTIC, INTEXT, CONTROL. SEL2. Following the procedures for qtep- 
down analysis (Section 7.5.3.2), the highest-priority DV, ESTEEM. is tested in univariate ANOVA. 
The second-priority DV. ATTROLE, is assessed in ANCOVA with ESTEEM as the covariate. The 
third-priority DV, ,NEUROTIC, is tested with ESTEEM and ATTROLE as covariates, and so on, until 
all DVs are analyzed. Stepdown analyses for the interaction and both main effects are in Table 7.19. 

For purposes of journal reporting, critical information from Tables 7.18 and 7.19 is consolidated 
into a single table with both univariate and stepdown analyses, as shown in Table 7.20. The alpha level 
established for each.DV is reported along with the significance levels for stepdown E The final three 
columns show partial $ with 95% confidence limits for all stepdown effects, described later. 

For the main effect of FEM, ESTEEM and ATTROLE are significant. (INTEXT would be sig- 
nificant in ANOVA but its variance is already accounted for through overlap with ESTEEM, as noted 

TABLE 7.19 Stepdown'Analyses of Six Ordered DVs for (Top to Bottom) FEM 
by MASC Interaction, Masculinity, and Femininity (Selected Output from SPSS MANOVA- 

I 

see Table 7.16 for Syntax) 

RQY-Bargman Stepdown F-test 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 17.48685 12 .48474 1.40066 1 3 64 .237 
ATTROLE 24.85653 38.06383 .65302 1 363 .420 
NEUROTIC 2.69735 21.61699 . I2478  1 3 62 .724 
INTEXT -26110 12.57182 .02077 1 361  .885  
CONTROL .41040 1 .28441  .31952 1 360 .572 
SEL2 297.09000 652.80588 .45510 1 359 .500 

Roy-Bargman Stepdown F-tests i 

Variabie Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 1 
I 

ESTEEM 979.60086 12 .48474 78.46383 1 3 64 . O O O  
ATTROLE 728.51682 38.06383 19.13935 1 363 . O O O  
NEUROTIC 4.14529 21.61699 . I9176  1 362 .662 
INTEXT 139.98354 12.57182 11.13471 1 361  . 001  I 

CONTROL .00082 1 .28441  .00064 1 360 -980  
SEL2 406.59619 652.80588 .62284 1 359 . 431  

Roy-Bargrnan Stepdown F-tests 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 101.46536 12 .48474 8.12715 1 3 64 .005 
ATTROLE 728.76735 38.06383 19.14593 1 3 63 . O O O  
NEUROTIC 2.21946 21.61699 . I0267  1 362 .749 
INTEXT 47.98941 12 .57182 3.81722 1 361  .052 
CONTROL .05836 1 .28441  .04543 1 360 - 8 3 1  
SEL2 15.94930 652.80588 .02443 1 359 .876 
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TABLE 7.20 Tests of Femininity, &Iasculinity, and Their Interaction 

CL around 
Partial tl"er a 

Univariate Stepdown Partial 
IV DV F df F df a q2 Lower- Upper 

Femininity ESTEEM 
ATTROLE 
NEUROTIC 
INTEXT 
CONTROL 
SEL2 

Masculinity ESTEEM 
ATTROLE 
NEUROTIC 
INTEXT 
CONTROL 
SEL2 

Femininity by ESTEEM 
masculinity ATTROLE 
interaction NEUROTIC 

INTEXT 
CONTROL 
SEL2 

Yiignificance level cannot be evaluated but would reach p < .O I in univariate context. 
"-,-,1, 

in the pooled within-cell correlation matrix.) For the main effect of MASC, ESTEEM, ATTROLE, 
and INTEXT are significant. (NEUROTIC and CONTROL would be significant in ANOVA, but 
their variance is also already accounted for through overlap with ESTEEM, ATTROLE, and, in the 
case of CONTROL, NEUROTIC and INTEXT.) 

For the DVs significant in stepdown analysis, the relevant adjusted marginal means are needed 
for interpretation. Marginal means are needed for ESTEEM for FEM and for MASC adjusted for 
FEM. Also needed are marginal means for ATTROLE with ESTEEM as a covariate for both FEM, 
and MASC adjusted for FEM; lastly, marginal means are needed for INTEXT with ESTEEM, A m -  
ROLE, and NEUROTIC as covariates for MASC adjusted for FEM. Table 7.21 contains syntax and 
selected output for these marginal means as produced through SPSS MANOVA. In the table, level of 
effect is identified under PARAMETER and mean is under C o e f  f .  Thus, the mean for ESTEEM at 
level 1 of FEM is 16.57. Marginal means for effects with univariate, but not stepdown, differences 
are shown in Table 7.22 where means for NEUROTIC and CONTROL are found for the main effect 
of MASC adjusted for FEM. 

Effect size for each DV is evaluated as partial r12 (Equation 3.25,3.26,6.7,6.8, or 6.9). The infor- 
mation you need for calculation of $ i s  available in SPSS MANOVA ctepdown tables (see Table 7.19) 
but not in a convenient form; mean squares are given in the tables but you need sums of squares for cal- 
culation of r12. Smithson's (2003) program (NoncF3.sps) calculates confidence limits for effect sizes 
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T.4BLE 7.11 Adjusted Marginal Means for ESTEEM; ATTROLE with ESTEEM as a Covariate; and 
INTEXT with ESTEEM, ATTROLE, and NEUROTIC as Cobariates (Syntas and Selected Output 
from SPSS MANOV'4) 

MANOVA ESTEEM,ATTROLE,NElJROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRI NT=PARAMETERS(ESTIM) 

/ANALYSIS=ESTEEM /DESIGN=CONSPLUS FEM 
/DESIGN=FEM,CONSPLUS MASC 

/ANALYSIS=ATTROLE WlTH ESTEEM /DESIGN=CONSPLUS FEM 
/DESIGN=FEM, CONSPLUS MASC 

/ANALYSIS=INTEXT WlTH ESTEEM,ATTROLE,NEUROTIC 
/DESIGN=FEM. CONSPLUS MASC. 

Estimates for ESTEEM 
--- Individual univariate .9500 confidence intervals 

Parameter Coeff. Std. Err. t-Value Sig; t Lower -95% CL- Upper 

Estimates for ESTEEM 
--- Individual univariate .9500 confidence intervals . - 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ATTROLE adjy_sted_ for 1 covariate 
--- Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ATTROLE adjusted for 1 covariate 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 
CP 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
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TARLE 7.21 Continued 

Estimates for INTEXT adjusted for 3 covariates 
- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

2 11.0013930 .25372 43.36122 . O O O O O  10.50245 11.50033 
3 12.4772029 .35546 35.10172 . O O O O O  11.77818 13.17623 

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high. 

TABLE 7.22 Unadjusted Marginal Means for Neurotic and Control (Syntax and Selected Output 
from SPSS MANOVA! 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ANALYSIS=NEUROTIC /DESIGN=FEM, CONSPLUS MASC 
/ANALYSIS=CONTROL /DESIGN=FEM, CONSPLUS MASC. 

Estimates for NEUROTIC 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
I 

Estimates for CONTROL 
--- Individual univariate .9500 confidence intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

2 6.89163310 .08665 79.53388 . O O O O O  6.72124 7.06203 
3 6.51258160 -11735 55.49504 .OOOOO 6.28181 6.74336 

Note: Coeft. = unadjusted marginal mean, first parameter = low, second parameter = high. 

and also calculates the effect size itself from F (stepdown or otherwise), df for effect (dfl) and error 
(df2). and the percentage associated with the desired confidence limits. These four values are entered 
into the data sheet (NoncEsav). The remaining columns of NoncEsav are filled in when NoncF3.sps 
is run. The relevant output columns are 1-2 (equivalent to partial r12 of Equation 6.9), 11-2 and ur2. the 
lower and upper confidence limits, respectively, for the effect size. Table 7.23 shows the inputfoutput 
data set for all of the stepdown effects following the order in Table 7.20, e.g., I = ESTEEM for FEM, 
2 = ATTROLE for FEM, 3 = NEUROTIC for FEM and so on. Values filled into the first three columns 
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are from Table 7.20. The value o f  99 or 999 filled in for the confidence limit5 retlects the c h o ~ e n  ( t  

level for each effect. 
A checklist for MANOVA appears in Table 7.24. An example of a Results section, In journal 

format, follows for the study just described. 

TABLE 7.23 Data Set Output for Stepdown Effects from NoncF3.sps for Effect Size (r2) with 95% 
Confidence Limits (lr2 and ur2) 

TABLE 7.24 Checklist for NIultivariate Analysis of Variance 
I 

1. Issues 
a. Unequal sample sizes and missing data ! 
b. Normality of sampling distributions 
c. Outliers 
d. Homogeneity of variance-covariance matrices 
e. Linearity 
f. In stepdown, when DVs act as covariates 

(1) Homogeneity of regression 
(2) Reliability of DVs 1 

g. Multicollinearity and singularity 
2. Major analyses: Planned comparisons or omnibus E when significant. Importance of DVs 

a. Within-cell correlations, stepdown E univariate F 
b. Effect sizes with confidence interval for significant stepdown F 
c. Means or adjusted marginal an!l/or cell means for significant F; with standard deviations, standard 

errors, or confidence intervals 
3. Multivariate effect size($) with confidence interval(s) for planned comparisons or omnibus F 
4. Additional analyses 

a. Post hoc comparisons 
b. Interpretation of IV-covariates interaction (if homogeneity of regression violated) 
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Results 

A 2 x 2 between-subjects multivariate analysis of variance was 

performed on six dependent variables: Self-esteem, attitude toward 

the role of woma, neuroticism, introversion-extraversion, locus of 

control, and socioeconomic level. Independent variables were mas- 

culinity (low and high) and femininity (low and high). 

SPSS MANOVA was used for the analyses with the sequential adjust- 

mat for nonorthogonality. Order of entry of IVs was femininity, then 

masculinity. Total N of 369 was reduced to 368 with the deletion of a 

case missing a score on locus of control. There were no univariate or 

multivariate within-cell outliers at p < .001. Results of evaiuation 

of assumptions of normality, hamogeneity of variance-covariance 

mtrices, linearity, and multicollinearity were satisfactory. 

With the use of Wilks' criterion, the combined DVs were 

significantly affected by both masculinity, F(6, 359) = 19.27, 

p <  .001, and femininity, F ( 6 ,  359) = 5.27, p < .001, but not by 

their interaction, F ( 6 ,  359) = 0.49, p > -05. The results reflected a 

nodest association between masculinity scores (IOW vs. kii~;h) =d the 

combined Ws, partial q2 = .24 with 95% confidence iimits from .16 to 

-30. The association was even less substantial between femininity 

and the Ws, partial q2 = .08 with 95% confidence limits from .02 to 

.13. For the nonsignificant interaction, q2 = -01 with 95% confidence 

limits from .OO to .02. [F and P i l l a i f s  value (partial q2) are frm 

Table 7.15; confidence limits for q2 are found through NoncF3. sps. I 

To investigate the impact of each main effect on the individual 

Ws, a Roy-Bar- stepdown analysis was performed on the priori- 

tized Ws. All W s  were judged to be sufficiently reliable to warrant 

stepdown analysis. In stepdown analysis each W was analyzed, in 

turn, with higher-priority W s  treated as covariates and with the 

highest-priority W tested in a univariate ANOVA. Homogeneity of 

regression was achieved for all conponents of the stepdown analysis. 



Results of this analysis are summarized in Table 7.20. An 

experimentwise error rate of 5% was achieved by the apportionment of 

alpha as shown in the last coiumn of Table 7.20 for each of the Ws. 

A unique contribution to predicting differences between those low 

and high on femininity was made by self-esteem, stepdown 

F(1, 364) = 8.13, p < .01, q2 = .02 with 99% confidence limits from 

.OO to .07. Self-esteem was scored inversely, so women with higher 

femininity scores showed greater self-esteem (mean self-esteem = 

15.41, SE = 0.24) than those with lower femininity (mean self -esteem 

= 16.57, SE = 0.38). After the pattern of differences measured by 

seif-esteem was entered, a difference was also found on attitude 

toward the role of women, stepdown F(1, 363) = 19.15, p < .Oil q2 = 

.05 with confidence limits from .O1 to .12. W- with higher femi- 

ninity scores had more consenrative attitudes toward women's role 

(adjusted mean attitude = 35.90, SE = 0.35) than those lower in femi- 

ninity (adjusted mean attitude = 32.57, SE = 0.61) . Although a uni- 
variate comparison revealed that those higher in femininity also were 

more extroverted, univariate F(1, 364) = 6.82, this difference was 

already represented. in the stepdown analysis by higher-priority Ws. 

Three ISVs-self-esteem, attitude toward role of women, and 

introvert-extrovert-made unique contributions to the composite DV 

that best distinguished between those high and low in masculinity. 

The greatest contribution was made by self-esteem, the highest- 

priority W ,  stepdown F(1, 364) = 78.46, p < .01, q2 = 18 with confi- 

dence limits from .09 to .27. Women scoring high in masculinity had 

higher self-esteem (mean self-esteem = 13.71, SE = 0.33) than those 

scoring low (mean self-esteem = 17.16, SE = 0.24). With differences 

due to self-esteem already entered, attitudes toward the role of 

women made a unique contribution, stepdovm F(1, 363) = 19.14, p < 

.01, q2 = .05 with confidence limits from .O1 to .12. Women scoring 

lower in masculinity had more conservative attitudes toward the 



proper role of women (adjusted mean attitude = 35.39, SE = 0.44) than 

those scoring higher (adjusted mean attitude = 32.13, SE = 0.60). 

Introversion-extraversion, adjusted by self-esteem, attitudes taward 

warnen's role, and neuroticisn also made a unique contribution to the 

composite W ,  stepdown F(1, 361) = 11.13, p c .01, q2 = .03 with con- 

fidence limits from .OO to .09. Women with higher masculinity were 

more extroverted (mean adjusted introversion-extraversion score = 

12.48) than lower masculinity women (mean adjusted introversion- 

extraversion score = 11.00). Univariate analyses revealed that women 

with higher masculinity scores were also less neurotic, univariate 

F(1, 364) = 7.28, and had a more internal locus of control, univari- 

ate F(1, 364) 7.39, differences that were already accounted for in 

the composite Dv by higher-priority Ws. [Means adjusted for main 

e f f ec t s  and for other W s  for stepdom i n t q r e t a t i o n  are from Table 

7.21, partial q2 values and confidence limits are from Table 7.23. 

Means adjusted for main e f f ec t s  but not other W s  for univariate 

interpretation are i n  Table 7-22 . ]  

High-masculinity women, then, have greater self-esteem, less 

conservative attitudes toward the role of women, and more extraver- 

sion than women scoring low on masculinity. High femininity is asso- 

ciated with greater self-esteem and more conservative attitudes 

toward women's role than low femininity. Of the five effects, how- 

ever, only the association between masculinity and self-esteem shows 

even a moderate proportion of shared variance. 

Pooled within-cell correlations among W s  are shown in Table 7.17. 

The only relationships accounting for mre than 10% of variance 

are between self-esteem and neuroticisn (r = .36), locus of control 

and self-esteem (r = .35), and between neuroticism locus of con- 

trol (r = -39). Women who are high in neuroticism tend to have lower 

self-esteem and more external locus of control. 



7.6.3 Multivariate Analysis of Covariance 

For MANCOVA the same six variables are used as for MANOVA but ESTEEM, INTEXT, and NEU- 
ROTIC are used as DVs and CONTROL, ATTROLE, and SEL2 are used as covariates. The research 
question is whether there are personality differences associated with femininity, masculinity, and 
their interaction after adjustment for differences in attitudes and socioeconomic status. 

Syntax and partial output of omnibus MANCOVA as produced by SPSS MANOVA appear in 
Table 7.25. As in MANOVA, Method 3 adjustment for unequal n is used with MASC adjusted for 
FEM and the interaction is adjusted for FEM and MASC. And, as in MANOVA, both main effects 
are highly significant but there is no interaction. Effect sizes for the three effects are Pillai's values. 
Entering Approx . F and appropriate df and percentage values into the NoncF.sav program and run- 
ning NoncF3.sps, 95% confidence limits for these effect sizes are .OO to 08 for FEM, .08 to .21 for 
MASC, and .OO to .O1 for the interaction. 

7.6.3.1 Assessing Covariates 

Under EFFECT. . WITHIN+RESIDUAL Regression is the multivariate significance test for the 
rdadoiiship betiieeii the set of D'v's (ESTEEM, INTEXT, ar~d NETu'ROTiCj and the set of covariates 
(CONTROL, ATTROLE, and SEL2) after adjustment for IVs. Partial 112 is calculated through the 
NoncF3.sps algorithm (Pillai's criterion is inappropriate unless s = 1 )  using Approx . F and appro- 
priate df and is found to be .10 with 95% confidence limits from .06 to .13. 

Because there is multivariate significance, it is useful to look at the three multiple regression 
analyses of each DV in turn, with covariates acting as IVs (see Chapter 5). The syntax of Table 7.25 
automatically produces these regressions. They are done on the pooled within-cell correlation 
matrix, so that effects of the IVs are eliminated. 

The results of the DV-covariate multiple regressions are shown in Table 7.26. At the top of 
Table 7.26 are the results of the univariate and stepdown analysis, summarizing the results of multi- 
ple regressions for the three DVs independently and then in prionty order (see Section 7.6.3.2). At 
the bottom of Table 7.26 under Regression analysis for WITHIN+RESIDUAL error 
term are the separate regressions for each DV with covariates as IVs. For ESTEEM, two covariates, 
CONTROL and ATTROLE, are significantly related but SEL2 is not. None of the three covariates is 
related to INTEXT. Finally, for NEUROTIC, only CONTROL is significantly related. Because 
SEL2 provides no adjustment to any of the DVs, it could be omitted from future analyses. 

7.6.3.2 Assessing DVs 

Procedures for evaluating DVs, now adjusted for covariates, follow those specified in Section 7.6.2 
for MANOVA. Correlations among all DVs, among covariates, and between DVs and covariates are 
informative so all the correlations in Table 7.17 are still relevant.15 

Univariate Fs are now adjusted for covariates. The univariate ANCOVAs produced by the 
SPSS MANOVA run specified in Table 7.25 are shown in Table 7.27. Although significance levels 
are misleading, there are substantial F values for ESTEEM and INTEXT for MASC (adjusted for 
FEM) and for FEM. 

For interpretation of effects of IVs on DVs adjusted for covariates, comparison of stepdown Fs 
with univariate Fs again provides the best information. The priority order of DVs for this analysis is 

' j ~ o r  MANCOVA. SPSS MANOVA prints pooled within-cell correlations among DVs (called criteria) adjusted for covari- 
ates. To get a pooled within-cell correlation matrix for covariates as well as DVs, you need a run in which covariates are 
included in the set of DVs. 



Xlulti\arlate ,411aiysis o f  Variance and Covarimce 297 

T.\BLE 7.25 klriltivariate .4naljsis of Covariance of Composite of DVs (ESTEEM, INTEXT, and 
NEUROTIC) as a Function of (Top to Bottom) FEM by SIASC Interaction, ;Llasculinity. and 
Femininity; Covariates are ATTROLE, CONTROL, and SEL2 (Syntax and Selected Output from 
SPSS MANOVA) 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(I ,2) 
/ANALYSIS=ESTEEM,INTEXT,NEUROTIC WITH CONTROL,ATTROLE,SEL2 
/PRINT=SIGNIF(STEPDOWN), ERROR(COR), 

HOMOGENEITY(BARTLETT,COCHRAN,BOXM) 
/METH'OD=SEQUENTI AL 
/DESIGN FEM MASC FEM BY MASC. 

EFFECT .. WITHIN+RESIDUAL Regression 
Multivariate Tests of Significance (S = 3 ,  M = - 1 / 2 ,  N = 1 7 8  1 / 2 )  

Test Name ' Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .23026 10 .00372 9 . 0 0  1083 .00  . O O O  
Hoteliings .29094 11 .56236 9 .00  1073,OO . O O O  
Wilks .77250 10 .86414  9 . 0 0  873 .86  . O O O  
Roys .21770 

EFFECT.. FEM BY MASC 
Multivariate Tests of Significance (S = 1 ,  M = 1 / 2 ,  N = 1 7 8  1 / 2 1  

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .00263 .31551 3 .00  359 .00  .814  
Hotellings .00264 .31551 3 .00  359 .00  .814  
Wilks .99737 . 31551  3 . 0 0  359 .00  . 814  
Roys .OD263 
Note.. F statistics are exact. 

EFFECT.. MASC 
Multivariate Tests of Significance ( S  = 1 ,  M = 1/2, N = 1 7 8  1/2) 

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais . I 4 6 8 3  20.59478 3 .00  359 .00  . O O O  
Hotellings . I 7210  20 .59478 3 .00  359 .00  . O O O  
Wilks .85317 20 .59478 3 . 0 0  359 .00  . O O O  
Roys . I 4 6 8 3  
Note.. F statistics are exact. 

EFFECT.. FEM 
Multivariate Tests of Significance (S = 1 ,  M = 1 / 2 ,  N = 1 7 8  1 / 2 )  

Test Name Value Approx. F Hypoth. DF Error DF Sig. of F 

Pillais .03755 4 .66837  3 . 0 0  359 .00  . 003  
Hotellings .03901 4 .66837 3 .00  3  59 .00  .003  
Wilks .96245 4 .66837 3 .00  359 .00  . 003  
Roys .03755 
Note.. F statistics are exact. 



298 C H A P T E R  7 

TABLE 7.26 Assessment of Covariates: Univariate, Stepdown, and hlultiple Regression Analyses 
for Three DVs with Three Covariates (Selected Output from SPSS hlANOVA-see Table 7.25 for 
Syntax) 

EFFECT.. WITHIN+RESIDUAL Regression (Cont.) 
Univariate F-tests with ( 3 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F 

ESTEEM 6 6 0 . 8 4 2 0 4  3883 .60490  220 .28068  1 0 . 7 5 7 9 1  2 0 . 4 7 6 1 6  
INTEXT 4 3 . 6 6 6 0 5  4640 .51295  1 4 . 5 5 5 3 5  1 2 . 8 5 4 6 1  1 . 1 3 2 3 1  
NEUROTIC 1 3 8 4 . 1 6 0 5 9  7 5 8 9 . 5 1 6 0 4  4 6 1 . 3 8 6 8 6  2 1 . 0 2 3 5 9  2 1 . 9 4 6 1 5  

Variable Sig. of F 

ESTEEM . O O O  
INTEXT . 3 3 6  
NEUROTIC . O O O  

....................................................................... 
Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

ESTEEM 220.28068 10 .75791  20.47616 3  3 6 1  . O O O  
INTEXT 6.35936 12 .60679  .50444 3  360 .679  
NEUROTIC 239.94209 19.72942 12.16164 3  359 .000  

Regression analysis for WITHIN+RESIDUAL error term 
--- Individual Univariate . 9500  confidence intervals 

Dependent variable . .  ESTEEM Self-esteem 

CO'VARIRTE B Beta Std. Err. t-Value Sig. of t 

CONTROL . 9 8 1 7 3  . 3 2 0 0 5  . I 3 6  7 . 2 0 5  . O O O  
ATTROLE . 0 8 8 6 1  . I 5 0 0 8  . 0 2 8  3 . 2 0 8  . O O i  
SEL2 - .  0 0 1 1 1  -. 00723 . 0 0 7  - .  1 6 4  . 8 6 9  

Regression analysis for WITHIN+RESIDUAL error term 
Dependent variable .. ESTEEM Self-esteem 

COVARIATE Lower -95% CL- Upper 

CONTROL . 7 1 4  1 . 2 5 0  
ATTROLE . 0 3 4  . I 4 3  
SEL2 -. 0 1 4  . 0 1 2  

Dependent variable . .  INTEXT Introversion-extroversion 

COVARIATE B Beta Std. Err. t-Value Sig. of t 

CONTROL - . 2 2 3 2 2  - .  07655  . I 4 9  - 1 . 4 9 9  . I 3 5  
ATTROLE - 0 0 4 5 6  .00812  . 0 3 0  . I 5 1  . 8 8 0  
SEL2 . 00682  .04662  . 0 0 7  .922  . 3  57  
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'T.ARLE 7.26 Continued 

COVARIATE Lower -95% CL- Upper 

CONTROL -. 516  . 0 7 0  
ATTROLE -. 0 5 5  . 0 6 4  
SEL2 -. 0 0 8  . 0 2 1  

Dependent variable .. NEUROTIC Neuroticism 

COVARIATE . B Beta Std. Err. t-Value Sig. of t 

CONTROL 1 . 5 3 1 2 8  .39102  . I 9 0  8 . 0 4 0  . O O O  
ATTROLE . 0 4 9 7 1  . 0 6 5 9 5  - 0 3 9  1 . 2 8 7  . I 9 9  
SEL2 . 0 0 3 2 8  .01670  . 0 0 9  . 3 4 7  . 7 2 9  

COVARIATE Lower -95% CL- Upper 

CONTROL 1 . 1 5 7  1 . 9 0 6  
ATTROLE -. 0 2 6  . 1 2  6 
SEL2 -. 0 1 5  . 0 2 2  

TABLE 7.27 Univariate Analyses of Covariance of Three DVs Adjusted for Three Covariates 
for (Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity 
(Selected Output from SPSS MANOVA-see Table 7.25 for Syntax) 

EFFECT. . FEM BY MASC (Cant. ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS 

ESTEEM 7 .21931  3883.60490 7 .21931  10 .75791  
I N T m  2.59032 464051.295 2.59032 1285.46065 
Imtl'ROTIC 1 .52636  7589.51604 1.52636 21.02359 

EFFECT. . MASC (Cant . ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error M S  

ESTEEM 533.61774 3883.60490 533.61774 10.75791 
LNTEXT 26444.5451 464051.295 26444.5451 1285.46065 
NEUROTIC 35.82929 7589.51604 35.82929 21.02359 

EFFECT. . FEM (Cont . ) 
Univariate F-tests with ( 1 , 3 6 1 )  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS 

ESTEEM 107.44454 3883.60490 107.44454 10 .75791  
INTEXT 7494.31182 464051.295 7494.31182 1285.46065 
NEUROTIC 26 .81431  7589.51604 26.81431 21.02359 

F Sig. of F 

F Sig. of F 

F Sig. of F 
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ESTEEM. IhTEXT. and NELIROTIC. ESTEEM is e\sal~~ated after aajust~netit only for the three 
covariateq. INTEXT ii; adjusted for effects of ESTEEM and the three co~ariates; NEUROTIC i.4 

adjusted for ESTEEM and INTEXT and the three covariates. In effect, then, INTEXT is adjusted for 
four covariates and NEUROTIC is adjusted for five. 

Stepdown analysis for the interaction and two main effects is in Table 7.28. The results are the 
sarne as those in MANOVA except that there is no longer a main effect of FEM on INTEXT after adjust- 
ment for four covariates. The relationship between FEM and INTEXT is already represented by the 
relationship between FEM and ESTEEM. Consolidation of information from Tables 7.27 and 7.28, as 
well as some information from Table 7.26, appears in Table 7.29, along with apportionment of the .05 
alpha error to the various tests and effect sizes with their confidence limits based on the a error chosen. 

For the DVs associated with significant main effects, interpretation requires associated mar- 
ginal means. Table 7.30 contains syntax and adjusted marginal means for ESTEEM and for INTEXT 
(which is adjusted for ESTEEM as well as covariates) for FEM and for MASC adjusted for FEM. 
Syntax and marginal means for the main effect of FEM on INTEXT (univariate but not stepdown 
effect) appear in Table 7.3 1. 

Effect sizes and their confidence limits for stepdown effects are found through Smithson's 
(2003) program as for MANOVA. Table 7.32 shows the inputloutput for that analysis using values 
from Table 7.28. Values chosen for confidence limits reflect apportionment of a. A checklist for 
MANCOVA appears in Table 7.33. An example of a Results section, as might be appropriate for 
journal presentation, follows. 

TABLE 7.28 Stepdown Analyses of Three Ordered DVs Adjusted for Three Covariates for 
(Top to Bottom) FEM by MASC Interaction, Masculinity, and Femininity (Selected Output 
from SPSS MANOVA-see Table 7.25 for Syntax) 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 7.21931 10.75791 .67107 1 3 6 1  -413  
INTEXT .35520 12.60679 .02817 1 360 .867 
NEUROTIC 4.94321 19.72942 .25055 1 359 .617 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 533.61774 10 .75791 49.60237 1 3 6 1  .OOO 
INTEXT 137.74436 12.60679 10.92621 1 360 . 001  
NEUROTIC 1.07421 19.72942 .05445 1 359 .816 

Roy-Bargman Stepdown F-tests 

Variable Hypoth. MS Error MS StepDown F Hypoth. DF Error DF Sig. of F 

ESTEEM 107.44454 10 .75791 9.98749 1 3 6 1  .002 
INTEXT 47.36159 12.60679 3.75683 1 360 .053 
NEUROTIC 4.23502 19.72942 .21466 1 3 59 .643 
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TABLE 7.29 Tests of Covariates, Femininity, %Iasculinity (Adjusted for Femininity), and Interaction 

CL around 
Partial tlz per a 

Univariate Stepdown Partial 
IV DV F df F df a t12 Lov~ler- Upper 

Covariates ESTEEM 
INTEXT 
'NEUROTIC 

Femininity ESTEEM 
INTEXT 
NEUROTIC 

Masculinity ESTEEM 
INTEXT 
NEUROTIC 

Femininity by ESTEEM 
masciiiinity !NTEXT 
interaction NEUROTIC 

"Significance level cannot be evaluated but would reach p< .02 in univariate context. 

TABLE 7.30 Adjusted Marginal Means for Esteem Adjusted for Three Covariates and INTEXT 
Adjusted for ESTEEM Plus Three Covariates (Syntax and Selected Output from SPSS MANOVA) 
- - -  

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ARAL'r'SIS=ESTEEM LAJITH CONTROL,ATTROLE,SEL2 
/DESIGN=CONSPLUS FEM /DESIGN=FEM,CONSPLUS MASC 
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2,ESTEEM 
/DESIGN=FEM, CONSPLuS,ivlASC. 

Estirrates for ESTEEM adjusted for 3 covariates 
--- Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Estimates for ESTEEM adjusted for 3 covariates 
--- Individual univariate .9500 confidence Intervals 

CONSPLUS MASC 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 
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TABLE 7.30 Continued 

Estimates for INTEXT adjusted for 4 covariates 
- - - Individual univariate .9500 confidence intervals 

CONSPLUS MASC . 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

Note: Coeff. = adjusted margtnal mean; first parameter = low, second parameter = high. 

TABLE 7.31 Marginal Means for INTEXT Adjusted for Three Covariates Only (Syntax and 
Selected Output from SPSS MANOVA) 

MANOVA ESTEEM,ATTROLE,NEUROTIC,INTEXT,CONTROL,SEL2 BY FEM,MASC(1,2) 
/PRINT=PARAMETERS(ESTIM) 
/ANALYSIS=INTEXT WITH CONTROL,ATTROLE,SEL2, ESTEEM 
/DESIGN=CONSPLUS FEM. 

Estimates for INTEXT adjusted for 4 covariates 
- - - Individual univariate .9500 confidence intervals 

CONSPLUS FEM 

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper 

1 11.1014711 .35676 31.11753 . O O O O O  10.39989 11 .80305  
2 11.9085923 .22495 52.93984 . O O O O O  11.46623 12 .35096  

Note: Coeff. = adjusted marginal mean; first parameter = low, second parameter = high. 

TABLE 7.32 Data Set Output from NoncF3.sps for Effect Size (r2) with 95% Confidence Limits. 
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TABLE 7.33 Checklist for Xlult i~ariate ,Analysis of Covariance 

I .  Issues 

a. Unequal sample sizes and missing data 

b. Normality of sampling distributions 

c. Outliers 

d. Homogeneity of variance-covariance matrices 

e. Linearity . 
f. Homogeneity of regression 

(1) Covariates 

(2) DVs for stepdown analysis 

g. Reliability of covariates (and DVs for stepdown) 

h. Multicollinearity and singularity 

2. Major analyses: Planned comparisons or omnibus F; when significant: 
Importance of DVs 

a. Within-cell correlations, stepdown F: univariate F 

b. Effect size with its confidence interval for significant stepdown F 

c. Adjusted marginal and/or cell means for significant F: and standard 
deviations or standard errors or  confidence intervals 

3. Multivariate effect size(s) with contidence interval(s) for planned 
comparisons or omnibus E: 

4. Additional analyses 

a. Assessment of covariates 

h Intrrpreta~iun of IV-covariates interaction (if homogeneity of 
regression violated for stepdown analysis) 

c. Post hoc comparisons 

Results 

SPSS MANOVA was used for the analyses with the sequential adjust- 

ment for nonorthogonality. Order of entry of IVs was femininity, then 

masculinity. Total N =  369 was reduced to 368 with the deletion of a 

case missing a score on locus of control. There were no univariate or 

multivariate within-cell outliers at a = .001. Results of evaluation 

of assumptions of normality, ham~geneity of variance-covariance 

matrices, linearity, and multicollinearity were satisfactory. Covari- 

ates were judged to be adequately reliable for covariance analysis. 



A 2 x 2 between-subjects multivariate analysis of covariance was 

performed on three dependent variables associated with personality of 

respondents: self-esteem, introversion-extraversion, and neuroticism. 

Adjustment was made for three covariates: attitude toward role of 

women, locus of control, and socioeconomic status. Independent vari- 

ables were masculinity (high and low) and femininity (high and low). 

With the use of Wilks' criterion, the cambined W s  were 

significantly related to the combined covariates, approximate 

F(9, 873) = 10;86, p < .01, to femininity, F(3, 359) = 4.67, p < .01, 

and to masculinity, F(3, 359) = 20.59, p e  -001but not to the inter- 

action, F(3, 359) = 0.31, p > .05. There was a modest association 

between W s  and covariates, partial q2 = .10 with confidence limits 

from .06 to .29. A somwhat larger association was found between can- 

bined DVs and the main effect of masculinity, q2 = .15 with confidence 

limits from .08 to .21, but the association between the main effect 

of femininity and the ccanbined W s  was smaller, q2 = .04 with confi- 

dence limits £ran .OO to .08. Effect size for the nonsignificant 

interaction was -00 with confidence limits from .OO to .01. [F is 

frm Table 7.25; part ial  $ and their confidence limits are found 

through S n i  thson 's NoncF3. sps for main effects, interaction, and 

covariates. I 

To investigate more specifically the power of the covariates to 

adjust dependent variables, multiple regressions were run for each W 

in turn, with covariates acting as multiple predictors. of the 

three covariates, locus of control and attitudes toward warnen's role, 

provided significant adjustment to self-esteem. The B value of .98 

(confidence interval from .71 to 1.25) for locus of control was 

significantly different from zero, t(361) = 7.21, p < .001, as was the 

B value of .09 (con£ idence interval from .03 to .14) for attitudes 
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towar6 women's role, t (361) = 3.21, p < .01. None of the covariates 

provided adjustment to the introversion-extraversion scale. For neu- 

roticisn, only locus of control reached statistical significance, 

with B = 1.53 (confidence interval from 1.16 to 1.91), t(361) = 8.04, 

p < .001. For none of the W s  did socioecondc status provide sig- 

nificant adjustment. [Information about relationships for  individual 

W s  and CVs is f ram Table 7.26.1 

Effects of masculinity and femininity on the W s  after adjustment 

for covariates were investigated in univariate and Roy-Bar- step- 

down analysis, in which self-esteem was given the highest priority, 

introversion-extraversion second priority (so that adjustment -was 

made for self-esteem as well as for the three covariates), and neu- 

roticisn third priority (so that adjustment was made for self -esteem 

and introversion-extraversion as well as for the three covariates). 

Homgeneity of regression was satisfactory for this analysis, and W s  

were judged to be sufficiently reliable to act as covariates. Results 

of this analysis are surranarized in Table 7.29. An exgErimentwise 

error rate of 5% for each effect was acrIlievec3 by apprtio~ing alpha 

according to the values shown in the last column of the table. 

After adjusting for differences on the covariates, self-esteem 

made a significant contribution to the ccanposite of the DVs that best 

distinguishes between wmnen who were high or low in femininity, step- 
# 

down F(1, 361) = 9.99, p < .01, q2 = -03 with confidence limits from 

.OO to .08. With self -esteem scored inversely, women with higher fem- 

ininity scores showed greater self-esteem after adjustment for 

covariates (adjusted mean self-esteem = 15.35, SE = 0.22) than those 

scoring lower on femininity (adjusted mean self -esteem = 16.72, SE = 

0.34) . hvariate analysis revealed that a statistically signif izant 
difference was also present on the introversion-extraversion measure, 
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with higher-femininity women more extraverted, univariate F(1, 361) = 

5.83, a difference already accounted for by covariates and the 

higher-priority W .  [Adjusted means are from Tables 7.30 and 7.31; 

partial q2 and confidence limits are from Table 7.32. I 

Lower- versus higher-masculinity wcmm differed in self-esteem, 

the highest-priority W ,  after adjustment for covariates, stepdm 

F(1, 361) = 49.60, p < .01, q2 = .12 with confidence limits from -06 

to -20. Greater self-esteem was found among higher-masculinity women 

(aPjusted mean = 14.22, SE = 0.32) than m n g  lower-masculinity women 

(adjusted mean = 16.92, SE = 0.23) . The measure of introversion and 
extraversion, adjusted for covariates and self-esteem, was also 

related to differences in masculinity, stepdown F(1, 360) = 10.93, p 

< .01, q2 = .03 w i t h  confidence limits from .OO to .08. Wcanen scoring 

higher on the masculinity scale were more extraverted (adjusted mean 

extraversion 12.47, SE = 0.36) than those showing lower masculinity 

(adjusted mean extraversion = 11.01, SE = 0.25). 

High-masculinity women, then, are characterized by greater self- 

esteem and extraversion than low-masculinity women when adjustments 

are made for differences in socioeconcanic status, attitudes toward 

women's role, and locus of control. High-femininity wcanen show 

greater self-esteem than low-femininity women with adjustment for 

those covariates. 

Pooled within-cell correlations among dependent variables and 

covariates are shown in Table 7.19. The only relationships account- 

ing for more than 10% of variance are between self-esteem and neu- 

roticism (r = -36) , locus of control and self -esteem (r = .35) , and 

between neuroticism and locus of control (r = .39). Women who are 

high in neuroticism tend to have lower self-esteem and are more 

likely to attribute reinforcements to external sources. 



7.7 Comparison of Programs 

SPSS, SAS, and SYSTAT all have highly flexible and full-featured MANOVA programs, as seen i n  
Table 7.34. One-way between-subjects MANOVA is also available through discriminant function 
programs, as discussed in Chapter 9. 

SPSS has two programs, MANOVA (available only through syntax) and GLM. Features of the two 
programs are quite different, so that you may want to use both programs for an analysis. 

Both programs offer several methods of adjustment for unequal n and several statistical crite- 
ria for multivariate effects. In repeated-measures designs, the sphericity test offered by both pro- 
grams evaluates the sphericity assumption; if the assumption is rejected (that is, if the test is 
significant), one of the alternatives to repeated-measures ANOVA-MANOVA, for instance-is 
appropriate. There are also the Greenhouse-Geisser, Huynh-Feldt and lower-bound epsilons for 
adjustment of df for sphericity. SPSS MANOVA and GLM do the adjustment and provide signifi- 
cance levels for the effects with adjusted df. 

SPSS MANOVA has several features that make it superior to any of the other programs 
reviewed here. It is the only program that performs Roy-Bargmann stepdown analysis as an option 
(Section 7.5.3.2). Use of other programs requires a separate ANCOVA n1n for each DV after the one 
of highest priority. SPSS MANOVA also is the only program that has special syntax for pooling 
covariates to test homogeneity of regression for MANCOVA and stepdown analysis (Section 
7.6.1.6). If the assumption is violated, the manuals describe procedures for ANCOVA with separate 
regression estimates, if that is your choice. Full simple effects analyses are easily specified using the 
MWlTHlN instruction (Section 8.5.2). SPSS MANOVA also is easier to use for user-specified com- 
parisons. Bivariate coiliiiearitji and hom~geneity of variance-covariance matrices are readily tested 
ir. SPSS MANOVA through within-cell correlations and homogeneity of dispersion matrices, 
respectively. Multicollinearity is assessed through the determinant of the within-celis correiation 
matrix (cf. Section 4.1.7). 

Both programs provide complete descriptive statistics for unad.justed means and standard devi- 
ations, however, adjusted means for marginal and cell effects are more easily specified in SPSS GLM 
through the EMMEANS instruction. SPSS MANOVA provides adjusted cell means easily, but mar- 
ginal means require rather convoluted CONSPLUS instructions, as seen in Section 7.6. SPSS GLM 
provides leverage values (that are easily converted to Mahalanobis distance) to assess multivariate 
outliers. 

For between-subjects designs, both programs offer Bartlett's test of sphericity, which tests the 
null hypothesis that correlations among DVs are zero; if they are, univariate F (with Bonferroni 
adjustment) is used instead of stepdown F to test the importance of DVs (Section 7.5.3.1). 

A principai components analysis can be performed on the D V  through SPSS MANOVA, as 
described in the manuals. In the case of multicollinearity or singularity among DVs (see Chapter 4), 
principal components analysis can be used to produce composite variables that are orthogonal to one 
another. However. the prvgram still performs MANOVA on the raw DV scores, not the component 
scores. If MANOVA for component scoreb is desired, use the results of PCA and the COMPUTE 
facility to generate component scores for use as DVs. 



TABLE 7.34 Comparison of Programs for kfultivariate Analysis of Variance and Covariance" 

S Y STAT 
ANOVA, 

SPSS SPSS S AS GLkI,  and 
G L M  rvIANOVA GLM MANOVAg Feature 

Input 

Variety of strategies for unequal n 

Specify tolerance 

Specify exact tests for multivariate effects 

Yes 

EPS 

No 

Yes 

No 

No 

Yes 

SINGULAR 

MSTAT= 
EXACT 

Yes 

Yes 

No 

Output 

Standard source table for Wilks' lambda PRINT = 
SIGNIF 
(BRIEF) 

Cell covariance matrices Yes 

Cell covariance matrix determinants 

Cell correlation matrices 

Cell SSCP matrices 

Cell SSCP determinants 

Unadjusted marginal means for factorial 
design 

Unadjusted cell means 

Unadjusted cell standard deviations 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Confidence interval around unadjusted cell 
means 

Adjusted cell means 

No 

EMMEANS 

Yes 

PMEANS 

No 

LSMEANS 

No 

PRINT 
MEDIUM 

PRINT 
MEDIUM 

No 

No 

Yes 

Yes 

Standard errors for adjusted cell means EMMEANS LSMEANS 

Adjusted marginal means 

Standard errors for adjusted marginal means 

Wilks' lambda with approximate F statistic 

Criteria other than Wilks' 

Multivariate influencelleverage statistics by 
cell 

EMMEANS 

EMMEANS 

Yes 

Yes 

yesb 

No 

Yes 

Yes 

LSMEANS 

LSMEANS 

Yes 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Box's M 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Box's M 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yesc 

No 

Data file 

Yes 

Yes 

No 

No 

Yesh 

No 

No 

No 

Canonical (discriminant function) statisticsC 

Univariate F tests 

Averaged univariate F tests 

Stepdown F tests (DVs) 

Sphericity test 

Adjustment for failure of sphericity 

Tests for univariate homogeneity of variance 

Test for homogeneity of covariance matrices 
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Feature 

SYST.T 
ANOVA, 

SPSS SPSS S AS GLltl, and 
G I h I  MANOVA GLM RIANOVAg 

Output (continued) 

Principal component analysis of residuals No Yes No Yes 

Hypothesis SSCP matrices Yes No Yes Yes 

Hypothesis coyariance matrices No Yes No No 

Inverse of hypothesis SSCP matrices No No Yes Yes 

Pooled within-cell error SSCP matrix Yes Yes Yes Yes 

Pooled within-cell covariance matrix No Yes No Yes 

I Pooled within-cell correlation matrix 

Total SSCP matrix 

I 
Determinants of pooled within-cell 

c ~ x e l a t i m  matrix 

1 Covariance matrix for adjusted cell means 

Effect size for univariate tests 
I Power analysis 

SMCs with effects for each DV 

Confidence intervals for multivariate tests 

Post hoc tests with adjustment 

1 Specific comparisons 

Tests of simple effects (complete) 

Homogeneity of regression 

ANCOVA with separate regression estimates I Regression coefficient for each covariate 
I 

Regression coefficient for each cell 

R~ for model 
I 

I Coefficient of variation 

Normalized plots for each DV and covariate 

Predicted values and residuals for each case 

No Yes 

No No 

No 

No 

ETASQ 

OPOWER 

No 

No 

POSTHOC 

Yes 

No 

No 

No 

PARAMETER 

Yes 

No 

POWER 

POWER 

No 

Yes 

yesd 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes No 

Yes No 

No No 

No Yes 

Data file Yes 

Yes Yes 

No Yes 

No 

Data file 

No 

 NO^ 
No 

No 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

PRINT 
LONG 

No 

No 

No 

No 

Data file 

Confidence limits for predicted values No No Yes No 

Residuals plots No Yes No No 

"dd~t~onal features are d~scussed In Chapter 6 (ANCOVA) 
b ~ v a ~ l a b l e  through CONSPLUS procedure, see Sect~on 7 6 
CD~scussed more fully In Chapter 9 

dBonferroni and S~heffe  ~onfidcnce interval\ 

'One-way des~gn unly 
'Ava~lable In a separate program GLMPOWER 
%TANOVA, added to SYSTAT In Vers~on I I ,  differs from GLM only In ~ t s  menu access 
h ~ o t  available In "long" output 
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7.7.2 SAS System 

MANOVA in SAS is done through the PROC GLM. This general linear model program, like SPSS 
GLM, has great flexibility in testing models and specific comparisons. Four types of adjustments for 
unequal-rz are available, called T Y P E  I through T Y P E  I V estimable functions (cf. 6.5.4.2); this 
program is considered by some to have provided the archetypes of the choices available for unequal- 
n adjustment. Ad.justed cell and marginal means are printed out with the 1 S M E A N S instruction. SAS 
tests multivariate outliers by adding leverage values (which may be converted to Mahalanobis dis- 
tance) to the data set (cf. Section 6.6.1.4). Exact tests of multivariate effects may be requested in 
place of the usual F approximation. 

SAS GLM provides Greenhouse-Geisser and Huynh-Feldt adjustments to degrees of freedom 
and significance tests for effects using adjusted df. There is no explicit test for homogeneity of 
regression, but because this program can be used for any form of multiple regression, the assumption 
can be tested as a regression problem where the interaction between the covariate(s) and IV(s) is an 
explicit term in the regression equation (Section 6.5.3). 

There is abundant information about residuals, as expected from a program that can be used 
c,.* -..I+:.. -.-- @ I  --.. 1 1  L- - I - &  - - - : ~ . . - i -  L -- - LL L AL -  n T  AT - - - -  
lvi ltlulupl~ 1 ~ ~ ~ c s a ; u t l .  o l t u u ~ u  y u u  W ~ I I L  LU ~ I U L  I G ~ I U U ~ I S ,  IIUWCVGI, d IUI I  L I I I U U ~ I I  LIIG rLu1 ~ I U L G -  

dure is required. As with most SAS programs, the output requires a fair amount of effort to decode 
until you become accustomed to the style. 

7.7.3 SYSTAT System 

In SYSTAT, the GLM, ANOVA, and MANOVA programs may be used for simple, fully factorial 
MANOVA, however GLM and MANOVA are recommended for more complex designs for their 
numerous features and flexibility. and because they are not much more difficult to set up. 

Model 1 adjustment for unequal n is provided by default, along with a strong argument as to 
its benefits. Other options are available, however, by specification of error terms or a series of 
sequential regression analyses. Several criteria are provided for tests of multivariate hypotheses, 
along with a great deal of flexibility in specifying these hypotheses. Leverage values are saved in a 
data set by request, arid Inay be converted to Mahalanobis distance as per Equation 4.3 to assess mul- 
tivariate outliers. 

The program provides cell least squares means and their standard errors, adjusted for covari- 
ates, if any. Other univariate statistics are not provided in the program, but they can be obtained 
through the STATS module. 

Like SPSS MANOVA, principal components analysis can be done on the pooled within-cell 
correlation matrix. But also like the SPSS program, the MANOVA is performed on the original 
scores. 



C H A P T E R  

Profile Analysis: The 
Multivariate Approach 
to Repeated Measures 

8.1 General Purpose and Description 

Profile analysis is a special application of multivariate analysis of variance (MANOVA) to a situa- 
tion where there are several DVs, all measured on the same scale.' The set of DVs can either come 
from one DV measured several different times, or several different DVs all measured at one time. 
There is also a popular extension of the analysis where several different DVs are measured at several 
different times, called the doubly-multivariate design. 

The more common application is in research where subjects are measured repeatedly on the 
same DV. For example, math achievement tests are given at various points during a semester to test the 
effects of alternative educational programs such as traditional classroom vs. computer-assisted 
instruction. Used this way. profile analysis offers a multivariate alternative to the univariate F test 
for the within-subjects effect and its ~nteractions (see Chapter 3).* The choice between profile analy- 
sis and u~ivariate repeated-measures ANOVA depends on sample size, power, and whether statistical 
assumptions of repeated-measured ANOVA are met. These issues are discussed fully in Section 8.5.1. 

Less commonly, profile analysis is used to compare profiles of two or more groups measured 
on several different scales, ali at one time. For exampie, psychoanalysts ~ i i d  behavior therapists are 
both given, say, the Profile of Mood States (POMS). The DVs are the various scales of the POMS, 
tension-anxiety, vigor, anger-hostility, and so on, all measured on the same scale. The analysis asks 
if the two groups have the same pattern of means on the subscales. 

Rapidly growing in popularity is use of repeated-measures MANOVA for doubly-multivariate 
designs where several DVs, not all measured on the same scale, are measured repeatedly. For exam- 
ple, math competence is measured several times during a semester, each time by both a grade on a 
math test (one DV) and a scale of math anxiety (a second DV). A discussion of doubly-multivariate 
analysis appears in Section 8.5.3. A complete example appears in Section 8.6.2. 

Current computer programs allow the application of profile analysis to complex designs 
where, for instance, groups are classified along two or more dimensions to create two or more 

'The term proJie anuiysis is also applied to techniques for measuring resemblance among profile patterns through cluster 
analysis rltther than the MANOVA strategy descr~becl In this chapter. 

 he term profile analys~s is used for convenience here as synonymous w~th "taking the multivariate approach to repeated 
measures." 
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between-subjects IVs, '1s in AXOVA For exampie. POMS protiles are eu~tnined for both tiidle ,inJ 
female psychoanalj\ts dnd behclvior therapists. or change5 in math competence during a semerter ah 
a result of either traditional education or computer-assisted instruction are evaluated for both ele- 
mentary and junior high school students. 

Rangaswamy and colleagues (2002) used profile analysis to exami~le beta power in the EEGs 
of alcoholics. Separate repeated-measures MANOVAs were run on men and women and three beta 
bands. The within-subjects IV consisted of the 22 pairs of electrodes in various frontal, central, and 
parietal locations. The between-subjects IV was alcohol-dependent or not, with 307 participants in 
each group. Post ho'c analyses examined the three sets of locations. Beta power was found to be ele- 
vated in alcoholics in all three bands, more so for men than women, and with greater increase in the 
central region. Additional univariate follow-up analyses were conducted. 

A repeated-measures MANCOVA was used by Martis et al. (2003) to examine changes in neu- 
rocognitive functioning with repetitive transcranial magnetic stimulation (rTMS) in 15 severely 
depressed patients. A 2. x 4 x 2 within-within-between design was employed with two time periods 
(baseline and post-treatment), four neuropsychological domains, and two groups (rTMS responder 
or nonresponder in terms of depression reduction). Domains were created by combining a series of 
tests into a single z-score for each domain. Covariates presumably were HDRS (a depression scale) 
scores and length of treatment (it is not clear why baseline scores were not also used as covariates). 
No significant main effects were observed, however a couple of significant interactions were found. 
Interactions were examined as simple effects at each domain. The interaction between time and neu- 
ropsychological domain indicated improvement in scores across 3 of the 4 domains between base- 
line and post-treatment times: working memory-executive function, objective memory, and fine 
motor speed. The interaction between response and neuropsycholgical domain showed significant 
differences between responders and nonresponders for one of the domains: attention and mental 
speed. 

8.2 Kinds of Research Questions 

The major question fur profile analysis is whether groups have different profiles on a set of measures. 
To apply profile analysis, all measures must have the same range of possible scores, with the same 
score value having the same meaning on all the measures. There is restriction on the scaling of 
the measures because in two of the major tests of profile analysis (parallelism and flatness) the 
numbers that are actually tested are difference3 scores between DVs measured on adjacent occasions 
or some other transformation of the set of DVs. Difference scores are called segments in profile 
analysis. 

8.2.1 Parallelism of Profiles 

Do different groups have parallel profiles? This is commonly known as the test of parallelism and is 
the primary question addressed by profile analysis. When using the profile approach to univariate 

' ~ l t h o u ~ h  difference scores are notoriously unreliable, their use here is lust as a statistical convenience (as any other trans- 
formation would be). The difterence scores are not interpreted per se. 



repeated-measures .4NOV.4. the par3llelism test IS  the test of ~nter~iction. For example. do traditional 
and computer assisted instruction lead tu the same pattern of gains in achievement over the course of 
testing? Or do changes in achiekement depend on which method of instruction is used? Using the 
therapist example, do psychoanalysts and behavior therapists have the same pattern of highs and 
lows on the various mood states measured by the POMS? 

8.2.2 Overall Difference among Groups 

Whether or not groups produce parallel profiles, does one group, on average, score higher on the col- 
lected set of measures than another? For example, does one method of instruction lead to greater 
overall math achievement than the other method? Or does one type of therapist have reliably higher 
scores on the set of states measured by the POMS than the other? 

In garden-variety univariate ANOVA, this question is answered by test of the "groups" hypoth- 
esis; in profile analysis jargon, this is the "levels" hypothesis. It addresses the same question as the 
between-subjects main effect in repeated-measures ANOVA. 

8.2.3 Flatness of Profiles 

The third question addressed by profile analysis concerns the similarity of response to all DVs, inde- 
pendent of groups. Do all the DVs elicit the same average response? In profile jargon, this tests the 
"flatness" hypothesis. This question is typically relevant only if the profiles are parallel. If the pro- 
files are not parallel, then at least one of them is necessarily not flat. Although it is conceivable that 
non-flat profiles from two or more groups could cancel each other out to produce, on  average, a tlat 
profile, this result is often not of research interest. 

In the instructronal example. the flatness test evaluates whether achievement changes over the 
period of testing. In this context the flatness test evaluates the same hypothesis as the within-subject$ 
main effect in repeated-measures ANOVA. Using the therapist example, if psychoanalysts and 
behavior therapists have the same pattern of mood states on the POMS (that is, they have parallel 
profiles), one might ask whether therapists, as a whole, are notably high or low on any of the states. 

8.2.4 Contrasts Following Profile Analysis 

With more than two groups or more than two measures, differences in parallelism, flatness, andlor 
level can result from a variety of sources. For example, if a group of client-centered therapists is 
added to the therapist study, and the parallelism or levels hypothesis is rejected, it is not obvious 
whether it is the behavior therapists who differ from the other two groups, the psychoanalysts who 
differ from the client-centered therapists, or exactly which group differs from which other group or 
groups: Contrasts following profile analysis are discussed in Section 8.5.2. 

8.2.5 Parameter Estimates 

Parameters are estimated whenever statistically significant differences are found between groups or 
measures. For profile analysis, the major description of results is typically a plot of profiles in which 



the means for each of the DVs are plotted for each of the goups.  In addition, if the null hypothesis ! 

regarding levels is rejected, assessment of group means and group standard deviations, standard 
errors, or confidence intervals is helpful. And if the null hypothesis regarding tlatness is rejected and ! 

the finding is of interest, a plot of scores combined over groups is instructive, along with standard i 
! 

deviations or standard errors. Profile plots are demonstrated in Sections 8.4 and 8.6. i 
! 

8.2.6 Effect Size 
! 

As with all statistic'al techniques, estimates of effect size are appropriate for all effects of interest. 
Such effect size measures and confidence intervals around them are demonstrated in Sections 8.4 I 

and 8.6. 

Limitations to Profile Analysis 

8.3.1 Theoretical Issues 

Choice of DVs is more limited in profile analysis than in usual applications of multivariate statistics 
because DVs must be commensurate except in the doubly-multivariate application. That is, they 
must all have been subjected to the same scaling techniques. 

In applications where profile analysis is used as an alternative to univariate repeated-measures 
ANOVA, this requirement is met because all DVs are literally the same measure. In other applica- 
tions of profile analysis, however, careful consideration of the measurement of the DVs is required 
to assure that the units of measurement are the same. One way to produce commensurability is to use 
standardized scores, such as z-scores, instead of raw scores for the DVs. In this case, each DV is stan- 
dardized using the pooled within-groups standard deviation (the square root of the error mean square 
for the DV) provided by univariate one-way between-subjects ANOVA for the DV. There is some 
danger in generalizing I-esuits with this approach, however, because sample standard deviations are 
used to form z-scores. Similar problems arise when factor or component scores are used as measures, 
based on factor or component analysis of sample data. More commonly, commensurate DVs are sub- 
scales of standardized tests, in which subtests are scaled in the same manner. 

Differences among profiles are causally attributed to differences in treatments among groups if, 
and only if, groups are formed by random assignment, levels of IVs manipulated, and proper experi- 
mental controls maintained. Causality, as usual, is not addressed by the statistical test. Generalizabil- 
ity, as well, is influenced by sampling strategy, not by choice of statistical tests. That is, the results of 
profile analysis generalize only to the populations from which cases are randomly sampled. 

As described in Section 8.2 and derived in Section 8.4, the DVs in profile analysis are differ- 
ences (segments) between the scores for adjacent levels of the within-subjects IV, or some other 
transformation of them. Creating difference scores is one of the ways to equate the number of DVs 
and the degrees of freedom for the within-subjects IV. Although different programs use different 
transformations, the resulting omnibus analysis is insensitive to them. Technically, then, limitations 
should be assessed with regard to segments or otherwise transformed DVs; however, it is reasonable 
(and a lot simpler) to assess the DVs in their original form. That is, for purposes of assessing limita- 
tions, scores for the levels of the within-subjects IV are treated as the set of DVs. 



8.3.2 Practical Issues 

8.3.2.1 Sample Size, ikfissirzg Data, and Power 

The sample size in each group is an important issue in profile analysis, as in MANOVA, because 
there slzould he r~zure re.search utiits in the smallest gro~lp than there are DVs. This is recommended 
both because of considerations of power and for evaluation of the assumption of homogeneity of 
variance-covariance matrices (cf. Sections 7.3.2.1 and 7.3.2.4). In the choice between univariate 
repeated-measures ANOVA arid profile analysis, sample size per group is often the deciding factor. 

Unequal 'sample sizes typically provide no special difficulty in profile analysis because each 
hypothesis is tested as if in a one-way design and, as discussed in Section 6.5.4.2, unequal tz creates 
difficulties in interpretation only in designs with more than one between-subjects IV. However, 
unequal n sometimes has implications for evaluating homogeneity of variance-covariance matrices, 
as discussed in Section 8.3.2.4. If some measures are missing from some cases, the usual problems 
and solutions discussed in Chapter 4 are modified for profile analysis, because all measures are com- 
mensurate and indeed may be the same measure. Imputation of missing values is discussed in Sec- 
tinn 8.5.5. 

As always, larger sample sizes produce greater power, all else being equal. There also are 
power implications in the choice between the univariate and multivariate approaches to repeated 
measures. Generally, there is greater power in the multivariate approach, given the adjustment for 
violation of sphericity that is often required for the univariate approach, but surprises do occur. Sec- 
tion 7.3.2.1 discusses issues of power and software to estimate sample sizes. 

8.3.2.2 Multivariate Normality 

Profile analysis is as robust to violation of normality as other forms of MANOVA (cf. Section 
7.3.2.2). So, lln1e.s~ there arz,fe)ver cases tllnrl DVs irl the ,srnnllest group and highly unequal n ,  devi- 
ation from normalitv c?f sampling distributions is not expected. In the unhappy event of small, 
unequal samples, however, a look at the distributions of DVs for each group is in order. If distribu- 
tions of DVs show marked, highly-significant skewness, some normaiizing transformations might be 
investigated (cf. Chapter 4). 

8.3.2.3 Absence uf Outliei-s 

As in all MANOVA, profile analysis is extremely sensitive to outliers. Tests for univariate and mul- 
tivariate outliers, detailed in Chapter 4, are upplied to DVs. These tests are demonstrated in Section 
8.6.1. 

8.3.2.4 Homogeneity of Variance-Covariance Matrices 

I f  sample sizes are equal, evaluation of homogeneity qf variance-covariance rnutrices is not neces- 
sary, However, if sample sizes are notably discrepant, Box's M test is available through SPSS 
MANOVA as a preliminary test of the homogeneity of the variance-covariance matrices. Box's hl is 
too sensitive for use at routine CY levels, but if the test of homogeneity is rejected at highly significant 
ievels. the guidelines in Section 7.3.2.4 are appropriate. 

Univariate homogeneity of variance is also assumed, but the robustness of ANOVA general- 
izes to profile analysis. Unless sample sizes are highly divergent or there is evidence of stron? 
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heterogeneity (variance ratio of 10: I 01. 1;lr:er) of the DVi [cf .  Section 6.3.7.5).  this assii~llption is t 

probably safely ignored. 

4 

8.3.2.5 Linearity i 

For the parallelism and flatness tests, linearity of the relationships among DVs is assumed. This 
assumption is evaluated by examining scatterplots between all pairs of DVs through SPSS PLOT, or I 
SAS CORR or PLOT. Because the major consequence of failure of linearity is loss of power in the 
parallelism test, violation is somewhat mitigated by large sample sizes. Therefore, with many synz- , 
metrically distributed DVs and large sample sizes, the issue mLzy be ignored. On the other hand, if dis- 
tributions are notably skewed in different directions, check a few scatterplots for the variables with the 
most discrepant distributions to assure that the assumption is not too badly violated. 

1 

8.3.2.6 Absence of Multicollinearity and Singularity 

Section 7.3.2.8 discusses multicollinearity and singularity for MANOVA. Criteria for logical multi- 
collinearity are quite different, however, for the multivariate approach to repeated measures. Corre- 
lations among DVs are expected to be quite high when they are the same measure taken from the 
same cases over time. Therefore, only statistical multicollinearity poses difficulties, and even then 
only if tolerance (1 - SMC) is less than .001 for the measures combined over groups. 

8.4 Fundamental Equations for Profile Analysis 1 

Table 8.1 is a hypothetical data set appropriate for using profile analysis as an alternative to repeated- 
measures ANOVA. The three groups (the IV) whose profiles are compared are belly dancers, politi- 
cians, and administrators (or substitute your favorite scapegoat). The five respondents in each of 
these occupational groups participate in four leisure activities (the DVs) and, during each, are asked 
to rate their satisfaction on a 10-point scale. The leisure activities are reading, dancing, watching TV, 
and skiing. The profiles are illustrated in Figure 8.1, where mean ratings of each group for each activ- 
ity are plotted. 

Profile analysis tests of parallelism and flatness are multivariate and involve sum-of-squares 
and cross-products matrices. But the levels test is a univariate test, equivalent to the between-subjects 
main effect in repeated-measures ANOVA. 

8.4.1 Differences in Levels I 

For the example, the levels test examines differences between the means of the three occupational 
groups combined over the four activities. Are the group means of 7.30,5.00, and 3.15 significantly I 
different from each other? 1 

The relevant equation fer partitioning variance is adapted from Equation 3.8 as follows: I 

where n is the number of subjects in each group and p is the number of measures, in this 
case the number of ratings made by each respondent. 
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T.4BLE 8.1 Small Sample of Hypothetical Data for Illustration of Profile Analysis 

Group 

Activity 
Combined 

Case No. Rrncl Darlce TV Ski Activities 

Belly dancers 1 
2 
3 
4 
5 

Mean 
Politicians 6 

7 
8 
9 

10 
Mean 

Administrators 11 
12 
13 
14 
15 

Mean 
Grand mean 

0 1  ' I I 
I I 

Read Dance TV Ski 
Leisure Activity 

--+- Administrator 
. - o- . Politician 
- -0 - - Belly dancer 

FIGURE 8.1 Profiles of leisure-time ratings 
for three occupations. 
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The partition of variance in Equation 8.1 produces the total. within-?soups. and between- 
groups sums of squares. respectively. as in Equation 3.9. Because the score for each subject in the 
levels test is the subject's average score over the four activities, degrees of freedom follow Equations 
3.10 through 3.13, with N equal to tine total number of silbjects and k equal to the number of groups. 

For the hypothetical data of Table 8.1: 

and 

The levels test for the example produces a standard ANOVA source table for a one-way uni- 
variaie iesi, as siimiiiarizeb iii TaGie 8.2. Tiiere is a statisiicaiiy bignificani difference between occu- 
pational groups in average rating of satisfaction during the four leisure activities. 

Standard univariate rI2 is used to evaluate the effect size for occupational groups: 

The confidence interval, found through Smithson's (2003) procedure described earlier, ranges from 
.6 1 to .92. 

8.4.2 Parallelism 

Tests of parallelism and flatness are cnnductec! through hypotheses about adjacent, segments of the 
profiles. The test of parallelism, for example, asks if the difference (segment) between reading and 
dancing is the same for belly dancers, politicians, and administrators. How about the difference 
between dancing and watching TV? 

The most straightforward demonstration of the parallelism test begins by converting the data 
matrix into difference  score^.^ For the example, the four DVs are turned into three differences, as 

TABLE 8.2 ANOVA Summary Table for Test of Levels 
Effect for Small-Sample Example of Table 8.1 

Source of Variance SS df MS F 

Between groups 172.90 2 86.45 44.14:" 
Within groups 23.50 12 1.96 

'Other transformations are equally valid but generally more complex. 
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hhown in  Table 8.3. The difference I*iorCa are created from adjacent pairs o f  activit~es. but In 
this example, as in many uaes of profile analysis, the order of the DVs is arbitrary. In profile analy- 
sis it is often true that segments are formed from arbitrarily transformed DVs and have no intrinsic 
meaning. This sometimes creates difficulty in interpreting statistical findings of computer software 
and may lead to the decision to apply some other transformation. such as polynomial (to prodl~ce a 
trend analysis). 

In Table 8.3 the first entry for the first case is the difference between READ and DANCE 
scores, that is, 7 - 10 = -3. Her second score is the difference in ratings between DANCE and TV: 
10 - 6 = 4, and so on. 

A one-way MANOVA on the segments tests the parallelism hypothesis. Because each segment 
represents a slope between two original DVs, if there is a multivariate difference between groups 
then one or more slopes are different and the profiles are not parallel. 

Using procedures developed in Chapter 7, the total sum-of-squares and cross-products matrix 
(S,,,,,I) is partitioned into the between-groups matrix (Sbg) and the within-groups or error matrix 
(S,+,g)."o produce the within-groups matrix, each person's score matrix, YkIn,  has subtracted from it 

TABLE 8.3 Scores for Adjacent Segments for Small-Sample 
Hypothetical Data 

Segment 

Group 
Reud vs. Dance TV vs. 

Case No. Dance vs. TV Ski 
- 

Belly dancers 

Mean 
Politicians 

Mean 
Administrators 

Mean 
Grand mean 

sother methods of forming S matrices can be used to produce the same result. 
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the mean matrix for that group. &'I,,, . 'The resulting difference matrix is multiplied by its transpose to 
create the sum-of-squares and cross-products matrix. For the first belly dancer: 

and 

This is the sum-of-squares and cross-products matrix for the first case. When these matrices 
are added over all cases and groups, the result is the error matrix, S,,s: 

To produce the between-groups matrix, Sbg,  the grand matrix, GM, is subtracted from each 
mean matrix, Mk, to form a difference matrix for each group. The mean matrix for each group in the 
example is 

and the grand mean matrix is 
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The between-groups sum-of-squares and croxs-products matrix SI,, is formed by multiplying 
each group difference matrix by its transpose, and then adding the three resulting matrices. After 
multiplying each entry by n = 5, to provide for summation over subjects, 

Wilks' Lambda (A) tests the hypothesis of parallelism by evaluating the ratio of the determinant of 
the within-groups cross-products matrix to the determinant of the matrix formed by the sum of the 
within- and between-groups cross-products matrices: 

For the example, Wilks' Lambda for testing parallelism is 

By applying the procedures of Section 7.4.1, one finds an approximate F(6, 20) = 8.74, 
p < .OO 1, leading to rejection of the hypothesis of parallelism. That is, the three profiles of Figure 8.1 
are not parallel. Effect size is measured as partial ,12:6 

For this example, then, 

partial v2 = 1 - .076279lD = .72 

Seventy-two percent of the variance in the segments as combined for this test is accounted for by the 
difference in shape of the profiles for the three groups. Confidence limits (per Smithson, 2003) are 
.33 to .78. Recall from Chapter 7 that segments are combined here to maximize group differences for 
parallelism. A different combination of segments is used for the test of flatness. 

8.4.3 Flatness 

Because the hypothesis of parallelism is rejected for this example, the test of flatness is irrelevant; 
the question of flatness of combined profiles of Figure 8.1 makes no sense because at least one of 
them (and in this case probably two) is not flat. The flatness test is computed here to conclude the 
demonstration of this example. 

6 ~ a r t i a l  tl' isavailable through SPSS GLM and through Smithson's (2003) procedures discussed earlier. 
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Statistically, the test is whether, with groups combined, the three segments of Table 8.3 devi- 
ate from zero. That is. if  segments are interpreted as slopes in Figure 8. l .  are any of the slopes for the 
combined groups different from zero (nonhorizontal)? The test subtracts a set of hypothesized grand 
means, representing the null hypothesis, from the matrix of actual grand means: 

(GM - 0) = 

- 1.13 - 1.13 

The test of flatness is a multivariate generalization of the one-sample t test demonstrated in 
Chapter 3. Because it is a one-sample test, it is most conveniently evaluated through Hotelling's T 2 ,  
or trace:' 

T~ = N(GM - o)'s;~J (GM - 0) (8.5) 

where N is the total number of cases and s;: is tine inverse of tihe within-groups sum-of- 
squares and cross-products matrix developed in Section 8.4.2. 

For the example: 

.05517 .04738 -.00119 

T" (15)[0.13 1.13 - 1.131 .04738 .I1520 

-.00119 .01847 

= 2.5825 

From this is found F, with p - 1 and N - k - p f 2 degrees of freedom, where p is the number of 
original DVs (in this case 4), and k is the number of groups (3). 

so that 

with 3 and 10 degrees of freedom, p < .O 1 and the test shows significant deviation from flatness. 
A measure of effect size is found through Hotelling's T 2  that bears a simple relationship to 

lambda. 

 h his is sometimes referred to as Hotelling'\ 7: 
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t 

Lambda, In turil, i 4  wed 10 find (note t h i ~ t  t he~e  1, no difference between ,I2 and partlal r T 2  becuu,e 
s = I ) :  

showing that 72% of the variance in this combination of segments is accounted for by nonflatness of 
I 

the profile collapsed over groups. Smithson's (2003) procedure finds confidence limits from .15 to 
.8 1. 

8.4.4 Computer Analyses of Small-Sample Example 

Tables 8.4 through 8.6 show syntax and selected output for computer analyses of the data in Table 
8.1. Table 8.4 illustrates SPSS MANOVA with brief output. SPSS GLM is illustrated in Table 8.5. 
Table 8.6 demonstrates profile analysis through SAS GLM, with s h o r t printout requested. All pro- 
grams are set up as repeated-measures ANOVA, which automatically produces both univariate and 
muitivariare resuits. 

The three programs differ substantially in syntax and presentation of the three tests. To set up 
SPSS MANOVA for profile analysis, the DVs (levels of the within-subject effect) READ TO SKI 
are followed in the MANOVA statement by the keyword BY and the grouping variable with its 

! TABLE 8.4 Profile Analysis of Small-Sample Example through SPSS MANOVA 
I (Syntax and Partial Output) 
j 

MANOVA READ TO SKI BY OCCUP(! ,3) 
/WSFACTOR=ACTIVITY(4) 
/WSDESIGN=ACTIVITY 
/PRINT=SIGNIF(BRIEF) 
/DESIGN. 

Tests of Between-Subjects Effects. 

Tests of Significance for TI using UNIQUE sums of squares 

Source of Variation SS DF MS F Sig of F 

I WITHIN+RESIDUAL 23 .50  1 2  1 . 9 6  
I occup 172 .90  2  8 6 . 4 5  4 4 . 1 4  . O O O  

Multivariate Tests of Significance 

Tests using UNIQUE sums of squares and WITHPN+RESIDUAL error term 

Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

ACTIVITY . 279  8 . 6 0 8  3 . O O  1 0 . 0 0 0  . 0 0 4  
occup BY ACTIVITY . 076  8 . 7 3 6  6 . 0 0  2 0 . 0 0 0  . O O O  
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levels-OCCUP(1,3). The DVs are combined for profile analysis in the WSFACTOR instruction 
and labeled ACTIVITY(4) to indicate four levels for the within-subjects factor. 

In the SPSS MANOVA output, the levels test for differences among groups is the test of 
OCCUP in the section labeled Tests of Significance for TI. . . . This is followed by infor- 
mation about tests and adjustments for sphericity (not shown, cf. Section 8.5.1). The flatness and 
parallelism tests appear in the section labeled Tests using UNIQUE sums of squares and 
WITHIN+RESIDU& for ACTIVITY and OCCUP by ACTIVITY, respectively. Output is limited in 
this example by the PRINT=SIGNIF(BRIEF) instruction. Without this statement, separate source 
tables are printed for flatness and parallelism, each containing several multivariate tests (demon- 

: strated in Section 8.6.1). Univariate tests for repeated-measures factors (ACTIVITY and OCCUP by 
ACTIVITY) as well as tests for sphericity are also printed, but omitted here. 

SPSS GLM has a similar setup for repeated-measures ANOVA. The EMMEANS instructions 
request tables of adjusted means as parameter estimates. 

Multivariate tests for all four criteria of Section 7.5.2 are shown for ACTIVITY (flatness) and 
ACTIVITY by OCCUP (parallelism). The test for levels, OCCUP, is shown in the section labeled 
Tests of Between-Subjects Effects. Parameter estimate tables for the three effects include means, 
standard errors, and 95% confidence intervals. Information on univariate tests of OCCUP and 
OCCUP by ACTIVITY, including trend analysis and sphericity tests; has been omitted here. 

In SAS GLM, the c  1 a s  s  instruction identifies 0 C C U P  as the grouping variable. The mod e  1 
instruction shows the DVs on the left of an equation and the IV on the right. Profile analysis is dis- 
tinguished from ordinary MANOVA by the instructions in the line beginning r e p  e  a t e  d, as seen 
in Table 8.6. 

The results are presented in two multivariate tables and a univariate table. The first table, 
labeled . . . Hypo t h  e  s  i s  o  f n o  A  C  T I V I T  Y E  f f e c t , shows four fully-labeled multivariate 
tests of flatness. The second table shows the same four multivariate tests of parallelism, labeled 
. . . H y p o t h e s i s  o f  n o  A C T I V I T Y * O C C U P  E f f e c t .  The test of levels is the test for 
OCCUP in the third table, labeled T e s t  o f  H y p o t h e s e s  f o r  B e t w e e n  S u b j e c t s  
E f f e c t s .  Univariate tests of ACTIVITY and OCCUP by ACTIVITY are omitted here. More 
extensive output is available if the S  H  0 R T  instruction is omitted. 

TABLE 8.5 Profile Analysis of Small-Sample Example through SPSS GLM 
(Syntax and Output) 

G LM 
read dance tv ski BY occup 
NVSFACTOR = activity 4 Polynomial 
/MEASURE = rating 
/METHOD = SSTYPE(3) 
/EMMEANS = TABLES(occup) 
IEMMEANS = TABLES(activity) 
IEMMEANS = TABLES(occup*activity) 
/CRITERIA = ALPHA(.05) 
NVSDESIGN = activity 
/DESIGN = occup. 



TABLE 8.5 Continued 

General Linear Model 
Multivariate TestsC 

aExact statistic 
bThe statistic is an upper bound on F that yields a lower bound on the significance level. 
C. 

Design: Intercept+occup 
Within Subjects Design: activity 

Tests of Between-Subjects Effects 

Sig. 

.004 

.004 

.004 

.004 

.OOO 

.OOO 

.OOO 

.001 

Measure: rating 
Transformed Variable: Average 

Effect 
L 

activity Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

- 

activ~ty * occup Pillai's Trace 
Wilks' Lambda 
Hotelling's Trace 
Roy's Largest Root 

F 

8.608a 
8.608a 
8.608a 
8.608a 

9.276 
8.736a 
8.142 

12.982~ 

Value 

.721 

.279 
2.582 
2.582 -- 
1.433 
.076 

5.428 
3.541 

Hypothesis 
d f 

3.000 
3.000 
3.000 
3.000 

6.000 
6.000 
6.000 
3.000 

Source 

Intercept 
occup 
Error 

J 

Error df 

10.000 
10.000 
10.000 
10.000 

22.000 
20.000 
18.000 
1 1 .OOO 

df 

1 
2 

12 

Type l l I 
Sum of 
Squares 

1591.350 
1 72.900 
23.500 

- 
M'ean 

Square 

1591.350 
86.450 

1.958 

F 

812.604 
44.1 45 

Sig. 

,000 
.OOO 
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Estimated Marginal Means 

1. Occupation 

Measure: rating 

2. activity 

Measure: rating 

Occupation 

Belly dancer 
Politician 
Administrator 

3. Occupation activity 

Measure: rating 

activity 

1 
2 
3 
4 

; 

I 
I 

Mean 

7.300 
5.000 
3.150 

95% Confidence 
Interval 

Std. Error 

.313 

.313 

.313 

Lower 
Bound 

6.61 8 
4.31 8 
2.468 

I 

Occupation activity 

Belly dancer 1 
2 
3 
4 

Politician 1 
2 
3 
4 

Administrator 1 
2 
3 
4 

7 

Upper 
Bound 

7.982 
5.682 
3.832 

95% Confidence 
Interval 

Mean 

5.533 
5.400 
4.267 
5.400 

95% Confidence 
Interval 

Lower 
Bound 

4.822 
4.886 
3.796 
4.572 

Std. Error 

.327 

.236 
,216 
.380 

I 
Lower 
Bound 

5.367 
8.51 1 
4.985 
5.966 

3.767 
3.91 1 
4.385 
3.566 

3.767 
1.111 
,985 

2.366 

Upper 
Bound 

6.245 
5.914 
4.737 
6.228 

Mean 

6.600 
9.400 
5.800 
7.400 

5.000 
4.800 
5.200 
5.000 

5.000 
2.000 
1.800 
3.800 

Upper 
Bound 

7.833 
10.289 
6.61 5 
8.834 

6.233 
5.689 
6.01 5 
6.434 

6.233 
2.889 
2.61 5 
5.234 

Std. Error 

.566 

.408 

.374 

.658 

,566 
.408 
.374 
.658 

,566 
.408 
.374 
,658 



TABLE 8.6 Profile Analysis of Small-Sample Example through SAS GLM (Syntax and Selected Output) 

p r o c  g l m  data=SASUSER.SSPROFIL; 
c l a s s  OCCUP; 
m o d e l  READ DANCE TV S K I  = OCCUP/NOUNI; 
r e p e a t e d  ACT IV ITY  4 p r o f i l e / s h o r t ;  

r un ;  

Manova T e s t  C r i t e r i a  a n d  E x a c t  F S t a t i s t i c s  f o r  t h e  H y p o t h e s i s  o f  n o  ACT IV ITY  E f f e c t  
H = T y p e  111 SSCP M a t r i x  f o r  ACT IV ITY  

E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  

W i 1  k s  ' Lambda 0 . 2 7 9 1  3735 8 . 6 1  
P i  1 l a i  ' s  T r a c e  0 . 7 2 0 8 6 2 6 5  8 . 6 1  
H o t , e l l i n g - L a w l e y  T r a c e  2 .58246571  8 . 6 1  
R o y ' s  G r e a t e s t  R o o t  2 .58246571  8 . 6 1  

Num D F  Den DF P r  > F 



TABLE 8.6 Continued 

Manova T e s t  C r i t e r i a  a n d  F A p p r o x i m a t i o n s  f o r  t h e  H y p o t h e s i s  o f  n o  ACTIVITY*OCCUP E f f e c t  
H = Type  111 SSCP M a t r i x  f o r  A C T I V I T Y k O C C U ~  

E = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  N u m D F  Den D F  P r  > F 

W i  L k s  ' Lambda 0.07627855 8 .74 6  2 0  <.0001 
P i L L a i ' s  T r a c e  1  -43341  443 9 . 2 8  6 2 2 <. 0001 
H o t e l l i n g - L a w l e y  T r a c e  5.42784967 8 .73  6  1 1 . 7 1 4  0 .0009  
R o y ' s  G r e a t e s t  R o o t  3.54059987 1 2 . 9 8  3 11 0 .0006  

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F  S t a t i s t i c  f o r  W i l k s '  Lambda i s  e x a c t .  

The  GLM P r o c e d u r e  
R e p e a t e d  M e a s u r e s  A n a l y s i s  o f  V a r i a n c e  

T e s t s  o f  H y p o t h e s e s  f o r  B e t w e e n  S u b j e c t s  E f f e c t s  

S o u r c e  D F Type  I11 SS Mean S q u a r e  F V a l u e  P r  > F 

OCCUP 2  172 .9000000  86.4500000 44.14 <.0001 
E r r o r  12 23.5000000 '1.9583333 

, . 
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8.5 Some Important Issues 

Issues discussed here are unique to profile analysis. or at least they affect profile analysis differently 
from traditional MANOVA. Issues such as choice among statistical criteria, for instance, are identi- 
cal whether the DVs are analyzed directly (as in MANOVA) or converted into segments or some 
other transformation (as in profile analysis). Therefore, the reader is referred to Section 7.5 for con- 
sideration of these matters. 

8.5.1 Univariate vs. Multivariate Approach 
to Repeated Measures 

Research where the same cases are repeatedly measured with the same instrument is common in 
many sciences. Longitudinal or developmental studies, research that requires follow-up, studies 
where changes in time are of interest-all involve repeated measurement. Further, many studies of 
short-term phenomena have repeated measurement of the same subjects under several experimental 
conditions, resulting in an economical research design. 

When there are repeated measures, a variety of analytical strategies are available, each with 
advantages and disadvantages. Choice among the strategies depends upon details of research design 
and conformity between the data and the assumptions of analysis. 

Univariate repeated-measures ANOVA with more than 1 df for the repeated-measure IV 
requires sphericity. Although the test for homogeneity of covariance, a component of sphericity, is 
fairly complicated, the notion is conceptually simple. All pairs of levels of the within-subjects vari- 
able need to have equivalent correlations. For example, consider a longitudinal study in which chil- 
dren are measured yearly from ages 5 to 10. If there is homogeneity of covariance, the correlation 
between scores on the DV for ages 5 and 6 should be about the same as the correlation between 
scores between ages 5 and 7,  or 5 and 8. or 6 and 10, etc. In applications like these, however, the 
assumption is almost surely vio!ated. Thifigs measured closer in time tend to be more highly corre- 
lated than things measured farther away in time; the correlation between scores measured at ages 5 
and 6 is likely to be much higher than the correlation between scores measured at ages 5 and 10. 
Thus, whenever time is a within-subjects IV, the assumption of homogeneitji of covariance is !ike!y 
to be violated, leading to increased Type I error. Both packages routinely provide information about 
sphericity directly in their output: SPSS GLM and MANOVA each show a sphericity test for the sig- 
nificance of departure from the assumption. The issue is moot when there are only two levels of the 
within-subjects IV. In that case, sphericity is not an issue and univariate results match multivariate 
results. 

If there is violation of sphericity, several alternatives are available, as also discussed in Section 
6.5.4.1. The first is to use one of the significance tests that is adjusted for violation of the assumption, 
such as Greenhouse-Geisser or ~ u ~ n h - ~ e l d t . *  In all applicable programs in the three packages both 
Greenhouse-Geisser (G-G) and Huynh-Feldt (H-F) values are provided, along with adjusted signifi- 
cance levels. 

%ee Keppel and W~ckens I 7004. pp. 378-3791 ful  di>cub~ioii of the difference? between the two types o f  adjustments (refer- 
ring to the Huynh-Feldt procedure as the Box correction). Even greater insights are available through consultation with the 
original sources: Greenhouse and Geisser ( 1959) as well as Huynh and Feldt ( 1976). 



A second strategy. available through a11 three programs. is a more stringent adjustment of the 
statistical criterion leading to a more honest Type I error rate, but lower power. This strategy has the 
advantage of simplicity of intzrpretation (because familiar main effects and interactions are evalu- 
ated) and simplicity of decision-making (you decide on one of the strategies before performing the 
analysis and then take your chances with respect to power). 

For all' of the multivariate programs, however, results of profile analysis are also printed out, and 
you have availed yourself of the third strategy, whether you meant to or not. Profile analysis, called the 
multivariate approach to repeated measures, is a statistically acceptable alternative to repeated- 
measures ANOVA. Other requirements such as homogeneity of variance-covariance matrices and 
absence of multicollinearity and singularity must be met, but they are less likely to be violated. 

Profile analysis requires more cases than univariate repeated-measures ANOVA-more cases 
than DVs in the smallest group. If the sample is too small, the choice between multivariate and uni- 
variate approaches is automatically resolved in favor of the univariate approach, with adjustment for 
failure of sphericity, as necessary. 

Sometimes, however, the choice is not so simple and you find yourself with two sets of results. 
If the conclusions from both sets of results are the same, it often is easier to report the univariate solu- 
iivn, whiie noting that the muitivariate soiution is simiiar. But if conciusions differ between the two 
sets of results, you have a dilemma. Choice between conflicting results requires attention to the 
details of the research design. Clean, counterbalanced experimental designs "fit" better within the 
univariate model, while nonexperimental or contaminated designs often require the multivariate 
model that is more forgiving statistically, but more ambiguous to interpret. 

The best solution, the fourth alternative, often is to perform trend analysis (or some other set 
of single df contrasts) instead of either profile analysis or repeated-measures ANOVA if it makes 
conceptual sense within the context of the research design. Many longitudinal, follow-up, and other 
time-related studies lend themselves beautifully to interpretation in terms of trends. Because statis- 
tical tests of trends and other contrasts each use a single degree of freedom of the within-subjects IV, 
there is no possibility of violation of sphericity. Furthermore, none of the assumptions of the multi- 
variate approach needs be met. SPSS GLM automatically prints out a full trend analysis for a 
repeated-measures analysis. 

A fifth alternative is straightforward MANOVA where DVs are treated directly (cf. Chapter 7), 
without transformation. The design becomes a one-way between-subjects analysis of the group- 
ing variable with the repeated measures used simply as multiple DVs. There are two problems with 
conversion of repeated measures to MANOVA. First, because the design is now one-way between- 
subjects, MANOVA does not produce the interaction (parallelism) test most often of interest in a 
repeated-measures design. Second, MANOVA allows a Roy-Bargmann stepdown analysis, but not a 
trend analysis of DVs after finding a multivariate effect. 

A final alternative is to use multilevel modeling (Chapter 15) in which the repeated measures 
form the first level in a hierarchical analysis. This approach, although fraught with complexities of 
random effects and maximum likelihood analysis, is highly flexible in dealing with missing data and 
varying intervals between measurements. Sphericity is not an issue because each analysis deals with 
only one comparison. e.g., linear trend. 

In summary then, if the levels of the IV differ along a single dimension such as time or dosage 
and trend analysis makes sense, use it. Or, if the design is a clean experiment where cases have been 
randomly assigned to treatment and there are expected to be no carryover effects. the univariate 
repeated-measures approach is probably justified. (But just to be on the safe side. use a program that 
tests and adjusts for violation of sphericity.) If, however, the levels of the IV do not vary along a sin- 
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gle dimension but violation of sphericity is likely, and if  there are lots mure iaseb than DL'>. it  i \  
probably a good idea to choose either profile analysis or MANOVA. 

8.5.2 Contrasts in Profile Analysis 

When there are more than two levels of a significant effect in profile analysis, it is often desirable to 
perform contrasts to pinpoint sources of variability. For instance, because there is an overall differ- 
ence between administrators, belly dancers, and politicians in their ratings of satisfaction with 
leisure time activities (see Section 8.4), contrasts are needed to discover which groups differ from 
which other groups. f i e  belly dancers the same as administrators? Politicians? Neither? 

It is probably easiest to think of contrasts following profile analysis as coming from a regular 
ANOVA design with (at least) one grouping variable and one repeated measure, even when the appli- 
cation of the technique is to multiple, commensurate DVs. That is, the most interpretable contrasts 
following profile analysis are likely to be the ones that would also be appropriate after a mixed 
within- and between-subjects ANOVA. 

There are, of course, numerous contrzst precedures and the choice among the= depends or. 
what makes most sense in a given research setting. With a single control group, Dunnett's procedure 
often makes most sense. Or if all pairwise comparisons are desired, the Tukey test is most appropri- 
ate. Or if there are numerous repeated measures and/or normative data are available, a confidence 
interval procedure, such as that used in Section 8.6.1, may make the most sense. With relatively few 
repeated measures, a Scheffk type procedure is probably the most general (if also the most conser- 
vative) and is the procedure illustrated in this section. 

It is important to remember that the contrasts recommended here explore differences in origi- 
nal DV scores while the significance tests in profile analysis for parallelism and flatness typically 
evaluate segments. Although there is a logical problem with following up a significance test based 
on segments with a contrast based on the original scores, performing contrasts on segments or some 
other transformation of the variables seems even worse because of difficulty in interpreting the 
results. 

Contrasts in repeated-measures ANOVA with both grouping variables and repeated measures 
is not the easiest of topics, as you probably recall. First, when parallelism (interaction) is significant, 
there is the choice between a simple-effects analysis and an interaction-contrasts analysis. Second, 
there is a need in some cases to develop separate error terms for some of the contrasts. Third is the 
need to apply an adjustment such as Scheffi to the F test to avoid too liberal a rejection of the null 
hypothesis. The researcher who is fascinated by these topics is referred to Tabachnick and Fidell 
(2007) for a detailed discussion of them. The present effort is to illustrate several possible 
approaches and to recommend guidelines for when each is likely to be appropriate. 

The most appropriate contrast to perform depends on which effect or combination of effects- 
levels, flatness, or parallelism-is significant. If either levels or flatness is significant, but paral- 
lelism (interaction) is not, contrasts are performed on marginal means. If the test for levels is 
significant, contrasts are formed on marginal values for the grouping variable. If the test for flatness 
is significant, contrasts are formed on the repeated-measures marginal values. Because contrasts 
formed on marginal values "fall out" of computer runs for interaction contrasts, they are illustrated 
in Section 8.5.2.3. 

Sections 8.5.2.1 and 8.5.2.2 describe simple-effects analyses. appropriate if parallelism is sig- 
nificant. In simple-effects analysis, one variable is held constant at some value while mean differ- 
ences are examined on the levels of the other variable, as seen in Figure 8.2. For instance, the level 



332 C H A P T E R  x 

Simple 

(a) 
Simple 
effects 

FIGURE 8.2 Simple-effects analysis exploring: (a) differences among 
measures for each group, followed by (b) a simple contrast between 
measures for one group: and (c) differences among groups for each 

measure, followed by (d) a simple contrast between groups for one measure. 

of group is held constant at belly dancer while mean differences are examined among the leisure time 
activities [Figure 8.2(a)]. The researcher asks if belly dancers have mean differences in satisfaction 
with different leisure activities. Or leisure activity is held constant at dance while mean differences 
are explored between administrators, politicians. and belly dancers [Figure 8.2(c)]. The researcher 
asks whether the three groups have different mean satisfaction while dancing. 

Section 8.5.2.1 illustrates a simple-effects analysis followed by simple contrasts [Figures 
8.2(c) and (d)] for the case where parallelism and flatness effects are both significant, but the levels 
effect is not. Section 8.5.2.2 illustrates a simple-effects analysis followed by simple contrasts [Fig- 
ures 8.2(a) and (b)] for the case where parallelism and levels are both significant, but the flatness 
effect is not. This particular pattern of simple-effects analysis is recommended because of the con- 
founding inherent in analyzing simple effects. 

The analysis is confounded because when the groups (levels) effect is held constant to analyze 
the repeated measure in a one-way within-subjects ANOVA, both the sum of squares for interaction 
and the sum of squares for the repeated measure are partitioned. When the repeated measure is held 
constant so the groups (levels) effect is analyzed in a one-way between-subjects ANOVA, both the 
sum of squares for interaction and the sum of squares for the gruup effect are partitioned. Because in 
simple-effects analyses the interaction sum of squares is confounded with one or the other of the 
main effects, it seems best to confound it with a nonsignificant main effect where possible. This rec- 
ommendation is followed in Sections 8.5.2.1 and 8.5.2.2. 
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Measures 

FIGURE 8.3 Interaction-contrasts analyses exploring 
small (2 x 2) interactions formed by partitioning a large 

(3 x 4) interaction. 

Section 8.5.2.3 describes an interaction-contrasts analysis. In such an analysis, an interaction 
between two IVs is examined through one or more smaller interactions (Figure 8.3). For instance, the 
significant interaction between the three groups on four leisure activities in the example might be 
reduced to examination of the difference between two groups on only two of the activities. One 
could, for instance, ask if there is a significant interaction in satisfaction between belly dancers and 
administrators while watching TV vs. dancing. Or one could pool the results for administrator and 
politician and contrast them with belly dancer for one side of the interaction, while pooling the 
results for the two sedentary activities (watching TV and reading) against the results for the two 
active activities (dancing and skiing) as the other side of the interaction. The researcher asks whether 
there is an interaction between dancers and the other professionals in their satisfaction while engaged 
in sedentary vs. active leisure time activities. 

An interaction-contrasts analysis is not a confounded analysis; only the sum of squares for 
interaction is partitioned. Thus, it is appropriate whenever the interaction is significant and regard- 
less of the significance of the other two effects. However, because simple effects are generally eas- 
ier to understand and explain, it seems better to perform them when possible. For this reason, we 
recommend an interaction-contrasts analysis to explore the parallelism effect only when both the 
levels and flatness effects are also significant. 

8.5.2.1 Parallelism and Flatness Significant, Levels Not Significant 
(Simple-effects Analysis) 

When parallelism and flatness are both significant, a simple-effects analysis is recommended where 
differences among means for groups are examined separately at each level of the repeated measure 
[Figure 8.2(c)]. For the example, differences in means among politicians, administrators, and belly 
dancers are sought first in the reading variable, then in dance, then i n  TV, and finally in skiing, (Not 
all these effects need to be examirled, of course, if they are not of interest.) 

Table 8.7 shows syntax and location of output for SPSS ONEWAY, GLM, and MANOVA, and 
SAS GLM for performing simple-effects analysis on groups with repeated measures held constant. 
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TABLE 8.7 Syntax for Simple-Effects Analysis of Occupation, Holding Activity Constant 

Program Syntax Section of Output Name of Effect 

SPSS ONEWAY 
Compare dance BY occup 
Means /MISSING ANALYSIS. 

ANOVA Between 
Groups 

SPSS MANOVA read TO ski BY occup(l,3) Tests involving occup BY 
MANOVA /WSFACTOR=activity(4) 'MWITHIN MWITHIN 

/WSDESIGN=MWITHIN activity(1) ACTIVITY (2 ) . . ACTIVITY(21, 
MWlTHlN activity(2) etc. etc. 
MW ITH l N activi ty(3) 
MWlTHlN activity(4) 
/RENAME=READ, DANCE, TV, SKI 
/DESIGN. 

SASGLM p roc  g lm data=SASUSER.SSPROFIL; Dependent  OCCUP 
c l a s s  OCCUP; V a r i a b l e :  
model D A N C E  = OCCUP; DANCE 

run; Source  
Type 1 1 1  S S  

The syntax of Table 8.7 shows simple effects of occupation only for one DV, DANCE (except 
for SPSS MANOVA, which is set up to do all simple effects at once). Parallel syntax produces sim- 
ple effects for the other DVs. To evaluate the significance of the simple effects, a Scheffe adjustment 
(see Section 3.2.6) is applied to iinadjiisted criticai F under the assumptions that these tests are per- 
formed post hoc and that the researcher wants to control for familywise Type I error. For these con- 
trasts the Scheffe adjustment is 

where k is the number of groups and n is the number of subjects in each group. For the example, 
using a = 0.05 

By this criterion, there are not statistically significant mean differences between the groups 
when the DV is READ, but there are statistically significant differences when the DV is DANCE, 
TV, or SKI. 

Because there are three groups, these findings are still ambiguous. Which group or groups are 
different from which other group or groups? To pursue the analysis, simple contrasts are performed 
[Figure S.2(d)]. Contrast coefficients are applied to the levels of the grouping variable to determine 
the source of the difference. For the example, contrast coefficients compare the mean for belly 
dancers with the mean for the other two groups combined for DANCE. Syntax and location of out- 
put from the three programs are shown in Table 8.8. 



TABLE 8.8 Syntax for Simple Comparisons on Occupations, Holding Activity Constant 

Program Syntax 
Section of 
Output 

Name of 
Effect 

SPSS Compare ONEWAY 
Means dance BY occup 

/CONTRAST= 2 -1 -1 
/MISSING ANALYSIS. 

SPSS MANOVA MANOVA dance BY occup(l,3) 
/PARTITION(occup) 
/CONTRAST(occup)=SPEClAL (1 1 1, 

2 -1 -1, 
0 1 -1) 

/DESIGN=occup(l ). 

Contrast Tests 

Tests of 
Significance for 
dance using ... 

Assume equal 
variancesa 

OCCUP ( 1 1 

SAS GLbl p r o c  g l m  data=SASUSER.SSPROFIL; D e p e n d e n t  BD V S .  O T H E R S  
c l a s s  OCCUP; V a r i a b l e :  D A N C E  
m o d e l  DANCE = OCCUP; 
c o n t r a s t  ' B D  V S .  OTHERS' OCCUP 2 -1 -1; C o n t r a s t  

r un ;  

"I IS  glvrn rather than F; recall that r' = F. 



The CONTRAST procedure i h  used fur both programs. For this analysis, the surn of squares and 
mean square for the contrast is 130.000. error mean square is .83333. and F is 134.00 (with 
t = 12.00). This F exceeds the I;; adjusted critical value of 7.76; it is no surprise to find there is a sta- 
tistically significant difference between belly dancers and others in their satisfaction while engaging 
in DANCE. 

8.5.2.2 Parallelism and Levels Significant, Flatness Not Significarzt 
(Simple-effects Analysis) 

This combination of findings occurs rarely because if parallelism and levels are significant, flatness 
is nonsignificant only if profiles for different groups are mirror images that cancel each other out. 

The simple-effects analysis recommended here examines mean differences among the various 
DVs in series of one-way within-subjects ANOVAs with each group in turn held constant [Figure 
8.2(a)]. For the example, mean differences between READ, DANCE, TV, and SKI are sought first 
for belly dancers, then for politicians, and then for administrators. The researcher inquires whether 
each group, in turn, is more satisfied during some activities than during others. 

Table 8.9 shows the syntax and locat~on of output for Belly Dancers (OCCUP = 1) for the three 
programs. 

SPSS GLM requires separate runs for each occupation. SAS GLM and SPSS MANOVA per- 
mit analyses by OCCUP. so that results are printed out for simple effects for all levels of occupation 
at one time. 

For these simple effects, the Scheffk adjustment to critical F is 

where p is the number of repeated measures, n is the number of subjects in each group, and k is the 
number of groups. For the exainple 

The F value f ~ :  simple effects of activitj for belly dancers (7.66) does iioi exceed adjusted c ~ i -  
ical F i n  the output of SPSS and SAS GLM, which use an error term based only on a single OCCUP 
(df = 12). However, SPSS MANOVA uses an error term based on all occupations (df = 36), produc- 
ing F = 10.7 1, leading to ambiguous conclusions. In any event, the effect is significant as a planned 
comparison, or probably with a less stringent adjustment for family Type I error rate. 

A statistically significant finding is also ambiguous in this case because there are more than 
two activities. Contrast coefficients are therefore applied to the levels of the repeated measure to 
examine the pattern of differences in greater detail [Figure 8.2(b)]. 

Table 8.10 shows syntax and location of output for a simple contrast for the three programs. 
The contrast that is illustrated compares the pooled mean for the two sedentary activities (READ and 
TV) against the pooled mean for the two active activities (DANCE and SKI) for (you guessed it) 
belly dancers. 

The F value of 15.365 produced by SAS and SPSS GLM exceeds F, of 8.76 as well as unad- 
justed critical F and indicates that belly dancers have statistically significant mean differences in 
their satisfaction during active vs. sedentary activities. The F value of 16 98 produced by SPSS 
MANOVA also exceeds critical E The difference in F values again is produced by different error 





TABLE 8.10 Syntax for Simple Comparisons on Activity, Holding Occupation Constant 

Program Syntax Section of Output Name of Effect 

SPSS 
MANOVA 

Tests of 
Significance 
for SEDVSACT 
using. . . 

MWITHIN 
OCCUP ( 1 ) 
BY 
ACTIVITY ( 1) 

SPSS GLM SELECT IF (occup = 1). Tests of Within- activity L1 
GLM Subjects 
read dance tv ski Contrasts 
NVSFACTOR activity 4 SPECIAL( 1 1 1 1 

-1 1 -1 1 
- 1 0 1 0  
0-1  0 1) 

/METHOD = SSTYPE(3) 
/CRITERIA = ALPHA(.05) 
NVSDESIGN = activity. 

MANOVA read TO ski BY occup(l,3) 
NVSFACTOR=activity(4) 
/PARTlTlON(activity) 
/CONTRAST(activity)=SPEClAL ( 1 1 1 1, 

-1 1 -1  1, 
-1 0 1 0, 
0 -1 0 1) 

NVSDESIGN=activity(l) 
/RENAME=overall, sedvsact, readvstv, danvsskf 
/PRINT=SIGNIF(BRIEF) 
/DESIGN=MWITHIN occup(1). 

proc glm data=SASUSER.SSPROFIL; MANOVA Test ... no Wilks' Lambda 
where OCCUP=1: Overall Intercept Effect 
model READ DANCE TV SKI =; 
manova m = -1 *READ + 1 *DANCE - 1 *TV + 1 *ski 

H=INTERCEPT; 
run; 

SAS C;LM 
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terms. Only SPSS MANOVA uses an error term based 011 ill1 three occupations. with df<,,,.,,, = 17 
rather than 4. 

8.5.2.3 Parullelism, Levels, and Flatness Significant (Interaction Corztrasts) 

When all three effects are significant, an interaction-contrasts analysis is often most appropriate. This 
analysis partitions the sum of squares for interaction into a series of smaller interactions (Figure 8.3). 
Smaller interactions are obtained by deleting or combining groups or measures with use of appropri- 
ate contrast coefficients. 

For the example, illustrated in Table 8.1 1, the means for administrators and politicians are 
combined and compared with the mean of belly dancers, while the means for TV and READ are 
combined and compared with the combined mean of DANCE and SKI. The researcher asks whether 
belly dancers and others have the same pattern of satisfaction during sedentary vs. active leisure 
activities. 

The F value for the contrast is 15.37 for SPSS and SAS GLM and 15.21 for SPSS MANOVA 
due to minor differences in algorithms. 

Interaction contrasts also need Scheffk adjustment to critical F to hold down the rate of fami- 
lywise error. For an interaction, the Scheffk adjustment is 

where p is the number of repeated measures, k is the number of groups, and n is the number of sub- 
jects in each group. For the example 

Because the F value for the interaction contrast exceeds 4,  there is an interaction between belly 
dancers vs. others in their satisfaction during sedentary vs. active leisure time activities. A look at the 
means in Table 8.1 reveals that belly dancers favor active leisure time activities to a greater extent 
than others. 

8.5.2.4 Only Parallelism Significant 

If the only significance is in the interaction of groups with repeated measures, any of the analyses in 
Section 8.5.2 is appropriate. The decision between simple-effects analysis and interaction contrasts 
is based on which is more informative and easier to explain. Writers and readers seem likely to have 
an easier time explaining results of procedures in Section 8.5.2.2.9 

8.5.3 Doubly-Multivariate Designs 

In a doubly-multivariate design, noncommensurate DVs are repeatedly measured. For example, chil- 
dren in classrooms with either traditional or computer assisted instruction are measured at several 

'lf you managed to read this far, go have a beer 



b~ TABLE 8.11 Syntax for Interaction Contrasts, Belly Dancers vs. Others and Active vs. Sedentary Activities 
-- 0 

Program Syntax 
Location Name 
of Output of Effect 

SPSS GL,M GLM 
read dance tv ski BY occup 
/METHOD = SSTYPE(3) 
/CRITERIA = ALPHA(.05) 
/INTERCEPT = INCLUDE 
/DESIGN = occup 
IMMATRIX = "sed vs. act" read -1 dance 1 tv -1 ski 1 
ILMATRIX = "bd vs. other" occup 2 -1 -1. 

SPSS MANOVA read TO ski BY occup(l,3) 
MANOVA NVSFACTOR=activity(4) 

NVSDESIGN=activity 
/CONTRAST(activity)=SPEClAL ( 1 1 1 1, 

-1 1 -1  1, 
-1 0 1 0, 
0 -1 0 I) /  

/WSDESIGN=activity(l )/ 
/RENAME=OVERALL, SEDVSACT, READVSTV, DANVSSW 
/PARTITION(occup)/ 
/CONTRAST(occup)=SPEClAL ( 1 1 1, 

2 -1  -1, 
0 1 - I) /  

/PRINT=SIGNIF(BRIEF)/ERROR=WITHIN/ 
/DESIGN=occup(l) VS WITHIN. 

SAS CiLM p r o c  g Lm d a t a = S A S U S E R . S S P R O F I L ;  
c l a s s  OCCUP; 
m o d e l  R E A D  D A N C E  T V  SKI = OCCUP; 
c o n t r a s t  ' B D  V S .  O T H E R S '  OCCUP 2 -1 -1; 
m a n o v a  m  = - 1 * R E A D  + 1 * D A N C E  - 1 * T V  + l *SKI;  

run; 

Test Results Contrast 

Tests involving OCCUP(1) BY 
'ACTIVITY (1) ' ACTIVITY (1 ) 
Within-Sub j ect 
E f f e c t  

Manova T e s t  W i  L k s '  
. . . . no Overa l l  Lambda3 
BD VS.  OTHERS 
E f f e c t  

'LThis is a multivariate test, but produces the same F ratio and df as other programs. 
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points over the semester on reading achievement. general information, and math achievement. There 
are two ways to conceptualize the analysis. If treated in a singly multivariate fashion, this is a between- 
within design (groups by time) with multiple DVs. The time effect, however, has the assumption of 
sphericity. To circumvent the assumption, the analysis becomes doubly multivariate where both the 
within-subjects part of the design and the multiple DVs are analyzed multivariateky. The between- 
subject e'ffect is singly multivariate; the within-subject effects and interactions are doubly multivaiate. 

The number of cases needed is determined by the between-subjects effect, using the same cri- 
teria as in MANOVA (Section 7.3.2.1). Because of the within-subjects IV, however, it is probably 
wise to have a few additional subjects in each group, especially if there is reason to suspect hetero- 
geneity of the variance-covariance matrices. 

For SPSS GLM and MANOVA, the procedure is not difficult. Syntax for the two programs is 
similar, but output looks quite different (a complete example of a doubly-multivariate analysis 
through SPSS MANOVA is in Section 8.6.2). The SAS manual has an example of a doubly- 
multivariate design .in the GLM chapter. 

Consider a study with repeatedly measured noncommensurate DVs. The between-subjects 
(levels) IV is three weight-loss programs (PROGRAM): a control group (CONTROL), a grnup that 
diets (DIET), and a group that both diets and exercises (DIET-EX). The major DV is weight loss 
(WTLOSS) and a secondary DV is self-esteem (ESTEEM). The DVs are measured at the end of the 
first, second, and third months of treatment. The within-subject IV (flatness) treated multivariately, 
then, is MONTH that the measures are taken. That is, the commensurate DVs are MONTHI, 
MONTH2, and MONTH3. 

Table 8.12 shows syntax and location of output for both multivariate and univariate tests of 
effects in SPSS GLM and MANOVA, as well as SAS GLM. Syntax is fairly simple through the SPSS 
programs; SAS requires special syntax in the form of matrices or combinations of DVs for each of 
the three effects: parallelism, flatness, and levels. SPSS GLM sets up the repeated-measures effects 
as a univariate trend analysis for each DV by default. The syntax in Table 8.12 requests univariate 
(and for SPSS MANOVA stepdown) trend analysis for each DV for the remaining programs as well. 
Other options for coding univariate effects may be used if trend analysis is inappropriate for the 
within-subjects IV and interaction. Decomposing univariate effects into trend analysis or other spe- 
cific comparisons avoids the need to assume sphericity. 

All three programs provide identical multivariate tests of the three effects: doubly multivariate 
for parallelism and flatness and singly multivariate for levels. All programs also show a full trend 
analysis of the flatness (trend of marginal means of month) and parallelism (trend of month by pro- 
gram) effects for each DV using the syntax of Table 8.12. SPSS GLM shows cell and marginal means 
adjusted for unequal n (but not for stepdown analysis). SAS shows adjusted cell means, but marginal 
means must be found by averaging cell means. 

SPSS MANOVA provides stepdown analysis, as well as univariate tests; for the levels effect 
(program) as well as the trend analysis for the flatness and parallelism effects. Means adjusted for 
unequal n andlor stepdown analysis require separate CONSPLUS runs, as per Section 7.6. 

Separate runs are required for each DV, except the first, to create a stepdown analysis, if any 
program other than SPSS MANOVA is used. This is done by declaring the higher priority DV(s) to 
be covariates in  a mixed within-between ANOVA. Because the covariate as well as the DV is mea- 
sured at each time period, this is thc case of a covariate that varies over levels of the within-subjects 
IV (see Section 6.5.4. I ). However, as seen in Table 6.8, this requires a rearrangement of the data set 
so that there are as many lines per case as there are levels of the within-subjects IV. 
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TABLE 8.12 Syntax and Location of Output for Doubly-Multivariate ANOVA 

- -- 

a. MULTIVARIATE EFFECTS 

Program Syntax 

Parallelism 

Sectiori of Nume of 
Output Effect 

SPSS GLM Multivariate Within 
GLM wtlossl wtloss2 wtloss3 esteem1 Tests Subjects: 

esteem2 esteem3 BY program month * 
NVSFACTOR = month 3 Polynomial program 
/MEASURE = wtloss esteem 
/METHOD = SSTYPE(3) 
/EMMEANS = TABLES(program) 
/EMMEANS = TABLES(month) 
/EMMEANS = 
TABLES(program*month) 
/CRITERIA = ALPHA(.05) 
NVSDESIGN = month 
/DESIGN = program. 

SPSS MANOVA wtlossl TO esteem3 BY EFFECT . . .  Mul t ivar iate 
MANOVA program(l,3) PROGRAM Tests o f  

NVSFACTOR=month(3) BY MONTH Significance 
/MEASURES= wtloss, esteem 
/TRANSFORM(wtlossl to esteem3) = 

polynomial 
/RENAME = WTLOSS WTLlN WTQUAD 

ESTEEM ESTLIN ESTQUAD 
NVSDESIGN=MONTH 
/PRINT=SIGNIF(UNIV, STEPDOWN) 
/DESIGN=PROGRAM. 

Flatness Levels 
-- 

Section of Name of Section of NLIIIW 01 
Output Effect Outp~lt EJrc I 

Multivariate Within Multivariate Between 
Tests Subjects: Tests Subjects: 

month program 

EFFECT ... Mul t i var ia te  EFFECT ... Mul t i var ia te  
MONTH Tests o f  PROGRAM Tests o f  

Significance Significance 



TABLE 8.12 Continued 

a. MULTIVARIATE EFFECTS (continued) 

Parallelism . Flatness Levels 

Section of Name of ,Section of Narne of Section oJ' Nrrtni, of 
Prograni Syntax Output Effect Output Effect Output Efjri I 
-- -- 

SAS p r o c  g l m  data=SASUSER.SSDOUBLE; 
GLM c l a s s  PROGRAM; 

mode l  WTLOSSI WTLOSS2 WTLOSS3 
ESTEEM1 ESTEEM2 ESTEEM3=PROGRAM; 

/ * T e s t  f o r  LEVELS e f f e c t  * /  
manova h=PROGRAM 

m=WTLOSSI+WTLOSS2+WTLOSS3, 
ESTEEMI+ESTEEM2+ESTEE#3/summary; 

/ * T e s t  f o r  FLATNESS e f f e c t * /  
manova h = i n t e r c e p t  

m =  (-1 0 1  0 0 0 ,  
1 - 2  1 0 0 0 ,  
0 0 0 - 1  01, 
0  0  0  1 -2 l> /summary ;  

/ * T e s t  f o r  PARALLELISM e f f e c t  * /  
manova h=PROGRAM 

m =(-I 0  1 0  0  0, 
1 - 2  1 0 0 0 ,  
0 0 0 - 1  01, 
0  0 0  1 -2 l ) / summary ;  

Lsmeans PROGRAM; 
run; 

MANOVA T e s t  S t a t i s t i c  MANOVA T e s t  S t a t i s t i c  MANOVA T e s t  S t a t i s t i c  
C r i t e r i a . .  . C r i t e r i a . .  . C r i t e r i a . .  . 
No O v e r a l l  No O v e r a l l  No O v e r a l l  
PROGRAM I n t e r c e p t  PROGRAM 
E f f e c t  E f f e c t  E f f e c t  

(Final 
portion of 
output) 

(First portion 
of 011tp~lt) 



TABLE 8.12 Continued 

b. UNIVARIATE AND TREND EFFECTS AND MEiANS 

Parallelism Flatness Levels 
-- Means (Unadjusted 

Section of Name of Sectiot~ of Name of Section of Name if for Stepdown 
Program Output Effect Output Effect Output Efect Analysis) 

SPSS Univariate month * Univariate month 
GLM Tests program Tests 

Tests of Between- program Estimated Marginal 
Subjects Effects Means 

SPSS EFFECT ... Univariate EFFECT. .. Univariate EFFECT. . . Univariate See CONSPLUS 
MANOVA PROGRAM BY F-tests . . . MONTH F-tests... PROGRAM F-tests ... procedure of 

MONTH. WTLIN WTLIN 
WTQUAD WTQUAD 

WTLOSS Section 7.6, 

ESTEEM Table 7.21. 

ESTLIN ESTLIN 
ESTQUAD ESTQUAD 

SAS GLhI MANOVA T e s t  Dependent  
C r i t e r i a  ... V a r i a b l e :  

No  O v e r a l l  MVARI(Wt1oss 
PROGRAM linear) 
E f f e c t  MVARZ (Wtloss 

(Final portion qd ra t i c : )  
of output) M V A R 3 (Esteem 

linear) 
M V A R 4 (Esteern 

quadratic) 

MANOVA T e s t  Dependent  MANOVA T e s t  Dependent  L e a s t  Squares  
C r i t e r i a  ... V a r i a b l e :  C r i t e r i a  ... V a r i a b l e :  Means 

N o  O v e r a l l  MVARI(Wt1oss N O  O v e r a l l  M V A R I  
I n t e r c e p t  linear) PROGRAM ( Wtloss) 
E f f e c t  MVAR2 (Wtloss E f f e c t  MVARZ 

quadratic) (First portion of (Esteem) 
M V A R 3 (Esteem output) 

linear) 
M V A R 4 (Esteem 

quadratic) 

"Note: Italicized labels do not appear in output. 
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8.5.4 Classifying Profiles 

A procedure typically available in programs designed for discriminant analysis is the classification 
of cases into groups on the basis of a best-tit statistical function. The principle of classification is 
often of interest in research where profile analysis is appropriate. If it is found that groups differ on 
their profiles, it could be useful to classify new cases into groups according to their profiles. 

For example, given a profile of scores for different groups on a standardized test such as the 
Illinois Test of Psycholinguistic Abilities, one might use the profile of a new child to see if that child 
more closely resembles a group of children who have difficulty reading or a group who does not 
show such difficulty. If statistically significant profile differences were available before the age at 
which children are taught to read, classification according to profiles could provide a powerful diag- 
nostic tool. 

Note that this is no different from using classification procedures in discriminant analysis 
(Chapter 9). It is simply mentioned here because choice of profile analysis as the initial vehicle for 
testing group differences does not preclude use of classification. To use a discriminant program for 
classification, one simply defines the levels of the IV as "groups" and the DVs as "predictors." 

8.5.5 Imputation of Missing Values 

Issues of Section 4.1.3.2 apply to repeated-measures MANOVA. However, many of the procedures 
for imputing missing values described in that section do not take into account the commensurate 
nature of measures in profile analysis or, for that matter, any design with repeated measures. Multi- 
ple imputation through SOLAS MDA is applicable to longitudinal data (or any other repeated mea- 
sures) but is difficult to implement. Or, if you happen to have BMDPSV (Dixon, 1992), the program 
imputes and prints out missing values for univariate repeated-measures analysis, which may then be 
added to the data set for multivariate analysis. None of the other procedures of Table 4.2 takes advan- 
tage of commensurate measurement. 

A popular method (e.g., Myers &Well, 2002) is to replace the missing value with a value esti- 
mated fram the mean for that level of the repeated factor and for that case. The following equation 
takes into account both the mean for the case and the mean for the  level of A j  the commensurate fac- 
tor, as well as the mean for the group, B. 

where Y* = predicted score to replace missing score, 
'J 
s = the number of cases in the group, 

S( = the sum of the known values for that case, 

a = the number of levels of A,  the within-subjects factor, 

A; = the sum of the known values of A. and 

B' = the sum of all known values for the group. 

Say that the tinal score. s i 5  in  r r4 ,  is missing from Table 8. I .  The remaining scores for that case 
(in a , ,  (i2. and [z3) sum to 6 t 3 + 3 = 12. The remaining scores for a4 in b3 iadrninistratvrs) sun) to 



2 i- 5 + 5 + 4 = Ih. The remaining scores for the entire table sum to 60. Plugging these values into 
Equation 8.10, 

This procedure may produce an error term that is a bit too small because the estimated value is often 
too consistent with the other values. A more conservative ai level is recommended for all tests if the 
proportion of missing values imputed is greater than 5%. 

8.6 Complete Examples of Profile Analysis 

Two complete examples of profile analysis are presented. The first is an analysis of subtests of the 
WISC (the commensurate measure) for three types of learning-disabled children. The second is a 
study of mental rotation of either a letter or a symbol over five sessions, using as DVs the slope and 
intercept of reaction time calculated over four angles of rotation. 

8.6.1 Profile Analysis of Subscales of the WISC 

Variables are chosen from among those in the learning disabilities data bank described in Appendix 
B, Section B.2 to illustrate the application of profile analysis. Three groups are formed on the basis 
of the preference of learning-disabled children for age of playmates (AGEMATE): children whose 
parents report that they have (1) preference for playmates younger than themselves, (2) preference 
for playmates older than themselves, and (3) preference for playmates the same age as themselves or 
no preference. Data are in PROFILE.*. 

DVs are the 1 1 subtests of the Wechsler Intelligence Scale for Children given either in its orig- 
inal or revised (WISC-R) form. depending on the date of administration of the test. The subtests are 
information (INFO), comprehension (COMP), arithmetic (ARITH), similarities (SIMIL), vocabu- 
lary (VOCAB), digit span (DIGIT), picture completion (PICTCOMP), picture arrangement 
(PARANG), block design (BLOCK), object assembly (OBJECT), and CODING. 

The primary question is whether profiles of learning-disabled children on the WISC subscales 
differ if the children are grouped on the basis of their choice of age of playmates (the parallelism 
test). Secondary questions are whether preference for age of playmates is associated with overall IQ 
(the levels test), and whether the subtest pattern of the combined group of learning-disabled children 
is flat (the flatness test), as it is for the population on which the WISC was standardized. 

8.6.1.1 Evaluation of Assumptions 

Assumptions and limitations of profile analysis are evaluated as described in Section 8.3.2. 

8.6.1.1. I Unequal Sample Sizes and Missing Data 
From the sample of 177 learning-disabled children given the WISC or WISC-R, a preliminary 

run of SAS MEANS (Table 8.13) is used to reveal the extent and pattern of missing data. Missing data 
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TABLE 8.13 Identification of Missing Data (Syntax and Output from SAS MEANS) 

proc  s o r t  data=SASUSER.PROFILE; 
b y  AGEMATE; 

run; 
p roc  means vardef=DF 

N  NMISS; . 
va r  INFO COMP ARITH SIMIL VOCAB DIGIT PICTCOMP PARANG BLOCK OBJECT CODING; 
b y  AGEMATE; 

run; 

---------------- P r e f e r r e d  a g e  o f  p l a y m a t e s = .  ---------------- 
The MEANS P r o c e d u r e  

N  
V a r i a b l e  L a b e l  N M i s s  .......................................... 
INFO I n f o r m a t i o n  9 0 
COMP C o m p r e h e n s i o n  9 0 
ARITH A r i t h m e t i c  9 0 
S I M I L  S i m i l a r i t i e s  9 0 
VOCAB V o c a b u l a r y  9 0 
D I G I T  D i  g i  t Span  9 0 
PICTCOMP P i c t u r e  C o m p l e t i o n  9 0 
PARANG P i c t u r e  A r r a n g e m e n t  9 0 
BLOCK B l o c k  D e s i g n  9 0 
OBJECT O b j e c t  A s s e m b l y  9 0 
CODING Cod i n g  9 0 
.......................................... 

---------------- P r e f e r r e d  a g e  o f  p l a y m a t e s = l  ---------------- 
N  

V a r i a b l e  L a b e l  N  M i s s  
.......................................... 
INFO I n f o r m a t i o n  4 6 0 
COMP C o m p r e h e n s i o n  4 6 0 
ARITH A r i t h m e t i c  4 6 0 
S I M I L  S i m i  l a r i  t i e s  4 6 0 
VOCAB V o c a b u l a r y  4 6 0 
D I G I T  D i  g i  t Span  4 5 1  
PICTCOMP P i c t u r e  C o m p l e t i o n  4 6 0 
PARANG P i c t u r e  A r r a n g e m e n t  4 6  0 
BLOCK B L o c k  D e s i g n  4 6 0 
OBJECT O b j e c t  A s s e m b l y  4 6 0 
CODING Cod i n g  4 6 0 

(contrnuetl) 
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TABLE 8.13 Continued 

---------------- P r e f e r r e d  a g e  o f  p L a y m a t e s = 2  ---------------- 
The MEANS P r o c e d u r e  

N  
V a r i a b l e  L a b e l  N  M i s s  
.......................................... 
INFO I n f o r m a t i o n  5 5 0 
COMP C o m p r e h e n s i o n  5 5 0 
ARITH A r i t h m e t i c  5 5 0 
S I M I L  S i m i l a r i t i e s  5 5 0 
VOCAB V o c a b u l a r y  5 5 0 
D I G I T  D i g i t  Span  5 5 0 
PICTCOMP P i c t u r e  C o m p l e t i o n  5 5 0 
PARANG P i c t u r e  A r r a n g e m e n t  5 5  0 
BLOCK B l o c k  D e s i g n  5 5 0 
OBJECT O b j e c t  A s s e m b l y  5 5 0 
CODING C o d i  n g  5 4 1 
.......................................... 

---------------- P r e f e r r e d  a g e  o f  p l a y m a t e s = 3  ---------------- 

V a r i a b l e  L a b e l  
N  

N  M i s s  

INFO I n f o r m a t i o n  6 7  0 
C 0 M P  C o m p r e h e n s i o n  6 5 2 
ARITH A r i t h m e t i c  6 7  0 
S I M I L  S i m i l a r i t i e s  6 7  0 
VOCAB V o c a b u L a r y  6  7 0 
D I G I T  D i g i t  Span  6 7  0 
PICTCOMP P i c t u r e  C o m p l e t i o n  6 7  0 
PARANG P i c t u r e  A r r a n g e m e n t  6 7  0 
BLOCK B l o c k  D e s i g n  6 7  0 
OBJECT O b j e c t  A s s e m b l y  6 7  0 
CODING C o d i n g  6  7  0 
.......................................... 

are sought among the DVs (subtests, levels of the within-subjects IV) for cases grouped by AGEMATE 
as indicated in the b y A  G E M A T  E instruction. Nine cases cannot be grouped according to preferred 
age of playmates, leaving 168 cases with group identification. Four children are identified as missing 
data through the SAS MEANS run. Because so few cases have missing data, and the missing variables 
are scattered over groups and DVs, it is decided to delete them from analysis, leaving N = 164. Other 
strategies for dealing with missing data are discussed in Chapter 4 and in Section 8.5.5. 
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Of the remaining 164 children. 45 ar2 in the group preferring younger playmates. 54 older 
playmates, and 65 same age playmates or no preference. This leaves 4.5 times as many cases as DVs 
in the smallest group. posing no problems for multivariate analysis. 

! 

8.6.1.1.2 Multivurinte Normalin' 
Groups are large and not notably discrepant in size. Therefore, the central limit theorem should 

assure acceptably normal sampling distributions of means for use in profile analysis. The d a t a step 
in Table 8.14 deletes cases with missing data and no group identification and provides a new, com- 
plete data file labeled PROFILEC to be used in all subsequent analyses. SAS MEANS output for 

I 

those data shows all of the DVs to be well behaved; summary statistics for the first group, the one 
I that prefers younger playmates, for example, are in Table 8.14. Skewness and kurtosis values are 

i acceptable for all DVs in all groups. 
The levels test is based on the average of the DVs. However, this should pose no  problem; since 

the individual DVs are so well behaved, there is no reason to expect problems with the average of 
them. Had the DVs shown serious departures from normality, an "average" variable could have been 

I created through a transformation and tested through the usual procedures of Section 4.2.2.1. 

i 
8.6.1.1.3 Linearity 
Considering the well-behaved nature of these DVs and the known linear relationship among 

subtests of the WISC, no threats to linearity are anticipated. 

1 8.6.1.1.4 Outliers 
I 

I 
As seen in the univariate summary statistics of Table 8.14 for the first group, one standard 

I score (ARITH) has ? = (19 - 9.22)/2.713 = 3.6, suggesting a univariate outlier. No other standard 

I scores are greater than 13.3 1. A SAS REG run with leverage values saved is done as per Table 6.15 
I and reveals no multivariate outliers with a criterion o fp  = .001 (not shown). The decision is made to 

! retain the univariate outiier since the subtest score of 19 is acceptable, and trlal analyses with and 
I ~~vitheut the cutlie: :ernwed made no difference ii; :he iestilts (cf. Secdon 4. : .4.3). 

TABLE 8.14 Univariate Summary Statistics Through SAS MEANS for Complete Data 
(Syntax and Selected Output) 

d a t a  SASUSER.PROFILEC;  
s e t  SASUSER.PROFILE;  
i f  AGEMATE=. or  D I G I T = .  o r  COMP=. o r  CODING=. then d e l e t e ;  

run; 

p roc  m e a n s  d a t a = S A S U S E R . P R O F I L E C  v a r d e f = D F  
N M I N  MAX MEAN VAR S T D  SKEWNESS K U R T O S I S ;  ; 

v a r  I N F O  COMP A R I T H  S I M I L  VOCAB D I G I T  P ICTCOMP PARANG BLOCK O B J E C T  CODING; 
by  AGEMATE; 

run; 
(continued) 
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VI 
0 TABLE 8.14 Continued 

................................ P r e f e r r e d  a g e  o f  p l a y m a t e s = l  ................................ 

The MEANS P r o c e d u r e  

V a r i a b l e  L a b e l  N  M i n i m u m  Maximum Mean V a r i a n c e  
............................................................................................. 
INFO I n f o r m a t i o n  4  5  4 .0000000  19 .0000000  9 .0666667  11 .0636364  
COMP C o m p r e h e n s i o n  4  5  3 .0000000  18 .0000000  9 .5111111  8 .3919192  
A R I  TH A r i t h m e t i c  4  5  5 .0000000  19 .0000000  9 .2222222  7 . 3 5 8 5 8 5 9  
S I M I L  S i m i l a r i t i e s  4  5  5 .0000000  19 .0000000  9 .8666667 10 .6181818  
VOCAB V o c a b u l a r y  4  5  2 .0000000  19 .0000000  1 0 . 2 8 8 8 8 8 9  12 .1191919  
D I G I T  D i g i t  Span  4  5  3 .0000000  1 6 . 0 0 0 0 0 0 0  8 .5333333  7 . 2 0 9 0 9 0 9  
PICTCOMP P i c t u r e  C o m p l e t i o n  4  5  5 .0000000  17 .0000000  11 .2000000  7 . 1 1 8 1 8 1 8  
PARANG P i c t u r e  A r r a n g e m e n t  4  5  5 .0000000  15 .0000000  1 0 . 0 8 8 8 8 8 9  5 .6282828  
BLOCK B l o c k  D e s i g n  4  5  3 .0000000  1 9 . 0 0 0 0 0 0 0  1 0 . 0 4 4 4 4 4 4  8 .8616162  
OBJECT O b j e c t  A s s e m b l y  4  5  3 .0000000  14 .0000000  10 .4666667  6 .8000000  
CODING C o d i n g  4  5  4 .0000000  14 .0000000  8 . 6 4 4 4 4 4 4  6 .3707071 
------.---------------------------------------------------------------------------------------------- 

V a r i a b l e  L a b e l  S t d  Dev Skewness  K u r t o s i s  
.---------------------.-------------------------------------------------- 
INFO I n f o r m a t i o n  3.3262045 0 .590491 0  0.469681 2  
COMP C o m p r e h e n s i o n  2.8968809 0.8421 902 1  -6737862 
ARITH A r i t h m e t i c  2.7126714 1 .0052275 2 .6589394 
S I M I L  S i m i l a r i t i e s  3.2585552 0 .7760773 0 .4300328 
'JOCAB V o c a b u l a r y  3.481 2630 0 .5545930 0 .8634583 
IDIGIT D i g i t  Span  2.6849750 0.5549781 0 .5300003 
PICTCOMP P i c t u r e  C o m p l e t i o n  2.6679921 -0.2545848 -0 .1464723 
PARANG P i c t u r e  A r r a n g e m e n t  2.3724002 0 .231 4390 -0.1781 970 
BLOCK B l o c k  D e s i g n  2.9768467 0 .301 1471 1 .3983036  
OBJECT O b j e c t  A s s e m b l y  2.607681 0  -0 .8214876 0 .321 4474 
CODING C o d i  n g  2.5240260 0 .2440899  -0.5540206 
.------------------------------------------------------------------------ 
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I 
8.6. I .  I 5 Hoi~logrileln og \/clr.r~l~lc~e-Coi (it-imce ,M~~ri.lces 
Evidence for relatively equal variances 1, aballable from the full SAS MEANS run of Table 

I 8.14, where variances are given for each variable wlthin each group. All the variances are quite close 
I in value across groups; for no variable is there a between-group ratio of largest to smallest variance 
1 approaching 10: I. 

I 8.6.1.1.6 M~ilticollinearity and Singularity 

I 
Standardization of the WISC subtests indicates that although subtests are correlated, particu- 

larly within the'two sets comprising verbal and performance IQ, there is no concern that SMCs 
I would be so large as to create statistical mulcicollinearity or singularity. In any event, SAS GLM pre- 

vents such variables from entering an analysis. 

8.6.1.2 Profile Analysis 

Syntax and major output for profile analysis of the 11 WISC subtests for the three groups as pro- 
duced by SAS GLM appear in Table 8.15. Significance tests are shown, in turn, for flatness (SUB- 
TEST) ,  parallelism (SUBTEST*AGEMATE),  and levels (AGEMATE). 

The parallelism test, called the test of the S U B T E ST * A G EM AT E effect, shows significantly 
different profiles for the three AGEMATE groups. The various multivariate tests of parallelism pro- 
duce slightly different probability levels for a. all less than 0.05. The test shows that there are statis- 
tically significant differences among the three AGEMATE groups in their profiles on the WISC. The 
profiles are illustrated in Figure 8.4. Mean values for the plots are found in the cell means portion of 
the output in Table 8.15, produced by the statement me a n s A G EM AT E. Effect sizes for all three 
tests-SUBTEST, SUBTEST"AGEMATE, and AGEMATE, respectively-are found through 
Smithson's (2003) NoncF2.sas procedures; partial syntax and results are in Table 8.16. 

For interpretation of the nonparallel profiles, a contrast procedure is needed to determine 
which WISC subtests separate the three groups of children. Because there are so many subtests, 
however, the procedure of Section 8.5.2 is unwieldy. The decision is made to evaluate profiles in 
terms of subtests on which group averages fall outside the confidence interval of the pooled profile. 
T,.~I, la ,= 8.17 shows margins! means and standard detriations f ~ r  each subtest to derive these confi- 

dence intervals. 
In order to compensate for multiple testing, a wider confidence interval is developed for each 

test to reflect an experimentwise 95% confidence interval. Alpha rate is set at .0015 for each test to 
account for the 33 comparisons available-3 groups at each of 11 subtests-generating a 99.85% 
confidence interval. Because an N of 164 produces a t distribution similar to z ,  it is appropriate to 
base the confidence interval on z = 3.19. 

For the first subtest, INFO, 

Because none of the group means on INFO falls outside this interval for the INFO subtest, pro- 
files are not differentiated on the basis of the information subtest of the WISC. It is not necessary to 



w TABLE 8.15 Syntax and Selected Output from SAS GLM Profile Analysis of 11 WISC Subtests 
-- 

h) 
--- 

p r o c  g l m  data=SASUSER.PROFILEC; 
c l a s s  AGEMATE; 
m o d e l  INFO COMP ARITH S I M I L  VOCAB D I G I T  

PICTCOMP PARANG BLOCK OBJECT CODING = AGEMATE/nouni;  
r e p e a t e d  SUBTEST 11  / summary; 

means AGEMATE; 
run ;  

Manova T e s t  C r i t e r i a  a n d  E x a c t  F  S t a t i s t i c s  f o r  t h e  H y p o t h e s i s  o f  n o  SUBTEST E f f e c t  
H  = T y p e  I11 SSCP M a t r i x  f o r  SUBTEST 

E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num DF Den DF P r  > F  

W i  1  k s '  Lambda 0.53556008 13.18 1 0  152 <. 0001 
P i  1  l a i  ' s  T r a c e  0.46443992 13.18 1 0  152 <. 0001 
H o t e l l i n g - L a w l e y  T r a c e  0.8672041 5 13.18 1 0  152 <. 0001 
R o y ' s  G r e a t e s t  R o o t  0.8672041 5 13.18 10 152 <. 0001 

Manova T e s t  C r i t e r i a  a n d  F  A p p r o x i m a t i o n s  f o r  t h e  H y p o t h e s i s  o f  n o  SUBTEST*AGEMATE E f f e c t  
H  = T y p e  I11 SSCP M a t r i x  f o r  SUBTEST*AGEMATE 

E  = E r r o r  SSCP M a t r i x  

S t a t i s t i c  V a l u e  F V a l u e  Num D F  Den D F  P r  > F  

W i l k s '  Lambda 0.78398427 1.97 2 0 304 0.0087 
P i  1  l a i  ' s  T r a c e  0.22243093 1.91 2 0 306 0.0113 
H o t e l l i n g - L a w l e y  T r a c e  0.26735297 2.02 2 0 253.32 0.0070 
R o y ' s  G r e a t e s t  R o o t  0.23209691 3.55 10 153 0.0003 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i l k s '  Lambda i s  e x a c t .  



TABLE 8.15 Continued 

The GLM P r o c e d u r e  
R e p e a t e d  Measures  A n a l y s i s  o f  V a r i a n c e  

T e s t s  o f  H y p o t h e s e s  f o r  Be tween  S u b j e c t s  E f f e c t s  

S o u r c e  DF Type 111 SS Mean Square  F V a l u e  ' P r  > F 

AGEMATE 
E r r o r  

The GLM P r o c e d u r e  

L e v e l  o f  ---------- INFO ---------- -----em--- COMP--------- --------- ARITH--------- 

AGEMATE N Mean S t d  Dev Mean S t d  Dev Mean S t d  Dev 

L e v e l  o f  --------- S I M I  L---------- --------- VOCAB ---- ------ --------- DIGIT--------- 

AGEMATE N Mean S t d  Dev Mean S t d  Dev Mean S t d  Dev 

L e v e l  o f  -------- PICTCOMP------- --------- PARANG-------- --------- BLOCK--------- 

AGEMATE N Mean S t d  Dev Mean S t d  Dev Mean S t d  Dev 

L e v e l  o f  ----,---.-- OB J ECT-------- -----.---- CODING-------- 
AGEMATE N Mean S t d  Dev Mean S t d  Dev 
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FIGURE 8.4 Profiles of WISC scores for three AGEMATE groups. 

TABLE 8.17 Syntax and Output for Marginal Means and Standard Deviations for Each Subtest: 
All Groups Combined 

p r o c  means data=SASUSER.PROFILEC v a r d e f = D F  MEAN STD; 
v a r  INFO COMP ARITH S I M I i  VOCAB D I G I T  PICTCOMP PARANG BLOCK 

OBJECT CODING ; 
r u n ;  

The  Means P r o c e d u r e  

V a r i a b l e  L a b e l  Mean S t d  Dev ............................................................ 
INFO I n f o r m a t i o n  9.5548780  3 .0360877  
COMP C o m p r e h e n s i o n  10.0548780  2 . 8 8 6 9 3 4 9  
ARITH A r i t h m e t i c  9.0487805  2 .4714440  
S I M I L  S i m i  l a r i  t i e s  10.6585366  3 .2699394  
VOCAB V o c a b u l a r y  10.7073171  3 .0152488  
D I G I T  D i g i t  Span  8.7743902  2 . 6 0 3 2 6 8 9  
PICTCOMP P i c t u r e  C o m p l e t i o n  10.7195122  2 .9980541  
PARANG P i c t u r e  A r r a n g e m e n t  10.4085366  2 .6557358  
BLOCK B l o c k  D e s i g n  10.3658537  2 .7470551  
OBJECT O b j e c t  A s s e m b l y  10.8536585  2  - 8 2 0 2 6 8 2  
CODING C o d i n g  8.5243902  2  - 7 8 5 7 0 2 4  



calculate intervals for any barkable for which none ot the group5 dev~ates from the 95% confidence 
interval. because they cannot deviate from a wider interval. Therefore. Intervals are calculated only 
for SIMIL, COMP, VOCAB, and PICTCOMP. Applying Equation 8.1 1 to these variables, significant 
profile deviation is found for vocabulary and picture completion. (The direction of differences is 
given in the Results section that  follow^.)^ 

The first omnibus test produced by SAS GLM is the SUB T E S T effect, for which the flatness 
hypothesis is rejected. All multivariate criteria show essentially the same result, but Hotelling's cri- 
terion, with approximate F(10, 152) = 13.18, p < .001, is most appropriately reported because it is 
a test of a single gfoup (all groups combined). 

Although not usually of interest when the hypothesis of parallelism is rejected, the flatness 
test, labeled S U BT E ST, is interesting in this case because it reveals differences between learning- 
disabled children (our three groups combined) and the sample used for standardizing the WISC, for 
which the profile is necessarily flat. (The WISC was standardized so that all subtests produce the 
same mean value.) Any sample that differs from a flat profile, that is, has different mean values on 
various subtests, diverges from the standard profile of the WISC. 

Appropriate contrasts for the flatness test in this example are simple one-sample z tests (cf. Sec- 
tion 3.1.1) against the standardized population values for each subtest with mean = 10.0 and standard 
deviation = 3.0. In this case we are less interested in how the subtests differ from one another than in 
how they differ from the normative population. (Had we been interested in differences among subtests 
for this sample, the contrasts procedures of Section 8.5.2 could have been applied.) 

As a correction for post hoc inflation of experimentwise Type I error rate, individual alpha for 
each of the I1 z tests is set at .0045, meeting the requirements of 

TABLE 8.18 Results of z Tests Comparing Each Subtest with 
WISC Population Mean (Alpha = .0045, Two-Tailed Test) 

Mean for z for Comparison 
Subtest Entire Sample with Population Mean 

Information 
Similarities 
Arithmetic 
Comprehension 
Vocabulary 
Digit span 
Picture completion 
Picture arrangement 
Block design 
Object assembly 
Coding 
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as per Equation 7.12. Because most :tables (cf .  T ~ b l e  C . l )  are set up for testing one-sided hypothr-  
ses, critical a is divided in half to find critical : for rejecting the hypothesis of no difference between 
our sample and the population; the resulting criterion 2 is 52.845. 

i For the first subtest, INFO, the mean for our entire sample (from Table 8.17) is 9.55488. Appli- 

I 
cation of the z test results in 

For INFO, then, there is no significant difference between the learning disabled group and the nor- 
mative population. Results of these individual z tests appear in Table 8.18. 

The final significance test is for A G EM AT E (levels), in the section labeled T e s t s  o f 
H y p o t h e s e s  f o r  B e t w e e n  Subjects E f f e c t s  andshowsnostatisticallysignificantdif- 
ferences among groups on the average of the subtests, F (2, 16 1) = 0.8 1, p = .4456. This, also, typi- 
cally is of no interest when parallelism is rejected. 

A checklist for profile analysis appears in Table 8.19. Following is an example of a Results 
section in APA journal format. 

TABLE 8.19 Checklist for Profile Analysis 

I .  Issues 
a. Unequal sample sizes and missing data 
b. Normality of sampling distributions 

I c. Outliers 
I 
I d. Homogeneity of variance-covariance matrices 

e. Linearity 
f. Multicollinearity and singularity 

2. Major analysis 
a. Tests for paralleiism. if slgriificant: Figiiie s h ~ i i i g  prof le f ~ :  

deviation from parallelism 
b. Test f ~ r  differences among levels, if ~ppropriate. If significant: 

! Marginal means for groups and standard deviations or standard errors 
I 1 or confidence intervals 

c. Test for deviation from flatness, if appropriate. If significant: Means for 
measures and standard deviations or standard errors or confidence 
intervals 

I 
d. Effect sizes with confidence limits for all three tests 

3. Additional analyses 
a. P!anned comparisons 
b. Post hoc comparisons appropriate for significant effect(s) 

( 1 ) Comparisons among groups 
( 7 )  Comparisons among measures 
(3)  Comparisons among measures within group5 

c. Power analysis for nonsignificant effects 



Results 

A profile analysis was performed on 11 subtests of the 

Wechsler Intelligence Scale for Children (WISC): information, 

similarities, arithmetic, comprehension, vocabulary, digit 

span, picture completion, picture arrangement, block design, 

object assembly, and coding. The grouping variable was prefer- 

ence for age of playmates, divided into children who (1) pre- 

fer younger playmates, (2) prefer older playmates, and 

(3) those who.have no preference or prefer playmates the same 

age as themselves. 

SAS MEANS and REG were used for data screening. Four 

children in the original sample, scattered through groups and 

DVs, had missing data on one or more subtest, reducing the 

sample size to 164. No univariate or multivariate outliers 

were detected among these children, with p = .001. After 

deletion of cases with missing data, assumptions regarding 

normality of sampling distributions, homogeneity of variance- 

covariance matrices, linearity, and multicollinearity were 

met. 

SAS GLM was used for the major analysis. Using Wilks' cri- 

terion, the profiles, seen in Figure 8.4, deviated signifi- 

cantly from parallelism, F(20, 304) = 1.97, p = .009, partial 

q 2  = .ll with confidence limits from .O1 to .13. For the lev- 

els test, no statistically significant differences were found 

among groups when scores were averaged over all subtests, F(2, 

161) = 0.81, p = .45, q2 = .O1 with confidence limits from O 

to 0. When averaged over groups, however, subtests were found 

by Hotelling's criterion to deviate significantly from flat- 

ness, F(10, 152) = 13.18, p < .001, $ =  .46, with confidence 

limits from .31 to .53. 
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To evaluate deviation from parallelism of the profiles, 

confidence limits were calculated around the mean of the pro- 

file for the three groups combined. Alpha error for each con- 

fidence interval was set at .0015 to achieve an experimentwise 

error rate of 5%. Therefore, 99.85% limits were evaluated for 

the pooled profile. For two of the subtests, one or more 

groups had means that fell outside these limits. Children who 

preferred older playmates had a significantly higher mean on 

the vocabulary subtest (mean = 11.46) than that of the pooled 

groups (where the 99.85% confidence limits were 9.956 to 

11.458); children who preferred older playmates had signifi- 

cantly lower scores on the picture completion subtest (mean = 

9.80) than that of the pooled groups (99.85% confidence limits 

were 9.973 to 11.466) . 
Deviation from flatness was evaluated by identifying which 

subtests differed from those of the standardization population 

of the WISC, with mean = 10 and standard deviation = 3 for each 

subtest. Experimentwise a = .05 was achieved by setting a for 

each test at .0045. As seen in Table 8.18, learning-disabled 

children had significantly lower scores than the WISC normative 

population in arithmetic, digit span, and coding. On the other 

hand, these children had significantly higher than normal per- 

formance on vocabulary, picture completion, and object assembly. 

Thus, learning disabled children who prefer older playmates 

are characterized by having higher vocabulary and lower picture 

com~letion scores than the average of learning disabled chil- 

l dren. As a group, the learning disabled children in this sample 

had lower scores on arithmetic, digit span, and coding than 

children-at-large, but higher scores on vocabulary, picture com- 

pletion, and object assembly. 
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8.6.2 Doubly-Multivariate Analysis of Reaction Time 

This analysis is on a data set from mental rotation experiments conducted by Damos (1 989). described 
in greater detail in Appendix B. The between-subjects IV (levels) is whether the target object was the 
letter G or a symbol. The within-subjects IV treated multivariately consists of the first four testing ses- 
sions. The two noncommensurate DVs are the (1) slope and (2) intercept calculated from reaction 
times over four angles of rotation. Thus, intercept is the average reaction time and slope is the change 
in reaction time as a function of angle of rotation. Data files are DBLMULT.". The major question is 
whether practice effects over the four sessions are different for the two target objects. 

8.6.2.1 Evaluation of Assuntptions 

8.6.2.1.1 Unequal Sample Sizes, Missing Data, Multivariate Normality, and Linearity 
Sample sizes in this data set are equal: 10 cases per group and there are no missing data among 

the eight DVs (2 measures over four occasions). Groups are small but equal in size and there are a 
few more cases than DVs in each group. Therefore, there is no concern about deviation from multi- 
variate normality. Indeed, the SPSS DESCRIPTIVES output of Table 8.20 shows very small skew- 
ness and kurtosis values. These well-behaved variables also pose no threat to linearity. 

8.6.2.1.2 Outliers 
The SAVE instruction in the syntax of Table 8.20 adds standardized scores for each variable 

and each case to the SPSS data file. This provides a convenient way to look for univariate outliers, 
particularly when sample sizes are small. A criterion a = .O1 is used, so that any case with a z-score 
> (2.58 / is considered an outlier on that variable. Only one score approaches that criterion: case 
number 13 has a z-score of 2.58 on the slope measure for the second session. 

Multivariate outliers are sought through SPSS REGRESSION, as per Table 7.12. Criterion X2 
with 8 df at n = .0 1 is 20.09. By this criterion, none of the cases is a multivariate outlier; the largest 
Mahalanobis distance in either group is 8.09. Therefore, all cases are retained for analysis. 

8.6.2.1.3 Homogeneity of Variance-Covariance Matrices 
Table 8.20 shows the ratio of variances for all eight variables to be well within acceptable lim- 

its, particularly for this equal-n data set. Indeed, all variance ratios are 2.5: 1 or less. 

8.6.2.1.4 Homogeneity of Regression 
SPSS MANOVA is used to test homogeneity of regression for the stepdown analysis, in which 

the second DV, slope, is adjusted for the first, intercept. Table 8.21 shows the syntax and final por- 
tion of output for the test. The last source of variance is the one that tests homogeneity of regression. 
The assumption is supported with p = . I  38 because it is > .05. 

8.6.2.1.5 Reliability of DVs 
intercept acts as a covariate for siope in the stepdown anaiysis. There is no reason to doubt the 

reliability of intercept as a measure, because it is a derived value based on a measure (response time) 
recorded electronically on equipment checked periodically. 

8.6.2.1.6 M~llticollinearity and Singularity 
Correlations among DVs are expected to be high, particularly within slope and intercept sets, 

but not so high as to threaten statistical multicollinearity. Correlations between slopes and intercepts 



TABLE 8.20 Descriptive Statistics for the Eight DVs (SPSS DESCRIPTIVES Syntax and Output) 

SPLIT FILE 
SEPARATE BY group. 

DESCRIPTIVES 
VARIABLES=slopel intrcptl slope2 intrcpt2 slope3 intrcpt3 slope4 intrcpt4 
/SAVE 
/STATISTICS=MEAN STDDEV VARlAlJCE KURTOSIS SKEWNESS. 

Descriptives 

Group identification = Letter G 

Descriptive Statisticsa 

SLOPE1 
INTRCPT1 
SLOPE2 
INTRCPT2 
SLOPE3 
INTRCPT3 
SLOPE4 
INTRCPT4 
Valid N (listwise) 

Statistic Statistic Statistic Statistic 

~ Skewness 

Statistic I Std. Error 

Kurtosis 

Statistic I Std. Error 

aGroup identification = Letter G 

( ~ ~ 0 1 1 1 1 1 ~ l 1 1 ~ ~ 1 1  



TABLE 8.20 Continued 
-- - 

Group identification = Symbol 

Descriptive Statisticsa 

aGroup identification = Symbol 

SLOPE1 
INTRCPT1 
SLOPE2 
INTRCPT2 
SLOPE3 
INTRCPT3 
SLOPE4 
INTRCPT4 
Valid N (listwise) 

Variance 

Statistic 

141 044.9 
2469.870 

2371 3.1 80 
882.521 

3594.241 
847.957 

2510.106 
696.804 

N 

Statistic 

10 
10 
10 
10 
10 
10 
10 
10 
10 

Mean 

Statistic 

654.50 
40.85 

647.53 
24.30 

568.22 
22.95 

535.82 
22.46 

Skewness Std. 
~p 

Statistic 

375.559 
49.698 

153.991 
29.707 
59.952 
29.120 
50.101 
26.397 

Statistic 

-.245 
514 

2.113 
1.305 
-.490 

.960 
-.441 
1.036 

Kurtosis 

Std. Error 

.687 

.687 

.687 

.687 

.687 

.687 

.687 

.687 

Statistic 

1.01 5 
-1.065 
5.706 
1.152 
.269 

-.471 
-.781 

.003 

Std. Error 

1.334 
1.334 
1.334 
1.334 
1.334 
1.334 
1.334 
1.334 



I Pr,>tile .Anal!<i.;. The Multi\.ariatr Approach to Rrpe:rtsd ble;lhu~.e.; 363 

I TABLE 8.21 Syntax and Selected SPSS hI.ANOVA Output for Test of Hornogerieitj of Regres4on 

1 SPLIT FILE 

i OFF. 
MANOVA 
INTRCPTl INTRCPT2 INTRCPT3 INTRCPT4 SLOPE1 SLOPE2 SLOPE3 SLOPE4 

BY GROUP(1,2) 
/PRINT=SIGNIF(BRIEF) 
/ANALYSIS = SLOPE1 SLOPE2 SLOPE3 SLOPE4 
/DESIGN = POOL(INTRCPT1 INTRCPT2 INTRCPT3 INTRCPT4) GROUP 

POOL(I NTRCPT1 INTRCPT2 lNTRCPT3 INTRCPT4) BY GROUP. 

~ultivariate Tests of Significance 
Tests using UNIQUE sums of squares and WITHIN+RESIDUAL error term 
Source of Variation Wilks Approx F Hyp. DF Error DF Sig of F 

POOL(INTRCPT1 INTRC .054 2.204 16.00 22.023 .043 
PT2 INTRCPT3 INTRCPT 
4 
GROUP .570 1.320 4.00 7.000 .350 
POOL(INTRCPT1 INTRC .091 1.644 16.00 22.023 .I38 
PT2 INTRCPT3 INTRCPT 
4) BY GROUP 

are not expected to be substantial. The determinant of the variance-covariance matrix in the main 
analysis provides assurance that there is no statistical multicollinearity (p > .0000 1 ), as seen in the 
main analysis in Table 8.2 1. 

8.6.2.2 Doubly-Multivariate Analysis of Slope and Intercept 

SPSS MANOVA is chosen for the main analysis, which includes a full trend anaiysis on the repeated 
measures effects: flatness (the main effect of session) and parallelisni (the session by group interac- 
tion). The program also provides a stepdown analysls without the need for reconfiguring the data set 
(cf. Section 6.5.4.1). 

Table 8.22 shows syntax and output for the omnibus analysis and stepdown trend analyses. 
ERROR(C0R) requests residual (pooled within-cell) correlation matrix; HOMOGENEITY 
(BOXM) provides the determinant of the pooled within-cell variance-covariance matrix. The 
RENAME instruction makes the output easier to read. INT-LIN is the linear trend of the group by 
session interaction for intercept, INT-QUAD is the quadratic trend of the interaction for intercept, 
SL-CUBIC is the cubic trend of the group by session interaction for slope, and so on. EFSIZE in 
the PRINT paragraph requests effect sizes along with univariate and stepdowx results. 

The three sections labeled Multivariate Tests of Significance (for GROUP, 
GROUP BY SESSION, and SESSION) show that all three effects are statistically significant, 

< .0005. Because parallelism is rejected, with a strong SESSION B Y  GROUP interaction, multi- 
variate F ( 6 ,  13) = 9.92, tlatness and levels effects are not interpreted. Table 8.23 shows effect sizes 



TABLE 8.22 Doubly-iLIultivariate Analysis of Slope and Intercept 
(SPSS hIANOVA Syntax and Selected Output) 

MANOVA 
INTRCPT1 INTRCPT2 lNTRCPT3 INTRCPT4 SLOPE1 SLOPE2 SLOPE3 SLOPE4 

BY GROUP(1, 2) 
NVSFACTOR = SESSION(4) 
/MEASURES = INTERCPT, SLOPE 
TTRANSFORM(INTRCPT1 TO SLOPE4) = POLYNOMIAL 
/RENAME=INTERCPT INT-LIN INT-QUAD INT-CUBIC 

SLOPE SL-LIN SL-QUAD SL-CUBIC 
NVSDESIGN = SESSION 
/PRINT=SIGNIF(UNIV, STEPDOWN, EFSIZE) ERROR(C0RR) HOMOGENEITY(B0XM) 
/DESIGN = GROUP. 

Determinant of pooled Covariance matrix of dependent vars. = 7.061281363+23 
LOG(Detenninant) = 54.91408 
........................................................................ 
WITHIN+RESIDUAL correlations with Std. Devs . on Diagonal 

llvlERCFT SLOPE 

INTERCPT 64.765 
SLOPE .I87 232.856 

EFFECT. . GROUP 
Multivariate Tests of Significance (S = 1, M = 0, N = 7 1/2) 

Test Name Value Exact FHypoth. DF Error DF Sig. of F 

Pillais .73049 23.03842 2 .OO 17.00 .OOO 
Hotellings 2.71040 23.03842 2.00 17.00 .OOO 
Wilks .26951 23.03842 2.00 17.00 .OOO 
ROW .73049 
Note.. F statistics are exact. 

Multivariate Effect Size 

TEST NAME Effect Size 

( A l l )  .730 
....................................................................... 
Univariate F-tests with (1,18) D. F. 

Variable Hypoth. SS Error SS ylpoth. MS Error MS F Sig. of F 

IMlERCPT 186963.468 75501.1333 186963.468 4194.50740 44.57340 .OOO 
SLOPE 32024.7168 975990.893 32024.7168 54221.7163 .59063 .452 

Variable ETA Square 

INTE!RCFT .71234 
SLOPE .03177 
....................................................................... 

Variable Hypoth. MS Error MS Stepdown F Hypotfi. DF Error DF Siy .  of F 

INTERCFT 186963.468 4194.50740 44.57340 1 18 .OOO 
SLOPE 63428.5669 55404.9667 1.14482 1 17 .300 
....................................................................... 
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TABLE 8.22 Continued 

EFFECT. . GROUP (Cont . ) 
Tests involving 'SESSION' Within-Subject Effect. 

EFFECT.. GROUP BY SESSION 
Multivariate Tests of Significance (S = 1, M = 2 , N = 5 1 / 2 )  

Test Name Value Exact F Hypoth. DF Error DF Sig. of F 

Pillais . .82070 9.91711 6.00 13 .00  . O O O  
Hotellings 4.57713 9.91711 6.00 13.00 . O O O  
Wilks .I7930 9.91711 6.00 13.00 . O O O  
Rays .82070 
Note.. F statistics are exact. 
....................................................................... 
Multivariate Effect Size 

TESTNAME Effect Size 

(All) .821 
....................................................................... 

Univariate F-tests with (1,18)  D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

INT-LIN 34539.9233 11822.7068 34539.9233 656.81704 52.58683 .000 
-QUAD 1345.75055 4783.30620 1345.75055 265.73923 5.06418 .037 
:I 63.15616 2160.40148 63.15616 120.02230 .52620 .478 
SL-LIN 412.00434 677335.981 412.00434 37629.7767 .01095 .918 
SL-QUAD 7115.88944 165948.577 7115.88944 9219.36538 .77184 .391 
SL-CU3IC 1013.73020 35227.3443 1013.73020 1957.07469 .51798 .481 

Variable ETA Square 

m-LIN .74499 
m-Qm .21957 
Di'I-CUE31 -02840 
SL-LIN .00061 
=-QUAD .04112 
sLSLcU!31C .02797 
....................................................................... 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig . of F 
IRFT-LIN 34539.9233 656.81704 52.58683 1 1 8  . O O O  
EW-QLaC 209.21632 195.44139 1.07048 1 17  .315 
IWr-CUBI 2.36753 45.37427 .05218 1 16 .822 
SL-LIN 6198.06067 39897.8795 .I5535 1 1 5  .699 
SL-QUAD 710.44434 1472.26563 .48255 1 14 .499 
SL-CUBIC 917.69207 255.81569 3.58732 1 13 .081 

(continued) 



TABLE 8.12 Continued 

EFFECT.. SESSION 
Multivariate Tests of Significance (S = 1, M = 2, N = 5 1/2) 

Test Name Value Ekact F Hypoth. DF Error DF Sig. of F 

Pillais .88957 17.45295 6.00 13.00 .OOO 
Hotellings 8.05521 17.45295 6.00 13.00 .OOO 
Wilks .I1043 17.45295 6.00 13.00 .OOO 
Roys .88957 
Note.. F statistics are exact. 
....................................................................... 
Multivariate Effect Size 

TEST NAME Effect Size 

(All) .890 
....................................................................... 

Univariate F-tests with (1,18) D. F. 

Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F 

INT-LIN 58748.6922 11822.7068 58748.6922 656.81704 89.44453 -000 
INT-QUAD 5269.58732 4783.30620 5269.58732 265.73923 19.82992 .OOO 
INT-CUB1 40.83996 2160.40148 40.83996 120.02230 .34027 .567 
SL-LIN 207614.672 677335.981 207614.672 37629.7767 5.51730 -030 
SL-QUAD 755.44788 165948.577 755.44788 9219.36538 .OBI94 .778 
SL-CUBIC 7637.13270 35227.3443 7637.13270 1957.07469 3.90232 .064 

Variable FTA Square 

INT_LIN .83247 
m Q u A D  .52419 
INT-CUB1 .01855 
SL-LIN .23461 
%-QUAD .00453 
SL-CUBIC -17817 
....................................................................... 

Roy-Bar- Stepdown F-tests 

Variable Hypoth. MS Error MS Stepdown F Hypoth. DF Error DF Sig. of F 

mI'-LIN 58748.6922 656.81704 89.44453 1 18 .OOO 
INT_QUAD 26.62826 195.44139 -13625 1 17 . 71 7 
INT-CUB1 1.74540 45.37427 .03847 1 16 .847 
SL-LIN 70401.2193 39897.8795 1.76454 1 15 -204 
SL-QUAD 6294.30308 1472.26563 4.27525 1 14 .058 
SL-CUBIC 96.64789 255.81569 .37780 1 13 .549 



T.ABI,E 8.23 Effect Sizes (r2) with Lower and Upper Confidence Limits (lr2 arid ur2) for L)oublj- 
Multivariate Analysis of Reaction Time 

and their confidence limits through Smithson's (2003) procedure for all three effects: parallelism, 
flatness, and levels, respectively. 

The trend analysis for the two DVs, is in the section labeled Roy-Bargman Stepdown F- 
tests in the EFFECT . . . GROUP BY SESSION section of Table 8.22. With a: = .0083 to com- 
pensate for inflated Type I error rate with the six DVs, only the linear trend of the interaction for 
intercept is statistically reliable, F(1, 18) = 52.59. Effect size is calculated using Equation 3.26: 

1 - 
2 - 
3 

partial r12 = 
34539.92 

= .74 
34539.92 + 1 1822.7 1 

f d  ( d f l l  d~ 1 conf I lc2 f ucdf I uc2 I icdf ( power I r2 1 lr2 f ur2 
9 9171 6 13 950 11 6604 9750 120 0513 0250 9999 32 37 36 

17-1530 6 13 950 27 1680 9750 206 4357 0250 1 0000 39 5a 91 
23 0384 2 17 950 13 2066 9750 93 7622 0250 10000 73 40 a2 

Note that the univariate effect size can be used because this trend is in the first-priority DV. Table 
8.24 shows a summary of the stepdown trend analysis of the group by session interaction, in a form 
suitable for publication. 

Figure 8.5 plots the profiles over the four sessions for the two groups. Figure 8.5 shows that 
reaction time intercept is much longer for the symbol than for the letter G, but rather rapidly declines 
over the four sessions, while reaction time intercept for the letter G stays low and fairly stable over 
the four sessions. Thus, the linear trend of the interaction indicates that the linear trend is greater for 
the symbol than for the letter. 

Table 8.25 summarizes ce!! means anc! standard de\ii~tions fro= Table 8.20 

* 

TABLE 8.24 Stepdown Tests of the Trend Analysis of the Group by Session Interaction 

99.17% CL 
around 

Partial I,? 
Univariate Stepdown Partial 

IV Trend F df F d f q2 Lower Upper 

Intercept Linear 52.59" 1/18 52.59** 1/18 .75 .32 .87 
Quadratic 5.06 1/18 1.07 1/17 .06 .OO .42 
Cubic 0.53 1/18 0.05 1/16 .OO .OO .I I 

Slope Linear 0.0 1 1/18 0.16 1/15 .O 1 .OO 2 9  
Quadratic 0.77 1/18 0.48 1/13 .03 .00 .4 i 
Cubic 0.52 1/18 3.59 1/13 .22 .OO .59 

.'Sign~ficance level cannot be evaluated but would reach 1) < ,0083 in univariate context 

i::,:,, ,0083, 
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---O-- Symbol - - 0 - -  Letter G 

I I I 

2 3 4 

Session 

FIGURE 8.5 Intercept of reaction time over 
four angles of rotation as a function of 

session and target object. 

TABLE 8.25 Intercept and Slope over Four Angles of 
Rotation of Reaction Time for Two Target Objects for 
the First Fexr Sessions 

Session 
Target --- 

Object 1 2 3 4 

Intercept 
Letter G 

M 200.70 133.75 90.46 72.39 
SD 42.46 46.92 30.1 1 26.13 

Symbol 
M 40.85 24.30 22.95 22.46 
SD 49.70 29.7 1 29.12 24.12 

Slope 
Letter G 

M 642.62 58 1.13 516.87 505.39 
SD 129.89 97.98 64.83 67.22 

Symbol 
M 654.50 647.53 568.22 535.82 
SD 375.56 153.99 59. 95 50.10 
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The pooled-within cell correlation rnarlix (Cu~relation in the section ~ ~ ~ ~ ~ ~ ~ W I T H I N + R E S I D U A L  
C o r r e l a t i o n s  w i t h  S t d .  D e v s .  On D i a g o n a l )  shows that, indeed, the correlation between 
measures of intercept and slope is small. 

Table 8.26 is a checklist for the doubly-multivariate analysis. It is followed by  a Results sec- 
tion, in journal format, for the analysis just described. 

TABLE 8.26 checklist for Doubly-Multivariate Analysis of Variance 
-- - - 

1. Issues 

a. Unequal sample sizes and missing data 

b. Normality of sampling distributions 

c. Outliers 

d. Homogeneity of variance-covariance matrices 

e. Linearity 

f. In stepdown analysis, when DVs act as covariates 

( 1 ) Homogeneity of regression 

(2) Reliability of DVs 

g. Multicollinearity and singularity 

2. Major analyses: Planned comparisons or omnibus F, when significant 

a. Parallelism. If significant: Importance of DVs 

( I )  Within-cell correlations, stepdown F; univariate F 

(2) Effect size with confidence limits for significant stepdown F 

(3) Profile plot and table of cell means or adjusted cell means and standard 
deviations, standard errors. or confidence intervals. 

b. Test for differences ai-nong levek, if appropiiate. If significant: Irnportmce ~f DVs 

( 1 )  Within-cell correlations, stepdown E univariate F 
(2) Effect size with confidence limits for significant stepdown F 

(3) Marginal or adjusted marginal means and standard deviations, standard 
errors, or confidence intervals 

c. Test for deviation from flatness, if appropriate. If significant: Importance of DVs 

( I )  Within-cell correlations, stepdown E univariate F 

(2) Effect size with confidence limits for significant F 

(3) Marginal or adjusted marginal means and standard deviations, standard 
errors, or confidence intervals 

d. Effect sizes and confidence intervals for tests of parallelism, levels, and flatness 

3. Additional analyses 

a. Post hoc comparisons appropriate for significant effecrjsj 

( 1 ) Comparisons among groups 

(7) Comparisons among measures 

(3) Comparisons among measures within group5 

b. Power analysis for nonsignificant effects 
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Results 

A doubly-multivariate analysis of variance was performed on 

two measures of reaction time: intercept and slope of the regres- 

sion line over four angles of rotation. Intercept represents over- 

all reaction time; slope represents change in reaction time as a 

function of angle of rotation. Two target objects formed the 

between-subjects IV: the letter G and a symbol. The within- 

subjects IV treated multivariately was the first four sessions of 

the entire set of 20 sessions. Trend analysis was planned for the 

main effect of sessions as well as the group by session interac- 

tion. N = 10 for each of the groups. 

No data were missing, nor were there univariate or multivari- 

ate outliers at a = .01. Results of evaluation of assumptions of 

doubly-multivariate analysis of variance were satisfactory. Cell 

means and standard deviations for the two DVs over all combina- 

tions of group and session are in Table 8.25. 

The group by session interaction (deviation from parallelism) 

was strong and statistically significant multivariate F(6, 13) = 

9.92, p <  .005, partial q2 = -82 with confidence limits f r ~ n  .37 

to .86 .  Reaction-time changes over the four sessions differed for 

the two target types. Although group and session main effects also 

were statistically significant they are not interpreted in the 

presence of the strong interaction. Partial q2 for the group main 

effect was - 7 3  with confidence limits from .40 to .82. For the 

session main effect, partial q2 = .89 with confidence limits from 

.58 to .91, 

A Roy-Bargmann stepdown analysis was performed on the trend 

analysis of the DVs, with the three trends of intercept as the 

first DV and the three trends of slope adjusted for intercept as 
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the second. Intercept was judged sufficiently reliable as a 

covariate for slope to warrant stepdown analysis. Homogeneity of 

regression was achieved for the stepdown analysis. An experiment- 

wise error: rate of 5% was achieved by setting a = -083 for each of 

the six components (three trends each of intercept and slope). 

Table 8.24 shows the results of the trend analysis. 

The only significant stepdown effect for the group by session 

interaction was the linear trend of intercept, F(1, 18) = 52.59, 

p <  .005, q 2 . =  .74 with confidence limits from .32 to -87. Figure 

8.5 plots the profiles for the two groups (letter G and symbol) 

over the four sessions. Mean reaction time (intercept) is much 

longer for the symbol than for the letter G, but rapidly declines 

over the four sessions. Reaction time for the letter G stays low 

and fairly stable over the four sessions. There is no evidence 

that change in reaction time as a function of angle of rotation 

(slope) is different for the two target objects. 

Thus, reaction time to the letter G is quite fast, and does 

not change with practice. Reaction time is much slower for the 

s~nnhl, but improves with practice. The change in reaction time 

associated with differing rotation of the target object does not 

depend on type of object or practice. 

I 
1 8.7 Comparison of Programs 

Programs for MANOVA are covered in detail in Chapter 7. Therefore, this section is limited to those 
features of particular relevance to profile analysis. SPSS and SYSTAT each have two programs use- 
ful for profile analysis. SAS has an additional program that can be used for profile analysis, but it is 
limited to equal-n designs. The SAS manual shows by example how to set up doubly-multivariate 
designs. SYSTAT has an example available in online help files. SPSS GLM syntax for doubly- 
multivariate designs is shown in the manual, but no such help is available for SPSS MANOVA, 
unless you happen to have an old (1986) SPSSy manual handy All programs provide output for 



TABLE 8.27 Comparison of Programs for Profile Analysis" 

SAS GLlll 
SPSS and 
hIANOVA SPSS GLiLI ANOVA 

SYSTAT 
GLhI and  
ANOVA 

Input 

Variety of strategies for unequal 17 Yes Yes yesb 

Special specification for doubly- 
multivariate analysis Yes Yes Yes 

Special specification for simple 
effects Yes No No 

Output 

Single source table for Wilks' lambda PRINT= 
SIGNIF 
(BRIEF) 

Yes 

Yes 

Yes 

Specific comparisons 

Within-cells correlation matrix 

Determinant of within-cells variance- 
covariance matrix 

Cell means and standard deviations 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

PRINT= 
CELLINFO 
(MEANS) 

OMEANS 

No 

EMMEANS 

No 

LSMEANS 

No 

PRINT 
MEDIUM 

Marginal means 

Marginal standard deviations or 
standard errors 

Confidence intervals around cell 
means 

Wilks' lambda and F for parallelism 

Pillai's criterion 

Additiorial siaiisticai criteria 

Test for homogeneity of 
covariancelsphericity 

Greenhouse-Geisser epsilon and 
adjusted p 

Huynh-Feldt epsilon and adjusted p 

Predicted values and residuals for 
each case 

Residuals plot 

Homogeneity of variance-covariance 
matrices 

Test for multivariate outliers 

EMMEANS LSMEANS 

STDERR Yes 

Yes 

Yes 

Yes 
- - 
Yes 

Yes 

Yes 

Yes 
-. 
Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

Data file 

No 

Box's M 

No 

EFSIZE 

Box's M 

No 

ET.4SQ 

No 

Data file 

Nc 

No 

Data file 

No Effect <izes (strength of association) 

'Additional features of these programs appear in Chapter 9 (MANOVA). 

b S ~ S  ANOVA requires equal n. 
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8.7.3 SYSTAT System 

The GLM and MANOVA programs in SYSTAT handle profile analysis through the REPEAT format. 
(SYSTAT ANOVA also does profile analysis, but with few features and less flexibility.) There are 
three forms for printing output-long, medium, and short. The short form is the default option. The 
long form provides such extras as error correlation matrices and canonical analysis. as well as cell 
means and standard.errors for the DVs. Additional statistics are available through the STATS pro- 
gram but the data set must be sorted by groups. SYSTAT GLM automatically prints out a full trend 
analysis on the within-subjects variable. There is no example in the manual to follow for a doubly- 
multivariate analysis. 

Multivariate outliers are found by applying the discriminant procedure detailed in the SYSTAT 
manual. Leverage values for each group, which can be converted to Mahalanobis distances, are saved 
to a file. Additional assumptions are not directly tested through the GLM procedure although 
assumptions such as linearity and homogeneity of variance can be evaluated through STATS and 
GRAPH. No test for homogeneity of variance-covariance matrices is available. 



C H A P T E R  

Discriminant Analysis 

9.1 General Purpose and Description 

The goal of discriminant analysis is to predict group membership from a set of predictors. For exam- 
ple, can a differential diagnosis among a group of nondisabled children, a group of children with 
learning disability, and a group with emotional disorder be made reliably from a set of psychologi- 
cal test scores'? The three groups are nondisabled children, children with learning disabilities, and 
children with emotional disorders. The predictors are a set of psychological test scores such as the 
Illinois Test of Psycholinguistic Ability, subtests of the Wide Range Achievement Test, Figure Draw- 
ing tests, and the Wechsler Intelligence Scale for Children. 

Discriminant analysis (DISCRIM) is MANOVA turned around. In MANOVA, we ask whether 
group membership is associated with statistically significant mean differences on a combination of 
DVs. if the answer to that question is yes, then the combination of variables can be used to predict 
group membership-the DISCRIM perspective. In univariate terms, a significant difference among 
groups implies that, given a score, you can predict (imperfectly, no doubt) which group it comes 
from. 

Semantically, however, confusion arises between MANOVA and DISCRIM because in 
MANOVA the IVs are the groups and the DVs predictors while in DISCRIM the IVs are the predic- 
tors and the DVs are the groups. U'e have tried to avoid confusion here by always referring to IVs as 
predictors and to DVs as groups or grouping varinbles. ' 

Mathematically, MANOVA and DISCRIM are the same, although the emphases often differ. 
The major question in MANOVA is whether group membership is associated with statistically sig- 
nificant mean differences in combined DV scores, analogous in DISCRIM to the question of whether 
predictors can be combined to predict group membership reliably. In many cases, DISCRIM is car- 
ried to the point of actually putting cases into groups in a process called classification. 

Classification is a major extension of DISCRIM over MANOVA. Most computer programs for 
DISCRIM evaluate the adequacy of classification. How well does the classification procedure do? 
How many learning-disabled kids in the original sample, or a cross-validation sample, are classified 

'Many texts also refer to IVs or predictors as discrirninating variables and to DVs or groups as classitication variables. How- 
ever, there are also discriminant functions and clascification function< to contend with. so the terminology becomes quite con- 
fusing. We have tried to simplify i t  by using only the terms predictors and groups. 



correctly'? When errors occur, what is thrir nature'.' Are learning-disabled kidc more often contused ! 
I 

with nondisabled kids or with kids suffering emotional disorders? I 
! 

A second difference involves interpretation of differences among the predictors. In MANOVA, 
I 

there is frequently an effort to decide which DVs are associated with group differences, but rarely an i 
effort to interpret the pattern of differences among the DVs as a whole. In DISCRIM, there is often. 
an effort to 'interpret the pattern of differences among the predictors as a whole in an attempt to 
understand the dimensions along which groups differ. 

Complexity arises with this attempt, however, because with more than two groups there may 
be more than one w'ay to combine the predictors to differentiate among groups. There may, in fact, 

i I i 
be as many dimensions that discriminate among groups as there are degrees of freedom for the I 
groups or the number of predictors (whichever is smaller). For example, if there are only two groups, I 
there is only one linear combination of predictors that best separates them. Figure 9.l(a) illustrates 
the separation of two group centroids (multivariate version of means), 7,  and Y2, on a single axis, X, 
which represents the best linear combination of predictors that separate groups I and 2. A line paral- 
lel to the imaginary line that connects the two centroids represents the linear combination of Xs, or 
the first discriminant f ~ ~ n c t i o n ~  of X. Once a third group is added, however, it may not fall along that 
line. To maximally separate the three groups, it may be necessary to add a second linear combination 
of Xs, or second discriminant function. In the example in Figure 9.1 (b), the first discriminant func- 
tion separates the centroids of the first group from the centroids of the other two groups but does not 
distinguish the centroids for the second and third groups. The second discriminant function separates 
the centroid of the third group from the other two but does not distinguish between the first two 

I 
groups. i 

On the other hand, the group means might fall along a single straight line even with three (or 
more) groups. If that is the case, only the first discriminant function is necessary to describe the dif- 

I 

Linear combination of X 

(a) 

First linear combination 
(discriminant function) of X 

(b) 

FIGURE 9.1 (a) Plot of two group centroids, TI and F2, on a scale representing the 
!inear combinations of X. jb) Plot of two linear cumbinatiuns of X required to 

distinguish among three group centroids, F2, and F3. 

'Discriminant functions are also known as roots, car~onical variates. principal components. di~nensions, etc.. depending on the 
stat~stical technique in which they are developed. 



terences among st-oups. The number of discrinlinant functions necessary to describe the group \ep- 
aration may be smaller than the maximum number available (which is the number of predictors 01. 

the number of groups minus 1,  whichever is fewer). With more than two groups. then, discriminant 
analysis is a truly multivariate technique which is interpreted as such, with multiple Ys representing 
groups and multiple Xs representing predictors. 

In our example of three groups of children (nondisabled, learning-disabled, and emotionally 
disordered) given a variety of psychological measures, one way of combining the psychological test 
scores may tend to separate the nondisabled group from the two groups with disorders, while a sec- 
ond way of combining the test scores may tend to separate the group with learning disabilities from 
the group with emotional disorders. The researcher attempts to understand the "message" in the two 
ways of combining test scores to separate groups differently. What is the meaning of the combina- 
tion of scores that separates nondisabled from disabled kids, and what is the meaning of the differ- 
ent combination of scores that separates kids with one kind of disorder from kids with another? This 
attempt is facilitated by the statistics available in many of the canned computer programs for DIS- 
CRIM that are not printed in some programs for MANOVA. 

Thus there are two facets of DISCRIM, and one nr both may be emphasized in any given 
research application. The researcher may simply be interested in a decision rule for classifying cases 
where the number of dimensions and their meaning is irrelevant. Or the emphasis may be on inter- 
preting the results of DISCRIM in terms of the combinations of predictors--called discriminant 
functions-that separate various groups from each other. 

A DISCRIM version of covariate analysis (MANCOVA) is available, because DISCRIM can 
be set up in a sequential manner. When sequential DISCRIM is used, the covariate is simply a pre- 
dictor that is given top priority. For example, a researcher might consider the score on the Wechsler 
Intelligence Scale for Children a covariate and ask how well the Wide Range Achievement Test, the 
Illinois Test of Psycholinguistic Ability, and Figure Drawings differentiate between nondisabled, 
learning-disabled, and emotionally disordered children after differences in IQ are accounted for. 

If groups are arranged in a factorial design, it is fi~eqiienily best to rephrase rese~rch  question 
so that they are answered within the framework of MANOVA. (However, DISCRIM can in some cir- 
cumstances be directly applied to factorial designs as discussed in Section 9.6.6.) Similarly, DIS- 
CRIM programs make no provision for within-subjects variables. If a within-subjects anaiysis is 
desired, the question is also rephrased in terms of MANOVA or profile analysis. For this reason the 
emphasis in this chapter is on one-way between-subjects DISCRIM. 

Honigsfeld and Dunn (2003) used a two-group discriminant analysis (in addition to other 
analyses) to examine gender differences in learning styles internationally. The 1,637 7th to 13th 
grade participants were from five countries. A significant multivariate difference was found between 
boys and girls, indicating that the linear combination of learning-style elements discriminated 
between them, with an effect size ( R 2 )  of about .08. Girls were found to score higher on a discrimi- 
nant function comprised of responsibility, self-motivation, teacher motivation, persistence, learning 
in several ways, and parent motivation. 

GAD (generalized anxiety disorder) in older adults was investigated bji Diefenbach e: al. (2003) 
in a three-group stepwise discriminant analysis (diagnosable GAD, subsyndromal minor GAD, and 
normal volunteers). The original set of predictors consisted of four self-report measures: the Penn 
State Worry Questionnaire (PSWQ), State-Trait Anxiety Inventory-Trait Scale (STAI-Trait), Beck 
Depression Inventory (BDI), and Quality of Life Inventory (QOLI). The final set of two predictors, 



PSWQ and STAI-Trait. formed a single ctiscriminant function that significantly discriminated among 
the three ~ T O L L P S ,  accounting for 99% of the variance. That is. the three groups varied along a single 
dimension, with the GAD group centroid higher than the subsyndromal GAD centroid, which in turn 
was higher than the normal centroid. The solution classified 73% of the cases into their correct groups 
(replicated with cross-validation). However, there was relatively poor classification of the subsyndro- 
ma1 GAD group, with 38% of them classified into the GAD group. That is, subsyndromal GAD par- 
ticipants were more similar to GAD participants than normals on worrylanxiety symptoms. 

9.2 Kinds of Research Questions 

The primary goals of DISCRIM are to find the dimension or dimensions along which groups differ, 
and to find classification functions to predict group membership. The degree to which these goals are 
met depends, of course; on choice of predictors. Typically, the choice is made either on the basis of 
theory about which variables should provide information about group membership, or on the basis 
of prag-"t." n,, .dnr"tjrrn, ".In nn n --as n n  "-....a 

IIILLL;L ,,ns: b l L ( L  VllJ bApL113L, bVI IVF;~ ien~e ,  or iinobtriisjiieiicss. 
It should be emphasized that the same data are profitably analyzed through either MANOVA 

or DISCRIM programs, and frequently through both, depending on the kinds of questions you want 
to ask. If group sizes are very unequal, and/or distributional assumptions are untenable, logistic 
regression also answers most of the same questions. In any event, statistical procedures are readily 
available within canned computer programs for answering the following types of questions generally 
associated with DISCRIM. 

9.2.1 Significance of Prediction 

Can gruup membership be predicted reliably from the set of predictors? For example, can we do bet- 
ter than chance in predicting whether children are learning-disabled, emotionally disordered, or 
nondisabled on the basis of the set of psychological rest scores? This is the major question of DIS- 
CRIM that the statistical procedures described in Section 9.6.1 are designed to answer. The question 
is identical to the question about "main effects of IVs" for a one-way MANOVA. 

9.2.2 Number of Significant Discriminant Functions 

Along how many dimensions do groups differ reliably? For the three groups of children in our exam- 
ple, two discriminant functions are possible, and neither, one, or both may be statistically significant. 
For example, the first function may separate the nondisabled group from the other two while the sec- 
ond, which would separate the group with learning disability from the group with emotional disor- 
ders, is not statistically significant. This pattern of results indicates the predictors can differentiate 
nondisabled from disabled kids, but cannot separate learning-disabled kids from kids with emotional 
disorders. 

In DISCRIM, the first discriminant function provides the best separation among groups. Then 
a second discriminant function, orthogonal to the first, is found that best separates groups on the 
basis of associations not used In the first discriminant function. This procedure of finding successive 
orthogonal discriminant functions contin~~es until all possible dimensions are evaluated. The number 
of possible dimensions is either one fewer than the number of groups or equal to the number of pre- 



dictor variables, whichever. i b  smaller. Typically. on14 the first one or t ~ c o  discriminant functions rrli- 
ably discriminate among groups: remaining functions provide no additional information about group 
membership and are better ignored. Tests of signiticance for discriminant functions are discussed in 
Section 9.6.2. 

9.2.3 Dimensions of Discrimination 

How can the dimensions along which groups are separated be interpreted? Where are groups located 
along the discriminant functions, and how do predictors correlate with the discriminant functions'? In 
our example, if two significant discriminant functions are found, which predictors correlate highly 
with each function? What pattern of test scores discriminates between nondisabled children and the 
other two groups (first discriminant function)? And what pattern of scores discriminates between 
children with learning disabilities and children with emotional disorders (second discriminant func- 
tion)? These quest.ions are discussed in Section 9.6.3. 

9.2.4 Classification Functions 

What linear equation(s) can be used to classify new cases Into groups? For example, suppose we 
have the battery of psychological test scores for a group of new, undiagnosed children. How can we 
combine (weight) their scores to achieve the most reliable diagnosis? Procedures for deriving and 
using classification functions are discussed in Sections 9.4.2 and 9.6.7.3 

9.2.5 Adequacy of Classification 

Given classification functions, what proportion of cases is correctly classified? When errors occur, 
how are casea ~~lisclassitied? For instance, what proportion of learning-disabled children is correctly 
classified as learning-disabled, and, among those who are incorrectly classified, are they more often 
put into the group of nondisabled childre~l nr into the group of emotionally disordered children'? 

Classification functions are used to predict group membership for new cases and to check the 
adequacy of classification for cases in the same sample through cross-validation. If the researcher 
knows that some groups are more likely to occur, or if some kinds of misclassification are especially 
undesirable, the classification procedure can be modified. Procedures for deriving classification 
functions and modifying them are discussed in Section 9.4.2; procedures for testing them are dis- 
cussed in Section 9.6.7. 

i 9.2.6 Effect Size 

What is the degree of relationship between group membership and the set of predictors? If the first 
discriminant function separates the nondisabled group from the other two groups, how much does 
the variance for groups overlap the variance in combined test scores? if the second discriminant 

'~i \cr irninant  analy.;i\ provicte, cla.;sitica~ion ot'c;~<e.; into group.; where group membership i\ known. at  leas( for the sample 
frorn wholr~ the classificarion equations are der~ved. Cluster analysis is a similar procedure except that g r o ~ ~ p  membership 1s 

not known. Instead, the analysis develops groups on the basis of similarities among cases. 



function 5eparutes learning-disabled from emotionally disordered children. how much does the vari- 
ance for these groups overlap the combined test scores for this discriminant function? This is basi- 
cally a question of percent of variance accounted for and, as seen in Section 9.4. l ,  is answered 
through canonical correlation (Chapter 12). A canonical correlation is a multiple-multiple correla- 
tion because there are multiple varktbles on both sides of the regression equation. A multiple corre- 
lation has multiple predictor variables (IVs) and a single criterion (DV). A canonical correlation has 
multiple criteria as well-the df for the groups provide the multiple criteria in discriminant analysis. 
A canonical correlation is found for each discriminant function that, when squared, indicates the pro- 
portion of variance shared between groups and predictors on that function. Confidence limits can be 
.found for these effect size measures. A11 effect size and its confidence limits also are available for the 
overall discriminant analysis, identical to that available for omnibus MANOVA. Finally, an effect 
size and associated confidence interval may be found for group contrasts. Section 9.6.5 discusses all 
of these measures of effect size. 

9.2.7 Importance of Predictor Variables 

Which predictors are most important in predicting group membership? Which test scores are helpful 
for separating nondisabled children from children with disorders, and which are helpful for separat- 
ing learning-disabled from emotionally disordered children? 

Questions about importance of predictors are analogous to those of importance of DVs in 
MANOVA, to those of IVs in multiple regression, and to those of IVs and DVs in canonical correla- 
tion. One procedure in DISCRIM is to interpret the correlations between the predictors and the dis- 
criminant functions, as discussed in Section 9.6.3.2. A second procedure is to evaluate predictors by + 

how well they separate each group from all the others, as discussed in Section 9.6.4. (Or importance 
can be evaluated as in MANOVA, Section 7.5.3.) 

9.2.8 Significance of Prediction with Covariates 

After statistically removing the effects of one or more covariates. can one reliably predict group 
membership from a set of predictors? In DISCRIM, as in MANOVA, the ability of some predictors 
to promote group separation can be assessed after adjustment for prior variables. If scores on the 
Wechsler Intelligence Scale for Children (WISC) are considered the covariate and given first entry 
in DISCRIM, do scores on the Illinois Test of Psycholinguistic Ability (ITPA), the Wide Range 
Achievement Test, and Figure Drawings contribute to prediction of group membership when they 
are added to the equation? 

Rephrased in terms of sequential discriminant analysis, the question becomes, Do scores on the 
ITPA, the Wide Range Achievement Test, and Figure Drawings provide significantly better classifi- 
cation among the three groups than that afforded by scores on the WISC alone? Sequential DISCRIM 
is discussed in Section 9.5.2. Tests for contribution of added predictors are given in Section 9.6.7.3. 

9.2.9 Estimation of Group Means - 
If predictors discriminate among groups, it is important to report just how the groups differ on those 
variables. The best estimate of central tendency in a population is the sample mean. If. for example. 
the ITPA discriminates between groups with learning disabilities and emotional disorders, it is 



worthwhile to cornpale diid I Z P U I ~  the 1llt"in ITPA score tui learning-di\abld children and tht: inr,in 
ITPA score for emotionally disordered childre~i. 

9.3 Limitations to Discriminant Analysis 

9.3.1 Theoretical Issues 

Because DISCRIM is typically used to predict membership in naturally occurring groups rather than 
groups formed by random assignment, questions such as why we can reliably predict group mem- 
bership, or what causes differential membership are often not asked. If, however, group membership 
has occurred by random assignment, inferences of causality are justifiable as long a s  proper experi- 
mental controls have been instituted. The DISCRIM question then becomes: Does treatment follow- 
ing random assignment to groups produce enough difference in the predictors that we can now 
reliably separate groups on the basis of those variables? 

As implied, limitations to DISCRIM are the same as limitations to MANOVA. The usual dif- 
ficulties of generalizability apply to DISCRIM. But the cross-validation procedure described in Sec- 
tion 9.6.7.1 gives some indication of the generalizability of a solutior,. 

9.3.2 Practical Issues 

Practical issues for DISCRIM are basically the same as for MANOVA. Therefore, they are discussed 
here only to the extent of identifying the similarities between MANOVA and DISCRIM and identi- 
fying the situations in which assumptions for MANOVA and DISCRIM differ. 

Classification makes fewer statistical demands than does inference. If classification is the 
primary goal, then most nf the following reqiiirements (except for outliers and homogeneity of 
variance-covariance matrices) are relaxed. If, for example, you achieve 95% accuracy in classifica- 
tion, you hardly worry about the shape of distributions. Nevertheless. DISCRIM is optimal under the 
same conditions where MANOVA is optimal; and, if the classification rate is unsatisfactory, it may 
be because of violation of assumptions or limitations. And, of course, deviation from assumptions 
may distort tests of statistical significance just as in MANOVA. 

9.3.2.1 Unequal Sample Sizes, Missing Data, and Power 

As DISCRIM is typically a one-way analysis, no special problems are posed by ilneq~i~il sanzple 
sizes in In classification, however, a decision is required as to whether you want the a priori 
probabilities of assignment to groups to be influenced by sample size. That is, do you want the prob- 
ability with which a case is assigned to a group to reflect the fact that the group itself is more (or less) 
probable in the sample? Section 9.4.2 discusses this issue, and use of unequal a priori probabilities 
is demonstrated in Section 9.7. Regarding missing data (absence of scores on predictors for some 
cases), consult Section 6.3.2.1 and Chapter 4 for a review of problems and potential solutions. 

As discussed in Section 7.3.2.1, the sample size of the smallest group should exceed the 
tz~tmher of predictor vnrinhlc~s. Although sequential and ctepwise DISCRIM avoid the problems of 

';\ctually a problem does occur if rotation is desired because discriminant functions [nay bt. nonorthogonul w ~ t h  unequal 1 1  

(cf. Chapter 13), but rotation of axes is uncommon in discriminant analysis. 
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multicollinearity and singularity by a tolerance tebt at each step. ~ ~ e r t i t t i n g  (producing rehults xo 

close to the sample they don't generalize to other samples) occurs with all forms of DISCRIM if the 
number of cases does not notably exceed the number of predictors in the smallest group.j 

Issues of power, also, are the same as for MANOVA if tests of statistical significance are to be 
applied. Section 7.3.2.1 discusses these issues and methods for determining sample size to obtain 
desired power. 

9.3.2.2 Multivariate Normality 

When using statistical inference in DISCRIM, the assumption of multivariate normality is that 
scores on predictors are independently and randomly sampled from a population, and that the sam- 
pling distribution of any linear combination of predictors is normally distributed. No tests are cur- 
rently feasible for testing the normality of all linear combinations of sanipling distributions of means 
of predictors. 

However, DISCRIM, like MANOVA, is robust to failures of normality if violation is caused by 
skewness rather than outliers. Recall that a sample size that would produce 20 dffor error in the uni- 
variate ANOVA case shoi~ld ensure robustness with respect to mi~ltivariate normality, as long as 
.sample sizes are rqunl and tcvn-tailed tests are used (Calculation of df for error in the univariate case 
is discussed in Section 3.2.1 .) 

Because tests for DISCRIM typically are two-tailed, this requirement poses no difficulty. Sam- 
ple sizes, however, are often not equal for applications of DISCRIM because naturally occurring 
groups rarely occur or are sampled with equal numbers of cases in groups. As differences in sample 
size among groups increase, larger overall sample sizes are necessary to assure robustness. As a con- 
servative recommendation, robustness is expected with 20 cases in the smallest group if there are 
only a few predictors (say, five or fewer). 

If samples are both small and unequal in si-/e, assessment of normality is a matter ofjudgment. 
Are predictors expected to have normal sampling distributions in the population being sampled? If 
not, the transformation of one or more predictors (cf. Chapter 4) may be worthwhile. 

9.3.2.3 Absence of Outliers 

DISCRIM, like MANOVA, is highly sensitive to inclusion of outliers. Therefore, run n test for uni- 
variate and multivariate outliers for each group separately, and transform or eliminate significant 
outliers before DISCRIM (see Chapter 4). 

9.3.2.4 Homogeneity of Variance-Covariance Matrices 

In inference, when sample sizes are equal or large, DISCRIM, like MANOVA (Section 7.3.2.4), is 
robust to violation of the assumption of equality of within-group variance-covariance (dispersion) 
matrices. However, when sample sizes are unequal and small, results of significance testing may be 
misleading if there is heterogeneity of the variance-covariance matrices. 

Although inference is usually robust with respect to heterogeneity of variance-covariance 
matrices with decently sized samples, classification is not. Cases tend to be overclassified into 

' ~ l s o ,  highly ~ ~ n e q u n l  <ample cl/es are hetter handled by logistic regression (Chapter 10) than by discriminant analysis. 



groups with greater dispersion. It'clasaitica~ion is an i~~lportatit goal of analysis. test for hoi~loscnr- 
ity of variance-covariance matrices. 

Homogeneity of variance-covariance matrices is assessed through procedures of Section 7.3.7.4 
or by inspection (,f.scarterplots of scores orz tlze first two discriminant f~inctions prodrrceci .~ep~~uite!\. 
for ecrch gmrrp. These scatterplots are available through SPSS DISCRIMINANT. Rorlgh ecpralir~, it1 
overall size of the sccitterplots is evidence r,f homogeneity of variarlce-covcirirrtzce matrices. Ander- 
son's test, available in SAS DISCRIM (poo I= t e s t) assesses homogeneity of variance-covariance 
matrices, but is also sensitive to nonnormality. This test is demonstrated in Section 9.7.1.5. Another 
overly sensitive'test, Box's M, is available in SPSS MANOVA and DISCRIMINANT. 

If heterogeneity is found, one can transform predictors, use separate covariance matrices dur- 
ing classification, use quadratic discriminant analysis (shown in Section 9.7), or use nonparametric 
classification. Transformation of predictors follows procedures of Chapter 4. Classitication on the 
basis of separate covariance matrices, the second remedy, is available through SPSS DISCRIMI- 
NANT and SAS DISCRIM. Because this procedure often leads to overfitting, it should be used only 
when the sample is large enough to permit cross-validation (Section 9.6.7.1). Quadratic discrimina- 
tior. ana!ysis, the third remedy, is avai!ah!e in SAS DTSCRT-M (cf, Section 9.7). This procedure avoids 
overclassification into groups with greater dispersion, but performs poorly with small samples 
(Norusis, 1990). 

SAS DISCRIM uses separate matrices and computes quadratic discriminant functions with 
the instruction p o o 1 =no. With the instruction p o o 1 = t e s t , SAS DISCRIM uses the pooled 
variance-covariance matrix only if heterogeneity of variance-covariance matrices is not signitjcant 
(Section 9.7.2). With small samples, nonnormal predictors, and heterogeneity of variance-covariance 
matrices, SAS DISCRIM offers a fourth remedy-nonparametric classitication methods-which 
avoid overclassification into groups with greater dispersion and are robust to nonnormality. 

Therefore, transform variables lf there is sign$cnnt departurefrom homogeneity, samples are 
j~ti~iij urid ~ t i l~qi i~i l ,  ~ i / ~ i l  inferettce Is the in~ijor goal. Ijf the cmphclsis is nn c!c:s.sijicntior! and di.~;?rr- 
sions are unequal, use (1) separate cuvciriance matrices ~rnil/t)t- q~liiift-atic iiiscrinzitzaizi aniil~sls (f 
.sn~zplez arc !L!?;sP and vciriczbl~s are nnonnal and (2) nonpararnetric classification methods if'vari- 
ahles are nonnorrnal and/or samples are small. 

I 9.3.2.5 Linearity 
I The DISCRIM model assumes linear relationships among a11 pairs of predictors within each group. 

i The assumption is less serious (from some points of view) than others, however, in that violation 
leads to reduced power rather than increased Type I error. The procedures in Section 6.3.2.6 may be 

1 applied to test for and improve linearity and to increase power. 

i 9.3.2.6 Absence of Multicollinearity and Singularity 

i Multicollinearity or singularity may occur with highly redundant predictors, making matrix inver- 

i sion unreliable. Fortunately, most computer programs for DISCRIM protect against this possibility 
by testing tolerance. Predictors with insufficient tolerance are excluded. 

1 Guidelines for assessing multicollinearity and singularity for programs that do not include tol- 
erance tests, and for dealing w~th  multicollineanty or singularity when i t  occurs, are In Section 

I 7.3.2.8. Note that analysis is done on predictors. not "DVS" in DISCRIM. 



9.4 Fundamental Equations for Discriminant 
Analysis 

Hypothetical scores on four predictors are given for three groups of learning-disabled children for 
demonstration of DISCRIM. Scores for three cases in each of the three groups are shown in Table 9.1. 

The three groups are MEMORY (children whose major difficulty seems to be with tasks related 
to memory), PERCEPTION (children who show difficulty in visual perception), and COMMUNI- 
CATION (children with language difficulty). The four predictors are PERF (Performance Scale IQ of 
the WISC), INFO (information subtest of the WISC), VERBEXP (Verbal Expression subtest of the 
ITPA), and AGE (chronological age in years). The grouping variable, then, is type of learning disabil- 
ity, and the predictors are selected scores from psychodiagnostic instruments and age. 

Fundamental equations are presented for two major parts of DISCRIM: discriminant functions 
and classification equations. Syntax and selected output for this example appear in Section 9.4.3 for 
SPSS DISCRIMINANT and SAS DISCRIM. 

9.4.1 Derivation and Test of Discriminant Functions 

The fundamental equations for testing the significance of a set of discriminant functions are the same 
as for MANOVA, discussed in Chapter 7. Variance in the set of predictors is partitioned into two 
sources: variance attributable to differences between groups and variance attributable to differences 
within groups. Through procedures shown in Equations 7.1 to 7.3, cross-products matrices are formed. 

The total cross-products matrix (St,,,,) is partitioned into a cross-products matrix asso- 
ciated wlth d~fferences between groups (She) and a cross-products matrix of differences 
within groups (SWs). 

TABLE 9.1 Hypothetical Small Data Set for Illustration of 
Discriminant Analysis 

Predictors 

Group PERF INFO VERBEXP AGE 

87 
MEMORY 97 

112 

i 02 
PERCEPTION 85 

76 

130 
COMMUNICATION 8 5 

99 



For the example In T~b le  9.1, the result~ng cross-product\ matnces are 

3 14.89 -7 1.56 - 180.00 14.49 

-71.56 32.89 8.00 -2.22 
S!,, = - 180.00 8.00 168.00 - 10.40 

14.49 -2.22 - 10.40 0.74 

1 186.00 220.00 348.33 50.00 

220.00 45.33 73.67 
S,., = 

348.33 73.67 150.00 9.73 

50.00 6.37 9.73 5.49 

~e te rminan t s~  for these matrices are 

Following procedures in Equation 7.4, Wilks' lambda7 for these matrices is 

To find the approximate F ratio, as per Equation 7.5, the following values are used: 

p = 4  the number of predictor variables 

dtbg = 2 tine number of groups minus one, or k - I 

df , ,  = 6 the number of groups times the quantity n - 1, where n is the number of cases 
per group. Because n is often not equal for all groups in DISCRIM, an alterna- 
tive equation fer df is N - k ,  where N is the total number of cases in all 

wg 
groups-9 in this case. 

T'nus we obtain 

df,  = 4(2) = 8 

Approximate F (8, 6) = ( l  :ig;7) (E) = 6.58 

determinant. as described in Appendix A,  can be viewed as a measure of generalized variance of a matrix 

'~ltemative statistical criteria are discussed in Section 9.6.1.1. Note that bg and rvg are used in place of effect and error, 
respectively, in these equations. 
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Critical F M. l th  X nnii 6 df at = 0.OS is 4.15. Becaiise obtained F exceeds critical F. w e  conclude 
that the three groups of children can be distinpuishrd on the basis of the combination of the four 
predictors. 

This is a test of overall relationship between groups and predictors. It is the same as the over- 
all test of a main effect in MANOVA. In MANOVA. this result is followed by an assessment of the 
importance of the various DVs to the main effect. In DISCRIM, however, when an overall relation- 
ship is found between groups and predictors, the next step is to examine the discriminant functions 
that compose the overall relationship. 

The maximum number of discriminant functions is either (1) the number of predictors or 
(2) the degrees of freedom for groups, whichever is smaller. Because there are three groups (and four 
predictors) in this example, there are potentially two discriminant functions contributing to the over- 
all relationship. And, because the overall relationship is statistically significant, at least the first dis- 
criminant function is very likely to be significant, and both may be significant. 

Discriminant functions are like regression equations; a discriminant function score for a case 
is predicted from the sum of the series of predictors, each weighted by a coefficient. There is one set 
of discriminant function coefficients for the tirst discriminant function. a second set of coefficients 
for the second discriminant function, and so forth. Subjects get separate discriminant function scores 
for each discriminant function when their own scores on predictors a~-e  insetted into the equations. 

To solve for the (standardized) discriminant function score for the ith function, Equation 9.2 is 
used. 

A child's standardized score on the ith discriminant function (Di) is found by multiply- 
ing the standardized score on each predictor (z) by its standardized discriminant function 
coefficient (di) and then adding the products for all predictors. 

Discriminant function coefficients are found in the same manner as are coefficients for canon- 
ical variates (to he described i ~ .  Section 12.4.2). 111 fact, DISCRIM is basically a problem In canoni- 
cal correlation with group membership on one side of the equation and predictors on the other, where 

i 
successive canonical variates (here called discriminant functions) are computed. In DISCRIM, di are 
chosen to maximize differences between groups relative to differences within groups. 

Just as in multiple regression, Equation 9.2 can be written either for raw scores or  for stan- 
dardized scores. A discriminant function score for a case, then, can also be produced by multiplying 
the raw score on each predictor by its associated unstandardized discriminant function coefficient, 
adding the products over all predictors, and adding a constant to adjust for the means. The score pro- 
duced in this way is the same Di as produced in Equation 9.2. The mean of each discriminant func- 

i 
tion over all cases is zero, because the mean of each predictor, when standardized, is zero. The ! 
standard deviation of each Di is 1.  

Just as Di can be calculated for each case, a mean value of Di can be calculated for each group. 
The members of each group considered together have a mean score on a discriminant function that 

i 
is the distance of the group, in standard deviation units, from the zero mean of the discriminant func- 
tion. Group means on Di are typically called centroids in reduced space, the space having been 
reduced from that of the p predictors to a single dimension, or discriminant function. 

A canonical correlation is found for each discriminant function. Canonical correlations are 
found by solving for the eigenvalues and eigenvectors of a correlation matrix, in a process described 
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in Chapters 17 and I?. An ttigenvalue is a form of a \quared canonical correlation which. as is ~ I S L I L I ~  

for squared correlation coefficients, represents overlapping variance among variables. In  this case. 
between predictors and groups. Successive discriminant functions are evaluated for significance. as 
discussed in Section 9.6.2. Also discussed in subsequent sections are structure matrices of loadings 
and group centroids. 

If there are only two groups, discriminant function scores can be used to classify cases into 
groups. A case is classified into one group if its Di score is above zero, and into the other group if the 
Di score is below zero. With numerous groups, classification is possible from the discriminant func- 

i 
tions, but it is simpler to use the procedure in the following section. 

i 9.4.2 Classification 

To assign cases into groups, a classification equation is developed for each group. Three classifica- 
tion equations are developed for the example in Table 9.1, where there are three groups. Data for each 
case are inserted into each classification equation to develop a classification score for each group for 
the case. The case is assigned to ihe groilp f ~ r  which it has the highest classification score. 

In its simplest form, the basic classification equation for the jth group (j = 1 ,  2, . . ., k )  is 

A score on the classification function for group j (Cj)  is found by multiplying the raw 
score on each predictor (X) by its associated classification function coefficient (c i ) ,  sum- 
ming over all predictors, and adding a constant c. 

10' 

Classification coefficients, c,, are found from the means of the p predictors and the pooled 
..\.ithin-group variance-covariance matrix, W. The within-group covariance matrix is produced by 
dividing each dement ir. the cross-products matrix, S,,, by the within-group degrees of freedonl, 

."S' 
!V - k. In matrix form, 

The column matrix of classification coefficients for grcup j (Cj = c. c 
J" J* '  -"'. 

cjp) is found 
by multiplying the inverse of the within-group variance-covartance matr~x (W-') by 
a column matrix of means for group J on the p variables (Mj = X,,, Xj2, . . ., X. ). 

~ 1 7  

The constant for group j, cjo, is found as follows: 

The constant for the classification function for group J (cIo j is formed by multiplying 
- 112 times the transpose of the column matrix of classification coefficients for group j 
( ~ ' i  times the column matrix of means f ~ r  group j (M,). 

J 

For the sample data, each element in the SbLs matrlx from Section 9.1.1 is divided by dfbVx = 

df,,.,.,,, = 6 to produce the within-group variance-covariance matrix: 
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The inverse of the within-group variance-covariance matrix is 

Multiplying W-I by the column matrix of means for the first group gives the matrix of classification 
coefficients for that group, as per Equation 9.4. 

The constant for group 1, then, according to Equation 9.5, is 

(Values used in these calculations were carried to several decimal places before rounding.) When 
these procedures are repeated for groups 2 and 3, the full set of classification equations is produced, 
as shown in Table 9.2. 

TABLE 9.2 Classification Function Coefficients for Sample 
Data of Table 9.1 

Group 1: Group 2: Group 3: 
MEMORY PERCEP COMMUN 

PERF 1.92420 0.58704 1.36552 
INFO - 17.5622 1 -8.6992 1 - 10.58700 
VERBEXP 5.54585 4.11679 2.97278 
AGE 0.98723 5.01719 2.91 135 
(CONSTANT) - 137.82892 -7 1.28563 -71.24188 



In its simplest form. classitic~ltion proceeds as follows for the first case in group I .  Three clas- 
sification scores. one for each group, are calculated for the case by applyins Equation 9.3: 

Because this chidd has the highest classification score in group I ,  the child is assigned to group 1 ,  a 
correct classification in this case. 

This simple classification scheme is most appropriate when equal group sizes are expected in 
the population. If unequal group sizes are expected, the classification procedure can be modified by 
setting a priori probabilities to group size. The classification equation for group j (C') then becomes 

where nj = size of group j and A' = total sample size. 

It should be reemphasized that the classification procedures are highly sensitive to hetero- 
geneity of variance-covariance matrices. Cases are more likely to be classified into the group with 
the greatest dispersion-that is, into the group for which the determinant of the within-group covari- 
ance matrix is greatest. Section 9.3.2.4 provides suggestions for dealing with this problem. 

Uses of classification procedures are discussed more fully in Section 9.6.7. 

9.4.3 Computer Analyses of Small-Sample Example 

Syntax and selected output for computer analyses of the data in Tabie ii.1, using the simplest meth- 
ods, are in Tables 9.3 and 9.4 for SPSS DISCRIMINANT and S4S  DISCRIM, respectively. 

SPSS DISCRiMiiu'ANT (Table 9.3) assigns equal prior probability for each group by default. 
The TABLE instruction requests a classification table. The output summarizing the Canonical Bis- 
criminact Functions appears in two tables. The first shows Eigenvalue, O/O of Variance, and Cumu- 
lative % of variance accounted for by each function, and Canonical Correlation for each discriminant 
function. Squared canonical correlations, the effect sizes for the discriminant functions, are 

TABLE 9.3 Syntax and Selected SPSS DISCRIMINANT Output 
for Discriminant Analysis of Sample Data in Table 9.1 

DISCRIMINANT 
/GROUPS=GROUP(l 3) 
A/ARIABLES=PERF INFO VERBEXP AGE 
/ANALYSIS ALL 
/PRIORS EQUAL 
ISTATISTICS = TABLE 
/CLASSIFY=NONMISSING POOLED. 
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TABLE 9.3 Continued 

Summary of Canonical Discriminant Functions 

Eigenvalues 

Correlation 

29.3 100.0 .921 

aFirst 2 canonical discriminant functions were used in the analysis. 

Wilks' Lambda 

1 through 2 .009 
8.484 .037 

Standardized Canonical Discriminant Function Coefficients 

Structure Matrix 

Performance IQ 
Information 
Verbal expression 
AGE 

Pooled within-groups correlations between discriminating 
variables and standardized canonical discriminant functions 
Variables ordered by absolute size of correlation within function 

* Largest absolute correlation between each variable and any 
discriminant function 

Function 

Information 
Verbal expression 
Performance lQ 
AGE 

1 2 

Function 

-2.504 -1.474 
3.490 -.284 

-1.325 / 1.789 
503 1 .236 

1 

.228* 
-.022 
-.075 
-.028 

2 

.066 

.446* 
-. 173* 
-. 149* 
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T.4BLE 0.3 Continued 
-- 

Functions at Group Centroids 

I 

i Unstandardized canonical discriminant functions 
I evaluated at group means 

Group 

Memory 
Perception 
Communicatidn 

Classification Statistics 

Classification Resultsa 

Function 

a1 00.0?/0 of original grouped cases correctly classified. 

1 

-4.102 
2.981 
1.122 

Group 

Original Count Memory 
Perception 
Communication 

% Memory 
Perception 
Communication 

.. 

I 

i (.965)2 = .93 and (.92 I)' = .85, respectively. The first discriminant function accounts for 70.7% of the 
between-group (explained) variance in the solution while the second accounts for the remaining 

I 
I between-group variance. The Wilks' Lambda table shows the "peel off" significance tests of succes- 

I sive discriminant functions. For the combination of both discrimination functions, 1 through 2-all 
I functions tested together, Chi square = 20.5 14. After the first function is removed, the test of function 
I 
I 2 shows that Chi square = 8.484 is still statistically significant at a: = .05 because Sig. = .0370. This 

means that the second discriminant function is significant as well as the first. If not, the second would 
I 

i not have been marked as one of the discriminated functions remaining in the analysis. 
I Standardized Canonical Discriminant Function Coefficients (Equation 9.2) are given for 
I deriving discriminant function scores from standardized predictors. Correlations (loadings) between 

predictors and discriminant functions are given in the Structure Matrix. These are ordered so that 
predictors loading on the first discriminant function are listed first, and those loading on the second 
discriminant function second. Then Functions at Group Centroids are shown, indicating the aver- 
age discriminant score (aka centroid or multivariate mean) for each group on each function. 

In the Classification Results table, produced by the TABLE instruction in the STATISTICS 
paragraph, rows represent actual group membership and columns represent predicted group 

2 

.691 
1.942 

-2.633 

Predicted Group Membership 

Total 

3 
3 
3 

100.0 
100.0 
100.0 

P 

Memory 

3 
0 
0 

100.0 
.O 
.O . 

Perception 

0 
3 
0 

.O 
100.0 

.O 

I 

Communication 

0 
0 
3 

.O 

.O 
100.0 



membership. Within each cell. the number and percent of cases correctly classified arc: shown. For 
this ex~~mple. all of the diagonal cells shou perfcct classification (100.0%). 

Syntax for SAS DISCRIM (Table 9.4) requests a manova table of the usual multivariate out- 
put. The request for can provides canonical correlations, loading matrices, and much more. 

SAS DISCRIM output (Table 9.4) begins with a summary of input and degrees of freedom, 
followed by a summary of G R 0 U Ps, their F r e  q u  en c  y (number of cases), We i g h t (sample sizes 
in this case), P r o p o r t i o n  of cases ineachgroup, and P r i o r  P r o b a b i  t i  t y  (set equal by 
default). This is followed by the multivariate results as per SAS GLM, produced by requesting 
ma n o  v a. Per the.request for c  a  n, information about canonical correlation and eigenvalues for 
each of the discriminant functions follows, with information matching that of SPSS. SAS, however, 
explicitly includes squared canonical correlations. Significance tests of successive discriminant 
functions are of the "peel off" variety, as per SPSS. SAS DISCRIM uses F tests rather than the X2 
tests used by SPSS. Also, the column labeled L i k e  1 i h o o d  Ra t i o  is the Wilks' Lambda of 
SPSS. Results are consistent with those of SPSS, however. The structure matrix then appears in a 
table labeled P o o l e d  w i t h i n  C a n o n i c a l  S t r u c t u r e ,  also produced by requesting 
can (a great deal of additional output produced by that request is omitted here). The C 1 a  s s 
Means o n  C a n o n i c a l  VariablesarethegroupcentroidsofSPSS. 

Equations for classification functions and classification coefficients (Equation 9.6) are given 
in thefollowingmatrix,labeled L i n e a r  D i s c r i m i n a n t  F u n c t i o n  f o r  GROUP.Finally, 
results of classification are presented in the table labeled Numb e  r o  f 0 b  s  e  r v  a  t i o n  s a  n  d 
P e  r c en  t C 1 a s s i f i e  d i n  t o  G R 0 U P where, as usual, rows represent actual group and 
columns represent predicted group. Cell values show number of cases classified and percentage cor- 
rect. Number of erroneous classifications for each group are presented, and prior probabilities are 
repeated at the bottom of this table. 

TABLE 9.4 Syntax and Selected SAS DISCRIhI Output for Discriminant Analysis of Small-Sample 
Data of Table 9.1 

p r o c  d i s c r i m  data=SASUSER.SS-DISC manova can; 
c l a s s  GROUP; 
v a r  PERF INFO VERBEXP AGE; 

r un ;  

The DISCRIM P r o c e d u r e  

O b s e r v a t i o n s  9 
V a r i a b l e s  4 
C l a s s e s  3 

DF T o t a l  8 
DF W i t h i n  C l a s s e s  6 
D F  B e t w e e n  C l a s s e s  2 

C l a s s  L e v e l  I n f o r m a t i o n  

V a r i a b l e  P r i o r  
GROUP Name F r e q u e n c y  W e i g h t  P r o p o r t i o n  P r o b a b i  t i  t y  



TABLE 9.4 Continued 
-- 

M u l t i v a r i a t e  S t a t i s t i c s  a n d  F A p p r o x i m a t i o n s  

S t a t i s t i c  

F  Num Den 
V a l u e  V a l u e  D F DF P r  > F  

W i  L k s  ' Lambda 0.01 047659 6 . 5 8  8 6  0 .0169  
P i  L l a i  ' s  T r a c e  1.77920446 8 . 0 6  8  8 0 .0039  
H o t e l l i n g - L a w l e y  T r a c e  19.07512732 8 . 1 8  8  2.8235 0 .0627 
R o y ' s  G r e a t e s t  R o o t  13.48590176 13 .49  4  4 0.0136 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i l k s '  Lambda i s  e x a c t .  

C a n o n i c a l  D i s c r i m i n a n t  A n a l y s i s  

A d j u s t e d  A p p r o x i m a t e  S q u a r e d  
C a n o n i c a l  C a n o n i  ca  L S t a n d a r d  C a n o n i c a l  

C o r r e l a t i o n  C o r r e l a t i o n  E r r o r  C o r r e l a t i o n  

E i g e n v a l u e s  o f  I n v ( E ) * H  
= C a n R s q / ( l - C a n R s q )  

T e s t  o f  HO:  The  c a n o n i c a l  c o r r e l a t i o n s  i n  
t h e  c u r r e n t  r o w  a n d  a l l  t h a t  f o l l o w  a r e  z e r o  

L i k e  L i  hood  A p p r o x i m a t e  Num Den 

E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  R a t i o  F  V a l u e  D  F DF P R > F  
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TABLE 9.4 Continued 

Poo led  W i t h i n  C a n o n i c a l  S t r u c t u r e  

V a r i a b l e  Can1 Can2 

P E R F  -0.075459 -0.173408 
I N F O  0.227965 0.06641 8 
VERBEXP -0.022334 0.446298 
A G E  -0 -027861 -0.148606 

C l a s s  Means on C a n o n i c a l  V a r i a b l e s  

GROUP Can1 Can2 

L i n e a r  D i s c r i m i n a n t  F u n c t i o n  

- -1 - -1 - 
C o n s t a n t  = -.5 X '  C O V  X C o e f f i c i e n t  V e c t o r  = C O V  X 

j j j 

L i n e a r  D i s c r i m i n a n t  F u n c t i o n  f o r  GROUP 

V a r i a b l e  1 2 3 

C o n s t a n t  -137.81 247 -71.28575 -71.24170 
P E R F  1 -92420  0.58704 1.36552 
INFO -1 7.56221 -8.69921 -10.58700 
VERBEXP 5.54585 4.11679 2.97278 
A G E  0.98723 5.01 749 2.91135 

C l a s s i f i c a t i o n  Summary f o r  C a l i b r a t i o n  Data:  SASUSER.SS-DISC 
R e s u b s t i t u t i o n  Summary u s i n g  L i n e a r  D i s c r i m i n a n t  F u n c t i o n  

G e n e r a l i z e d  Squared D i s t a n c e  F u n c t i o n  

2 -  - -1 - 
D ( X I  = ( X - X  I' C O V  ( X - X  

j j j 

P o s t e r i o r  P r o b a b i l i t y  o f  Membership i n  Each GROUP 

2 2 
P r ( j l X )  = exp( - .5  D ( X I )  / SUM exp( - .5  D ( X I )  

j k k 
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T.\RLE 9.4 Continued 

Number o f  O b s e r v a t i o n s  a n d  P e r c e n t  C l a s s i f i e d  i n t o  GROUP 

F r o m  GROUP 1 2 3 T o t a  1  

T o t a  1 3 3 3 9 
33.33 33.33 33.33 100.00 

P r i o r s  0.33333 0.33333 0.33333 

E r r o r  C o u n t  E s t i m a t e s  f o r  GROUP 

1 2 3 T o t a l  

R a t e  0.0000 0.0000 0.0000 0.0000 
P r  i o r s  0.3333 0.3333 0.3333 

9.5 Types of Discriminant Analyses 

The three types ef discriminant analyses-standard (direct), sequentia!, and statistical (stepwise)- 
are analogous to the three types of multiple regressions discussed in Section 5.5. Criteria for choos- 
ing among the three strategies are the same as those discussed in Section 5.5.4 for multiple 
regression. 

9.5.1 Direct Discriminant Analysis 

In standard (direct) DISCRIM, like standard multiple regression, all predictors enter the equations at 
once and each predictor is assigned only the unique association it has with groups. Variance shared 
among predictors contributes to the total relationship, but not to any one predictor. 

The overall test of relationship between predictors and groups in direct DISCRIM is the same 
as the test of main effect in MANOVA where all discriminant functions are combined and DVs are 
considered simultaneously. Direct DISCRIM is the model demonstrated in Section 9.4.1. All the 
computer programs described later in Table 9.18 perform direct DISCRIM: the use of some of them 
for that purpose is shown in Tables 9.3 and 9.4. 
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9.5.2 Sequential Discriminant Analysis 

Sequential (or, as some prefer to call i t ,  hierarchical) DlSCRIM is used to evaluate contributions to 
prediction of group membership by predictors as they enter the equations in an order determined by 
the researcher. The researcher assesses improvement in classification when a new predictor is added 
to a set of prior predictors. Does classification of cases into groups improve reliably when the new 
predictor or predictors are added (cf. Section 9.6.7.3)? 

If predictors with early entry are viewed as covariates and an added predictor is viewed as a 
DV, DISCRIM is used for analysis of covariance. Indeed, sequential DISCRIM can be used to per- 
form stepdown analysis following MANOVA (cf. Section 7.5.3.2) because stepdown analysis is a 
sequence of ANCOVAs. 

Sequential DISCRIM also is useful when a reduced set of predictors is desired and there is 
some basis for establishing a priority order among them. If, for example, some predictors are easy or 
inexpensive to obtain and they are given early entry, a useful, cost-effective set of predictors may be 
found through the seqJential procedure. 

Neither SPSS DISCRIMINANT nor SAS DISC RIM^ provides convenient methods for enter- 
ing predictors in priority order. hstead, the seqwnce is set up by rdnning a separate discriminant 
analysis for each step, the first with the highest priority variable, the second with the two highest pri- 
ority variabies entering simuitaneously, and so on. One or more variables may be added at each step. 
However, the test for the significance of improvement in prediction is tedious in the absence of very 
large samples (Section 9.6.7.3). If you have only two groups and sample sizes are approximately 
equal, you might consider performing sequential discriminant analysis through SPSS REGRES- 
SION or interactive SAS REGRESS where the DV is a dichotomous variable representing group 
membership, with groups coded 0 and 1. If classification is desired. preliminary multiple regression 
analysis with fully flexible entry of predictors could be followed by discriminant analysis to provide 
classification. 

If  yo^: have more than two groups or yoiir groiip sizes are very unequal, sequentiai logistic 
regression is the procediire of choice, and, as seen in Chapter iu, most programs classify cases. 

9.5.3 Stepwrise (Statistical) Ciscrimfnant Analysis 

When the researcher has no reasons for assigning some predictors higher priority than others, statis- 
tical criteria can be used to determine order of entry in preliminary research. That is, if a researcher 
wants a reduced set of predictors but has no preferences among them, stepwise DISCRIM can be 
used to produce the reduced set. Entry of predictors is determined by user-specified statistical crite- 
ria, of which several are available as discussed in Section 9.6.1.2. 

Stepwise DISCRIM has the same controversial aspects as stepwise procedures in general (see 
Section 5.5.3). Order of entry may be dependent on trivial differences in relationships among pre- 
dictors in the sample that do not reflect population differences. However, this bias is reduced if cross- 
validation is used (cf. Sections 9.6.7.1 and 9.7.2). Costanza and Afifi (1979) recommend a 
probability to enter criterion more liberal than .05. They suggest a choice in the range o f .  15 to .20 to 
ensure entry of important variables. 

'Seq~lential discr~minant analysis is available in BMDP4M (shown i n  Tabachnick and Fideli. 19x9) and. interactrvely, through 
SYSTAT DISCRIM (shown in Tabachnick and Fidell. 2007). 



I n  SAS. stepwise d~\criniin~lnt analysis is provided through a wparatr program-STEPDISC. 
Three entry methods :ire available rcf. Section 9.6.1.7). as well as additional statistical criteria f o r  
two of them. SPSS DISCRIMINANT has several methods for statistical discriminant analysis, suni- 
marized in Table 9.18. 

9.6 Some Important Issues 

9.6.1 Statistical Inference 

I Section 9.6.1.1 contains a discussion of criteria for evaluating the overall statistical significance of a 

i set of predictors for predicting group membership. Section 9.6.1.2 summarizes methods for direct- 
ing the progression of stepwise discriminant analysis and statistical criteria for entry of predictors. 

9.6.1.1 Criteria for Overall Statistical Significance 

Criteria for evaluating overall statistical signiticance in DISCRIM are the same as those in 
MANOVA. The choice between Wilks' lambda, Roy's gcr, Hotelling's trace, and Pillai's criterion is 
based on the same considerations as discussed in Section 7.5.2. Different statistics are available in 
different programs, as noted in Section 9.8. 

Two additional statistical criteria, Mahalanobis' D~ and Rao's V,  are especially relevant to 
stepwise DISCRIM. Mahalanobis' D2 is based on distance between pairs of group centroids which 
is then generalizable to distances over multiple pairs of groups. Rao's V is another generalized dis- 
tance measure that attains its largest value when there is greatest overall separation among groups. 

These two criteria are available both to direct the progression of stepwise discriminant analy- 
sis and to evaluate the reliability of a set of predictors to predict group membership. Like Wilks' 
lambda. Mahalanobis' D2 and Rao's V are based on all discriminant functions rather than one. Note 
that lambda. D'. and V are descriptive statistics; they are not, themselves, inferential statistics, 
although inferential statistics are applied to them. 

! 9.6.1.2 Stepping ?vfetIzods 
I 

Related to criteria for statistical inference is the choice among methods to direct the progression of 
entry of predictors in stepwise discriminant analysis. Different methods of progression maximize 
group differences along different statistical criteria. 

Selection of stepping method depends on the availability of programs and choice of statistical 
criterion. If, for example, the statistical criterion is Wilks' lambda, it is beneficial to choose the step- 
ping method that minimizes A. (In SPSS DISCRIMINANT, A is the least expensive method, and is 
recommended in the absence of contrary reasons.) Or, if the statistical criterion is "change in Rao's 
V," the obvious choice of stepping method is RAO. 

Statistical criteria also can be used to modify stepping. For example, the user can modify min- 
imum F for a predictor to enter, minimum F to avoid removal, and so on. SAS allows forward, back- 
ward, and "stepwise" stepping (cf. Section 5.5.3). Either partial R~ or significance level is chosen for 
variables or enter (forward stepping) or stay (backward stepping) in the model. Tolerance (the pro- 
portion o t  variance for a potential predictor that is not already accounted for by predictors in the 
equation) can be modified in SAS and SPSS stepwise programs. Comparison of prograrns with 
respect to these stepwise statistical criteria is provided in Table 9.18. 
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9.6.2 Number of Discriminant Functions 

A number ot d ~ \ c r ~ m ~ n a n t  funct~ons are extracted In d~scr~ri i~nant  dnaly\i\ w ~ t h  more than tmo 
group\. The maximum number of functions is the lesser of e~ther  degrees of freedom for groups or. 
as in canonical correlation, pr~ncipal components analy$is and factor analy5is. equal to the number 
of predictors. As in these other anaiyses, some functions often carry Ao'&orthwhile information. It is 
frequently the case that the first one or two discriminant f~~nctions account for the lion's share of dis- 
criminating power, with no additional information fc)rthcoming from the remaining functions. 

Many of the programs evaluate successive discriminant functions. For the SPSS DISCRIMI- 
NANT example of   able 9.3, note that eigenvalues, percents of variance, and canonical correlations 
are given for each discriminant function for the small-sample data of Table 9.1. With both functions 
included, the x2 (8 )  of 20.5 14 indicates a relationship between groups and predictors that is highly 
unlikely to be due to chance. With the first discriminant function removed, there IS still a reliable 
relationship between groups and predictors as indicated by the X2(3)  = 8.484. p = .037. This find- 
ing indicates that the second discriminant fi~nction is also reliable. 

How much between-group variability is accounted for by each discriminant function? The % 
o f V a r i a n c e V a 1 u e s (in the E i g e n v a 1 u e s table) associated with discriminant functions 
indicate the relative proportion of between-group variability accounted for by each function. In the 
small-sample example of Table 9.3,70.70% of the between-group variability ib accounted for by the 
first discriminant function and 29.30% by the second. These values appear as P r o po r t i on s in 
the eigenvalue section of SAS DISCRIM output. 

SPSS DISCRIMINANT offers the most tlexibility with regard to number of discriminant func- 
tions (through syntax mode only). The user can choose the number of functions, the critical value for 
proportion of variance accounted for (with succeeding discriminant functions dropped once that 
value is exceeded), or the significance level of additional functions. SAS DISCRIM and CANDISC 
(but not STEPDISC) provide tests of successive functions. 

9.6.3 Interpreting Discriminant Functions 

If a primary goal cf analysis is to discover and interpret the combinations of predictors (the. discrim- 
inant functions) that separate groups in various ways, then the next two sections are relevant. Section 
9.6.3.1 reveals how groups are spaced out along the various discriminant functions. Section 9.6.3.2 
discusses correlations between predictors and the discriminant functions. 

9.6.3.1 Discriminant Function Plots 

Groups are spaced along the various discriminant functions according to their centroids. Recall from 
Section 9.4.1 that centroids are mean discriminant scores for each group on a function. Discriminant 
functions form axes and the centroids of the groups are plotted along the axes. If there is a big dif- 
ference between the centroid of one group and the centroid of another along a discriminant function 
axis, the discriminant function separates the two groups. If there is not a big distance, the discrimi- 
nant function does not separate the two groups. Many groups can be plotted along a single axis. 

An example of a discriminant function plot is illustrated in Figure 9.2 for the data of Sec- 
tion 9.4. Centroids are obtained frorn the section called Functions at Group Centroids and Class 



Discr~lninant ,Anal> sis 3'15, 

First discriminant function 

FIGURE 9.2 Centroids of three learning disability 
groups on the two discriminant functions derived 

from sample data of Table 9.1. 

Means on Canonical Variables means in Table 9.3. They are also available in SAS DISCRIM with 
a request for c a no n i c a 1 information (Table 9.4). 

The plot emphasizes the utility of both discriminant functions in separating the three groups. 
On the first discriminant function ( X  axis), the MEMORY group is some distance from the other two 
groups, but the COMMUNICATION and PERCEPTION groups are close together. On the second 
function ( Y  axis) the COMMUNICATION group is far from the MEMORY and PERCEPTION 
groups. It takes both discriminant functions, then, to separate the three groups from each other. 

If there are four or more groups and, therefore, more than two statistically significant discrim- 
inant functions, then pairwise plots of axes are used. One discriminant function is the X axis and 
another is the Y axis. Each group has a centroid for each discriminant function; paired centroids are 
plotted with respect to their values on the X and Y axes. Because centroids are only plotted pairwise, 
three significant discriminant functions require three plots (function 1 vs. function 2; function 1 vs. 
function 3; and function 2 vs. function 3), and so on. 

SPSS DISCRIMINANT provides a plot of group centroids for the first pair of discriminant 
functions. Cases as well as means are plotted, making separations among groups harder to see than 
with simpler plots, but facilitating evaluation of classification. 

Plots of centroids on additional pairs of statistically significant discriminant functions have to 
be prepared by hand, or discriminant scores can be passed to a "plotting" program such as SPSS 
PLOT. SAS passes the discriminant scores to plotting programs. 

With factorial designs (Section 9.6.6). separate sets of plots are required for each significant 
main effect and interaction. Main effect plots have the same format as Figure 9.2, with one centroid 
per group per margin. Interaction plots have as many centroids as cells in  the design. 
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Plots of centroids tell you how groups are separated by a discriminant function. but they do not reveal 
the meaning of the discriminant function. A variety of matrices exist to reveal the nature of the com- 
bination of predictors that separate the groups. Matrices of standardized discriminant (canonical) 
functions are basically regression weights, the ~ e i g h t s ' ~ o u  would apply to the score of each case to 
find a standardized discriminant score for that case (Equation 9.2). These suffer from the same diffi- 
culties in interpretation as standardized regression coefficients, discussed in Section 5.6.1. 

The structure matrix (a.k.a. loading matrix) contains correlations between predictors and dis- 
criminant functions: The meaning of the function is inferred by s researcher from this pattern of cor- 
relations (loadings). Correlations between predictors and functions are called loadings in 
discriminant function analysis, canonical correlation analysis (Chapter 12), and factor analysis (see 
Chapter 13). If predictors X,, X 2 ,  and X 3  load (correlate) highly with the function but predictors X, 
and X j  do not, the researcher attempts to understand what X I ,  X,, and X3 have in common with each 
other that is different from X, and X j  ; the meaning of the fuiction is determined by this under- 
standing. (Read Section 13.6.5 for further insights into the art of interpreting loadings.) 

Mathematically, the matrix of loadings is the pooled within-group correlation matrix multi- 
plied by the matrix of standardized discriminant function coefficients. 

The structure matrix of correlations between predictors and discriminant functions, A, is 
found by multiplying the matrix of within-group correlations among predictors, R,, , by 
a matrix of standardized discriminant function coefficients. D (standardized using 
pooled within-group standard deviations). 

For the example of Table 9.1, tile Striicture Matrix appears as the middle matrix in Table 5.3. 
Structure matrices are read in columns; the coiumn is the discriminant Function (1 or 2), the rows are 
predictors (information to age), and the entries ir, the co!umr, are c~rrelations. For this cxample, the 
first discriminant function correlates most highly with Information (WISC Information scores, 
r = .228), while the second function correlates most highly with Verbal expression (ITPA Verbal 
Expression scale. r = .446). The structure matrix is available in SAS DISCRIM with the c a n o n  i - 
c a l  instructionandislabeled P o o l e d  W i  t h i n  C a n o n i c a l  St ructureasseeninTable9.4 .  

These findings are related to discriminant function plots (e.g., Figure 9.2) for full interpreta- 
tion. The first discriminant function is largely a measure of INFOrmation, and it separates the group 
with MEMORY problems from the groups with PERCEPTION and COMMUNICATION problems. 
The second discriminant function is largely a measure of VERBEXP (verbal expression) and it sep- 
arates the group with COMMUNICATION problems from the groups with PERCEPTION and 
MEMORY problems. Interpretation in this example is reasonably straightforward because only one 
predictor is highly correlated with each discriminant function; interpretation is much more interest- 
ing when several predictors correlate with a discriminant function. 

Consensus i s  lacking regarding how high correlations in a structure matrix must be to be inter- 
preted. By convention, correlations in excess of .33 (10% of variance) may be considered eligible 
while lower ones are not. Guidelines suggested by Comrey and Lee (1992) are included in Section 
13.6.5. However, the size of loadings depends both on the value of the correlation in the population 



and on the homogeneity of scores In the sample taken from it .  If the sample 14 ~in~14iially hnmngeneou\ 
w~th  respect to a predictor, the loadings for the pred~ctor are lower and it  may be wi4e to lower the cs1- 
terion for determining whether or not to interpret the predictor as part of a discriminant function. 

Caution is always necessary in interpreting loadings, however, because they are full, not par- 
tial or semipartial, correlations. The loading could be substantially lower if correlations with other - 
predictors were partialed out. For a review of this material, read Section 5.6.1. Section 9.6.4 deals 
with methods for interpreting predictors after variance associated with other predictors is removed, 
if that is desired. 

In some cases, rotation of the structure matrix may facilitate interpretation, as discussed in 
Chapter 13. SPSS DISCRIMINANT and MANOVA allow rotation of discriminant functions. But 
rotation of discriminant structure matrices is considered problematic and not recommended for the 
novice. 

I 9.6.4 Evaluating Predictor Variables 

Another tool for evaiuating contribution of predictors to separation of groups is available through 
SAS and SPSS GLM in which means for predictors for each group are contrasted with means for 
other groups pooled. For instance, if there are three groups, means on predictors for group 1 are con- 
trasted with pooled means from groups 2 and 3; then means for group 2 are contrasted with pooled 
means from groups I and 3; and finally means for group 3 are contrasted with pooled means from 
groups 1 and 2. This procedure is used to determine which predictors are important for isolating one 
group from the rest. 

Twelve GLM runs are required in the example of Table 9.1 : four for each of the three contrasts. 
Within each of the three contrasts, which isolates the means from each group and contrasts them with 
the means for the other groups, there are separate runs for each of the four predictors, in which each 
predictor is adjusted for the remaining predictors. In these runs, the predictor of interest is labeled the 
DV and remaining predictors are labeled CVs. The result is a series of tests of the significance of 
each predictor after adjusting for all other predictors in separating out each group from the remain- 
ing groups. 

In ~ r d e r  to avoid overinterpretation, it is probably best to consider only predictors with F ratios 
"significant" after adjusting error for the number of predictors in the set. The adjustment is made on 
t'ne basis of Equatiorl7.12 of Section 7.5.3.1. This procedure is demonstrated in the. complete exam- 
ple of Section 9.7. Even with this adjustment, there is danger of inflation of Type I error rate because 
multiple nonorthogonal contrasts are performed. If there are numerous groups, further adjustment 
might be considered such as multiplication of critical F by k - 1, where k = number of groups. Or 
interpretation can proceed very cautiously, de-emphasizing statistical justification. 

The procedures detailed in this section are most useful when the number of groups is small and 
the separations among groups are fairly uniform on the discriminant function plot for the first two 
functions. With numerous groups, some closely clustered, other kinds of contrasts might be sug- 
gested by the discriminant function plot (e.g., groups 1 and 2 might be pooled and contrasted with 
pooled groups 3 ,4 ,  and 5). Or, with a very large number of groups, the procedures of Section 9.6.3 
may suffice. 

if there is logical basis for assigning priorities to predictors, a sequential rather than standard 
approach to contrasts can be used. Instead of evaluating each predictor after adjustment for ail other 
predictors, it is evaluated after adjustment by only higher priority predictors. This strategy is 
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accomplished through a series of SPSS MANOS.4 runs, in  which Roy-Bargmann stepdown F ' s  ( c f .  
Chapter 7) are evaluated for each contrast. 

All the procedures for evaluation of DVs in MANOVA apply to evaluation of predictor vari- 
ables in DISCRIM. Interpretation of stepdown analysis, univariate F, pooled within-group correla- 
tions among predictors, or standardized discriminant function coefficients is as appropriate (or 
inappropriate) for DISCRIM as for MANOVA. These procedures are summarized in Section 7.5.3. 

9.6.5 Effect Size 

Three types of effect sizes are of interest in discriminant analysis: those that describe variance asso- 
ciated with the entire analysis and two types that describe variance associated with individual pre- 
dictors. The v12 (or partial r12) that can be found from Wilks' lambda or from associated F and df using 
Smithson's (2003) procedure provides the effect size for the entire analysis. Smithson's procedure 
also can be used to find the confidence intervals around these F values, as seen in complete examples 
of Chapters 6, 7, and 8. SAS DISCRlM provides the required values of F and df in the section 
! a b e ! e d M u ! t i v a r i a t e S t a t i s t i e s a i i d  F A p p r o x f m a t i o i i s .  

SPSS DISCRIMINANT uses 2 rather than F to evaluate statistical significance but provides 
A for calculating effect size. 

Calculating partial 2;12 from A in Table 9.3, 

partial q2 = 1 - = 1 - .O 1 ' I 3  = 1 - .215 = .78 

Steiger and Fouladi's ( 1  992) software can be used to provide confidence intervals around the mea- 
sure. The Confidence Interval is chosen as the Option and Maximize Accuracy is cho- 
sen as the Algorithm. Using the R~ value of .78, Figure 9.321 shows setup values of 9 observations, 
6 variables (including 4 predictors 2 variables for the group df, considered the critenon) and proba- 
bility value of .95. As seen in Figure 9.3bl the R2 program provides 95% confidence limits from .OO 
to .88. 

Separate effect sizes for each discriminant function are available as squared canonical correla- 
tions. SPSS DISCRIMINANT shows canonical correlations in the output section labeled Eigenval- 
ues (see Table 9.3). Thus, the squared canonical correlations for the two functions are, respectively, 
(.96512 = .93 and (.921)' = 3.5. For SAS, the squared values are given directly in the first section of 
output labeled C a n o n i  ca  1  D i  s c r i m i  n a n t  Ana l y s i  s. Steiger's program may also be 
used to find confidence limits for these values. 

The structure matrix provides loadings in the form of correlations of each predictor with each 
discriminant function. These correlations, when squared, are effect sizes, indicating the proportion 
of variance shared between each predictor and each function. The structure matrix in SAS DISCRIM 
islabeled P o o l e d  W i  t h i n  C a n o n i c a l  Structure.Forthesmal1-sampleexamplethen, 
the effect size (r ' )  for INFO at discriminant function 1 is (.228)2 = .05; 5% of variance is shared 
between the information subtest and the first discriminant function. 

Another form of effect size is the 112 that can be found when contrasts are run between each 
group and the remaining groups, with each predictor adjusted for all other predictors (Section 9.6.4). 
The contrasts conveniently are provided with F values and associated df, so that confidence limits 
also are available through Smithson's (2003) procedure. This is demonstrated in Section 9.7. 



FIGiiRE 9.3 Confidence limits around g2 using 
Steiger and Fouladi's (1992) software: 

(a) setup and (b) results. 

9.6.6 Design Complexity: Factorial Designs 

The notion of placing cases into groups is easily extended to situations where groups are formed by 
differences on more than one dimension. An illustration of factorial arrangement of groups is the com- 
plete example of Section 7.6.2, where women are classified by femininity (high or low) and also by 
masculinity (high or low) on the basis of scores on the Bern Sex Role Inventory (BSRI). Dimensions 
of femininity and masculinity (each with two levels) are factorially combined to form four groups: 
high-high, high-low, low-high, low-low. Unless you want to classify cases, factorial designs are best 
analyzed through MANOVA. If classification is your goal, however, some issues require attention. 

A two-stage analysis is often best. First, questions about the statistical signiticarlce of separa- 
tion of groups by predictors are answered through MANOVA. Second, if class~fication is desired 
after MANOVA, it is found through DISCRIM programs. 
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Formation of groups for DISCRIM depends on the outcome of MANOVA. If the interaction is I 

statistically significant, groups are formed for the cells of the design. That is, in a two-by-two design. 
four groups are formed and used as the grouping variable in DISCRIM. Note that main effects as 
well as interactions influence group means (cell means) in this procedure, but for most purposes clas- 
sification of cases into cells seems reasonable. 

If an interaction is not statistically significant, classification is based on significant main 
effects. For example, interaction is not statistically significant in the data of Section 7.6.2, but both 
main effect of masculinity and main effect of femininity are statistically significant. One DISCRIM 
run is used to produce the classification equations for main effect of masculinity and a second run is 
,used to produce the classification equations for main effect of femininity. That is, classification of 
main effects is based on marginal groups. 

9.6.7 Use of Classification Procedures 

The basic technique for classifying cases into groups is outlined in Section 9.4.2. Results of classifi- 
cation are presented in tables such as the Classification results of SPSS (Table 9.3), or Number 
o f  S b s e r v a t i o i i s  aiid P e i - c e i i t s  C I a s s i i i e d  intoGROiiPofSAS('TBbie9.4jwhere 
actual group membership is compared to predicted group membership. From these tables, one finds 
the percent of cases correctly classified and the number and nature of errors of classification. 

But how good is the classification? When there are equal numbers of cases in every group, it is 

i 
easy to determine the percent of cases that should be correctly classified by chance alone to compare 
to the percent correctly classified by the classification procedure. If there are two equally sized 
groups, 50% of the cases should be correctly classified by chance alone (cases are randomly assigned 
into two groups and half of the assignments in each group are correct), while three equally sized 
groups should produce 33% correct classification by chance, and so forth. However, when there are 
unequal numbers of cases in the groups, computation of the percent of cases that should be correctly 
classified by chance alone is a bit more complicated. 

The easier way to find it9 is to first compute the number of cases in each group that should be 
correct by chance alone and then add across the groups to find the overall expected percent cvrrect. 
Consider an example where there are 60 cases, 10 in Group 1, 20 in Group 2, and 30 in Group 3. If 
prior probabilities are specified as.  17, .33, and .50, respectively, the programs will assign l0,20. and 
30 cases to the groups. If 10 cases are assigned at random to Group 1, .17 of them (or 1.7) should be 
correct by chance alone. If 20 cases are randomly assigned to Group 2: .33 (or 6.6) of them should I 
be correct by chance alone, and if 30 cases are assigned to Group 3, .50 of them (or 15) should be I 

I 
correct by chance alone. If 20 cases are randomly assigned to Group 2, .33 (or 6.6) of them should 
be correct by chance alone, and if 30 cases are assigned to Group 3, .50 of them (or 15) should be 
correct by chance alone. Adding together 1.7,6.6, and 15 gives 23.3 cases correct by chance alone, 
39% of the total. The percent correct using classification equations has to be substantially larger than 
the percent expected correct by chance alone if the equations are to be useful. 1 

Some of the computer programs offer sophisticated additional features that are helpful in many I 
classification situations. I 

I 
?he hdrder way ro find I r  1s to expand the multlnom~al d ~ s t r ~ b u t ~ o n ,  a procedure that 1s more technically colrect hut produces 
ldent~cal results to those of the j~mpler  rnethocl pre\ented here 

i 
I 



9.6.7.1 Cross- Validation and New Cases 

Classification is based on classification coefficients derived from samples and they usually work too 
well for the sample from which they were derived. Because the coefficients are only estimates of 
population classification coefficients, it is often most desirable to know how well the coefficients 
generalize to a new sample of cases. Testing the utility of coefficients on a new sample is called 
cross-validation. ,One form of cross-validation involves dividing a single large sample randomly in 
two parts, deriving classification functions on one part, and testing them on the other. A second form 
of cross-validation involves deriving classifi cation functions from a sample measured at one time, 
and testing them on a sample measured at a later time. In either case, cross-validation techniques are 
especially well developed in the SAS DISCRIM and SPSS DISCRIMINANT programs. 

For a large sample randomly divided into parts, you simply omit information about actual 
group membership for some cases (hide it in the program) as shown in Section 9.7.2. SPSS DIS- 
CRIMINANT does not include these cases in the derivation of classification functions, but does 
include them in the classification phase. In SAS DISCRIM, the withheld cases are put in a separate 
data file. The accuracy with which the classification functions predict group membership for cases 
i:: this data 5!e is then examined. This "calibration" procedure is demonstrated in Section 9.7.2. 
(Note that SAS refers to this as calibration, not cross-validation. The latter term is used to label what 
other programs caii jackknifing; cf. Section 9.6.7.2.) 

When the new cases are measured at a later time classifying them is somewhat more compli- 
cated unless you use SAS DISCRIM (in the same way that you would for cross-validationlcalibra- 
tion). This is because other computer programs for DISCRIM do not allow classification of new 
cases without repeated entry of the original cases to derive the classification functions. You "hide" 
the new cases, derive the classification functions from the old cases, and test classification on all 
cases. Or, you can input the classification coefficients along with raw data for the new cases and run 
the data only through the classification phase. Or, it may be easiest to write your own program based 
on the classification coefficients to classify cases as shown in Section 9.4.2. 

9.6.7.2 Jackknued Classification 

Bias enters classificaiion if iXe coeKcien:s used :G assign a case to a group z e  derived, in part, from the 
case. In jackknifed classification, the data from the case are left out when the coefficients used to assign 
it to a group are computed. Each case has a set of coefficients that are developed from all other cases. 
Jackknifed classification gives a more realistic estimate of the ability of predictors to separate groups. 

SAS DISCRIM and SPSS DISCRIMINANT provide for jackknifed classification (SAS calls 
it c r o s s v a 1 i d a t e; SPSS calls it Leave-one-out classification). When the procedure is used 
with all predictors forced into the equation (i.e., direct or sequential with all predictors included), 
bias in classification is eliminated. When it is used with stepwise entry of predictors (where they may 
not all enter), bias is reduced. An application of jackknifed classification is shown in Section 9.7. 

9.5.7.3 Evaluating Improvement in Classification 

In sequential DISCRIM, it is useful to determine if classification improves as a new set of predictors 
is added to the analysis. McNemar's repeated-measures chi square provides a sirnple, straightforward 
(but tedious) test of improvement. Cases are tabulated one by one, by hand, as to whether they are cor- 
rectly or incorrectly classified before the step and after the step where the predictorb are added. 
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Early Step Classification 

Cases that have the same result at both steps (either correctly classified-cell A--or incorrectly clas- 
sified--cell D) are ignored because they do not change. Therefore, X2 for change is 

Later Step Correct 

Classification I,lcorrect 

Ordinarily, the researcher is only interested in improvement in x2, that is, in situations where B > C 
because more cases are correctly classified after addition of predictors. When B > C and X2 is greater 
than 3.84 (critical value of X 2  with 1 df at a = .05), the added predictors reliably improve classification. 

With very !-?rge samp!es hmd tabu!atier, ef cases Is xot :eas~nab!e. An a!:er;;a:ive, h i t  possi- 
bly less desirable, procedure is to test the significance of the difference between two lambdas, as sug- 
gested by Frane (1977). Wilks' lambda from the step with the larger number of predictors, A2, is 
divided by lambda from the step with fewer predictors, A,, to produce AD 

Wilks' lambda for testing the significance of the difference between two lambdas (AD) 
is calculated by dividing the smaller lambda (A2) by the larger lambda (A,). 

(A ) 

C 

AD is evaluated with three degree of freedom parameters: p, the number of predictors after 
add~t~on of predictors; dfbg, the number of groups minus 1; and the dfwg at the step with the added 
predictors. Approximate F is found according to procedures in Section 9.4.1. 

For example. suppose the small-sample datalo were analyzed with only AGE as a predictor 
(not shown), yielding Wilks' lambda of .882. Using this, one can test whether addition of INFO, 
PERF, and VERBEXP for the full analysis (A, = .0 10) reliably improves classification of cases over 
that achieved with only AGE in the equation (li, = .882). 

I 
(Dl 

where 

' q h i s  procedure 15 Inappropriate for such a small cample, but is shown here for illustrative purposes. 

i 



Finding approxin~ats F from Section 9.4. I ,  

s =  min(p. k - I ) =  2 

y = .0113"~ = .I063 

df, = (4) (2) = 8 

Approximate F (8, 6) = ( ng3) (i) = 6.40 

Because critical F(8, 6) is 4.15 at a = .05, there is statistically significant improvement in classifi- 
cation into the three groups when INFO, PERF, and VERBEXP scores are added to AGE scores. 

9.7 Complete Example of Discriminant Analysis 

The example of direct discriminant analysis in this section explores how role-dissatisfied house- 
wives, role-satisfied housewives, and employed women differ in attitudes. The sample of 465 women 
is described in Appendix B, Section B.1. The grouping variable is role-dissatisfied housewives 
(UNHOUSE), role-satisfied housewives (HAPHOUSE), and working women (WORKING). Data 
are in DISCRIM.". 

Predictors are internal vs. external locus of control (CONTROL), satisfaction with current 
marital statua (ATTMAR), attitude toward women's role (ATTROLE), and attitude toward house- 
work (ATTHOUSE). Scores are scaled so that iow vaiues represent more positive or "desirable" atti- 
tudes. A fifth attitudinal variable, attitude toward pald work, was dropped from analysis because data 
were available only for women who had been employed within the past five years and use of this pre- 
dictor would have involved nonrandom missing values (cf. Chapter 4). The example of DISCRIM, 
then, involves prediction of group membership from the four attitudinal variables. 

The direct discriminant analysis allows us to evaluate the distinctions among the three groups 
on the basis of attitudes. We explore the dimensions on which the groups differ, the predictors con- 
tributing to differences among groups on these dimensions, and the degree to which we can accu- 
rately classify members into their own groups. We also evaluate efficiency of classification with a 
cross-validation sample. 

9.7.1 Evaluation of Assumptions 

The data are first evaluated with respect to practical limitations of DISCRIM. 

9.7.1.1 Unequal Sample Sizes and Missing Data 

In  a screening run through SAS Interactive Data Analysis (cf. Section 4.7.3. I ) ,  seven cases had miss- 
ing values among the four attitudinal predictors. Missing data were scattered over predictors and 
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groups in apparently random fashion, so that deletion of the cases was deerned appropriate.' ' ?'he 
full data set includes 355 cases once cases with missing values are deleted. 

During classification, unequal sample sizes are used to modify the probabilities with which 
cases are classified into groups. Because the sample is randomly drawn from the population of inter- 
est, sample sizes in groups are believed to represent some real process in the population that should 
be reflected in classification. For example, knowledge that over half the women are employed 
implies that greater'weight should be given the WORKING group. 

9.7.1.2 Multivariate Normality 

After deletion of cases with missing data, there are still over 80 cases per group. Although SAS 
MEANS nln reveals skewness in ATTMAR, sample sizes are large enough to suggest normality of 
sampling distributions of means. Therefore there is no reason to expect distortion of results due to 
failure of multivariate normality. 

9.7.1.3 Linearity I 
Although ATTMAR is skewed, there is no expectation of curvilinearity between this and the remain- 
ing predictors. At worst, ATTMAR in conjunction with the remaining continuous, well-behaved pre- 
dictors may contribute to a mild reduction in association. 

9.7.1.4 Outliers I 
To identify univariate outliers, z-scores associated with minimum and maximum values on each of 
the four predictors are investigated through SAS MEANS for each group separately, as per Section 
4.2.2. There are some questionable values on ATTHOUSE, with a few exceptionally positive (low) 
scores. These values are about 4.5 standard deviations below their group means, making them can- 
didates for deletion or alteration. However, the cases are retained for the search for multivariate out- 
liers. 

Multivariate outliers are sought through SAS REG by subsets (groups) and a request for an 
output table containing leverage statistics, as seen In Table 9.5. Dat2 first 2re sorted by WORKSTL4T, 
which then becomes the b y  variable in the p r oc reg run. Leverage values ( H 1 are saved in a file 
labeled DISC-OUT. Table 9.5 shows a portion of the output data file for the working women 
(WORKSTAT = 1 ) .  

Outliers are identified as cases with too large a Mahalanobis D~ for their own group, evaluated 
as ;c' with degrees of freedom equal to the number of predictors. Critical ;c* with 4 df at cr = .001 is 
18.467; any case with D~ > 18.467 is an outlier. Translating this critical value to leverage (h,,) for 
the first group using the variation on Equation 4.3: 

h . .  = Mahalanobis distance 1 18.467 1 + - = ----- +-y.081 
N - 1  N 240 241 

In Table 9.5, CASESEQ 346 (H = .0941) and CASESEQ 407 (H = .0898) are identified as outliers 
in the group of WORKING women. No additional outliers were found. 

"~lternative strategies for dealing with missing data are discussed in Chapter 4. 



TABLE 9.5 Identification of 3Iultivariate Outliers (SAS SORT and KEG Syntax and Selected 
Portion of Output File from S.4S REG) 

p r o c  s o r t  d a t a  = S a s u s e r - D i s c r i m ;  
by WORKSTAT; 

run ;  

p r o c  d a t a = ~ a s u s e r  . D i s c r i m ;  
by WORKSTAT; 

mode l  C A S E S E Q =  CONTROL ATTMAR ATTROLE ATTHOUSE1 s e l e c t i o n =  

RSQUARE COLLIN; 
o u t p u t  out=SASUSER.DISC-OUT H=H; 
run ;  
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*WRI,E 9.6 Syntax and Selected Output frnm SAS DISCRIM to Check Homogeneity of Variance- 
Covariance AIatl-ices 

p r o c  d i s c r i m  d a t a = S a s u s e r . D i s c r i m  s h o r t  n o c l a s s i f y  
p o o l = t e s t  s l p o o l = . 0 0 1 ;  

c l a s s  w o r k s t a t ;  
v a r  CONTROL ATTMAR ATTROLE ATTHOUSE; 
p r i o r s  p r o ' p o r t i o n a l ;  
w h e r e  CASESEQA=346 a n d  CASESEQA=407; 

run ;  

T e s t  o f  H o m o g e n e i t y  o f  W i t h i n  C o v a r i a n c e  M a t r i c e s  

N o t a t i o n :  K = Number o f  G r o u p s  

P  = Number o f  V a r i a b l e s  

N  = T o t a l  Number o f  O b s e r v a t i o n s  - Number o f  G r o u p s  

N ( i )  = Number o f  O b s e r v a t i o n s  i n  t h e  i ' t h  G r o u p  - 1 

- - 
I PN/2 I 
I N  v 

-2 RHO I n  1 ---------------- I 
Under  t h e  n u l l  h y p o t h e s i s :  I 

1 ,  P N ( i ) / 2  I 
I, I I N ( i )  - 1  

i s  d i s t r i b u t e d  a p p r o x i m a t e l y  a s  Ch i -Square(DF1.  

C h i - s q u a r e  D F  P r  > C h i S q  

5 0 . 7 5 3 8 2 6  2 0  0 . 0 0 0 2  

S i n c e  t h e  C h i - S q u a r e  v a i u e  i s  s i g n i f i c a n t  a t  t h e  0 . 0 0 1  i e v e l ,  
t h e  w i t h i n  c o v a r i a n c e  m a t r i c e s  w i l l  b e  u s e d  i n  t h e  d i s c r i m i n a n t  
f u n c t i o n .  
R e f e r e n c e :  M o r r i s o n ,  D . F .  ( 1 9 7 6 )  M u l t i v a r i a t e  S t a t i s t i c a l  
M e t h o d s  p 2 5 2 .  



The multivariate outli?r-\ are the hame c:tses that have extrerne univar-iate \core\ o n  
ATTHOUSE. Because transformation i q  question;tble for ATTHOUSE (where rt  seems ~inredsonahlc 
to transform the predictor for only two cases) i t  is decided to delete multivariate outliers. 

Therefore, of the original 465 cases. 7 are lost due to missing values and 2 are multivariate out- 
liers, leaving a total of 456 cases for analysis. 

9.7.1.5 ~ o m o ~ e n e i t y  of Variance-Covariance Matrices 

A SAS DISCRIM run, Table 9.6, deletes the outliers in order to evaluate homogeneity of variance- 
covariance matrices. Most output has been omitted here. The instruction to produce the test of 
homogeneity of variance-covariance matrices is p o o 1 = t e s t . 

This test shows significant heterogeneity of variance-covariance matrices. The program uses 
separate matrices in the classification phase of discriminant analysis if p o o 1 = t e s t is specified 
and the test shows significant heterogeneity. 

9,7,1.6 ~Wulticollinearity and Singularity 

Because SAS DISCRIM, used for the major analysis, protects against multicollinearity through 
checks of tolerance, no formal evaluation is necessary (cf. Chapter 4). However, the SAS REG syn- 
tax of Table 9.6 that evaluates multivariate outliers also requests collinearity information, shown in 
Table 9.7. No problems with multicollinearity are noted. 

TABLE 9.7 SAS REG Output Showing Collinearity Information for All Groups Combined (Syntax 
Is in Table 9.6) 

I 
C n l l i n e a r i t y  D i a g n o s t i c s  

C o n d i t i o n  
Number  E i  g e n v a  l u e  I n d e x  

C o l l i n e a r i t y  D i a g n o s t i c s  

--------------- P r o p o r t i o n  o f  V a r i a t i o n - - - - - - - - - - - - - - -  

Number I n t e r c e p t  CONTROL ATTMAR ATTROLE ATTHOUSE 
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9.7.2 Direct Discriminant Analysis 

Direct DISCRIM is performed through SAS DISCRIM with the 4 attitudinal predictors ail forced in  
the equation. The program instructions and some of the output appear in Table 9.8. Simple statistics 
are requested to provide predictor means, helpful in interpretation. The a  n  o  v  a  and rn a n  o  v  a  
instructions request univariate statistics on group differences separately for each of the variables and. 
a multivariate test for the difference among groups. P c  o  r r requests the pooled within-groups cor- 
relation matrix, and c  r o  s  s  v  a  1  i d a  t e requests jackknifed classification. The p r i o  r s  
p r o  p o  r t i o n  a  1  instruction specifies prior probabilities for classification proportional to sam- 
ple sizes. 

When all 4 predictors are used, the F of 6.274 (with 8 and 900 df based on Wilks' lambda) is 
highly significant. That is, there is statistically significant separation of the three groups based on all 
four predictors combined, as discussed in Section 9.6.1.1. Partial r12 and associated 95% confidence 
limits are found through Smithson's (2003) NoncF2.sas procedure (as in Table 8.16), yielding 
r12 = .05 with limits from .02 to .08. 

Canonical correlations (in the section of output following multivariate analysis) for each dis- 
criminant function !.267 and .184), although smallj are relative!y equa! for the t w ~  discrimir?ant 
functions. The adjusted values are not very much different with this relatively large sample. The 
"peel dvwn" test shows that both functions significantly discriminate among the groups. That is, 
even after the first function is removed, there remains significant discrimination, P r > F = 
0 . O O  1 4. Because there are only two possible discriminant functions, this is a test of the second 
one. Steiger's R2 program (demonstrated in Section 5.6.2.4) may be used to find confidence limits 
around the S q u a r e d  C a n o n i  ca 1  C o r r e l a t i o n s  of .07 and .02. With 6 variables (four 
predictors and two variables for the 2 df for groups) and 456 observations, the limits for the first dis- 
criminant function are .03 to . l  1, and for the second function they are .OO to .06. 

The loading matrix (correlations between predictors and discriminant functions) appears in the 
section of output labeled P o o l e d  W i t h i n  C a n o n i c a l  S t r u c t u r e .  Class means on 
canonical variables are centroids on the discriminant functions for the groups, discussed in Sections 
9.4.1 and 9.6.3.1. 

A plot of the placement of the centroids for the three groups on the two discriminant functions 
(canonical variables) as axes appears in Figure 9.4. The points that are plotted are given in Table 9.9 
a s c l a s s  m e a n s  o n  c a n o n i c a l  v a r i a b l e s .  

TABLE 9.8 Syntax And Partial Output From SAS DISCRIM Analysis of Four Attitudinal Variables 

p r o c  d i s c r i m  d a t a = S a s u s e r . D i s c r i m  s i m p l e  a n o v a  manova p c o r r  can 
c r o s s v a l i d a t e  p o o l = t e s t ;  

c l a s s  w o r k s t a t ;  
v a r  CONTROL ATTMAR ATTROLE ATTHOUSE; 
p r i o r s  p r o p o r t i o n a l ;  
w h e r e  CASESEQA=346 a n d  CASESEQA=407; 

r u n ;  
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TABLE 9.8 Continued 
a -- 

WORKSTAT = 2 

V a r i a b l e  L a b e l  
S t a n d a r d  

N  Sum Mean V a r i a n c e  D e v i a t i o n  

CONTROL L o c u s - o f - c o n t r o l  136 902.00000 6.63235 1.71569 1.3098 
ATTMAR A t t i t u d e  t o w a r d  c u r r e n t  m a r i t a l  s t a t u s  136 2802 20.60294 .43.87081 6.6235 
ATTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women 136 5058 37.19118 41.71133 6.4584 
ATTHOUSE A t t i t u d e s  t o w a r d  h o u s e w o r k  136 3061 22.50735 15.081 43 3.8835 

S i m p l e  S t a t i s t i c s  

WORKSTAT = 3 

V a r i a b l e  L a b e l  
S t a n d a r d  

N Sum Mean V a r i a n c e  D e v i a t i o n  

CONTROL L o c u s - o f - c o n t r o l  81 571 .OOOOO 7.04938 1 -57253 1 -2540 
ATTMAR A t t i t u d e  t o w a r d  c u r r e n t  m a r i t a l  s t a t u s  8 1 2075 25.61728 106.03920 10.2975 
ATTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women 8 1 2889 35.66667 33.17500 5.7598 
ATTHOUSE A t t i t u d e s  t o w a r d  h o u s e w o r k  8 1 2019 24.92593 15.66944 3.9585 
---------------------------------.---------------------.---.---------------------------------- 

U n i v a r i a t e  T e s t  S t a t i s t i c s  

F S t a t i s t i c s ,  Num DF=2, Den DF=453 

V a r i a b l e  L a b e l  

T o t a  1  Poo 1 ed  Be tween  
S t a n d a r d  S t a n d a r d  S t a n d a r d  R-Squa r e  

D e v i a t i o n  D e v i a t i o n  D e v i a t i o n  R-Square / (1-RSq) F V a l u e  P r  > F 

CONTROL L o c u s - o f - c o n t r o l  1.2679 1.2625 0.1761 0.0129 0.0131 2.96 0.0530 
ATTMAR A t t i t u d e  t o w a r d  8.5287 8.3683 2.1254 0.0415 0.0433 9.81 <.0001 

c u r r e n t  m a r i t a l  
s t a t u s  

ATTROLE A t t i t u d e s  t o w a r d  6.7590 6.6115 1.7996 0.0474 0.0497 11.26 <.0001 
r o l e  o f  women 

ATTHOUSE A t t i t u d e s  t o w a r d  4.2786 4.2061 1.0184 0.0379 0.0393 8.91 0.0002 
h o u s e w o r k  



TABLE 9.8 Continued 

S t a t i s t i c  

A v e r a g e  R-Square  

U n w e i g h t e d  0 .0348993  
W e i g h t e d  b y  V a r i a n c e  0 .0426177  

M u l t i v a r i a t e  S t a t i s t i c s  a n d  F A p p r o x i m a t i o n s  

F  Num Den 
V a l u e  V a l u e  D F  D F  P r  > F 

W i  1 k s  ' Lambda 0.89715033 6 .27  8  900  <.0001 
P i l l a i ' s  T r a c e  0 .10527259  6 . 2 6  8  902  <.0001 
H o t e l l i n g - L a w l e y  T r a c e  0.11193972 6 . 2 9  8  640 .54  <.0001 
R o y ' s  G r e a t e s t  R o o t  0.07675307 8 .65  4  451 <.0001 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  Roo t  i s  a n  u p p e r  b o u n d .  
NOTE: F S t a t i s t i c  f o r  W i l k s '  Lambda i s  e x a c t .  

C a n o n i c a l  D i s c r i m i n a n t  A n a l y s i s  

A d j u s t e d  A p p r o x i m a t e  S q u a r e d  
C a n o n i c a l  C a n o n i c a l  S t a n d a r d  C a n o n i  c a  1  

C o r r e l a t i o n  C o r r e l a t i o n  E r r o r  C o r r e l a t i o n  

T e s t  o f  HO: The  c a n o n i c a l  
E i g e n v a l u e s  o f  I n v ( E ) * H  c o r r e l a t i o n s  i n  t h e  c u r r e n t  

= C ,anRsq l r ( l  -CanRsq)  r o w  a n d  a l l  t h a t  f o l l o w  a r e  z e r o  

L i  k e l i  hood A p p r o x i m a t e  Num Den 
E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  R a t i o  F V a l u e  DF D F P r > F  
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TARLE 9.8 Continued 

C a n o n i c a l  D i s c r i m i n a n t  A n a l y s i s  

P o o l e d  W i t h i n  C a n o n i c a l  S t r u c t u r e  

V a r i a b l e  L a b e l  Can1 Can2 

CONTROL L o c u s - o f - c o n t r o l  0 .281678 0 .444939 
ATTMAR A t t i t u d e  t o w a r d  

c u r r e n t  m a r i t a l  s t a t u s  0 .71  8461 0 .322992 
ATTROLE A t t i t u d e s  t o w a r d  

r o l e  o f  women -0.639249 0 .722228 
ATTHOUSE A t t i t u d e s  t o w a r d  housework  0.679447 0 .333315 

C l a s s  Means on  C a n o n i c a l  V a r i a b l e s  

W O R K S T A T  Can I Can2 

The D I S C R I M  P r o c e d u r e  
C l a s s i f i c a t i o n  Summary f o r  C a l i b r a t i o n  Data :  S A S U S E R . D I S C R I M  
R e s u b s t i t u t i o n  Summary u s i n g  Q u a d r a t i c  D i s c r i m i n a n t  F u n c t i o n  

G e n e r a l i z e d  Squared  D i s t a n c e  F u n c t i o n  

P o s t e r i o r  P r o b a b i l i t y  o f  Membersh ip i n  Each WORKSTAT 

2  2 
P r ( j ( X 1  = e x p ( - - 5  D ( X I 1  / SUM exp(- .5  D ( X ) )  

j k  k  

Number o f  O b s e r v a t i o n s  and  P e r c e n t  C l a s s i f i e d  i n t o  

From WORKSTAT 1  2  3 

T o t a  1  31 6  119  2  1  
6 9 . 3 0  26.10 4.61 

WORKSTAT 

T o t a l  

P r i o r s  0 .52412 0.29825 0.17763 
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1 T.\BLE 9.8 Continued 
I 

I E r r o r  C o u n t  E s t i m a t e s  f o r  WORKSTAT 

I 1 2 3 T o t a l  

i R a t e  0.2301 0.5662 0.8765 0.4452 
P r i o r s  0.5241 0.2982 0.1776 

I 
C l a s s i f i . c a t i o n  Summary f o r  C a l i b r a t i o n  D a t a :  SASUSER.DISCRIM 

C r o s s - v a l i d a t i o n  Summary u s i n g  Q u a d r a t i c  
D i s c r i m i n a n t  F u n c t i o n  

G e n e r a l i z e d  S q u a r e d  D i s t a n c e  F u n c t i o n  

2 - 1 
D ( X I  = (x-TI. I' c o v  < x - X  + I n  I C O V  I - 2 I n  PRIOR 

I 
j ( X I  j ( X I  j ( X I  j ( X I  j j 

P o s t e r i o r  P r o b a b i l i t y  o f  M e m b e r s h i p  
i n  E a c h  WORKSTAT 

2 2 
P r ( j l X I  = e x p ( - - 5  D ( X I )  / SUM e x p ( - . 5  D ( X I )  

j k k 

Number  o f  O b s e r v a t i o n s  a n d  P e r c e n t  
C l a s s i f i e d  i n t o  WORKSTAT 

1 From WORKSTAT 1 2 3 T o t a  1  

T o t a l  31 7 116 23 456 
69.52 25.44 5.04 100.00 

I P r i o r s  0.52412 0.29825 0.17763 

I E r r o r  C o u n t  E s t i m a t e s  f o r  WORKSTAT 

I 1 2 3 T o t a l  

R a t e  0.2510 0.6103 0.9012 0.4737 
P r i o r s  0.5241 0.2982 0.1776 



First discriminant function 
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FIGURE 9.4 Plots of three group centroids 
on two discriminant functions derived 

from four attitudinal variables. 
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Table 9.8 shows the classification functions used to classify cases into the three groups (see 
Equation 9.3) and the results of that classification, with and without jackknifing (see Section 9.6.7). In 
this case, classification is made on the basis of a modified equation in which unequal prior probabili- 
ties are used to reflect unequal group sizes by the use of p r i o r  p r opo r t i ona L in the syntax. 
Classification is based on the quadratic discriminant function to compensate for heterogeneity of vari- 
ous covariance matrices. 

A total of 55% ( 1 - E r r o r C o u n t R a t e o f 0 . 4 4 5 2 )  of cases are correctly classi- 
fied by normal procedures, and 52% by jackknifed procedures. How do these compare with random 
assignment? Prior probabilities, specified as .52 (WORKING), .30 (HAPHOUSE), and .18 
(UNHOUSE), put 237 cases ( 3 2  x 456) in the WORKING group, 137 in the HAPHOUSE group, 
and 82 in the UNHOUSE group. Of those randomly assigned to the WORKING group, 123 
(.52 X 237) should be correct, while 41.1 (.30 X 137) and 14.8 (.I8 X 82) should be correct by 
chance in the HAPHOUSE and UNHOUSE groups, respectively. Over all three groups 178.9 out of 
the 456 cases or 39% should be correct by chance alone. Both classification procedures correctly 
classify substantially more than that. 

An additional SAS DISCRIM run for cross-validation is shown in Table 9.9. SAS DISCRIM 
has no direct procedure of forming and using a cross-validation sample. Instead, other procedures 
must be used to split the file into the "training" cases, used to develop (calibrate) the classification 
equations, and the "testing" cases, used to validate the classification. 

First a new data set is created: data SASUSER.DISCRIMX. The original data set is identified 
as set SASUSER.DISCRIM. Then outliers and cases with missing data are omitted. Finally, a variable 
is created on which to split the data set, hers called TEST1, which is set to zero, and then changed to 
1 for 25% of the cases. Then an additional two files are created on the basis of T EST 1 with set 

-0.50 -0.25 0 0.25 0.50 



TABLE 9.9 Cross-Validation of Classification of Cases b Four ;ittitudinal Yat-iables (Syntax for 
SAS DATA: Syntax and Selected Output from SAS DISCRIhl) 

d a t a  S a s u s e r . D i s c r i m x ;  
s e t  SASUSER.DISCRIM; 
i f  ATTHOUSE=2 o r  ATTHOUSE=. o r  ATTMAR=. o r  ATTROLE=. 

or .CONTROL=. t h e n  d e l e t e ;  
TEST1 =O; 
i f  u n i f o r m ( 1 1 7 3 8 )  <= . 2 5  t h e n  TEST1=1; 

r u n ;  

I d a t a  S a s u s e r . D i s c t r n g ;  
s e t  S a s u s e r . D i s c r i m x ;  
w h e r e  TESTI=O; 

d a t a  S a s u s e r - D i s c t e s t ;  
s e t  S a s u s e r . D i s c r i m x ;  
w h e r e  TEST1 = I  ; 

I r u n ;  

p r o c  d i s c r i m  d a t a = S A S U S E R . D i s c t r n g  o u t s t a t = I N F O  p o o l = t e s t ;  
c l a s s  WORKSTAT; 
v a r  CONTROL ATTMAR ATTROLE ATTHOUSE; 

i p r i o r s  p r o p o r t  i o n a  1; 
r u n ;  

I 
1 p r o c  d i s c r i m  d a t a = I N F O  t e s t d a t a = S A S U S E R . D i s c t e s t  p o o l = t e s t ;  

I c l a s s  W O R K S T A T ;  
I v a r  C O N T R O L  A T T M A R  A T T R O L E  ATTHOUSE;  
I p r i o r s  p r o p o r t i o n a l ;  

r u n ;  
I 

T h e  D I S C R I M  P r o c e d u r e  
C l a s s i f i c a t i o n  Summary f o r  C a l i b r a t i o n  

D a t a :  SASUSER.DISCTRNG 
R e s u b s t i t u t i o n  Summary u s i n g  Q u a d r a t i c  

D i s c r i m i n a n t  F u n c t i o n  

i G e n e r a l i z e d  S q u a r e d  D i s t a n c e  F u n c t i o n  

P o s t e r i o r  P r o b a b i l i t y  o f  M e m b e r s h i p  i n  Each  WORKSTAT 

2 2 
P r ( j l X )  = 

e x p ( - . 5  D ( X I )  / SUM e x p ( - - 5  D ( X I )  
j k k 



TABLE 9.9 Continued 

Number o f  O b s e r v a t i o n s  a n d  P e r c e n t  C l a s s i f i e d  i n t o  WORKSTAT 

From WORKSTAT 1 2 3 T o t a l  

1 129 
75.00 

2 49 
48.04 

3 45 
69.23 

i o t a 1  223 
65.78 

P r i o r s  0.50737 

E r r o r  C o u n t  E s t i m a t e s  f o r  WORKSTAT 

1 2 3 T o t a l  

R a t e  0.2500 0.5490 0.8308 0.4513 
P r i o r s  0.5074 0.3009 0.1917 

C l a s s i f i c a t i o n  Summary f o r  T e s t  D a t a :  SASUSER-DISCTEST 
C l a s s i f i c a t i o n  Summary u s i n g  Q u a d r a t i c  D i s c r i m i n a n t  F u n c t i o n  

G e n e r a l i z e d  S q u a r e d  D i s t a n c e  F u n c t i o n  

2 - 1 
D ( X I  = (x -X 11 cov  (x-X I + I n  I C O V  I - 2 I n  PRIOR 
j j j j j j 

P o s t e r i o r  P r o b a b i l i t y  o f  M e m b e r s h i p  i n  E a c h  WORKSTAT 

2 2 
P r ( j l X 1  = e x p ( - - 5  D ( X I 1  1 SUM e x p ( - . 5  D ( X I )  

j k k 

Number o f  O b s e r v a t i o n s  a n d  P e r c e n t  C l a s s i f i e d  i n t o  WORKSTAT 

From WORKSTAT 1 3 
L 3 -I--.. , " L a :  

T o t a l  67 
57.26 

P r i o r s  0.50737 0.30088 0.19174 

E r r o r  C o u n t  E s t i m a t e s  f o r  WORKSTAT 

1 2 3 T o t a l  

R a t e  0.4030 0.5588 0.7500 0.5164 
P r i o r s  0.5074 0.3009 0.1917 



S A S U S E R . D I S C R I M X :  a calibration (tramins) file. through data S A S U S E R . D I S C T R N G .  
and a cross-validation (test, tile through data S A S U S E R . D I S C T E S T .  Finally, a discrii~~inant 
analysis on the training file (with 339 cases) is run which saves the calibration information in a file 
called I N F 0, and then applies the calibration information to the test file (with 1 17 cases). Again, the 
quadratic classification procedure is used. 

A summary of information appropriate for publication appears in Table 9.10. In the table are 
the loadings, un'ivariate F for each predictor, and pooled within-group correlations among predictors. 

SAS DISCRIM has no contrast procedure, nor does it provide F or t ratios for predictor vari- 
ables adjusted for all other variables. However, the information is available using contrasts with sep- 
arate analyses of covariance for each variable in GLM. In each analysis of covariance, the variable of 
interest is declared the DV and the remaining variables are declared covariates. The process is demon- 
strated for the twelve contrast runs needed in Tables 9.1 1 to 9.13; means on each predictor adjusted 
for all other predictors for each group are contrasted with the pooled means for the other two groups. 
WORKING women are contrasted with the pooled means for HAPHOUSE and UNHOUSE to deter- 
mine which predictors distinguish WORKING women from others in Table 9.1 1. Table 9.12 has the 
HAPHOUSE group contrasted with the other two groups; Table 9.13 shows the UNHOUSE group 
contrasted with the other two groups. Note that df for error = N - k - c - I = 450. 

Based on familywise a = .05, ai = .0125, the predictor that most clearly distinguishes the 
WORKING group from the other two is ATTROLE after adjustment for the other predictors. The 
HAPHOUSE group differs from the other two groups on the basis of ATTMAR after adjustment for 
the remaining predictors. The UNHOUSE group does not differ from the other two when each pre- 
dictor is adjusted for all others. Separate runs without covariates would be needed if there is interest 
in which predictors separate each group from the others without adjustment for the other predictors. 
Table 9.14 summarizes the results of Smithson's procedure for finding effect sizes and 98.75% con- 
fidence limits for all twelve runs. 

A checklist fer a direct discriminant function analysis appears in Table 9.15. It is followed by 
an example of a Results section, in journd format, for the  analysis just described. 

TABLE 9.10 Results of Discriminant Analysis of Attitudinal Variables 

Correlations 
of Predictor 

Variables with 
Discriminant Pooled Within-Group Correlations 

Functions among Predictors 
Predictor Univariate 
Variable 1 2 F(2,453) ATTMAR ATTROLE A7THOUSE 

-~ 

CONTROL .28 .44 2.96 .I7 .0 i . I6  
ATTMAR .72 .32 9.8 1 -.07 .28 
ATTROLE -.64 .72 1 1.26 -.29 
ATTHOUSE .68 . -33 8.3 1 

Canonical R .27 . I8  
Eigenvalue .08 .04 



TABLE 9.1 1 Syntax and Highly Abbreviated Output of SAS GLXI Contrasting the WORKING 
Group with the Other Two Groups 

p r o c  gLm d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ; 

where CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  WORKING V S .  OTHERS' WORKSTAT - 2  1 - 1  ; 

run;  

p r o c  g lm  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ; 

where  CASESEQA=346 and CASESEQA=407; 
c o n t r a s t  WORKING V S .  OTHERS' WORKSTAT - 2  1  1  ; 

run; 

p r o c  g lm  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKS.TAT; 
mode l  ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ; 

where  CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  WORKING V S .  OTHERS' WORKSTAT - 2  1  1  ; 

run;  

p r o c  g l m  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  CONTROL = WORKSTAT ATTROLE ATTHOUSE ATTMAR ; 

where  CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  'WORKING V S .  OTHERS' WORKSTAT - 2  1  1  ; 

run;  

Dependent  V a r i a b l e :  ATTHOUSE A t t i t u d e s  t o w a r d  housework  

C o n t r a s t  
C o n t r a s t  Mean F 

D F S S Square V a l u e  P r  > F 

WORKING V S -  OTHERS ? 12 .32545468 12 .32545468 0 .83  0 .3626  

Dependen t  V a r i a b L e :  A T T R O L E  A t t i t u d e s  t o w a r d  i.o;e ..-- w u III e ii 

C o n t r a s t  
C o n t r a s t  Mean F 

D F S S Square V a l u e  P r  > F 

WORKING V S .  OTHERS 1  676 .9471257  676.9471257 16 .87  <.0001 

Dependent  V a r i a b l e :  ATTMAR A t t i t u d e  t o w a r d  c u r r e n t  m a r i t a l  
s t a t u s  

C o n t r a s t  
C o n t r a s t  Mean F 

D F S S Square V a l u e  P r  > F 

WORKING V S .  OTHERS 1  13 .99801413 13 .99801413 0.22 0 .6394  

Dependent  V a r i a b l e :  CONTROL L o c u s - o f - c o n t r o l  

C o n t r a s t  
C o n t r a s t  Mean F 

D F S S Square VaLiie P r  > F 

WORKING V S .  OTHERS 1 1.20936265 1.20936265 0.79 0 .3749  



TABLE 9.12 Syntax and Highly Abbreviated Output of SYSTAT DISCRIhI Contrasting the 
HAPHOUSE GROUP with the Other Tvvo Groups 

p r o c  g lm d a t a = S a s u s e r .  D i  s c r i m ;  
c l a s s  WORKSTAT; 
model  ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ; 

where CASESEQA=346 and CASESEQA=407; 
c o n t r a s t  'HAPHOUSE V S .  OTHERS' WORKSTAT 1  - 2  1  ; 

run; 

p r o c  g lm  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
model  ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ; 

where CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  ,'HAPHOUSE V S .  OTHERS' WORKSTAT 1  - 2  1  ; 

run; 

p r o c  g lm  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
model  ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ; 

where CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  'HAPHOUSE V S .  OTHERS' WORKSTAT 1  - 2  1  ; 

run;  

p r o c  g lm  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
model  CONTROL = WORKSTAT ATTROLE ATTHOUSE A T T M A R  ; 

where CASESEQA=346 and CASESEQA=407; 
c o n t r a s t  'HAPHOUSE V S .  OTHERS' WORKSTAT 1  - 2  1 ; 

run;  

Dependent  V a r i a b l e :  ATTHOUSE A t t i t u d e s  t o w a r d  housework  

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F V a l u e  P r  > F 

HAPHOUSE V S .  OTHERS 1  60.74947570 60.74947570 4.09 0.0436 

Dependent  V a r i a b l e :  ATTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women 

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F V a l u e  P r  > F 

HAPHOUSE V S .  O T H E R S  1  218.5434340 218.5434340 5.45 0.0201 

Dependent  V a r i a b l e :  ATTMAR A t t i t u d e  t o w a r d  c u r r e n t  
m a r i t a l  s t a t u s  

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F V a l u e  P r  > F 

HAPHOUSE V S .  OTHERS 1  615.1203307 615.1203307' 9.60 0.0020 

Dependent  V a r i a b l e :  CONTROL L o c u s - o f - c o n t r o l  

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F V a l u e  P r  > F 

H A P H O U S E  V S =  O T H E R S  1  1.18893484 1.18893484 0 . 7 8  0.3789 
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TABLE 0.13 Syntax arid Highly Abbreviated Output of SYSTAT DISCRIM Contrasting the 
UNHOUSE GROUP with the Other Two Groups 

p r o c  g l m  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  ATTHOUSE = WORKSTAT CONTROL ATTMAR ATTROLE ; 

where  CASESEQA=346 and CASESEQA=407; 
c o n t r a s t  'UNHOUSE V S .  OTHERS' WORKSTAT 1  1  - 2  ; 

run;  

p r o c  g l m  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  ATTROLE = WORKSTAT ATTHOUSE CONTROL ATTMAR ; 

where  CASESEQA=346 and CASESEQA=407; 
c o n t r a s t  'UNHOUSE VS. OTHERS' WORKSTAT 1  1  - 2  ; 

run;  

p r o c  g l m  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  ATTMAR = WORKSTAT CONTROL ATTHOUSE ATTROLE ; 

where  CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  'UNHOUSE VS. OTHERS' WORKSTAT 1  I - 2  ; 

run;  

p r o c  g l m  d a t a = S a s u s e r . D i s c r i m ;  
c l a s s  WORKSTAT; 
mode l  CONTROL = WORKSTAT ATTROLE ATTHOUSE ATTMAR ; 

where  CASESEQA=346 and  CASESEQA=407; 
c o n t r a s t  'UNHOUSE VS. OTHERS' WORKSTAT 1  1 - 2  ; 

run;  

Dependent  V a r i a b l e :  ATTHOUSE A t t i t u d e s  t o w a r d  housework  

C o n t r a s t  D F  C o n t r a s t  SS Mean Square F Va lue  P r  > F 

UNHOUSE V S .  OTHERS 1 92.00307841 92.00307841 6.20 0.0131 

Dependent  V a r i a b l e :  ATTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women 

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F Va lue  P r  > F 

UNHOUSE V S .  OTHERS 1  45.69837169 45.69837169 1.14 0.2865 

Dependent  V a r i a b l e :  ATTMAR A t t i t u d e  t o w a r d  
c u r r e n t  m a r i t a l  s t a t u s  

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F Va lue  P r  > F 

UNHOUSE V S .  OTHERS ? 354.?278220 354.1278220 5 . 5 6  0.0188 

Dependent  V a r i a b l e :  CONTROL L o c u s - o f - c o n t r o l  

C o n t r a s t  D F  C o n t r a s t  S S  Mean Square F V a l u e  P r  > F 

UNHOUSE V S .  OTHERS 1 3.27205950 3.27205950 2.13 0.1447 



TABLE 9.14 Effect Sizes and 98.75% Confidence Limits for Contrasts of Each Group with the T*o 
Other Groups Pooled for Each Predictor Adjusted for the Three Other Predictors 

Contrast 

Working women.vs. 
others 

Role-satisfied 
housewives vs. others 

Role-dissatisfied 
housewives vs. others 

Predictor (adjusted for all others) 

Atrir~rde 
rorc*ard 

lzou~e~vork 

Effect Size .OO 
98.75% CL .OO-.03 

Effect Size .O 1 
98.75% CL .OO-.04 

Effect Size .O 1 
98.75% CL .OO-.05 

Attitude 
toward role 
of vvorneiz 

Locus-($- 
control 

I 
I 

TABLE 9.15 Checklist for Direct Discriminant Analysis 

I .  Issues 

a. Unequal sample sizes and missing data 
I 
I 

b. Normality of sampling distributions 

c. Outliers 

d. Linearity 

2. Homogeneity o f  variance-covariance matrices 

f. Multicollinearity and singularity 

2. Ma:lor analysis 

a. Significance of discriminant functions. If significant: 

( I )  Variance accounted for and contidence limits for each 
significant func:ion 

(2) Plot(s) of discriminant functions 

(3) Structure matrix 

b. Effect size and confidence limits for solution 

c. Variables separating each group with effect sizes and confidence 
limits 

3. Additional analyses 

a. Group means and standard deviations for high-loading variables 

b. Pooled within-group correlations among predictor variables 

c. Classification results 

( 1 ) Jackknifed classification 

( 2 )  Cross-validation 

d. Change in Rao's V (or stepdown F) plus univariate F for predictors 
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Results 

A direct discriminant analysis was performed using four atti- 

tudinal variables as predictors of membership in three groups. 

predictors were locus of control, attitude toward marital status, 

attitude toward role of women, and attitude toward homemaking. 

Groups were working women, role-satisfied housewives, and role- 

dissatisfied housewives. 

Of the original 465 cases, seven were dropped from analysis 

because of missing data. Missing data appeared to be randomly scat- 

tered throughout groups and predictors. Two additional cases were 

identified as multivariate outliers with p < .001 and were also 

deleted. Both of the outlying cases were in the working group; 

they were women with extraordinarily favorable attitudes toward 

housework. For the remaining 456 cases (239 working women, 136 

role-satisfied housewives, and 81 role-dissatisfied housewives), 

evaluation of assumptions of linearity, normality, multicollinear- 

ity or singularity were satisfactory. Statistically sigr,ificant 

heterogeneity of variance-covariance matrices (p < .lo) was 

observed, however, so a quadratic procedure was used by SAS PROC 

DISCRIM for analysis. 

Two discriminant functions were calculated, with a combined 

F(8, 900) = 6.27, p <  .01, q2 = .05 with 95% confidence limits 

from .02 to .08. After removal of the first function, there was 

still strong association between groups and predictors, F(3, 451) 

= 5.29, p < .01. Canonical = .07 with 95% confidence limits 

from .03 to .ll for the first discriminant function and .03 with 

limits from .OO to .06 for the second discriminant function. Thus, 

the two functions accounted for about 7% and 3% of the total rela- 

tionship between predictors and groups. The two discriminant 

functions account for 69% and 31%, respectively, of the between- 



group variability. [ F  va lues ,  squared canonical c o r r e l a t i o n s ,  and 

percents  o f  var iance  a r e  from Table 9.8;  cf. S e c t i o n  9.6.2.1 As 

shown in Figure 9.4, the first discriminant function maximally 

separates role-satisfied housewives from the other two groups. 

The second discriminant function discriminates role-dissatisfied 

housewives from working women, with role satisfied housewives 

falling between these two groups. 

The structure (loading) matrix of correlations between predic- 

tors and discriminant functions, as seen in Table 9.10, suggests 

that the best predictors for distinguishing between role-satisfied 

housewives and the other two groups (first function) are attitudes 

toward current marital status, toward women's role, and toward 

homemaking. Role-satisfied housewives have more favorable atti- 

tudes toward marital status (mean = 20.60, SD = 6.62) than working 

women (mean = 23.40, SD = 8.53) or role-dissatisfied housewives 

(mean = 25.62, SD = 10.30), and more conservative attitudes toward 

women's role (mean = 37.19, SD = 5.46) than working women !mean = 

33.86, SD = 6.96) or dissatisfied housewives (mean = 35.67, SD = 

5.76). Role-satisfied women are more favorable toward homemaking 

(mean = 22.51, SD = 3.88) than either working women (mean = 23.81, 

SD = 4.55) or role-dissatisfied housewives (mean = 24.93, SD = 

3 .9 6 ) . [Group means and standard dev ia t ions  are shown in  Tab1 e 

9.8.1 Loadings less than .50 are not interpreted. 

One predictor, attitudes toward women's role, has a loading in 

excess of .50 on the second discriminant function, which separates 

role-dissatisfied housewives from working women. Role-dissatisfied 

housewives have more conservative attitudes toward the role of 

women than working women (means have already been cited). 

Twelve contrasts were performed where each group, in turn, 

was contrasted with the other two groups, pooled, to determine 
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which predictors reliably separate each group from the other two 

groups after adjustment for the other predictors. Table 9.14 shows 

effect sizes for the 12 contrasts and their 98.75% confidence lim- 

its (keeping overall confidence level at .95). When working women 

were contrasted with the pooled groups of housewives, after 

adjustment for all other predictors only attitude toward women's 

role significantly separates working women from the other two 

groups, F(1, 450) = 16.87, p < .05. 

Role-satisfied housewives differ from the other two groups on 

attitudes toward marital status, F(1, 450) = 9.66, p < .05. 

The group of role-dissatisfied housewives does not differ 

from the other two groups on any predictor after adjustment for 

all other predictors. 

Thus, the three groups of women differ most notably on their 

attitudes toward the proper role of women in society. Working women 

have the most liberal attitudes, followed by role-dissatisfied 

housewives, with rde-satisfied ho~sewi~es showing the most eonser- 

vative attitudes. Role-satisfied housewives also have more positive 

attitudes toward marriage than the combination of the other two 

groups. 

Pooled within-group correlations among the four predictors 

are shown in Table 9.8. Of the six correlations, four would show 

statistical significance at a = .O1 if tested individually. There 

is a small positive relationship between locus of control and 

attitude toward marital status, with r(454) = .17 indicating that 

women who are more satisfied with their current marital status 

are less likely to attribute control of reinforcements to exter- 

nal sources. Attitude toward homemaking is positively correlated 

with locus of control, r(454) = -16, and attitude toward marital 



status, r(454) = .28, and negatively correlated with attitude 

toward women's role, r(454) = -.29. This indicates that women 

with negative attitudes toward homemaking are likely to attribute 

control to external sources, to be dissatisfied with their cur- 

rent marital status, and to have more liberal attitudes toward 

women's role. 

With the use of a jackknifed (one case at a time deleted) 

quadratic classification procedure for the total usable sample of 

456 women, 240 (53%) were classified correctly, compared with 

178.9 (39%) who would be correctly classified by chance alone. The 

53% classification rate was achieved by classifying a dispropor- 

tionate number of cases as working women. Although 52% of the 

women actually were employed, the classification scheme, using 

sample proportions as prior probabilities, classified 70% of the 

women as employed [317/456 from Cross-validation classification 

matrix in Table 9.81. This means that the working women were more 

likely to be correctly classified (75% correct classifications) 

than either the role-satisfied housewives (39% correct classifi- 

cations) or the role-dissatisfied housewives (108 correct classi- 

f ications) . 
The stability of the classification procedure was checked by a 

cross-validation run. Approximately 25% of the cases were withheld 

from calculation of the classification functions in this run. For 

the 75% of the cases from whom the functions were derived, there 

was a 54% correct classification rate. For the cross-validation 

cases, classification was 55%. This indicates a high degree of 

consistency in the classification scheme, although there is some 

gain in correct classification for working women at the expense of 

role-satisfied housewives. 
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9.8 Comparison of Programs 

There are numerous programs for discriminant analysis in statistical packages, some general and 
some special purpose. SPSS has a general purpose discriminant analysis program that performs 
direct, sequential, or stepwise DISCRIM with classification. In addition, SPSS MANOVA performs 
DISCRIM, but not classification. SAS has two programs, with a separate one for stepwise analysis. 
SYSTAT has a singte DISCRIM program. Finally, if the only question is reliability of predictors to 
separate groups, any of the MANOVA programs discussed in Chapter 7 is appropriate. Table 9.16 
compares features of direct discriminant programs. Features for stepwise discriminant function are 
compared in Table 9.17. 

9.8.1 SPSS Package 

SPSS DISCRIMINANT, features of which are described in both Tables 9.16 and 9.17, is the basic 
program in this package for DISCRIM. The program provides direct (standard), sequential, or step- 
wise entry of predictors with numerous options, but some features are available only in syntax mode. 
Strong points include several types of plots and pienty of information about classification. Territorial 
maps are handy for classification using discriminant function scores if there are only a few cases to 
classify. In addition, a test of homogeneity of variance-covariance matrices is provided through plots 
and, should heterogeneity be found, classification may be based on separate matrices. Other useful 
features are evaluation of successive discriminant functions and default availability of structure 
matrices. 

SPSS MANOVA can also be used for DISCRIM and has some features unobtainable in any of 
the other DISCRIM programs. SPSS MANOVA is described rather fully in Table 7.33 but some 
aspects especially pertinent to DISCRIM are featured in Table 9.16. MANOVA offers a variety of 
statistical criteria for testing the significance of the set of predictors (cf. Section 7.6.1). Many matri- 
ces can be printed out, and these, along with determinants, are useful for the more sophisticated 
researcher. Successive discriminant functions (roots) are evaluated, as in SPSS DISCRIMINANT. 

SPSS MANOVA provides discriminant functions for more compiex designs such as  factorial 
arrangements with finequa! samp!e sizes. The prograrr. is !imited, however, in that it iiicludes no clas- 
sification phase. Further, only standard DISCRIM is available, with no provision for stepv~ise or 
sequential analysis other than Roy-Bargmann stepdown analysis as described in Chapter 7. 

9.8.2 SAS System 

In SAS, there are three separate programs to deal with different aspects of discriminant analysis, 
with surprisingly little overlap between the stepwise and direct programs. However, the older direct 
program, CANDISC, has been replaced by DISCRIM and is not reviewed here. Both of the SAS pro- 
grams for discriminant analysis are especially rich in output of SSCP, correlation, and covariance 
matrices. 

The most comprehensive program is DISCRIM, but it does not perform stepwise or sequential 
analysis. This program is especially handy for classifying new cases or performing cross-validation 
(Section 9.6.7.1) and in testing and dealing with violation of homogeneity of variance-covariance 
matrices. DISCRIM offers alternate inferential tests, dimension reduction analysis. and all of the 
standard matrices of discriminant results. 
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TABLE 9.16 Comparison of Programs for Direct 1)iscriminant Analysis 
- 

SAS SPSS SPSS SYSTAT 
DISCRIkI DISCRIMINANT RIIANOVA" DISCRLRII Feature 

Input 

Optional matrix input 

Missing data options 

Yes Yes 

No Yes 

Yes No 

No No 

Restrict number of discriminant 
functions NCAN Yes 

Specify cumulative % of sum of 
eigenvalues No Yes 

Specify significance level of func- 
tions to retain . No Yes 

Factorial arrangement of groups No No 

Specify ro!erance SINGULAR Yes 

Rotation of discriminant functions No Yes 

Quadratic discriminant analysis POOL=NO NO 

Optional prior probabilities Yes Yes 

ALPHA No 

Yes CONTRASTS 

No Yes 

Yes No 

No Yes 

N . A . ~  Yes 

I Specify sepwate covariance matii- 
ces for classification POOL=NO Yes 

I Threshold for classification Yes No 

N.A. No 

N. A. No 

Nonparametric classification 
method Yes No N.A. No 

Output 

Wilks' lambda with approx. F Yes 

No 

Yes 
-. 
Yes 

Yes 

No 

Yes 

No 

Generalized d~stance between 
groups (Mahalanobis D?) 

Hotelling's trace criterion 

Roy's gcr (maximum root) 

Pillai's criterion 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Tests of successive dimensions 
(roots) 

Univariate F ratios 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

NoC 

Yes 

PRINT 
MEDIUM 

Group means 

Total and within-group 
standardized group means Yes 

Yes 

No 

Yes 

No 

Yes Group sta~~dard devi:itionu 



TABLE 9.16 Continued 

S AS SPSS SPSS SYSTAT 
DISCRIM DISCRIMINANT MANOVA" DISCRINI Feature 

Output (corztinued) 

Total, within-group and between- 
group standard deviations Yes No 

PRINT 
MEDIUM 

Standardized discriminant func- 
tion (canonical) coefficients 

Unstandardized (raw) 
discriminant function (canoni- 
cal) coefficients 

Group centroids 

Pooled within-groups (residual) 
SSCP matrix 

Between-groups SSCP matrix 

Hypothesis SSCP matrix 

Total SSCP matrix 

Group SSCP matrices 

Yes Yes Yes 

PRINT 
MEDIUM 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 
. yes 

No 

No 

Pooled within-groups (residual) 
correlation matrix Yes Yes Yes PRINT LONG 

Determinant of within-group cor- 
relation matrix Yes 

Between-groups correlation 
matrix Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

No 

PRINT LONG 

PRINT LONG 

PRINT LONG 

Group correlation matrices 

Total correlation matrix 

Total covariance matrix 

Pooled within-groups (residual) 
covariance matrix Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

PRINT LONG 

No 

No 

Group covariance matrices 

Between-group covariance matrix 

Determinants of group covariance 
matrices Yes Yes 

Homogeneity of variance- 
covariance matrices Yes Yes Yes Yes 

F matrix, painvise group 
comparison No 

Yes 

Yes 

Yes 

Yes 

No 

Nod 

Yes 

Nu 

Yes 

Yes 

No 

Canonical correlations 

Adjusted cctnnnicul correlations 
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I TABLE 9.16 Continued 
I 

S AS SPSS SPSS SYSTAT 
Feature DISCRIM DISCRINIINANT MANOVA" DISCRIiCI 

Output (cuntirzued) 

Eigenvalues , Yes Yes Yes Yes 

1 SMCs for each variable R-Squared No No No 
SMC divided bytolerance for each RSQ/ 

variable ( I  -RSQ) No 

Structure (loading) matrix (pooled 
within-groups) Yes Yes 

Total structure matrix Yes No 

I Between structure matrix Yes No No No 

Individual discriminant (canonical 
variate) scores Data file Yes 

I Classification features 

No Yes 

Classification of cases Yes Yes N . A . ~  Yes 

Classification function PRINT 
coefficients Yes" Yes N.A. MEDIUM 

I Classification matrix Yes Yes N.A. Yes 

I Posterior probabilities for 
I classification Data file Yes N.A. PRINT LONG 
I 
i Mahalanobis' D~ or leverage for 

I case:; (out!iers) No Yes N.A. PRINT LONG 
I 
I Jackknifed jieave-one-ourj ciassi- 
I 
I fication matrix Yes Yes N.A. Yes 

I 
i 

Classification with a cross- 
I validation sample Yes Yes 
I 

Plots 

All groups scatterplot No Yes 
I 
i Centroid included in all groups 

i scatterplot No Yes 

N.A. Yes 

N. A. Yes 

N.A. No 

Separate scatterplots by group 

Territorial map 

Yes N.A. 

Yes N.A. 

! "Additional features reviewed in Section 7.7. 

I bSPSS MANOVA does not classify cases. 

I 
CAvailable in GLM with PRINT-LONG. See Chapter 7 for additional features. 

I be obtalned through CONTRAST procedure. 

I eLakled Linear Discriminant Funct~on 

i 'Outliers in the solution. 
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TABLE 9.17 Comparison of Programs for Stepwise and Sequential Discriminant Analysis 

Feature 

-- 

SPSS SAS SYSTAT 
DISCRIMINANT STEPDISC DISCRIbI 

Input 

Optional matrix input 

Missing data options 

Specify contrast . 
Factorial arrangement of groups 

Suppress intermediate steps 

Suppress all but summary table 

Optional methods for order of entrylremoval 

Forced entry by level-(sequential) 

Force some variables into model 

Specify tolerance 

Specify maximum number of steps 

Specify number of variables in final stepwise 
model 

Specify F to enterlremove 

Specify significance of F to enterlremove 

Specify partial R' to enterlremove 

Restrict nurnber of discriminant functions 

Specify cumulative % of sum of eigenvalues 

Specify significance level of functionc to 
retain 

Rotation of discriminant functions 

Prior probabilities optional 

Specify separate covariance matrices for 
classification 

Output 

Wilks' lambda with approximate F 

x2 
Mahalanobis' D? (between groups) 

Rao's V 

Pillai's criterion 

Tests of successive dimensions (roots) 

Univariate F ratios 

Group means 

Group standard deviations 

Total and pooled within-gmup standard 
deviations 

Yes 

Yes 

No 

No 

No 

NOSTEP 

3 
No 

Yes 

Yes 

Yes 

No 

FINEOUT 

PINIPOUT 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

SHORT 

5 

No 

INCLUDE 

SINGLJLAR 

Yes 

No 

No 

N.A." 

N.A. 

Yes 

No 

No 

No 

Yes 

No 

STEP 1 F 

Yes 

Yes 

Yes 

No 

Yes 

CONTRAST 

No 

No 

2 

Yes 

FORCE 

Yes 

No 

No 

No 

Yes 

PRINT MEDIUM 

No 

No 

No 

PRINT MEDIUM 

No 

yesb 

PRINT MEDIUM 

N o 
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I T.ABI,E 9.17 Continued 

I 
I SPSS SAS SYSTAT 

I Feature DISCRIMINANT STEPDISC DISCRIM 

Output (contirzuecl) 

Standardized, discriminant function (canonical) 
coefficients Yes 

Unstandardi~ed discriminant function 
(canonical) coefficients Yes 

Group centroids Yes 

Pooled within-group correlation matrix Yes 

Total correlation matrix No 

Total covariance matrix Yes 

Total SSCP matrix No 

Pooled within-group covariance matrix Yes 

Pooled within-group SSCP matrix No 

Group covariance matrices Yes 

Group correlation matrices No 

No PRINT MEDIUM 

No PRINT MEDIUM 

No Yes" 

Yes PRINT LONG 

Yes PRINT LONG 

Yes PRINT LONG 

Yes No 

Yes PRINT LONG 

Yes No 

Yes PRINT LONG 

Yes PRINT LONG 

I Group SSCP matrices No Yes No 

I Between-group correlation matrix No Yes No 

Between-group covariance matrix No Yes No 

Between-group SSCP matrix No Yes No 

Homogeneity of variance-covariance 
matrices Yes No Yes 

i 
i 

F matrix? pairwise group comparison Yes No Yes 
I 

i 
Canonical correlations, each discriminant 

function Yes 

i Canonical correlations, average 

I Eigenvalues 
1 Structure (loading) matrix 

- - 
N 0 

Yes 

Yes 

Yes h T .. I Y U  

No Yes 

No No 

Partial R' (or tolerance) to enterlremove, 
each step Yes Yes Yes 

F to entertremove, each step Yes 

Classification features 

Classification of cases Yes 

Classification function coefficients Yes 

Ciassification matrix Yes 

Individual discriminant (canonical variate) 
scores Yes 

Yes Yes 

N.A." Yes 

N.A. PRINT MEDIUM 

N.4. Yes 

N.A. PRINT LONG 

j c o i r l r i ~ i ~ r t l )  
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TABLE 9.17 Continued 

Feature 
SPSS SAS SYSTAT 
DISCRIMINANT STEPDISC DISCRIM 

. . 
Output (contin~led) 

Posterior probabilities for classification Yes N.A. PRINT LONG 
Mahalanobis' D' for cases (outliers) Yesd N.A. PRINT LONG 
Jackknifed classification matrix CROSS N.A. Yes 

VALIDATE 
Classification with a cross-validation sample Yes N.A. Yes 
Classification information at each step No N.A. No 

Plots 
Plot of group centroids,alone No N.A. No 
All groups scatterplot Yes N.A. Yes 
Separate scatterplots by group Yes N.P.. No 
Temtorial map Yes N.A. No 

"SAS STEPDISC does not classify cases (see SAS DISCRIM, Table 9.16). 

b~-to-enter prior to first step. 

CCanonical scores of group means. 

dOutliers in the solution. 

Stepwise (but not sequential) analysis is accomplished through STEPDISC. As seen in Table 
9.17, very few additional amenities are available in this program. There is no classification, nor is 
there infannation about tiie discriminant functions. On the other hand, this program offers plenty of 
options for entry and removal of predictors 

9.8.3 SYSTAT System 

SYSTAT DISCRIM is the discriminant analysis program. The program deals with all varieties of 
DISCRIM. Automatic (forward and backward) and interactive stepping are available, as well as a 
contrast procedure to control entry of variables. The contrast procedure also is useful for comparing 
means of one group with pooled means of the other groups. Jackknifed classification is produced by 
default, and cross-validation may be done as well. Dimension reduction analysis is no longer avail- 
able, but can be obtained by rephrasing the problem as MANOVA and running it through GLM with 
PRINT=LONG. Such a strategy also is well suited to factorial arrangements of unequal-n groups. 

Scatterplot matrices (SYSTAT SPLOM) may be used to evaluate homogeneity of variance- 
covariance matrices; quadratic discrimination analysis is available through DISCRIM should the 
assumption be violated. Several univariate and multivariate inferential tests also are available. SYS- 
TAT DISCRIM can be used to assess outliers through Mahalanobis distance of each case to each 
group centroid. 
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Logistic Regression 

1 0 .  General' Purpose and Description 

Logistic regression allows one to predict a discrete outcome such as g~-oup membership from a set of 
variables that may be continuous, discrete, dichotomous, or a mix. Because of its popularity in the 
health sciences, the discrete outcome in logistic regression is often diseaselno disease. For example, 
can presence or absence of hay fever be diagnosed from geographic area, season, degree of nasal 
stuffiness, and body temperature? 

Logistic regression is related to, and answers the same questions as, discriminant analysis, the 
logit form of multiway frequency analysis with a discrete DV, and multiple regression analysis with 
a dichotomous DV. However, logistic regression is more flexible than the other techniques. Unlikc 
discriminant analysis, logistic regression has no assumptions about the distributions of the predictor 
variables; in logistic regression, the predictors do not have to be normally distributed, linearly 
related, or of equal variance within each group. Unlike multiway frequency analysis, the predictors 
do not need to be discrete; the predictors can be any mix of continuous, discrete and dichotomous 
variables, Unlike multiple regression analysis, which also has distributional requirements for pre- 
dictors, logistic regression cannot produce negative predicted probabilities. 

There may be two or more outcomes (groups) in logistic regression. If there are more than two 
outcomes, they may or may not have order (e.g., no hay fever, moderate hay fever, severe hay fever). 
Logistic regression emphasizes the probability of a particular outcome for each case. For example, it 
evaluates the probability that a given person has hay fever, given that person's pattern of responses 
to questions about geographic area, season, nasal stuffiness, and temperature. 

Logistic regression analysis is especially useful when the distribution of responses on the DV 
is expected to be nonlinear with one or more of the IVs. For example, the probability of heart disease 
may be little affected (say 1 %) by a 10-point difference among people with low blood pressure (e.g., 
1 10 vs. 120) but may change quite a bit (say 5%) with an equivalent difference among people with 
high blood pressure (e.g., 180 vs. 190). Thus, the relationship between heart disease and blood pres- 
sure is not linear. 

Bennett and colleagues (1991) compared non-ulcer dyspeptic (NUD) patients with controls in 
an application of logistic regression to a case-control study. Subjects were matched on age, sex, and 
sociai status, with one control for each patient. Predictor variables included a variety of life stress, per- 
sonality, mood state, and coping measures. While univariate analyses showed that patients differed 
from controls on 17 psychological variables, logistic regression analysis showed that a single 
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predictor. highlq threatening chronic difficiulriex alone probided a hishly adequate model. While 9Xr; 

of NUDs were exposed to at least one such stressor, only 2'/c ot  controls were so exposed. In its prrs- 
ence. no other predictor could improve the model. 

Fidell and colleagues (1995) studied the probability of awakening from sleep at night associ- 
ated with some event as a function of four noise characteristics, three personal characteristics, three 
time-related characteristics and three pre-sleep characteristics. Seven variables successfully pre- 
dicted behavioral awakenings associated with noise events in a standard logistic regression analysis. 
Predictive noise characteristics were sound level (positive relationship) and ambient level (negative 
relationship). Personal characteristics predicting probability of awakening were number of sponta- 
neous awakenings (negatively related) and age (also negatively related). Time since retiring was the 
strongest predictor (positive relationship), with duration of residence a positive, statistically signifi- 
cant, but trivial predictor. Rating of tiredness the night before strongly and positively predicted 
awakening. However, the model with all predictors included accounted for only 13% of the variance 
in probability of awakening. Correct prediction of non-awakening was 97%, but correct prediction 
of awakening, a rare event, was only 8%. 

Kirkpatrick and Messias (2003) looked at predictors of substance abuse among schizophrenics 
in an epidemiological catchment area study. Three groups of schizophrenics were defined on the basis 
of substance abuse: alcohol and marijuana abuse, polysubstance abuse, and those with no substance 
abuse serving as a reference group. Covariates were gender, age, and race. Clinical features used as 
predictors were thought disorganization, prevalence of deficits (e.g., blunted affect, 2 weeks of 
depressive mood), and hallucinations/delusions. The presence of thought disorganization was associ- 
ated with a 6-fold increase in risk of alcohollmarijuana abuse. The group identified with greater preva- 
lence of deficits was associated with a more than 5-fold increase in risk of polysubstance abuse. 

Because the model produced by logistic regression is nonlinear, the equations used to describe 
the outcomes are slightly more complex than those for multiple regression. The outcome variable, f ,  
is the probability of having one outcome or another based on a nonlinear function of the best linear 
combination of predictors; with two outcomes: 

where t. is the estimated probability that the ith case (i = 1, ..., n) is in one of the cate- 
gories and u is the usual linear regression equation: 

with constant A,  coefficients B,, and predictors, X j  fork predictors ( j  = 1, 2,. . ., k). 

This linear regression equation creates the logit or log of the odds: i 

That is, the linear regression equation is the natural log (log, ) of the probability of being u ' 111 l ine 
group divided by the probability of being in the other group. The procedure for estimating coeffi- 



i cients is maxlnlum likelihood. and the goal IS  to find the best linear cornbination of predictor\ to 
niaxiniize the likelihood of obtdining the observed outcome frequencies. ilIaximiitn likelihood extl- 
niation is an iterative procedure that starts with arbitrary values of coefficients for the set of predic- 
tors and determines the direction and size of change in the coefficients that will maximize the 
likelihood of obtaining the observed frequencies. Then residuals for the predictive model based on 
those coefficients are tested and another determination of direction and size of change in coefficients 
is made, and so on, until the coefficients change very little, i.e.. convergence is reached. In effect, 
maximum likelihood estimates are those parameter estimates that maximize the probability of find- 
ing the sample data that actually have been found (Hox, 2002). 

Logistic regression, like multiway frequency analysis, can be used to fit and compare models. 
The simplest (and worst-fitting) model includes only the constant and none of the predictors. The most 

i 
i 

complex (and "best"-fitting) model includes the constant, all predictors, and, perhaps, interactions 
among predictors. Often, however, not all predictors (and interactions) are related to the outcome. The 
researcher uses goodness-of-fit tests to choose the model that does the best job of prediction with the 
fewest predictors. 

10.2 Kinds of Research Questions 

The goal of analysis is to correctly predict the category of the outcome for individual cases. The first 
step is to establish that there is a relationship between the outcome and the set of predictors. If a rela- 
tionship is found, one usually tries to simplify the model by eliminating some predictors while still 
maintaining strong prediction. Once a reduced set of predictors is found, the equation can be used to 
predict outcomes for new cases on a probabilistic basis. 

! 10.2.1 Prediction of Group Membership or Outcome 

Can outcome be predicted from the set of variables? For example, can hay fever be predicted from 
geographic area, season. degree of r~asal stuffiness, and body temperature? Several tests of relation- 
ship are available in  logistic regression. The most straightforward conipares a modei with the con- 
stant plus predictors with a model that has only the constant. A statistically significant difference 
between the models indicates a relationship between the predictors and the outcome. This procedure 
is demonstrated in Section 10.4.2. 

An alternative is to test a model with only some predictors against the model with all predic- 
tors (called a full model). The goal is to find a nonsignificant X 2 ,  indicating no statistically signifi- 
cant difference between the model with only some predictors and the full model. The use of these 
and other goodness-of-fit tests is discussed in  Section 10.6.1.1. 

I 
I 10.2.2 Importance of Predictors 

Which variables predict the outcome? How do variables affect the outcome'? Does a particular vari- 
able increase or decrease the probability of an outcome, or does it have no effect on outcome? Does 
inclusion of information about geographic area improve prediction of hay fever and is a particular are" 
associated with an increase or decrease in the probability that a case has hay fever? Several methods 
of answering these questions are available in logistic regressior~. One may, for instance. ask how much 



the model is harmed by eliminating a predictor. or one may asses\ the itatistical significance o f  the 
coefticients associated with each of the predictors, or one may ask how much the odds of observing 
an outcome are changed by a predictor. These procedures are disci~ssed in Sections 10.4 and 10.6.8. 

I 
10.2.3 Interactions among Predictors 1 
As in multiway frequency (logit) analysis, a model can also include interactions among the predictor 
variables: two-way interactions and, if there are many predictor variables, higher-order interactions. 
For example, knowtedge of geographic area and season, in combination, might be useful in the pre- 

I 
diction of hay fever; or knowledge of degree of nasal stuffiness combined with fever. Geographic 
area may be associated with hay fever only in some seasons; stuffiness might only matter with no 
fever. Other combinations such as between temperature and geographic areas may, however, not be 
helpful. If there are interactions among continuous variables (or powers of them), multicollinearity 
is avoided by centering.the variables (Section 5.6.6). 

Like individual predictors, interactions may complicate a model without significantly improv- 
ing the prediction. Decisions about including interactions are made in the same way as decisions 

i 
I 

about including individual predictors. Section 10.6.7 discusses decisions about whether inclusion of i 
I 

interactions also presumes inclusion of their individual components. I 
10.2.4 Parameter Estimates I 
The parameter estimates in logistic regression are the coefficients of the predictors included in a 
model. They are related to the A and B values of Equation 10.2. Section 10.4.1 diwusses methods for 
calculating parameter estimates. Section 10.6.3 shows how to use parameter estimates to calculate 
and interpret odds. For example, what are the odds that someone has hay fever in the spring, given 
res~dence In the illidwest, ndaal btuftineaa, arid no fever? 

10.2.5 Classification of Cases 

How good is a statistically significant model at classifying cases for whom the outcome is known? 
For example, how many people with hay fever are diagnosed correctly? How many people without 
hay fever are diagnosed correctly? The researcher establishes a cutpoint (say, .5) and then asks, for 
instance: How many people with hay fever are correctly classified if everyone with a predicted prob- 
ability of .5 or more is diagnosed as having hay fever? Classification of cases is discussed in Section 
10.6.6. 

10.2.6 Significance of Prediction with Covariates I 
The researcher may consider some of the predictors to be covariates and others to be independent I 
variables. For example, the researcher may consider stuffiness and temperature covariates, and geo- 
graphic area and season independent variables in an analysis that asks if knowledge of geographic 
area and season added to knowledge of physical symptoms reliably improves prediction over knowl- 
edge of physical symptoms alone. Section 10.5.2 discusses sequential logistic regression and a com- 

I 

plete example of Section 10.7.3 demonstrates sequential logistic regression. I 



1 10.2.7 Effect Size 

How strong is the relationship between outcome and the set of predictors In the chosen model'? What I proportion of variance in outcome is associated with the set of predictors? For example. what pro- 
portion of the variability in hay fever is accounted for by geographic area, season, stuffiness, and 
temperature? 

The logic of assessing effect size is different in routine statistical hypothesis testing from situ- 
ations where models are being evaluated. In routine statistical hypothesis testing, one might not 
report effect size for a nonsignificant effect. However, in model testing, the goal is often to find non- 
significance, to iind effect size for a model that is not reliably different from a full model. However, 
when samples are large, there may be a statistically significant deviation from the full model, even 

I when a model does a fine job of prediction. Therefore, effect size is also reported with a model that 
deviates significantly from chance. Measures of effect size are discussed in Section 10.6.2. 

I 

10.3 Limitations to Logistic Regression ,4nalysis 

Logistic regression is relatively free of restrictions and, with the capacity to analyze a mix of all types 
of predictors (continuous, discrete, and dichotomous), the variety and complexity of data sets that 
can be analyzed are almost unlimited. The outcome variable does have to be discrete, but a continu- 
ous variable can be converted to a discrete one when there is reason to do so. 

10.3.1 Theoretical Issues 

The usual cautions about causal inference apply, as in all analyses in which one variable is an out- 
come. To say that the probability of correctly diagnosing hay fever is related to geographic area, sea- 
son, nasai stuffiness, and fever is not to imply that any of those variables cause hay fever. 

As a flexible alternative to both discriminant analysis and the logit form of multiway frequency 
analysis. the popularity of logistic regression analysis is growing. The technique has the sometimes 
useful property of producing predicted values that are probabilities between 0 and I. However, when 
assumptions regarding the distributions of predictors are met, discriminant analysis may be a more 
powerful and efficient analytic strategy. On the other hand. discriminant analysis sometimes overes- 
timates the size of the association with dichotomous predictors (Hosmer & Lemeshow, 2000). Mul- 
tiple regression is likely to be more powerful than logistic regression when the outcome is 
continuous and the assumptions regarding it and the predictors are met. 

When all the predictors are discrete, multiway frequency analysis offers some convenient 
screening procedures that may make it the more desirable option. 

As in all research, the importance of selecting predictors on the basis of a well-justified, theo- 
retical model cannot be overemphasized. In logistic regression, as in other modeling strategies, it is 
tempting (and often common in the research community) to amass a large number of predictors and 
then, on the basis of a single data set, eliminate those that are not statistically significant. This a prac- 
tice widely adopted in the research community, but is especially dangerous in logistic regression 
because the technique is often used to address life-and-death issues in medical policy and practice 
(Harlow. 2002). 
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10.3.2 Practical Issues 

Although assumptions regarding the distr~butlons of predictors are not required for logistic regres\lon, 
multivariate normality and linearity among the predictors may enhance power, because a linear com- 
bination of predictors is used to form the exponent (see Equations 10.1 and 10.2). Also, it is assumed 
that continuous predictors are linear with the logit of the DV. Other limitations are mentioned below. 

10.3.2.1 Ratio of Cases to Variables 

A number of problems may occur when there are too few cases relative to the number of predictor 
variables. Logistic regression may produce extremely large parameter estimates and standard errors, 
and, possibly, failure of convergence when combinations of discrete variables result in too many 
cells with no cases. If this occurs, collapse categories, delete the offending category, or delete the 
discrete variable if it is not important to the analysis. 

A maximum likelihood solution also is impossible when outcome groups are perfectly sepa- 
rated. Complete separation of groups by a dichotomous predictor occurs when all cases in one out- 
come group have a particular valfie of 2 nrpriirtnr (e.g., a!! [hose with hzy fever h.11. sniffles) \~hi!e r-------- 

all those in another group have another value of a predictor (e.g., no hay fever and no sniffles.) This 
is likely to be a result of too small a sample rather than a fortuitous discovery of the perfect predic- 
tor that will generalize to the population. Complete separation of groups also can occur when there 
are too many variables relative to the few cases in one outcome (Hosmer & Lemeshow, 2000). This 
is essentially a problem of overfitting, as occurs with a small case-to-variable ratio in multiple 
regression (cf. Section 5.3.2.1). 

Extremely high parameter estimates and standard errors are indications that a problem exists. 
These estimates also increase with succeeding iterations (or the solution fails to converge). If this 
occurs, increase the number of cases or eliminate one or more predictors. Overfitting with small 
samples is morc difficult to spot in logistic regression than in multiple regression because there ia no 
form of "adjusted R2" which, when very different from unadjusted R2 in multiple regression, signals 
an inadequate sample size. 

10.3.2.2 Adequacy of Expected Frequencies and Power I 
When a goodness-of-fit test is used that compares observed with expected frequencies in cells formed 
by combinations of discrete variables, the analysis may have little power if expected frequencies are 

I 
too small. ( f you  plan to use such a gooclness-of-jit test, evaluate expected cell frequencies for all 
pairs of discrete variables, including the outcome variable. Recall from garden-variety X2 (Section 
3.6) that expected frequencies = [(row total) X (column total)]/grand total. It is best if all expected 
frequencies are greater than one, and that no more than 20% are less than five. Should either of these 
conditions fail, the choices are: (1) accept lessened power for the analysis, (2) collapse categories for 
variables with more than two levels, (3) delete discrete variables to reduce the number of cells, or I 

(4) use a goodness-of-fit criterion that is not based on observed versiis expected frequencies of cells 
formed by categorical variables, as discussed in Section 10.6.1.1. 

As with all statistical techniques, power increases with sample size. Some statistical software 
I I 

available for determining sample size and power specifically for a logistic rcgrcssion ~nalysis  
includes NCSS PASS (Hintze, 2002) and nQuery Advisor (Elashoff. 2000). The Internet ia a never- 
ending but ever-changlng source of free power programs. I 

I 



I 
I 10.3.2.3 Linearity in the Logit 

Logistic regression assumes a linear relationship between continuous predictors and the logit trans- 

I form of the DV (see Equation 10.3), although there are no assumptions about linear relationships 
among predictors themselves. 

There are several graphical and statistical methods for testing this assumption; the Box- 
Tidwell approach (Hosmer & Lemeshow, 2000) is among the simplest. In this approach, ternzs are 
added to the logistic regression model which are conzposerl of the interactions between each y redic- 
tor and its nat;iml logarithm. The assumption is violated if one or more of the added interaction 
terms is statistically significant. Violation of the assumptions leads to transformation (Section 4.1.6) 
of the offending predictor(s). Tests of linearity of the logit are demonstrated in Section 10.7. 

10.3.2.4 Absence of Multicollinearity 

Logistic regression, like all varieties of multiple regression, is sensitive to extremely high correla- 
tions among predictor variables, signaled by exceedingly large standard errors for parameter esti- 
mates and/or failure of a tolerance test in the computer run. To find a source of multicollinearity 
among the discrete predictors, use mult~way frequency analysis (cf. Chapter 16) to tind very strong 
relationships among them. To find a source of multicollinearity among the continuous predictors, 
replace the discrete predictors with dichotomous dummy variables and then use the procedures of 
Section 4.1.7. Delete one or more redundant variables from the model to eliminate multicollinearity. 

10.3.2.5 Absence of Outliers in the Solution 

1 One or more of the cases may be very poorly predicted by the solution: a case that actually is in one 
i 
I category of outcome may show a high probability for being in another category. If there are enough 

i cases like this, the model has poor fit. Outlying cases are found by examination of residuals, which 
I can also aid in interpreting the res~llts of the logistic regression analysis. Section iO.4.4 discusses 
i how to examine residilals to evaluate outliers. 

10.3.2.6 Independence of Errors 

Logistic regression assumes that responses of different cases are independent of each other. That is, 
it is assumed that each response comes from a different, unrelated, case. Thus, logistic regression 
basically is a between-subjects strategy. 

However, if the design is repeated measures, say the levels of the outcome variable are formed 
by the time period in which measurements are taken (before and after some treatment) or the levels 
of outcome represent experimental vs. control subjects who have been matched on a 1 to 1 basis 
(called a matched case-control study), the usual logistic regression procedures are inappropriate 
because of correlated errors. 

The effect of non-independence in logistic regression is to produce overdispersion, a condition 
in which the variability in cell frequencies is greater than expected by the underlying model. This 
results in an inflated Type I error rate for tests of predictors. One remedy is to do multilevel model- 
ing with a categorical DV in which such dependencies are considered part of the model (cf. Section 
15.5.4). 

There are two fixes which provide conservative tests of predictors to compensate for the 
increased Type I error rate due to non-independence. A simple remedy for overdispersion in a logistic 



444 C H A P T E R  1 0  

regression rnodel is to rescale the Wald standard el-rcjrs for each parameter (Section 10.1. I ) by a kari- 
ance intlation factor. This is done by multiplying the calculated standard enor by (z'/df)'2. where z2 

and df are from the deviance or Pearson goodness-of-fit statistics (available in SAS LOGISTIC and in 
SPSS NOMREG, which also can be instructed to do the scaling). Indeed, one indication that overdis- 
persion is a problem is a large discrepancy between the Pearson and deviance test statistics. The larger 
of the two values is to be used to compute the variance inflation factor. 

SAS LOGISTIC permits a more sophisticated remedy if all predictors are discrete, by scaling 
the standard errors through the s c a 1 e instruction plus an a g g r e g a t e instruction that specifies 
the variable indicating the matching identifier, e.g.. individual or pair number. This provides the 
appropriate standard errors for tests of parameters, but the deviance and Pearson X2 test cannot be 
used to evaluate goodness of fit of the model. 

Also, special procedures are available in both statistical packages for matched case-control 
studies, as described in Section 10.6.9. Within-subjects (repeated measures) analysis also is available 
through SAS CATMOD, but, again, predictors must be discrete. SPSS COMPLEX SAMPLES may 
be used for repeated-measures designs with a dichotomous DV when cases are defined as clusters. 

10.4 Fundamental Equations for Logistic Regression 

Table 10.1 shows a hypothetical data set in which falling down (0 = not falling, 1 = falling) on a ski 
run is tested against the difficulty of the run (on an ordered scale from 1 to 3, treated as if continu- 
ous) and the season (a categorical variable where 1 = autumn, 2 = winter, and 3 = spring). Data 

TABLE 10.1 Small Sample of 
Hypothetical Data for Illustration 
of Logistic Regression Analysis 

Fall Difficulty Season 



from 15 skiers are presented. Logistic regression uces procedures similar to both multiple regrehh~on 
and multiway frequency analysis. Like multiple regression, the prediction equation includes a linear 
combination of the predictor variables. For example, with three predictors and no interactions: 

The difference. between multiple regression and logistic regression is that the linear portion of the 
equation (A + BIXI + B,X, + B3X3) ,  the logit, is not the end in itself, but is used to find the odds 
of being in one of the categories of the DV given a particular combination of scores on the Xs. Simi- 
lar to multiway frequency analysis, models are evaluated by assessing the (natural log) likelihood for 
each model. Models are then compared by calculating the difference between their log-likelihoods. 

In this section the simpler calculations are illustrated in detail, while those involving calculus 
or matrix inversion are merely described and left to computer software for solution. At the end of the 
section, the most straightforward program in each package (SPSS LOGISTIC REGRESSION and 
SAS LOGISTIC) is demonstrated for the srnall data set. Additicnal programs for analysis of more 
complex data sets are described in Section 10.8. 

Before analysis, discrete variables are recoded into a series of dichotomous (dummy) vari- 
ables, one fewer than there are categories. Thus two dichotomous variables, called season(1) and sea- 
son(2), are created to represent the three categories of season. Following the convention of most 
software, season(1) is coded 1 if the season is autumn, and 0 otherwise; season(2) is coded I if win- 
ter, and 0 otherwise. Spring is identified by codes of 0 on both dummy variables. 

10.4.1 Testing and Interpreting Coefficients 

Solving for logistic regression coefficients A and B and their standard errors invulves calculus, in 
which valiies are found iising maximum likeiihood methods. These values, in turn, are used to eval- 
uate the fit of one or more models (cf. Section 10.4.2). If an acceptable model is found, the statisti- 
cal significance of each of the coefficients is evaluated1 using the Wald test where the squared 
coefficient is divided by its squared standard error: 

A squared parameter estimate divided by its squared standard error is ax2 statistic. Table 10.2 shows 
these coefficients, their standard errors, and the Wald test obtained from statistical software. None of 
the predictors is statistically significant in this tiny data set. 

The logistic regression equation is: 

'It i q  convenient for didactic purpose\ to first illustrate coefficients and then show how they are used to develop goodnebs-ot- 
fit tests For models. 
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TABLE 10.1. Coefficients, Standard Errors. and Wald Test Deriked 
for Small-Sample Example 

Term Coefficient Standard Wald Error Test (x ' )  
-- 

(CONSTANT) - 1.776 1.89 0.88 
DIFFICULTY 1.010 0.90 1.27 
SEASON( 1 ) 0.927 1.59 0.34 
SEASON(2) .-0.418 1.39 0.9 1 

Because the equation is solved for the outcome "falling," coded 1 ,2 the derived probabilities are also 
for falling. Since none of the coefficients is significant, the equation would normally not be applied 
to any cases. However, for illustration, the equation is applied below to the first case, a skier who 
actually did fall on a difficult run in the autumn. The probability is: 

Prediction is quite good for this case, since the probability of falling is  .899 (with a residual of 
1 - ,899 = .101, where 1 represents the actual outcome: falling). Section 10.6.3 discusses further 
interpretation of coefficients. 

For a candidate model, a log-likelihood is calculated, based on summing the probabilities associated 
with the predicted and actual outcomes for each case: 

N 

log-likelihood = Z [Y, in (c) + (I - Y;) ln (1 - ?.)I (10.6) 
i =  l 

Table 10.3 shows the actual outcome (Y)  and predicted probability of falling for the 15 cases 
in the small-sample example, along with the values needed to calculate log-likelihood. 

'some texts and software > i i l . v i  the equation for ihe iruiicjme coded O by J e f d ~ ~ l t .  in the example aburc ..not fidii~~g.'' 



TABLE 10.3 Calculation of Log-Likelihood for Sniall-Sample Example 

Predicted Log- 
Outcome Probability Likelihood 

Y r; 1 -  ~ l n f  ( 1 - ~ ) n -  X [ ~ l n f + ( l  - Y ) I n ( l - f ) ]  

SUM = -8.74" 

"2 * lop-likelihood = 17.48. 

Twc? models are compared by computing the difference in their log-likelihoods (times -2) and 
using chi square. The bigger model is the one to which predictors have been added to the smaller 
model. Models must be nested to be compared; all the components of the sma!!er mode! mcst a!so 
be in the bigger model. 

= [(-2 * [(log-likelihood for smaller model) - (-2 * log-likelihood for the bigger model)j ( 10.7) 

When the bigger model contains all predictors and the smaller model contains only the intercept, a 
conventional notation for Equation 10.7 is: 

For this example, the log-likelihood for the smaller model that contains only the constant is 
- 10.095. When all predictors are in the bigger model, the log-likelihood, as shown in Table 10.3, is 
-8.740. The difference between log-likelihoods is multiplied by two to create a statistic that is dis- 
tributed as chi square. In the example, the difference (times two) is: 
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Degrees of freedom are the d~fference betnreen degrees of freedom for the b~gger and jmaller mod- 
els. The constant-only model has 1 df (for the constant) and the full model has 4 df ( 1  df for each 
individual effect and one for the constant); therefore z2 is evaluated with 3 df. Because is 
not statistically significant at a = .05, the model with all predictors is no better than one with no 
predictors, an expected result because of the failure to find any statistically significant predictors. 
Additional goodness-of-fit statistics are described in Section 10.6.1.1. 

10.4.3 Comparing Models 

This goodness-of-fit ,y2 process is also used to evaluate predictors that are eliminated from the full 
model, or predictors (and their interactions) that are added to a smaller model. In general, as predic- 
tors are addedideleted, log-likelihood decreaseslincreases. The question in comparing models is, 
Does the log-likelihood decreaselincrease significantly with the additionldeletion of predictor(s)? 

For example, the -2 * log-likelihood for the small-sample example with difficulty removed is 
18.87. Compared to the full model, ,y2 is, using Equation 10.7: 

with 1 df, indicating no significant enhancement to prediction of falling by knowledge of difficulty 
of the ski run. 

10.4.4 Interpretation and Analysis of Residuals 

As shown in Section 10.4.2, the first case has a residual o f .  101; the predicted probability of falling, 
.899, was off by ,131 from the actual outcome of falling for that case of 1.00. Residuals are calcii- 
lated for each case and then standardized to assist in the evaluation of the fit of the model to each 
case. 

There are several schemes for standardizing residuals. The one used here is common among 
software packages, and defines a standardized residual for a case as: 

(q - t ) / C ( l  - t )  
std residuali = 

where 

and where xi is the vector of predictors for the case, X is the data matrix for the whole 
sampie inciuding the constant, and V is a diagonal matrix with general element: 

Table 10.4 shows residuals and standardized residuals for each case in the small-sample exam- 
ple. There is a very large residual for the last case, a skier who did not fall, but had a predicted prob- 
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TABLE 10.4 Residuals and Standardized Residuals 
for Small-Sample Example 

ability of falling of about .9. This is the case the model predicts most poorly. With a standardized 
residual ( z )  = 3.326 in a sample of this size, the case is an outlier in the solution. 

10.4.5 Computer Analyses of Small-Sample Example 

Syntax and selected output for computer analyses of the data in Table iO.  1 appear in Tables 10.5 and 
10.6: SAS LOGISTIC in Table 10.5 and SPSS LOGISTIC REGRESSION in Table 10.6. 

As seen in Table 10.5, SAS LOGISTIC uses the CLASS instruction to designate categorical 
predictors; param=glm produces internal coding that matches that of hand calculations and default 
SPSS coding. 

The Re s p o n s e P r o  f i 1 e in the output shows the coding and numbers of cases for each 
outcomegroup.Three M o d e l  F i t  S t a t i s t i c s  aregivenforthe I n t e r c e p t  O n l y  model 
and the full model ( I n t e r c e p t  and Cova r i a t e  s), including - 2  L o g  L, which is -2 times 
the log-likelihood of Section 10.4.2. Under T e s t i n g  G l o b a l  N u l l  H y p o t h e s e s :  
B ETA = 0 are three X Z  goodness-of-fit tests for the overall model. The L i k e  1  i h  o  o d  R a  t i o  test 
is the test of the full model vs. the constant-only model (cf. Section 10.4.2). 

An a  1  y  s  i s o  f Type  3 E f f e  c  t s  shows tests of significance for each of the predictors, 
combiningthedfforSEASONintoasing1etest.The A n a l y s i s  o f  Maximum L i k e l i h o o d  
E  s t i ma t e  s  provides B weights (Pa ram e  t e  r E  s  t i ma t e  s  j for predicting the probability of not 
falling (code of 0 for FALL; SAS solves for the 0 code), the S t a  n  d  a  r d  E  r r o  r of B, and W a  1  d  
C h i - S q u a r e  togetherwithits Pr(obabi1ity). S t a n d a r d i z e d  (parameter), E s t i m a t e s ,  and 
Odds R a t i o s  along with their 95% confidence limits are also provided. SAS LOGISTIC addition- 
ally provides several measures of effect s i ~ e  for the set of predictors: Somers' D, Gamma. Tau-ci, and 
Tau-c (see Section 10.6.2). 
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TABLE 10.5 Syntax and Selected Output froni SAS LOGISTIC ,\nalysis 
of Small-Sample Example 

p r o c  l o g i s t i c  data=SASUSER.SSLOGREG; 
c l a s s  s e a s o n  1 param=glm;  
m o d e l  FALL=DIFFCLTY SEASON; 

run ;  

The LOGISTIC P r o c e d u r e  

R e s p o n s e  P r o f i l e  

O r d e r e d  T o t a l  
V a l u e  FALL F r e q u e n c y  

P r o b a b i l i t y  m o d e l e d  i s  FALL=O. 

C l a s s  L e v e l  I n f o r m a t i o n  

D e s i g n  V a r i a b l e s  

C l a s s  V a l u e  1  2  3 

SEASON 1  1 0  0  
2  0  1  0  
3 0  0  1  

M o d e l  F i t  S t a t i s t i c s  

I n t e r c e p t  I n t e r c e p t  a n d  
C r i t e r i o n  O n l y  C o v a r i a t e s  

A I C  2 2 . ? 9 0  2 5 . 4 8 :  
S C  2 2 . 8 9 8  2 8 . 3 1 3  
-2 L o g  L  2 0 . 1 9 0  1 7 . 4 8 1  

T e s t i n g  G l o b a l  N u l l  H y p o t h e s i s :  BETA=O 

T e s t  C h i - s q u a r e  D F P r  > C h i S q  

L i k e l i h o o d  R a t i o  2 . 7 0 9 6  3 0 . 4 3 8 6  
S c o r e  2 . 4 5 3 9  3 0 . 4 8 3 7  
Wa l d  2 . 0 4 2 6  3 0 . 5 6 3 6  

T y p e  3 A n a l y s i s  o f  E f f e c t s  

Wa l d  
E f f e c t  D F C h i - s q u a r e  P r  > C h i S q  

DIFFCLTY 1  1 . 2 7 2 6  0 . 2 5 9 3  
SEASON 2 0 . 8 3 2 2  0 . 6 5 9 6  
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T~4RI.E lO.5 Continued 

A n a l y s i s  o f  Maximum L i k e l i h o o d  E s t i m a t e s  

S t a n d a r d  Wa l d  
P a r a m e t e r  DF E s t i m a t e  E r r o r  C h i - s q u a r e  P r  > C h i S q  

I n t e r c e p t  . 1 1.7768 1.8898 0.8841 0.3471 
DIFFCLTY 1 -1 -0108 0.8960 1.2726 0.2593 
SEASON 1 1  -0.9275 1.5894 0.3406 0.5595 
SEASON 2 1 0.4185 1.3866 0.0911 0.7628 
SEASON 3 0 0 

Odds R a t i o  E s t i m a t e s  

E f f e c t  
P o i n t  95% Wa l d  

E s t i m a t e  C o n f i d e n c e  L i m i t s  

DIFFCLTY 0.364 0.063 2.107 
SEASON 1 v s  3 0.396 0.018 8.914 
SEASON 2 v s  3 1.520 0.100 23.016 

A s s o c i a t i o n  o f  P r e d i c t e d  P r o b a b i l i t i e s  
a n d  O b s e r v e d  R e s p o n s e s  

P e r c e n t  C o n c o r d a n t  72.2 S o m e r s '  D 0.556 
P e r c e n t  D i s c o r d a n t  16.7 Gamma 0.625 
P e r c e n t  T i e d  1 1  .I Tau-a 0.286 
P a i r s  54 c 0.778 

SPSS LOGISTIC REGRESSION (accessed in the menu system as Binary Logistic Regression) 
uses indicator coding by default with the last category (falling in this example) as reference. The 
ENTER instruction assures that all of the predictors enter the logistic regression equation simultane- 
ously on Step Number 1 .  

The first two tables of output show the coding for the outcome and predictor variables. After 
information about the constant-only model (not shown), overall X2 tests are given for the step, the 
block (only interesting for sequential logistic regression), and the model in the table labeled 
Omnibus Tests of Model Coefficients. Note that the test of the model matches the test for the dif- 
ference between the constant-only and full model in SAS. 

The Model Summary table provides -2 Log-Likelihood (cf. Table 10.3 footnote). Effect 
size measures (R Square) are discussed in Section 10.6.2. The Classification Table follows, 
showing the results of classifying all cases with predicted values below .5 as 0 (not falling) and all 
cases above .5 as 1 (falling). Of the skiers who did not fall, 66.67% are correctly classified by the 
model; of those who did fall, 88.89% are correctly classified. The Variables in the Equation table 
provides B coefficients. standard errors of B (S.E.), a Wald test iZ2 = B ~ / s .  E.  2, for each coefti- 
cient, and eB. 
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TABLE 10.6 Syntax and Selected Output from SPSS LOGISTIC 
REGRESSION Analysis of Small-Sample Example 

LOGISTIC REGRESSION VAR=FALL 
/METHOD=ENTER DIFFCLTY SEASON 
/CONTRAST (SEASON)=INDICATOR (1) 
/CRITERIA-PIN(.05) POUT(.10) ITERATE(20) CUT(.5). 

Logistic Regression 

Case Processing Summary 

alf weight is in effect, see classification table for the total 
number of cases. 

. 
Unweighted Casesa 

Selected Cases Included in Analysis 
Missing Cases 
Total 

Unselected Cases 
Total 

Dependent Variable Encoding 

Original Value Internal Value VI 

N 

15 
0 

15 
0 

15 

Categorical Variables Coding 

Percent 

100.0 
.O 

100.0 
.O 

100.0 

Block 1 : Method = Enter 

Omnibus Tests of Model Coefficients 

Chi-square Sig. 

Step 1 Step 2.71 0 
Block 2.71 0 
Model 2.710 1 ,439 

h 

SEASON 1 
2 
3 

Frequency 

5 
6 
4 

Parameter coding 

(1) 

1 .OOO 
.OOO 
.ooo 

(2) 

.OOO 
1 .OOO 
.ooo 
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TABLE 10.6 Continued 

Model Summary 

aEstimation terminated at iteration number 4 because 
parameter estimates changed by less than .001. 

I Classification Tablea 

aThe cut value is .500 

Variables in the Equation 

Observed 

Step 1 FALL 0 
1 

Overall Percentage 

I 

! aVariable(s) entered on step 1 : DIFFCLTY, SEASON. 

Predicted 

Step DIFFCLTY 
la SEASON 

SEASON(1) 
SEASON(2) 
Constant 

P 

10.5 Types of Logistic Regression 
I 
I As in multiple regression and discriminant analysis, there are three major types of logistic regres- 
! sion: direct (standard), sequential, and statistical. Logistic regression programs tend to have more 
i options for controlling equation-building than discriminant programs. but fewer options than multi- 

! ple regression programs. 

I 
I 

Percentage 
Correct 

66.7 
88.9 
80.0 

FALL 

0 

4 
1 

I 

6 I S.E. 

1.011 1 .896 

. 

1 

2 
8 

-1.346 
-.928 
-.849 

Wald 

1.273 
.832 
.829 
.341 
152 

1.478 
1.589 
2.179 

d f 

1 
2 
1 
1 
1 

Sig. 

.259 

E~P(B) 

2.748 

.660 .362 / 260 

.560 

.697 
.396 
,428 

i 
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10.5.1 Direct Logistic Regression 

In direct logistic regression, all predictors enter the equation simultaneously (as long as tolerance is 
not violated, cf. Chapter 4). As with multiple regression and discriminant analyses. this is the method 
of choice if there are no specific hypotheses about the order or importance of predictor variables. The 
method allows evaluation of the contribution made by each predictor over and above that of the other 
predictors. In other words, each predictor is evaluated as if it entered the equation last. 

This method has the usual difficulties with interpretation when predictors are correlated. A 
predictor that is highly correlated with the outcome by itself may show little predictive capability in 
the presence of the other predictors (cf. Section 5.5.1, Figure 5.2b). 

SAS LOGISTIC and SPSS LOGISTIC REGRESSION produce direct logistic regression 
analysis by default (Tables 10.5 and 10.6). 

10.5.2 Sequential Logistic Regression 

Sequential logistic regression is similar to sequential multiple regression and sequential discriminant 
analysis in that the researcher specifies the order of entry of predictors into the model. SPSS LOGIS- 
TIC REGRESSION allows sequential entry of one or more predictors by the use of successive 
EN T E R instructions. In SAS LOGISTIC you can specify s e q u e n t i a 1 entry of predictors, to 
enter in the order listed in the mode 1 instruction, but only one predictor at a time. You also have to 
specify s e 1 e c t i on= f o r w a r d and select large significance values (e.g., .9) for s 1 e n  t r y and 
s 1 s t a y to ensure that all of your variables enter the equation and stay there. 

Another option with any logistic regression program is simply to do multiple runs, one for each 
step of the proposed sequence. For example, one might start with a run predicting hay fever from 
degree of stuffiness and temperature. Then. in a second run, geographic area and season are added to 
stuffiness and temperature. The difference between the two models is evaluated to determine if geo- 
graphic area and season significantly add to prediction above that afforded by symptoms alone, using 
the technique described in Section i0.4.3 and illustrated in the large-sample example of Sec- 
tion 10.7.3. 

Table 10.7 shows sequential logistic regression for the small-sample example through SPSS 
LOGISTIC REGRESSION. Difficulty is given highest priority because it is expected to be the 
strongest predictor of falling. The sequential process asks if season adds to prediction of falling 
beyond that of difficulty of the ski run. 

Block X2 (2, N = 15) = 0.906, p > .05 at Block 2, indicating no significant improvement with 
addition of SEASON as a predictor. Note that this improvement in fit statistic is the difference between 
-2 Log Likelihood for Block 1 (1  8.387) and -2 Log Likelihood for the full model (17.48 1). The clas- 
sification table, model summary, and the logistic regression equation at the end of the second block, 
with all predictors in the equation, are the same in direct and sequential logistic regression (not shown). 

10.5.3 Statistical (Stepwise) Logistic Regression 

In statibtical logistic regrehhion, inclusion and removal of predictors from the equation are based solely 
on statistical criteria. Thus, statistical log~stic regression 1s best seen as a screening or hypothesis- 
generating technique, as i t  suffers from the same problems as statistical multiple regression and dis- 
criminant analysis (Sections 5.5.3 and 9.5.3). When statistical analyses are used, it is very easy to 



T.ABLE 10.7 Syntax and Selected Sequential Logistic Regression Output 
from SPSS LOGISTIC REGRESSION Analysis of Small-Sample Example 

LOGISTIC REGRESSION VAR=FALL 
/METHOD=ENTER DIFFCLTY /METHOD=ENTER SEASON 
/CONTRAST (SEASON)=INDICATOR 
/CRITERIA-PIN(.05) POUT(. 10) ITERATE(20) CUT(.5). 

Block 1 : Method = Enter 

Omnibus Tests of Model Coefficients 

Chi-square Sig. 

Step 1 Step 1.804 
Block 1.804 
Model 1.804 

Model Summary 
- 

aEstimation terminated at iteration number 4 because 
parameter estimates changed by less than .001. 

1 Variables in the Equation 

aVariable(s) entered on step 1: DIFFCLTY. 

Block 2: Method = Enter 

OmnibusTests of Model Coefficients 

Chi-square Sig. 

Step 1 Step 
Block 
Model 2.710 .439 

Model Summary 
- -  - 



misinterpret the exclus~on of a predictor: the predictor may be very h~ghly correlated ~ v ~ t h  the 
outcome but not included in the equation because it  was "bumped" out by another predictor or com- 
bination of predictors. The practice of basing decisions on data-driven rather than theory-driven 
models is especially hazardous in logistic regression, with its frequent application to life-and-death 
biomedical issues. At the very least, sequential logistic regression should be part of a cross- 
validation strategy to investigate the extent to which sample results may be more broadly general- 
ized. Hosmer and Lemeshow (2000) recommend a criterion for inclusion of a variable that is less 
stringent than .05; they suggest that something in the range of .  15 or .20 is more appropriate to ensure 
entry of variables with coefficients different from zero. 

Both computer packages reviewed offer statistical logistic regression allow specification of 
alternative stepping methods and criteria. SPSS LOGISTIC REGRESSION offers forward or back- 
ward statistical regression, either of which can be based on either the Wald or maximum likelihood- 
ratio statistic, with user specified tail probabilities. 

SAS LOGISTIC allows specification of forward, backward or "stepwise" stepping. (In for- 
ward selection, a variable once in the equation stays there; if stepwise is chosen, variables once in the 
equation may leave.) The researcher can specify the maximum number of steps in the process, the 
significance level for entry or for staying in the model, variables to be included in all models, and 
maximum number of variables to be included. The researcher can also specify the removal or entry 
of variables based on the residual chi square. 

You may want to consider including interactions as potential predictors if you do statistical 
model building. Hosmer and Lemeshow (2000) discuss issues surrounding use of interactions and 
appropriate scaling of continuous variables for them (pp. 70-74). 

10.5.4 Probit and Other Analyses 

Probit analysis is highly re!ated to logistic regressioii and is ofteii ~lsed io anaiyze dose-response data 
in biomedical applications. For example, what is the median dosage of aspirin required to prever?t 
future heart attacks in half the population of heart attack victims? 

Both probit analysis and logistic regression focus on proportions of cases in two or more cate- 
gories of the DV. Both are akin to multiple regression in that the DV (a proportion in both) is pre- 
dicted from a set of variables that are continuous or coded to be dichotomous. Both produce an 
estimate of the probability that the DV is equal to 1 given a set of predictor variables. 

The difference between logistic regression and probit analysis lies in the transformation applied 
to the proportions forming the DV that, in turn, reflects assumptions about the underlying distribution 
of the DV. Logistic regression uses a logit transform of the proportion, as seen in Equation 10.3 (where 
the proportion is expressed as f ). Probit analysis uses the probit transform where each observed pro- 
portion is replaced by the value of the standard normal curve (z value) below which the observed pro- 
portion is found. Thus, logistic regression assumes an underlying qualitative DV (or ordered DV in 
some applicaiions) and probii analy sib aabumes an underlying normally distributed DV. 

Both transformations produce a value of zero when the proportion is .5, for probit because half 
of the cases in a normal distribution fall below 2 = 0. For the logit transform, 



It is at the extremes that the balues differ: with a proportion or .95. for example. the probit r :r = I . h i  

and the logit is 7.94. However. the shapes of the logit and probit distributions are quite similar and. 
as long as proportions are not extreme, the results of the two types of analyses are very similar. Nev- 
ertheless, the assumption that the underlying distribution is normal makes probit analysis a bit more 
restrictive than logistic regression. Thus, logistic regression is considered better than probit analysis 
if there are too many cases with very high or very low values so that an underlying normal distribu- 
tion is untenable. 

Probit coefficients represent how much difference a unit change in the predictor makes in the 
cumulative normal probability of the outcome (i.e., the effect of the predictor on the ; value for the 
outcome). This probability of outcome depends on the levels of the predictors; a unit change at the 
mean of a predictor has a different effect on the probability of the outcome than a unit change at an 
extreme value of the predictor. Therefore, a reference point for the predictors is necessary and is usu- 
ally set at the sample means of all predictors. 

The two procedures also differ in their emphasis with respect to results. Logistic regression 
emphasizes odds ratios. Probit analysis often focuses on effective values of predictors for various 
rates of response, for example, median effective dose of a medication, lethal dose, and so on. 

Both software packages have PROBIT modules that provide likelihood-ratio X2  tests of mod- 
els and parameter estimates for predictors. SPSS PROBIT is the more complete, with confidence 
intervals for expected dosages (lethal or whatever), comparisons of effective doses for different 
groups, and expected doses for different agents. SAS PROBIT permits transforms other than probit, 
including logit and Gompertz (for a nonsymmetrical gombit model), and prints confidence intervals 
for effective doses. 

SAS LOGISTIC permits Poisson regression, useful when the DV is in the form of counts that 
are separated either in time or space. For example, the number of books checked out from the uni- 
versity library might be predicted by major and semester. 

10.6 Some Important Issues 

10.6.1 Statistical Inference 

Logistic regression has two types of inferential tests: tests of rnodels and tests of individual predictors. 

10.6.1.1 Assessing Goodness-of-Fit of Models 

There are numerous models in logistic regression: a constant- (intercept-) only model that includes 
no predictors, an incomplete model that includes the constant plus some predictors, a full model that 
includes the constant plus all predictors (including, possibly, interactions and variables raised to a 
power). and a perfect (hypothetical) model that wnuld provide an exact fit of expected frequencies ta 
observed frequencies if only the right set of predictors were measured. 

As a consequence, there are numerous comparisons: between the constant-only model and the 
full model. between the constant-only model and an incomplete model. between an incomplete 
model and the filll model, between two incomplete models, between n chosen model and the perfect 
modei, between . . . well, you get the picture. 
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Not only Jre there numerou\ po,s~ble conlparlaons mans models but ~ l \ o  there Jre numel-ou\ 

1 
i 

tests to evaluate goodnesc of fit. Because no single te\t 1s universally preferred, the computer pro- 
grams report several tests for differences among the models. Worse, sometimes a good fit 1s ~nd~cated 
by a nonsignificant result (when, for example, an incomplete model is tested against a perfect model) 

1 
whereas other times a good fit 1s indicated by a significant result (when, for example, the full model 

I 
I 

is tested against a constant-only model). 
Sample size also is relevant because if sample size is very large, almost any difference between 

models is likely to be  tati is tic ally significant even if the difference has no practical importance and 
classification is wonderful with either model. Therefore, the analyst needs to keep both the effects of 
sample size (big = more likely to find significance) and the way the test works (good fit = signifi- 
cant, or good fit = not significant) in mind while interpreting results. 

10.6.1.1.1 Constant-Only us. Full Model 
A common first step in any analysis is to ask if the predictors, as a group, contribute to predic- 

tion of the outcome. In logistic regression, this is the comparison of the constant-only model with a 
model that has the constant plus al! predictors. If no improvement is found when all predictors are 
added, the predictors are unrelated to outcome. 

The log-likelihood technique for comparing the constant-only model with the full model is 
shown in Section 10.4.2, Equation 10.7. Both computer programs do a log-likelihood test, but use 
different terms to report it. Table 10.8 summarizes the test as it is presented in the two programs. 

One hopes for a statistically significant difference between the full model and the constant- 
(intercept-) only model at a level of at least p < .05. SAS LOGISTIC provides a second statistic 
labeled S c o r e that is interpreted in the same way as the difference between log-likelihoods. 

These same procedures are used to test the adequacy of an incomplete model (only some pre- 
dictors) against the constant-only model by inclusion of some but not all predictors in the syntax. 

10.6.1.1.2 Corrzpiirisori with u ?e$ect (Hypo~hericaij Model 
The perfect model contains exactly the right set of predictors to dupliczte the ebserlved f:e- 

quencies. Either the full model (all predictors) or an incomplete model (some predictors) can be 
tested against the perfect model in several different ways. However, these statistics are based on dif- 
ferences between observed and expected frequencies and assume adequate expected cell frequencies 
between pairs of discrete predictors, as discussed in Section 10.3.2.2. In this context, the set of pre- 

TABLE 10.8 Summary of Software Labels for the Test 
of Constant-Only vs. Full Model 

Program Label for X2 Test 

SPSS LOGISTIC REGRESSION Model Chi square in the table labeled 
Omnibus Test of Model Coefficients 

SAS LOGISTIC L i k e l i h o o d  R a t i o  Chi 
S q u a r e in the table labeled 
T e s t i n g  G l o b a l  N u l l  
H y p o t h e s e s  



dictors is sometin~es calleci the cobariate pattern wherc covariatr patter11 refer4 to comb~nat~onz ot 
scores on all predictors. both continuous and discrete. 

With these statistics a rzonsign~fificcrnt difference is desired. A nonsigniticant difference indi- 
cates that the full or incomplete model being tested is not reliably different from the perfect model. 
Put another way, a nonsignificant difference indicates that the full or incomplete model adequately 
duplicates the observed frequencies at the various levels of outcome. 

10.6.1.1.3 Deciles of Risk 
Deciles-of-risk statistics evaluate goodness-of-fit by creating ordered groups of subjects and 

then comparing the number actually in each group with the number predicted into each group by the 
logistic regression model. 

Subjects are first put in order by their estimated probability on the outcome variable. Then 
subjects are divided into 10 groups according to their estimated probability; those with estimated 
probability below .'1 (in the lowest decile) form one group, and so on, up to those with estimated prob- 
ability .9 or higher (in the highest deci~e) .~  The next step is to further divide the subjects into two 
groups on the outcome variable (e.g., didn't fall, did fall) to form a 2 X 10 matrix of observed fre- 
w 

quencies. Expected frequencies for each of the 20 cells are obtained from the model. If the logistic 
regression model is good, then most of the subjects with outcome 1 are in the higher deciles of risk 
and most with outcome 0 in  the lower deciles of risk. If the model is not good, then subjects are 
roughly evenly spread among the deciles of risk for both outcomes 1 and 0. Goodness-of-fit is for- 
mally evaluated using the Hosmer-Lemeshow statistic where a good model produces a nonsignificant 
chi-square. The Hosmer-Lemeshow statistic is available in SPSS LOGISTIC REGRESSION with a 
request for GOODFIT. The program also produces the observed vs. expected frequencies for each 
decile of risk, separately for each outcome group, reported as Contingency Table for Hosmer and 
Lemeshow Test. 

10.6.1.2 Tests o j  Individual Variables 

Three types of tests are availabie iu evaiuate the cunti~ib~iioii of an individual predictor lo a model: 
( 1  ) the !4'2!d test, (2) eva!~ltion of the effect ~f a ~ l t t i n g  a predicmr, 2nd (3) the score (Lagrange mul- 
tiplier) test. For all these tests, a significant result indicates a predictor that is reliably associated with 
outcome. 

The Wald test is the simplest; it is the default option, called Wald in SPSS and W A LD C h i 
S q  u a r e  in SAS. As seen in Section 10.4.1, this test is the squared logistic regression coefficient 
divided by its squared standard err0r.j However, several sources express doubt about use of the Wald 
statistic. For instance, Menard (2001) points out that when the absolute value of the regression coef- 
ficient is large, the estimated standard error tends to become too large, resulting in increased Type I1 
error: making the test too conservative. 

The test that compares models with and without each predictor (sometimes called the 
likelihood-ratio test) is considered superior to the Wald test, but is highly computer intensive. Each 
predictor is evaluated by testing the improvement in model fit when that predictor is added to the 

'Solnetimex \ubjecLs are clibtcled Into I0 group:, by puttl~ig the t in t  ,Y / IO  subject, in the t in t  ~ I . O L I P ,  the \econd 9/10 In the 
qecond group. anti \o on; however. Hosmer and Lemeshow (2000) report that the other procedure 15 preferable. 

-'SYSTAT LOGIC reports a r-ratio which is the parumeter estimated divided by its standard error 
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model or. conversely. the decrease i n  model fit when that predictor 1s reniu\:ed (using Equation 10.7). 
Both basic programs require runs of models with and without each predictor to produce the likeli- 
hood ratio test to assess the statistical significance of improvement in tit when a predictor is included 
in the model. However. the test is available in SPSS NOMREG. 

The score test is reported in SAS and may be advantageous in stepwise logistic regression. ' 

10.6.2 Effect Size for a Model 

A number of measures have been proposed in logistic regression as an analog to RZ in multiple lin- 
ear regression. None of these has the same variance interpretation as R* for linear regression, but all 
approximate it. One option (but only for a two-category outcome model) is to calculate R2 directly 
from actual outcome scores (1 or 0) and predicted scores, which may be saved from any of the logis- 
tic regression programs. A bivariate regression run provides r. Or an ANOVA may be run with pre- 
dicted scores as the DV'and actual outcome as a grouping variable, with v12 as the measure of effect 
size (Equation 3.25). 

McFadden's p2 (Maddala, 1983) is a transformation of the likelihood ratio statistic intended to 
mimic an R2 with a range of 0 to 1. 

LL (B) McFadden's 2 = I - - 
LL (0) 

where LL(B) is the log-likelihood of the full model and LL(0) is the log-likelihood of the constant- 
only model. SAS and SPSS LOGISTIC programs provide log-likelihoods in the form of -2 log- 
likelihood. For the small-sample example, 

However, McFadden's p2 tends to be much lower than R2 for multiple regression with values 
in the .Z to .4 range considered h~ghly satisfactory (Hensher & Johnson, 1981). McFadden's p2 is 
provided by SPSS NOMREG. 

SPSS LOGISTIC REGRESSION and NOMREG also provide R~ measures devised by 
Nagelkerke as well as Cox and Snell (Nagelkerke, 1991). The Cox and Snell measure is based on 
log-likelihoods and takes into account sample size. 

For the small-sample example, 

Cox and Snell R ) ,  however, cannot achieve a maximum value of i .  I 
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i The Nagelherke nirawre ~dju$t \  Cox and Snell so that '1 ~ a l i ~ e  ot I could be ,lch~e\ed. 

where R & ~ ~  = I - exp [2 (N- l ) ~ ~ ( ~ ) ] .  

For the small-sample example, 

RLAX = 1 - exp [2(15- I)(- 10.095)] = 1 - .26 = .74 

l and 

i Steiger and Fouladi's (1992) software can be used to provide confidence intervals around the 

I measures (cf. Figure 9.3), although they cannot be interpreted as explained variance. For example, 

I the R; value used is .233, N = 15, number of variables (including predictors and criterion) = 4 and 
probability value is set to .95. The number of predictors is considered to be 3 rather than 2 to take into 

i account the 2 df for the SEASON variable. Using these values, the 95% confidence interval for R~ 
ranges from 0 to .52. Inclusion of zero indicates lack of statistical significance at a: = .05. Note that 
the probability level of .408 19 approximates the chi-square significance level of .439 in the output of 
Tables 10.5 and 10.6. 

SAS LOGISTIC also provides a number of measures of association: Some r ' s D, Gamma, 

I T a u-a, and - c. These are various methods of dealing with concordant and discordant pairs of out- 

i comes and are best understood in the context of a two-category outcome and a single two-category 

i predictor. '4 pair of outcomes is concoidaiii if ihe response with the larger value also has the higher 
probability of occurring. The four correlation measures (which need to be squared to be interpreted 

I as effect size) differ in how they deal with the number of concordant and discordant pairs and how 

i they deal with tied pairs. All are considered rank order correlations (cf. on-disk documentation). 

i The final SAS measure, c, is the area under the receiver operating characteristic (ROC) curve 
when the response is binary. Aficionados of the Theory of Signal Detectability will recognize this as 

i a form of d'. This may be interpreted as the probability of a correct classification of a randomly 

I selected pair of cases from each outcome category. It varies from .5 (indicating chance prediction) to 

i I .O (indicating perfect prediction). 

i Another measure of effect size is the odds ratio (Section 10.6.3), appropriate for a 2 X 2 con- 

i tingency table in which one dimension represents an outcome and the other dimension represents a 
predictor (such as treatment). 

10.6.3 Interpretation of Coefficients Using Odds 

The odds ratio is the change in odds of being in one of the categories of outcome when the value of a 
predictor increases by one unit. The coefficients, B, I'or the predictors are the natural logs of the odds 
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ratios: odds ratio = eU.  Therefore. a change of one unit on the part c ~ f  :I predictor m~~ltiples the odds 
by eU. For euarnple. In Table 10.5 the probability of falling on a ski run increases by 3 multiplicative 
factor of 2.75 as the difficulty Icvel of the run increases from 1 to 2 (or 2 to 3); a skier is almost three 
times more likely to fall on a ski run rated 2 as on a ski run rated I. 

Odds ratios greater than 1 retlect the increase in odds of an outcome of 1 (the "response" cat- 
egory) with a one-unit increase in the predictor; odds ratios less than one reflect the decrease in odds 
of that outcome wifh a one-unit change. For example, an odds racio of 1.5 means that the outcome 
labeled 1 is 1.5 times as likely with a one-unit increase in a predictor. That is, the odds are increased 
by 50%. An odds ratio of 0.8 indicates that an outcome labeled 1 is 0.8 times as likely with a one unit 
increase in the predictor; the odds are decreased by 20%. 

As in linear regression, coefficients are interpreted in the context of the other predictor vari- 
ables. That is, the probability of falling as a function of difficulty level is interpreted after adjusting 
for all other predictors. (Usually only statistically significant coefficients are interpreted; this exam- 
ple is for illustrative purposes only.) 

The odds ratio has a clear, intuitive meaning for a 2 X 2 table; it is the odds of an outcome for 
cases in a particular category of a predictor divided by the odds of that outcome for the other category 
of the predictor. Suppose the outcome is hyperactivity in a child and the predictor is familial history 
of hyperactivity: 

Familial History 
of Hyperactivity 

Yes No 

1515 
odds ratio = - - 

9/150 - 50 

Children with a familial history are 50 times more likely to be hyperactive than those without a famil- 
ial history. Odds are 3: 1 for hyperactivity in a child with familial history; odds are 9: 150 for hyper- 
activity in a child without familial history. Therefore, the ratio of odds is 31.6 = 50. This also may be 
expressed as the reciprocal, 1/50 = 0.02. The interpretation for this reciprocal odds ratio is that 
occurrence of hyperactivity is only 0.02 as likely among those without familial history as those with 
familial history of hyperactivity (i.e., there is a reduction in the overall odds from .06 when there is 
no familial history of hyperactivity). Either interpretation is equally correct; a good choice is the one 
that is easiest to communicate. For example, if there is a treatment to reduce the occurrence of dis- 
ease, it is the reduction in disease that may be of greatest interest. Further disc~lssion of this issue is 
in Section 10.6.4. 

Odds ratlos are produced directly by SPSS LOGISTIC REGRESSION and SAS LOGISTIC. 
It is called O d d s  R a t  i o in SAS LOGISTIC, and i t  is called Exp(B) by SPSS LOGISTIC 
REGRESSION and NOMREG 
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10.6.4 Coding Outcome and Predictor Categories 

The way that outcome categories are coded determines the direction of the odds ratios as well as the 
sign of the B coefficient. The interpretation is simplified, therefore, if you pay close attention to cod- 
ing your categories. Most software programs solve the logistic regression equation for the dichoto- 
mous outcome category coded 1 but a few solve for the category coded 0. If the odds ratio is 4 in a 
problem run through the first type of program, it will be 0.25 in the second type of program. 

A convenient,way of setting up the coding follows the jargon of SYSTAT LOGIT; for the out- 
come, the category coded 1 is the "response" category (e.g., illness) and the category coded 0 is the 
"reference" category ( ~ e l l n e s s ) . ~  It is often helpful, then, to think of the response group in compar- 
ison to the reference group, e.g., compare people who are ill to those who are well. The solution tells 
you the odds of being in the response group given some value on a predictor. If you also give higher 
codes to the category of a predictor most likely associated with "response," interpretation is facili- 
tated because the parameter estimates are positive. For example, if people over 60 are more likely to 
be ill, code both "wellness" and "under 60" 0 and both "illness" and "over 6 0  1. 

This recommendation is extended to predictors with multiple discrete levels where dummy 
variables are formed for all but one level of the discrete predictor (e.g., Season1 and Season2 for the 
three seasons in the small-sample example). Each dummy variable is coded 1 for one level of a pre- 
dictor and 0 for the other levels. If possible, code levels likely to be associated with the "reference" 
group 0 and code levels likely to be associated with the "response" group 1. Odds ratios are calcu- 
lated in the standard manner, and the usual interpretation is made of each dummy variable (e.g., Sea- 
son l). 

Other coding schemes may be used, such as orthogonal polynomial coding (trend analysis) but 
interpretation via odds ratios is far more difficult. However, in some contexts, significance tests for 
trends may be more interesting than odds ratios. 

The SPSS programs (LOGISTIC REGRESSION and NOMREG) solve for the outcome coded 
1. Howcvcr, SAS LOGISTIC routinely solves for the outcome coded 0. You might want to consider 
using p a  ram = g I m with SAS (as per Tab!e 10.5) if that eases interpretation. 

There are other methods of coding discrete variables, each with its own impact on interpreta- 
tion. For example, dichotomous (1, - 1) coding might be used. Or discrete categories might be coded 
for trend analysis, or whatever. Hosmer and Lemeshow (2000) discuss the desirability of various 
coding schemes and the effects of them on parameter estimates (pp. 48-56). Further discussion of 
coding schemes available in the computer packages is in Section 10.8. 

10.6.5 Number and Type of Outcome Categories 

Logistic regression analysis can be applied with two or more categories of outcome, and, when there 
are more than two categories of outcome, they may or may not have order. That is, outcomes with 
more than two categories can be either nominal (without order) or ordinal (with order). Logistic 
regression is more appropriate than multiple regression when the distribution of responses over a set 
of categories seriously departs from normality, making it difficult to justify using an ordered cate- 
gorical variable as if it were continuous. 
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When there are more than two categories the analysis is called multinomial or polychotornous 
logistic regression or MLOGIT, and there is more than one logistic regression model/equation. In  fact. 
like discriminant analysis, there are as many models (equations) as there are degrees of freedom for 
the outcome categories; the number of models is equal to the number of categories minus one. 

When the outcome is ordered, the first equation finds the probability that a case is above the 
first (lowest) category. The second equation finds the probability that the case is above the second 
category. and so,forth, as seen in Equation 10.13. 

where u is the linear regression equation as in Equation 10.1, Y is the outcome, and j 
indicates the category. 

An equation is solved for each category except the last, since there are no cases above the last cate- 
gory. (SAS LOGISTIC bases the equations on the probability that a case is below rather than above 
a category, so it is the lowest category that is omitted.) 

When there are more than two categories of outcome, but they are not ordered, each equation 
predicts the probability that a case is (or is not) in a particular category. Equations are built for all cat- 
egories except the last. Logistic regression with this type of outcome is illustrated in the large sam- 
ple example of Section 10.7.3. 

With the exception of SPSS LOGISTIC REGRESSION, which analyzes only two-category 
outcomes, the programs handle multiple-category outcomes but have different ways of summarizing 
the results of multiple models. Multiple-category outcomes are handled by SPSS NOMREG, avail- 
able slnce Version 9.0, and PLUM, available since Version 10.0. 

SPSS NOMREG assumes unordered categories; SPSS PLUM assumes ordered categories. 
Classification and prediction success tables (cf. Section 10.6.6) are used to evaluate the success of 
the equations taken together. 

SAS LOGISTIC treats categories in all multinomial models as ordered; there is no provision 
for unordered categories. The logistic regression coeficients for individual predictors are for the 
combined set of equations. Classification and prediction success tables and effect size measures are 
used to evaluate the set of equations as a whole. Parameter estimates for unordered models may be 
approximated by running analyses using two categories at a time. For example, if there are three 
groups, an analysis is done with groups 1 and 3, and another analysis with groups 2 and 3. 

Of course, it is always possible to reduce a multinomial/polychotomous model to a two-category 
model if that is of research interest. Simply recode the data so that one category becomes the response 
category and all of the others are combined into the "reference" category. Section 10.7.3 demonstrates 
analysis by SPSS NOMREG with unordered outcome categories. 

Table 10.9 shows the analysis of a data set through SAS LOGISTIC, which assumes that 
response categories are ordered. This is an analysis of the frequency with which psychotherapists 
reported that they had been sexually attracted to the therapists in their own psychotherapy.' Higher 
numbered categories represent greater frequency of sexual attraction (0 = not at all, etc.). Predictors 

I 
! ' ~ o s t  psychotherapists undergo psychotherapy themselves as part of their traininp. 
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TABLE 10.9 Logistic Regression with Ordered Categories (Syntax and SAS 1,OGISTIC Output) 

p r o c  l o g i s t i c  data=SASUSER.LOGMULT; 
mode l  ATTRACT = AGE S E X  THEORET; 

run; 

Response P r o f i l e  

. O r d e r e d  
V a l u e  

T o t a l  
ATTRACT F r e q u e n c y  

NOTE: 112 o b s e r v a t i o n ( s )  were  d e l e t e d  due t o  m i s s i n g  v a l u e s  f o r  
t h e  r e s p o n s e  o r  e x p l a n a t o r y  v a r i a b l e s .  

Mode l  Conve rgence  S t a t u s  ! 
Conve rgence  c r i t e r i o n  (GCONV=lE-8) s a t i s f i e d .  

S c o r e  T e s t  f o r  t h e  P r o p o r t i o n a l  Odds A s s u m p t i o n  

C h i - s q u a r e  D F P r  > Ch iSq  

12 .9147  9  0 .1665 

M o d e l  F i t  S t a t i s t i c s  

T - + - n r - . . . t  
A l l L s I  L C W L  

I n t e r c e p t  a n d  
C r i t e r i o n  O n l y  C o v a r i a t e s  

A I C  836.352 805.239 
S C 851 .940 832.519 
-2 Log L  828.352 791.239 

The LOGISTIC P r o c e d u r e  I 
T e s t i n g  G l o b a l  N u l l  H y p o t h e s i s :  BETA=O I 

I 
T e s t  C h i - s q u a r e  D F P r  > C h i S q  I 
L i k e l i h o o d  R a t i o  37 .1126 3  < .0001  
S c o r e  35 .8860  3 <.  0 0 0 1  
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I TABLE 10.9 Continued 

I A n a l y s i s  of M a x i m u m  L i k e l i h o o d  E s t i m a t e s  

S t a n d a r d  Wa l d  
P a r a m e t e r  D F  E s t i m a t e  E r r o r  C h i - s q u a r e  P r  > ChiSq 

I n t e r c e p t 0  1 0.0653 0.7298 0.0080 0.9287 
I n t e r c e p t ' l  1 0.4940 0.7302 0.4577 0.4987 
I n t e r c e p t 2  1 1.4666 0.7352 3.9799 0.0460 
I n t e r c e p t 3  1 2.3372 0.7496 9.7206 0.0018 
A G E  1  -0.00112 0.0116 0.0094 0.9227 
SEX 1 -1 . I 2 6 3  0 .2307 23.8463 <. 0001 
T H E O R E T  1  0.7555 0.2222 1 1  - 5 6 1 9  0.0007 

Odds R a t i o  E s t i m a t e s  

P o i n t  9 5 %  Wald 
E f f e c t  E s t i m a t e  C o n f i d e n c e  L i m i t s  

A G E  0 . 9 9 9  0 . 9 7 7  1 . 0 2 2  
SEX 0 . 3 2 4  0 . 2 0 6  0 . 5 1 0  
T H E O R E T  2 .129  1 . 3 7 7  3 . 2 9 0  

A s s o c i a t i o n  o f  P r e d i c t e d  P r o b a b i l i t i e s  a n d  O b s e r v e d  R e s p o n s e s  

P e r c e n t  C o n c o r d a n t  62.5 S o m e r s '  D 0 .317  
P e r c e n t  D i s c o r d a n t  3 0 . 8  Gamma 0 .340  
P e r c e n t  T i e d  6.7 Tau-a 0 . 1 7 7  
P a i r s  36901 c 0 . 6 5 9  

1 are age, sex and theoretical orientatio~i (psychodynamic or notj of the therapist in their own psy- ~ chotherapy 
I 

I The S c o r e  T e s t  f o r  t h e  P r o p o r t i o n a l  Odds  A s s u m p t i o n  (cf. Chapter 11) 
shows that the odds ratios between adjacent outcome categories are not significantly different 
@ = 0 . 1 6 6 4 ) . T h e L i k e l i h o o d  R a t i o t e s t i n t h e T e s t i n g  G l o b a l  N u l l . .  . tableshows 
a significant difference between the constant-only model and the full model, indicating a good model 
fit with the set of three predictors (covariates). 

The following table in the output shows W a 1 d tests for the three predictors, indicating that 
S E X  and T H E 0 R E T i c a 1 orientation, but not AGE, significantly predict response category. 
E s t i m a t e s f o r Pa r a me t e r s show direction of relationships between predictor and out- 
come variables (recall that SAS LOGISTIC solves for the probability that a response is below a par- 
ticular category). Thus the negative value for SEX indicates that male therapists are associated with 
lower numbered categories (less frequently sexually attracted to their own therapists): the positive 
value for theoretical orientation indicates that psychodynamically oriented therapists are associated 
with higher numbered categories (more frequently sexually attracted to their own therapists). Note 
that A G E  1s not a significant pred~ctor in this model In which categories are ordered and parameter 
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estimates are combined over all categories. Again. measures of associ:ltion between the set of pre- 
dictors and attraction are small. 

10.6.6 Classification of Cases 

One method of assessing the success of a model is to evaluate its ability to predict correctly the out- 
come category for cases for whom outcome is known. If a case has hay fever, for instance, we can 
see if the case is correctly classified as diseased on the basis of degree of stuffiness, temperature, geo- 
graphic area, and season. Classification is available for two-category outcomes only. 

As in hypothesis testing, there are two types of errors: classifying a truly nondiseased individ- 
ual as diseased (Type I error or false alarm) or classifying a truly diseased individual as nondiseased 
(Type I1 error or miss). For different research projects, the costs associated with the two types of 
errors may be different. A Type 11 error is very costly, for instance, when there is an effective treat- 
ment, but the case will not receive it if classified nondiseased. A Type I error is very costly, for 
instance, when there is considerable risk associated with treatment, particularly for a nondiseased 
individual. Some of the computer programs allow different cutoffs for asserting "diseased" or 
"nondiseased." Because extreme cutoffs could resalt in everyone ot Iio one being classified as dis- 
eased, intermediate values for cutoffs are recommended, but these can be chosen to reflect the rela- 
tive costs of Type I and Type I1 errors. However, the only way to improve the overall accuracy of 
classification is to find a better set of predictors. 

Because the results of logistic regression analysis are In terms of probability of a particular 
outcome (e.g., having hay fever), the cutoff chosen for assignment to a category is critical in evalu- 
ating the success of the model. 

Classification is available only for two-category outcomes through SAS LOGISTIC. However, 
the program does allow specification of the cutoff criterion, and prints results for many additional 
cutoff criteria. The classification procedure in SAS LOGISTIC includes jackknifing (cf. Section 
9.6.7.2). 

SPSS LOGISTIC REGRESSION, which analyzes data with two-outcome categories only. 
prints a classificatior, table by default; assignment is based on a cutoff probabilitji criterion of .5. 
Although the criterion cannot be changed in SPSS. the CLASSPLOT instruction produces a hi+ 
togram of predicted probabilities, showing whether incorrectly classified cases had probabilities 
near the criterion. SPSS LOGISTIC REGRESSION also has a SELECT instruction, by which cer- 
tain cases are selected for use in computing the equations. Classification is then performed on all of 
the cases in a form of cross validation. This offers a less biased estimate of the classification results. 
SPSS NOMREG classifies cases into the category with the highest predicted probability. 

10.6.7 Hierarchical and Nonhierarchical Analysis 

The distinction between hierarchical and nonhierarchical logistic regression is the same as in multi- 
way frequency analysis. When interactions among predictors are included in a model,* the model is 
hierarchical if all main effects and lower order interactions of those predictors are also included in 
the model. 

RHosrner and l.,erneshow (3-000) discuss issues wrrounding the use of interactions in a model, particularly the problem of 
adjusting & - -  ,.,,, ,---fi,, L,,,,~u~,,u;nS ,-,i. - ..- (coc.aiiatcsi in the preseilce of iiiterzctions (pp.  70-74). 
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In most prugranib. interactions are specified in the MODEL Instruction. uslng a comentlon in  
which interaction components are joined by asterisks (e.g.. XlX:X7). However. SXS LOGISTIC 
requires creation of a new variable in the DATA step to form an interaction, which is then used like 
any other variable in the mode 1 instruction. 

All of the reviewed programs allow nonhierarchical models, although Steinberg and Colla 
(199 1) advise against including interactions without their main effects. 

10.6.8 Importance of Predictors 

The usual problems of evaluating the importance of predictors in regression apply to logistic re- 
gression. Further, there is no comparable measure to sr? in logistic regression. One strategy is to 
evaluate odds ratios: The statistically significant predictors that change the odds of the outcome the 
most are interpreted as the most important. That is, the farther the odds ratio from I, the more influ- 
ential the predictor. 

I Another strategy is to calculate standardized regression coefficients comparable to the P 
I weights in multiple regression. These are not available in most statistical packages; the standardized 

estimates offered by SAS LOGISTIC are only partially standardized and more likely to wander out- 1 side the bounds of - 1 and I than fully standardized coefficients (Menard, 2001, p. 55) .  The simplest 
! 

way to get standardized regression coefficients is to standardize the predictors before the analysis, 
and then interpret the coefficients that are produced as standardized. 

I 
I 10.6.9 Logistic Regression for Matched Groups 
I 

I 
Although usually logistic regression is a between-subjects analysis, there is a form of it called con- 
ditional logistic regression for matched subjects or case-control analysis. Cases with disease are 
matched by cases without disease on variables such as age, gender, socioeconomic status, and so 

I 
I 

forth. There may be only one niatchcd controi subject for each disease subject, or more than one 

i matched control for each disease subject. When there is only one matched control subject the out- 

j come has two categories (disease and centre!), while multiple matched control siibjects lead to mui- 
tiple outcome categories (disease, controll, control2. etc.). The model is, as nsua!, based en the 

1 predictors that are included, but there is no constant (or intercept). 

i SAS LOGISTIC uses a conditional logistic regression procedure for case-control studies with 

I a single control by specifying no i n t (no intercept) and requires that each matched pair be trans- 

I formed into a single observation, where the response variable is the difference in scores between 

l each case and its control. SPSS NOMREG also uses a procedure in which the outcome is the differ- 

I ence between each case and its control and the intercept is suppressed. 

10.7 Complete Examples of Logistic Regression 

Data for these analyses are from the data set described in Appendix B. Two complete examples are 
demonstrated. The first is a simple direct logistic regression analysis, in which work status (employed 
vs. unemployed) 1s the two-category outcome that is predicted from four attitudinal cariables through 
SAS LOGISTIC. 
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The second analysis is Inore complex. involving three categories of outcome and sequential 
entry of predictors. The goal In the second analysis is to predict membership in one of three 

I 

categories of outcome formed from work status and attitude toward that status. Variables are entered 
in two sets: demographic and then attitudinal. The major question is whether attitudinal variables 
significantly enhance prediction of outcome after prediction by demographic variables. Demo- 
graphic variables include a variety of continuous, discrete and dichotomous variables: marital statis I 

I 
(discrete), presence of children (dichotomous), religious affiliation (discrete), race (dichotomous), 
socioeconomic level (continuous), age (continuous), and attained educational level (continuous). I I 
The attitudinal vari,ables used for both analyses are all continuous; they are locus of control, attitude 
toward current marital status, attitude toward role of women, and attitude toward housework. (Note 
that prediction of outcome in these three categories on the basis of attitudinal variables alone is 
addressed in the large sample discriminant analysis of Chapter 9.) This analysis is run through SPSS 
NOMREG. Data files for both analyses are LOGREG.". Linearity in the logit is tested separately for 
each analysis. 

10.7.1 Evaluation of Limitations 

10.7.1.1 Ratio of Cases to Variables and Missing Data 

Sections 10.7.2 and 10.7.3 show no inordinately large parameter estimates or standard errors. There- 
fore, there is no reason to suspect a problem with too many empty cells or with outcome groups per- 
fectly predicted by any variable. Table 10.10 shows an SPSS MVA run to investigate the pattern 
missing data and evaluate its randomness after declaring that values of zero on SEL are to be con- 
sidered missing. All variables to be used in either analysis are investigated, with categorical variables 
identified. The EM algorithm is chosen for imputing missing values, and a full data set is saved to a I 
file labeled LOGREGCSAV. Separate variance t tests, in which the grouping variable is missing vs. I I 
nonmisslng, are requested for all quantitative (continuous) variables that are missing 1% or  more of 1 
their values. Although there is some concern about bias associated with the SPSS MVA implemen- I 

tation of EM, the number of missing valueb here (about 5%) is iow enough that parameter estimates 1 
I 

TABLE 10.10 Analysis of Missing Values Through SPSS MVA (Syntax and Selected Output) 

RECODE AGE SEL (0 = SYSMIS). 
MVA 

CONTROL ATMAR AlTROLE SEL ATTHOUSE AGE EDUC WORKSTAT MARITAL CHILDREN 
RELIGION RACE 
/MAXCAT = 25 
/CATEGORICAL = WORKSTAT MARITAL CHILDREN RELIGION RACE 
AVOUNIVARIATE 
ATEST PRO0 PERCENT=l 
/CROSSTAB PERCENT=l 
IMPATTERN DESCRIBE=CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC WORKSTAT 
MARITAL CHILDREN RELIGION 
/EM (TOLERANCE=0.001 CONVERGENCE=0.0001 ITERATIONS=25 
OUTFILE='C:\DATA\BOOK.5TH\LOGISTIC\LOGREGC.SAV'). 
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TABLE 10.10 Continued 
-- -- 

MVA 
Separate Variance t Testsa 

I For each quantitative variable, pairs of groups are formed by indicator variables (present, 
missing). 

1 alndicator variables with less than 196 missing are not displayed. 
I 
I 

i Crosstabulations of Categorical Versus Indicator Variables 
! 
I WOR KSTAT 

t 
d f 
P(2-tail) 

cr # Present 
# Missing 
Mean(Present) 

4 Mean(Missing) 

t 
d f 
P(2-tail) 
# Present 
# Missing 

-1 Mean(Present) 
$ Mean(Missing) 

t- z 
8 

.6 
4.5 

,582 
459 

5 
6.7495 
6.6000 

.O 
11.4 
.996 
452 

12 
6.7478 
6.7500 

I Indicator variables with less than !Oh missing are not displayed. 

1 
I 
I 

a: 
a 
2 
I- 
k 

460 
0 

22.9804 
. 

-.6 
10.3 
.532 
449 

11 
22.9287 
25.0909 

W 

i 
t- 
k 

3.3 
4.2 

.027 
460 

5 
35.2065 
28.6000 

-.4 
11.8 
.686 
453 

12 
35.1 170 
35.8333 

-1 

a 
W 

1.8 
3.0 

.I64 
449 

4 
52.701 6 
28.5000 

453 
0 

52.4879 
. 

ATTMAR Present Count 
Percent 

Missing % SysMis 
SEL Present Count 

Percent 
Missing '10 SysMis 

- 

- a 
CI 

P 

460 
98.9 

1 .I 
453 
97.4 
2.6 

- 

u 
Q) 
G 03 
0 3 0  

[5) 
c 

W 
a 
r) 
0 
I 

6 
-1.1 

4.2 
.336 
459 

5 
23.5251 
25.0000 

w.3 
11.5 
.786 
452 

12 
23.531 0 
23.9167 

242 
98.4 

1.6 
243 
38.8 

1.2 

W 

8 
.O 

4.2 
.995 
456 

5 
4.3947 
4.4000 

-2.3 
11.5 
.040 
449 

12 
4.3541 
5.91 67 

137 
100.0 

0 
3 
n 
W 

-. 1 
4.0 

.914 
460 

5 
13.2391 
13.4000 

.8 
11.2 
.463 
453 

12 
13.2605 
12.5000 

81 
98.8 

.O 1.2 
132 1 78 

- 
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T.&RLE 10.10 Continued 
- - 

EM Estimated Statistics 

i aLittle's MCAR test: Chisquare = 38.070, df = 35, Prob = .331 

I 

CONTROL 
ATTMAR 
ATTROLE 
SEL 
ATTHOUSE 
AGE 
EDUC 

I 
are expected to be appropriate even though standard errors are inflated. Results of inferential statis- 
tics will be interpreted with caution. 

The Separate Variance t Tests show for the two quantitative variables with I % or more values 
missing (ATT'MAR and SEL), the relationship between missingness and other quantitative variables. 
For example, there is a suggestion that whether data are missing on ATTMAR might be related to A m -  
ROLE, r (4.2) = 3.3, p = .027. However, an adjustment for familywise Type I error rate for the 6 t tests 

I for each variable places criterioii u = ,008 for each test. Using this criterion, there is no womsome rela- 
I 
i tionship between missing data on ATTMAR or SEL and any of the other quantitative variables. 
I The relationship between missingness on ATTMAR and SEL and the categoricai variabies is 

1 in the section labeled Crosstabulations of Categorical Versus Indicator \!zriab!es. On!y the 
I table for WORKSTAT is shown, and there is no great difference among groups in percentages miss- 
I 

j ing for the two variabies. 
The Missing Patterns table shows, for each case with at least one missing value, the vari- 

ab le(~)  on which data are missing, variables on which the case has an extreme valu-e as  indicated by 
a quartile criterion, and the values for that case on all other variables. Note that 3 of the cases are 
missing values on RELIGION, a categorical variable. These missing values are not imputed. 

The most critical part of the output is Little's MCAR test, which appears at the bottom of the EM 
Correlations table. This shows that there is no significant deviation from a pattern of values that are 
"missing completely at random," X2(35 )  = 38.07, p = .331. Thus, there is support for imputation of 
missing values using the EM algorithm. Remaining analyses use the data set with imputed values. 

-1 

B + 
0 = 
0 

1 .OOO 
.I95 
,001 
-.I32 
185 
-.I26 
-.092 

Analyses in Sections 10.7.2 and 10.7.3 show no problem with convergence, nor are the standard 
errors for parameters exceedingly !arge. Therefore, no mi;!ticnllineariiy is eviderii. 
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Sect~ons 10.7.7 and 10.7.3 show adequate model tits. Therefore, there is no need to search for out- 
liers in the solution. 

10.7.2 Direct Logistic Regression with Two-Category Outcome 
and Continuous Predictors 

This analysis uses only two of the three WORKSTAT categories, therefore WORKSTAT needs to be 
recoded. Table 10.1 1 shows the syntax to create a new file, LOGREG from the original file, 
LOGREGCC. 

10.7.2.1 Limitation: Linearity in the Logit 

The main analysis has four continuous attitudinal variables. Interactions between each predictor and 
its natural log are added to test the assumption. SAS Interactive Data Analysis is used to create inter- 
actions between continuous variables and their natural logarithms (not shown) and add them to the 
data set. which is saved as LOGREGIN. In Table 10.12, a two-category direct logistic regression 
analysis is performed with the four original continuous variables and four interactions as predictors, 
using the new data set which also has recoded values for WORKSTAT. 

The only hint of violation is for ATTROLE, with Pr > ChiSq = .0125. However, a reason- 
able criterion for determining significance for this test with nine terms is cu = .05/9 = .006. There- 
fore, the model is run as originally proposed. 

10.7.2.2 Direct Logistic Regression with Two-Category Outcome 

Table 10.13 shows the results of the main direct logistic regression analysis with two outcomes. The 
instructions for the SAS LOGISTIC run include a request for 95% confidence intervals around odds 
ratios ( C L 0 D D S = W A L D) and tables showing success of prediction ( C TAB L E). 

The sampie is split into 245 working women (coded 0) and 2 i7  housewives (coded 1).  The 
cemparisen ef the c~xstafit-only mode! with the h!! mode! (l i k e ! i h G o d R a t i o )  shows a 
highly significant probability value, X2(4, N = 440) = 23.24, p < .0001, indicating that the predic- 
tors, as a set, reliably predict work status. 

The table of parameters shows that the only successful predictor is attitude toward role of 
women; working women and housewives differ significantly only in how they view the proper role 

TABLE 10.11 SAS DATA Syntax for Recoding WORKSTAT 
into Two Categories 

d a t a  S a s u s e r - L o g r e g ;  
s e t  S a s u s e r - L o g r e g c c ;  
i f  WORKSTAT='l t h e n  WORKSTAT=O; 
i f  WORKSTAT=3 o r  WORKSTAT=2 t h e n  WORKSTAT=I; 

r u n ;  
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'T.\BLE 10.12 Direct Logistic Regression to Test Linearity in the Logit ISAS Data and 1,ogistic 
Syntax and Selected Logistic Output) 

p r o c  l o g i s t i c  d a t a = S a s u s e r . L o g r e g i n ;  
mode l  WORKSTAT = CONTROL ATTMAR ATTROLE ATTHOUSE LIN-CTRL 

LIN-ATMR LIN-ATRL LIN-ATHS; 
run ;  

The LOGISTIC P r o c e d u r e  

I A n a l y s i s  o f  Maximum L i k e l i h o o d  E s t i m a t e s  

I Parameter  O F  E s t i m a t e  E r r o r  Ch i - squa re  P r  > ChiSq 

I n t e r c e p t  
CONTROL 
ATTMAR 
ATTROLE 
ATTHOUSE 
LIN-CTRL 
LIN-ATMR 
LIN-ATRL 
LIN-ATHS 

of women. Nonsignificant coefficients are produced for locus of control, attitude toward marital sta- 
tus, and attitude toward housework. The negative coefficient for attitude toward the role of women 
means that working women (coded 0: see P r o b a b i  li t y  m o d e l e d  i s  W O R K S T A T = O )  
have lower scores on the variable, indicating more liberal attitudes. A d  j u s t e d  0 dd s R a  t i o  s 
are omitted here because they duplicate the nonadjusted ones. (Note that these findings are consis- 
tent with the results of the contrast of working women vs. the other groups in Table 9.12 of the dis- 
criminant analysis.) Somers' D indicates about 7% (.263: = .07) of shared variance between work 
status and the set ef  predict^:^. Using S:ciger and Foiiladi's ( i  992) software (cf. Figure 9.3), the 95% 
confidence interval ranges from .03 to .12. Thus, the gain in prediction is unimpressive. 

SAS LOGISTIC uses jackknife classification in the C 1 a  s s i f i c a  t i o n  Tab 1 e. At a 
P r o b  Leve  1 of 0.500, the correct classification rate is 57.8%. Sensitivity is the proportion of 
cases in the "response" category (working women coded 0) correctly predicted. Specificity is the 
proportion of cases in the "reference" category (housewives) correctly predicted. 

Because of difficulties associated with the Wald test (cf. Section 10.6.1.2), an additional run is 
prudent to evaluate the predictors in the model. Another SAS LOGISTIC run (Table 10.14) evaluates 
a model without attitude toward women's role. Applying Equation 10.7, the difference between that 
model and the model that includes ATTROLE is: 

with df = I , p < .01, reinforcing the finding of the Wald teqt that attitude toward women's role sig- 
nificantly enhances prediction of work status. Note also that Table 10.13 shows no statistically 



TABLE 10.13 Syntax and Output of SAS LOGISTIC for Logistic Regression Analysis of Work 
Status with Attitudinal Variables 

p r o c  L o g i s t i c  d a t a = S a s u s e r . L o g r e g i n ;  
m o d e l  WORKSTAT = CONTROL ATTMAR ATTROLE ATTHOUSE 1 CTABLE 

CLOVDS=WALD; 
r u n ;  

R e s p o n s e  P r o f i l e  

O r d e r e d  T o t a l  
V a l u e  WORKSTAT F r e q u e n c y  

P r o b a b i l i t y  m o d e l e d  i s  WORKSTAT=O. 

M o d e l  F i t  S t a t i s t i c s  

I n t e r c e p t  
I n t e r c e p t  a n d  

C r i t e r i o n  O n l y  C o v a r i a t e s  

A I C  6 4 0 . 7 7 0  625 .534  
S C 644 .906  646 .212  
-2 L o g  L 638 .770  61 5 .534  

T e s t i n g  G l o b a l  N u l l  H y p o t h e s i s :  BETA=O 

T e s t  C h i  - S q u a r e  D F P r  > C h i S q  

L i k e l i h o o d  R a t i o  23 .2362  4  0 .0001  
S c o r e  22.7391  4  0 .0001  
Wa l d  21 .7498 4  0 . 0 0 0 2  

A n a L y s i s  o f  Maximum L i k e L i h o o d  E s t i m a t e s  

S t a n d a r d  W a l d  
P a r a m e t e r  DF E s t i m a t e  E r r o r  C h i - s q u a r e  P r  > C h i S q  

I n t e r c e p t  1  3 .1964  0 .9580  11 - 1 3 1 9  0 . 0 0 0 8  
CONTROL 1  -0 .0574  0 .0781  0 .5410  0 . 4 6 2 0  
ATTMAR 1  0 . 0 1 6 2  0 .0120  1 .8191  0 . 1 7 7 4  
ATTROLE 1  -0 .0681  0 .01  55 19 .2977  <. 0001 
ATTHOUSE 1  -0 .0282  0 .0238  1 . 4 0 0 2  0 . 2 3 6 7  

Odds R a t i o  E s t i m a t e s  

E f f e c t  

CONTROL 
ATTMAR 
ATTROLE 
ATTHOUSE 

P o i n t  95% Wa Ld 
E s t i m a t e  C o n f i d e n c e  L i m i t s  
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TABLE 10.13 Continued 

A s s o c i a t i o n  o f  P r e d i c t e d  P r o b a b i l i t i e s  a n d  O b s e r v e d  R e s p o n s e s  

P e r c e n t  C o n c o r d a n t  62.9 S o m e r s '  D 0.263 
P e r c e n t  D i s c o r d a n t  36.6 Gamma 0.265 
P e r c e n t  T i e d  0.5 Tau-a 0.131 
P a i r s  53165 c 0.632 

C l a s s i f i c a t i o n  T a b l e  

P rob  
Leve 1  

0.200 
0.220 
0.240 
0.260 
0.280 
0.300 
0.320 
0.340 
0.360 
0.380 
0.400 
0.420 
0.440 
0.460 
0.480 
0.500 
0.520 
0.540 
0.560 
0.580 
0.600 
0.620 
0.640 
0.660 
0.680 
0.700 
0.720 
0.740 
0.760 
0.780 
0.800 
0.820 
0.840 

C o r r e c t  
Non- 

Event  Event  

245 . 0 
244 0 
244 0 
244 2 
243 3 
241 5 
237 9 
232 10 
231 15 
226 2 5 
220 3 4 
207 4 8 
197 6 7 
189 7 4 
180 9 0 
164 i03 
151 117 
142 129 
127 138 
114 153 
90 164 
71 185 
53 196 
39 201 
28 208 
16 214 
9 215 
7 216 
2 216 
1 21 6 
1 21 6 
0 216 
0 217 

I n c o r r e c t  
Non- 

Event  Event  

21 7 0 
21 7 1 
21 7 1 
21 5 1 
21 4 2 
21 2 4 
208 8 
207 13 
202 14 
192 19 
183 2 5 
169 38 
150 4 8 
143 56 
'i 27 6 5 
-1 14 81 
198 8 4 
88 103 
79 118 
64 131 
53 155 
32 174 
2 1 192 
16 206 
9 217 
3 229 
2 236 
1 238 
1 243 
1 244 
1 244 
i 245 
0 245 

C o r r e c t  

53.0 
52.8 
52.8 
53.2 
53.2 
53.2 
53.2 
52.4 
53.2 
54.3 
55.0 
55.2 
57.1 
56.9 
58.4 
57.8 
58.0 
58.7 
57.4 
57.8 
55.0 
55.4 
53.9 
51.9 
51 .I 
49.8 
48.5 
48.3 
47.2 
47.0 
47.0 
46.8 
47.0 

Percentages 
Sensi-  Spec i -  
t i v i t y  f i c i t y  

100.0 0.0 
99.6 0.0 
99.6 0.0 
99.6 0.9 
99.2 1.4 
98.4 2.3 
96.7 4.1 
94.7 4.6 
94.3 6.9 
92.2 11.5 
89.8 15.7 
84.5 22.1 
80.4 30.9 
77.1 34.1 
73.5 41.5 
66.9 47.5 
57.6 53.9 
58.0 59.4 
51.8 63.6 
46.5 70.5 
36.7 75.6 
29.0 85.3 
21.6 90.3 
15.9 92.6 
11.4 95.9 
6.5 98.6 
3.7 99.1 
2.9 99.5 
0.8 99.5 
0.4 99.5 
0.4 99.5 
0.0 99.5 
0.0 100.0 

F a l s e  
POS 

47.0 
47.1 
47.1 
46.8 
46.8 
46.8 
46.7 
47.2 
46.7 
45.9 
45.4 
44.9 
43.2 
43.1 
41.4 
41 .O 
39.5 
38.3 
38.3 
36.0 
37.1 
31 .I 
28.4 
29.1 
24.3 
15.8 
18.2 
12.5 
33.3 
50.0 
50.0 
100.0 

F a l s e  
NEG 

100.0 
100.0 
33.3 
40.0 
44.4 
47.1 
56.5 
48.3 
43.2 
42.4 
44.2 
41 -7 
43.1 
41.9 
44.0 
44.5 
44.4 
46.1 
46.1 
48.6 
48.5 
49.5 
50.6 
51 .I 
51.7 
52.3 
52.4 
52.9 
53.0 
53.0 
53.1 
53.0 
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T.4BLE 10.14 Syntax and Selected SAS LOGISTIC Output for 1Iodel That Excludes ATTROLE 

p r o c  L o g i s t i c  d a t a = S a s u s e r . L o g r e g i n ;  
m o d e l  WORKSTAT = CONTROL ATTMAR ATTHOUSE; 

r u n ;  

The  LOGISTIC P r o c e d u r e  

M o d e l  F i t  S t a t i s t i c s  

I n t e r c e p t  
I n t e r c e p t  a n d  

C r i t e r i o n  O n l y  C o v a r i a t e s  

A I C  640.770  644 .002  
.S C 644.906  660 .544  
-2 L o g  L 638 .770  636 .002  

significant difference between the model with the three remaining predictors and the constant-only 
model, confirming that these predictors are unrelated to work status. 

Table 10.15 summarizes the statistics for the predictors. Table 10.16 contains a checklist for 
direct logistic regression with a two-category outcome. A Results section follows that might be 
appropriate for submission to a journal. 

TABLE 10.15 Logistic Regression Analysis of Work Status as 
a Function of Attitudinal Variables 

Variables 

95 % Confidence 
Interval for 
Odds Ratio 

Wald Chi- Odds 
B Square Ratio Lower Upper 

Locus of control -0.06 0.54 0.94 0.8 1 1.10 

Attitude toward 
marital status 0.02 1.82 1.02 0.99 1.04 

Attitude toward 
role of women -0.07 19.30 0.93 0.9 1 0.96 

Attitude toward 
housework -0.03 1.10 0.97 0.93 1.02 

(Constant) 3.20 11.13 



I 
T.-\BI,E 10.16 Checklist for Standard Logistic Regression ~ i t h  
Dichotonious Outcome 

1 .  Issues 

a. Ratio of cases to variables and missing data 

b. Adequacy of expected frequencies (if necessary) 

c. Outliers in the solution (if fit inadequate) 

d. Multicolliinearity 

e. Linearity in the logit 

2. Major analysis 

a. Evaluation of overall fit. If adequate: 

( I )  Significance tests for each predictor 

(2) Parameter estimates 

b. Effect size for model 

I c. Evaluation of models without predictors 

3. Additional analyses 

a. Odds ratlob 

b. Classification or predict~on success table 

I c. Interpretation in terms of means and/or percentages 

Resl-ll ts 

a A: ram+ --; -&: - ------ --- - UILGLL lVYL~~.~~ reyressiun analysis was performed on work 

status as outcome and four attitadinal predictors: locus of con- 

trol, attitude toward current marital status, attitude toward 

women's role, and attitude toward housework. Analysis was per- 

formed using SAS LOGISTIC. Twenty-two cases with missing values on 

continuous predictors were imputed using the EM algorithm through 

SPSS MVA after finding no statistically significant deviation 

from randomness using Little's MCAR test, p = .331. After deletion 

of 3 cases with missing values on religious affiliation, data from 



462 women were available for analysis: 217 housewives and 245 

women who work outside the home more than 20 hours a week for pay. 

A test of the full model with all four predictors against a 

constant-only model was statistically significant, x2 (4, N = 440) 

= 23.24, < .001, indicating that the predictors, as a set, reli- 

ably distinguished between working women and housewives. The 

variance in work status accounted for is small, however, with 

McFaddenls D = .263, with a 95% confidence interval for the effect 

size of .07 ranging from .02 to -12 using Steiger and Fouladi's 

(1992) R2 software. Classification was unimpressive, with 67% of 

the working women and 48% of the housewives correctly predicted, 

for an overall success rate of 58%. 

Table 10.15 shows regression coefficients, Wald statistics, 

odds ratios, and 95% confidence intervals for odds ratios for each 

of the four predictors. According to the Wald criterion, only 

attitude toward role of women reliably predicted work status, 

x2 (I, N = 440) = 19.30, < .0001. A model run with attitude 

toward role of women omitted was not reliably different from a 

~011st~t-01lly m"de1, h~wever this mdel T:?ZC reli&ly di f f erprrt 

from the full model, x2(1, N = 440) = 20.47, < .001. This con- 

firms the finding that attitude toward women's role is the only 

statistically significant predictor of work status among the four 

attitudinal variables. However, the odds ratio of -94 shows little 

change in the likelihood of working on the basis of a one-unit 
I 

1 change in attitude toward women's role. 

Thus, attitude towards the proper role of women in society 

distinguishes between women who do and do not work outside the 

home at least 2C hours per week, but the distinction is not a very 

stror;g or;€. 
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10.7.3 Sequential Logistic Regression 
with Three Categories of Outcome 

The sequential analysis is done through two major runs, one with and one without demographic 
predictors. 

10.7.3.1 Limitations of Multinomial Logistic Regression 

10.7.3.1.1 Adequacy of Expected Freq~lencies 
Only if a goodness-of-fit criterion is to be used to compare observed and expected frequencies 

is there a limitation to logistic regression. As discussed in Section 10.3.2.2, the expected frequencies 
for all pairs of discrete predictors must meet the usual "chi-square" requirements. (This requirement 
is only for this section on sequential analysis because the predictors in the direct analysis are all 
continuous.) 

After filtering out cases with missing data on RELIGION, Table 10.17 shows the results of an 
SPSS CROSSTABS run to check the adequacy of expected frequencies for all pairs of discrete pre- 
dictors. (Only the first 7 tables are shown, the remaining 3 are omitted.) Observed (COUNT) and 
EXPECTED frequencies are requested. 

The last crosstabs in the table show one expected cell frequency under 5: 2.4 for single, non- 
white women. This is the only expected frequency that is less than 5, so that in no two-way table do 
more than 20% of the cells have frequencies less than 5, nor are any expected frequencies less than 
1. Therefore, there is no restriction on the goodness-of-fit criteria used to evaluate the model. 

10.7.3.1.2 Litzecrrity irz the Logit 
An SPSS NOMREG run to test for linearity of the logit is shown in Table 10.18. Interactions 

between continuous variables and their natural logarithms are formed, for example, as 
LIN-SEL=SEL*LN(SEL). Tht: NOMREG instruction identifies workstat as the DV; marital, chil- 
dren. religion, and race as rategnrim! "faaers" (discrete pi-ebictors, fd10'~iiig the B'T' instruction); 
and the remaining variables as covariates (continuous predictors, following the WITH instruction). 
The added interactions are included as covariates. The MODEL includes main effects by default; 
interactions among original predictors may be included by request. 

Table 10.18 shows no serious violation of the assumption of linearity of the logit. 

10.7.3.2 Sequential Multinornial Logistic Regression 

Table 10.19 shows the results of logistic regression analysis through SPSS NOMREG predicting the 
three categories of outcome (working, role-satisfied housewives, and role-dissatisfied housewives) 
from the set of seven demographic variables. This is a baseline model, used to evaluate improvement 
in the model when attitudinal predictors are added. That is, we are interested in evaluating the pre- 
dictive ability of attitudinal variables after adjusting for demographic differences. Only minimal out- 
put-goodness-of-fit and classification-1s requested for this baseline model. 



TABLE 10.17 Sjntax and Partial Output of SPSS CROSSTABS for Screening 
All Two-Way Tables for Adequacy of Expected Frequencies 

USE ALL. 
COMPUTE FILTER-$=(RELIGION < 9). 
VARIABLE LABEL FILTER-$ 'RELIGION < 9 (FILTER)'. 
VALUE LABELS FILTER-$ 0 'NOT SELECTED' 1 'SELECTED'. 
FORMAT FILTER-$ (F1.O). 
FILTER BY FILTER-$. 
EXECUTE. 
CROSSTABS 

/TABLES=MARITAL CHILDREN RELIGION RACE BY WORKSTAT 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED. 

CROSSTABS 
/TABLES=CHILDREN RELIGION RACE BY MARITAL 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED. 

Crosstabs 

Current marital status * Current work status Crosstabulation 

Presence of children * Current work status Crosstabulation 

- - 

Total 

31 
31.0 

359 
359.0 

72 
72.0 

462 
462.0 

Current Single Count 
marital Expected Count 
status -- 

Married Count 
Expected Count 

Broken Count 
Expected Count 

Total Count 
Expected Count 

Total 

82 
82.0 

380 
380.0 

462 
462.0 

Presence No Count 
of children Expected Count 

Yes Count 
Expected Count 

Total Count 
Expected Count 

Current work status 

Working 

24 
16.4 

168 
190.4 

53 
38.2 

245 
245.0 

Current work status 

Working 

57 
43.5 

188 
201.5 

245 
245.0 

Role-satisfied 
housewives 

3 

Role-dissatisfied 
housewives 

4 

Role-satisfied 
housewives 

1.3 
24.0 

122 
111.0 

135 
135.0 

Role-dissatisfied 
housewives 

12 
14.6 

70 
67.4 

82 
82.0 

9.1 1 5.5 

127 
104.9 

5 
21 .O 

135 
135.0 

64 
63.7 

14 
12.8 

82 
82.0 



TABLE 10.17 Continued 

Religious affiliation " Current work status Crosstabulation 

Protestant Count 

-- 

RACE * Current work status Crosstabulation 
b 

R.ACE White Count 
Expected Count 

Non-white Count 
Expected Count 

Total Count 
Expected Count 

--- Current work status 

Role-satisfied Role-dissatisfied 
Working housewives housewives 

21 8 131 73 
223.8 123.3 74.9 - 

27 4 9 
21.2 11.7 7.1 -- 
;!45 135 82 

245.0 1 35.0 82.0 

Total 

422 
422.0 

40 
40.0 

462 
462.0 
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TABLE 10.17 Continued 

Presence of children * Current marital status Crosstabulation 
- -- 

Religious affiliation * Current marital status Crosstabulation 

Presence No Count 
of children . Expected Count 

Yes Count 
Expected Count 

Total Count 
Expected Count 

RACE * Current marital status Crosstabulation 

Religious None-or-other Count 
affiliation Expected Count 

Catholic Count 
Expected Count 

Protestant Count 
Expected Count 

Jewish Count 
Expected Count 

Total Count 
Expected Count 

Total 

82 
82.0 

380 
380.0 

462 
462.0 

Current marital status 

Single 

29 
5.5 

2 
25.5 

3 1 
31 .O 

Total 

76 
76.0 

119 
1 19.0 

175 
175.0 

Current marital status 

Married 

38 
63.7 

32 1 
295.3 

359 
359.0 

Single 

9 
5.1 

4 
8.0 

9 
11.7 

Broken 

15 
12.8 

57 
59.2 

72 
72.0 

Married 

48 
59.1 

98 
92.5 

136 
136.0 

77 
6.2 I 71.5 

Broken 

19 
11.8 

17 
18.5 

30 
27.3 

31 
31 .O 

92 
14.3 I 92.0 

359 
359.0 

72 
72.0 

462 
462.0 
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TABLE 10.18 Syntax and Selected Output of SPSS NOhIREC for Test of Linearity 
of the Logit for a Logistic Regression Analysis of Work Status with Demographic 
and Attitudinal Variables 

NOMREG 
WORKSTAT BY MARITAL CHILDREN RELIGION RACE WITH 
CONTROL ATMAR ATTROLE SEL ATTHOUSE AGE EDUC 
LIN-CTRL LIN-ATMR LIN-ATRL LIN-ATHS LIN-SEL LIN-AGE LIN-EDUC 
/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0) 
PCONVERGE(1 .OE-6) SINGULAR(1 .OE-8) 
/MODEL 
/PRINT = LRT. 

Likelihood RatioTests 

The chi-square statistic is the difference in -2 log-likelihoods between 
the final model and a reduced model. The reduced model is formed 
by omitting an effect from the final model. The null hypothesis is that 
all parameters of that effect are 0. 

aThis reduced model is equivalent to the final model because omitting the 
efieci does nor increase the degrees of freedom. 

Effect 
L 

Intercept 
CONTROL 
ATTMAR 
ATTROLE 
SEL 
ATTHOUSE 
AGE 
EDUC 

d f 

0 
2 
2 
2 
2 
2 
2 
2 

Sig. 

.341 

.I46 

.017 

.082 
,205 
.300 
.711 

LlN-CTRL 
LIN-ATMR 
CIN-ATRL 
LIN-ATHS 
LIN-SEL 
LIN-AGE 
LIN-EDUC 
MARITAL 
CHILDREN 
RELIGION 
RACE 

J 

-2 Log 
Likelihood of 

Reduced Model / Chi-square 

781 .627a 
783.778 
785.478 
489.738 
786.633 
784.800 
784.032 
782.31 0 

.OOO 
2.151 
3.851 
8.1 11 
5.006 
3.173 
2.405 

.683 
783.700 1 2.073 1 2l 1 .355 

789.239 785'861 1 4.234 7.612 1 2 
784.925 1 3.298 1 2 1 .I 92 

,058 
.A26 
.746 
.012 
.I37 
.252 
.002 

2 
- 7 

2 
4 
2 
6 
2 

5.703 
787'330 1 1.705 783.332 
782.214 1 ,587 
794.476 12.849 
785.607 
789.446 
494.095 

3.980 
7.81 9 

12.468 
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TABLE 10.19 Syntax and Selected Output of SPSS NOAIREG for Logistic Regression Analysis of 
Work Status with Demographic Variables Only 

NOMREG 
WORKSTAT BY CHILDREN RELIGION RACE MARITAL WITH 
SEL AGE EDUC 
/CRITERIA = CIN.(95) DELTA(0) MXITER(1OO) MXSTEP(5) LCONVERGE(0) 
PCONVERGE(1 .OE-6) SINGULAR(1 .OE-8) 
/MODEL 
/PRINT = CLASSTABLE FIT STEP MFI. 

Model Fitting Information 

-2 Log 
Model Sig. 

Final 832.404 78.055 

Chi-square Sig. 

Pearson 892.292 
Deviance 81 6.920 864 .872 

Classification 

The model provides an acceptable fit to the data. Goodness-of-Fit statistics (comparing 
observed with expected frequencies) with all predictors in the model show good fit with p = 372 by 
the Deviance criterion and with p = ,245 for the Pearson criterion. Correct classification on the basis 
of demographic variah!es Anne is 54% overa!!: with 82% fnr working women (the largest gro~.!p) h1.1t 
no correct classifications for role-dissatisfied housewives. 

Observed 

Working 

Role-satisfied housewives 

Role-dissatisfied housewives 

Overall Percentage 

Predicted 

Working 

200 

86 

59 

74.7% 

Role-satisfied 
housewives 

43 

48 

23 

24.7% 

Role-dissatisfied 
housewives 

2 

1 

0 

.6% 

Percent 
Correct 

81.6% 

35.6% 

.O% 

53.7% 



Table 10.20 \hou.s the result5 of logtstic regression analysis through SPSS NOkIREG predict- 
ing the three categories of outcome (working. role-satisfied housewives. and role-dissatisfied house- 
wives) from the set of seven demographic and four attitudinal variables. For purposes of single-df 
tests (comparisons among groups) the reference (BASE) group is set to the first category, working 

TABLE 10.20 Syntax and Selected Output of SPSS NOMREG for Logistic Regression Analysis of 
Work Status with Demographic and Attitudinal Variables 

NOMREG 
WORKSTAT (BASE=FIRST ORDER=ASCENDING) BY MARITAL CHILDREN RELIGION 

RACE WITH CONTROL ATTMAR ATTROLE SEL ATTHOUSE AGE EDUC 
/CRITERIA = ClN(95) DELTA(0) MXITER(100) MXSTEP(5) LCONVERGE(0) 
PCONVERGE(1 .OE-6) SINGULAR(1 .OE-8) 
/MODEL 
/PRINT = CLASSTABLE FIT PARAMETER SUMMARY LRT CPS MFI . 

I 
Nominal Regression 

I 

Case Processing Summary 

1 aThe dependent variable has only one value observed in 462 (1 OO.Ooh) 

I subpopulations. 

i 
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T;IBLE 10.20 Continued 

Model Fitting Information 

Model Sig. 

806.185 120.334 

Chi-square Sig. 

Pearson 930.126 
Deviance 894 .983 

Pseudo R-Square 

Cox and Snell 
Nagelkerke 
McFadden 

Likelihood Ratio Tests 

The chi-square statistic is the difference in -2 log-likelihoods between the 
final model and a reduced model. The reduced model is formed by omitting 
an effect from the final model. The null hypothesis is that all parameters of 
that effect are 0. 

aThis reduced model is equivalent to the final model because omitting the effect 
does not increase the degrees of freedom. 

Effect d f Sig. 

Intercept 
CONTROL 
ATTMAR 
ATTROLE 
SEL 
ATTHOUSE 
AGE 
EDUC 
MARITAL 
CHILDREN 
RELIGION 
RACE 

-2 Log Likelihood 
of Reduced Model Chi-square 

0 806.246a .000 
807.098 1 .851 1 2 1 .653 

809'404 1 18.166 3.157 1 .206 
824.41 2 
81 3.061 
81 4.700 
81 0.898 
81 3.287 
821.474 
81 0.283 
813.149 
81 7.969 

6.81 4 
8.453 
4.651 
7.040 
15.228 
4.036 
6.903 

1 1.723 

2 
2 
2 
2 
2 
4 
2 
6 
2 

.033 

.015 

.098 

.030 

.004 

.I33 

.330 

.003 



TAB1.E 10.20 Continued 
--- pp - -- - 

Parameter Estimates 

Role- Intercept 
satisfied CONTROL 
housewives AnMAR 

ATROLE 
SEL 
ATHOUSE 
AGE 
EDUC 
[MARITAL=1.00] 
[MARITAL=2.00] 
[MARITAL=3.00] 
[CHILDREN=.OO] 
[CHILDREN=1.00] 
[RELIGION=1.00] 
[RELIGION=2.00] 
[RELIGION=3.00] 
[RELIGiON=4.00] 
[RACE=1.00] 
[RACE=2.00] 

Sig. B 

-4.120 
-.016 
-.012 

.088 

.015 
-.029 
-.091 
-. 126 

551 
1.758 

ob 
-.811 

ob 
.226 

-.620 
-.494 

ob 
1.789 

0" 

I I 95% Confidence I 

Lower 
Bound Bound Std. Error 

1.853 
.I01 
.019 
.022 
.006 
.031 
.063 
.067 
.884 
536 

.419 

.399 

.371 

.328 

.598 

aThis reference category is: Working. 
bThis parameter is set to zero because it is redundant. 

Wald 

4.945 
.025 
.384 

16.479 
6.612 

.911 
2.1 18 
3.526 

,388 
10.761 

3.744 

.321 
2.786 
2.272 

8.938 



TABLE 10.20 Continued 
-- --- -- 

Parameter Estimates 

aThe reference category is: Working 
bThis parameter is set to zero because it is redundant. 

Work 
!statusa 

Hole- Intercept 
dissatisfied CONTROL 
housewives ATMAR 

ATTROLE 
SEL 
ATHOUSE 
AGE 
EDUC 
[MARITAL=1.00] 
[MARITAL=2.00] 
[MARITAL=3.00] 
[CHILDREN=.OO] 
[CHILDREN=I .OO] 
[RELIGION=1.00] 
[RELIGION=2.00] 
[RELIGION=3.00] 
[RELIGION=4.00] 
[RACE=1.00] 
[RACE=2.00] 

Sig. 

.026 

.418 

.I62 

.042 

.400 

.020 

.054 

.027 

.707 

.273 

.441 

.375 

.604 

.954 

.I71 

B 

-4.432 
.088 
.025 
.049 
.005 
.084 

-.I35 
-. 164 
-.280 

.439 
ob 

-.352 
Ob 

-.445 
-.218 
-.023 

ob 
.658 

ob 

E~P(B) 

1.092 
1.025 
1.050 
1.005 
1.087 
.874 
.849 
.756 

1.551 

.704 

.641 
1.244 
1.023 

1.932 

Std. Error 

1.994 
.I08 
.018 
.024 
.006 
.036 
.070 
.074 
.746 
.400 

.456 

.501 

.422 

.393 

,481 

. 95% Confidence 

Wald 

4.940 
.657 

1.958 
4.143 

,709 
5.381 
3.712 
4.864 

.I41 
1.202 

595 

.787 

.268 

.003 

1.875 

Interval 

Lower 
Bound 

.883 

.990 
1.002 
.993 

1.013 
.761 
.734 
.I75 
.708 

,288 

.240 

.544 

.473 

.753 

d f 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
1 
1 
0 
1 
0 

for Exp(B) 
--- 

Upper 
Bound 

1.350 
1.061 
1 .I01 
1.01 8 
1.167 
1.002 
,982 

3.258 
3.399 

1.71 9 

1.712 
2.844 
2.21 1 

4.957 
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TAI31.E 10.20 Continued 

women. Parameter estimates, effect-size statistics (SUMMARY), likelihood ratio tests (LRT), and 
case processing summary (CPS)  are requested in this final model, in addition to statistics requested 
in the base model. 

Table 10.20 shows the number of respondents in each of the three outcomes and in each 
category of discrete predictors. Goodness-of-Fit statistics (comparing observed with expected 
frequencies) with all predictors in the model show an excellent fit with p = .983 by the Deviance 
criterion and with p = .I95 for the Pearson criterion. Using the Nagelkerke measure with the 
Steiger and Fouladi (1992) software, R~ = .265 with a 95 confidence interval ranging from '15 to 
.29. Note that the number of variables is considered to be 28 (i.e., the df for the Final Model Chi- 
S q u a r e  test).  

Likelihood ratio tests show three of the predictors to significantly add to prediction of work 
status using a critical value for each test that sets a = .0045 to compensate for inflation in familywise 
error ratc associated with the 1 1  predictors, as well as possible bias introduced by use of EM impu- 
tation. Critical values for the predictors depend on their df: 10.81 for 2 df. 15.089 for 4df. and 18.81 
for 6 df. Thus, attitudes toward role of women, marital status, and race significantly distinguish 
among the three groups of women. 

Two tables of Parameter  Estimates are shown, one for each degree of freedom for outcome. 
The first table compares working women with role-satisfied housewives, while the second compares 
working with role-dissatisfied women. Using a criterion a = .0045 (to compensate for inflated Type 
I error rate with 1 1 predictors and bias associated with EM imputation), the critical value for z2 with 
1 df = 8.07. By this criterion, attitudes toward role of women, marital status, and race reliably sepa- 
rate working women from role-satisfied housewives. Role-satisfied women score higher (i.e., more 
conservatively) than working women on their attitudes towards the role of women in society. They 
are almost 6 times as likely to be married (i.e., marital = 2), and almost 6 times more likely to be 
white (race = 1). No predictor reliably separates working women from role-dissatisfied housewives. 
Parameter estimates and odds ratios with their 95% confidence limits are in Tables 10.2 1 and 10.22 
in a form suitable for reporting. 

The classification table shows that 60% of the cases now are correctly classified: ranging from 
8! % of the working wnmen (about the same number as i n  the base mode!) but now I I % of the rnle- 
dissatisfied housewives (increasing from no correct classifications for that group). 

Observed 

Working 
Role-satisfied 
housewives 
Role dissatisfied 
housewives 
Overall Percentage 

Predicted 

Working 

199 

65 

57 

69.5% 

Role-dissatisfied 
housewives 

7 

2 

9 

3.9% 

Role-satisfied 
housewives 

39 

68 

16 

1626.6% 

Percent 
Correct 

81.2% 

50.4O/o 

11 .O% 

59.7% 
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T.iBLE 10.11 Logistic Regression Analysis of Work Status as a Function 
of Attitudinal Variables: Working CVonien vs. Role-Satisfied Housewives 

95 % Confidence 
Interval for Odds 

Ratio 
Wald Odds 

Variables B X2-test Ratio Lower- Upper 

Locus of control 

Attitude toward marital status 

Attitude toward role of women 

Socioeconomic level 

Attitude toward housework 

Age 
Educational level 

Single vs. broken marriage 

Married vs. broken marriage 

Presence vs. absence of children 

Protestant vs. no or other religion 

Catholic vs. no or other religion 

Jewish vs. no or other religion 

Caucasian vs. non-white 

(Constant) 

Evaluation of the addition of attitudinal variables as a set is most easily accomplished by cal- 
culating the difference between the two models. When both demographic and attitudinal predictors 
are included, X 2  = 120.273 with 28 df; when demographic predictors alone are included, 
X" 78.055 with 20 df. Applying Equation 10.7 to evaluate improvement in fit, 

with df = 8, p < .05. This indicates statistically significant improvement in the model with the addi- 
tion of attitudinal predictors. 

The remaining issue, interpretation of the statistically significant effects, is difficult through 
SPSS NOMREG because of the separation of effects for both outcome and predictors into single 
degree of freedom dummy variables. For categorical predictors, group differences are observed in 
proportions of cases in each category of predictor for each category of outcome. This information is 
available from the screening run of Table 10.17. For example, we see that 69% (1681245) of the 



TABLE 10.22 Logistic Regression Analysis of CC'ork Status as a Function of Attitudinal 
and Demographic Variables: Working CVomen vs. Role-Dissatisfied Housewives 

Variables 

95% Confidence 
Interval for Odds 

Ratio 
Wald Odds 

B z2-test Ratio Lower Upper 

Locus of control. 

Attitude toward marital status 

Attitude toward role of women 

Attitude toward housework 

Socioeconomic level 

Age 

Educational level 

Single vs. broken marriage 

Married vs. broken marriage 

Presence vs. absence of children 

Protestant vs. no or other religion 

Catholic vs. no or other religion 

Jewish vs. no or other religion 

Caucasian vs. non-white 

(Constant) 

working women are currently marned, while 9470 and 7870 of the role-satisfied and role-dissatisfied 
L --"--,.&:..,. --- -..-- I l u u s c w l v c a ,  ~ c a ~ ~ ~ ~ l v c l j ; ,  ~ L C  c u ~ ~ r ; i i i : j ;  maried. 

For continuous predictors, interpretation is based on mean differences for significant predic- 
tors for each category of outcome. Table 10.23 shows SPSS DESCRIPTIVES output giving means 

TABLE 10.23 Syntax and Partial Output of SPSS DESCRIPTIVES 
Showing Group Means for Atthouse 

SORT CASES BY WORKSTAT. 
SPLIT FILE 
SEPARATE BY WORKSTAT. 

DESCRIPTIVES 
VARIABLES=AlTROLE 
/STATISTICS=MEAN STDDEV. 
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TABLE 10.13 Continued 
- 

Descriptives 

Current work status = Working 

Descriptive Statisticsa 

Attitudes toward 
role of women 

Valid N (listwise) I I 
N 

aCurrent work status = Working. 

Current work status = Role-satisfied housewives 

Descriptive Statisticsa 

Mean 
Std. 

Deviation 

Current work status = Role-satisfied housewives. 

Current work status = Role-dissatisfied housewives 

Descriptive Statisticsa 

Attitudes toward 
role of women 

Valid N (listwise) 

N 

135 

1 35 

Mean 

37.2000 

Current work status = Role-dissatisfied housewives. 

Std. 
Deviation 

6.31842 

Attitudes toward 
role of women 

Valid N (listwise) 

for each category of outcome on the statistically significant predictor, ATTROLE, after splitting the 
file into WORKSTAT groups. 

Table 10.24 summarizes results of the sequential analysis. Table 10.25 shows contingency 
tables for statistically significant discrete predictors. Table 10.26 provides a checklist for sequential 
logistic regression with more than two outcomes. A Results section in journal format follows. 

Std. 
N I Mean I Deviation 

5.74726 82 

82 

35.6098 
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' 8  1 . 4  Logistic Regression Analysis of Work Status 
as a Function of Demographic and Attitudinal Variables 

I Variables ;C2 to Remove df Model X' 

Demographic 
Marital status 
Presence of children 
Religion 
Race 
Socioeconomic level 
Age 
Educational level 

I All demographic variables 

Attitudinal 
Locus of control 0.85 2 
Attitude toward marital status 3.16 3 

Attitude toward role of women 18.17'+ 2 
Attitude toward housework 8.45 2 

I All variables 120.27 

TABLE 10.25 Marital Status and Race 
as a Function of Work Status 

Work Statusa 

i 2 3 Tuic~i' 

Marital Status 
Single 24 3 4 3 1 
Married 168 127 64 359 
Broken 5 3 5 14 7 2 
Total 245 135 82 462 

Race 
White 218 131 73 422 
Nonwhite 27 4 9 40 
Total 245 135 82 462 

" I  = Working: 2 = Role-satistied housewives; 
3 = Role-dissatisfied housewives. 
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TABLE 10.26 Checklist for Sequential Logistic 
Regression with 3lultiplt. Outconles 

I .  Issues 

a. Ratio of cases to variables and missing data 

b. Adequacy of expected frequencies (if necessary) 

c. Outliers in the solution (if fit inadequate) 

d. Multicollinearity 

e. Linearity in thk logit 

Major analyses 

a. Evaluation of overall fit at each step. 

( I )  Significance tests for each predictor at each 
step of interest 

(2) Parameter estimates at each step of interest 

(3) Effect size at each step of interest 

b. Evaluation of improvement in model at each step 

3. Additional analyses 

a. Odds ratios 

b. Classification and/or prediction success table 

c. Interpretation in terms of means and/or percentages 

d. Evaluation of models without individual predictors 

Results 

A sequential logistic regression analysis was performed 

through SPSS NOMREG to assess prediction of membership in one of 

three categories of outcome (working women, role-satisfied house- 

wives, and role-dissatisfied housewives), first on the basis of 

seven demographic predictors and then after addition of four atti- 

tudinal predictors. Demographic predictors were children (presence 

or absence), race (Caucasian or other), socioeconomic level, age, 

religious affiliation (Protestant, Catholic, Jewish, none/other), 

and marital status (single, married, broken). Attitudinal predic- 

tors were locus of control, attitude toward marital status, atti- 

tude toward role of women, and attitude toward housework. 
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Values for 22 cases with missing data on continuous predic- 

tors were imputed using the EM algorithm through SPSS MVA after 

finding no statistically significant deviation from randomness 

using Little's MCAR test, p = .331. After deletion of 3 cases with 

missing values on religious affiliation, data from 462 women were 

available for analysis: 217 housewives and 245 women who work out- 

side the home more than 20 hours a week for pay. hraluation of 

adequacy of expected frequencies for categorical demographic pre- 

dictors revealed no need to restrict model goodness-of-fit tests. 

No serious violation of linearity in the logit was observed. 

There was a good model fit (discrimination among groups! on the 

basis of the seven demographic predictors alone, x2 (864, N = 462) = 

816.92, p = .87, using a deviance criterion. After addition of the 

four attitudinal predictors, x2 (894, N = 462) = 806.25, p = .98, 

Nagelkerke $ = .27 with a 95% con£ idence interval ranging from .15 

to .29 (Steiger and Fouladi, 1992). Comparison of log-likelihood 

ratios (see Table 10.24) for models with and without attitudinal 

variables showed statistically significant improvement with the 

addition of attitudinal predictors, x2 (8, N = 462) = 42 -22, p < .05. 

Werall classification was -mLiressi;-e. the basis ~f 7 

demographic variables alone, correction classification rates were 

82% for working women, 36% for role-satisfied, and 0% for role- 

dissatisfied women; the overall correct classification rate was 

54%. The improven\ent to 60% with the addition of four attitudinal 

predictors reflected success rates of 81%, 50%, and 11% for the 

three groups, respectively. Clearly, cases were overclassified 

into the largest group: working women. 

Table 10.24 shows the contribution of the individual pre- 

dictors to the model by comparing models with and without each 



predictor. Two predictors from the demographic and one from the 

attitudinal set statistically significant enhanced prediction, 

p c .0045. Outcome was predictable from marital status, race, and 

attitude toward role of women. 

Tables 10.20 and 10.21 show regression coefficients and chi- 

square tests of them as well as odds ratios and the 95% confidence 

intervals around them. Role-satisfied housewives were more likely 

than working women to have positive attitudes toward housework. 

They were almost 6 times as likely to be currently married and 

almost 6 times as likely to be Caucasian. 

Table 10.25 shows the relationship betwea work status and the 

two categorical demographic predictors. Working women are less 

likely to be currently married (69%) than are role-satisfied house- 

wives (94%) or role-dissatisfied housewives (78%). Role- 

satisfied housewives are more likely to be Caucasian (97%) than are 

working women or role-dissatisfied housewives (89% for both groups). 

Mean group differences in attitudes toward role of women and 

homemaking were not large. However, role-satisfied housewives had 

more conservative attitudes (mean = 37.2) than role-dissatisfied 

housewives (me= = 35.6) or working women (mean = 33.83. 

Thus, the three groups of women are distinguished on the 

basis of three predictors. Intact marriage is most common among 

role-satisfied housewives and least common among working women. 

Role-satisfied women are also more likely to be Caucasian than the 

other two groups and have more conservative attitudes toward the 

proper role of women in society. The most liberal attitudes toward 

role of women are held by women who work for pay outside the home 

for at least 20 hours per week, however these attitudinal differ- 

ences are not large. 



Logihtic Regression 499 

1 10.8 Comparison of Programs 

Only the programs in the three reviewed packages that are specifically desisneci for log~stic regre\- 
sion are discussed here. All of the major packages also have programs for nonlinear regression, 
which perform logistic regression if the researcher specifies the basic logistic regression equation. 

The logistic regression programs differ in how they code the outcome: some base probabilities 
and other statistics on outcome coded "I"  (i.e., success, disease) and some base statistics on out- 
comes coded "0." The manuals are also sometimes inconsistent and confusing in their labeling of 
predictors where the terms independent variable, predictor, and covariate are used interchangeably. 
Table 10.27 compares five programs from the three major packages. 

I 10.8.1 SPSS Package 

SPSS LOGISTIC  REGRESSION^ handles only dichotomous outcomes and bases statistics on the 
outcome coded "1 ." SPSS NOMREG (nominal regression) and PLUM are the programs that handle 
multiple outcome categories. 

SPSS LOGISTIC REGRESSION offers the most flexible procedures for controlling the entry 
of predictors. All can be entered in one step, or sequential steps can be specified where one or more 
predictors enter at each step. For statistical logistic regression both forward and backward stepping 
are available based on either the Wald or likelihood-ratio statistics at the user's option. The user 
also has a choice among several criteria for terminating the iterative procedure used to find the opti- 
mal solution: change in parameter estimates, maximum number of iterations, percent change in log- 
likelihood, probability of score statistics for predictor entry, probability of Wald or likelihood ratio 

I statistic to remove a variable, and the epsilon value used for redundancy checking. 
SPSS LOGISTIC REGRESSION has a simple SELECT instruction to select a subset of cases 

on which to compute the logistic regression equation; classification is then performed on all cases as 
a test of the generalizability of the equation. 

I This program provides a comprehensive set of residuals statistics which can be displayed or 

I saved. including predicted probability. predicted group. difference between observed and predicted 
values (residuals), deviance, the logit of the residual, studentized residual, normalized residual, 

1 leverage value, Cook's influence, and difference in betas as a result of leaving that case out of the 

I iogistic regression equation. The listing can be restricted to outliers with user-specified criteria fur 
determining an outlier. 

i SPSS NOMREG handles multinomial models (multiple outcome categories) and, since Ver- 
I sion 12, does statistical analysis and offers a variety of diagnostics. Extensive diagnostic values are 
I 
I 

saved to the data set, such as estimated response probabilities for each case in each category, pre- 
dicted category for each case, and predicted and actual category probabilities for each case. Discrete 

i predictors are specified as "factors" and continuous predictors as "continuous." The default model 
includes main effects of all predictors, but full factorial models may be specified as well as just about 

I any desired customized model of main effects, interactions, and forced or statistical entry of them. 
The program assumes that the multiple outcome categories are unordered, and gives regressivn cuef- 
ficients for each outcome category (except the one designated BASE, by default the last category) vs. 

I 
! 
i '?he PROBIT program can also do l o g ~ s t ~ c  regression. 

i 



ul TABLE 10.27 Comparison of Programs for Logistic Regression 
0 - -- 
0 

SPSS LOGISTIC SPSS SPSS SAS 
Feature 

--- 
REGRESSION NOMREG PLUM LOGISTIC 

- 

Lnput 

Accepts discrete predictors without recoding 

Alternative coding schemes for discrete predictors 

Accepts tabulated data 

Specify reference category and order for parameter estimates 

Specify inclusiori of intercept in model 

Specify how covariate patterns are defined 

Specify exact logical regression 

Specify stepping methods and criteria 

Specify sequential order of entry and test of predictors 

Specify a case-control design (conditional) 

Can specify size of confidence limits for odds rati.0 ( eb )  

Specify cutoff probability for classification table 

Accepts nlultiple unordered outcome categories; 

Deals with multiple ordered outcome categories 

Can specify equal odds model 

Can specify discrete choice models 

Can specify repeated-measures outcome variable 

Can specify Poisson regression 

Syntax to select a subset of cases for classification only 

Score new data sets without refitting model 

Specify quasi-maximum likelihood covariance matrix 

Specify case weights 

Specify start values 

Specify link function for response probabilities 

Can restrict printing of diagnostics to outliers 

Yes 

8 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

No 

No 

No 

N.A. 

No 

 NO^ 
No 

Yes 

No 

No 

No 

No 

No 

Yes 

Yes Yes 

No No ' 

No No 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

Yes 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

No 

NA 

Yes 

No 

No 

No 

No 

No 

N.A. 

N.A. 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

No 

LINK 

No 

CLASS 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

STRATA 

No 

Yes 

No 

Yes 

No  

No 

YesC 

Yes 

No 

Yes 

N o  

Yes 

No 

Yes 

No 

Yes 
3 - 

Yes 

No 

Ye\ 

N o  

N 0 

Ye\ 

I n l c ~ ~ c t ~ v e  

Yes 

N  0 

No 

Ye4 

N o  

N o  

Yer 

N o  

N o  

S P 

No 

Ye\ 

Yer 

Yer 

N o  

40 
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'TABLE 10.27 Continued 

Feature 
SPSS LOGISTIC 

REGRESSION 
SPSS 

NOMREG 
SPSS SAS 

PLUM LOGISTIC 

Inpul (co~~tiriued) 

Add delta to observed cell frequencies 

Specify log-likelihood convergence criterion 

Specify maximum number of iterations 

Specify maximum step-halving allowed 

Parameter estimates convergence criterion 

Additional convergence criteria 

Specify tolerance 

Epsilon value used for redundancy checking 

Specify scale component 

Specify correction for overdispersion 

Regression output 

Log-likelihood (or -2 log-likelihood) for full nnodel 

Log-likelihood (or -2 log-likelihood) for constant-only model 

Deviance and Pearson goodness-of-fit statistic!; 

Hosmer-Lemeshow goodness-of-fit X2  

Goodness-of-fit X2: constant-only vs. full model 

Goodness-of-fit X 2 :  based on observed vs. expected frequencies 

Akaike information index (AIC) 

Schwartz criterion 

Score statistic 

Improvement in goodness-of-fit since last step 

Goodness-of-fit X2 tests for individual predictors in specified model 

Wiild tests for predictors combined over multiple categories 

VI Regression coefficient z Standard error of the regression coefficient 

No 

LCON 

ITERATE 

No 

BCON 

No 

EPS 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes(LR) 

Yes 

B 

S.E. 

DELTA 
LCONVERGE 

MXITER 

MXSTEP 

PCONVERGE 

SINGULAR 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Pearson 

No 

No 

No 

N.A. 

Yes 

No 

B 

Std. Error 

LCONVERGE 

MXlTER 

MXSTEP 

PCONVERGE 

SINGULAR 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Pearson 

No 

No 

No 

No 

No 

No 

Estimate 

Std. Error 

No 

No 

MAXITER 

MAXSTEP 

CONVERGE 

Yes 

SINGULAR 

No 

No 

Yes 

Yes 

Yes 

SCALE 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

CL,ASS 

Parameter estiniare 

Yes 

No 

C O N V E K G  

N o  

N 0 

Yes 

No 

71'OL> 

N o  

N o  

N o  

Yes 

Yes 

No  

Yes 

Yes 

Yes 

N o  

No 

Yes 

No 

No 

YcsL' 

ES'I'l hl  A'I'L., 

Yc>\ 

( ,  O I I I I I I I I C Y ~ J  



TABLE 10.27 Continued 

Feature 

SPSS 
LOGISTIC 

REGRESSION 
SPSS SPSS SAS 

NOMREG PLUM LOGISTIC 

Regression output (continued) 

Regression coefficient divided by standard error 

Sq~~ared  regression coefficient divided by squared standard error 

Probability value for coefficient divided by standard error 

Partially standardized regression coefficient 

eU (odds ratio) 

McFadden's rho squared for model 

Cox and Snell K~ for model 

Nagelkerke R~ for model 

Association measures between observed respolnses and predicted 
probabilities 

No 

Wald 

Sig 

No 

Exp(B) 
No 

Yes 

Yes 

Partial correlations between outcome and each predictor variable (R) Yes 

Correlations among regressions coefficients Yes 

Covariances among regression coefficients No 

Classification table Yes 

Prediction success table No 

Histograms of predicted probabilities for each group CLASSPLOT 
Quantile table No 

Derivative tables Noe 

Plot of predicted probability as a function of the logit Yes 

Diagriostics saved to file 

Predicted probability of success for each case Yes 

Options for predicted probabilities No 

Raw residual for each case Yes 

Standardized (Pearson) residual for each case Yes 

No 

Wald 

Sig 

No 

Exp(B) 
Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

No . 
Wald 

Sig 

No 

No 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

Yes 

No 

No" 

Yes" 

No 

Wald Chi-Square 

Pr > ChiSq 

Yes 

Odds ratio 

No 

No 

No 

Ye\ 

No 

Yes 

Yes 

yesb 

Yesb 

No 

No 

No 

No 

Yes 

Yes 

No 

yesb 

t-ra~io 

No 

p-value 

N 0 

Odds Katiu 

'Y c \  

N 0 

N o  

N 0 

N L) 

No 

N 0 

Ycs 

Yes 

KO 

QNTL 

Yes 

N o  

Yc!, 

N o  

No 

Ycs 



TABLE 10.27 Continued 
-- 

SPSS LOGISTIC SPSS SPSS SAS s Y STAT 
Feature NOMREG PLUM LOGISTIC I,O(; IT --- 

REGRESSION 

Diagnostics saved to file (continurrl) 

Variance of Standardized (Pearson) residual fo~r each case No N.0 No No Ye\ 

Standardized (normed) residual for each case Yes No No No Yes 

Studentized residual for each case 

Logit residual for each case 

Predicted log odds for each pattern of predrctors 

Deviance for each case 

Diagonal of the hat matrix (leverage) 

Cook's distance for each case 

Cumulative residuals 

Yes 

Yes 

No 

Yes No No Yesb Yes 

Yes No No Yesh Ye\ 

Yes No No yes" N o  

No No No No N o  

Total X?- for pattern of predictors (covariates) No No No No N o  

Deviance residual for each case 

Change in Pearson X 2  for each case 

Yes No No yes" Ye\ 

Yes No No Yesh Ye\ 

Change in betas for each case Yes No Yes yesh Yes 

Confidence interval displacement diagnostics l i ~ r  each case No No No yesh N o  

Special diagriostics for ordered response variables No No No Yes No 

Predicted category for each case Yes Yes Yes No Ye\ 

Estimated response probability for each case in each category No Yes Yes No Ye\ 

Predicted category probability for each case No Yes Yes No Yes 

Actual category probability for each case No Yes Yes No N o  

"Ava~lable for each cell (covariate pattern). 

b ~ o r  two-category outcome analysis only. 

'L)isc.rete predictors only, also available in SAS CATM'OD. 

VI "May be done through SPSS COMPL,EX SAMPLES LOGISTIC REGRESSION. 
0 
W 



504 C H A P T E R  1 0  

the base Lategot-!. Three R' measures are routinely printed: Pearson and d e ~  iance goodness-of-tit 
statistics are available. SPSS NOiLlREG a1m has a scaling instruction in the event of ovesdispercion. 

i 
I 

SPSS PLUM is the newest logistic regression program and analyzes models with ordered ! 
multi-category outcomes. PLUM (accessed in the menu system as Ordinal Regression) has most of 
the features of NOMREG as well as a few others. Classification tables are not produced but they may 
be constructed by cross-tabulating predicted with actual categories for each case. 

I 
I 
I 

PLUM offers. several alternative link functions, including Cauchit (for outcomes with many 
extreme values), complementary log-log (makes higher categories more probable), negative log-log 

i 
(makes lower categories more probable, and probit (assumes a normally distributed latent variable). 
The user also is given an opportunity to scale the results to one or more of the predictors to adjust for 
differences in variability over predictor categories. PLUM has a test for parallel lines, to evaluate 
whether the parameters are the same for all categories. 

10.8.2 SAS System 

SAS LOGISTIC handles multiple as well as dichotomous response categories, but assumes multiple 
categories are ordered. There is no default coding of categorical predictors; the coding is user- 

I 
specified before invoking PROC LOGISTIC. Statistics for dichotomous outcomes are based on the 
category coded "0" unless otherwise specified. 

i 
This is the most flexible of the logistic regression programs in that alternative (to logit) link 

functions can be specified, including n o r m i t (inverse standardized normal probability integral 1 
function) and complementary log-log functions. The program also does Poisson regression. SAS 
LOGISTIC also provides correction for overdispersion when predictors are discrete, in which the 
variance in cell frequencies is greater than that assumed by the underlying model, a common condi- 
tion when there are repeated measures. 

SAS LOGISTIC has the basic goodness-of-fit statistics, as well as exclusive ones such as 
Akaike's Information Criterion and the Schwart7 Criterion Strength of awnciation between the qet 

of predictors and the outcome is assessed using Somers' D, Gamma, Tau-a, or Tau-c, a more exten- I 
sive set of strength of association statistics than the other programs. 

Classification is done with jackknifing. A cutoff criterion may be specified, but results are 
I 

shown for a variety of cutoff crltena as well. Kesults ~nclude number correct tor each category as 
I 

well as percentages for sensitivity, specificity, false positives, and false negatives. Classification is 
available only for analyses with a two-category outcome. Exact logistic regression is available for 
SAS LOGISTIC since Version 8. This permits analysis of smaller data sets than can be legitimately 
analyzed with the usual asymptotic procedures. I 

A full set of regression diagnostics is available, accessible through saved files or through an 
"influence plot" to find outliers in the solution. The plot consists of a case-by-case listing of the val- 
ues of regression statistics along with a plot of deviations from those statistics. Through IPLOT an 
additional set of plots can be produced in which the value of each statistic is plotted as a function of 
case numbers. 

10.8.3 SYSTAT System 

LOGIT is the major program for logistic regression analysis in SYSTAT. While logistic regression 
can also be performed through the NONLIN (nonlinear estimation) module, it is much more painful 
to do so. 



SYST.AT LOGIT I.; h~ghly tlex~ble in  the types o f  models permitted. Fur dichotornou\ o l ~ t -  

conies. the statistics are based on the category coded " I  ." U'ith more than two categorie$ of outcomtr. 
the categories are considered unordered. Two types of coding (including the usual dummy variable 
0, 1 coding) are permitted for discrete predictor variables. A case-control model can be specified. 
This is the only program that allows specification of quasi-maximum likelihood covariance. which 
corrects problems created by misspecified models. And only this program provides prediction suc- 
cess tables in addition to classification tables. 

The basic output is rather sparse, but includes the test of the full model against the constant- 
only model, with McFadden's p2 as a measure of strength of association, and the odds ratio and its 
confidence interval for each predictor component. Hosmer-Lemeshow goodness-of-fit tests are 
available through options. Stepping options are plentiful. Although improvement in fit at each step is 
not given, it can be hand-calculated easily from the log-likelihood ratio that is available at each step. 
Plenty of diagnostics are available for each case. However, they must be saved into a file for view- 
ing; they are not available as part of printout of results. 
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Survival/Failure Analysis 

11.1 General Purpose and Description 

Survival/failure analysis is a family of techniques dealing with the time it takes for something to hap- 
pen: a cure, a failure, an employee leaving, a relapse, a death, and so on. The term survival analysis 
is based on medical applications in which time to relapse or death is studied between groups who 
have received different medical treatments. Is survival longer for a group receiving one chemother- 
apy rather than another? Does survival time also depend on the age, gender, or marital status of the 
patient? In manufacturing, the less propitious termjuilure analysis is used in which time until a man- 
ufactured component fails is recorded. Does time to failure depend on the material used? Does it 
depend on the temperature of the room where the component is fabricated? Does it still depend on 
material used if room temperature is controlled? We generally use the more optimistic survival 
analysis in this chapter. 

One interesting feature of the analys~s is that survivdl tinit: (Lilt: DV) often 1s unknown for a 
number of cases at the conclusion of the study. Some of the cases are still in the study but have not 
yet failed: some employees have not yet left, some components are stil! functioning, some patients 
are still apparently well, or some patients are still living. For other cases, the outcome is simply 
unknown because they have withdrawn from the study or are for some reason lost to follow-up. Cases 
whose DV values-survival time-are unknown for whatever reason are referred to as censored. I 

Within the family of survival-analysis techniques, different procedures are used depending on 
the nature of the data and the kinds of questions that are of greatest interest. Life tables describe the 
survival (or failure) times for cases, and often are accompanied by a graphical representation of the 
survival rate as a function of time, called a survivorfunction. Survivor functions are frequently plot- 
ted side-by-side for two or more groups (e.g., treated and untreated patients) and statistical tests are 
used to test the differences between groups in survival time. 

Another set of procedures is used when the goal is to determine if survival time is influenced 
by some other variables (e.g., is longevity within a company influenced by age or gender of an 
employee'?). These are basically regression procedures in which survival time is predicted from a set 
of variables, where the set may include one or more treatment variables. However, the analysis 
accommodates censored cases and, like logistic regression and multiway frequency analysis, uses a 

'It is interesting that the living cases are the censored ones. 
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log-linear rathei. thali ;I lineas model. which tends to be more forg~ving In term4 of a4surnptic\ns ahout 
censoring. As in logistic regression. analysis can be direct or sequential in  which difference4 h e t ~ ~ e e ~ i  
models that do and do not include a treatment variable are studied. 

A potential source of confusion is that all of the predictors, including the treatment IV, if there 
is one, are called covariates. In most previous analyses, the word "covariates" was used for vari- 
ables that enter a sequential equation early and the analysis adjusts for their relationship with the 
DV before variables of greater interest enter. There is sequential survival analysis in which the term 
covariates is used in the traditional way, but covariates is also used for the IVs even when the analy- 
sis is not sequential. 

This chapter emphasizes those techniques within the survival-analysis repertoire that ad- 
dress group differences in survival, whether those differences arise from experimental or naturally 
occurring treatments. 

Mayo and colleagues (1991) modeled time from admission to achievement of independent 
function for stroke patients monitored daily while undergoing physical rehabilitation. Four variables 
were found to influence recovery time: (1) age influenced the rate of recovery walking and stair 
climbing; (2) perceptual impairment influenced the rate of achieving independent sitting and stair 
climbing; and (3) depression and (4) comprehension influenced walking. 

Nolan and co-authors (1991) studied the impact of behavior modification with and without 
laxatives for children with primary fecal incontinence. Children with the multimodal treatment 
achieved remission significantly sooner than children given behavioral modification alone; the dif- 
ference in remission curves was most striking in the first 30 weeks of follow-up. 

Van der Pol, Ooms, van't Hof, and Kuper (1998) determined conditions under which burn-in 
of integrated circuits can be eliminated. Their review of prior failure analyses showed that failures 
were dominated by defects, with no wear-out observed. On that basis they developed a general model 
of product failure rate as a function of batch yield. They found that high-yield batches generated 
fewer failures than low-yield batches. despite burn-in of the latter. They also found that for many 
application:;, the use ~f screens i s  more effective in finding latent defects than a standard burn-in. 

A con~prehensive treatment of survival/failure analysis is provided by Singer and Willett 
(2003) in their highly readable text on this and other techniques for modeling longitudinal data. Alli- 
son (1995) provides a lucid description of the many faces of survival analysis as well as practical 
guidelines for using SAS to do survival analysis. 

11.2 Kinds of Research Questions 

The primary goal of one type of survival analysis is to describe the proportion of cases surviving at 
various times, within a single group or separately for different groups. The analysis extends to sta- 
tistical tests of group differences. The primary goal of the other type of survival analysis is to assess 
the relationship between survival time and a set of covariates (predictors), with treatment considered 
one of the covariates, to determine whether treatment differences are present after statistically con- 
trolling for the other covariates. 

11.2.1 Proportions Surviving at Various Times 

What is the survival rate at various points in time'? For example. what proportion of employees 
last three months? What proportion of components fail within the first year'? Life {iibli.~ describe the 
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proportion of  cases surviv~ng (and failing) at various times. For example. i t  ma) be found that 19C.G 
of employees have left b! the end of three months. 3 5 8  by the end of six rnonths. and \o o n .  ,A sur- 
vivor function displays this information graphically. Section 1 I .-I demonstrates survivor functions 
and several statistics associated with them. i 
11.2.2 Group Differences in Survival 

If there are different groups, are their survival rates different? Do employees who are in a program to 
lessen attrition stay longer than those who are not in such a program? Several tests are available to 
evaluate group differences; one is demonstrated in Section 1 1.4.5. If statistically significant group 
differences are found, separate life tables and survivor functions are developed for each group. 

11.2.3 Survival Time with Covariates 

11.2.3.1 Treatment Effects 

Do survival times differ among treatment groups after controlling for other variable(s)? For exam- 
ple, does average employee longevity differ for treated and control groups after adjusting for differ- 
ences in age at employment and starting salary? Several tests of the relationship between survival 
and level of treatment are available in the regression forms of survival analysis. Test statistics for 
treatment effects are discussed in Section 11.6.4.1, and tests of treatment differences after control- 
ling for other covariates are described in Section 11 S.2. 

11.2.3.2 Importance of Covariates 

Which covariates are associated with survival time? If covariates affect survival time, do they 
increase it or decrease it? Does longevity on a job depend on age when employed? Do employees 
who start when they are older stay longer or shorter than those who start when they are younger? 
Does beginning salary matter? Do higher starting salaries tend to keep employees on the job longer? 
Tests of these questions are essentially tests of regression coefficients, as demonstrated in Section 
1 1.6.4.2. 

11.2.3.3 Parameter Estimates 

The parameter estimates in survival analysis are the regression coefficients for the covariates. 
Because the regression is log-linear, the coefficients often are expressed as odds. For example, what 
are the odds that someone will stay on the job four years, given that the job was started at age 30 with 
an annual salary of $40,000? Section 1 1.6.5 shows how to interpret regression coefficients in terms 
of odds. 

11.2.3.4 Contingencies among Covariates 

Some covariates may be related to differences among treatment groups when considered alone, but 
not after adjustment for other covariates. For example, salary level may modify treatment effects on 
job longevity when considered by itself, but not after adjusting for differences in age at entry into the 
job. These contingencies are examined through sequential survival analysis as demonstrated in Sec- 
tion 1 1 S . 2 . 2 .  



11.2.3.5 Effect Size ar~d Power 

How strong is the association between f~ilurelsurvival and the set of covariates? On a scale of 0 to I ,  
how well does the combination of age and salary predict longevity on the job? None of the reviewed 
statistical packages provides this information directly, but Section 11.6.3 shows how to calculate a 
form  of^' from output provided by several programs and discusses issues related to power. 

11.3 Limitations to Survival Analysis 

11.3.1 Theoretical Issues 

One problem with survival analysis is the nature of the outcome variable, time itself. Events must 
occur before survival or failure time can be analyzed: Components must fail, employees must leave, 
patients must succumb to the illness. However, the purpose of treatment often is to delay this occur- 
rence or prevent it altogether. The more successful the treatment, then, the less able the researcher is 
to collect data in a timely fashion. 

Survival analysis is subject to the usual cautions about causal inference. For example, a differ- 
ence in survival rates among groups cannot be attributed to treatment unless assignment to levels of 
treatment and implementation of those levels, with control, are properly experimental. 

11.3.2 Practical Issues 

In the descriptive use of survival analysis, assumptions regarding the distributions of covariates and 
survival times are not required. However, in the regression forms of survival analysis in which 
covariates art: assessed, multivariate norina!ity, linearity, and hnmoscedasticity among covariates. 
although not required, often enhance the power of the analysis to form a useful linear equation of 
predictors. 

11.3.2.1 Sample Size and Missing Data 

Some statistical tests in survival analyses are based on maximum likelihood methods. Typically these 
tests are trustworthy only with larger samples. Eliason (1993) suggests a sample size of 60 if 5 or fewer 
parameters for covariates (including treatment) are to be estimated. Larger sample sizes are needed 
with more covariates. Different sample sizes among treatment groups pose no special difficulty. 

Missing data can occur in a variety of ways in survival analysis. The most common is that the 
case survives to the end of the study so time to failure is not yet known. Or a case may withdraw or 
be lost to follow-up before the end of the study, although it was intact when last seen. These are 
called right-censored cases. Alternatively, the critical event may have occurred at an uncertain time 
before monitoring began. For example, you know that a disease process began before the first obser- 
vation time, but you don't know exactly when. These are called left-censored cases and are much less 
common. Section 1 1.6.2 discusses various forms of censoring. 

Missing data can also occur in the usual fashion if some covariate scores are missing for some 
of the cases. Section 4.1.3 discusses issues associated with missing data: randomness, amount, and 
suiutions. 



11.3.2.2 :Vormality of Sarnplirzg Ilistributions, Linenrity, nrld Hornoscedasticity 

Although the assumptions of multivariate normality, linearity, and honioscedasticity (Chapter 1) are not 
necessary for survival analysis, meeting them often results in greater power, better prediction, and less 
difficulty in dealing with outliers. It is therefore useful and relatively easy to assess the distribution of 
each covariate by statistical or graphical methods, as described in Section 4.1.5, prior to analysis. 

11.3.2.3 Absence of Outliers 

Those few cases that are very discrepant from others in their group have undue influence on results 
and must be dealt with. Outliers can occur among covariates singly or in combination. Outliers affect 
the inferential tests of the relationships between survival time and the set of covariates (including 
covariates representing treatment groups). Methods of detecting outliers and remedies for them are 
discussed in Section 4.1.4. 

11.3.2.4 Differences between Withdrawn and Remaining Cases 

It is assumed in survival analysis that censored cases, ones lost to study, do not differ systematically 
from those whose fate is known at the conclusion of the study. If the assumption is violated, it is 
essentially a missing data problem with nonrandom loss of cases. If the study started as an experi- 
ment, it is no longer an experiment if cases with missing data are systematically different from cases 
with complete data because cases available for analysis at the end of the study are no longer the prod- 
uct of random assignment to treatment groups. 

11.3.2.5 Change in Survival Conditions over Time 

It is assumed that the same things that affect survival at the beginning of the study affect survival at 
the end of the study and that other conditions have not changed. For example, in the experiment to 
lessen employee attrition, it is assumed that the factors that intluence attrition at the beginning of 
observation also influence it at the end. This assumption is violated if other working conditions 
change during the study aiid they affect suivivai. 

11.3.2.6 Proportionality of Hazards 

One of the most popular models for evaluating effects of predictors on survival, the Cox proportional- 
hazards model, assumes that the shape of the survival function over time is the same for all cases and, 
as an extension, for all groups. Otherwise there is an interaction between groups and time in survival 
rates, or between other covariates and time. Section 11.6.1 shows how to test this assumption and 
discusses evaluation of differences between groups when the assumption is violated. 

11.3.2.7 Absence of Multicollinearity 

Survival analysis with covariates is sensitive to extremely high correlations among covariates. As in 
multiple regression, multicollinearity is signaled by extremely high standard errors for parameter esti- 
mates andlor failure of a tolerance test in the computer analysis. The source of multicollinearity may be 
found through multiple regression procedures in which each covariate. in turn. is treated as a DV with 
the remaining covariates treated as IVs. Any covari~rte with a sc/unred tnultiple correlution (SMC) in 
C ~ ~ C C C C  4. ?!! i~ . U C ! L ! , ~ L L Y ~  ~ l n d  delered f?c!zJCI~~r?!ze~~ arx:lys:s. Secti~r, ! ! .?. ! .6 dem~nst:ztes evaluatim 
of multicollinearity through SPSS FACTOR; Section 4.1.7 provides further discussion of this issue. 



11.4 Fundamental Equations 
for Survival Analysis 

Table 1 I. I shows a hypothetical data set for evaluating how long a belly dancer continues to take 
classes (survives) as a function of treatment and, later, age. In this example, the DV, months, is the 
number of months until a dancer dropped out of class during a 12-month follow-up period. Dancing 
is the censoring variable that indicates whether she has dropped out at the end of the study ( 1  = 
dropped out, 0 = still dancing). No cases were withdrawn from the study. Therefore, only the last 
case is censored because her total survival time remains unknown at the end of the year-long follow- 
up period. The 12 cases belong to one of two groups (0 = control, I = treatment). Treatment con- 
sists of a preinstructional night out with dinner at a mid-Eastern restaurant, live music, and belly 
dancers: 7 cases are in the control group and 5 in the treatment group. Age when beginning to belly 
dance is included as a covariate for later analyses. 

11.4.1 Life Tables 

Life tables are built around time intervals; in this example (Table 1 1.2), the intervals are of width 1.2 
months. The snwivor~fiinction, P, is the cumuiative proportion of cases surviving to the beginning of 
the i + I St interval, estimated as: 

where: 

TARLE 11.1 Small Sample of Hypothetical Data for 
Illustration of Survival Analysis 

Case Months Dancing Treatment Age 
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'WB1.E 11.2 Survivor Functions for Dancers with and without Preinstructional Night Out 
i 
! 

I 
Cumulative 

Interval Proportion Proportion Proportion 
(month) Entered Censored" Dropped Dropped Surviving Surviving 

Contml Groirp with No Preinstructioi~d Ariglzt O ~ l t  

-- 

Treatment G r o ~ ~ p  ~ i t h  Preirzstr~~ctionnl Night Out 

and I 
where di = number responding (dropping out) in the interval and I 

where ni = number entering the interval, and ci = number censored in the interval (lost 
to follow up for reasons other than dropping out). 

In words, the proportion of cases surviving to the i + I St interval is the proportion who survived to 
the start of i t h  interval times the probability of surviving to the end of the i th  interval (by not drop- 
p i ~ g  o~!t c\r being censnred d~lring that interva!). 



I Survival/Failure Analysis 5 13 

i 
For the first interval (0 to 1.2). all 7 dancers in the control group enter the intervai: ttiiis the 

cumulative proportion surviving to the beginning of the tirst interval is 1. During the first  intrskal. no 

i cases are censored but one case in the control group drops out. Therefore, 

That is, 85.7 1% ($57 1)(7) = 6 of the cases have survived the first interval. 
For the second interval (1.2 to 2.4), the cumulative proportion surviving to the beginning of the 

interval is: 

I The six remaining dancers enter the interval, none is censored but two drop out, so that: 

1 p, = 1 - .3333 = .6667 

For the third interval (2.4 to 3.6), the cumulative proportion surviving to the beginning of the inter- 
val is: 

i P, = Y ~ P ,  = (.6667)(.857 1) = .57 14 
I 
I 
l and so on. 

I In the controi group, then, over haif the cases 'nave dropped oiii by the midd!e of the third 

i 
month (beginning of fourth interval), and only 14% survive to the start of the sixth month. All have 
stopped taking classes by the end of the study. In the treatment group, over half the cases survive to 

1 the middle of the ninth month (beginning of the ninth interval), and one is still taking classes at the 
end of the study. 

! Various statistics and standard errors for them are developed to facilitate inferential tests of 
I survival functions, as described below. 

I 
11.4.2 Standard Error of Cumulative Proportion Surviving 

The standard error of a cumulative proportion of cases surviving an interval is approximately: 
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I 

For the control group in the second in tend  ( m ~ n t h  1.20-1.10): 

s.e. (P,) 3.57 1 - = .I323 

11.4.3 Hazard and Density Functions I 1 
The hazard (also sometimes called the failure rate) is the rate of not surviving to the midpoint of an 
interval, given survival to the start of the interval. 

where hi = the width of the ith interval. 

For the dancers in the control group in the second interval, the hazard is: 

That is, the drop-out rate is one-third by the middle of the second interval for cases surviving to the 
beginning of the second interval. Of the 6 cases entering the second interval, the expected rate of 
drop-out is (.3333)(6) = 2 of them by the middle of that interval. 

The approximate standard error of the hazard is: 

The star,dxd error of the hazard f ~ r  the control groiip in the secoiid inteivai, tiien, is. I 
I 

The probability density is the probability of not surviving to the midpoint of an interval, given 
survival to the start of the interval: 

For the control group in the second interval: 
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I For my ot one of the ~ I Y  dancer\ In the control youp  uho ,ire wll ci,~nclng at 1 7 ~nonttis. :he proh 

I 
a b ~ l ~ t y  of dropp~ng out by 1.8 month\ 14 ,2381. 

The approximate standard error of density IS: 

I For the control group in the second interval the approximate standard error of density is: 
I 

Note the distinction between the hazard function and the probability density function. The hazard 
function is the instantaneous rate of dropping out at a specific time (e.g., 1.8 months which is the 
midpoint of the second interval), among cases who survived to at least the beginning of that time 
interval (e.g., 1.2 months). The probability density function is probability of a given case dropping 
out at a specified time point. 

11.4.4 Plot of Life Tables 

Life table plots are simply the cumulative proportion surviving ( 4 )  plotted as a function of each time 
interval. Referring to Table 11.2, for example, the first point plotted is the interval beginning at 0 
months, and the cumulative proportion surviving is 1.0 for both of the groups. At the beginning of 
the second interval, 1.2 months, the cumulative proportion surviving is still 1.0 for those dancers in 
the treatment group but is .857 1 for dancers in the control group, and so on. Figure I I .  1 shows the 
resulting survival function. 

11.4.5 Test for Group Differences 

Group differences in survival are tested through X2  with degrees of freedom equal to the number of 
groups minus I .  Of the several tests that are available, the one demonstrated here is labeled Log- 
Rank in SAS LIFETEST and SPSS KM. When there are only two groups, the overall test is: 

X 2  equals the squared value of the observed minus expected frequencies of number of 
survivors summed over all intervals for one of the groups ( v 2 )  under the null hypothesis 

.I 
of no group differences, divided by 5, the variance of the group. 

The degrees of freedom for this test is (number of groups - 1 ). When there are only two groups, the 
value in the numerator is the same for both groups. hut opposite in sign. The value in the denomina- 
tor is also the same for both groups. Therefore. computations for either group produce the same X 2 .  
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Months 

FIGURE 11.1 Cumulative proportion of treatment 
and control dancers surviving. 

The value, vj, of observed minus expected frequencies is calculated separately for each inter- 
val for one of the groups. For the control group of dancers (the group coded 0): 

The difference between observed and expected frequencies for a group, vo, is the 
summed differences over the intervals between the number of survivors in each interval, 
do,, minus the ratio of the number of cases at risk in t'he intervai (noi) times the total 
number of survivors in that interval summed over all groups (dT, ) ,  divided by the total 
number of cases at risk in that interval summed over all groups (nTi) .  

For example using the control group, in the first interval there are 6 survivors (out of a possible 7 at 
risk), and a total of 11 survivors (out of a possible 12 at risk) for the two groups combined. Therefore, 

For the second interval, there are 4 survivors (out of a possible 6 at risk) in the control group, and a I 
total of 9 survivors (out of a possible 11 at risk) for the two groups combined. Therefore, I 
and so on 



SurvivaliF:lilure Analysis 5 17 

The suni ocrr all I0 intervals for the coiltsol ~ r o i i p  is -2.854. (For the treated group l t  1s 2.854.) 
The variance, C'. fur 11 group is: 

The variance for the control group, Vo, is the sum over all intervals of the difference 
between the total number of survivors in an interval (nTi) times the number of survivors 
in the control group in the interval (noi) minus the squared number of survivors in the 
control group in the interval, this difference multiplied by the product of the total num- 
ber of survivors in the interval (dTi) times sTi (= nTi - dTi);  all of this is divided by the 
squared total number of survivors in the interval (nTi) times the total number of sur- 
vivors in the interval minus one. 

In jargon, the total camber of cases that have survived to an interval (nTi) is called the risk set. 
The variance for the control group, Vo, for the first interval is: 

and for the second interval: 

Vo2 = [(I 1 . 5  - 25)9(2)]/[121(11 - I)] = 540/1210 = 0.4462 

and fn on: The value. summed over all 10 intervals is 2.1736. (This also is the value for the second 
group when there are only two groups.) 

Using these values in Equation 11.7: 

Table C.4 shows that the critical value of X b i t h  1 df at a = .O5 is 3.84. Therefore, the groups are not 
significantly different by the log-rank test. Matrix equations are more convenient to use if there are 
more than two groups. (The matrix procedure is not at all convenient to use if there are only two 
groups because the procedure requires inversion of a singular variance-covariance matrix.) 

i 11.4.6 Computer Analyses of Small-Sample Example 
Tables I 1.3 and 1 1.4 show syntax and selected output for computer analyses of the data in Table 1 1.1 
for SPSS SURVIVAL and SAS LIFETEST, respectively. Syntax and output from SPSS SURVIVAL 
are in Table 1 1.3. The DV (MONTHS), and the grouping var~able (TREATMNT) and its levels, are 
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shown in the TABLE ~nstructian. The J r o p o ~ ~ t  variable and the level indicatins dropout are inciicatekl 
by the STATUS=DANCING(I) instruction as per Table 1 1 . 1 .  SPSS requires explicit Instruction a \  
to the setup of time intervals and a request for a survival (or hazard) plot. The COMPARE instruc- 
tion requests a test of equality of survival functions for the two groups. 

Life tables are presented for each group, control group first, showing the Number of cases 
~ntering the Interval, the number Withdrawing from the study during Interval 
(censored), and the'number of cases who quit classes in each interval in a column labeled Number 
of Terminal Events. The remaining columns of proportions and their standard errors are as 
described in Sections 11.4.1 through 1 1.4.3, with some change in notation. Number Exposed to 
Risk is the Number Entering Interval minus the Number Withdrawing during 
Interval. Terminal events are drop-outs. Note that Cumulative Proportion Surviving 
at End of Interval is the cumulative proportion surviving at the end of an interval rather than 
at the beginning of an interval as in Table 11.2. 

Median survival times are given for each group. The survival function comparing the two 
groups is then shown. The two groups are compared using the Wilcoxon (Gehan) test. With 
X2 (1, N = 12) = 4.840, p = 0.28; this test shows a significant difference in survival between 
groups. Finally, a si;n;rnary table shows the overall censoring rates for the twu groups, as  well as a 
mean score for each group. 

Table 11.4 shows syntax and output for SAS LIFETEST. This program requires an explicit 
request for actuarial tables ( m e t  h o d =  1 i f e) ,  as well as specification of the time intervals and a 
request for survival plot(s). The strata T R E A T  M N  T instruction identifies the grouping variable (IV). 
The t i rn e M 0 N T H S * D  AN C I N  G ( 0 instruction identifies M 0 N  T H S as the time variable and 
DAN C I N  G as the response variable, with 0 indicating the data that are censored (the DV value is not 
known). 

Output is somewhat different from that of SPSS, partly because some statistics are evaluated 
at the median rather than at the beginning of each interval. N  urn b e r Fa  i 1 e d corresponds to 
Number of Terminai Events in SPSS and Nurnbe r C e n s o r e d  to Number Withdraw- 
ing during Interval. E f f e c t  i v e  Sarnp 1 e S i z e  corresponds to Number Exposed 
t n  Risk (er?Pmber Entering this Interval:. Cond i t i ona ! Pi-oba b 'i L i t y o f  f a i I u r e  
is the proportion not surviving within an interval (Proportion Terminating i n  SPSS); proportion 
surviving is one minus that value. The column labeled S u r v i v a 1 is the cumulative proportion sur- 
viving to the beginning of an intervai; the column labeled Fa i L u r e is one minus that value. 

TABLE 11.3 Syntax and Output for Small-Sample Example through SPSS SURVIVAL 

SURVIVAL 
TABLE=MONTHS BY TREATMNT (0 1) 
/INTERVAL=THRU 12 BY 1.2 
/STATUS=DANCING(l) 
/PRINT=TABLE 
/PLOTS (SURVIVAL)=MONTHS BY TREATMNT 
/COMPARE=MONTHS BY TREATMNT 
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TABLE 11.3 Continued 

Median Survival Times 

First-order Control: TREATMNT 

Survival Function 

I 

I 
I I I I I I I 

I , 
0 2 4 6 8 1 0 1 2  

Time since beginning to dance 

Comparisons for Control Variable: TREATMNT 

Overall Comparisonsa 

(Gehan) 1 d , sig. .028 1 4.480 

Treatment 
control 

A treated 

acomparisons are exact. 



1 TABLE 11.1 Syntax and Output for Small-Sample Example through SAS LIFETEST 

p r o c  l i f e t e s t  data=SASUSER.SURVIVAL 
p L o t s = ( s )  m e t h o d = l i f e  i n t e r v a l = O  t o  12 BY 1.2; 
t i m e  MONTHS*DANCING(O); 
s t r a t a  TREATMNT; 

r un ;  
The L IFETEST P r o c e d u r e  

S t r a t u m  1 :  TREATMNT = 0  
L . i f e  T a b l e  S u r v i v a l  E s t i m a t e s  

C o n d i t i o n a l  
E f f e c t i v e  C o n d i t i o n a l  P r o b a b i l i t y  

I n t e r v a l  Number  Number  Samp le  P r o b a b i l i t y  S t a n d a r d  
[ Lowe r ,  U p p e r )  F a i  l e d  C e n s o r e d  S i z e  o f  F a i  l u r e  E r r o r  S u r v i v a l  F a i l u r e  

0  1.2 1  0  7.0 0.1429 1 . O O O O  0  0.1323 
1 . 2  2 .4  2  0  6.0 0.3333 0.1925 0.8571 0.1429 
2.4 3.6 1  0  4.0 0 .2500 0.21 65 0.5714 0.4286 
3 . 6  4 .8  1  0  3 .0  0.3333 0.2722 0.4286 0.5714 
4.8 6  1  0  2  .O 0.5000 0.3536 0.2857 0.71 43 

6  7.2 0 0 1.0  0  0  0.1429 0.8571 
7.2 8.4 0  0  1 .0  0  0  0.1429 0.8571 
8.4 9 . 6  0  0  1  .O 0  0  0.1429 0.8571 
9.6 10.8 0  0  1  . O  0  0  0.1429 0.8571 

10 .8  12 1  0  1  . O  1  . O O O O  0  0.1429 0.8571 

E v a l u a t e d  a t  t h e  M i d p o i n t  o f  t h e  I n t e r v a l  

S u r v i v a l  M e d i a n  M e d i a n  PD F H a z a r d  
I n t e r v a l  S t a n d a r d  R e s i d u a l  S t a n d a r d  S t a n d a r d  S t a n d a r d  

[Lower ,  U p p e r )  E r r o r  L i f e t i m e  E r r o r  PD F  E r r o r  H a z a r d  E r r o r  

0  1.2 0  3.0000 1.5875 0.1190 0.1102 0.128205 0.127825 
1.2 2.4 0.1323 2.4000 1.4697 0.2381 0.1423 0.333333 0.23094 
2.4  3.6 0 .1870 2.4000 1.2000 0.1190 0.11 02 0.238095 0.235653 
3.6 4.8 0.1870 1.8000 1.0392 0.1190 0.1102 0.333333 0.326599 
4.8 6  0 .1707 1.2000 0.8485 0.1190 0.1102 0.555556 0.523783 

6 7.2 0.1323 0 0  
7.2 8.4 0.1323 0 0  
8.4 9.6 0.1323 0 0  
9 . 6  10.8 0.1323 0 0  

10.8 12 0.1323 0.1190 0.1102 1.666667 0 



'TABLE 11.4 Continued 

S t r a t u m  2: TREATMNT = 1 
L i f e  T a b l e  S u r v i v a l  E s t i m a t e s  

C o n d i  t i  ona  L 
E f f e c t i v e  C o n d i t i o n a l  P r o b a b i l i t y  

I n t e r v a l  Number Number Sample  P r o b a b i  L i  t y  S t a n d a r d  
[Lower ,  U p p e r )  F a i  l e d  C e n s o r e d  S i z e  o f  F a i  L u r e  E r r o r  S u r v i v a l  F a i  L u r e  

0 1.2 0 0 5.0 0 0 ' 1.0000 0 
1.2 2.4 0 0 5.0 0 .  0 1 . O O O O  0 
2 .4  3 . 6  0 0 5.0 0 0 1.0000 0 
3.6 4 .8  0 0 5.0 0 0 1.0000 0 
4.8 6 0 0 5.0 0 0 1 . O O O O  0 

6 7.2 1 0 5.0 0 .2000 0.1789 1.0000 0 
7 .2  8.4 1 0 4.0 0.2500 0.21 65 0.8000 0.2000 
8.4 9.6 0 0 3.0 0 0 0.6000 0.4000 
9.6 10 .8  2 0 3.0 0.6667 0.2722 0.6000 0.4000 

10 .8  12 0 0 1 . O  0 0 0.2000 0.8000 
12 0 1 0.5 0 0 0.2000 0.8000 

E v a l u a t e d  a t  t h e  M i d p o i n t  o f  t h e  I n t e r v a l  
S u r v i v a l  M e d i a n  M e d i a n  PD F  H a z a r d  

I n t e r v a l  S t a n d a r d  R e s i d u a L  S t a n d a r d  S t a n d a r d  S t a n d a r d  
CLower, U p p e r )  E r r o r  L i f e t i m e  E r r o r  PD F E r r o r  H a z a r d  E r r o r  

0 1.2 0 9.9000 0.6708 0 0 
1 .2  2.4 0 8.7000 0.6708 0 0 
2 .4  3.6 0 7.5000 0.6708 0 0 
3.6 4 .8  0 6.3000 0.6708 0 0 
4.8 6 0 5.1000 0.6708 0 0 

6 7.2 0 3.9000 0.6708 0.1667 0.1491 0.185185 0.184039 
7.2 8.4 0.1789 3.0000 0.6000 0.1667 0.1491 0.238095 0.235653 
8.4  9 . 6  0.2191 2.1000 0.5196 0 0 
9 . 6  10.8 0.21 91 0.9000 0.5196 0.3333 0.1826 0.833333 0.51031 

10.8 12 0 .1789 0 0 
12 0.1789 

Summary o f  t h e  Number o f  C e n s o r e d  a n d  U n c e n s o r e d  V a l u e s  
S t r a t u m  TREATMNT T o t a l  F a i L e d  C e n s o r e d  P e r c e n t  C e n s o r e d  

1 CI 7 7 0 0.00 
2 1 5 4 1 20.00 .................................................................. 

T o t a l  12 11 1 8.3333 
T e s t i n g  H o m o g e n e i t y  o f  S u r v i v a l  C u r v e s  f o r  MONTHS o v e r  S t r a t a  
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I TARLE 11.4 Continued 

1 Rank  S t a t i s t i c s  

I TREATMNT Log-Rank  W i  1 c o x o n  

C o v a r i a n c e  M a t r i x  f o r  t h e  Log-Rank  S t a t i s t i c s  

TREATMNT 0 1 

C o v a r i a n c e  M a t r i x  f o r  t h e  W i l c o x o n  S t a t i s t i c s  

TREATMNT 0 1 

T e s t  o f  E q u a l i t y  o v e r  S t r a t a  

P r  > 
T e s t  C h i - s q u a r e  D F  C h i - s q u a r e  

Log-Rank  3.7472 1 0.0529 
W i  l c o x o n  4.92 57 I 0.0265 
- 2 L o g ( L R )  3.1121 1 0.0777 

MONTHS 

STRATA: TREATMNT=O h- TREATMNT=I 
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SAS L.IFETEST shows Med i a n  Res  i d u a  1 L i  f e t i me (and its standard error), which i h  

the amount of time elapsed before the number of at-risk cases is reduced to half. PD F refers to the 
probability density function, Probability Density in SPSS. These statistics are followed 
by the usual summary table of censored and failed values. Then the matrices used in calculating 
group differences are shown (see Equations 1 1.7 through 1 1.9), and finally a table shows the results. 
of three chi-square tests. The W i L c o x o n  t e s t corresponds to a GENERALIZED WILCOXON 
(BRESLOW) test, as discussed in Section 11.6.4.1. The high resolution survival function graph is 
then shown, produced in a separate window from the printed output in SAS. 

11.5 Types of Survival Analyses 

There are two major types of survival analyses: life tables (including proportions of survivors at var- 
ious times and survivor. functions, with tests of group differences) and prediction of survival time 
from one or more covariates (some of which may represent group differences). Life tables are esti- 
mated by either the actuarial or the product-limit (Kaplan-Meier) method. Prediction of survival time 
from covariates most often involves the Cox proportional-hazards model (Cox regression). 

11.5.1 Actuarial and Product-Limit Life Tables 
and Survivor Functions 

The actuarial method for calculating life tables and testing differences among groups is illustrated 
in Section 1 1.4. An alternative for forming life tables and testing differences among groups is the 
product-limit method. The product-limit method does not use a specified interval size but rather cal- 
culates survival statistics each time an event is observed. The two methods produce identical results 
when there is no censoring and intervals contain no more than one time unit. The prod~ict-limit 
method (also known as the Kaplan-Meier method) is the most widely used, particularly in bio- 
medicine (Allison, 1995). It has the advantage of producing a single statistic, such as mean or 
median, that summarizes survival time. 

SAS LIFETEST vffers a choice of either the actuariai or product-limit method. SPSS has 
SURVIVAL for actuarial tables and KM for product-limit. Table 11.5 shows SPSS KM syntax and 
output for a product-limit analysis of the small-sample data. 

The output is organized by time at which events occur rather than by time interval. For exam- 
ple, there are two lines of output for the two control dancers who dropped out during the second 
month and for the two treated dancers who dropped out in the tenth month. Both mean and median 
survival time are given, along with their standard errors and 95% confidence intervals. The survival- 
function chart differs slightly from that of the actuarial method in Table 11.3 by including informa- 
tion about cases that are censored. Group differences are tested through the Log Rank test, among 
others that can be requested, rather than the Wilcoxon test produced by SPSS SURVIVAL. 

11.5.2 Prediction of Group Survival Times from Covariates 

Prediction of survival (or failure) time from covariates is similar to logistic regression (Chapter LO) 
but with provision for censored data. This method also differs in analyzing the time between events 
rather than predicting the occurrence of events. Cox proportional hazards (Cox regression) is the 



I most popular method. Accelerated failure-time models are also available for the more sophisticated 
user. 

As in other forms of regression (cf. Chapter 5 ) ,  analysis of survival can be direct, sequential. 
or statistical. A treatment IV, if present, is analyzed the same as any other discrete covariate. When 
there are only two levels of treatment, the treated group is usually coded 1 and the control group 0. 
If there are more than two levels of treatment, dummy variable coding is used to represent group 

I TABLE 11.5 Syntax and Output for SPSS Kaplan-Meier Analysis of Small-Sample Data 

KM 
MONTHS BY TREATMNT 
/STATUS=DANCING(l ) 
/PRINT TABLE MEAN 
/PLOT SURVIVAL 
/TEST LOGRANK 
/COMPARE OVERALL POOLED. 

I Kaplan-Meier 

Case Processing Summary 

Survival Table 

h 

Treatment 

control 
treated 
Overall 

(continued) 

Censored 

Total N 

7 
5 

12 

N 

0 
1 
1 

Treatment 

control 1 
2 
3 
4 
5 
6 
7 

treated 1 
2 

5 

N of Events 

7 
4 

11 

Percent 

.O% 
20.0% 

8.3% 

N of 
Cumulative 

Events 

1 
2 
3 
4 
5 
6 
7 

1 
2 

N of 
Cumulative 

Events 

6 
5 
4 
3 
2 
1 
0 

4 
3 

Time 

1.000 
2.000 
2.000 
3.000 
4.000 
5.000 

11.000 

7.000 
8.000 

I 
2 
1 

4 1 0 

Status 

dropped out 
dropped out 
dropped out 
dropped out 
dropped out 
dropped out 
dropped out 

dropped out 
dropped out 

.I79 

Cumulative Proportion 
Surviving at the Time 

dropped out : ::::: 1 dropped out 1 200 

Estimate 

.857 

.571 

.429 

.286 
,143 
,000 

.800 
,600 

12.000 

Std. Error 

.I32 

1 8 7  
.I87 
.I71 
1 3 2  
.OOO 

1 7 9  
.219 

still dancing 



TABLE 11.5 Continued 
0\ -- --- 

Means and Medians for Survival Time 

ElEstimation is limited to the largest survival time if it is censored. 

Overall Comparisons 

Treatment 

control 
treated 
Overall 

Survival Function 
Test of equality of survival distributions for the 
different levels of Treatment. I .O Treatment 

1 control 

0.8 -ei treated 

+ treated-censored - 
m .= 0.6 
? 
3 
V) 

5 0.4 
0 

0.2 

0.0 

0.00 2.00 4.00 6.00 8.00 10.00 12.00 
Time since beginning to dance 

r 

Meana 

Log Rank (Mantel-Cox) 

Estimate 

4.000 
9.400 
6.250 

Median 

Estimate 

3.000 
10.000 
5.000 

Chi-square 

3.747 

Std. 
Error 

1.272 
.780 

1.081 

Std. 
Error 

1.309 
.894 

2.598 

d f 

1 

--- 

95% Confidence Interval 

Sig. 

.053 

--- 
Lower Bound 

1.506 
7.872 
4.131 

95% Confidence Interval 

Upper Bound 

6.494 
10.928 
8.369 

Lower 6ound 

.434 
8.247 

.OOO 

Upper Bound 

5.566 
11.753 
10.092 



membership. as described in  Section 5.2. Successful prediction o n  the basis oi this IV indicatt. siy 
nificant treatment effect\. 

11.5.2.1 Direct, Sequential, and Statistical Analysis 

The three major analytic strategies in survival analysis with covariates are direct (standard), sequen- 
tial (hierarchical'), and statistical (stepwise or setwise). Differences among the strategies involve 
what happens to overlapping variability due to correlated covariates (including treatment groups) 
and who determines the order of entry of covariates into the equation. 

In the direct, or simultaneous, model all covariates enter the regression equation at one time 
and each is assessed as if it entered last. Therefore, each covariate is evaluated as to what it adds to 
prediction of survival time that is different from the prediction afforded by all the other covariates. 

In the sequential (sometimes called hierarchical) model, covariates enter the equation in an 
order specified by the researcher. Each covariate is assessed by what it adds to the equation at its own 
point of entry. Covariates are entered one at a time or in blocks. The analysis proceeds in steps, with 
information about the covariates in the equation given at each step. A typical strategy in survival 
analysis with an experimental IV is to enter all the nontreatment covariates at the first step, and then 
enter the covariate(s) representing the treatment variable at the second step. Output after the second 
step indicates the importance of the treatment variable to prediction of survival after statistical 
adjustment for the effects of other covariates. 

Statistical regression (sometimes generically called stepwise regression) is a controversial pro- 
cedure in which order of entry of variables is based solely on statistical criteria. The meaning of the 
variables is not relevant. Decisions about which variables are included in the equation are based 
solely on statistics computed from the particular sample drawn; minor differences in these statistics 
can have a profound effect on the apparent importance of a covariate, including the one representing 
trealment groups. The procedure is typically used during early stages of research, when nontreat- 
ment covariates are being assessed for their relationship with survival. Covariates w h ~ c h  contribute 
little to prediction are then dropped from subsequent research into the effects of treatment. As with 
logistic regression, data-driven strategies are especiaiiy dangerous when iiiiportaiii decisions are 
based on resuits that may nut generalize beyofid the samp!e c h ~ s e n .  Cress-va!idat.inn is crucial if sta- 
tistical/stepwise techniques are used for any but the most preliminary investigations. 

Both of the reviewed programs provide direct analysis. SPSS COXREG also provides both 
sequential and stepwise analysis. SAS LIFEREG provides o%ly direct analysis, but SAS PHREG 
provides direct, sequential, stepwise, and setwise analysis (in which models including all possible 
combinations of covariates are evaluated). 

11.5.2.2 Cox Proportional-Hazards Model 

This method models event (failure, death) rates as a log-linear function of predictors, called covari- 
ates. Regression coefficients give the relative effect of each covariate on the survivor function. Cox 
modeling is available through SPSS COXREG and SAS PHREG. 

Table 11.6 shows the results of a direct Cox regression analysis through SAS PHREG 
using the small-sample data of Table 1 1 . 1 .  Treatment (a dichotomous variable) and age are consid- 
ered covariates For purposes of thiq analysis. This analysis assumes proportionality of hazard (that 
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TABLE 11.6 Syntax and Output for Direct Cou Regression Analysis through SAS PHREG 

p r o c  p h r e g  data=SASUSER.SURVIVE; 
m o d e l  m o n t h s * d a n c i n g ( O )  = a g e  t r e a t m n t ;  
run ;  

The PHREG P r o c e d u r e  

M o d e l  I n f o r m a t i o n  

D a t a  S e t  SASUSER.SURVIVE 
D e p e n d e n t  V a r i a b l e  MONTHS 
C e n s o r i n g  V a r i a b l e  DANCING 
C e n s o r i n g  V a l u e ( s 1  0  
T i e s  H a n d l i n g  BRESLOW 

Summary o f  t h e  Number o f  E v e n t  a n d  C e n s o r e d  V a l u e s  

P e r c e n t  
T o t a l  E v e n t  C e n s o r e d  C e n s o r e d  

1 2  11 1  8 . 3 3  

ModeL F i t  S t a t i s t i c s  

W i t h o u t  W i t h  
C r i t e r i o n  C o v a r i a t e s  C o v a r i a t e s  

- 2 LOG L  40.740  21 .417  
A I C  40.740  25 .417  
S B  C 40 .740  26 .213  

T e s t i n g  G l o b a i  NuL L H y p o t h e s i s :  BETA=O 

T e s t  C -h i -Square  D F P r  > C h i S q  

L i k e l i h o o d  R a t i o  19 .3233  2 < .0001  
S c o r e  14.7061 2 0 .0006  
Wa Ld 6 .6154  2 0 .0366  

A n a l y s i s  o f  Maximum L i k e l i h o o d  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  C h i -  P r  > H a z a r d  
V a r i a b l e  D F  E s t i m a t e  E r r o r  Square  C h i  Sq R a t i o  

AGE 1 -0 .22989 0.08945 6.6047 0.01 02 0.795 
TREATMNT 1 -2 .541 37 1 .54632 2.7011 0.1003 0 . 0 7 9  - 



S~~rvival/Failure Analysis 529 

I 
the shapes of survivor f~unct~ons are the same for all level5 of treatment ). Section 1 1.6.1 xhoux hot"\ 
to test the assumption and etaluate group differences i f  i t  is violated. The time vari~lhle (nlonthhr and 
the response variable (dancing, with 0 indicating censored data) are identified in  a model instruction 
and are predicted by two covariates: age and treatment. 

Model Fit Statistics are useful for comparing models, as in logistic regression analysis (Chap- 
ter 10): Three tests are available to evaluate the hypothesis that all regression coefficients are'zero. 
For example, the Likelihood Ratio test indicates that the combination of age and treatment signifi- 
cantly predicts survival time, x2(2, N = 12) = 19.32, p < .0001. (Note that this is a large-sample 
test and cannot be taken too seriously with only 12 cases.) Significance tests for the individual pre- 
dictors also are shown as Chi-Square tests. Thus, age significantly predicts survival time, after 
adjusting for differences in treatment, x2(1, N = 12) = 6.60, p = .Ol. However, treatment does not 
predict survival time, after adjusting for differences in age, X2 ( 1, N = 12) = 2.70, p = .lo. Thus this 
analysis shows no significant treatment effect. Regression coefficients P a r a m e t e r  E s t i m a t e )  
for significant effects and odds ratios (Hazard Ratio) may be interpreted as per Section 1 1.6.5. 

Sequential COX regression analysis through SPSS COXREG is shown in Table 11.7. Age 
enters the prediction equation first, followed by treatment. Block 0 shows the model fit, -2 Log 
L i k e l i h o o d ,  corresponding to -2 Log L in SAS, useful for comparing models (cf. Section 
10.6.1.1). 

Step one (Block1 ) shows a significant effect of age alone, by both the Wald test (the squared 
z test with the coefficient divided by its standard error, p = .006) and the likelihood ratio test 
[X2(1, N = 12) = 15.345, p < .001]. However, the results for treatment differ for the two crite- 
ria. The Wald test gives the same result as reported for the direct analysis above in which treat- 
ment is adjusted for differences in age and is not statistically significant. The likelihood ratio 
test, on the other hand, shows a significant change with the addition of treatment as a predictor, 
x2(1, N = 12) = 3.98, p < .05. With a sample size this small, it is probably safer to rely on the Wald 

I test indicating no statistically significant treatment effect. 

! 
1 11.5.2.3 Accelerated Failure-Time Models 
I 

These models replace the general hazard function of the Cox model with a specific distribution 
(exponential, normal, or some other). However, greater user sophistication is required to ci-loose the 
distribution. Accelerated faiiure-time models are handled by SAS LIFEREG. SPSS has no program 
for accelerated failure-time modeling. 

Table 1 1.8 shows an accelerated failure-time analysis corresponding to the Cox model of Sec- 
tion 11.5.2.2 through SAS LIFEREG, using the default Weibull distribution. 

It is clear in this analysis that both age and treatment significantly predict survival (P  r > C h i is 
less than .05), leading to the conclusion that treatment significantly affects survival in belly dance 
classes, after adjusting for differences in age at which instruction begins. The T y p e I I I An a 1 y s i s 
o f  E f f e c t s is useful only when a categorical predictor has more than 1 df. 

Choice of distributions in accelerated failure-time models has implications for hazard func- 
tions, so that modeling based on different distributions may lead to different interpretations. Distri- 
butions available in SAS LIFEREG are Weibull, normal, logistic, gamma, exponential, log-normal, 
and log-logistic. Table 1 1.9 summarizes the various distributions available in S'AS LIFEREC for 
modeling accelerated failure time. 
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TAB1.E 11.7 Syntax and Output for Sequential Cox Regression 
.Analysis through SPSS COXREG 

COXREG 
MONTHS /STATUS=DANCING(l) 
/CONTRAST (TREATMNT)=indicator 
/METHOD=ENTER AGE /METHOD=ENTER TREATMNT 
/CRITERIA=PIN(.05) POUT(.I 0) ITERATE(20). 

Cox Regression 

Case Processing Summary 

aDependent Variable: Time since beginning to dance 

Categoricai Variable Codingsalb 

Frequency 

TREATMNT .00=control 1 .OOO 
1 .OO=treated .OOO 

Percent 

91.7% 
8.3% 

100.00/0 

.O% 

.O% 

.O% 

.O% 

1 00.0% 

k 

Cases available  vent^ 
in analysis Censored 

Total 
Cases dropped Cases with 

missing values 
Cases with 
non-positive time 
Censored cases 
before the earliest 
event in a stratum 
Total 

Total 

alndicator Parameter Coding 
bcategory variable: TREATMNT (Treatment) 

N 

11 
1 

12 

0 

0 

0 
0 

12 

Block 0: Beginning Block 

Omnibus Tests of Model Coefficients 



TABLE: 11.7 Continued 
- --- 

Blockl: Method = Enter 

Omnibus Tests of Model Coeff icientsajb 

Variables in the Equation 

Variables not in the Equationa 

Weginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: -40.740 
bBeginning Block Number 1. Method: Enter 

-2Log 
Likelihood 

Change From Previous Block 

AGE 

Score d f Sig. 

Change From Previous Step 

aResidua1 Chi Square = 3.477 with 1 df Sig. = .062 

Block2: Method = Enter 

Omnibus Tests of Model Coeff icientsagb 

25.395 

Slg . 

.OOO 

chi-square 

1 5.345 

Overall (score) 

B 

-.I99 

Sig. df 

1 

Chi-square 

Weginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: -40.740 
bBeginning Block Number 2. Method: Enter 

d f 
--- 

Sig. 
- 

Chi-square 

SE 

.072 

4 

.OOO 

df 

1 

Wald 

7.640 

-2 Log 
Likelihood 

21.417 

.001 1 15.345 11.185 1 

d f 

1 

Change From Previous Step Overall (score) Change From Prev~ous Block 

Chi-square 

3.978 

Sig. 

.006 

-- 
Sig. 

.001 

Chi-square 

14.706 

E~P(B) 

.819 

-- 

046 

Chi-square 

3.978 

df 

1 

d f 

2 

d f 

1 

Sig. 

.046 
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TABLE 11.7 Continued 

Use of the exponential distribution assumes that the percentage for the hazard rate remains 
the same within a particular group of cases over time. For example, a hazard rate of .l per month 
indicates that 10% of the remaining cases fail in each succeeding month. Thus, the hazard rate does 
not depend on time. 

The Weibull distribution, on the other hand, permits the hazard rate for a particular group of 
cases to change over time. For example, the probability of failure of a hard disk is much higher in the 
first few months than in later months. Thus, the failure rate depends on time, either increasing or 
decreasing. The exponential model is a special case of the Weibull model. Because the exponential 
model is nested within the Weibull model, you can test the difference between results based on the 
two of them (as shown by Allison, 1995, p. 89). 

The log-normal distribution is basically an inverted U-shaped distribution in which the hazard 
function rises to a peak and then declines as time goes by. This function is often associated with 
repeatable events, such as marriage or residential moves. (SAS LIFEREG also permits specification 
of a normal distribution, in which there is no log-transform of the response variable, time.) 

The log-logistic distribution also is an inverted U-shaped distribution when the scale parame- 
ter (a) is less than 1, but behaves like the Weibull distribution when a 1 1. It is a proportional-odds 
model, meaning that the change in log-odds is constant over time. A logistic distribution (without 
log-transform of time) may be specified in SAS LIFEREG. 

The gamma model (the one available in SAS LIFEREG is the generalized gamma model) is 
the most general model. Exponential, Weibull, and log-normal models are all special cases of it. 
Because of this relationship, differences between gamma and these other three models can be evalu- 
ated through likelihood ratio chi-square statistics (Allison, 1995, p. 89). 

The gamma model can also have shapes that other models cannot, such as a U shape in which 
the hazard decreases over time to a minimum and then increases. Human mortality (and perhaps hard 
disks) over the whole life span follow this distribution (although hard disks are likely to become 
obsolete in both size and speed before the increase in hazard occurs). Because there is no more gen- 
eral model than the gamma, there is no test of its adequacy as an underlying distribution. And 
because the model is so general, it will always provide at least as good a fit as any other model. 

Variables in the Equation 

AGE 
TREATMNT 

Covariate Means 

31.500 
TREATMNT 

B 

-.230 
2.542 

SE 

,089 
1.546 

Wald 

6.605 
2.701 

d f 

1 
1 

Sig. 

,010 
100 

E~P(B)  

.795 
12.699 
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TABLE 11.8 Syntax and Output for Accelerated Failure-Time Model through S.iS LIFEREG 

p r o c  l i f e r e g  data=SASUSER.SURVIVE; 
mode l  MONTHSkDANCING(O>= AGE TREATMNT; 

run;  

The LIFEREG P r o c e d u r e  

M o d e l  I n f o r m a t i o n  

D a t a  S e t  SASUSER.SURVIVE 
D e p e n d e n t  V a r i a b l e  Log(MONTHS1 
C e n s o r i n g  V a r i a b l e  DANCING 
C e n s o r i n g  V a l u e ( s 1  0 
Number  o f  O b s e r v a t i o n s  12  
N o n c e n s o r e d  V a l u e s  11 
R i g h t  C e n s o r e d  V a l u e s  1 
L e f t  C e n s o r e d  V a l u e s  0 
I n t e r v a l  C e n s o r e d  V a l u e s  0 
Name o f  D i s t r i b u t i o n  W e i b u L l  
L o g  L i  k e  1  i h o o d  -4 .960832864 

Number  o f  O b s e r v a t i o n s  Read 12  
Number  o f  O b s e r v a t i o n s  U s e d  12  

A l g o r i t h m  c o n v e r g e d .  

T y p e  I11 A n a l y s i s  o f  E f f e c t s  

Wa Ld 
E f f e c t  D F C h i - s q u a r e  P r  > C h i S q  

A G E  1 15 .3318  < OOO? 
TREATMNT 1 5 .6307  0 . 0 1 7 6  

A n a l y s i s  o f  P a r a m e t e r  E s t i m a t e s  

S t a n d a r d  95% C o n f i d e n c e  C h i -  P r  > 
P a r a m e t e r  DF E s t i m a t e  E r r o r  L i m i t s  S q u a r e  C h i S q  

I n t e r c e p t  1 0.4355 0 .2849  -0 .1229  0 .9939  2 .34  0 .1264  
AGE 1 0.0358 0.0091 0 .0179  0.0537 15 .33  <.0001 
TREATMNT 1 0.5034 0.2121 0 .0876  0 .9192  5 .63  0 .0176  
S c a l e  1 0.3053 0 .0744  0 .1894  0 .4923  
W e i b u l l  Shape 1 3.2751 0 .7984  2.0311 5.2811 
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T4RI.E 11.9 Distributions .A\ailahle for Accelerated Failure- I'ime klodels in S.AS LIFEREG 

Shape of 
;Clodel Hazard 
Distribution Function Parameters Syntax Comments 

Exponential Constant over 1 (location); D=EXPONENTIAL Simplest model, 
time ' scale hazard rate does not 

constrained to 1. depend on time 

Weibull Increases or 2 (location and D = V I E B U L L 
decreases scale) 
over time 

Log-normal Single- 2(locationand D = L N O R M A L  
peaked scale) 

Normal Single- 2(locationand D = N O R M A L  
peaked scale) 

Most commonly used 
model 

Often appropriate for 
repeatable events 

As per log-normal, 
but without log 
transform of response 

Log-logistic Decreases 2 (location and D=LLOGISTIC Has properties of 
over time or scale) Weibull or log-normal 
single-peaked depending on scale 

parameter 

Logistic Decreases 2(locationancl D=LOGISTIC As per log-logistic, 
over time or scale) but without log 
single peaked transform of response 

Gamma Decrease? 3 (location, D = G A M M A  Nonparsimonious, 
over time, scale, and computer intensive 
increases shape) 
over time, or 
constant ovei 
time 

However, considerations of parsimony limit its use, as well as the more practical considerations of 
greater computation time and failure to converge on a solution. 

Choice of models is made on the basis of logic, graphical fit, or, in the case of nested models, 
goodness-of-fit tests. For example, the expected failure rate of mechanical equipment should logi- 
cally increase over time, indicating that a Weibull distribution is most appropriate. Exponential, log- 
normal, or log-logistic models could easily be ruled out on the basis of logic alone. 

Allison (1995) provides guidance for producing graphs of appropriate transformations to 
Kaplan-Meier estimates. A resulting linear plot indicates that the distribution providing the transfor- 
mation is the appropriate one. Allison also illustrates procedures for applying goodness-of-tit statis- 
tics to statistically evaluate competing models. As seen in Table 11.8, accelerated failure-time 
analyses produce z2 lop-likelihood values (in which negative values closer to zero indicate better fits 
of data to models). Thus, twice the difference between nested models provides a likelihood-ratio %' 
,.+-*: ..*: - n c  AL . .-.- A ... - J . t 
~ L L L L I ~ L L C .  U L  LLLG i i ~ b ~ c u  IIIUUCI~, gamrria is iiie rrlosi generai, foiiowed by Teibuii, tinen exponenciai, 



and finally log-normal. That 1s. log-normal 15 nested ~vithin euponenlial. which in turn IS  nested 
within Weibull, etc. 

For example, Table 1 1.8 shows a log-likelihood = -3.96 with a Weibull distribution (default 
for SAS LIFEREG). A run with gamma specified (not shown) produces a log-likelihood = -3.88. 
The likelihood ratio is: 

with df = 1 (because there is only one nesting "step" between Weibull and gamma). With critical 
X2(df = I) = 3.84 at a = .05, there is no significant difference between the Weibull and gamma 
models. Therefore, the Weibull model is preferred because it is the more parsimonious. 

On the other hand, the log-likelihood for the exponential model (not shown) is - 12.43. Com- 
paring that with the Weibull model, 

clearly a significant difference at a = .05. The Weibull model remains the one of choice, because the 
exponential model is significantly worse. 

11.5.2.4 Choosing a Method 

The most straightforward way to analyze survival data with covariates is Cox regression. It is more 
robust than accelerated failure-time methods (Allison, 1995) and requires no choice among the dis- 
tributions in Table 1 1.9 on the part of the researcher. However, the Cox model does have the assump- 
tion of proportionality of hazards over time, as described in the following section. 

I I 11.6 Some Important Issues 
i 

issues in survivai analysis inciude testing the assurnpf on of propordonality of hazards, dea1ir.g with 
censored data, assessing effect size of models and individual covariates, choosing among the variety 
of statistical tests for differences among treatment groups and contributions of covariates, and inter- 
preting odds ratios. 

I 
1 11.6.1 Proportionality of Hazards 
I 
I When Cox regression is used to analyze differences between levels of a discrete covariate such as 

treatment, it is assumed that the shapes of the survival functions are the same for all groups over time. 
That is, the time until failures begin to appear may be longer for one group than another, but once fail- 
ures start, they proceed at the same rate for all groups. When the assumption is met, the lines for the 
survival f~inctions for different groups are roughly parallel, as seen in Figure 1 I. I and Tables 1 1.3 and 

I I I .4. Although inspection of the plots is helpful, a formal test of the assumption is also required. 

I The assumption is similar to homogeneity of regression in ANCOVA. which requires that the 
relationship between the DV and the covariate(s) is the same for all levels of treatment. The propor- 

i 
tionality of hazards assumption is that the relationship between survivai rate and time i h  tile same for 
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all levels of treatment (or any other covariate). In ANCOVA. violation of hotnogeneit) of regression 
signals interaction between the co\ariate(s) and level\ of treatment. I n  ~ ~ 1 r v i ~ a i  analysis. violation of 
proportionality signals interaction between time and levels of treatment (or any other covariate). To 
test the assumption, a time variable is constructed, and its interaction with levels of treatment (and 
other covariates) tested. 

Both treatment and age are covariates in the examples of Cox regression in Tables 11.6 
and 1 1.7. The question is whether either (or both) of these covariates interact with time; if so, there 
is violation of the proportionality of hazards. To test the assumption, a time variable, either con- 
tinuous or discrete., is created and tested for interaction with each covariate. Table 11.10 shows a 
test for proportionality of hazards through SAS PHREG. The model includes two new predic- 
tors: MONTH T RT and MONTH A G E. These are defined in the following instructions as interac- 
tions between each covariate and the natural logarithm of the time variable, MONTHS, e.g., 
MONTHTRT=TREATMNT*LOG(MONTHS 1. The logarithmic transform is recommended to com- 
pensate for numeric problems if the time variable takes on large values (Cantor, 1997). 

The proportionality assumption is met in this example where neither MONT H A G  E nor 
MO N T H T R T is significant. Therefore, the Cox regression analyses of Tables 1 1.6 and 1 1.7 provide 
appropriate tests of treatment effects. If there is violation of the assumption, the test for treatment 
effects requires inclusion of the interaction(s) along with the other covariate(s) in either direct or 
sequential regression. That is, the test of differences due to treatment is conducted after adjustment 
for the interaction(s) along with other covariates. 

Another remedy is to use a covariate that interacts with time as a stratification variable if it is 
discrete (or transformed into discrete) and not of direct interest. For example, suppose there is a sig- 
nificant interaction between age and time and age is not of research interest. Age can be divided into 
at least two levels and then used as a stratification variable in a Cox regression. 

SPSS COXREG has a built-in procedure for creating and testing time-dependent covariates. The 
procedure is demonstrated in Section 1 1.7.1.5. 

TABLE 11.10 Syntax and Partial Output for Proportionality Test through SAS PHREG 

P r o c  p h r e g  data=SASUSER.SURVIVALZ; 
M o d e l  MONTHS*DANCING(O)=AGE TREATMNT MONTHAGE MONTHTRT; 
M O N T H T R T = T R E A T M N T * L O G ( M O N T H S ) ;  M O N T H A G E = A G E k L O G ( M O N T H S ) ;  

r un ;  

The  PHREG P r o c e d u r e  

A n a l y s i s  o f  Maximum L i k e l i h o o d  E s t i m a t e s  

Wa l d  
P a r a m e t e r  S t a n d a r d  C h i -  P r  > H a z a r d  

V a r i a b l e  DF E s t i m a t e  E r r o r  S q u a r e  C h i  Sq R a t i o  

AGE 1 -0.22563 0.21790 1.0722 0.3004 0.798 
TREATMNT 1 -3.5491 1 8.57639 0.1713 0.6790 0.029 
MONTHAGE 1 -0.0001975 0.12658 0.0000 0.9988 1 . O O O  
MONTHTRT 1 0.47902 3.97015 0.0146 0.9040 1 .614  
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11.6.2 Censored Data 

Censored cases are those for whom the tlme of the event being studled (dropout. death. failure. grad- 
uation) is unknown or only vaguely known. If failure has not occurred by the end of the study (e.g.. 
the part is still functioning, the dancer is still in classes, and so on), the case is considered right- 
censored. Or, if you know that failure occurred before a particular time (e.g., a tumor is already 
developed when the case enters your study), the case is considered left-censored. Or. if you know 
only that failure occurred sometime within a wide time interval, the case is considered interval- 
censored. A data set can contain a mix of cases with several forms of censoring. 

11.6.2.1 Right-Censored Data 

I Right-censoring is the most common form of censoring and occurs when the event being studied has 
not occurred by the time data collection ceases. When the term "censoring" is used generically in 
some texts and computer programs, it refers to right-censoring. 

Sometimes right-censoring is under the control of the researcher. For example, the researcher 
decides to monitor cases until some predetermined number has failed, or until every case has been 
followed for three years. Cases are censored, then, because the researcher terminates data collec- 
tion before the event occurs for some cases. Other times the t-esearcher has no control over right- 
censoring. For example, a case might be lost because a participant refuses to continue to the end of 
the study or dies for some reason other than the disease under study. Or, survival time may be 
unknown because the entry time of a case is not under the control of the researcher. For example, 

I cases are mon~tored until a predetermined time, but the time of entry into the study (e.g., the time of 

i surgery) varies randomly among cases so that total survival time is unknown. That is, all you know 
about the time of occurrence of an event (failure, recovery) is that it occurred after some particular 
time, that is, it is greater than some value (Allison, 1995). 

I Mobt methods of survival analysis d~ not distinguish ~ n o n g  type< of right-censoring. but 
cases that are lost from the study may pose problems because it is assumed that there are no sys- 

i 
I 

ternatic differences between them and the cases that remain (Section 1 1.3.2.4). This assumption is 
likely to be violated when cases voluntarily leave the study. For example, students who drop out of 

1 a graduate program are unlikely to have graduated (had they stayed) as soon as students who con- 

i tinued. Instead, thobe who drop out are probably among those who would have taken ionger to grad- 
uate. About the only solution to the problem is to try to include covariates that are related to this form 
of censoring. 

All of the programs reviewed here deal with right-censored data, but none distinguishes among 
I the various types of right-censoring. Therefore, results are misleading if assumptions about censor- 

Ing are violated. 

11.6.2.2 Other Forms of Censoring 

A case is left-censored if the event of interest occurred before an observed time, so that you know 
only that survival time is less than the total observation time. Left-censoring is unlikely to occur in 

I an experiment, because random assignment to conditions is normally made only for intact cases. 
I However, left-censoring can occur in a nonexperimental study. For example. if you are studying the 
I failure time of a component, some components may have failed before you start your observations, 
I so you don't know their totai survival tiii-te. 
i 
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With interval cenhorin?. y o u  know the interval ~v~ th in  which the event occurred. but not the 
exact time within the intzl-cal. Inter~al censoring is likely to occur when eLents are ~nonitored infre- 
quently. Allison (1995) provides as an example annual testing for HIV infection in which a person 
who tested negative at year 2, but tested positive at year 3, is interval-censored between 2 and 3. 

SAS LIFEREG handles right-, left-, and interval-censoring by requiring two time variables. 
upper time and lower time. For right-censored cases, the upper time value is missing; for left- 
censored cases, the'lower time value is missing. Interval-censoring is indicated by different values 
for the two variables. 

11.6.3 Effect Size and Power 

Cox and Snell(1989) provide a measure of effect size for logistic regression that is demonstrated for 
survival analysis by Allison (1995). It is based on G2, a likelihood-ratio chi-square statistic (Section 
11.6.4.2), that can be calculated from SAS PHREG and LIFEREG and SPSS COXREG. 

Models are fit both with and without covariates, and a difference G' is found by: 

G2 = [(-2 log-likelihood for smaller model) - (-2 log-likelihood for larger model)] (1 1.10) 

Then, R' is found by 

When applied to experiments, the R' of greatest interested is the association between survival 
and treatment, after adjustment for other covariates. Therefore the smaller model is the one that 
includes covariates but not treatment, and the larger model is the one that includes covariates and 
treatment. 

For the example of Table 1 1 .? (the sequential analysis in which treatment is adjusted for age), 
-2 log-likelihood with age alone is 25.395 and -2 log-likelihood with age and treatment is 21.417, 
so that 

for treatment. (Note that this value is also provided by SPSS COXREG, as Change from Previous 
Block.) 

Applying Equation 1 1.1 1 : 

Steiger and Fouladi's ( 1  992) software may be used to find confidence limits around this value 
(cf. Figure 9.3). The number of variables (including the criterion but not the covariate) is 2, with N = 
12. The software provides a 95% confidence limit ranging from 0 to .69. 

Allison (1995) points out that this R~ is not the proportion of variance in survival that is 
explained by the covariates, but merely represents relative association between survival and the 
covariates tested, in this case treatment after adjustment for age. 

Power in survival analysis is, as usual. enhanced by larger sample sizes and covariates with 
ctrnn<rpr pffprt~ A m n l I n t  - f  , . i . n r . n r ; " "  ".-A .."tt~l.."~ - $  ,*+..., r\+-,.",.nr. :..en +I.- * + . . , J . ,  , . I" , .  ,.CIC--* _.-.. .- 
7 r l V L l b b L  C I I ~ ~ L J .  i l l l l V U l l L  V L  L L 1 1 3 U 1 1 1 1 &  UllU p U L L L L L L 3  Ul L l l L L y  U L  CU3L3 l l l L U  L I I L  3 L U U Y  CIISU L L I L C L L  p U W C L .  



as does the I-elative cize o f  treatment g-oups. Unequal sample size.; reduce power- while equal ham- 
ple sizes increase it. Estimating sample sizes and power for survival analysis is not included in the 
software discussed in this book except for NCSS (2002) PASS which provides power and sample 
size estimates for a survival test, based on Lachin ar.d Foulkes ( 1986). Another, stand-alone, program 
provides power analysis for several types of survival analyses: nQuery Advisor 4.0 (Elashoff, 2000). 

I 11.6.4 Statistical Criteria 

Numerous statistical tests are available for evaluating group differences due to treatment effects from 
an actuarial life table or product-limit analysis, as discussed in Section 1 1.6.4.1. Tests for evaluating 
the relationships among survival time and various covariates (including treatment) are discussed in 
Section 1 1.6.4.2. 

I 11.6.4.1 Test St&tistics for Group Differences in Survival Functions 

Several statistical tests are available for evaluating group differences, and there is inconsistent label- 
ing among programs. The tests differ primarily in how cases are weighted, with weighting based on 
the time that groups begin to diverge during the course of survival. For example, if the groups begin 
to diverge right away (untreated cases fail quickly but treated cases do not), statistics based on heav- 
ier weighting of cases that fail quickly show greater group differences than statistics for which all 
cases are weighted equally. Table 1 1.1 1 summarizes statistics for differences among groups that are 
available in the programs. 

SAS LIFETEST provides three tests: The Log - R a n k and W i 1 c o x  o n statistics and the 
likelihood-ratio test, labeled -2  Log ( LR 1, which assumes an exponential distribution of failures in 
each of the groups. SPSS KM offers three statistics as part of the Kaplan-Meier analysis: the Log  

TABLE 11.11 Tests for Differences among Groups in Actuarial and Product-Limits Methods 

I Nomenclature 

I 

i 
SA S" SPSS SPSS 

Test LIFETEST SURVIVAL KM Comments 

I I Log-Rank  N.A. Log Rank Equal weight to all observations 

1 2 T a r o n e  N.A. Tarone- Slightly greater weight to early 
I 

Ware observations, between test I and test 3 
I 
I 
I 3 W i  l c o x o n  N.A. Breslow Greater weight to early observations 

Wilcoxon N.A. Differs slightly from test 3 
(Gehan) 

I 5 - 2 L o g  ( L R )  N. A. N.A. Assumes an exponential distribution 
1 of failures in  each group 

I 
I 

I 
"Additional SAS tests are listed in Table 1 I .24. 
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Rank tejt. the Tarone-Ware >tatljt~c. and the Breslow \t,lt~\tlc. cbh1c.h 1s eqi~~b~llent  to the 
W i L c o x o n  \tatist~c ut SAS SPSS SURVIVAL p r o ~ ~ d e \  an alternat~be t u ~ m  ot the Wilcoxon 
te\t, the Gehan jtatlstlc, wh~ch appears to use welght4 Intermediate between Breslow (Wllcoxon) 
and Tarone-Ware. 

11.6.4.2 Test Statistics for Prediction from Covariates 

Log-likelihood chi-square tests (G? as described in Section 11.6.3) are used both to test the hypoth- 
esis that all regression coefficients for covariates are zero in a Cox proportional hazards model and 
to evaluate differences in models with and without a particular set of covariates, as illustrated in Sec- 
tion 11.6.3. The latter application, using Equation 1 1.10, most often evaluates the effects of treat- 
ment after adjustment for other covariates. All of these likelihood-ratio statistics are large sample 
tests and are not to be taken seriously with small samples such as the example of Section 1 1.4. 

Statistics are also available to test regression coefficients separately for each covariate. These 
Wald tests are z tests where the coefficient is divided by its standard error. When the test is applied 
to the treatment covariate, it is another test of the effect of treatment after adjustment for all other 
covariates. 

SPSS COXREG provides all of the required information in a sequential run, as illustrated 
in Table 11.7. The last step (in which treatment is included) shows Chi-Square for Change 
(-2 Log Likelihood) from Previous Block as the likelihood ratio test of treatment as 
well as Wald tests for both treatment and age, the covariates. 

SAS PHREG provides Mode 1 C h i - S q u a r e  which is overall G ~ ,  with and without all 
covariates. A likelihood-ratio test for models with and without treatment (in which other covariates 
are included in both models) requires a sequential run followed by application of Equation 1 I .  I 0  to 
the models with and without treatment. SAS LIFEREG, on the other hand, provides no overall chi- 
square likelihood-ratio test but does provide chi-square tests for each covariate, adjusted for all oth- 
ers, based on the squares of coefficients divided by their standard errors. A log-likelihood value for 
the whole model is also provided. so that two runs. one with and the other without treatment. provide 
the statistics necessary for Equation 1 1.10. 

11.6.5 Predicting Survival Rate 

11.6.5. I Regression Coefficients (Parameter Estimates) 

Statistics for predicting survival from covariates require calculating regression coefficients for each 
covariate where one or more of the "covariates" may represent treatment. The regression coefficients 
give the relative effect of each covariate on the survival function, but the size depends on the scale of 
the covariate. These coefficients may be used to develop a regression equation for risk as a DV. An 
example of this is in Section 1 1.7.2.2. 

11.6.5.2 Odds Ratios 

Because survival analysis is based on a linear combination of effects in the exponent (like logistic 
regression, Chapter 10) rather than a simple linear combination of effects (like multiple regression, 
Chapter 5 ) .  effects are most often interpreted as odds. How does a covariate change the odds of sur- 
viving'? For example. how does a one-year increase in age change the odds of surviving in dance 
ciasses? 



Odds are found from a regression coei'ticieni ( R )  ac p B .  However. for correct interpretation. 
you also have to consider the direction of coding for si~rvival. In the small-sample example (Table 
1 1. I ) ,  dropping out is coded 1 and "surviving" (still dancing) is coded 0. Therefore, a positive regres- 
sion coefficient means that an increase in age increases the likelihood of dropping out while a nega- 
tive regression coefficient means that an increase in age decreases the likelihood of dropping out. 
Treatment is also coded 1 ,  0 where 1 is used for the group that had a preinstruction night out on the 
town and 0 for the control group. For this variable. a change in the value of the treatment covariate 
from 0 to 1 means that the dancer is more likely to drop out following a night out if the regression 
coefficient is pbsitive, and less likely to drop out following a night out if the regression coefficient is 
negative. This is because a positive regression coefficient leads to an odds ratio greater than one 
while a negative coefficient leads to an odds ratio less than one. 

Programs for Cox proportional-hazards models show both the regression coefficients and odds 
ratios (see Tables 1 1.6 and 1 1.7). Regression coefficients are labeled B or Estimate. Odds ratios are 
labeled Exp (B) or Hazard Ratio. 

Table 11.7 shows that age is significantly related to survival as a belly dancer. The negative 
regression coefticient (and odds ratio less than 1) indicates that older dancers are less likely to drop 
out. Recall that eB = 0.79; this indicates that the odds of dropping out are decreased by about 21% 
[(! - ,791 100j with each year of increasing age. The hazard of dropping out for a 25-year-oldt for 
instance, is only 79% of that for a 24-year-old. (If the odds ratio were .5 for age, it would indicate 
that the likelihood of dropping out is halved with each year of increasing age.) 

In some tests the treatment covariate fails to reach statistical significance, but if we attribute 
this to lack of power with such a small sample, rather than a lack of treatment effectiveness, we can 
interpret the odds ratio for illustrative purposes. The odds ratio of .08 (e-2.542) for treatment indi- 
cates that treatment decreases the odds of dropping out by 92%; a dancer who is treated to a night out 
on the town is only 8% as likely to drop out as a dancer who is not. 

11.6.5.3 Expected Survival Rates 

More cemplex methncls are required fnr predicting expected survival rates at various time periods for 
particular values of covariates, as described using SAS procedures by Allison (1995, pp. 17 1-172). 
For example, what is the survivor function for 25-year-olds in the control group? This requlres cre- 
ating a data set with the particular covariate values of interest, e.g., 0 for treatment and 25 for age. 
The model is run with the original data set, and then a print procedure applied to the newly created 
data set. Table 1 1. I2 shows syntax and partial output for prediction runs for two cases: a 25-year-old 
dancer in  the control group and 30-year-old dancer in the treated group. 

The likelihood of survival, column s ,  for a 25-year-old in the control condition drops quickly 
after the first month and is very low by the fifth month; on the other hand, the likelihood of survival 
for a 30-year-old in the treated condition stays pretty steady through the fifth month. 

11.7 Complete Example of Survival Analysis 

These experimental data are from a clinical trial of a new drug (D-penicillarnine) versus a placebo 
for treatment of primary biliary cirrhosi:, (PBC) conducted at thc Mayo Clinic beta.een 1973 and 
1983. The data were copied to the Internet from Appendix D of Fleming and Harrington ( 199 1 ). who 
describe the data set as follows: 
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X total of 124 PBC pattents. referred to Ma>o C ~ I I I I C  d u r ~ n g  that ten-yeus ~ n t e r c ~ ~ l .  {net c . l i ,n~b~l~ t>  crl-- 
tesia for the randomized placebo controlled trial of the Jrug D-penicillam~ne. The tis.st 3 12 cL1ae.s in the 
data set participated in the randorni~ed trial and contain largely cornplete data (p. 359). 

Thus, differences in survival time following treatment with either the experimental drug or the 
placebo are examined in the 3 i2  cases with nearly complete data who participated in the trial. Cod- 
ing for drug is 1 = D-penicillamine and 2 = placebo. Additional covariates are those in the Mayo 
model for "assessing survival in relation to the natural history of primary biliary cirrhosis" (Markus 
et al., 1989, p. 17 10). These include age (in days), serum bilirubin in mgldl, serum albumin in gmldl, 
prothrombin time in seconds, and presence of edema. Edema has three levels treated as continuous: 

TABLE 11.12 Predicted Sllrvivor Functions for 25-Year-Old Control Dancers and 30-Year-Old 
Treated Dancers (Syntax and Partial Output Using SAS PHREG) 

d a t a  s u r v ;  
s e t  SASUSER.SURVIVE; 

d a t a  c o v a l s ;  
i n p u t  TREATMNT AGE; 
d a t a l i n e s ;  

0  25 
1  30 
r un ;  
p r o c  p h r e g  data=SASUSER.SURVIVE; 

m o d e l  MONTHS*DANCING(O>= AGE TREATMNT; 
b a s e l i n e  o u t = p r e d i c t  c o v a r i a t e s = c o v a L s  s u r v i v a l = s  
L o w e r = l c L  u p p e r = u c l  / nomean; 

r un ;  
p r o c  p r i n t  d a t a = p r e d i c t ;  
r un ;  

M o d e l  F i t  S t a t i s t i c s  

W i  t h n u t  W i t h  
C r i t e r i o n  - C o v a r i a t e s  C o v a r i a t e s  

-2 LOG L  4 0 . 7 4 0  21 - 4 1 7  
A I C  4 0 . 7 4 0  2 5 . 4 1 7  
S B  C 4 0 . 7 4 0  2 6 . 2 1 3  

T e s t i n g  G l o b a l  NULL H y p o t h e s i s :  BETA=O 

T e s t  C h i - s q u a r e  D F P r  > C h i S q  

L i k e l i h o o d  R a t i o  1 9 . 3 2 3 3  2  
S c o r e  1 4 . 7 0 6 1  2  
Wa Ld 6 . 6 1 5 4  2  

A n a L y s i s  o f  Maximum L i k e l i h o o d  E s t i m a t e s  

P a r a m e t e r  S t a n d a r d  C h i -  P r  > H a z a r d  
V a r i a b l e  D F  E s t i m a t e  E r r o r  S q u a r e  C h i S q  R a t i o  

AGE 1  - 0 . 2 2 9 8 9  0 . 0 8 9 4 5  6 . 6 0 4 7  0 . 0 1 0 2  0 . 7 9 5  
T K E A T N N T  1 - 2 . 5 4 1  3 7  1 . 5 4 6 3 2  2 . 7 0 1  1  0 . 1 0 0 3  0 . 0 7 9  
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T.IRLE 11.12 Continued 

O b s  A G E  T R E A T M N T  M O N T H S  

( 1 ) no edema and no diuretic therapy for edema, coded 0.00; (2) edema present without diuretics or 
edema resolved by diuretics, coded 0.50; and (3) edema despite diuretic t'nerapy, coded i .00. Codes 
for STATUS are 0 = censored, 1 = liver transplant, and 2 = event (nonsurvival). 

Remaining variabies in thc data set are sex, preseiice versus absence of ascites, presence or 
absence of hepat~mega!~, presence or absence of spiders; serum cholesterol in mgldl, urine copper 
in uglday, alkaline phosphatase in Ulliter, SGOT in Ulml, triglyceride in mgldl, platelets per cubic 
m11100, and histologic stage of disease. These variables were not used in the present analysis. 

The primary goal of the clinical trial is to assess the effect of the experimental drug on survival 
time after statistically adjusting for the other covariates. A secondary goal is to assess the effects of 
the other covariates on survival time. Data files are SURVIVAL.". 

11.7.1 Evaluation of Assumptions 

11.7.1.1 Accuracy of Input, Adequacy of Sample Size, Missing Data, and Distributions 

SPSS DESCRIPTIVES is used for a preliminary look at the data. as seen in Table 1 1.13. The SAVE 
request produces standard scores for each covariate for each case used to assess univariate outliers. 

The values for most of the covariates appear reasonable; for example, the average age is about 
50. The sample size of 312 is adequate for survival analysis. and cases are evenly split between 
experimental and placebo groups (mean = 1.49 with coding of 1 and 2. for the groups). 



TABLE 11.13 Description of Covariates through SPSS DESCRIPTIVES (Syntax and Output) 
-- ---- -- 

C)ESCRIPTIVES 
VARIABLES=AGE ALBUMIN BlLlRUBl DRUG EDEMA PROTHOM 
/SAVE 
/STATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS. 

Descriptives 
Descriptive Statistics 

Age In days 
Albumin in gm/dl 
Serum bilirubin in mg/dl 
Experimental drug 
Edema presence 
Prothrombin time in 
seconds 
Valid N (listwise) 

N 

Statistic 

31 2 
31 2 
31 2 
31 2 
31 2 

31 2 
31 2 

Maximum 

Statistic 

28650.00 
4.64 

28.00 
2.00 
1 .OO 

17.1 0 

Minimum 
-- 
Statistic 

9598.00 
1.96 
.30 

1.00 
.OO 

9.00 

Mean 

Statistic 

18269.44 
3.5200 
3.2561 
1.4936 
.I 106 

10.7256 

Skewness Std. 

Statistic 

3864.805 
.41989 

4.53032 
50076 
.27451 

1.00432 

Statistic 

.I68 
-.582 
2.848 

.026 
2.414 

1.730 

Kurtos~s 

Std. Error 

1 3 8  
.I38 
1 3 8  
.I38 
1 3 8  

1 3 8  

Statistic 

-.534 
.946 

8.890 

Std Error 

275 
275 
275 

-2.012 275 
4.604 1 275 

6.022 275 



None of the co\,a~-iates has miasins data. However. except for age and drug (the treatment ). all ot 
the covariates are seriously skewed, with :-szorea for skehness ranging from ( -  .587)/0.138 = -4.22 
for serum albumin to (2.85)/0.138 = 20.64 for bilirubin. Kurtosis values listed in Table 1 1.13 pose no 
problem in this large sample (cf. Section 1 1.3.2.2). Decisions about transformation are postponed 
until outliers are assessed. 

Univariate outliers are assessed by finding z = ( Y  - Y ) / s  for each covariate's lowest and highest 
scores. The /SAVE instruction in the SPSS DESCRIPTIVES run of Table 1 1.13 adds a column to the 
data file of z-scores for each case on each covariate. An SPSS DESCRIPTIVES run on these stan- 
dard scores shows minimum and maximum values (Table 1 1.14). 

Using 1 zl = 3.3 as the criterion (cf. Section 1 1.3.2.3), the lowest albumin score is a univariate 
outlier, as are the highest scores on bilirubin and prothrombin time. Considering the skewness in 
these distributions, the decision is made to transform them to deal with both outliers and the possi- 
bility of diminished predictability of survival time as a result of nonnormality of covariates. Tests of 

I 
multivariate outliers are performed on the transformed variables. 

A logarithmic transform of bilirubin [LBILIRUB = LGlO(BILIRUBI)] diminishes its skew- 
ness (although z > 4.6) and kurtosis and brings outlying cases to within acceptable limits. However, 
various transformations (log, inverse, square root) of prothrombin time and albumin do not remove 
the outliers, so the decision is made to retain the original scales of these variables. An additional 
transform is performed on age (in days) into years of age: Y-AGE = (AGEl365.25) to facilitate 
interpretation. Table 11.15 shows descriptive statistics for transformed age and log of bilirubin. 

Mahalanobis distance to assess multivariate outliers is computed through SPSS REGRESSION 
and examined through SPSS SUMMARIZE. Table 1 1.16 first shows the SPSS REGRESSION syntax 

I 

TABLE 11.14 Description of Standard Scores through SPSS 
DESCRIPTIVES (Syntax and Selected Output) 

DESCRIPTIVES 
VARIABLESZAGE ZALBUMIN ZBlLlRUB ZDRUG ZEDEMA ZPROTHOM 
/STATISTICS=MIN MAX. 

I Descriptives 

Descriptive Statistics 

Maximum 

2.68592 
2.66735 
5.461 85 
1.01 128 
3.24008 
6.34692 

Zscore: Age in days 
Zscore: Albumin in gmldl) 
Zscore: Serum bilirubin in mgldl 
Zscore: Experimental drug 
Zscore: Edema presence 
Zscore: Prothrombin time in seconds 
Valid N (listwise) 

N 

312 
312 
31 2 
31 2 
31 2 
312 
31 2 

Minimum 

-2.24369 
-3.71524 

-.65251 
-.98568 
-.40282 

-1.71821 



TA.BLE 11.15 Description of Transformed Covariates through SPSS DESCRIPTIVES (Syntax and Output) 

DEESCRIPTIVES 
V'ARIABLES=LBILIRUBI Y-AGE 
/SAVE 
/!;TATISTICS=MEAN STDDEV MIN MAX KURTOSIS SKEWNESS. 

Descriptives 
Descriptive Statistics 

1-BILIRUB 
'/-AGE 
Valid N (listwise) 

Kurtosis N 

Statistic 

31 2 
31 2 
31 2 

Statistic 

-.376 
-.534 

Min~mum 

Statistic 

-.52 
26.28 

Std. Error 

.275 

.275 

Mean 

Statistic 

.2500 
50.01 90 

Maximum 
-- 

Statistic 

1.45 
78.44 

Std. 

Statistic 

.44827 
10.58126 

Skewness 

Statistic 

.637 
168 

Std. Error 

138 
138 



TABLE 11.16 Mahalanobis Distances and Covariate Scores for Multivariate Outliers 
(Syntax and Selected Output for SPSS REGRESSION and SUMMARIZE) 

-- - 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA 
/C:RITERIA=PIN(.05) POUT(.10) 
/NOORIGIN 
/DEPENDENT ID 
/METHOD=ENTER ALBUMIN DRUG EDEMA. PROTHOM LBlLlRUB Y-AGE 
ISNAVE MAHAL. 

USE ALL. 
COMPUTE filter-$=(MAH-1>22.458). 
VARIABLE LABEL filter-$ 'MAH-1>22.458 (FILTER)'. 
VALUE LABELS filter-$ 0 'NOT SELECTED' 1 'SELECTED'. 
FOlRMAT filter-$ (fl.O). 
FIL-TER BY filter-$. 
EXECUTE 
SUMMARIZE 
/TABLES=ALBUMIN DRUG EDEMA PROTHOM LBlLlRUBY-AGE MAH-1 ID 
/FORMAT=VALIDLIST NOCASENUM TOTAL LIMIT=100 
/T'ITLE='Case Summaries' /FOOTNOTE" 
/MISSING=VARIABLE 
/C;ELLS=COUNT. 

Summarize 
Case Summariesa 

aLimited to first 100 cases. P 
4 

Y-AGE 

56.22 
62.52 
52.69 

3 
- - 

LBlLlRUB 

-.I0 
-.22 
1.39 

3 
- - - 

Prothrombin 
time in seconds 

11.00 
17.10 
15.20 

3 
- - - 

Mahalanobis 
Distance 

23.28204 
58.81 172 
28.79138 

3 

Edema 
presence 

Edema despite therapy 
No edema 
No ederna 

3 

.I 
;? 
3 
Total N . 

ID 

14.00 
107 00 
191 00 

3 

Albumin 
in gmldl 

2.27 
4.03 
3.35 

3 

Experimental 
drug 

Placebo 
Placebo 
Placebo 

3 
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that saves the Mahalnnobis distance for each cace Into a column of the data file as n variable labeled 
mah-1. The critical value of %' with 6 df at i; -- ,001 is 22.158. Cases with mah-1 greater than 
22.158 are selected for printing through SPSS SUMMARIZE with their case ID number. scores for 
the four continuous covariates for those cases, and Mahalanobis distance. Syntax for the selection of 
multivariate, outliers is shown in Table 1 1.16 along with the output of SPSS SUMMARIZE. 

Three cases are multivariate outliers. Table 1 1.17 shows the results of a regression analysis on 
case number 14 to'determine which covariates distinguish it from thc remaining 31 1 cases. A 
dichotomous DV, labeled dummy, is created based on case identification number and then SPSS 
REGRESSION is r in  to determine which variables significantly predict that dummy DV. Note that 
the selection based on Mahalanobis distance must be altered for each run so the tile again includes 
all cases. 

Covariates with levels of Sig. less than .05 contribute to the extremity of the multivariate out- 
lier where a positive coefficient indicates a higher score on the variable for the case (because the out- 
lier has a higher code (1) than the remaining cases (0) on the dummy DV). Case 14 differs from the 

TABLE 11.17 Identification of Covariates Causing Multivariate Outliers 
(SPSS REGRESSION Syntax and Selected Output) 

USE ALL. 
COMPUTE DUMMY = 0. 
IF (id EQ 14) DUMMY=1. 
REGRESSION 
/MISSING LISTWISE 
ISTATISTICS COEFF OUTS R ANOVA 
/NOORIGIN 
/DEPENDENT dummy 
/METHOD=ENTER albumin drug edema prothom lbilirub y-age. 

Regression 
Coefficientsa 

aDependent Var~able: DUMMY 

Sig. 
3 

.038 

.008 

.225 

.002 

,460 
,009 
.699 

Model 

1 (Constant) 
Albumin in gmldl 
Experimental drug 
Edema presence 
Prothrombin time 

in seconds 
LBlLlRUB 
Y-AGE 

t 

2.079 
-2.661 
1.216 
3.069 

-.740 
-2.630 
-.387 

Unstandardized I Standardized 
Coefficients / coefficients 

Beta 

-.I68 
.068 
,200 

-.046 
-.I67 
-.023 

B 

.I06 
-.023 
.008 
.041 

-.003 
-.021 
,000 

Std. Error 

.051 

.009 

.006 

.013 

.004 

.008 
,000 



remaining cases i n  the combination of low scores orr albumin and the logarithm of bil~rubin along 
with a high score on edema. Ta'nle 1 1.17 show.; the values of those scores: 17.37 on albumin as conl- 
pared with a mean of 3.52 (seen in Table 1 1.13); 0.26 on the logarithm of bilirubin as compared with 
a mean of 0.49; and a score of 1 on edema as compared with a mean of 0.1 1 .  Similar regression 
analyses for the two remaining outliers (not shown) indicate that case 107 is an outlier because of a 
high score on prothrombin time (17.10), and case 19 1 is an outlier because of a high score on pro- 
thrombin time (15.20) and a low score on edema (0). The decision is made to eliminate these multi- 
variate outlying cases from subsequent analyses and report details about them in the results section. 
A rerun of syntax in Tables 11.13 and 1 1.14 with multivariate outliers removed (not shown) indicates 
that only one of the univariate outliers from Table 1 1.14 remains; the case with a z-score of -3.7 15 
on albumin. It is decided to retain this case in subsequent analyses because it did not appear as a mul- 
tivariate outliers and is not inordinately extreme considering the sample size. 

11.7.1.3 Differences between Withdrawn and Remaining Cases 

Several cases were censored because they were withdrawn from this clinical trial for liver transplan- 
tation. It is assumed that the remaining censored cases were alive at the end of the study. Table 1 1.18 
shows a regression analysis where status is used to form a dichotomous DV (labeled xplant) where 
cases who were withdrawn for liver transplant have a value of 1 and the other cases have a value of 
0. The six covariates serve as the IVs for the regression analysis. Note that the multivariate outliers 
are omitted from this and all subsequent analyses. 

There is a significant difference between those undergoing liver transplantation and the 
remaining cases, however the difference is limited to age with cr = .008 using a Bonferroni-type cor- 
rection for inflated Type I error associated with the six covariates. The negative coefficient indicates 
that liver transplants were done on younger cases, on average, and not surprisingly. Because age is 
the only variable distinguishing these cases from the remaining ones, the decision is made to leave 
them in the ana!ysis, grouped with the other censored cases at the end of the test period. 

I 
I 

11.7.1.4 Change in Survival Experience over Time 

There is fro indicaticn in the data set OT supporting documentation of a change in procedures over the 
ten-year period of the study. Other factors, such as pollution and economic climate, of course, remain 
unknown and uncontrolled potential sources of variability. Because of the randorn assignment of 
cases to drug conditions, however, there is no reason to expect that these environmental sources of 
variance differ for the two drug conditions. 

i 
I 
I 11.7.1.5 Proportionality of Hazards 
i 

Proportionality of hazards is checked prior to Cox regression analysis, to determine if the assump- 
tion is violated. Table 1 1.19 shows the test for proportionality of hazards through SPSS COXREG. 
The TIME PROGRAM instruction sets up the internal time variable, T- (a reserved name for the 

i transformed time variable). Then COMPUTE is used to create T-COV- as the natural logarithm 

I (LN)  of time. All of the covariate*T-COV- interactions are included in the COXREG instruction. 

1 Only the terms representing interaction of T-COV- with covariates are used to evaluate pro- 

I portionality of hazards. (Ignore the rest of the output for now, especially the drug result.) If a = .008 
is used because of the number of time-covariate interactions being evaluated, none of the covariates 

! 
I significantly interacts with time. Therefore we consider the assumption met. 
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T.ABLE 11.18 SPSS RE,GRESSION for Differences between Liver Transplant 
and Remaining Cases (Syntax and Selected Output) 

USE ALL. 
COMPUTE filter-$=(MAH-1 LE 22.458). 
VARIABLE LABEL filter-$ 'MAH-1 LE 22.458 (FILTER)'. 
VALUE LABELS f i l ter30 'Not Selected' 1 'Selected'. 
FORMAT filter-$ (fl.O). 
FILTER BY filter-$. 
EXECUTE. 

COMPUTE XPLANT = 0. 
IF (STATUS EQ 1) XPLANT = 1. 
REGRESSION 
/MISSING LISTWISE 
ISTATISTICS COEFF OUTS R ANOVA 
/CRITERIA=PIN(.OS) POUT(.I 0) 
/NOORIGIN 
/DEPENDENT XPLANT 
/METHOD=ENTER ALBUMIN DRUG EDEMA LBlLlRUB PROTHOM Y-AGE. 

Regression 
AN OVA^ 

apredictors: (Constant), Y-AGE, LBILIRUB, Experimental drug, Prothrombin time in seconds, 
Albumin in gmldl, Edema presence 

bDependent Vaiiabie: XPLANT 

Model 

1 Regression 
Residual 
Total 

Coeff icientsa 

aDependent Variable: XPLANT 

Sum of 
Squares 

1 .I44 
16.688 
17.832 

F 

3.449 

Model 

1 (Constant) 
Albumin in gm/dl 
Experimental drug 
Edema presence 
LBlLlRUB 
Prothrombin time 
in seconds 
Y-AG E 

Sig. 

.003a 

d f 

6 
302 
308 

t 

2.208 
.I64 

-.662 
-.255 
2.143 

Mean 
Square 

.I91 

.055 

Sig. 

.028 

.870 

.509 

.799 

.033 

-1.422 1 I;;; -3.351 

Standardized 
Coefficients 

Beta 

.010 
-.037 
-.017 

1 39 

-.092 
-.I97 

Unstandardized 
Coefficients 

B 

.536 

.006 
-.018 
-.015 

.075 

-.025 
-.004 

Std. Error 

.243 

.037 

.027 

.060 

.035 

,017 
,001 



T.ABLE 11.19 Test for Proportionality of Hazards through SPSS COXREG 
(Syntax and Selected Output) 

TIME PROGRAM. 
COMPUTE T-COV- = LN(T-). 
COXREG 
DAYS /STATUS=STATUS(2) 
/METHOD=ENTER ALBUMIN T-COV-*ALBUMIN DRUG T-COV-*DRUG EDEMA 

T-COV-*EDEMA 
PROTHOM T-COV-*PROTHOM LBlLlRUB T-COV-*LBILIRUB Y-AGE T-COV-*Y-AGE 
/CRITERIA=PIN(.05) POUT(.lO)ITERATE(20). 

Variables in the Equation 

11.7.1.6 Multicollinearity 

ALBUMIN 
DRUG 
EDEMA 
PROTHOM 
LBlLlRUB 
Y-AGE 
T-COV-*ALBUMIN 
T-COV-*DRUG 
T-COV-*EDEMA 
T-COV-*PROTHOM 
T-COV-*LBILIRUB 
T-COV-*Y-AGE 

Survival-analysis programs protect against statistical problems associated with multicoliinearity. 
However, the analysis is best served by a set of covariates that are not too highly related. Thus, it is 
worthwhile to investigate how highly each of the covariates is related to the remaining ones. 

Squared multiple correlations (SMCs) are available through SPSS FACTOR by specifying prin- 
cipal axis factoring because this type of factor analysis begins with SMCs as initial communalities 
(Section 13.6.1). Table 1 1.20 shows the syntax and selected output for SPSS FACTOR for the set of 
covariates used in the survival analysis. 

Redundant covariates are those with Initial Communalities (SMCs) in excess of .90. As seen 
in Table 1 1.20. there is no danger of either conceptual or statistical multicollinearity among this set, 
with the highest SMC = .3 14 for presence of edema. 

11.7.2 Cox Regression Survival Analysis 

B 

-1.821 
2.379 

SPSS COXREG is used to evaiuate the effects of drug d i d  other covariates en sunival time of 
patients with primary biliary cirrhotis of the liver. Table 1 1.2 1 shows the syntax and output for the 

SE 

1.892 
1.382 

Wald 

.927 
2.963 

2.390 
5.685 1 .734 1.449 

5.657 
3.904 

.042 
1.349 
.226 

2.637 
4.569 
2.387 
1.690 
.542 

-.371 
.087 
129 

-.319 
-.778 
-.I64 

.339 
-.008 

1.815 
.075 
.272 
.I97 
.364 
.I06 
.261 
.011 

i 

E~P(B)  

.I62 
10.798 

d f 

1 
1 

294.353 
4.261 

.690 
1091 
1.138 
.727 
.459 
.849 

1.404 
.992 

Sig. 

.336 

.085 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

.017 

.048 

.838 

.245 

.635 
1 0 4  
,033 
. I22 
1 9 4  
.461 
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TABLE 11.20 SlLICs (Communalities) Produced by SPSS FACTOR (Syntax and Selected Output) 1 

I 
SELECT IF mah-1 LE 22.458 
FACTOR 
NARIABLES ALBUMIN DRUG EDEMA PROTHOM LBlLlRUB Y-AGE /MISSING LISTWISE 
/ANALYSIS ALBUMIN DRUG EDEMA PROTHOM LBlLlRUB Y-AGE 
/PRINT INITIAL EXTRACTION 
iCRlTERlA MINEIGEN(1) ITERATE(25) 
/EXTRACTION PAF 
/ROTATION NOR'OTATE 
/METHOD=CORRELATION. 

Factor Analysis 

Communalities 

Extraction Method: Principal Axis Factoring. 

I 

Albumin in gm/d! 
Experimental drug 
Edema presence 
Prothrombin time 
in seconds 
LBlLlRUB 
Y-AGE 

r 

sequential Cox regression analysis in which covariates other than drug are entered first, as a set, fol- 
lowed by drug treatment. This permits a likelihood-ratio test of the effect of drug treatment, after sta- 
t:-+:- ~ s ~ l ~ a l  adjiistmeiit for the other covariates. 

11.7.2.1 Effect of Drug Treatment 

Initial 

.239 

.026 

.314 

.266 

.264 

.I05 

The effect of drug treatment with D-penicillamine versus the placebo is evaluated as Change 
from Previous Block at Block 2. A value of Sig for Chi-Square less than .05 is required for drug 
treatment to successfully predict survival time after adjusting for the other covariates. Here, 
X2(1) = 0.553, p = .457, revealing that drug treatment has no statistically significant effect on sur- 
vival time of PBC patients after taking into account their age, serum albumin level, condition of 
edema, prothrombin time, and the logarithm of the level of serum bilirubin. That is, length of survival 
is unaffected by the D-penicillamine drug. Survival curves for the two groups are not shown because 
there is no statistically significant difference between groups. 

Extraction 

.319 

.048 

.472 

.356 

.455 

.466 

11.7.2.2 Evaluation of Other Covariates 

The output of Block1 of Table 11.21 reveals the relationship between survival time and the other 
cuvaliates. None of chese variables is experimentally manipulated in this study; however, as a group, 



they forrn the Rilayo rnodel for predicting survival of PBC patients. Change from Previous Step 
%'(5) of 191.557,p < ,0005. shows [hat, as a set. the covariates reliably predict sur~ival  tirne. AppI\.- 
ing equation I I. 1 1 .  the effect size of the set of covariates and survival time is: 

~2 = 1 - e(-192.867/309) = .46 

with a 95% confidence interval from .37 to .53 using Steiger and Fouladi's ( 1992) R2 software (see 
Figure 9.3 for demonstration of the use of the software). 

TABLE 11.21 Cox Regression Analysis for PBC Patients through SPSS COXREG 
(Syntax and Output) 

SELECT IF mah-1 LE 22.458 
COXREG 
DAYS /STATUS=STATUS(2) 
/METHOD=ENTER ALBUMIN EDEMA PROTHOM LBlLlRUB Y-AGE 
/METHOD=ENTER DRUG 
/CRITERIA=PIN(.05) POUT(.10) ITERATE(20). 

Cox Regression 

Case Processing Summary 

aDependent Variable: DAYS 

Block 0: Beginning Block 

OmnibusTests of Model Coefficients 

Cases available Eventa 
in analysis Censored 

T-&-I 
I U L ~ I  

Cases dropped Cases with 
missing values 
Cases with 
negative time 
Censored cases 
before the earliest 
event in a stratum 
Total 

Total 

N 

123 
186 

Percent 

39.8% 
60.2% 

1 00.0% 

3Y9 0 1 .o% 

O 1 .O% 

0 
0 

309 

I .O% 
.O% 

100.0% 



2 1'ABLE 11.21 Continued 
P ---- --- 

Blockl: Method = Enter 
Omnibus Tests of Model Coeff icientsapb 

aBeginning Block Number 0, initial Log Likelihootl function: -2 Log likelihood: -1255.756 
bBeginning Block Number 1. Method: En1:er 

-2 Log 
Likelihood 

1062.899 

Variables in the Eauation 

Variables not in the Eauationa 

Overall (score) 

ALBUMIN 
EDEMA 
PROTHOM 
LBlLlRUB 
Y .-AG E 

Chi-square 

261.098 

I DRUG I 

Change From Previous Step 

B 

-.884 
.743 
,307 

1.988 
.034 

I I 
aResidual Chi Square = .555 with 1 df Sig. = .456 

df 

5 

Chi-square 

192.857 

Change From Previous Block 

score 

Block2: Method = Enter 
Omnibus Tests of Model Coeff icientsapb 

Sig. 

.OOO 

Chi-square 

192.857 

SE 

.242 

.311 

.I04 

.235 

.009 

df 

5 

I df 

al3eginning Block Number 0, initial Log Likelihood function: -2 Log likelihood: -1255.756 
bl3eginning Block Number 2. Method: Enter 

Sig. 

.OOO 

df 

5 

Wald 

13.381 
5.71 2 
18.668 

71.799 
15.592 

Sig. 

-2 Log 
Likelihood 

1062.346 

Sig. 

,000 

df 

1 
1 
1 
1 
1 

Overall (score:) 

Sig. 

.OOO 

.017 

.003 

.OOO 

.OOO 

Chi-square 

261.200 

E~P(B) 

.413 
2.1 01 
1.359 
7.298 
1.035 

Change From Previous Step 

df 

6 

Chi-square 

.553 

Change From Previous Block --- 

Sig. 

.OOO 

Chi-square 

.553 

d f 

1 

Sig. 

.457 

d f 

1 

Sig. 

,457 



TAB1.E 11.21 Continued 

Variables in the Equation 

Covariate Means 

I 
1 The contribution of each covariate, adjusted for all others, is evaluated in the section labeled 

I Variabies in file Equation for the first block. !f a = .O! is U Q P ~  to adjust for inflated familywise 

I error rate with five covariates, there are statistically significant differences due to age, serum albu- 
I mlii level, pr~th:omblr, time, and the logarithm of the level of serum bilirubin. (If a = .05 is used, 
i 
I instead, edema is also statistically significant.) Because STATUS is coded 2 for death and 0 or I for 
i 
i survival, negative coefficients are associated with longer survival time. Thus, higher serum aibumin 

I predicts longer survival, but shorter survival is associated with greater 2ge (no su.rprise); greater pro- 
thrombin time, and higher levels of the logarithm of serum bilirubin. An overall risk score for sur- 
viva1 time is: 

ALBUMIN 
EDEMA 
PROTHOM 
LBlLlRUB 
Y-AGE 
DRUG 

Risk = -.88 (albumin in gldl) + .3 1 (prothrombin time in sec.) 
+ 1.99 loglo (bilirubin in mgldl) + .03 (age in years) 

df 

1 
1 
1 
1 
1 
1 

ALBUMIN 
EDEMA 
PROTHOM 
LBlLlRUB ' 

Y-AGE 
DRUG 

I 

Mean 

3.523 
.I08 

10.690 
.249 

49.950 
1.489 

i Exp(6) is the odds ratio for each covariate (cf. Section 1 1.6.5) where a negative sign for 

I the associated 6 value implies an increase in survival and a positive sign implies an increase in the 
I probability of death. For each one-point increase in serum albumin level, the probability of surviving 

I increases by about 60%: (I  - 0.4132) 100. For each one-unit change in the edema measure, the prob- 
I ability of death more than doubles. For each one-second increase in prothrombin time, the probabil- 
i ity of death increases by about 36%. For each one-point increase in the logarithm of serum bilirubin 

level. the probability of death increases more than seven times. Finally, for each year of age, the 
prc?babi!ity of death increases by 3.5% (odds ratio = 1.0347). Table 1 1.22 summarizes the results of 
the analysis of nondrug covariates. 

I 

S E 

.241 
,308 
,104 
.234 
.009 
187  

B 

-.894 
.742 
.306 

1.994 
.036 
.I39 

Wald 

13.735 
5.795 
8.736 

72.305 
16.005 

.555 

Sig. 

.OOO 

.016 

.003 

.OOO 

.OOO 

.456 

E~P(B) 

.409 
2.100 
1.358 
7.342 
1.036 
1 .I50 
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TABLE 11.22 Cox Regression Analysis of Won-Drug Variables on 
Survival Time of PBC Patients 

Covariate B df Prob. Odds Ratio 

Serum albumin -0.884 1 .0003 0.4 13 
Edema 0.743 1 .0168 2.101 
Prothrombin time 0.307 1 .0032 1.359 
Logarithm (serum bi!irubin) 1.988 1 .OOOO 7.298 
Age in years 0.034 1 .0001 1.035 

Figure 11.2 shows that the expected five-year survival rate of a patient at the mean of all 
covariates (see end of '?able 1 1.21) is a bit under 80% (1,826.25 days). The ten-year survival rate is 
about 40%. 

Table 1 1.23 is a checklist for predicting survival from covariates. An example of a Results sec- 
tion, in journal format, follows for the study just described. 

COXREG 
DAYS /STATUS=STATUS(2) 
/METHOD=ENTER ALBUMIN EDEMA PROTHOM LBILIRUB Y-AGE 
/PLOT=SURVIVAL 
/CRITERIA=PIN(.OS) POUT(.IO) ITERATE(20). 

I 
Survival Function at Mean of Covariates i 

DAYS 

FIGURE 11.2 Survival function at mean of five covariates: Serum albumin level, 
edema score, prothrombin time, logarithm of bilirubin level, and age in years. 
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TABLE 11.23 Checklist for Predicting Survival from 
Covariates, Including Treattnent 

1. Issues 

a. Adequacy of sample sizes and missing data 

b. Normality of distributions 

c. Absence of outliers 

d. Differences between withdrawn and remaining cases 

e. Changes in survival experience over time 

f. Proportionality of hazards 

g. Multicollinearity 

2. Major analyses 

a. Test of treatment effect, if significant: 

(1)  Treatment differences in survival 

(2) Parameter estimates, including odds ratios 

(3) Effect size and confidence limits 

(4) Survlval function showing groups separately 

b. Effects of covariates, for significant ones: 

(1) Direction of effect(s) 

(2) Parameter estimates, including odds ratios 

(3) Effect size and confidence limits 

3. Additional analyses 

a. Contingencies among covariates 

b. Survlval tunction based uil covariatcs alone 

Results 

A Cox regression survival analysis was performed to assess the 

effectiveness of the drug D-penicillamine for primary biliary cir- 

rhosis in a random clinical trial after adjusting for the effects of 

the five covariates found to be predictive of survival in the Mayo 

clinic model: age, degree of edema (mild, moderate, or severe), 

serum bilirubin in mg/dl, prothrombin time, and serum albumin in 

gm/dl. A logarithmic transform reduced skewness and the influence of 

outliers for bilirubin level. However, three multivariate outliers 

remained. One case had an unusual combination of low scores on serum 

albumin and logarithm of bilirubin with severe edema, the second had 



an extremely high prothrombin time, and the third combined an 

extremely high prothrombin time with a low edema score. Three hun- 

dred ni~e cases remained after deletion of the three outliers, 186 

censored either because they were alive at the end of the 10-year 

trial or had withdrawn from the trial for liver transplant. (With- 

drawn cases differed from those who remained in the study only in 

that they were younger.) The cases were about evenly split between 

those who were given the drug and those given a placebo. 

There was no statistically significant effect of drug treat- 

ment after adjusting for the five covariates, & (1) = 0.553, p = 

.46. Survival time, however, was fairly well predicted by the set 

of covariates, It2 = .46 with a 95% con£ idence interval from .37 to 

.53 using Steiger and Fouladi's (1992) R2 software. All of the 

covariates except edema reliably predicted survival time at a = 

-01: Risk = -.88 (albumin in g/dl) + .31 (prothrombin time in 

sec.) + 1.99 loglo (bilirubin in mg/dl) + .03 (age in years). 

Table 11.22 shows regression coefficients, degrees of freedom, p 

values, and odds ratios for each covariate. The greatest contribu- 

tion was by the logarithm of serum bilirubin level; each increase 

of one point increases the risk of death about seven times. Proba- 

bility of death is increased by 3.5% with each year ~f age, an6 by 

&out 36% with each one-point increase in prothrombin time. On the 

other tiand, a one-point increase in serum albumin level increases 

the probability of survival by about 60%. 

At the mean of the covariates, the five-year survival rate is 

just under 80% and the ten-year survival rate is about 40%, as 

seen in Figure 11.2. 

Thus, survival time is predicted by several covariates but 

not by drug treatment. Increases in risk are associated with high 

serum bilirubin level, age, and prothrombin level but risk 

decreases with high serum albumin level. 
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I 11.8 Comparison of Programs 

SPSS and SAS have two or more programs that do different types of analys~s, SAS ha\ one program 
for survival functions and two for regression-type problems: one for proportional-hazards models 
and the other for various non-proportional-hazards models. SPSS has three programs as well: one for 
proportional-hazards models and two for survival functions (one for actuarial and one for product- 

Drams limit methods). SYSTAT has a single program for survival analysis. Table 1 1.24 compares pro, 
for survival curves; Table 1 1.25 compares programs for prediction of survival from covariates. 

11.8.1 SAS System 

SAS has LIFETEST for life tables and survivor functions, and LIFEREG and PHREG for predicting 
survival from covariates. SAS LIFETEST offers both actuarial and product-limit methods for sur- 
vivor functions; however, median survival for each group is only available for the product-limit 
method. LIFETEST is the only survivor function program that lets you specify the a level for sur- 
vival confidence limits. A summary table is provided for each group. 

SAS LIFEREG and PHREG are quite different programs. LIFEREG offers a variety of mod- 
els: PHREG is limited to Cox proportional-hazards models. LIFEREG does direct analyses only; 
PHREG does direct, sequential, and stepwise modeling and is the only program reviewed that does 
best-subsets modeling. LIFEREG allows you to analyze discrete covariates with more than two lev- 
els, but PHREG does not. Instead, you need to dummy-code discrete variables. However, the Test 
procedure in PHREG allows a simultaneous test of a hypothesis about a set of regression coeffi- 
cients, so you can do a test of the null hypothesis that all dummy-coded variables for a single covari- 
ate are zero. 

The LIFEREG program permits separate analyses by groups, but no stratification variables. 
PHREG, on the other hand, allows you to specify a stratification variable which does the analysis 
without making the proportional-hazards assumption (cf. Section i i .6. i 1. PHREG also pcrriiit~ you 
to specify time-dependent covariates and has several options for dealing with tied data. PHREG pro- 
vides the initiai iog-likeiihood esiir~iate, withotit any covariates, as well 2s score and Wald chi-square 
statistics for the fu!! set of coliarizites in the model. PHREG provides odds ratios (risk ratios) and their 
standard errors for each covariate; LIFEREG provides neither. Both programs save predicted scores 
and their standard errors on request, but only PHREG also provides residuals, change iii regression 
coefficients if a case is omitted from the analysis, and log(time) of the response. LIFEREG also 
shows a Type 111 analysis of effects, useful when categorical predictors have more than two levels. 

11.8.2 SPSS Package 

SPSS has an unusual group of programs for survival analysis. There are separate programs for actu- 
arial (SURVIVAL, Life Tables in the Survival menu) and product-limit (KM, Kaplan-Meier in the 

i Survival menu) methods for survivor functions, but only one program for predicting survival from 

I coyariates (COXREG, Cox Regression in the Survival menu). Other (nonproportional) modeling 
, methods are not implemented within the SPSS package. 
i Roth SURVIVAL and KM permit tests of group differences, as well as pairwise comparisons 

~f there are more than two groups. KM also prov~des comparisons of groups when they are ordered. 

I Only KM aiso allows testing of strata pooled over groups, separate plotc provided for each 
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T.4BLE 11.24 Comparison of Programs for Life Tables and  Survivor Functions 

S'4S 
LIFETEST 

SPSS 
SURVIVAL 

SPSS SYST.4T 
KhI SURVIVAL Feature 

- 
No Yes 

Yes 17e s 

No No 

COMPARE STRATA 

Yes No 

Yes No 

Input 

Actuarial method 

Product-limit ( ~ a ~ l a n - ~ e i e r )  method 

Missing data options 

Yes 

Yes 

Yes 

STRATA 

No 

No 

Yes 

No 

Yes 

COMPARE 

No 

Yes 

Group comparisons 

Ordered group comparisons 

Pairwise comparisons among groups 

Specify exact or approximate 
comparisons 

Test strata pooled over groups 

Use tabular data as input 

N.A. 

No 

No 

Yes 

No 

Yes 

N.A. N.A. 

STRATA No 

No No 

Specify a frequency variable to indicate 
number of cases 

Specify tolerance 

Yes 

SINGULAR 

Yes 

No No 

No TOLERANCE 

No No Specify a for survival confidence limits 

Specify percentiles for combinations of 
groups and strata Yes No 

Specify confidence bands for the 
survivor function SURVIVAL 

Yes 

Yes 

No No 

No Yes 

No No 

Specify interval-censoring 

Specify left-censoring 

Output 

Mantel-Cox log rank test 

Breslow test (Generalized Wilcoxon) 

Peto-Prentice test (Generalized 
Wilcoxon) 

Modified Peto-Prentice Test 

LOGRANK 

Yes 

Yes K M  only 

Yes No 

PET0 

MODPETO 

TARONE 

WILCOXON 

FLEMING 

Yes 

Yes 

No 

No 

No 

Yes 

No 

No 

Yes 

No No 

No No 

Yes K M  only 

No KM only 

No No 

No No 

N.A. K M  only 

Tarone-Ware test 

Gehan (Wilcoxon) - Log Rank 

Fleming-Harrington G2 family of tests 

Likelihood ratio test statistic 

Number entering each interval 

Number lost (failed, dead, terminating) 
each interval Yes 

Yes 

Yes 

Yes 

Yes 

No 

N.A. K M  only 

No  No 

Yes No 

Number censored each interval 

Number remaining !effective sample size 

Proportion failures/cond. probability of 
failure Yes Yes 
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TABLE 11.21 Continued 

Feature 
S AS SPSS SPSS SY STAT 

LIFETEST SURVIVAL K%I SURVIVAL 

Output (conriniied) 

Proportion surviving 

Survival standard error 

Cumulative proportion surviving 

Standard error of cumulative proportion 
surviving 

Cumulative proportion failure 

Standard error of cumulative proportion 
failing 

Cumulative events 

Hazard and standard error 

Density (PDF) and standard error 

Median survival, each group 

Standard error of median survival, each 

group 
Confidence interval for median survival 

75th quantile surviving and standard 
error, each group 

25th quantile surviving and standard 
error, each group 

Other survival quantiles 

Mean survival time 

Standard error of mean survival time 

Confidence interval for mean survival 

Median Residual Lifetime, each interval 

Median standard error, each interval 

Summary table 

Rank statistics and matrices for tests of 
groups 

Plots 

Cumulative survival function 

Cumulative survival function on log scale 

Cumulative survival function on a log- 
log scale 

Cumulative hazard function 

Cumulative hazard function on log scale 

Cumulative density function 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

KM only 

No 

No 

KM only 

KM only 

No 

Yes 

KM only 

No 

ACT only 

ACT only 

Yes 

Yes 

SURVIVAL 

LOGSURV 

LOGLOGS 

HAZARD 

No 

PDF 

Yes No 

No No 

Yes Yes 

Yes Yes 

No No 

No No 

N.A. Yes 

Yes No 

Yes No 

Yes Yes 

No Yes 

No Yes 

N 0 No 

No No 

No Yes 

No Yes 

No Yes 

No 1'4 o 

No No 

No Yes 

SURV SURVIVAL 

LOGSURV LOGSURV 

No No 

HAZARD HAZARD 

No No 

DENSITY No 

KM only 

KM only 

No 

No 

No 

No 

No 

ACT only 

ACT only 

No 

No 

No 

No 

N 0 

KM only 

KM only 

No 

No 

No 

No 

No 

No 

Yes (default) 

TLOG 

No 

CHAZ 

LHAZ 

No 
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T.AB1.E 11.25 Comparison of Programs for Prediction of Survival Time from Covariates 

S AS SAS SPSS SYSTAT 
LIFEREG PHREG COXREG SURVIVAL Feature 

Input 

Specify a frequency variable to 
indicate number of'cases 

Missing data options 

Differential case weighting 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

No 

Specify strata in addition to 
covariates No 

Yes 

STRATA 

No 

STRATA 

Yes 

STRATA 

No Specify categorical covariates 

Choice among contrasts.for 
categorical covariates Yes 

Test linear hypotheses about 
regression coefficients 

Specify time-dependent covariates 

No 

No 

Yes 

Yes 

TEST 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

No 

Yes 

Yes 

No 

Specify interval-censoring 

Specify left-censoring 

Options for finding solution: 

Maximum number of iterations MAXITER 

CONVERGE 

N.A. 

SINGULAR 

Yes 

MAXITER 

Several 

Yes 

SINGULAR 

No 

ITERATE 

LCON 

BCON 

No 

No 

MAXIT 

CONVERGE 

No 

TOLERANCE 

Yes 

One or more convergence criteria 

Change in parameter estimates 

Tolerance 

Specify start values 

Hold scale and shape parameters 
fixed 

Direct analysis 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

SCORE 

No 

ENTER 
- - 
Yes 

No 

No 

Yes 

No 

No 

Sequential analysis 

Best-subsets analysis 

Types of stepwise analyses: 

Forward stepping 

Backward stepping 

Interactive stepping 

Test statistics for removal in stepwise 
analysis 

Conditional statistic 

Wald statistic 

Likelihood ratio 

N.A. 

N. A. 

N.A. 

Yes 

Yes 

Yes 

FSTEP 

BSTEP 

No 

Yes 

Yes 

Yes 

N.A. 

N.A. 

N.A. 

No 

No 

STOPRES 

COND 

WALD 

LR 
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TARLE 11.25 Continued 

Feature 
S AS 

LIFEREG 
S AS SPSS SYSTAT 

PHREG COXREG SURVIVAL 

I Input (conriizued) 

I Criteria for stepwise analysis 

I Maximum number of steps N.A. 

I Probability of.score statistic for entry N.A. 

Probability of statistic for removal N.A. 

Force a number of covariates into 
model N.A. 

Specify pattern of covariate values for 
plots and tables . No 

Types of models (distribution 
functions, cf. Table 1 1.9): 

Cox proportional hazards 

i Weibull Yes 

I Nonaccelerated Weibull No 

I Logistic Yes 

I ~og-logistic Yes 

I Exponential Yes 

I Nonaccelerated exponential No 
1 Normal Yes 

Lug-nortnai 

Gamma 

Request no log transform of response 

Request no intercept 

Specify survival malyses by groups 

Special features to deal with tied data 

Output 

Number of observations and number 
censored 

Percent of events censored 

Descriptive statistics for each covariate 

Initial log-likelihood 

Log-likelihood after each step 

Final log-likelihood 

Overall (score) chi-square 

Overall Wald chi-square 

v- .. 1 L> 

Yes 

NOiOG 

NGINT 

Yes 

No 

Yes 

No 

No 

No 

N.A. 

Yes 

No 

No 

MAXSTEP No 

SLENTRY PIN 

SLSTAY POUT 

INCLUDE No 

No PATTERN 

Yes Yes 

No No 

No No 

No No 

No No 

No No 

No No 

No N 0 

N G NO 

No No 

No hi- I * V  

N 0 N e  

No No 

Yes No 

Yes 

Yes 

Yes 

Yes (-2) 

Yes ( -2 )  

Yes (-2) 

Yes 

Yes 

Yes 

Yes 

No 

Yes (-2) 

Yes ( - 2 )  

Yes ( - 2 )  

Yes 

No 

MAXSTEP 

ENTER 

REMOVE 

FORCE 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

Ves 

Yes 

NG 

No 

Yes 

No 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 
(<c!?!!,?!!e<!! 
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TABLE 11.25 Continued 

SAS SAS SPSS SY STXI' 
LIFEREG PHREG COXREG SURVIVAL Feature 

Output (cot~tinued) 

Chi-square for change in likelihood 
from previous block N.A. No Yes No 

Chi-square for change in likelihood 
from previous step N. A. No Yes No 

Residual chi-square at each step N.A. Yes Yes No 

For each covariate in the equation: 

Regression coefficient, B Estimate Parameter B Estimate 
Estimate 

Standard error of regression 
coefficient 

Standard 
Error Std Err S.E. S.E. 

Confidence intervai for regressiori 
coefficient 

Wald statistic (or B/S.E. or ,y2) with 
df and significance level 

Odds ratio, eh 

Yes 

Chi Square 

No 

No 

Chi-Square 

Risk Ratio 

Yes 

Wald 

Exp(B) 
Yes 

t-ratio 

No 

No Confidence interval for odds ratio 

Type 111 SS analysis (combining 
multiple df effects) Yes 

N.A. 

No 

No 

Yes 

No 

No 

No 
- - 
Yes 

Summary table for stepwise results 
Cgvzr i~te mezns 

For covariates not in the equation 
. . 

Score statistic with bf and 
significance level 

Estimate of partial correlation with 
response variable 

t-ratio (or chi-square to enter) and 
significance 

Chi-square (with df and significance 
level) for model if last entered term 
removed (or chi-square to remove) 

Yes Score 

N.A. Yes 

Loss Chi- 
Square N.A. 

Correlation/covariance matrix of 
parameter estimates Yes Yes Yes Yes 

Baseline cumulative hazard table for 
each stratum 

Survival function(s) 

Printed residuals 

No 

No 

No 

ITPRINT 

No 

No 

No 

ITPRINT 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes Print iterat~on history 
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T,\BLE 11.25 Continued 

SAS SAS SPSS SYSTAT 
LIFEREG PHREG COXREG SURVIVAL Feature 

Plots 

Cumulative survival distribution 

Cumulative survival function on a log 
scale 

SURVIVAL Yes (default) 

No TLOG 

HAZARD CHAZ Cumulative hazard function 

Cumulative hazard function on a log 
scale No LHAZ 

LML No Log-minus-log-of-survival function 

Saved on request ' 

Coefficients from final model Yes No 

Yes No Survival table 

For each case: 

Survival function 

Change in coefficient for each 
covariate if current case is removed 

Yes Yes Yes No 

DFBETA Yes No 

Residuals and/or partial residuals for 
each covariate No 

XBETA 

Yes 

XBETA 

Yes No 

XB ETA No Estimates of linear predictors 

Standard errors of estimated linear 
predictors STD 

L~near combination of mean- 
corrected covariate times 
regression coefficients 

Case we~ght 
-. 
1 line or log(time) or" response 

Quantile estimates and standard 
errors 

No 

No 

Yes 

Yes No 

No Yes 

No LOWEK 

QUANTILE 

stratum. SURVIVAL, but not KM, can use tabular data as input. KM provides median and mean sur- 
vival times with standard errors and confidence intervals; SURVIVAL only provides median survival 
time. Both provide a variety of plots. 

COXREG permits specification of strata as well as discrete covariates and is the only program 
reviewed that provides a choice among contrasts for discrete covariates. Direct, sequential, and step- 
wise ariaiyses are available. Model parameters and a survival table can be saved to a tile. and an addi- 
tional file can be requested for residuals, predicted scores, and other statistics. 
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11.8.3 SYSTAT System 

SYSTAT has a single program, SURVIVAL, for all types of survival analyses. including life tables 
and survivor functions as well as proportional- and non-proportional-hazards models for predicting 
survival from covariates. Group differences in survivor functions can be specified, however, they are 
only tested if the product-limit method is chosen. The program also does not allow much tlexibility 
in defining intervals for survivor functions based on the actuarial method. Mean survival times and 
their standard errors are provided for the product-limit method only.* 

Prediction of survival from covariates can be done using the widest variety of possible distri- 
bution functions of any single program reviewed here, and time-dependent covariates can be speci- 
fied. Direct and stepwise analyses are available, and this is the only program reviewed that 
implements interactive stepping. Covariate means are provided, but odds ratios for each covariate 
and their confidence intervals are not. (Confidence intervals are given for regression coefficients, 
however.) The combining of life tables and prediction functions into a single program provides you 
with a variety of survivor plots in a modeling run. Information saved to fiie is rather sparse and does 
not include predicted scores or residuals. 

'1s there perhaps a blah toward the product-lirnit method hrrc'l 
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Canonical Correlation 

12.1 General Purpose and Description 

The goal of canonical correlation is to analyze the relationships between two sets of variables. It may 
be useful to think of one set of variables as IVs and the other set as DVs, or it may not. In any event, 
canonical correlation provides a statistical analysis for research in which each subject is measured on 
two sets of variables and the researcher wants to know if and how the two sets relate to each other. 

Suppose, for instance, a researcher is interested in the relationship between a set of variables 
measuring medical compliance (willingness to buy drugs, to make return office visits, to use drugs, 
to restrict activity) and a set of demographic characteristics (educational level, religious affiliation, 
income, medical insurance). Canonical analysis might reveal that there are two statistically signifi- 
cant ways that the two sets of variables are related. The first way is between income and insurance 
on the demographic side and purchase of drugs and willingness to make return office visits on the 
medical-compliance side. Together, these results indicate a relationship between compliance and 
demography based on ability to pay for medical services. The second way is between willingness to 
use drugs and restrict activity on the compliance side and religious aftiliation and educational level 
on the demographic side, interpreted; perhaps, as a tendency to accede to authority (or not). 

The easiest way to understand canonical correlation is to think of multiple regression. In 
regression, there are several variables on one side of the equation and a single variable on the other 
side. The several variables are combined into a predicted value to produce, across all subjects, the 
highest correlation between the predicted value and the single variable. The combination of variables 
can be thought of as a dimension among the many variables that predicts the single variable. 

In canonical correlation, the same thing happens except that there are several variables on both 
sides of the equation. Sets of variables on each side are combined to produce, for each side, a pre- 
dicted value that has the highest correlation with the predicted value on the other side. The combi- 
nation of variables on each side can be thought of as a dimension that relates the variables on one side 
to the variables on the other. 

There is a complication, however. In multiple regression, there is only one combination of vari- 
ables because there is only a single variable to predict on the other side of the equation. In canonical 
correlation, there are several variables on both sides and there may be several ways to recombine the 
variables on both sides to relate them to each other. In the example, the first way of combining the vari- 
ables had to do with economic issues and the second way had to do with authority. Although there are 
po~entiaiiy as many ways to recombine the variabies as there are variabies in ihe srnaiiei set, ~isiiiiiiy 
only the first two or three combinations are statistically significant and need to be interpreted. 
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! 
'4 good deal of the difticulty with canonical correlation is due to jargon. First. there are vari- 

ables, then there are canonical variates. and. finally, there xc pairs of canonical variates. Variable5 
refers to the variables measured in research ( e . ~ . ,  income). Canonical variates are linear combinations 
of variables, one combination on the IV side (e.g., income and medical insurance) and a second com- 
bination on the DV side (e.g., purchase of drugs and willingness to make return office visits). These 
two combinations form a pair of canonical variates. However, there may be more than one significant 
pair of canonical vafiates (e.g., a pair associated with economics and a pair associated with authority). 

Canonical analysis is one of the most general of the multivariate techniques. In fact, many 
other procedures-multiple regression, discriminant analysis, MANOVA-are special cases of it. 
But it is also the least used and most impoverished of the techniques, for reasons that are discussed 
in what follows. 

Although not the most popular of multivariate techniques, examples of canonical correlation 
are found across disciplines. Mann (2004) examined the relationship between variables associated 
with college student adjustment and certain personality variables. Variables on one side of the equa- 
tion were academic adjustment, social adjustment, personal-emotional adjustment, and institutional 
attachment; variables on the other side were shame-proneness, narcissistic injury, self-oriented per- 
fectionism, other-oriented perfectionism, and socially prescribed perfectionism. A single canonical 
composite was found, accounting for 33% of overlapping variance. Those low in institutional attach- 
ment were high in narcissistic injury, low in self-oriented perfectionism, and high in other-oriented 
and social prescribed perfectionism. 

Gebers and Peck (2003) examined the relationship between traffic citations and accidents in a 
subsequent 3-year period from those variables plus a variety of demographic variables in the prior 3- 
year period. Two canonical variable pairs were identified that, taken together, predicted subsequent 
traffic incidents (accidents and citations) better than prediction afforded by prior citations alone. 
Increasing traffic incidents were associated with more prior citations, more prior accidents, young 
age, and male gender. A cross-validation sample confirmed the eficacy of the equations. 

12.2 Kinds of Research Questions 

Although a large number of research questions are answered by canonical analysis in one of its spe- 
clal~zed forms (such as discriminant analysis), relatively few intricate research questions are readily 
answered through direct application of computer programs currently available for canonical cnrrela- 
tion. In part, this has to do with the programs themselves, and in part, it has to do with the kinds of 
questions researchers consider appropriate in a canonical correlation. 

In its present stage of development, canonical correlation is best considered a descriptive tech- 
nique or a screening procedure rather than a hypothesis-testing procedure. The following sections, 
however, contain questions that can be addressed with the aid of SPSS and SAS programs. 

12.2.1 Number of Canonical Variate Pairs 

How many significant canonical variate pairs are there in the data set? Along how many dimensions 
are the variables in one set related to the variables in the other? In the example: Is the pair associated 
with economic issues significant? And if so, Is the pair associated with authority also significant'? 

i 
1 

Because canonical variate pairs are computed in descending order of magnit~~de, the tirst one or two 
pairs are often significant and remaining ones are not. Significance tests for cano~ical  variate pairs 
are described in Sections 12.4 and 12.5.1. 

i 
i 
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I 12.2.2 Interpretation of Canonical Variates 

1 How are the din~eilsions that relate two sets of variables to be interpreted'? What is the meaning in the 

I combination of variables that compose one variate in conjunction with the combination cotnposing 

i 
the other in the same pair'? In the example, all the variables that are important to the first pair of 

I 
I canonical variates have to do with money, so the combination is interpreted as an economic dimen- 

I sion. Interpretation of pairs of canonical variates usually proceeds from matrices of. correlations 
I between variables and canonical variates. as described in Sections 12.4 and 12.5.2. 

12.2.3 Importance of Canonical Variates 

There are several ways to assess the importance of canonical variates. The first is to ask how strongly 
the variate on one side of the equation relates to the variate on the other side of the equation; that is, how 
strong is the correlation between variates in a pair? The second is to ask how strongly the variate on one 
side of the equation relates to the variables on its own side of the equation. The third is to ask how 
strongly the variate on one side of the equation relates to the variables on the other side of the equation. 

For the example, what is the correlation between the economic variate on the compliance side 
and the economic variate on the demographic side? Then, how much variance does the economic 
variate on the demographic side extract from the demographic variables? Finally, how much vari- 
ance does the econon~ic variate on the demographic side extract from the compliance variables? 
These questions are answered by the procedures described in Sections 12.4 and 12.5.1. Confidence 
limits for canonical correlations are not readily available. 

12.2.4 Canonical Variate Scores 

Had it been possible to measure directly the canonical variates from both sets of variables, what 
scores would subjects have received on them? For instance. if directly measurable. what scores 
would the first subject have received on the economic variate from the compliance side and the eco- 
nomic variate from the demographic side? Examination of canonical variate scores reveals deviant 
cases, the shape of the relationship between two canonical variates, and the shape of the relationships 
between canonicai variates and the originai variables, as discussed briefly in Sections 12.3 and 12.4. 

Tf canonical variates are interpretable, scores on them might be useful as IVs nr DVS in other 
analyses. For instance, the researcher might use scores on the economic variate from the compliance 
side to examine the effects of publicly supported medical facilities. Canonical scores also may be 
useful for comparing canonical correlations in a manner that is generalized from the comparison of 
two sets of predictors (Section 5.6.2.5). Steiger (1980) and Steiger and Browne (1984) provide the 
basic rationale and examples of various procedures for comparing correlations. 

12.3 Limitations 

12.3.1 Theoretical  imitations ' 
Canonical correlation has several important theoretical limitations that help explain its scarcity in the 
literature. Perhaps the most critical limitation is interpretability; procedures that maximize correlation 

I 
i 
I 'The authors are indebted to James Fleming for many of the insights of this section. 



do not nccessar~ly maximize interpretation uf pal;rs of canonical variateq. Therefore. canonical solu- 
tions are often mathematically elegant b~it i~ninterpretable. And. ~ t l t ho~~gh  it is conilnon practice in fac- 
tor analysis and principal components analysis (Chapter 13) to rotate a solution to improve 
interpretation, rotation of canonical variates is not common practice or even available in some com- 
puter programs. 

The algorithm used for canonical correlation maximizes the linear relationship between two 
sets of variables. If the relationship is nonlinear, the analysis misses some or most of it. If a nonlin- 
ear relationship between dimensions in a pair is suspected, use of canonical correlation may be inap- 
propriate unless variables are transformed or combined to capture the nonlinear component. 

The algorithm also computes pairs of canonical variates that are independent of all other pairs. 
In factor analysis (Chapter 13), one has a choice between an orthogonal (uncorrelated) and an 
oblique (correlated) solution, but in canonical analysis, only the orthogonal solution is routinely 
available. In the example, if there was a possible relationship between economic issues and author- 
ity, canonical correlation might be inappropriate. 

An important concern is the sensitivity of the solution in one set of variables to the variables 
included in the other set. In canonical analysis, the solution depends both on correlations among 
variables in each set and on correlations among variables between sets. Changing the variables in one 
set may markedly alter the composition of canonical variates in the other set. To some extent, this is 
expected given the goals of analysis, yet the sensitivity of the procedure to apparently minor changes 
is a cause for concern. 

It is especially important in canonical analysis to emphasize that the use of terms IV and DV 
does not imply a causal relationship. Both sets of measures are manipulated by nature rather than by 
an experimenter's design, and there is nothing in the statistics that changes that arrangement-this is 
truly a correlational technique. Canonical analysis conceivably could be used when one set of mea- 
sures is indeed experimentally manipulated, but it is difficult to imagine that MANOVA could not do 
a better, more interpretable job with such data. 

Much of the benefit in studying canonical correlation analysis is in its introduction to the 
notion of dimensionality, and in providing a broad framework with which to understand other tech- 
niques in which there are multiple variables on both sides of a iinear equation. 

12.3.2 Practical Issues 

12.3.2,l Ratio of Cases to ZVs 

The number of cases needed for analysis depends on the reliability of the variables. For variables in the 
social sciences where reliability is often around 30, about 10 cases are needed for every variable. How- 
ever, if reliability is very high, as, for instance, in political science where the variables are measures of 
the economic performance of countries, then a much lower ratio of cases to variables is acceptable. 

Power considerations are as important in canonical correlation as in other techniques, but soft- 
ware is less likely to be available to provide aid in determining sample sizes for expected effect sizes 
and desired power. 

12.3.2.2 Normality, Linearity, and Homoscedasticity 

Although there is no requirement that the variables be normally distributed when canonical correla- 
tin" ;' I I C P , ~  A P ' . ~ r ; n ~ ; . r P l . l  +hn . . 
L I V l l  I; UI1bU UbJC.IIyLLVCIy, LIIC aniiljisis is enhaiiced if they are. 'rIowever. inference regarding nurnber 
of significant canonical variate pairs proceeds on the assumption of multivariate normality. Multi- 
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variate normal~ty is the assumption that all variable.; and all linear combinations of variables are nor- 
mally distributed. I t  is not itself an easily testable hypothesis (most tests a~nilable are too strict). but 
the likelihood of multivariate normality is increased if the variables are all normally distributed. 

Linearity is important to canonical analysis in at least two ways. The first is that the analysis is 
performed on correlation or variance-covariance matrices that reflect only linear relationships. If the 
relationship between two variables is nonlinear, it is not "captured by these statistics. The second is 
that canonical correlation maximizes the linear relationship between a variate from one set of vari- 
ables and a variate from the other set. Canonical analysis misses potential nonlinear components of 
relationships bezween canonical variate pairs. 

Finally, canonical analysis is best when relationships among pairs of variables are homo- 
scedastic, that is, when the variance of one variable is about the same at all levels of the other variable. 

Normality, linearity, and homoscedasticity can be assessed through normal screening proce- 
dures or through the distributions of canonical variate scores produced by a preliminary canonical 
analysis. If routine screening is undertaken, variables are examined individually for normality 
through one of the descriptive programs such as SPSS FREQUENCIES or SAS Interactive Data 
Analysis. Pairs of variables, both within sets and across sets, are examined for nonlinearity or het- 
eroscedasticity through programs such as SAS PLOT or SPSS GRAPH. If one or more of the vari- 
ables is in violation of the assumptions, transformation is considered, as discussed in Chapter 4 and 
illustrated in Section 12.6.1.2. 

Alternatively, distributions of canonical variate scores produced by a preliminary canonical 
analysis are examined for normality, linearity, and homoscedasticity, and, if found, screening of the 
original variables is not necessary. Scatterplots, where pairs of canonical variates are plotted against 
each other, are available through SAS CANCORR if canonical variates scores are written to a file for 
processing through a scatterplot program. The SPSS CANCORR macro automatically adds canoni- 
cal variate scores to the original data set. If, in the scatterplots, there is evidence of failure of nor- 
mality, linearity, andlor homoscedasticity, screening of the variables is undertaken. This procedure is 
illustrated in Section 12.6.1.2. 

In the event of persistent heteroscedasticity, you might consider weighting cases based on vari- 
ables producing unequai variance or adding a variable that accounts for unequal variance icf. Sec- 
tion 5.3.2.4). 

12.3.2.3 hlissing Data 

Levine (1477) gives an exampie of a dramatic change in a canonical solution with a change in pro- 
cedures for handling missing data. Because canonical correlation is quite sensitive to minor changes 
in  a data set, consider carefully the methods of Chapter 4 for estimating values or eliminating cases 
with missing data. 

12.3.2.4 Absence of Outliers 

Cases that are unusual often have undue impact on canonical analysis. The search for univariate and 
multivariate outliers is conducted separately within each set of variables. Consult Chapter 4 and Section 
12.6.1.3 for methods of detecting and reducing the effects of both univariate and multivariate outliers. 

12.3.2.5 Absence of iMulticollinearity and Singularity 
I I--- L - L L  1--:-.1 - - A  r - r : - - - 1  ' ' ' 

r u l  UOLII  I U ~ I C ~ ~ I  r l l l u  C U I I I ~ U L ~ ~ L I U I I ~ ~ I  I C L I ~ U I I S .  i t  is iiiipoiiaiii ihiii ihe variabies iii each set and across 

i sets are not too highly correlated with each other. This restriction applies to values in R.,,x, R,,>,, and 
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R .\! (see Equatiori 12.1 ). Consult Chapter 4 fnr methods o f  iclentifying and eliminating mulii 
collinearity L L I I C ~  ingulilrity i n  correlation matrices. 

12.4 Fundamental Equations for Canonical 
Correlation 

A data set that is appropriately analyzed through canonical correlation has several subjects, each mea- 
sured on four or more variables. The variables form two sets with at least two variables in the smaller 
set. A hypothetical data set, appropriate for canonical correlation, is presented in Table 12.1. Eight 
intermediate- and advanced-level belly dancers are rated on two sets of variables, the quality of their 
"top" shimmies (TS), "top" circles (TC), and the quality of their "bottom" shimmies (BS), and "bot- 
torn" circles (BC). Each characteristic of the dance is rated by two judges on a 7-point scale (with 
larger numbers indicating higher quality) and the ratings averaged. The goal of analysis is to discover 
patterns, if any, between the quality of the movements on top and the quality of movements on bottom. 

You are cordially invited to follow (or dance along with) this example by hand and by com- 
puter. Examples of syntax and output for this analysis using several popular computer programs 
appear at the end of this section. 

The first step in a canonical analysis is generation of a correlation matrix. In this case, how- 
ever, the correlation matrix is subdivided into four parts: the correlations between the DVs (R,,-y), the 
correlations between the IVs (R,,), and the two matrices of correlations between DVs and IVs (R,t, 
and R , , ) . 2  Table 12.2 contains the correlation matrices for the data in the example. 

There are several ways to write the fundamental equation for canonical correlation, some more 
intuitively appealing than others. The equations are all variants on the following equation: 

The canonical correlation matrix is a product of four correlation matrices, between DVs 
(inverted), between IVs (inverted), and between DVs and IVs. 

TABLE 12.1 Small Sample of Hypothetical Data 
for Illustration of Canonical Correlation Analysis 

? ~ l t h o u ~ h  in this example the sets of variables are neither IVs nor DVs, it is useful to use the terms when explaining the 1 
procedure. 1 
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TABLE 12.2 Correlation Matrices for the Data Set 
in Table 12.1 

It is helpful conceptually to compare Equation 12.1 with Equation 5.6 for regression. Equation 
5.6 indicates that regression coefficients for predicting Y from a set of Xs are a product of (the inverse 
of) the matrix of correlations among the Xs and the matrix of correlations between the Xs and Y: 
Equation 12.1 can be thought of as a product of regression coefficients for predicting Xs from Ys 
(R;,~ 5,) and regression coefficients for predicting Ys from Xs (R;~' R_). 

12.4.1 Eigenvalues and Eigenvectors 

Canonical analysis proceeds by solving for the eigenvalues and eigenvectors of the matrix R of 
Equat~on 12.  I .  Eigenvalues are obtained by analyzing the matrix in Equation 12. I .  Eigenvectors are 
obtained for the Y variables first and then calculated for the Xs using Equation 12.6 in Section 12.4.2. 
As discussed i n  Chapter 13 and iii Appendix A, solving f ~ r  the eigenvalues of a matrix is a process 
that redistributes the variance in the matrix, consolidating it into a few composite variates rather than 
many individual variables. The eigenvector that corresponds to each eigenvalue is transformed into 
the coefficients (e.g., regression coefficients, canonical coefficients) used to combine the original 
variables into the composite variate. 

Calculation of eigenvalues and corresponding eigenvectors is demonstrated in Appendix A but 
is difficult and not particularly enlightening. For this example, the task is accomplished with assis- 
tance from SAS CANCORR (see Table 12.4 where the eigenvalues are called canonical correla- 
tions). The goal is to redistribute the variance in the original variables into a very few pairs of 
canonical variates, each pair capturing a large share of variance and defined by linear combinations 
of IVs on one side and DVs on the other. Linear combinations are chosen to maximize the canonical 
correlation for each pair of canonical variates. 

Although computing eigenvalues and eigenvectors is best left to the computer, the relationship 
between a canonical correlation and an eigenvalue3 is simple, namely, 

"PSS and SAS use the terms Sq. Cor and Squa r e d  Canon  i c a  1 Co r r e  1 a t  i on,  respectively, in place of eigenvalue 
and use the term eigenvtrlur in a different way. 
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Each eipr'n~ill~ie. ).,. 15 tlqi1;~1 to the ~qlliired canonicd correlation, 1.~1. for the pilil- of 
canonical variates. 

Once the eigenvalue is calculated for each pair of canonical variates, canonical correlatio~~ i \  
found by taking the square root of the eigenvalue. Canonical correlation, r ' ,  , is interpreted as an ordi- 
nary Pearson product-moment correlation coefficient. When rc,, is squared, it represents, as usual, 
overlapping variance between two variables, or, in this case, variates. Because r'!, = A,, the eigen- 
values themselves cepresent overlapping variance between pairs of canonical variates. 

For the data set of Table 12.1, two eigenvalues are calculated, one for each variable in the 
smaller set (both sets in this case). The first eigenvalue is .83566, which corresponds to a canonical 
correlation of .91414. The second eigenvalue is .58137, so canonical correlation is .76247. That is, 
the first pair of canonical variates correlate .91414 and overlap 83.57% in variance, and the second 
pair correlate .76247 and overlap 58.14% in variance. 

Note, however, that the variance in the original variables accounted for by the solution cannot 
exceed 100%. Rather, the squared canonical correlation from the second pair of canonical variates is 
the proportion "f variance extracted from the residual after the first pair has been extracted. 

Significance tests (Bartlett, 194 1) are available to test whether one or a set of rL s differs from 

The significance of one or more canonical correlations is evaluated as a chi-square vari- 
able, where N is the number of cases, k ,  is the number of variables in the IV set, k ,  is the 
number in the DV set. and the natural logarithm of lambda, A, is defined in  Equation 
I ?  A TL:" -L: ..-..--- L .... / I .  1 1 1 .  \ . ~ c  
I - . + .  I 1 1 1 s  L I I :  >qud~c  I I L L ~  \n )\n I U I .  -r v 

Lambda, A, is the product of differences between eigenvalues and unity, generated 
across m canonical correlations. 

For the example, to test if the canonical correlations as a set differ from zero: 

'Some researchers (e.g., Harris, 2001) prefer a strategy that concentrates only on the first eigenvalue. See Section 7.5.2 for a 
discussion of this issue. 
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This %' is evaluated with ( k ,  ) ( k , . )  = 4 df. The two canonical correlations differ from zero: 
%'(A) = 12.04, p < .02. The results of this test are interpreted to mean that there is significant over- 
lap in variability between the variables in the IV set and the variables in the DV set, that is. that there 
is some relationship between quality of top movements and of bottom movements. This result is 
often taken as evidence that at least the first canonical correlation is significant. 

With the first canonical correlate removed, is there still a significant relationship between the 
two sets of variables? 

This chi square has (k, - l ) (k , ,  - 1 )  = 1 df and also differs significantly from zero: X2(1) = 3.92, 
p < .05. This result indicates that there is still significant overlap between the two sets of variables 
after the first pair of canonical variates is removed. It is taken as evidence that the second canonical 
correlation is also significant. 

Significance of canonical correlations is also evaluated using the F distribution as, for exam- 
ple, in SAS CANCORR and SPSS MANOVA. 

I 
I 12.4.2 Matrix Equations 

Two sets of canonical coefficients (analogous to regression coefficients) are required for each canon- 
ical correlation, one set to combine the DVs and the other to combine the IVs. The canonical coeffi- 
cients for the DVs are found as follows: 

Canonical coefficients for the DVs are a product of (the transpose of the inverse of the 
square root of) the matrix of correlations between DVs and the normalized matrix of 
eigenvectors, B,,, for the DVs. 

i For the 
! 

Once the canonical coefficients are computed, coefficients for the IVs are found using the fol- 
lowing equation: 

B = R - I R  B* 
lr x,r x.v ?, 

( 1 2.6) 

I 
I "hese calculations. like others in this section, were carried to several decimal places and then rounded back. The results agree 

with computer analyses of the same data but the rounded-off figures presented here do not always check out to both decimals. 

I 
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Coefficients for the 1Vs are a product of (the inverse of the squiire root o f )  the matrix of 
correlations between the IVs. the matrix of correlations between the IVs and DVs. and 
the matrix formed by the coefficients for the DVs, each divided by their corresponding 
canonical correlations. 

For the example: 

The two matrices of canonical coefficients are used to estimate scores on canonical variates: 

and 

Scores on canonical variates are estimated as the product of the standardized scores on 
the original variates, Z, and Zy, and the canonical coefficients used to weight them, B, 
and By. 

For the example: 
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The first belly dancer. in standardized scores (and appropriate costume). has a :-score of 
- 1.35 on TS. -0.8 1 on TC. - 1.53 on BS, and -0.9 1 on BC. When these :-scores are weighted by 
canonical coefficients, this dancer is estimated to have a score of 0.34 on the first canonical variate 
and a score of - 1.9 1 on the second canonical variate for the IVs (the Xs), and scores of -0.07 and 
- 1.54 on the first and second canonical variates, respectively, for the DVs (the Ys). 

The sum of canonical scores for all belly dancers on each canonical variate is zero, within 
rounding error. These scores, like factor scores (Chapter 13), are estimates of scores the dancers 
would receive if they were judged directly on the canonical variates. 

Matrices of correlations between the variables and the canonical coefficients, called loading 
matrices, are used to interpret the canonical variates. 

and 

Correlations between variables and canonical variates are found by multiplying the 
matrix of correlations between variables by the matrix of canonical coefficients. 

I For the example: 

The loading matrices for these data are summarized in Table 12.3. Results are interpreted down 
columns across sets of variables. For the first canonical variate pair (the first column), TS correlates 
- .74, TC .79; BS - .44; and BC .88. The first pair of canonical variates links low scores or? TS and high 
scores on TC (in the first set of variables) with high scores on BC (in the second set), indicating that 
poor-quality top shimmies and high-quality top circles are associated with high-quality bottom circles. 

For the second canonical variate pair (the second column), TS correlates .68, TC .62, BS .90, and 
BC .48; the second canonical variate pair indicates that high scores on bottom shimmies are associated 

I TABLE 12.3 Loading Matrix for the Data Set in Table 12.1 

Canonical Variate 
Pairs 

I Variable Sets First Second 
! 
I First TS -0.74 0.68 
I 
I TC 0.79 0.63, 

Second BS -0.44 0.90 
I BC 0.88 0.48 

i 
I 
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with high scores on both top circles and top shimmies. Taken tosether. these results suggest that abil- 
ity to do bottom circles is related to abi!ity to do top circles but inability to do top shimmies. u h e r e a  
ability to do bottom shimmies is associated with ability to do both top movements well. 

Figure 12.1 shows, in general, the relationships among variables, canonical variates, and the 
first pair of canonical variates. 

~ i ~ u r e  12.2 shows the path diagrams for the two pairs of canonical variates in the small- 
sample example. 

r 
'' r( Canonical 

Variate 

X, = Variable in Xset 

Y, = Variable in Y set 

a = Loading of (correlation with) i th Xvariable on canonical variate X 
x, 

a = Loading of (correlation with) i th  Yvariable on canonical variate Y 
Y, 

r = Canonical correlation for the first pair of canonical variates 
c1 

FIGURE 12.1 Relationships among variables, canonical variates, and the 
first pair of canonical variates. 

ITh- .74 - - . 4 4 J Y ]  'Jz\ /z\/ - 
.91 ( Canonical )+ +( 

Variate 

FIGURE 12.2 Loadings and canonical correlations for both canonical 
variate pairs for the data in Table 12.1. 
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I 12.4.3 Proportions of Variance Extracted 
I How much variance does each of the canonical variates extract from the variables on its own side of 

I the equation? The proportion of variance extracted from the IVs by the canonical variates of the IVs is 

and 

kv 
p.,r, = x n;, 

i= 1 k.r 

k,. 7 

pv,,c = x % 
k " j = l  , 

The proportion of variance extracted from a set of variables by a canonical variate of the 
set is the sum of the squared correlations divided by the number of variables in the set. 

i Thus, for the first canonical variate in the set of IVs, 

- (-0.74)~ + 0 . 7 9 ~  
Pvxl - 2 = .58 

and for the second canonical variate of the IVs, 

T ~ P  G t r t  r ~ n n n ; ~ q l  x i  F e l t -  nutrn-tr CQW- nq +L :..A----A.. 6-- 
L I I . , C  CUltVtILCUl YL: LULL bALLULLJ J O  10 "I LIIC VL(I;UIILC in j u u g t ~ l r ; ~ ~ ~ ~  of ~ u p  IIIUVGIIILIIL~, 

whereas the second canonical variate extracts 42% of the variance in judgments of top movements. 
In summing for the two variates: almost 100% of the variance i n  the IVs is extracted hy the two 
canonical variates. As expected in summing the two variables, 100% of the variance in IVs is 
extracted by the two canonical variates. This happens when the number of variables on one side of . . ++- A-..  ,.*. -.. ." ,. 
Ll I; GYLLULLVLI 1.5 ~qii;ll io the cumber of canonicai variates. The sum of ihepv scores usuaiiy is iess than 
1.00 if there are more variables than canonical variates. 

For the DVs and the first canonical variate, 

and for the second canonical variate, 

- 0 . 9 0 ~  + 0 . 4 8 ~  
PVy2 - 2 = .52 

1 That is. the first canonical variate extracts 489'0 of the variance in judgments of bottom move- 

I ments. and the second canonical variate extracts 52% (of variance in  judgments of bottom move- 

1 ments. Together, the two canonical variates extract airnost 100% of the variance in the DVs. 
I 



Often. however. one is interested in knowing how much variance the canonical variates from the 
IVs extract from the DVs, and vice \ ,em.  In canonical analysis, this variance is called I - P L ~ L ~ ~ ~ ~ ~ ~ I I L . ~ :  

The redundancy in a canonical variate is the percentage of variance it extracts from its 
own set of variables times the squared canonical correlation for the pair. 

Thus, for the example: 

and 

So, the first canonical variate from the IVs extracts 40% of the variance in judgments of qual- 
ity of bottom movements. The second canonical variate of the IVs extracts 30% of the variance in 
iudgments of quality of bottom movements. Together the two variates extract 70% of the variance in 
the DVs. 

The first and second canonical variates for the DVs extract 48% and 24% of the variance in 
judgments of quality of top movements, respectively. Together they extract 72% of the variance in 
judgments of quality of top movements. 

12.4.4 Computer Analyses of Small-Sample Example 

Tables 12.4 and 12.5 show analyses of this data set by SAS CANCORR and SPSS CANCORR 
(Macro), respectively. 

In SAS CANCORR (Table 12.4), the one set of variables (DVs) is listed in the input statement 
that begins v a  r, the other set (IVs) in the statement that begins w i t h. Redundancy analysis also is 
available. 

The first segment of output contains the canonical correlations for each of the canonical vari- 
ates (labeled 1 and 2), including adjusted and squared correlations as wefkas standard errors for the 
correlations. The next part of the table shows the eigenvalues, the difference between eigenvalues, 
the proportion and the cumulative proportion of variance in the solution accounted for by each 
canonical variate par. T h e T e s t o f H 0 : . . . table shows "peel off" significance tests for canon- 
ical variate pairs evaluated through F followed in the next table by several multivariate significance 



TABLE 12.4 Syntax and Selected SAS CANCORR Output for Canonical Correlation Analysis of Sample Data of Table 12.1 

p r o c  c a n c o r r  data=SASUSER.SSC:ANON 
v a r  TS TC; 
w i t h  BS BC; 

run ;  

The CANCORR P r o c e d u r e  

C a n o n i c a l  C o r r e l a t i o n  A n a l y s i s  

A d j u s t e d  A p p r o x i m a t e  S q u a r e d  
C a n o n i  ca  I. C a n o n i  ca  1  S t a n d a r d  C a n o n i  ca  1  

C o r r e l a t i o n  C o r r e l a t i o n  E r r o r  C o r r e l a t i o n  

T e s t  o f  HO: The  c a n o n i c a l  c o r r e l a t i o n s  i n  
E i g e n v a l u e s  o f  I n v ( E ) * H  t h e  c u r r e n t  r o w  a n d  a l l  t h a t  f o l l o u  a r e  z e r o  

= C a n R s q / ( l - C a n R s q )  

L i k e l i h o o d  A p p r o x i m a t e  
E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  R a t i o  F  V a l u e  Num D F  

M u l t i v a r i a t e  S t a t i s t i c s  a n d  F  A p p r o x i m a t i o n s  

S t a t i s t i c  Va 1  u e  F  V a l u e  Num D F  Den D F  

W i l k s '  Lambda 0 . 0 6 8 7 9 9 4 7  5 .62  4  8  
P i l l a i ' s  T r a c e  1 . 4 1 7 0 2 4 3 8  6 . 0 8  4 10 
H o t e l l i n g - L a w l e y  T r a c e  6 . 4 7 3 5 4 7 8 5  4 .86  4 6  
R o y ' s  G r e a t e s t  R o o t  5 . 0 8 4 8 1 5 5 9  1 2 . 7 1  2 5 

NOTE: F S t a t i s t i c  f o r  R o y ' s  G r e a t e s t  R o o t  i s  a n  u p p e r  b o u n d .  
NOTE: F  S t a t i s t i c  f o r  W i l k s '  Lambda i s  e x a c t .  

Den D F  P r  > F 



w * 
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TABLE 12.3 Continued 

C a n o n i c a l  S t r u c t u r e  

C o r r e l a t i o n s  B e t w e e n  t h e  V A R  V a r i a b l e s  a n d  T h e i r  C a n o n i c a l  V a r i a b l e s  

C o r r e l a t i o n s  Be tween  t h e  WITH V a r i a b l e s  a n d  T h e i r  C a n o n i c a l  V a r i a b l e s  

W1 W2 

C o r r e l a t i o n s  B e t w e e n  t h e  V A R  V a r i a b l e s  a n d  t h e  C a n o n i c a l  V a r i a b l e s  o f  t h e  WITH V a r i a b l e s  

C o r r e l a t i o n s  B e t w e e n  t h e  WITH V a r i a b l e s  
a n d  t h e  C a n o n i c a l  V a r i a b l e s  o f  t h e  VAR V a r i a b l e s  
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tests. Matrices of saw and standardized canonical coefficients for each canonical variate labeled 
' V A  R ' and ' W I T H ' in the syntax follow: loading matrices are labeled C o r r e  L a  t i o n  s 

I 
i 

B e t w e e n  t h e  . . . V a r i a b l e s  a n d  T h e i r  C a n o n i c a l  V a r i a b l e s .  The portion 
labeled Canonical Structure is part of the redundancy analysis and shows another type of loading 
matrices: the correlations between each set of variables and the canonical variates of the other set. 

Table 12.5 shows the canonical correlation analysis as run through SPSS CANCORR, a macro 
available through syntax. (SPSS MANOVA also may be used through syntax for a canonical analy- I 

sis, but the output is much more difficult to interpret.) The INCLUDE instruction invokes the SPSS 
CANCORR macrd by running the syntax file: canonical correlati~n.sps.~ 

The rather compact output begins with correlation matrices for both sets of variables individ- 
ually and together. Canonical Correlations are then given, followed by their peel down X 2  

tests. Standardized and raw canonical coefficients and loadings are then shown, in the same format 
as SAS. Correlations between one set of variables and the canonical variates of the other set are 
labeled Cross Loadings. A redundancy analysis is produced by default, showing for each set the 
proportion of variance associated with its own and the other set. Compare these values with results 
of Equations 12.1 1 through 12.13. The program writes canonical scores to the data file and writes a 
scoring program to another file. 

TABLE 12.5 Syntax and Selected SPSS CANCORR Output for 
Canonical Correlation Analysis on Sample Data in Table 12.1 

INCLUDE 'Canonical correlation.sps'. 
CANCORR SET1 = ts, tc / 

SET2 = bs, bc I. 

Run MATRIX proceuure: 

Correlations for Set-1 
T S TC 

TS 1.0000 -.1611 
TC -.I611 1.0000 

Correlations for Set-2 
B S BC 

BS 1.0000 .0511 
BC .0511 1.0000 

Correlations Between Set-1 and Set-2 
BS BC 

TS .7580 -.3408 
TC .lo96 .8570 

Canonical Correlations 
1 .914 
2 . 7  62 

6~ copy of this syntax file is included with the SPSS data files for this book online. 
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I TABLE 12.5 Continued 

Test that remaining correlations are zero: 

Wilk's Chi-SQ DF Sig. 
1 .069 12.045 4.000 .017 
2 .419 3.918 1.000 .048 

Standardized Canonical Coefficients for Set-1 
1 2 

TS -.625 .797 
TC .686 .746 

Raw Canonical Coefficients for Set-1 
1 . 2  

TS -.230 .293 
TC .249 .270 

Standardized Canonical Coefficients for Set-2 
1 2 

BS -.482 .878 
BC .901 .437 

Raw Canonical Coefficients for Set-2 
1 2 

BS -.I70 .309 

I BC . 3 7 2  .I80 

Canonical Loadings for Set-1 
i 2 

TS -.736 .677 
TC .787 .617 

Cross Loadings for Set-1 
1 2 

TS -.673 .516 
TC .719 .471 

Canonical Loadings for Set-2 
1 2 

BS -.436 .900 
BC .876 .482 

Cross Loadings for Set-2 
1 2 

BS -.399 .686 
BC .801 .367 (continued) 
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TARLE 12.5 Continued 

Redundancy Analysis: 

Proportion of Variance of Set-1 Explained by Its Own Can. Var. 
Prop Var 

CV1- 1 .580 
CV1-2 .420 

Proportion of Variance of Set-1 Explained by Opposite Can.Var. 
Prop Var 

CV2 - 1 .485 
CV2 - 2 .244 

Proportion of Variance of Set-2 Explained by Its Own Can. Var. 
Prop Var 

CV2 - 1 .479 ' 
CV2-2 .52 1 

Proportion of Variance of Set-2 Explained by Opposite Can. Var. 
Prop Var 

CV1- 1 .400 
CV1- 2 .3 03 

-END MATRIX- 

12.5 Some Important Issues 

12.5.1 Importance of Canonical Variates 

As in most statistical procedures, establishing significance is usually the first step in evaluating a 
soiucion. Conventionai statisticai procedures appiy to significance tests for the number of canonical 
variate pairs. The results of Equations 12.3 and 12.4, or a corresponding F test, are available in all 
programs reviewed in Section 12.7. But the number of statistically significant pairs of canonical vari- 
ates is often larger than the number of interpretable pairs if N is at all sizable. 

The only potential source of confusion is the meaning of the chain of significance tests. The 
first test is for all pairs taken together and is a test of independence between the two sets of variables. 
The second test is for all pairs of variates with the first and most important pair of canonical variates 
removed; the third is done with the first two pairs removed, and so forth. If the first test, but not the 
second, reaches significance, then only the first pair of canonical variates is interpreted.' If the first 
and second tests are significant but the third is not, then the first two pairs of variates are interpreted, 
and so on. Because canonical correlations are reported out in descending order of importance, usu- 
ally only the first few pairs of variates are interpreted. 

Once significance is established, amount of variance accounted for is of critical importance. 
Because there are two sets of variables, several assessments of variance are relevant. First, there is 

'it 1 5  possible that the first canon~cal variate pair I S  not, by itself. significant, hut rather achieve, significance only in combi- 
naci!?~ wi?h [he remining cinonica! va:ia:e pairs. Tcj da:c, there is iio sigiiiiicjnce irai for e a c i ~  pair by iraeif. 



12.5.2 Interpretation of Canonical Variates 

I 

Canonical correlation creates linear combinations of variables, canonical variates, that represent 
mathematically viable combinations of variables. However, although mathematically viable, they 
are not necessarily interpretable. A major task foi the researchcr is to discern, if possible, the mean- 
ing of pairs of canonical variates. 

Interpretation of significant pairs of canonical variates is based on the loading matrices, A, and 
A,, (Equations i2.9 and 12. i 0, respec~iveiy j. Each pair of canonical variates is interpreted as a pair, 
with a variate from one set of variables interpreted vis-8-vis the variate from the other set. A variate is 
interpreted by considering the pattern of variables highly correlated (loaded) with it. Because the load- 
ing matrices contain correlations, and because squared correlations measure overlapping variance, 
variables with correlations of .30 (9% of variance) and above are usually interpreted as part of the vari- 
ate, and variables with loadings below .30 are not. Deciding on a cutoff for interpreting loadings is, 
however, somewhat a matter of taste, although guidelines are presented in Section 13.6.5. 

variance overlap between variatei i n  a pair. Secuntl is variance overlap hetween a vat-iate allcl I!, 
set of variables. Third is variance overlap between a variate and the other set of variahlec. 

The first, and easiest. is the variance overlap between each significant set of canonical ~ariate 
pairs. As indicated in Equation 12.2, the squared canonical correlation is the overlapping variance 
between a pair of canonical variates. Most researchers do not interpret pairs with a canonical corre- 
lation lower than .30, even if interpreted,%ecause r ( .  values of .30 or lower represent, squared, less 
than a 10% overlap in variance. 

The next consideration is the variance a canonical variate extracts from its own set of variables. 
A pair of canonical variates may extract very different amounts of variance from their respective sets 
of variables. Equations 12.1 1 and 12.12 indicate that the variance extracted, yv, is the sum of squared 
loadings on a variate divided by the number of variables in the sets.9 Because canonical variates are 
independent of one another (orthogonal), pvs are summed across all significant variates to arrive at 
the total variance extracted from the variables by all the variates of the set. 

The last consideration is the variance a variate from one set extracts from the variables in the 
other set, called red~indancy (Stewart & Love, 1968; Miller & Farr, 197 1). Equation 12.12 shows that 
redundancy is the percent of variance extracted by a canonical variate times the canonical correlation 
for the pair. A canonical variate from [he IVs may be strongly cvrrelated with the IVs, but weakly 
correlated with the DVs (and vice versa). Therefore, the redundancies for a pair of canonical variates 
are usually not equal. Because canonical variates are orthogonal, redundancies for a set of variables 
are also added across canonical variates to get a total for the DVs relative to the IVs, and vice versa. 

12.6 Complete Example of Canonical Correlation 

For an example of canonical correlation, variables are selected from among those made available by 
research described in Appendix B, Section B. 1. The goal of analysis is to discover the dimensions, if any, 
along which certain attitudinal variables are related to certain health characteristics. Files are CANON:". 

xS~yni t icance depend.;, to a larye extent. on N. 

''Th~s ca lcu lat~on 1s Ident~c;ll to the one used ~n factur 'lnaiysi, ~OI- the same p ~ ~ ~ . p o \ c .  a s h o w l ~  111 Tabic i 3.4 
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Selected attiti~dinal cariabie:, (Set I )  include attitudes to%ard the role of women (ATTROLE!. 
toward l o c ~ ~ s  of control (CONTROL), toward current marital status (ATTMAR). and toward self 

I 
(ESTEEM). Larger numbers indicate increasingly conservative attitudes about the proper role of 
women, increasing feelings of powerlessness to control one's fate (external as opposed to internal locus 
of control), increasing dissatisfaction with current marital status, and increasingly poor self-esteem. 

Selected health variables (Set 2) include mental health (MENHEAL), physical health (PHY- 
HEAL), number of .visits to health professionals (TIMEDRS), attitude toward use of medication 

! 

(ATTDRUG), and a frequency-duration measure of use of psychotropic drugs (DRUGUSE). Larger 
numbers reflect poorer mental and physical health, more visits, greater willingness to use drugs, and 
more use of them. 

12.6.1 Evaluation of Assumptions I 
12.6.1.1 Missing Data 

A screening run through SAS MEANS, illustrated in Table 12.6, finds missing data for 6 of the 465 
cases. One woman lacks a score on CONTROL, and five lack scores on ATTMAR. With deletion of 
these cases (less chan 2%), remaining N = 459. 

12.6.1.2 Normality, Linearity, and Homoscedasticity I 
SAS provides a particularly flexible scheme for assessing normality, linearity, and homoscedasticity 
between pairs of canonical variates. Canonical variate scores are saved to a data file, and then PROC 
PLOT permits a scatterplot of them. 

Figure 12.3 shows two scatterplots produced by PROC PLOT for the example using default 
size values for the plots. The CANCORR syntax runs a preliminary canonical correlation analysis 
and saves the canonical variate scores (as well as the original data) to a file labeled LSSCORES. The 
four canonical variates for the first set are labeled V 1 through V 4: the canonical variates fnr the sec- 

I 

ond set are labeled W 1 through W 4. Thus, the P 1 o t syntax requests scatterplots that are between the 
first and second pairs of canonical variates, respectively. V 1 is canonical variate scores, first set, first 

I 
I 

variate; W I is canonical variate scores, second set, first variate. V 2 is canonical variate scores, first 
set, second variate; 'vJ 2 is canonicai variate scores, second set, second variate. 

I 
The shapes of the scatterplots reflect the low canonica! corre!ations for the so!cticr. (see Sec- 

tion 12.6.2), particularly for the second pair of variates where the overall shape is nearly circular 
except for a few extreme values in the lower third of the plot. There are no obvious departures from 
linearity or homoscedasticity because the overall shapes do not curve and they are of about the same 
width throughout. I 

1 
Deviation from normality is evident, however, for both pairs of canonical variates: on both 

plots, the 0-0 point departs from the center of the vertical and horizontal axes. If the points are 
projected as a frequency distribution to the vertical or horizontal axes of the plots, there is further evi- 
dence of skewness. For the first plot, there is a pileup of cases at low scores and a smattering of cases 
at high scores on both axes, indicating positive skewness. In plot 2, there are widely scattered cases 
with extremely low scores on W 2 ,  with no corresponding high scores, indicating negative skewness. 

Departure from normality is confirmed by the output of SAS MEANS. By using Equation 4.7 
to compute the standard error for skewness, I 

I 



E 
a 
E 
I- 
I-- 

#*a 
V) 
u -l 
V)O 
OCr: 
+I- 
E Z  
30  
Y u 

V)E 
W W  
W W  
Zl- 
3V) 

L L W W  
o x  
II V )J  
9 - a  
a J n w  
ul-L 
L VS Z 
m  W  
> c r E  

a 
>-I 

a 
Z Z W  
o a z  
Z W F -  
aEx  
u a . X ' \  
E a w w  
W E 3 J  
V) E O  
3znCr: 
m u l - I -  
a=++ 
V) a a  
II V) 
m c n c n w  
W H E W  
m E a 3  

U Z W W  
E D  

m z u  E 
C  +n 
m 
w  L 
E m  

> 
U  
0 
L 
a 

E 1000000000 I  
3 1000000000 1 
E 1000000000 I 

I . . . . . . . . . I  
1 r o m C O m o C Q a m  1 
I C O r r r N r m b m  l 
I I 
I I 
I I 

E  1000000000 I 
I 00 000 O l  
E l  00 000 0 1  

. r 1  00 000 0 1  
C l  00 000 O l  
.r I 00 000 0 1  
E l  00 000 0 1  

] . . . . .  . I  
I V \ N  C O m r  COI 
I r ? I  
I I 
I I 

I C  m  I 
I 0  I 
I a ?  d 1 
I ~ C ,  m  C I  
I-' CO C, a J l  
I ~ U  .r E l 
I C - r  L 0 1  
I O U  m  3 1  
1 . r  EV) I 

~+ur m  O U L L I  
I 4  LC, L L W m I  
~ m m - ' r  w m o 3 1  
~ a ~ z m r  c z r o ~  
I ~ O a J ~ E O O U C , !  
I w r m w u r ~  I 
10 w  aJ m m I  
IC, w a r r u -  a ~  a a ~  I 
I u m  m o m  U I  
I m 3 U d w  39-31 

d I r r . r m  I m c r  O r  I 
I 3  . r I  

~ I ~ W X C - - ~ U C I ~ W I  
(DI.rC,C aJ W O C , U ) C ,  I 
-I l > a a E m l a D a  I 

I I 
I I 
I I 

0, I I 
I J  -I W W I  
n I z 2 a a E o C r : m - I  I 
m  1 n a r w w w c r a 3 0  I 
.r I W O X I W C E W P :  I 
L I E I - % Z I - Z I - = > +  I 
m  I H C I W ~ O + E +  I 
> ~ ~ a a ~ w ~ a n a  I 

I O U  m  I I  
I '? n; E ' "  ! 
I m E m  09- l 
I m  E + 3 0 l  
I a,+ 0 m  C L  I 
I+ O W  E aJU W  I 

I 3 v ) ~  u a  I 
I x X O U I  
: C , u = m  C - S L L !  
I d  LC, L L W I U I  
~ m m d r  r m 0 3 1  
I W I ~ C ,  c 3 r o 1  
l r O a J - ' E  O O U C I I  
I c l r m a ~ u c r x  I 
10 w  aJ m  m  I 
IC, w d r c l 9 -  w  aa, I 
I u m  m o o  U I  
I r n 3 U d a J  3 9 - 2 1  

d 1 C I C I . r  m  I V ) C ,  O W  I 
1 . r . r  Ul C,+ 3.r .r I 

n ~ m r  X C ~ U C , ~ C , I  
m  I . r rc  IIJ O r  m ~ ,  I 
J l > a a x m J a D a  I 

I I 
I I 
I I 

aJ I I 
d l W W J - l  J W W I  
Q I E 3 4 U E O E W J  1 
m  ~ n ~ w w w c r a ~ o  I 
.r I W n I L W I - E U E  I 
L IE i ->-ZI -Z+D+ I 
m ~ r ~ - - r r w m o + c r +  I 
> I + a C L E W U < n <  I  

I I 
I I 

V) I O m O V \ N V \ b V \ N  I 
Ul I b O l ' O m M d ' N O S  I 
aJ I - F O M V \ O O M O C O  I 
C  l r u \ M * N u \ v \ O C O l  
3 I C O N r N r O I M ? O *  I 
aJ I * N M O C O C O O ' O *  I 
Y I N r - O 9 * 4 0 b O  1 
W I . .  . . . . . .  . I  

I M 0 ~ 0 0 0 r ~ 0  1 
I I I 
I I 
I I 
I m  I 
I 2 i 
I +-' I 
I m  I 
I C, I 
1 C  m  I 
I 0  I 
I .r -' I 
I W C ,  m  c l  
I-' Cn C, a J l  
I ~ U  .r E l 
I C a r  L 01 
1 o m  m  3 1  
1 . r  Q, E m  I 
I m E m  C n ' t  l 
I m  E r 3 0 1  
I a,+ 0 m C L  I 
19- O W  E a J U  aJ I 

I d  LC, L LC, m  I 
! m  r m o a ~  
1 w 3 m c r  c z r o ~  
l r 0 a J - E o o o C , I  
I C , Y t U W i ) C , ; h  I 
10 aJ w  m  m  I 



590 C E A P T E R  I:! 

p r o c  c a n c o r r  d a t a = S A S U S E R . C A N O N  
o u t = W O R K . L S S C O R E S  
s i  ng=1 E - 8 ;  
v a r  E S T E E M  C O N T R O L  A T T M A R  A T T R O L E ;  
w i t h  M E N H E A L  P H Y H E A L  T I M E D R S  A T T D R U G  D R U G U S E ;  

run; 
p r o c  p l o t  d a t a = W O R K . L S S C O R E S ;  

p l o t  w l * v l ;  
p l o t  w 2 * v 2 ;  

run; 

P l o t  o f  Wl"V1. 
Legend :  A = 1  obs, B = 2 obs, e t c .  

A  A  A  
A  A  A  

A  
A  A  A  M 

A  M A A  
M M A  

A M  A  A  
A  A A A  M A  A  A  AA 
A  A  A 8  C  A  A  

A A  A  A  /UA A A  
B A A  A M  A  A A  A  B  

A  A A A C M  A  B  
ABAAC A A A A  A A A M  A  A  
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N O T E :  6 obs  had  m i s s i n g  v a l u e s .  

FIGURE 12.3 SAS CANCORR and PLOT syntax and output showing 
scatterplots between first and second pairs of canonical variates. 

and Equation 4.8 to compute z, for skewness, Table 12.7 shows extreme positive skewness for 
TIMEDRS (z = 3.248/0.1136 = 28.59) as well as strong skewness for PHYHEAL, ATTMAR, and 
DRUGUSE. Logarithmic transformation of these variables results in variables that are far less 
skewed. The transformed variables are named LATTMAR, LDRUGUSE, LTIMEDRS, and LPHY- 
HEAL. Moderate skewness also is noted for MENHEAL. ESTEEM, and CONTROL. However, his- 
tograms and normal probability plots through SAS UNIVARIATE (not shown) indicated no serious 
departure from normality. 

A second SAS MEANS run provides univariate statist~cs for both transformed and untrans- 
formed variables. Table 12.7 shows the SAS DATA step to delete the cases with missing data on 
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P L o t  o f  W 2 * V 2 .  
L e g e n d :  A = 1 obs ,  B = 2 o b s ,  e t c  

I N O T E :  6 o b s  h a d  m i s s i n g  v a l u e s .  
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FIGURE 12.3 Continued. 
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CONTROL and ATTMAR and accomplish the logarithmic transforms for four of the variables. New 
values (along with old ones) are saved in a data set called CANONT. Only skewness and kurtosis are 
requested for the new variables. 

Compare the skewness and kurtosis of ATTMAR. and DRUGUSE in Table 12.6 with that of 
LATTMAR and LDRUGUSE in Table 12.7. SAS PLOT scatterplots based on transformed variables 
(not shown) confirm improvement in normality with transformed variables, particularly for the sec- 
ond pair of canonical variates. 

I 
I I ; ,:A A I: A A: A ; 

- 4 

- 4 - 3 - 2 - 1 0 1 2 3 

I 
v 2 

I 
1 12.6.1.3 Outliers 
I 

Standard scores are created by SAS STANDARD (Table 12.8) specifying M E A N  =O and S T  D = 1 .  
These scores are saved into a new file labeled CANONS, which is then used by S A S  MEANS to print 
minimum and maximum values for all of the variables to be used in the analysis. 

Minimum and maximum standard scores are within a range of t3 .29 wi th  the exception of a 
large score on ESTEEM ( z  = 3.34), not disturbing in a sample of over 400 cases. 

SAS REGRESSION is used to screen multivariate outliers by requesting that leverage values 
be saved in a new data tile. Table 12.Y shows syntax to run the regression analysis on the first set of 
varial?!es and save the H (leverage) values into a data file labeled CANLEV. Leverage values for the 

I first few cases are shown in the table. 



TABLE 12.7 SAS DATA and MEANS Syntax and Output Showing Skewness and Kurtosis 
- --- - 

d a t a  SASUSER-CANONT; 
s e t  SASUSER.CANON; 
i f  CONTROL =. o r  ATTMAR =. thein d e l e t e ;  
LTIMEDRS = log lO(TIMEDRS+l ) ;  
LPHYHEAL = logIO(PHYHEAL); 
LATTMAR = LogIO(ATTMAR); 
LDRUGUSE = logIo(DRUGUSE + 1) ;  

run;  
p r o c  means data=SASUSER.CANONT va rde f=DF 

N  NMISS SKEWNESS KURTOSIS MEAN; 
v a r  LTIMEDRS LPHYHEAL LATTMAR LDRUGUSE; 

run;  

The MEANS P r o c e d u r e  

N  
V a r i a b l e  L a b e l  N  M i s s  Skewness K u r t o s i s  Mean 

.................................................................................. 
LTIMEDRS Log( TIMEDRS + I) 459 0  0 .2296331 -0.1861 264 0.741 3859 
LPHYHEAL Log( PHYHEAL) 459 0  -0.0061454 -0.6984603 0.6476627 
LATTMAR l o g (  A T T M A R )  459 0  0.2291448 -0.5893927 1.3337398 
LDRUGUSE l o g (  DRUGUSE + 1 )  459 -0.1527641 -1.0922599 0  -7637207  



TABLE 12.8 SAS STANDARD and MEANS Syntax and Output to Evaluate Univariate Outliers 
-- -- 

p r o ~  s t a n d a r d  d a t a = S A S U S E R . C A N O N T  o u t = S A S U S E R . C A N O N S  
v a r d e f = D F  M E A N = O  S T D = I ;  
v a r  L T I M E D R S  L P H Y H E A L  L A T T M A R  L D R U G U S E  

A T T D R U G  M E N H E A L  E S T E E M  C O N T R O L  A T T R O L E ;  
run; 
p r o c  m e a n s  d a t a = S A S U S E R .  C A N O N S  v a r d e f = D F  

N  M I N  MAX; 
v a r  L T I M E D R S  L P H Y H E A L  L A T T M A R  L D R U G U S E  

A T T D R U G  M E N H E A L  E S T E E M  C O N T R O L  A T T R O L E ;  
run; 

V a r i a b l e  L a b e l  N M i n i m u m  M a x i m u m  
-----------------------------,----------.--------------------.-------------------------- 

L T I M E D R S  l o g (  T I M E D R S  + I )  459 -1.7788901 2.8131374 
L P H Y H E A L  Log( P H Y H E A L )  4 5 9 -1.6765455 2.5558303 
L A T T M A R  l o g (  A T T M A R )  459 -1 -89741 89 2.7888035 
L D R U G U S E  l o g (  D R U G U S E  + 1 )  4 5 9 -1 .5628634 2.1739812 
A T T D R U G  A t t i t u d e  t o w a r d  u s e  o f  m e d i c a t i o n  4 5 9 -2.31 9571 5 2.0119310 
M E N H E A L  M e n t a l  h e a l t h  s y m p t o m s  459 -1.4747464 2.8675041 
E S T E E M  S e l f - e s t e e m  459 -1 .9799997 3.3391 801 
C O N T R O L  L o c u s  o f  c o n t r o l  459 -1  .3761468 2.5569253 
A T T R O L E  A t t i t u d e s  t o w a r d  r o l e  o f  w o m e n  459 -2.5470346 2.9333009 
...................................................................................... 
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TARLE 12.9 SAS REG Syntax and Selected Portion of Data File for 
Identification of klultivariate Outliers for the First Set of Variables 

p r o c  r e g  d a t a = S A S U S E R . C A N O N T ;  
m o d e l  S U B N O =  E S T E E M  C O N T R O L  L A T T M A R  A T T R O L E ;  
o u t p u t  o u t = S A S U S E R . C A N O N L E V  H=H; 

run; 

Critical value of Mahalanobis distance with four variables at a = .001 is 18.467. Using Equa- 
tion 4.3 to convert this to a critical leverage value: 

There are no outliers in the segment of the data set shown in Table 12.9 or any other in either set of 
variables. 



SAS CANCORR protects against multicollinearity and singularity by setting a calue for tolerance 
(sing) in the main analysis. It is not necessary to further check multicollinearity unless there is rea- 
son to expect large SMCs among variables in either set and there is a desire to elim~nate logically 
redundant variables. 

12.6.2 Canonical Correlation 

The number and importance of canonical variates are determined using procedures from Section 
12.5.1 (Table 12.10). R E  D requests redundancy statistics. 

Significance of the relationships between the sets of variables is reported directly by SAS 
CANCORR, as shown in Table 12.10. With all four canonical correlations included, 
F (20, 1,493.4) = 5 . 5 8 , ~  < .001. With the first and second canonical correlations removed, F values 
are not significant: F(6, 904) = 0.60, p = .66. Therefore, only significant relationships are in the 
first two pairs of canonical variates and these are interpreted. 

Canonical correlations (r , )  and eigenvalues (r:) are also in Table 12.10. The first canonical 
correlation is .38 (.36 adjusted), representing 14% overlapping variance for the first pair of canoni- 
cal variates (see Equation 12.2). The second canonical correlation is .27 (.26 adjusted), representing 
7% overlapping variance for the second pair of canonical variates. Although highly significant, nei- 
ther of these two canonical correlations represents a substantial relationship between pairs of canon- 
ical variates. Interpretation of the second canonical correlation and its corresponding pair of 
canonical variates is marginal. 

Loading matrices between canonical variates and original variables are in Table 12.1 1. Inter- 
pretation of the two significant pairs of canonical variates from loadings follows procedures men- 
tioned in Section 12.5.2. Correlations between variables and variates (loadings) in excess of .3 are 
interpreted. Both the diicc:ion of cc;re!ations in the !~adir,g matrices 2nd the directi~r, ef sca!es of 
measurement are considered when interpreting the canonical variates. 

The first pair of canonical variates has high loadings on ESTEEM. CONTROL, and 
LATTMAR (.596, .784, and .730, respectively) on the attitudinal set and on LPHYHEAL and MEN- 
HEAL (.408 and .968) on the health side. Thus, low self-esteem, external locus of control, and dis- 
satisfaction with r i i~ i ia i  statcis are relaied to poor phj;si~a: and meiital health. 

The second pair of canonical variates has high loadings on ESTEEM, LATTMAR, and ATT- 
ROLE (.60 1, - .3 17, and .783) on the attitudinal side and LTIMEDRS, ATTDRUG, and LDRUGUSE 
(-.359,.559, and - .548) on the health side. Big numbers on ESTEEM, little numbers on LATTMAR, 
and big numbers on ATTROLE go with little numbers on LTIMEDRS, big numbers on ATTDRUG, 
and little numbers on LDRUGUSE. That is, low self-esteem, satisfaction with marital status, and 
conservative attitudes toward the proper role of women in society go with few visits to physicians, 
favorable attitudes toward use of drugs, and little actual use of them. (Figure that one out!) 

Loadings are converted to pv values by application of Equations 12.1 1 and 12.12. These val- 
ues are shown in the output in sections S t a n d a r d i z e d  V a r i a n c e  o f  t h e  . . . V a r i -  
a b l e s  E x p l a i n e d  b y  T h e i r  Own C a n o n i  c a t  V a r i a b l e s  (Table 12.11). The values 
for the first pair of canonical variates are .38 for the first set of variables and .24 for the second set of 
variables. That is, the first canonical variate pair extracts 38% of variance from the attitudinal vari- 
ables and 24% of variance from the health variables. The values for the second pair of canonical vari- 
ates are .27 for the first set of variables and .15 for the second set; the second canonical variate pair 
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TABLE: 12.10 Syntax and Selected Portion of SAS CANCORR Output Showing Canonical Correlations and Significance Levels 
for Sets of Canonical Correlations 

p r o c  c a n c o r r  data=SASUSER.CANONT RED 
out=SASUSER.LSSCORNW 
s i n g = l E - 8 ;  
v a r  ESTEEM CONTROL LATTMAR ATTROLE; 
w i t h  LTIMEDRS ATTDRUG LPHYHEAL MENHEAL LDRUGUSE; 

r un ;  

The  CANCORR P r o c e d u r e  

C a n o n i c a l  C o r r e l a t i o n  A n a l y s i s  

A d j u s t e d  A p p r o x i m a t e  S q u a r e d  
Ca r i on i  ca  1 C a n o n i  ca  1  S t a n d a r d  C a n o n i  ca  1  

C o r r e l a t i o n  C o r r e l a t i o n  E r r o r  C o r r e l a t i o n  

E i g e n v a l u e s  o f  I n v ( E > * H  
= CanRsq/  ( 1  -CanRsq)  

T e s t  o f  HO: The  c a n o n i c a l  c o r r e l a t i o n s  i n  
t h e  c u r r e n t  r o w  a n d  a l l  t h a t  f o l l o w  a r e  z e r o  

L i k e l i h o o d  A p p r o x i m a t e  
E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  R a t i o  F V a l u e  Num DF Den D F  P r  > F 



TABLE 12.11 Selected SAS CANCORR Oatput of Loading Matrices for the Two Sets of Variables in the Example. Syntax Is in 'Table 12.10 

C a n o n i c a l  S t r u c t u r e  

C o r r e l a t i o n s  B e t w e e n  t h e  VAR V a r i a b l e s  a n d  T h e i r  C a n o n i c a l  V a r i a b l e s  

ESTEEM S e l f - e s t e e m  0.5958 0 .6005 -0 .2862 -0 .4500 
CONTROL L o c u s  o f  c o n t r o l  0.7836 0 .1478 -0.1771 0 .5769  
LfrTTMAR Log (  ATTMAR) 0.7302 -0.3166 0 .4341 -0.4221 
ATTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women -0.0937 0 .7829  0 .6045 0 .1133  

C o r r e l a t i o n s  B e t w e e n  t h e  WITH V a r i a b l e s  a n d  T h e i r  C a n o n i c a l  V a r i a b l e s  

LTIMEDRS l o g (  TIMEDRS + 1 )  0 .1229  -0 .3589 -0.8601 0 .2490  
ATTDRUG A t t i t u d e  t o w a r d  u s e  o f  m e d i c a t i o n  0.0765 0 .5593  -0 .0332 0 .4050  
LPHYHEAL Log (  PHYHEAL) 0.4082 -0 .0479 -0 .6397 -0 .5047 
ME!NHEAL M e n t a l  h e a l t h  symptoms 0.9677 -0 .1434 -0.1887 0.0655 
LDRUGUSE l o g (  DRUGUSE + 1 )  0 .2764  -0 .5479 0 .0165 -0.0051 
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TABLE 12.12 Selected SAS CANCOKR Output Showing Percents of Variance and Redundancy 
for First and Second Set of Canonical Variates. Syntav Is in %ble 12.10 

C a n o n i c a l  R e d u n d a n c y  A n a l y s i s  

S t a n d a r d i z e d  V a r i a n c e  o f  t h e  VAR V a r i a b l e s  E x p l a i n e d  b y  
T h e i r  Own The O p p o s i t e  

C a n o n i c a l  V a r i a b l e s  C a n o n i c a l  V a r i a b l e s  

C a n o n i  ca  1  
V a r i a b l e  C u m u l a t i v e  C a n o n i c a l  C u m u l a t i v e  

Number P r o p o r t i o n  P r o p o r t i o n  R-Square P r o p o r t i o n  P r o p o r t i o n  

1 0.3777 0.3777 0.1436 0.0542 0.0542 
2 0.2739 0.6517 0.0720 0.0197 0.0740 
3 0.1668 0.8184 0.0079 0.001 3 0.0753 
4 0.1816 1 . O O O O  0.0012 0.0002 0.0755 

S t a n d a r d i z e d  V a r i a n c e  o f  t h e  WITH V a r i a b l e s  E x p l a i n e d  b y  
T h e i r  Own The O p p o s i t e  

C a n o n i c a l  V a r i a b l e s  C a n o n i c a l  V a r i a b l e s  

C a n o n i  c a l  
V a r i a b l e  C u m u l a t i v e  C a n o n i c a l  C u m u l a t i v e  

Number P r o p o r t i o n  P r o p o r t i o n  R-Square P r o p o r t i o n  P r o p o r t i o n  

1 0.2401 0.2401 0.1436 0.0345 0.0345 
2 0.1529 0.3930 0.0720 0.0110 0.0455 
3 0.2372 0.6302 0.0079 0.0019 0.0474 
4 0.0970 0.7272 0.001 2 0.0001 0.0475 

extracts 27% of variance from the attitudinal variables and 15% of variance from the health vari- 
ables. Together, the two canonical variates account for 65% of variance (38% plus 27%) in the atti- 
t LiiuLllu! A;..- set, and 33% of variaiice (24% aiid 15%) i i i  the heam set. 

Redundancies for the canonical variates are found in SAS CANCORR in the sections labeled 
V a r i a n c e  o f  t h e  . . . V a r i a b l e s  E x p l a i n e d  by T h e  O p p o s i t e  C a n o n i c a l  
Va r i a  b 1 e  s  (Table 12.12). That is, the first health variate accounts for 5% of the variance in the 
attitudinal variables, and the second health variate accounts for 2% of the variance. Together, two 
health variates "explain" 7% of the variance in attitudinal variables. The first attitudinal variate 
accounts for 3% and the second 1% of the variance in the health set. Together, the two attitudinal 
variates overlap the variance in the health set, 4%. 

If a goal of analysis is production of scores on canonical variates, coefficients for them are 
readily available. Table 12.13 shows both standardized and unstandardized coefficients for produc- 
tion of canonical variates. Scores on the variates themselves for each case are also produced by SAS 
CANCORR if an output file is requested (see syntax in Table 12.9). A summary table of information 
appropriate for inclusion in a journal article appears in Table 17.14. 

A checklist for canonical correlation appears in Table 12.15. An example of a Results section, 
in journal format, follows for the complete analysis described in Section 12.6. 
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TABLE 12.13 Continued 

S t a n d a r d i z e d  C a n o n i c a l  C o e f f i c i e n t s  f o r  t h e  V A R  V a r i a b l e s  

ESTEEM S e l f - e s t e e m  0 .2446  0 .6125 -0 .6276  -0 .6818  
CONTROL L o c u s  o f  c o n t r o l  0 .5914  0 .0272 -0 .1102 0 .8894  
LHTTMAR l o g (  ATTMAR) 0 .5241  -0 .4493  0 . 7 3 2 8  -0 .371 8  
APTROLE A t t i t u d e s  t o w a r d  r o l e  o f  women -0 .0873  0 .6206  0 .7986  0 .2047  

S t a n d a r d i z e d  C a n o n i c a l  C o e f f i c i e n t s  f o r  t h e  WITH V a r i a b l e s  

LTIMEDRS log(T1MEDRS + 1 )  -0 .2681 -0 .3857 -0 .8548 0 . 7 8 0 9  

ATTDRUG A t t i t u d e  t o w a r d  u s e  o f  m e d i c a t i o n  0 .0458  0 .7772  -0 .0453 0 .4480  
LPHYHEAL l o g (  PHYHEAL) 0.0430 0 .4464  -0 .4434 -1 .1868 
ME:NHEAL M e n t a l  h e a l t h  symptoms 1  - 0 6 2 7  0 . 0 3 5 6  0 .1529 0 .3802 
LEIRUGUSE log(DRUGUSE + 1 )  -0 .0596  -0 .8274  0 .5124  -0 .0501 



TABLE 12.14 Correlations, Standardized Canonical Coefficients, Canonical Correlations, Percents 
of br iance,  and Redundancies bet\+ een Attitudinal and Health Variables and Their Corresponding 
Canonical Variates 

First Canonical Variate Second Canonical Variate 

Attitudinal set . 
Locus of control 
Attitude toward current marital status 

(logarithm) 
Self-esteem 
Attitude toward role of women - 

Percent of variance 
Redundancy 

Health set 
Mental health 
Physical health (logarithm) 
Visits to health professionals (logarithm) 
Attitude toward use of medication 
Use of psychotropic drugs (logarithm) 

Percent of variance 
Redundancy 

Canonical correlation 

TABLE 12.15 Checklist for Canonical Correlation 

i .  issues 

a. Missing data 

b. Normality. linearity, homoscedasticity 

c. Outliers 

d. Multicollinearity and singularity 

2. Major analyses 

a. Significance of canonical correlations 

b. Correlations of variables and variates 

c. Variance accounted for 

( I )  By canonical correlations 

(2) By same-set canonical variates 

(3) By other-set canonical variates (redundancy) 

3. Additional analyses 

a. Canonical coefficients 

b. Canon~cal variates scores 

.6 1 

.62 
Total = .65 
Total = .07 

.04 

.45 
- .39 

.78 
- .83 

Total = .39 
Total = .04 
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Results 

Canonical correlation was performed between a set of attitu- 

dinal variables and a set of health variables using SAS CANCORR. 

The attitudinal set included attitudes toward the role of women, 

toward locus of control, toward current marital status, and toward 

self-worth. The health set measured mental health, physical 

health, visits to health professionals, attitude toward use of 

medication, and use of psychotropic drugs. Increasingly large 

numbers reflected more conservative attitudes toward women's 

role, external locus of control, dissatisfaction with marital 

status, low self-esteem, poor mental health, poor physical 

health, more numerous health visits, favorable attitudes toward 

drug use, and more drug use. 

To improve linearity of relationship between variables and 

normality of their distributions, logarithmic transformations 

were applied to attitude toward marital status, visits to health 
. . 

professionals; physical health; and b ~ g  use. No wlthln-set m i l l -  

tivariate outliers were identified at p c .001, although six cases 

were found to be missing data on locus of control or attitude 

toward marital status and were deleted, leaving N = 459. Assump- 

tions regarding within-set multicollinearity were met. 

The first canonical correlation was .38 (14% overlapping 

variance); the second was .27 (7% overlapping variance). The 

remaining two canonical correlations were effectively zero. With 

all four canonical correlations included, x2 (20) = 108.19, p < 

.001, and with the first canonical correlation removed, ~ ~ ( 1 2 )  = 

37.98, p < .001. Subsequent x2 tests were not statistically sig- 
nificant. The first two pairs of canonical variates, therefore, 
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accounted for the significant relationships between the two sets 

of variables. 

Data on the first two pairs of canonical variates appear in 

Table 12.14. Shown in the table are correlations between the vari- 

ables and the canonical variates, standardized canonical variate 

coefficients, within-set variance accounted for by the canonical 

variates (percent of variance), redundancies, and canonical cor- 

relations. Total percent of variance and total redundancy indi- 

cate that the first pair of canonical variates was moderately 

related, but the second pair was only minimally related; interpre- 

tation of the second pair is questionable. 

With a cutoff correlation of .3, the variables in the attitu- 

dinal set that were correlated with the first canonical variate 

were locus of control, (log of) attitude toward marital status, 

and self-esteem. Among the health variables, mental health and 

(log of) physical health correlated with the first canonical 

variate. The first pair of canonical variates indicate that those 

with external locus of control (.78), feelings of dissatisfaction 

toward marital status (.73), and lower self-esteem ( .60)  are 

associated with more numerous mental health symptoms (-97) and 

more numerous physical health symptoms (.41). 

The second canonical variate in the attitudinal set was 

composed of attitude toward role of women, self-esteem, and nega- 

tive of (log of) attitude toward marital status, and the corre- 

sponding canonical variate from the health set was composed of 

negative of (log of) drug use, attitude toward drugs, and negative 

of (log of) visits to health professionals. Taken as a pair, 

these variates suggest that a combination of more conservative 
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attitudes toward the role of women ( . 7 8 ) ,  lower self-esteem 

(.60), but relative satisfaction with marital status (-.32) is 

associated with a combination of more favorable attitudes toward 

use of drugs (.56), but lower psychotropic drug use (-.55), 

and fewer visits to health professionals (-.36). 

That is, women who have conservative attitudes toward role of 

women and are happy with their marital status but have lower self- 

esteem are likely to have more favorable attitudes toward drug use 

but fewer vislts to health professionals and lower use of psy- 

chotropic drugs. 

12.7 Comparison of Programs 

One program is available in the SAS package for canonical analyses. SPSS has two programs that 
may be used for canonical analysis. Table 12.16 provides a comparison of important features of the 
programs. If available, the program of choice is SAS CANCORR and, with limitations, the SPSS 
CANCORR macro. 

12.7.1 SAS System 

SAS CANCORR is a tlexible program with abundant features and ease of interpretation. Along with 
the basics, ynu can specify easi!y interpretab!e !abe!s fcr cannnica! variates and the pmgrarr? accentc I-- 

several types of input matrices. 
Multivariate output is quite detailed, with several test criteria and voluminous redundancy 

analyses. Univariate output is minimal, however, and if plots are desired, case statistics such as 
canonical scores are written to a file to be analyzed by the SAS PLOT procedure. If requested, the 
program does separate multiple regressions with each variable predicted from the other set. You can 
also do separate canonical correlation analyses for different groups. 

12.7.2 SPSS Package 

SPSS has two programs for canonical analysis, both available only through syntax: SPSS MANOVA 
and a CANCORR macro (see Table 12.5). A complete canonical analysis is available through SPSS 
MANOVA, which provides loadings, percents of variance, redundancy, and much more. But prob- 
!ems arise with reding the resu!ts, L?ec~use MANOVA is nnt designed specificz!!y for canonicn! 
analysis and some of the labels are confusing. 
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TABLE 12.16 Comparison of SPSS. SAS, and SYSTAT Programs for Canonical Correlat ion 

Feature 
SPSS SPSS SAS SYSTAT 

NIANOVA" CANCORR CANCORR SETCOR 

Input 

Correlation matrix 

Covariance matrix 

SSCP matrix . 
Number of canonical variates 

Tolerance 

Minimum canonical correlation 

Labels for canonical variates 

Error df if residuals input 

Specify partialing covariates 

Output 

Univariate: 

Means / 

Standard deviations 

Confidence intervals 

Normal plots 

Multivariate: 

Canonical correlations 

Eigenvalues (r'?) 

Significance test 

Lambda 

Add~tional test criteria 

Correiarion matrix 

Covariance matrix 

Loading matrix 

Loading matrix for opposite set 

Raw canonical coefficients 

Standardized canonical coefficients 

Canonical variate scores 

Percent of variance 

Redundancies 

Stewart-Love Redundancy Index 

Between-sets SMCs 

Multiple-regression analyses 

Separate analyses by groups 

Yes 

No 

No 

No 

No 

Specify alpha 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

F 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 

DVs only 

No 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

No 

Yes 

No 
X' 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Data file 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

F 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Data file 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

X' 
RAO 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

DVs only 

No 

"Additional features are listed in Section 6.7 and 7.7. 
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Canonical analysis i s  req~~ested through MAN0V.A by calling one cet of variables DVc and the 
other set covariates; no IVs are listed. Althoush SPSS MANOVA provides a rather complete canon- 
ical analysis, it does not calculate canonical variate scores, nor does it offer multivariate plots. 
Tabachnick and Fidell (1996) show an SPSS MANOVA analysis of the small-sample example of 
Table 12.1. 

Syntax and output for the SPSS CANCORR macro is much simpler and easier to interpret. All 
of the critical information is available, however, with the peel-down tests, and a full set of correla- 
tions, canonical coefficients, and loadings. A redundancy analysis is included by default, and canon- 
ical variate scores at-e written to the original data set for plotting. 

12.7.3 SYSTAT System 
Canonical analysis currently is most readily done through SETCOR (SYSTAT Software Inc., 2002). 
The program provides all of the basics of canonical correlation and several others. There is a test of 
overall association between the two sets of variables, as well as tests of prediction of each DV from 
the set of IVs. The program also provides analyses in which one set is partialed from the other set, 
useful for statistical adjustment of irrelevant sources of variance (as per covariates in ANCOVA) as 
well as representation of curvilinear relationships and interactions. These features are well-explained 
in the manual. The Stewart-Love canonical redundancy index also is provided. Canonical factors 
may be rotated. 

Canonical analysis also may be done through the multivariate general linear model GLM pro- 
gram in SYSTAT. But to get all the output, the analysis must be done twice, once with the first set of 
variables defined as the DVs, and a second time with the other set of variables defined as DVs. The 
advantages over SETCOR are that canonical variate scores may be saved in a data file, and that stan- 
dardized canonical coefficients are provided. 
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Principal Components 
and Factor Analysis 

13.1 ~ e n e r a l  Purpose and Description 

Principal components analysis (PCA) and factor analysis (FA) are statistical techniques applied to a 
single set of variables when the researcher is interested in discovering which variables in the set form 
coherent subsets that are relatively independent of one another. Variables that are correlated with one 
another but largely independent of other subsets of variables are combined into factors.' Factors are 
thought to reflect underlying processes that have created the correlations among variables. 

Suppose, for instance, a researcher is interested in studying characteristics of graduate stu- 
dents. The researcher measures a large sample of graduate students on personality characteristics, 
motivation, intellectual ability, scholastic history, familial history, health and physical characteris- 
tics, etc. Each of these areas is assessed by numerous variables; the variables all enter the analysis 
individually at one time and correlations among them are studied. The analysis reveals patterns of 
correlation among the variables that are thought to retlect underlying processes affecting the behav- 
ior of graduate students. For instance, several individual variables from the personality measures 
combine with some variables from the motivation and scholastic history measures to form a factor 
measuring the degree to which a person prefers to work independently, an independence factor. Sev- 
eral variables from the intellectual ability measures combine with some others from scholastic his- 
tory to suggest an intelligence factor. 

A major use of PCA and FA in psychology is in development of objective tests for measurement 
of personality and intelligence and the like. The researcher starts out with a very large number of items 
reflecting a first guess about the items that may eventually prove useful. The items are given to ran- 
domly selected subjects and factors are derived. As a result of the first factor analysis, items are added 
and deleted, a second test is devised, and that test is given to other randomly selected subjects. The 
process continues until the researcher has a test with numerous items forming several factors that rep- 
resent the area to be measured. The validity of the factors is tested in research where predictions are 
made regarding differences in the behavior of persons who score high or low on a factor. 

'PCA prucluces co~nponznth while FA proclucc, hctorh, but i t  is less coltfusing in  [hi\ section to call thc rcsults t)f both a n a l y \ e  
factors. 
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The specific goals of PCA or FA are to su~~~rna r i r e  patterns of correlations anion? observed 
variables. to reduce a larze number of observed variables to iI sn~aller number of ttlctorc. t o  provide 
an operational definition (a  regression equation) for an underlying process by using observed vari- 
ables, or to test a theory about the nature of underlying processes. Some or a11 of these goals may be 
the focus of a particular research project. - 

PCA and FA have considerable utility in reducing numerous variables down to a few factors. 
Mathematically, PCA and FA produce several linear combinations of observed variables, each linear 
combination a factor. The factors summarize the patterns of correlations in the observed correlation 
matrix and can, with varying degrees of success, be used to reproduce the observed correlation 
matrix. But since the number of factors is usually far fewer than the number of observed variables, 
there is considerable parsimony in using the factor analysis. Further, when scores on factors are esti- 
mated for each subject, they are often more reliable than scores on individual observed variables. 

Steps in PCA or FA include selecting and measuring a set of variables, preparing the correla- 
tion matrix (to perform either PCA or FA), extracting a set of factors from the correlation matrix, 
determining the number of factors, (probably) rotating the factors to increase interpretability, and, 
finally, interpreting the results. Although there are relevant statistical considerations to most of these 
steps, an important test of the analysis is its interpretability. 

A good PCA or FA "makes sense"; a bad one does not. Interpretation and naming of factors 
depend on the meaning of the particular combination of observed variables that correlate highly with 
each factor. A factor is more easily interpreted when several observed variables correlate highly with 
it and those variables do not correlate with other factors. 

Once interpretability is adequate, the last, and very large, step is to verify the factor structure 
by establishing the construct validity of the factors. The researcher seeks to demonstrate that scores 
on the latent variables (factors) covary with scores on other variables, or that scores on latent vari- 
ables change with experimental conditions as predicted by theory. 

One of the problems with PCA and FA is that there are no readily available criteria against 
which to test the solution. In regression analysis, for instance, the DV is a criterion and the correla- 
tion between observed and predicted DV scores serves as a test of the solution-similarly for the two 
sets of variables in canonical correlation. In discriminant function analysis, logistic regression, pro- 
file analysis, and multivariate analysis of variance, the solution is judged by how well it predicts 
group membership.. But in PCA and FA there is naexternal criterion such as group membership 
against which to test the solution. 

A second problem with FA or PCA is that, after extraction, there is an infinite number of rota- 
tions available, all accounting for the same amount of variance in the original data, but with the fac- 
tors defined slightly differently. The final choice among alternatives depends on the researcher's 
assessment of its interpretability and scientific utility. In the presence of an infinite number of math- 
ematically identical solutions, researchers are bound to differ regarding which is best. Because the 
differences cannot be resolved by appeal to objective criteria, arguments over the best solution some- 
times become vociferous. However, those who expect a certain amount of ambiguity with respect to 
choice of the best FA solution will not be surprised when other researchers choose a different one. 
Nor will they be surprised when results are not replicated exactly, if different decisions are made at 
one, or more, of the steps in performing FA. 

A third problem is that FA is frequently used in an attempt to "save" poorly conceived 
research. If no other statistical procedure is applicable, at least data can usually be factor analyzed. 
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Thus, in the minds of many. the various forms of FA are associated with sloppy research. The 
power of PCA and FA to create apparent order from real chaos contributes to their somewhat tar- 
nished reputations as scientific tools. 

There are two major types of FA: exploratory and confirmatory. In exploratory FA, one seeks 
to describe and summarize data lg grouping t o ~ i h e r  variables that are correlated. The variables 
themselves may or may not have been chosen with potential underlying processes in mind. 
Exploratory FA is usually performed in the early stages of research, when it provides a tool for con- 
solidating variables and for generating hypotheses about underlying processes. Confirmatory FA is 
a much more sophisticated technique used in the advanced stages of the research process to test a the- 
ory about latent processes. Variables are carefully and specifically chosen to reveal underlying 
processes. Confirmatory FA is often performed through structural equation modeling (Chapter 14). 

Before we go on, it is helpful to define a few terms. The first terms involve correlation matri- 
ces. The correlation matrix produced by the observed variables is called the observed correlation 
matrix. The correlation matrix produced from factors is called the reproduced correlation matrix. 
The difference between observed and reproduced correlation matrices is the residual correlation 
matrix. In a good FA, correlations in the residual matrix are small, indicating a close fit between the 
observed and reproduced matrices. 

A second set of terms refers to matrices produced and interpreted as part of the solution. Rota- 
tion of factors is a process by which the solution is made more interpretable without changing its 
underlying mathematical properties. There are two general classes of rotation: orthogonal and 
oblique. If rotation is orthogonal (so that all the factors are uncorrelated with each other), a loading 
matrix is produced. The loading matrix is a matrix of correlations between observed variables and 
factors. The sizes of the loadings reflect the extent of relationship between each observed variable 
and each factor. Orthogonal FA is interpreted from the loading matrix by looking at which observed 
variables correlate with each factor. 

If rotation is o h l i y ~ ~ e  (so that the factors themselves are correlated), several additional matrices 
are produced. The factor correlation matrix contains the correlations among the factors. The loading 
matrix from orthogonal rotation splits into two matrices for oblique rotation: a structure matrix of 
correlations between factors and variables and a pattern matrix of unique relationships (.uncontami- 
nated by overlap among factors) between each factor and each observed variable. Following oblique 
rotation, the meaning of factors is ascertained from the pattern matrix. 

Lastly, for both types of rotations, there is a factor-score coefficients matrix, a matrix of coef- 
ficients used in several regression-like equations to predict scores on factors from scores on observed 
variables for each individual. 

FA produces factors, while PCA produces components. However, the processes are similar 
except in preparation of the observed correlation matrix for extraction and in the underlying theory. 
Mathematically, the difference between PCA and FA is in the variance that is analyzed. In PCA, all 
the variance in the observed variables is analyzed. In FA, only shared variance is analyzed; attempts 
are made to estimate and eliminate variance due to error and variance that is unique to each variable. 
The term factor is used here to refer to both components and factors unless the distinction is critical, 
in which case the appropriate term is used. 

Theoretically, the difference between FA and PCA lies in the reason that variables are associ- 
ated with a factor or component. Factors are thought to "cause" variables-the underlying construct 
(the factor) is what produces scores on the variables. Thus. exploratory FA is associated with theory 
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development and confirmatory FA i< :~q<cciated with theory tecting. The question in  exploratory F.A 
is: What are the underlq ing processes that could hm.e produced con-elations among these \.ariabies'.' 
The question in confirmatory FA is: Are the correlations among variables consistent with a hypothe- 
sized factor structure? Components are simply aggregates of correlated variables. In that sense, the 
variables "cause"-or produce-the component. There is no underlying theory about which variables. 
should be associated with which factors; they are simply empirically associated. It is understood that 
any labels applied to' derived components are merely convenient descriptions of the combination of 
variables associated with them, and do not necessarily reflect some underlying process. 

Parinet, Lhote; and Legube (2004) used principal components analysis without rotation to pro- 
vide an empirical summary of 18 variables measured repeatedly from nine lakes on the Ivory Coast. 
Two components were identified that accounted for 62% of the total variance in feedback effects. 
The first component summarized measures of the mineral content of the lakes while the second sum- 
marized colonization by phytoplankton. Using these results and the pattern of correlations among 
the variables, it was possible to further reduce the number of variables to four which were easily and 
cheaply measured but provided good prediction. 

Mudrack (2004) used principal components analysis followed by orthogonal rotation to exam- 
ine the structure of the "Belief in a Just Wor ld  inventory originally devised by Rubin and Peplau 
(1975). The original 20 items were empirically summarized by 11 components that accounted for 
83.8% of the variance. The first two components were characterized as "deserved misfortune" 
(because of bad behavior) and "deserved good fortune" (because of good behavior), respectively. 
Mudrack attributes the clarity of the structure to retention of the correct number of components. 

Collins, Litman, and Spielberger (2004) used principal factors extraction with oblique rotation 
to investigate the nature of perceptual curiosity. Two factors of six items each were identified for men 
and for women. The first factor included items related to ". . . exploring new places and seeking a 
broad range of perceptual stimulation . . ." while the second included items related to "engaging in a 
closer inspection of a specific stimulus" (p. 1 137). The two factors were, however, correlated 0.52 
for women and 0.48 for men, providing support for generalized perceptual curiosity. The utility of 
the factors was verified by their pattern of correlations with scales of sensation seeking and novelty 
experiencing. 

13.2 Kinds of Research Questions 

The goal of research using PCA or FA is to reduce a large number of variables to a smaller number 
of factors, to concisely describe (and perhaps understand) the relationships among observed vari- 
ables, or to test theory about underlying processes. Some of the specific questions that are frequently 
asked are presented in Sections 13.2.1 through 13.2.5. 

13.2.1 Number of Factors 

How many reliable and interpretable factors are there in the data set? How many factors are needed 
to summarize the pattern of correlations in the correlation matrix? In the graduate student example, 
two factors are discussed: are these both reliable? Are there any more factors that are reliable? Strate- 
gies for choosing an appropriate number of factors and for assessing the correspondence between 
obser.".ed - - A  - - - - - A  I-.:..- -..'-: --- A: - - A  :- '--L:-- I ' " ' 
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13.2.2 Nature of Factors 

What is the meaning of the factors'? How are the factors to be interpreted'? Factors are interpreted by 
the variables that correlate with them. Rotation to improve interpretability is discussed in Section 
13.6.3; interpretation itself is discussed in Section 13.6.5. 

13.2.3 Importance of Solutions and Factors 

How much variance in a data set is accounted for by the factors? Which factors account for the most 
variance? In the graduate student example, does the independence or intellectual ability factor 
account for more of the variance in the measured variables? How much variance does each account 
for? In a good factor analysis, a high percentage of the variance in the observed variables is 
accounted for by the first few factors. And, because factors are computed in descending order of 
magnitude, the first factor accounts for the most variance, with later factors accounting for less and 
less of the variance until they are no longer reliable. Methods for assessing the importance of solu- 
tions and factors are in Section 13.6.4. 

13.2.4 Testing Theory in FA 

How well does the obtained factor solution fit an expected factor solution? If the researcher had gen- 
erated hypotheses regarding both the number and the nature of the factors expected of graduate stu- 
dents, comparisons between the hypothesized factors and the factor solution provide a test of the 
hypotheses. Tests of theory in FA are addressed, in preliminary form, in Sections 13.6.2 and 13.6.7. 

More highly developed techniques are available for testing theory in complex data sets in the 
form of structural equation modeling, which can also be used to test theory regarding factor struc- 

I ture. These techniques are sometimes known by the names of the most popular programs for doing 

I ~herri, EQS arid LISREL. Siruciurai equaiion modeiing is the focus of Chapter i4. Conlirrnaiory lac- 

1 tor analysis is demonstrated in Section 14.7. 

13.2.5 Estimating Scores on Factors 

Had factors been measured ciirectiy, what scores wouid subjects have received on each of them? For 
instance, if each graduate student were measured directly on independence and intelligence, what 
scores would each student receive for each of them? Estimation of factor scores is the topic of Sec- 
tion 13.6.6. 

13.3 Limitations 

13.3.1 Theoretical Issues 

Most applications of PCA or FA are exploratory in nature; FA is used primarily as a tool for reduc- 
ing the number of variables or examining patterns of correlations among variables. Under these cir- 
cumstances. both the theoretical and the practical limitation\ to FA are relaxed in favor of a frank 
exploration of the data. Dec~sions about number of factors and rotationai scheme are bared on prag- 
matic rather than theorericai cnterla. 
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The research pro-ject that is desigfied speciticall!~ to be factor analyzed. however. differs from 
other projects in several important respects. Among the best detailed discussions of the difference5 
is the one found in Comrey and Lee (1992), from which some of the following discussion is taken. 

The first task of the researcher is to generate hypotheses about factors believed to underlie the 
domain of interest. Statistically, it is important to make the research inquiry broad enough to include 
five or six hypothesized factors so that the solution is stable. Logically, in order to reveal the 
processes underlyirig a research area, all relevant factors have to be included. Failure to measure 
some important factor may distort the apparent relationships among measured factors. Inclusion of 
all relevant factors'poses a logical, but not statistical, problem to the researcher. 

Next, one selects variables to observe. For each hypothesized factor, five or six variables, each 
thought to be a relatively pure measure of the factor, are included. Pure measures are called marker 
variables. Marker variables are highly correlated with one and only one factor and load on it regard- 
less of extraction or rotation technique. Marker variables are useful because they define clearly the 
nature of a factor; adding potential variables to a factor to round it out is much more meaningful if 
the factor is unambiguously defined by marker variables to begin with. 

The complexity of the variables is also considered. Complexity is indicated by the number of 
factors with which a variable correlates. A pure variable, which is preferred, is correlated with only 
one factor, whereas a complex variable is correlated with several. If variables differing in complex- 
ity are all included in an analysis, those with similar complexity levels may "catch" each other in fac- 
tors that have little to do with underlying processes. Variables with similar complexity may correlate 
with each other because of their complexity and not because they relate to the same factor. Estimat- 
ing (or avoiding) the complexity of variables is part of generating hypotheses about factors and 
selecting variables to measure them. 

Several other considerations are required of the researcher planning a factor analytic study. It 
is important, for instance, that the sample chosen exhibits spread in scores with respect to the vari- 
ables and the factors they measure. If all subjects achieve about the same score on some factor, cor- 
relations among the observed variables are low and the factor may not emerge in analysis. Selection 
of subjects expected to differ on the observed variables and underlying factors is an important design 
consideration. 

One should also be wary of pooling the results of several samples, or the same sample with 
measures repeated in time, for factor analytic purposes. First, samples that are known to be different 
with respect to some criterion (e.g., socioeconomic status) may also have different factors. Exami- 
nation of grcup differences is often quite revea!ing. Second, ~nder!ying factor structure may shift ifi 
time for the same subjects with learning or with experience in an experimental setting and these dif- 
ferences may also be quite revealing. Pooling results from diverse groups in FA may obscure differ- 
ences rather than illuminate them. On the other hand, if different samples do produce the same 
factors, pooling them is desirable because of increase in sample size. For example, if men and 
women produce the same factors, the samples should be combined and the results of the single FA 
reported. 

13.3.2 Practical Issues I 
Because FA and PCA are exquisitely sensitive to the sizes of correlations. it is critical that honest cor- I 

relations be employed. Sensitivity to outlying cases, problems created by missing data, and degrada- 
tioii of coi-ieiaiioils beiweeil pooi-iy disii-ibiiied piagiie FA ai-,d PCA, A reii,ew of iliese 
issues in Chapter 4 is important to FA and PCA. Thoughtful solutions to some of the problems, includ- 
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ing variable transformations. ma) markedly enhance FA, whether performed for explorator) or con- 
firmatory purposes. Ho\ve\.er, the limitation? apply with greater force to confirmatory FA. 

I 13.3.2.1 Sample Size and Ilfissing Data 

Correlation coefficients tend to be less reliable when estimated from small samples. Therefore, it is 
important that sample size be large enough that correlations are reliably estimated. The required 
sample size also depends on magnitude of population correlations and number of factors: if there are 
strong correlations and a few, distinct factors, a smaller sample size is adequate. 

Comrey and Lee (1992) give as a guide sample sizes of 50 as very poor, 100 as poor, 200 as 
fair, 300 as good, 500 as very good, and 1000 as excellent. As a general rule of tlzumb, it is comfort- 
ing to have at least 300 cases for factor analysis. Solutions that have several high loading marker 
variables (> .80) do not require such large sample sizes (about 150 cases should be sufficient) as 
solutions with lower loadings andlor fewer marker variables (Guadagnoli & Velicer, 1988). Under 
some circumstances 100-or even 50--cases are sufficient (Sapnas & Zeller, 2002; Zeller, 2005). 

If cases have missing data, either the missing values are estimated, the cases deleted, or a miss- 
ing data (pairwise) correlation matrix is analyzed. Consult Chapter 4 for methods of finding and esti- 
mating missing values and cautions about pairwise deletion of cases. Consider the distribution of 
missing values (is it random?) and remaining sample size when deciding between estimation and dele- 
tion. If cases are missing values in a nonrandom pattern or if sample size becomes too small, estima- 
tion is in order. However, beware of using estimation procedures (such as regression) that are likely to 
overfit the data and cause correlations to be too high. These procedures may "create" factors. 

i 13.3.2.2 Normality 

i As long as PCA and FA are used descriptively as convenient ways to summarize the relationships in 
I a large set of obser\;ed ..- ~ ~ r i a ~ ~ ~ b ,  ' L I - .  -.;a. lJJumptions regarding the distributions of varizihles .re not in force. 
I 

I If variables are normally distributed, the solution is enhanced. To the extent that normality fails, the 
i 

I 
snlutinn is degraded hut may still be worthwhile. 

However, multivariate normality is assumed when statistical inference is used to determine the 
number of factors. Multivariate normality is the assumption that all variables, and all linear combina- 
tions of variables, are normally distributed. Altholigh tests of multivxiate normz!ity .Ire over!y sensi- 
tive, normality among single variables is assessed by skewness and kurtosis (see Chapter 4 and Section 
13.7.1.2). If a variable has substantial skewness and kurtosis, variable transformation is considered. 

I 
I 13.3.2.3 Linearity 
I Multivariate normality also implies that relationships among pairs of variables are linear. The analy- 

sis is degraded when linearity fails, because correlation measures linear relationship and does not 
reflect nonlinear relationship. Linearity among pairs of variables is assessed through inspection of 
scatterplots. Consult Chapter 4 and Section 13.7.1.3 for methods of screening for linearity. If non- 
linearity is found, transformation of variables is considered. 

1 
13.3.2.4 Absence of Outliers among Cases 

As In aii multivariate techniques, cases may be outlicis either or, individua! \!arizbles (univariate! or 
on combinations of variables (multivariate). Such cases have more influence on the factor solution 
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than other c,l\e\ Conwlt Chapter 4 and Sect~on 13 7 1 4 tor method\ ot detrct~n: ,ind rrduc~ng the 
Influence ot both unlvarlnte and multlvar~ate ourl~er\ 

I 

13.3.2.5 Absence of iMzclticollinearity and Singularity I 
I 
i 

In PCA, multicollinearity is not a problem because there is no need to invert a matrix. For most forms 
I I 

of FA and for estimation of factor scores in any form of FA, singularity or extreme multicollinearity I 
is a problem. For FA, if the determinant of R and eigenvalues associated with some factors approach 
0, multicollinearity or singularity may be present. 

To investigate further, look at the SMCs for each variable where it serves as DV with all other 
variables as IVs. If any of the SMCs is one, singularity is present; if any of the SMCs is very large 
(near one), multicollinearity is present. Delete the variable with multicollinearity or singularity. 
Chapter 4 and Section 13.7.1.5 provide examples of screening for and dealing with multicollinearity 
and singularity. I 
13.3.2.6 Factorability oj' R I I 

13.3.2.7 Absence of Outliers among Variables I 

A matrix that is factorable should include several sizable correlations. The expected size depends, to 
some extent, on N (larger sample sizes tend to produce smaller correlations), but if no correlation 

After FA, In both exploratory and confirmatory FA, vanables that are unrelated to other5 In the Tet 
dre ~deniifieci. T'nest: variabies are usuaiiy nor correiated with the fir\[ few factors aithough they often 

exceeds .30, use of FA is questionable because there is probably nothing to factor analyze. Inspect R 
for correlations in excess of .30, and, ifnone is found, reconsider use of FA. 

High bivariate correlations, however, are not ironclad proof that the correlation matrix contains 
factors. It is possible that the correlations are between only two variables and do not reflect underly- 
ing processes that are simultaneously affecting several variables. For this reason, it is helpful to 
examine matrices of partial correlations where pairwise correlations are adjusted for effects of all 
other variables. If there are factors present, then high bivariate correlations become very low partial 
correlations. SPSS and SAS produce partial correlation matrices. 

Bit1 tlctl'h ( i 9543 test of sphericity is a notoriously sensitive test of the hypotnesis that tie cor- 
relations in a correlation matrix are zero. The test is available in SPSS FACTOR but because of its 
sensitivity and its dependence on N, the test is likely to be significant with samples of substantial size 
even if correlations are very low. Therefore, use of the test is recommended only if there are fewer 
than, say, five cases per variable. 

Several more sophisticated tests of the factorabiiity of R are available through SPSS and SAS. 
Both programs give significance tests of correlations, the anti-image correlation matrix, and Kaiser's 
(1970, 1974) measure of sampling adequacy. Significance tests of correlations in the correlation 
matrix provide an indication of the reliability of the relationships between pairs of variables. If R is 
factorable, numerous pairs are significant. The anti-image correlation matrix contains the negatives 
of partial correlations between pairs of variables with effects of other variables removed. If R is fac- 
torable, there are mostly small values among the off-diagonal elements of the anti-image matrix. 
Finally, Kaiser's measure of sampling adequacy is a ratio of the sum of squared correlations to the 

I 

I 

sum of squared correlations plus sum of squared partial correlations. The value approaches I if par- 
tial correlations are small. Values of .6 and above are required for good FA. 
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correlate uith t'rictors extracted later Thew factors are usually unrel~:lble. both because they account 
for bsry I~ttle iariance ,~nd becru~je factor\ that are defined by ~ ~ 1 s t  one or two ~ar1able4 .ire not \tcl- 

I 
I ble. Therefore, one never knows whether these factor\ are "real." Suggestion\ for deterrnin~ng rrlla- 
I bility of factors defined by one or two variables are in Section 13.6.2. 

If the variance accounted for by a factor defined by only one or two variables is high enough, 
the factor is interpreted with great caution or ignored, as pragmatic considerations dictate. In confir- 
matory FA, the factor represents either a promising lead for future work or (probably) error variance, 
but its interpretation awaits clarification by more research. 

A variabie with a low squared inultiple correlation with all other variables and low correla- 
tions with all inlportant factors is an outlier among the variables. The variable is usually ignored in 
the current FA and either deleted or given friends in future research. Screening for outliers among 
variables is illustrated in Section 13.7.1.6. 

i 

13.4 Fundamental Equations 
for Factor Analysis 

Because of the variety and complexity of the calculations involved in preparing the correlation 
matrix, extracting factors, and rotating them, and because, in our judgment, little insight is produced 
by demonstrations of some of these procedures, this section does not show them all. Instead. the rela- 
tionships between some of the more important matrices are shown, with an assist from SPSS FAC- 
TOR for underlying calculations. 

Table 13.1 lists many of the important matrices in FA and PCA. Although the list is lengthy, it 
is composed mostly of matrices of correlations (between variables, between factors, and between 
variables and factors). rnutrices ofstnndcird scores (on variables and on factors), matrices qf'regres- 
sion weights (for producing scores on factors from scores on variables), and the pattern matrix of 
unique relationships between factors and variables after oblique rotation. 

Also in the table are the matrix of eigenvalues and the matrix of their corresponding eigenvec- 
tors. Eigenvalues and eigenvectors are discussed here and in Appendix A, albeit scantily, because of 
their Importance in factor e.xtractionj the frequency with which one encounters the terminology, and 
the close association between eigenvalues and variance in statistical applications. 

A data set appropriate for FA consists of numerous subjects each measured on several vari- 
ables. A grossly inadequate data set appropriate for FA is in Table 13.2. Five subjects who were try- 
ing on ski boots late on a Friday night in January were asked about the importance of each of four 
variables to their selection of a ski resort. The variables were cost of ski ticket (COST), speed of ski 
lift (LIFT), depth of snow (DEPTH), and moisture of snow (POWDER). 1.arger numbers indicate 
greater importance. The researcher wanted to investigate the pattern of relationships among the vari- 
ables in an effort to understand better the dimensions underlying choice of ski area. 

Notice the pattern of correlations in the correlation matrix as set off by the vertical and hori- 
zontal lines. The strong correlations in the upper left and lower right quadrants show that scores on 
COST and LIFT are related, as are scores on DEPTH and POWDER. The other two quadrants show 
that scores on DEPTH and LIFT are unrelated. as are scores on POWDER and LIFT. and so on. With 
luck, FA will find this pattern of correlations. easy to see in a small correlation matrix but not in a 
very large one. 
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TABLE 13.1 Commonly Encountered Matrices in Factor Analyses 

Label Name Rotation Size" Description 

R Correlation Both orthogonal p  X p  Matrix of correlations between variables 
matrix and oblique 

i 
I 
I 

Z Variable Both orthogonal N X p Matrix of standardized observed variable 
matrix and oblique scores 

F Factor-score Both orthogonal N X m  Matrix of standardized scores on factors or 
matrix and oblique components 

A Factor loading Orthogonal p X m  Matrix of regression-like weights used to 
matrix estimate the unique contribution of each factor 

Pattern matrix Oblique to the variance in a variable. If orthogonal, 
also correlations between variables and factors 1 

B Factor-score 
coefficients 
matrix 

C Structure 
matrixb 

cD Factor correla- 
tion matrix 

L Eigenvalue 
matrixC 

V Eigenvector 
matrixd 

Both orthogonal p X m  Matrix of regression-like weights used to 
and oblique generate factor scores from variables 

Oblique p X m  Matrix of correlations between variables and 
(correlated) factors 

Oblique m X m  Matrix of correlations among factors 

Both orthogonal m  X m Diagonal matrix of eigenvalues, one per factof 
and oblique 

Both orthogonal p  X m Matrix of eigenvectors, one vector per 
and oblique eigenvalue 

"Row by column dimensions where 

p = number of variables 

hr = numbe.r of subjects 

m = number of factors or components. 

"n mosr textbooks, iine structure mairix is iabeied S. Howevcr, we have used S to repiesent the sum-of-squaies aiid cross- 
products matrix elsewhere and will use C for the structure matrix here. 

CAlso called characteristic roots or latent roots. 

d ~ l s o  called characteristic vectors. 

the matrix is of full rank. there are actually p rather than m eigenvalues and eigenvectors. Only m are of interest, however, 
so the remaining p - m are not displayed. 

13.4.1 Extraction 

An important theorem from matrix algebra indicates that, under certain conditions, matrices can be 
diagonalized. Correlation and covariance matrices are among those that often can be diagonalized. 
When a matrix is diagonalized, it is transformed into a matrix with numbers in the positive diagonal2 
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T.ABI,E 13.1 Small Sample of Hypothetical Data 
for Illustration of Factor Analysis 

Variables 

Skiers COST LIFT DEPTH POWDER 

Correlation Matrix 

COST LIFT , DEPTH POWDER 

DEPTH - ,055 

POWDER -.I30 -.036 1.000 

I 
i 

and zeros everywhere else. In this application, the numbers in the positive diagonal represent vari- 
ance from the correlation matrix that has been repackaged as follows: 

I 
I L = V'RV (13.1) 
! 

Diagonalization of R is accomplished by post- and pre-multiplying it by the matrix V 
and its transpose. 

The columns in V are called eigenvectors, and the values in the main diagonal of L are called 
eigenvalues. The first eigenvector corresponds to the first eigenvalue, and so forth. 

Because there are four variables in the example, there are four eigenvalues with their corre- 
sponding eigenvectors. However, because the goal of FA is to summarize a pattern of correlations 
with ah few factors as possible, and because each eigenvalue corresponds to a different potential fac- 
tor, usually only factors with large eigenvalues are retained. In a good FA, these few factors almost 
duplicate the correlation matrix. 

In this example, when no limit is placed on the number of factors, eigenvalues of 2.02, 1.94, .04, 
and .00 are computed for each of the four possible factors. Only the first two factors, with values over 
1.00. are large enough to be retained in subsequent analyses. FA is rerun specifying extraction of just 
the first two factors; they have eigenvalues of 2.00 and 1.91, respectively, as indicated in Table 13.3. 
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T.4BLE 13.3 Eigenvectors and 
Corresponding Eigerivalues for 
the Example 

Eigenvector 1 Eigenvector 2 

-.283 .65 1 
,177 -.685 
.658 .252 
.675 .207 

Eigenvalue 1 Eigenvalue 2 

2.00 1.9 1 

Using Equation 13.1 and inserting the values from the example, we obtain 

(All values agree with computer output. Hand calculation may produce discrepancies due to round- 
lng error.) 

The matrix of eigenvectors pre-multiplied by its transpose produces the identity matrix with 
ones in thc positive diagonal and zeros elsewhere. Therefore, pre- and post-multiplying the correla- 
tion matrix by eigenvectors does not change it so much as repackage it. 

V'V = I (13.2) 

For the example: 

The important point is that because correlation matrices often meet requirements for diago- 
nalizability, it is possible to use on them the matrix algebra of eigenvectors and eigenvalues with FA 
as the result. When a matrix is diagonalized, the information contained in it is repackaged. In FA, the 
variance in the correlation matrix is condensed into eigenvalues. The factor with the largest eigen- 
value has the most variance and so on, down to factors with small or negative eigenvalues that are 
usually omitted from solutions. 
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Calculations for eigenvectors and cigen\.alues are extremely labnrioui and not particularly 
enlightening (although they are illuxtrated in Appendix A for a small matrix). They require sol; ing 11 
equations in/, unknowns with additional side constraints and are rarely performed by hand. Once the 
eigenvalues and eigenvectors are known, however, the rest of FA (or PCA) more or less "falls out," 
as is seen from Equations 13.3 to 13.6. 

Equation 13.1 can be reorganized as follows: 

R = VLV' ( 13.3) 

The corrklation matrix can be considered a product of three matrices-the matrices of 
eigenvalues and corresponding eigenvectors. 

I After reorganization, the square root is taken of the matrix of eigenvalues. 

1 1f V& is called A, and &v' is A', then 
I 

I R = AA' (13.5) 

The correlation matrix can also be considered a product of two matrices, each a combi- 
nation of eigenvectors and the square root of eigenvalues. 

Equation 13.5 is frequently called the fundamental equation for  FA.^ It represents the assertion 
that the correlation matrix is a product of the factor loading matrix, A, and its transpose. 

Equations 13.4 and 13.5 also reveal that the major work of FA (and PCA) is calculation of 
eigenvalues and eigenvectors. Once they are knuwrl, the (unrotated) factor loading matrix is found 
by straightforward matrix multiplication, as follows. 

I For the example: 

The factor loading matrix is a matrix of correlations between factors and variables. The first 
column is correlations between the first factor and each variable in turn, COST(-.400), LIFT (.25 I), 

i DEPTH (.932), and POWDER (.956). The second column is correlations between the second factor 

'ln order to  reproduce t h e  correlation m~tr ix  exactly. as indicated in  Equations 13.4 and 13.5, all eigenvalues and eigenvec- 
tor. :!re ! ? ~ c P s x ~ .  n n t j ~ ~ c !  t h r  f i r ~ t  few o f  theni .  
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and each variable in  turn, COST (.900). LIFT (--.947). DEPTH (.348). and POWDER (.286). .4 fac- 
tor is interpreted from the variables that are highly correlated with it-that have high loadings on i t .  
Thus, the first factor is primarily a snow conditions factor (DEPTH and POWDER), while the sec- 
ond reflects resort conditions (COST and LIFT). Subjects who score high on the resort conditions 
factor (Equation 13.11) tend to assign high value to COST and low value to LIFT (the negative cor- 
relation); subjects who score low on the resort conditions factor value LIFT more than COST. 

Notice, however, that all the variables are correlated with both factors to a considerable extent. 
Interpretation is fairly clear for this hypothetical example, but most likely would not be for real data. 
Usually a factor is most interpretable when a few variables are highly correlated with it and the rest 
are not. 

13.4.2 Orthogonal Rotation 

Rotation is ordinarily used after extraction to maximize high correlations between factors and vari- 
ables and minimize low ones. Numerous methods of rotation are available (see Section 13.5.2) but 
the most commonly used, and the one illustrated here, is vnrimax. Varimax is a variance maximizing 
procedure. The goal of variinax rotation is to maximize the variance of factor loadings by making 
high loadings higher and low ones lower for each factor. 

This goal is accomplished by means of a transformation matrix A (as defined in Equation 
13.8), where 

*unrotatedA = *rotated (13.7) 

The unrotated factor loading matrix is multiplied by the transformation matrix to pro- 
duce the rotated loading matrix. 

For the example: 

Compare the rotated and unrotated loading matrices. Notice that in the rotated matrix the low 
correlations are lower and the high ones higher than in the unrotated loading matrix. Emphasizing 
differences in loadings facilitates interpretation of a factor by making unambiguous the variables that 
correlate with it. 

The numbers in the transformation matrix have a spatial interpretation. 

= [ C O S Y  -sin'? 

sin 'Jj cos Y! I 
The transformation matrix is a matrix of sines and cosines of an angle Y .  
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1 TABLE 13.4 Relationships among Loadings, Communalities, SSI,s. 

1 
Variance, and Covariance of Orthogonally Rotated Factors 

I Factor 1 Factor 2 Communalities (h2)  

COST -.086 .98 1 x a '  = .970 

LIFT -.07 1 -.977 x a' = .960 

DEPTH .994 .026 x LZ' = .989 

POWDER .997 - .040 x a' = .996 

SSLs E n ' =  1.994 x u ' =  1.919 3.915 

Proportion of 
variance .50 .48 .98 

Proportion of 
covariance .5 1 .49 

For the example, the angle is approximately 19". That is, cos 19 < .946 and sin 19 < .325. 
Geometrically, this corresponds to a 19" swivel of the factor axes about the origin. Greater detail 
regarding the geometric meaning of rotation is in Section 13.5.2.3. 

13.4.3 Communalities, Variance, and Covariance 

Once the rotated loading matrix is available, other relationships are found, as in Table 13.4. The 
cum~nunality for a variable is the variance accounted for by the factors. It is the squared multiple 
correlation of the variable as predicted from the factors. Cornmunality is the sum of squared loadings 
(SSL) for a variable across factors. In Table 13.4, the communality for COST is (-.08612 + .98 1 = 

.970. That is, 97% of the variance in COST is accounted for by Factor 1 plus Factor 2. 
The proportion of variance in the set of variubies accounted for by a factor is :he SSL f ~ r  the 

factor divided by the number of variables (if rotation is orthogonal).4   or the first factor, the propor- 
tion of variance is [(- .086)' + (-.07 1 )2 + .9942 + .9972]/4 = 1.99414 = S O .  Fifty percent of 
the variance in the variables is accounted for by the first factor. The second factor accounts for 48% 
of the variance in the variables and, because rotation is orthogonal. the two factors together account 
for 98% of the variance in the variables. 

The proportion of variance in the sol~ition accounted for by a factor-the proportion of 
covariance-is the SSL for the factor divided by the sum of cornrnunalities (or, equivalently, the sum 
of the SSLs). The first factor accounts for 5 1% of the variance in the solution (1.99413.9 15) while 
the second factor accounts for 49% of the variance in the solution (1.9 1913.915). The two factors 
together account for all of the covariance. 

'For ~lnrotated tactors only, the suln ot the squared loadings for a lactor I.\ equal to the eigcnvaluc. Once loadings are rotated, 
the sum of squared loadings is called SSL and is no longer equal to the eigenvalue. 
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The reproduced cor~.elat~on matrlu tor the example 1s generated u41ng Equat~on 13.5: 

Notice that the reproduced correlation matrix differs slightly from the original correlation 
matrix. The difference between the original and reproduced correlation matrices is the residual cor- 
relation matrix: 

The residual correlation matrix is the difference between the observed correlation matrix 
and the reproduced correlation matrix. 

For the example, with communalities inserted in the positive diagonal of R: 

In a "good" FA, the numbers in the residual correlation matrix are small because there is little 
difference between the original correlation matrix and the correlation matrix generated from factor 
loadings. 

13.4.4 Factor Scores 

Scores on factors can be predicted for each case once the loading matrix is available. Regression-like 
coefficients are computed for weighting variable scores to produce factor scores. Because R- ' is the 
inverse of the matrix of correlations among variables and A is the matrix of correlations between 



factors and variables. Equation 13.10 for factor score coefficients is similar to Eqnat~on 5.6 for 
regression coefticients in niultiple rezression. 

Factor score coefficients for estimating factor scores from variable scores are a product 
of the inverse of the correlation matrix and the factor loading matrix. 

For the example:5 

To estimate a subject's score for the tirst factor, then, all of the subject's scores on variables are stan- 
dardized and then the standardized score on COST is weighted by 0.082, LIFT by 0.054, DEPTH by 
0.190, and POWDER by 0.822 and the results are added. In matrix form, 

For the example: 

j ~ h e  numbers In B are different from the factor score coefic~entb generated by computer ful- the \rnaII data jet .  The difference 
is due to rounding error following inversion of a ~uulticollinear correlation matrix. Note also that the A matrix contain5 con- 
siderablc rounding error. 
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The first subject has an estimated standard score of 1 . 1 2 .  on the first factor and - 1.16 on the 
second factor, and so on for the other four subjects. The first subject strongly values both the snow 
factor and the resort factor, one positive and the other negative (indicating primary value assigned to 
speed of LIFT). The second subject values both the snow factor and the resort factor (with more 
value placed on COST than LIFT); the third subject places more value on resort conditions (particu- 
larly COST) and less value on snow conditions, and so forth. The sum of standardized factor scores 
across subjects for a single factor is zero. 

Predicting scores on variables from scores on factors is also possible. The equation for doing 
so is 

Predicted standardized scores on variables are a product of scores on factors weighted by 
factor loadings. 

For example: i 

That is, the first subject (the first row of Z) is predicted to have a standardized score of - 1.23 
on COST, 1.05 on LIFT, i .08 on DEPTH, and 1. i6  on POW-DER. Like the reproduced correlation 
matrix, these values are similar to the observed values if the FA captures the relationship among the 
variables. 

It is helpful to see these values written out because they provide an insight into how scores on 
variables are conceptualized in factor analysis. For example, for the first subject, 



Or. in algebraic h r m .  

A score on an observed variable is conceptualized as a properly weighted and summed com- 
bination of the scores on factors that underlie it. The researcher believes that each subject has the 
same latent factor structure, but different scores on the factors themselves. A particular subject's 
score on an observed variable is produced as a weighted combination of that subject's scores on the 
underlying factors.. 

13.4.5 Oblique Rotation 

All the relationships mentioned thus far are for orthogonal rotation. Most of the complexities of 
orthogonal rotation remain and several others are added when oblique (correlated) rotation is used. 
Consult Table 13.1 for a listing of additional matrices and a hint of the discussion to follow. 

SPSS FACTOR is run on the data from Table 13.2 using the default option for oblique rotation 
(cf. Section 13.5.2.2) to get values for the pattern matrix, A, and factor-score coefficients, B. 

In oblique rotation, the loading matrix becomes the pattern matrix. Values in the pattern 
matrix, when squared, represent the unique contribution of each factor to the variance of each vari- 
able but do r,ot include segments of variance that come from over!ap hetween correlated factors. For 
the example, the pattern matrix following oblique rotation is 

The first factor makes a unique contribution of -.079' to the variance in COST, - .078~ to 
LIFT, .9942 to DEPTH, and .9972 to POWDER. 

Factor-score coefficients following oblique rotation are also found: 
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Applying Equation 13.1 1 to produce factor scores results in  the fo!lo\ving values: 

Once the factor scores are determined, correlations among factors car, be abtained. Among the 
equations used for this purpose is 

One way to compute correlations among factors is from cross-products of standardized 
factor scores divided by the number of cases minus one. 

The factor correlation matrix is a standard part of computer output following oblique rotation. 
For the exzmp!~,: 

The correlation between the first and second factor is quite low, -.01. For this example, there 
is almost no relationship between the two factors, although considerable correlation could have been 
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I prociuceci had i t  beer1 warranted. Ordinarily one uses orthogonal rotation in a case like this bec~~ust: 

I complexities introduced by oblique rotation are not warranted by such a low correlation among 

I 
factors. 

However. if oblique rotation is used, the structure matrix. C, is the correlations between vari- 

I ables and factors. These correlations assess the unique relationship between the variable and the fac- 
0 variance tor (in the pattern matrix) plus the relationship between the variable and the overlappin, 

I among the fxtors. The equation for the structure matrix is 

I The structure matrix is a product of the pattern rnatrix and the factor correlation matrix. 

I For example: 

COST, LIFT, DEPTH, and POWDER correlate -.069, -.088, .994, and .997 with the first fac- 
tor and .982, -.977, .023, and -.043 with the second factor, respectively. 

There is some debate as to whether one should interpret the pattern matrix or the structure 
matrix biiowing obiique rotation. The siriictiire matrix is appealii~g because it is readiiy underst~nd. 
However, the correlations between variables and factors are inflated by any overlap between factors. 
The problem becomes more severe as the correlations among factors increase and it may be hard to 
determine which variables are related to a factor. On the other hand, the pattern matrix contains val- 
ues representing the unique contributions of each factor to the variance in the variables. Shared vari- 
ance is omitted (as it is with stanciard muitipie regression), but the sei of variables that compcses a 
factor is usually easier to see. If factors are very highly correlated, it may appear that no variables are 
related to them because there is almost no unique variance once overlap is omitted. 

Most researchers interpret and report the pattern matrix rather than the structure matrix. How- 
ever, if the researcher reports either the structure or the pattern matrix and also @, then the interested 
reader can generate the other using Equation 13.14 as desired. 

In oblique rotation, R is produced as follows: 

- 
R = CA' (13.15) 

The reproduced correlation matrix is a product of the structure matrix and the transpose 
of the pattern matrix. 
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Once the reproduced correlation matrix 15 available. Equation 13.9 is used to senerate thc 
residual correlation matrix to diagnose adequacy of fit in FA. i 
13.4.6 Computer Analyses of Small-Sample Example 

A two-factor principal factor analysis with varimax rotation using the example is shown for SPSS 
FACTOR and SAS FACTOR in Tables 13.5 and 13.6. 

For a principal factor analysis with varimax rotation, SPSS FACTOR requires that you specify 
EXTRACTION PAF and ROTATION VARIMAX.6 SPSS FACTOR (Table 13.5) begins by printing 
out SMCs for each variable, labeled Initial in the Communalities portion of the output. In the same 
table are final (Extraction) communalities. These show the portion of variance in each variable 
accounted for by the solution (h2 in Table 13.4). 

The next table shows a great deal of information about variance accounted for by the factors. 
Initial Eigenvalues, % of Variance, and percent of variance cumulated over the four factors 
(Cumulative O/O) are printed out for the four initial factors. (Be careful not to confuse factors with 
variables.) The remainder of the table shows the percent of variance (sums of squared loadings-see 
Table 13.3) accounted for by the two factors extracted with eigenvalues greater than I (the default 
value), after extraction and after rotation. 

For the two extracted factors, an unrotated Factor (loading) Matrix is then printed. The 
Rotated Factor Matrix, which matches loadings in Table 13.4, is given along with the Factor 
Transformation Matrix (Equation 13.8) for orthogonal varimax rotation with Kaiser normalization. 

SAS FACTOR (Table 13.6) requires a bit more instruction to produce a principal factor analy- 
sis with orthogonal rotation for two factors. You specify the type (met  h o d = p r  i n i  t), initial 
communalities (p  r i o r s = s m c), number of factors to be extracted (n f a c t o r s = 2), and the 
typeofrotation(rotate=v).  P r i o r  Communali  t y  E s t i m a t e s :  SMCsaregiven,followed 
by P r e l i m i n a r y  E i g e n v a l u e s  foral!fourfactors; alsogivenisthc T o t a l  oftheeigenval- 
ues and their A v e r a g e .  The next row shows D i f f e r e n  c e s between successive eigenvalues. For 
example, there is a small difference between the first and second eigenvalues (0.099606) and between 
the third and fourth eigenvalues (0.020622), but a large difference between the second and third 
eigenvalues (1 397534). P r o p o r t i o n  and Cumulative proportion of variance are then printed for 
each factor. This is followed by corresponding information for the Red u c e d C o r i- e C a t i c j  n 
Ma t r i x (after factoring). Information on the iterative process is not shown. 

The Fa c t o  r Pa  t t e r n matrix contains unrotated factor loadings for the first two factors. 
(Note that the signs of the FACTOR2 loadings are the reverse of those of SPSS.) SSLs for each factor 
are in the table labeled V a r i a n c e  e x p l a i n e d  by  e a c h  f a c t o r .  Both F i n a l  Commu- 
na  l i  t y  ~ s t i m a t e s ( h * ) a n d t h e  ~ o t a l  h2arethengiven.~he O r t h o g o n a  1 T r a n s f o r -  
m a t i o n  Ma t r i x for rotation (Equation 13.8) is followed by the rotated factor loadings in the 
R o t a t e d  F a c t o r  Patternmatrix.SSLsforrotatedfactors-Variance e x p l a i n e d  by  
e a c h  factor-appear below the loadings. F i n a l  Communali  t y  E s t i m a t e s  are then 
repeated. 

hThe defaults for SPSS E4CTOR are principal components analysis with no rotation. 



TABLE 13.5 Syntax and SPSS FACTOR Output for Factor Analysis on Sample Data of Table 13.2 
- 

FACT0 R 
/VARIABLES COST LlFT DEPTH POWDER /MISSING LISTWISE 
/ANALYSIS COST LlFT DEPTH POWDER 
/PRINT INITIAL EXTRACTION ROTATION 
/CRITERIA MINEIGEN(1) ITERATE(25) 
/EXTRACTION PAF 
/CRITERIA ITERATE(25) 
/ROTATION VARIMAX 
/METHOD=CORRELATION. 

Communalities 

Extraction Method: Principal Axis Factoring. 

Total Variance Explained 

Extraction 

.970 

.960 

.989 

.996 

COST 
LIFT 
DEPTH 
POWDER 

b\ 
h, Extraction Method: Principal Axis Factoring. w 

Initial 

,961 
.953 
.990 
,991 

Factor 

1 
:2 
:3 

1 s 4  

Rotation Sums of Squared Loadings 
Extraction Sums of Squared 

Loadings 
-- 

Cumulat~ve 
O/o 

49 866 
97.852 

Total 

1.995 
1.919 

Initial Eigenvalues 

Cumulative 
Yo 

50.1 18 
97.852 

Total 

2.005 
1.909 

% of 
Variancd 

49.866 
47.986 

Total 

2.016 
1.942 
.038 
.004 

% of 
Variance 

50.1 18 
47.733 

% of 
Variance 

50.408 
48.538 

.945 

.I09 

-- 

C~~mulative 
YO 

50.408 
98.945 
99.891 

100.000 
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TABLE 13.5 Continued 

Factor Matrixa 

Extraction Method: Principal Axis 
Factoring. 

a2 factors extracted. 4 iterations 
required. 

COST 
Ll FT 
DEPTH 
POWDER 

Rotated Factor Matrixa 

Factor 

Extraction Method. Principal Axis 
Factoring. 
Rotation Method: Varimax with Kaiser 
Normalizat~on. 

aRotation converged in 3 iterations. -- - 

1 

-.400 
.251 
.932 
.956 

COST 
Ll FT 
DEPTH 
POWDER 

! 

Factor Transformation Matrix 

2 

.900 
-.947 

.348 

.286 . 

Factor 1 2 I 

Factor 

Extraction Method: Principal Axis 
Factoring. 
Rotation Method: Varimax with Kaiser 
Normalization. 

1 

-.086 
-.071 

.994 

.997 

2 

-. 98 1 
,977 

-.026 
.040 



TABLE 13.6 Syntax and Selected SAS FACTOR Output for Factor Analysis of Sample Data of Table 13.2 

p r o c  f a c t o r  data=SASUSER.SSFACTOR 
m e t h o d = p r i n i t  p r i o r s = s m c  n f a c t o r s = 2  r o t a t e = v ;  
vat- c o s t  l i f t  d e p t h  powder ;  

r un ;  

The FACTOR P r o c e d u r e  
I n i t i a l  F a c t o r  M e t h o d :  I t e r a t e d  P r i n c i p a l  F a c t o r  A n a l y s i s  

P r i o r  C o m m u n a l i t y  E s t i m a t e s :  SMC 

COST L I F T  DEPTH POWDER 

0 .96076070  0 .95324069  0 .989991 65 0 .99087317 

P r e l i m i n a r y  E i g e n v a l u e s :  T o t a l  = 3.89486621 A v e r a g e  = 0.97371655 

E i  g e n v a  Cue D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  

2  f a c t o r s  u i l l  b e  r e t a i n e d  by t h e  NFACTOR c r i t e r i o n .  

WARNING: Too  many f a c t o r s  f o r  a  u n i q u e  s o l u t i o n .  

E i g e n v a l u e s  o f  t h e  Reduced  C o r r e l a t i o n  M a t r i x :  T o t a l  = 3.91277649 A v e r a g e  = 0.97819412 

E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  
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T.4BLE 13.6 Continued 
- 

I n i t i a l  F a c t o r  Method:  I t e r a t e d  P r i n c i p a l  F a c t o r  A n a l y s i s  

F a c t o r  P a t t e r n  

F a c t o r 1  F a c t o r 2  

COST -0.40027 0.89978 
. L I F T  0.25060 -0.94706 

DEPTH 0.93159 0.34773 
POWDER 0.95596 0.2861 5 

V a r i a n c e  E x p l a i n e d  b y  Each F a c t o r  

F a c t o r 1  F a c t o r 2  

2.0047340 1.9093350 

F i n a l  Communa l i t y  E s t i m a t e s :  T o t a l  = 3.914069 

C 0 S T  L I F T  DEPTH POWDER 

R o t a t i o n  Method: Var imax 

O r t h o g o n a l  T r a n s f o r m a t i o n  M a t r i x  

R o t a t e d  F a c t o r  P a t t e r n  

F a c t o r 1  F a c t o r 2  

C O S T  -0.08591 0.98 1 04 
L I F T  -0.071 00 -0.97708 
DEPTH 0.99403 0.02588 
POWDER 0.99706 -0.04028 

V a r i a n c e  E x p l a i n e d  by Each F a c t o r  

F a c t o r 1  F a c t o r 2  

1 .9946455 1.91 94235 

F i n a l  Communal i ty  E s t i m a t e s :  T o t a l  = 3.914069 

C 0 S T  L I F T  DEPTH POWDER 

0.96982841 0.95972502 0.98877384 0.995741 7 0  
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13.5 Major Types of Factor Analyses 

Numerous procedures for factor extraction and rotation are available. However, only those proce- 
dures available in SPSS and SAS packages are summarized here. Other extraction and rotational 
techniques are described in Mulaik (1972). Harman (1976), Rummel (1970), Comrey and Lee 
(1992), and Gorsuch (1983), among others. 

13.5.1 Factor Extraction Techniques 

Among the extraction techniques available in the packages are principal components (PCA), princi- 
pal factors, maximum likelihood factoring, image factoring, alpha factoring, and unweighted and 
generalized (weighted) least squares factoring (see Table 13.7). Of these, PCA and principal factors 
are the most commonly used. 

All the extraction techniques calculate a set of orthogonal components or factors that, in com- 
bination, reproduce R. Criteria used to establish the solution, such as maximizing variance or mini- 

TABLE 13.7 Summary of Extraction Procedures 

Extraction 
Technique Program Goal of Analysis Special Features 

Principal 
components 

Principal 
tnctors 

Image 
factorifig 

Maximum 
likelihood 
factoring 

Alpha 
factoring 

Unweighted 
least squares 

Generalized 
least squares 

SPSS Maximize variance extracted 
SAS by orthogonal components 

SPSS Maximize variance extracted 
S AS oi-ihogonai factcjis 

SPSS Provides an empirical fd~tor 
SAS analysis 
(Image and 
Harris) 

SAS 
SPSS 

SPSS 
SAS 

SPSS 
SAS 

SPSS 
SAS 

Estimate factor loadings for 
population that maximize the 
likelihood of sampling the 
observed correlation matrix 

Maximize the generalizability 
of orthogonal factors 

Minimize squared residual 
correlations 

Weights variables by shared 
variance before minimizing 
squared residual correlations 

Mathematically determined, empirical 
solution with common, unique, and error 
variance mixed into components 

Estimates communalities to attempt to 
eli:ninnte unique n ~ d  error variance from 
variables 

1 uses T vkiar,ces based en mu!tiple regression 
of a variable with all other variables as 
communalities to generate a mathe- 
- - -& :  - - l l . ,  A-*---:naA ~ , , l , , * ; ~ ~  ,x,ith P,-,-(,,. LIliLLILdlly UGLGlrllrr~~u owrurnvzn - 7  ..a. -..-. 
variance and unique variance eliminated 

Has significance test for factors; especially 
useful for confirmatory factor analysis 
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TABLE 13.8 Results of Different Extraction Methods on Same Data Set 
-- 

Factor 1 Factor 2 

Variables PCA PFA Rrro A1ph~1 PCA PFA Rao Alphn 

Rotated factor loadings (varimax) 

Unrotated factor loadings 

Note: The largest difference in communality estimates for a single variable between extraction techniques 
was 0.08. 

.58 . .63 .70 .54 

.5 1 .48 .56 .42 

.40 . .38 .48 .29 

.69 .63 .55 .69 

.64 .54 .48 .59 

.72 .7 1 .63 .74 

.63 .5 1 .50 .53 

.61 .49 .47 .50 

rnizing residuai correiations, differ from technique to techn~que. But differences in solutions are 
sr?,a!l for a data set with a large sample, numerous variables and similai conirr~unaiiiy estimates. In 
fact, one test of the stability of a FA solution is that it appears regardless of which extraction tech- 
nique is employed. Table 13.8 shows solutions for the same data set after extraction with several dif- 
ferent techniques, followed by varimax rotation. Similarities among the solutions are obvious. 

None of the extraction techniques routinely provides an interpretable solution without rota- 
tion. All types of extractions may be rotated by any of the procedures described in Section 13.5.2. 

Lastly, when using FA the researcher should hold in abeyance well-learned proscriptions 
against data snooping. It is quite common to use PCA or PFA as a preliminary extraction technique, 
followed by one or more of the other procedures, perhaps varying number of factors, communality 
estimates, and rotational methods with each run. Analysis terminates when the researcher decides on 
the preferred solution. 

.68 

.66 

.7 1 
- .44 
-.37 
- .47 
-. 14 
- .09 

13.5.1.1 PCA vs. FA I 
One of the mo4t important dec~sions 14 the cho~ce between PCA and FA. Mathemat~cally, the d~fter- 
ence lnvolves the contents of the pos~tive dlagonal In the correlat~on matrix (the d~agonal  that I 

I 



contain5 the correlation between a \ariable 3rd itself ). I n  either PC.\ or FA. the variance that i h  ana- 

lyzed is the sum of the values in the positike diagonal. In PCA ones are in the diagonal ant1 there is 
as much variance to be analyzed as there are observed variables; each variable contributes a unit of 
variance by contributing a 1 to the positive diagonal of the correlation matrix. All the variance is dis- 
tributed to components, including error and unique variance for each observed variable. So if all 
components are retained, PCA duplicates exactly the observed correlation matrix and the standard 
scores of the observed variables. 

In FA, on the other hand, only the variance that each observed variable shares with other 
observed variables is available for analysis. Exclusion of error and unique variance from FA is based 
on the belief that such variance only confuses the picture of underlying processes. Shared variance 
is estimated by communalities, values between 0 and 1 that are inserted in the positive diagonal of 
the correlation matrix.' The solution in FA concentrates on variables with high communality values. 
The sum of the communalities (sum of the SSLs) is the variance that is distributed among factors and 
is less than the total variance in the set of observed variables. Because unique and error variances are 
omitted, a linear combination of factors approximates, but does not duplicate, the observed correla- 
tion matrix and scores on observed variables. 

PCA analyzes variance; FA analyzes covariance (communality). The goal of PCA is to extract 
maximum variance from a data set with a few orthogonal components. The goal of FA is to repro- 
duce the correlation matrix with a few orthogonal factors. PCA is a unique mathematical solution, 
whereas most forms of FA are not unique. 

The choice between PCA and FA depends on your assessment of the fit between the models, 
the data set, and the goals of the research. If you are interested in a theoretical solution uncontami- 
nated by unique and error variability and have designed your study on the basis of underlying con- 
structs that are expected to produce scores on your observed variables, FA is your choice. If, on the 
other hand, you simply want an empirical summary of the data set, PCA is the better choice. 

13.5.1.2 Principal Components 

The goal of PCA is to cxtract maximum variance from the data set with each component. The first 
principal component is the linear combination of observed variables that maximally separates sub- 
jects by maximizing the variance of their component scores. The second component is formed from 
residual correlations; it is the linear combination of observed var~ables that extracts maxlmum vari- 
ability uncorrelated with the first component. Subsequent components also extract maximum vari- 
ability from residual correlations and are orthogonal to all previously extracted components. 

The principal components are ordered, with the first component extracting the most variance 
and the last component the least variance. The solution is mathematically unique and, if all compo- 
nents are retained, exactly reproduces the observed correlation matrix. Further, since the components 
are orthogonal, their use in other analyses (e.g., as DVs in MANOVA) may greatly facilitate inter- 
pretation of results. 

PCA is the solution of choice for the researcher who is primarily interested in reduc~ng a large 
number of variables down to a smaller number of components. PCA is also useful as an initial step 
in FA where it  reveals a great deal about maximum number and nature of factors. 

' ~ u x ~ t n ~ i m  likelihood extraction nlanipuiates ott-diagor~ai e ie~nrn t \  I-ather than vaiues in  the diagonai 
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13.5.1.3 Principal Factors 

Principal factors extraction differs from PCA in that estimates of communality, instead of ones, are 
in the positive diagonal of the observed correlation matrix. These estimates are derived through an 
iterative procedure, with SMCs (squared multiple correlations of each variable with all other vari- 
ables) used as the starting values in the iteration. The goal of analysis, like that for PCA, is to extract 
maximum orthogonal variance from the data set with each succeeding factor. Advantages to princi- 
pal factors extraction are that it is widely used (and understood) and that it conforms to the factor 
analytic model in which common variance is analyzed with unique and error variance removed. 
Because the goal is to maximize variance extracted, however, principal factors is sometimes not as 
good as other extraction techniques in reproducing the correlation matrix. Also, communalities must 
be estimated and the solution is, to some extent, determined by those estimates. Principal factor 
analysis is available through both SPSS and SAS. 

13.5.1.4 Image Factor Extraction 

The technique is called image factoring because the analysis distributes among factors the variance 
of an observed variable that is reflected by the other variables, in a manner similar to the SMC. Image 
factor extraction provides an interesting compromise between PCA and principal factors. Like PCA, 
image extraction provides a mathematically unique solution because there are fixed values in the 
positive diagonal of R. Like principal factors, the values in the diagonal are communalities with 
unique and error variability excluded. 

Image scores for each variable are produced by multiple regression, with each variable, in turn, 
serving as a DV. A covariance matrix is calculated from these image (predicted) scores. The vari- 
ances from the image score covariance matrix are the communalities for factor extraction. Care is 
necessary in interpreting the results of image analysis, because loadings represent covariances 
between variables and factors rather than correlations. 

Image factoring is available through SPSS, and SAS FACTOR (with two types-"image" and 
Harris component analysis). 

13.5.1.5 Maximum Likelihood Factor Extraction 

The rtiaxirnum iikeiihooa mechod of factor extraction was deveioped orig~nally by Lawley in the 
1940s (see Lawley & Maxwell, 1963). Maximum likelihood extraction estimates population values 
for factor loadings by calculating loadings that maximize the probability of sampling the observed 
correlation matrix from a population. Within constraints imposed by the correlations among vari- 
ables, population estimates for factor loadings are calculated that have the greatest probability of 
yielding a sample with the observed correlation matrix. This method of extraction also maximizes 
the canonical correlations between the variables and the factors (see Chapter 12). 

Maximum likelihood extraction is available through SPSS FACTOR and SAS FACTOR. 

13.5.1.6 Un weighted Least Squares Factoring 

The goal of unweighted least squares factor extraction is to minimize squared differences between 
the observed and reproduced correlation matrices. Only off-diagonal differences are considered; 
communalities are derived from the solution rather than estimated as part of the solution. Thus, 



unweighted least square factoring can be seen as a cpeci:il case of principal factors analysis in  u hich 
con1munalitie.s are estimated after the solutio11. 

The procedure, originally called minimum residual, was developed by Comrey ( 1962) and 
later modified by Harman and Jones (1966). The latter procedure is available through SPSS FAC- 
TOR and SAS FACTOR. 

13.5.1.7 Generalized (Weighted) Least Squares Factoring 

Generalized least squares extraction also seeks to minimize (off-diagonal) squared differences 
between observed and reproduced correlation matrices but in this case weights are applied to the 
variables. Variables that have substantial shared variance with other variables are weighted more 
heavily than variables that have substantial unique variance. In other words, variables that are not as 
strongly related to other variables in the set are not as important to the solution. This method of 
extraction is available through SPSS FACTOR and SAS FACTOR. 

I 13.5.1.8 Alpha Factoring 

1 Alpha factor extraction, available through SPSS FACTOR and SAS FACTOR, grew out of psycho- 
metric research where the interest is in discovering which common factors are found consistently 
when repeated samples of variables are taken from a population of vurinbles. The problem is the 
same as identifying mean differences that are found consistently among samples of subjects taken 
from a population of subjects-a question at the heart of most univariate and multivariate statistics. 

In alpha factoring, however, the concern is with the reliability of the common factors rather 
than with the reliability of group differences. Coefficient alpha is a measure derived in psychomet- 
rics for the reliability (also called generalizability) of a score taken in a variety of situations. In alpha 

I factoring, communalities that maximize coefficient alpha for the factors are estimated using iterative 

i procediircs (aiid sonctirncs cxcccd 1.0). 
Probably the greatest advantage to the procedure is that it focuses the researcher's attention 

1 squarely on the problem of <ampling variables from the domain of variables of interest. Disadvantages 

I stem from the relative unfamiliarity of most researchers with the procedure and the reason for it. 

I 13.5.2 Rotation 

The results of factor extraction, unaccompanied by rotation, are likely to be hard to interpret re- 
gardless of which method of extraction is used. After extraction, rotation is used to improve the in- 
terpretability and scientific utility of the solution. It is not used to improve the quality of the 
mathematical fit between the observed and reproduced correlation matrices because all orthogo- 
nally rotated solutions are mathematically equivalent to one another and to the solution before 
rotation. 

Just as different methods of extraction tend to give similar results with a good data set, so also 
different methods of rotation tend to give similar results if the pattern of correlations in the data is 

i fairly clear. In other words. a stable solution tends to appear regardless of the method of rotation used. 
A decision is required between orthogonal and oblique rotation. In  orthogonal rotation, the 

I factors are urlcorrelateci. Orthogonal solutions offer ease of interpreting, describing, and reporting 
resu1t.s; yet they strain "reality" ilnless the researcher is convinced that underlying processes are 
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almost independent. The rewarcher who beli5ves that underlying processes are correlated ~ 1 s t . ~  an 
oblique rotation. In oblique rotation the factors [nay be correlated. with conceptual advantages but 

i 
practical disadvantages in interpreting, describing, and reporting results. 

Among the dozens of rotational techniques that have been proposed, only those available in 

I 
-----C- 

--both reviewed packages are included in this discussion (see Table 13.9). The reader who wishes to 
know more about these or other techniques is referred to Gorsuch (1983), Harman (1976), or Mulaik 

i 
(1972). For the industrious, a presentation of rotation by hand is in Comrey and Lee (1992). 

I 

13.5.2.1 Orthogonal Rotation 

Varimax, quartimax, and equamax-three orthogonal techniques-are available in both packages. 
Varimax is easily the most commonly used of all the rotations available. 

Just as the extraction procedures have slightly different statistical goals, so also the rotational 
procedures maximize or minimize different statistics. The goal of varimax rotation is to simplify fac- 
tors by maximizing the variance of the loadings within factors, across variables. The spread in load- 
ings is maximized-loadings that are high after extraction become higher after rotation and loadings 
that are low become lower. Interpreting a factor is easier because it is obvious which variables cor- 
relate with it. Varimax also tends to reapportion variance among factors so that they become rela- 
tively equal in importance; variance is taken from the first factors extracted and distributed among 
the later ones. 

Quartimax does for variables what varimax does for factors. It simplifies variables by increas- 
ing the dispersion of the loadings within variables, across factors. Varimax operates on the columns 
of the loading matrix, quartimax operates on the rows. Quartimax is not nearly as popular as  varimax 
because one is usually more interested in simple factors than in simple variables. 

Equamax is a hybrid between varimax and quartimax that tries simultaneously to simplify the 
factor5 and the variables. Mulaik (1972) reports that equamax tends to behave erratically unless the 
researcher can speclfy the number of factors with confidence. 

Thus, varimax rotation simplifies the factors, quartimax the variables, and equamax both. They 
do so by setting leveis on a simpiicity criterion-such as (gamma)--oi 1,0, and 1/2, respectively. 
Gamma can .!so be continuously varied between O (variables simplified) aiid 1 (factors simpiified) 
by using the orthogonal rotation that allows the user to specify r level. In SAS FACTOR, this is done 
through orthomax with r. Parsimax in SAS uses a formula incorporating numbers of factors and 
variables to determine r (see Table !3.9). 

Varimax is the orthogonal rotation of choice for many applications; it is the default option of 
packages that have defaults. 

13.5.2.2 Oblique Rotation 

An embnrrnsse de richesse awaits the researcher who uses oblique rotation (see Table 13.9). Oblique 
rotations offer a continuous range of correlations between factors. The amount of correlation per- 
mitted between factors is determined by a variable called delta (6) by SPSS FACTOR. The values of 
delta and gamma determine the maximum amount of correlation permitted among factors. When the - 

value is less than zero, solutions are increasingly orthogonal; at about -4 the solution is orthogonal. 
When the value is zero, solutions can be fairly highly correlated. Values near I can produce factors 
that are very highly correlated. Although there is a relationship between values of delta or  gamma 



T.4BL.E 13.9 Summary of Rotatia~~al Techoiques 
-- 

Rotational 
Technique Program Type Goals of Analysis Comments 

Varimax SAS Orthogonal Minimize conlplexity of factors Most commonly 
SPSS (simplify columns of loading used rotation; 

matrix) by maximizing variance of recommended as 
loadings on each factor. default option 

Quartimax SAS Orthogonal Minimize complexity of variables First factor tends to 
SPSS (simplify rows of loading matrix) be general, with 

by maximizing variance of loadings others subclusters of 
on each variable. variables. 

Equamax SAS Orthogonal Simplify both variables and factors May behave 
SPSS (rows and columns); compromise erratically 

between quartimax and varimax. 

Orthogonal SAS Orthogonal Simplify either factors or variables, Gamma (T) 
with gamma depending on the value of gamma continuously 
(orthomax) (r). variable 

Parsimax SAS Orthogonal Simplifies both variables and factors: 
r = ( p k ( r n -  1 ) ) / ~ + r n - 2 .  

Direct SPSS Oblique Simplify factors by minimizing Continuous values 
oblimin cross-products of loadings. of gamma, or delta. 

6 (SPSS). available; 
allows wide range of 
fact=: 
intercorrelations 

(Direct) SPSS 
quartimin 

Oblique Simplify factors by minimizing Permits fairly high 
sum of cross-products of squared correlations among 
loadings in pattern matrix. factors. Achieved in 

SPSS ~ & n g  
6 = 0 with direct 
obiimin. 

Orthoblique SAS (HK) Both Rescale factor loadings to yield 
SPSS orthogonal orthogonal solution; non-rescaled 

and oblique loadings may be correlated. 

Promax SAS Oblique Orthogonal factors rotated to 
oblique positions. 

Procrustes SAS Oblique Rotate to target matrix. 

Fast and inexpensive 

Useful in 
confirmatory FA 
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and sire of correlation. the maximum corrt.latic,n at a ghen size of ganlina or delta depends on the 
data set. 

It should be stressed that factors do not necessarily correlate when an oblique rotation is used. 
Often, in fact, they do not correlate and the researcher reports the simpler orthogonal rotation. 

The family of procedures used for oblique rotation with varying degrees of correlation in SPSS 
is direct oblirnin. In the special case where or 6 = 0 (the default option for the programs). the pro- 
cedure is called direct quartimin. Values of gamma or delta greater than zero permit high correlations 
among factors, and the researcher should take care that the correct number of factors is chosen. Oth- 
erwise, highly correlated factors may be indistinguishable one from the other. Some trial and error, 
coupled with inspection of the scatterplots of relationships between pairs of factors, may be required 
to determine the most useful size of gamma or delta. Or, one might simply trust to the default value. 

Orthoblique rotation uses the quartirnax algorithm to produce an orthogonal solution on 
rescaled factor loadings; therefore the solution may be oblique with respect to the original factor 
loadings. 

In prornax rotation, available through SAS and SPSS, an orthogonally rotated solution (usu- 
ally varimax) is rotated again to allow correlations among factors. The orthogonal loadings are raised 
to powers (usually powers of 2, 4, or 6) to drive small and moderate loadings to zero while larger 
loadings are reduced, but not to zero. Even though factors correlate, simple structure is maximized 
by clarifying which variables do and do not correlate with each factor. Promax has the additional 
advantage of being fast and inexpensive. 

In Procrustean rotation, available in SAS, a target matrix of loadings (usually zeros and ones) 
is specified by the researcher and a transformation matrix is sought to rotate extracted factors to the 
target, if possible. If the solution can be rotated to the target, then the hypothesized factor structure 
is said to be confirmed. Unfortunately, as Gorsuch (1983) reports, with Procrustean rotation, factors 
are often extremely highly correlated and sometimes a correlation matrix generated by random 
processes is rotated tn a target with apparent ease. 

13.5.2.3 Geometric Interpretation 

A geometric interpretation of rotation is in Figure 13.1 where 13.1 (a) is the unrotated and 13.1 (b) the 
rotated solution to the example in Table 13.2. Points are represented in two-dimensional space by 
listing their coordinates with respect to X and Y axes. With the first two unrotated factors as axes, 
unrotated loadings are COST (-.400: .900); LIFT ( . 2S l j  -;947), DEPTH (.932, .348), and POW- 
DER (.956, .286). 

The points for these variables are also located with respect to the first two rotated factors as 
axes in Figure 13.l(b). The position of points does not change, but their coordinates change in the 
new axis system. COST is now (-0.86, .981), LIFT (-.071, -.977), DEPTH (.994, .026), and 
POWDER (.997, -.040). Statistically, the effect of rotation is to amplify high loadings and reduce 
low ones. Spatially, the effect is to rotate the axes so that they "shoot through" the variable clusters 
more closely. 

Factor extraction yields a solution in which observed variables are vectors that run from the 
origin to the points indicated by the coordinate system. The factors serve as axes for the system. The 
coordinates of each point are the entries from the loading matrix for the variable. If there are three 
factors, then the space has three axes and three dimensions, and each observed variable is positioned 
hy three coordinates. The length of the vector fe: e2ch va:iab!e is the commiinality of the variablz. 



Principal Component\ and Factor .Analy\ is  

COST 

Factor 1 

(a) Location of COST, LIFT, DEPTH, and POWDER 
after extraction, before rotation 

'\ LIEF', 
Rotated 
Factor 2 \ I  I 

(b) Location of COST, LIFT, DEPTH, and POWDER 
vis-a-vis rotated axes 

FIGURE 13.1 Illustration of rotation of axes to 
provide a better definition of factors vis-8-vis the 

variables with which they correlate. 
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If the factors are orthoeonal. the factor axes are all at right angles to one another and the coc71.- 

dinates of the variable points are col.relations between the common factors and the observed can- 

ables. Correlations (factor loadings) are read directly from these graphs by projecting perpendicular 
lines from each point to each of the factor axes. 

One of the primary goals of PCA or FA, and the motivation behind extraction, is to discover 
the minimum number of factor axes needed to reliably position variables. A second major goal, and 
the motivation behind rotation, is to discover the meaning of the factors that underlie responses to 
observed variables. This goal is met by interpreting the factor axes that are used to define the space. 
Factor rotation repositions factor axes so as to make them maximally interpretable. Repositioning 
.the axes changes the coordinates of the variable points but not the positions of the points with respect 
to each other. 

Factors are usually interpretable when some observed variables load highly on them and the 
rest do not. And, ideally, each variable loads on one, and only one, factor. In graphic terms this means 
that the point representing each variable lies far out along one axis but near the origin on the other 
axes, that is, that coordinates of the point are large for one axis and near zero for the other axes. 

If you have only one observed variable, it is trivial to position the factor axis--variable point 
and axis overlap in a space of one dimension. However, with many variables and several factor axes, 
compromises are required in positioning the axes. The variables form a "swarm" in which variables 
that are correlated with one another form a cluster of points. The goal is to shoot an axis to the swarm 
of points. With luck, the swarms are about 90" away from one another so that an orthogonal solution 
is indicated. And with lots of luck, the variables cluster in just a few swarms with empty spaces 
between them so that the factor axes are nicely defined. 

In oblique rotation the situation is slightly more complicated. Because factors may correlate 
with one another, factor axes are not necessarily at right angles. And, although it is easier to position 
each axis near a cluster of points, axes may be very near each other (highly correlated), making the 
solution harder to interpret. See Section 13.6.3 for practical suggestions of ways to use graphic tech- 
nlques to judge the adequacy ot  rotation. 

13.5.3 Some Practical Recommendations 

Although an almost overwhelmingly large number of combinations of extraction and rotation tech- 
niques is available, in practice differences among them are often slight (Velicer and Jackson, 1990; 
Fava and Velicer. 1992). The results of extraction are similar regardless of which method is used 
when there is a large number of variables with some strong correlations among them, with the same, 
well-chosen number of factors, and with similar values for communality. Further, differences that are 
apparent after extraction tend to disappear after rotation. 

Most researchers begin their FA by using principal components extraction and varimax rota- 
tion. From the results, one estimates the factorability of the correlation matrix (Section 13.3.2.6), the 
rank of the observed correlation matrix (Sections 13.3.2.5 and 13.7.1.5), the likely number of factors 
(Section 13.6.2), and variables that might be excluded from subsequent analyses (Sections 13.3.2.7 
and 13.7.1.6). 

During the next few runs, researchers experiment with different numbers of factors, different 
extraction techniques, and both orthogonal and oblique rotations. Some number of factors with some 
combination of extraction and rotation produces the solution with the greatest scientific utility, con- 
sistency, and meaning; this is the sol~!tion th2t is interpreted. 
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13.6 Some Important Issues 

Some of the issues raised in this section can be resolved through several different methods. Usually 
different methods lead to the same conclusion; occasionally they do not. When they do not, results 
are judged by the interpretability and scientific utility of the solutions. 

13.6.1 Estimates of Communalities 

FA differs from PCA in that communality values (numbers between 0 and I)  replace ones in the pos- 
itive diagonal of R before factor extraction. Communality values are used instead of ones to remove 
the unique and error variance of each observed variable: only the variance a variable shares with the 
factors is used in the solution. But communality values are estimated, and there is some dispute 
regarding how that should be done. 

The SMC of each variable as DV with the others in the sample as IVs is usually the starting 
estimate of communality. As the solution develops, cornmunality estimates are adjusted by iterative 
procedures (which can be directed by the researcher) to fit the reproduced to the observed correla- 
tion matrix with the smallest number of factors. Iteration stops when successive communality esti- 
mates are very similar. 

Final estimates of communality are also SMCs, but now between each variable as DV and 
the factors as IVs. Final communality values represent the proportion of variance in a variable that is 
predictable from the factors underlying it. Communality estimates do not change with orthogonal 
rotation. 

Image extraction and maximum likelihood extraction are slightly different. In image extrac- 
tion, variances from the image covariance matrix are used as the communality values throughout. 
Image extraction produces a mathematically unique solution because communality values are not 
changed. In maximum likelihood extraction, number of factors instead of communality values are 
estimated and off-diagonal correlations are "rigged" to produce the best fit between observed and 
reproduced matrices. 

SPSS and SAS provide several different starting statistics for communality estimation. SPSS 
FACTOR permits user supplied values for principal factor extraction only, but otherwise uses SMCs. 
SAS FACTOR offers, for each variable, a choice of SMC, SMC adjusted so that the sum of the com- 
munalities is equal to the sum of the maximum absolute correlations, maximum absolute correlation 
with any other variable, user-specified values, or random numbers betweeti 0 and i .  

The seriousness with which estimates of communality should be regarded depends on the 
number of observed variables. If the number of variables exceeds, say, 20, sample SMCs probably 
provide reasonable estimates of communality. Furthermore, with 20 or more variables, the elements 
in the positive diagonal are few compared with the total number of elements in R, and their sizes do 
not influence the solution very much. Actually, if the communality values for all variables in FA are 
of approximately the same magnitude, results of PCA and FA are very similar (Velicer & Jackson, 
1990; Fava & Velicer, 1992). 

If communality values equal or exceed 1,  problems with the solution are indicated. There is too 
little data, or starting communality values are wrong, or the number of factors extracted is wrong: 
addition or deletion of factors may reduce the comrnunality below 1 .  Very low communality values, 
on the other hand. indicate that the variables with them are unrelated to other variables in the set (Sec- 
tions i3.3.2.7 and i 3.7. i.6). SAS FACTOR has two aiternatives for dealing with communal~t~es > 1 :  



644 C H A P T E R  1 3  
- I 

I 

HEYWOOD sets them to 1 ,  and ULTRAHEYWOOD allows them to exceed I. but warns that doing 1 
so can cause convergence problen~s. 

13.6.2 Adequacy of Extraction and Number of Factors a 

Because inclusion of more factors in a solution improves the fit between observed and reproduced 
correlation matrices, adequacy of extraction is tied to number of factors. The more factors extracted, 
the better the fit and the greater the percent of variance in the data "explained by the factor solution. 
However, the more factors extracted, the less parsimonious the solution. To account for all the vari-. 
ance (PCA) or covariance (FA) in a data set, one would normally have to have as many factors as 
observed variables. It is clear, then, that a trade-off is required: One wants to retain enough factors 
for an adequate fit, but not so many that parsimony is lost. 

Selection of the number of factors is probably more critical than selection of extraction and 
rotational techniques or communality values. In confirmatory FA, selection of the number of factors 
is really selection of the number of theoretical processes underlying a research area. You can partially 
confirm a hypothesized factor structure by asking if the theoretical number of factors adequately fits 
the data. 

There are several ways to assess adequacy of extraction and number of factors. For a highly 
readable summary of these methods, not all currently available through the statistical packages, see 
Gorsuch (1983) and Zwick and Velicer (1986). Reviewed below are methods available through SPSS 
and SAS. 

A first quick estimate of the number of factors is obtained from the sizes of the eigenvalues 
reported as part of an initial run with principal components extraction. Eigenvalues represent variance., 
Because the variance that each standardized variable contributes to a principal components extraction 
is 1, a component with an eigenvalue less than 1 is not as important, from a variance perspective, as 
an observed variable. The number of components with eigenvalues greater than 1 is usually sorne- 
where between the number of variables divided by 3 and the number of variables divided by 5 (e.g., 
20 variables should produce between 7 and 4 components with eigenvalues greater than 1). If this is a 
reasonable number of factors for the data, if the number of variables is 40 or fewer, and if sample size 
is large, the number of factors indicated by this criterion is probably about right. In other situations. 
this criterion is likely to overestimate the nu.mber of factors in the data set. 

A second criterion is the scree test (Cattell, 1966) of eigenvalues plotted against factors. Fac- 
tors, in descending order, are arranged along the abscissa with eigenvalue as the ordinate. The plot is 
appropriately used with principal components or factor analysis at initial and later runs to find the 
number of factors. The scree plot is available through SPSS and SAS FACTOR. 

Usually the scree plot is negatively decreasing-the eigenvalue is highest for the first factor 
and moderate but decreasing for the next few factors before reaching small values for the last several 
factors, as illustrated for real data through SPSS in Figure 13.2. You look for the point where a line 
drawn through the points changes slope. In the example, a single straight line can comfortably fit the 
first four eigenvalues. After that, another line, with a noticeably different slope, best fits the remain- 
ing eight points. Therefore. there appear to be about four factors in the data of Figure 13.2. 

Unfortunately, the scree test is not exact; it involves judgment of where the discontinuity in *-" 
eigenvalues occurs and researchers are not perfectly reliable judges. As Gorsuch (1983) reports. 
results of the scree test are more obvious (and reliable) when sample size is large, communality val- 

I 
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FIGURE 13.2 Scree output produced by SPSS FACTOR. Note 
break in size of eigenvalues between the fourth and fifth factors. 

ues are high, and each factor has several variables with high loadings. Zoski and Jurs (1996) recom- 
mend a refinement to the visual scree test that involves computing the standard error of the eigen- 
values for the last few components. 

Horn (1965) proposed paraiiei anaiysis as an aiiernaiive to retaining all priiicipal compoi;cnt,; 
with eigenvalues larger than 1. This is a three step process. First, a randomly generated data set with 
the same iiumber of cases and variab!es is generated. Next, principal components analysis i s  repeat- 
e d ! ~  performed on the randomly generated data set and all eigenvalues noted for each analysis. 
Those eigenvalues are then averaged for each component and compared to the results from the real 
data set. Only components from the reai data set whose eigenvaiues exceed the averaged eigenvalue 
from the randomly generated data set are retained. A major advantage to this procedure is to remind 
the user that even randomly generated data can have relationships based on chance that produce 
components with eigenvalues larger than 1, sometimes substantially so. 

As an alternative, Velicer (1976) proposed the minimum average partial correlation (MAP) 
test. The tirst step is to perform PCA with one component. Partial correlation is used to take the vari- 
ance of the tirst component from the variable intercorrelations before the mean squared coefficient 
of all partial correlations (the values off of the main diagonal) is computed. Then PCA is performed 
with two components, and the procedure is repeated. Mean squared partial correlations are computed 
for all solutions until the minimum squared partial correlation is identified. The number of compo- 
nents that produces the minimum mean squared partial correlation is the number of components to 
retain. Gorsuch (1976) points out that this procedure does not work well when some components 
have only a few variables that load on them. 
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Z~hich i u i ~ l  Lelicer ( 1986) tested the scree rest, Horn's parallel rest. and Velicer'\ hlAP te\r 
(among others) in simulation studies using ;l data cet u.ith a clear factor htrLlctu1.e. Both the parallel 
test and the rnininium average partial test seemed to work well. These procedures have been 
extended successfully to principal factor analysis. O'Connor (2000) provides programs for conduct- 
ing the parallel test and the minimum average partial test through both SPSS and SAS. 

Once you have determined the number of factors, it is important to look at the rotated loading 
rnatrix to determine the number of variables that load on each factor (see Section 13.6.5). If only one 
variable loads highly on a factor, the factor is poorly defined. If two variables load on a factor, then 
whether or not it is.reliable depends on the pattern of correlations of these two variables with each 
other and with other variables in R. If the two variables are highly correlated with each other (say, 
' r  > .70) and relatively uncorrelated with other variables, the factor may be reliable. Interpretation of 
factors defined by only one or two variables is hazardous, however, under even the most exploratory 
factor analysis. 

For principal components extraction and maximum likelihood extraction in confirmatory fac- 
tor analysis there are significance tests for number of factors. Bartlett's test evaluates all factors 
together and each factor separately against the hypothesis that there are no factors. However, there is 
some dispute regarding use of these tests. The interested reader is referred to Gorsuch (1 983) or one 
of the other newer factor analysis texts for discussion of significance testing in FA. 

There is debate about whether it is better to retain too many or too few factors if the number is 
ambiguous. Sometimes a researcher wants to rotate, but not interpret, marginal factors for statistical 
purposes (e.g., to keep some factors with communality values < 1). Other times the last few factors 
represent the most interesting and unexpected findings in a research area. These are good reasons for 
retaining factors of marginal reliability. However, if the researcher is interested in using only demon- 
strably reliable factors, the fewest possible factors are retained. 

13.6.3 Adequacy of Rotation and Simple Structure 

The decision between orthogonal and oblique rotation is made as soon as the number of reliable fac- 
tors is apparent. In many factor analytic situations, oblique rotation seems mere reasonable on the 
face of it than orthogonal rotation because it seems more likely that factors are correlated than that 
they are not. However, reporting the results of oblique rotation requires reporting the elements of the 
partcrg matrix (4) and :he fzictor correlation matrix (@I, whereas reporring orthogonai rotation 
requires only the loading matrix (A). Thus, simplicity of reporting results favors orthogonal rotation. 
Further, if factor scores or factorlike scores (Section 13.6.6) are to be used as IVs or DVs in other 
analyses, or if a goal of analysis is comparison of factor structure in groups, then orthogonal rotation 
has distinct advantages. 

Perhaps the best way to decide between orthogonal and oblique rotation is to request oblique 
rotation with the desired number of factors and look at the correlations among factors. The oblique 
rotations available by default in SPSS and SAS calculate factors that are fairly highly correlated if 
necessary to fit the data. However, if factor correlations are not driven by the data, the solution 
remains nearly orthogonal. 

Look at the factor correlation matrix for correlations around .32 and above. If correlations 
exceed .32, then there is 10% (or more) overlap in variance among factors, enough variance to war- 
rant oblique rotation unless there are compelling reasons for orthogonal rotation. Compelling rea- 
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sons include a desire to compare htructure In grotipj. a need tor orlhogoi-ial factor\ in other anal) \e\. 
or a theoretical need for orthogonal rotation. 

Once the decision is made between orthogonal and oblique rotation. the adequacy of rotation 
is assessed several ways. Perhaps the simplest way is to compare the pattern of correlations in the 
correlation matrix with the factors. Are the patterns represented in the rotated solution? Do highly 
correlated variables tend to load on the same factor? If you included marker variables, do they load 
on the predicted, factors? 

Another criterion is simple structure (Thurstone, 1947). If simple structure is present (and fac- 
tors are not too highly correlated). several variables correlate highly with each factor and only one fac- 
tor correlates highly with each variable. In other words, the columns of A, which define factors 
vis-a-vis variables, have several high and many low values while the rows of A, which detine variables 
vis-a-vis factors, have only one high value. Rows with more than one high correlation correspond to 
variables that are said to be complex because they reflect the influence of more than one factor. It is 
usually best to avoid complex variables because they make interpretation of factors more ambiguous. 

Adequacy of rotation is also ascertained through the PLOT instructions of the four programs. 
In the figures, factors are considered two at a time with a different pair of factors as axes for each 
plot. Look at the distance, clustering, and direction of the points representing variables relative to the 
factor axes in the figures. 

The distance of a variable point from the origin reflects the size of factor loadings; variables 
highly correlated with a factor are far out on that factor's axis. Ideally, each variable point is far out 
on one axis and near the origin on all others. Clustering of variable points reveals how clearly detined 
a factor is. One likes to see a cluster of several points near the end of each axis and all other points 
near the origin. A smattering of points at various distances along the axis indicates a factor that is not 
clearly defined, while a cluster of points midway between two axes retlects the presence of another 
factor or the need for oblique rotation. The direction of clusters after orthogonal rotation may also 
indicate the need for oblique rotation. Tf clusters of points fall between factor axes after orthogonal 
rotation, i t  the angie between ciusters with the respeci iu ihe ui igin i b  ~iot  9G0, ilieii a betier fit to the 
clusters is provided by axes that are not orthogonal. Oblique rotation may reveal substantial correla- 
tions among factors. Several of these relationships are depicted in Figure 13.3. 

13.6,4 Importance and Internal Consistency of Factors 

The importance of a factor (or a set of factors) is evaluated by the proportion of variance or covari- 
ance accounted for by the factor after rotation. The proportion of variance attributable to individual 
factors differs before and after rotation because rotation tends to redistribute variance among factors 
somewhat. Ease of ascertaining proportions of variance for factors depends on whether rotation was 
orthogonal or oblique. 

After orthogonal rotation, the importance of a factor is related to the size of its SSLs (Sum of 
Squared Loadings from A after rotation). SSLs are converted to proportion of variance for a factor 
by dividing by p, the number of variables. SSLs are converted to proportion of covariance for a fac- 
tor by dividing its SSL by the sum of SSLs or, equivalently, sum of communalities. These computa- 
tions are illustrated in Table 13.4 and Section 13.4 for the example. 

The proportion of variance accounted for by a factor is the amount of variance in the original 
variables (where each has contributed one un i t  ot variance) that has been condensed into the factor. 
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(a) Need for oblique rotation (b) Presence of another factor 

Factor 2 . Factor.; I . : 

. 0 .  . . Factor 1 . . 
Factor 1 

(c) No simple structure, 
unsuitable data 

(d) Simple structure with 
orthogonal rotation 

FIGURE 13.3 Pairwise plots of factor loadings following orthogonal 
rotation and indicating: (a) need for oblique rotation; (b) presence of 

another factor; (c) unsuitable data; and (d) simple structure. 

Proportion of variance is the variance of a factor relative to the variance in the variables. The pro- 
portion of covariance accounted for by a factor indicates the relative importance of the factor to the 
total covariance accounted for by all factors. Proportion of covariance is the variance of a factor rel- 
ative to the variance in the solution. The variance in the solution is likely to account for only a frac- 
tion of the variance in the original variables. 

In oblique rotation, proportions of variance and covariance can be obtained from A before 
rotation by the methods just described, but they are only rough indicators of the proportions of 
variance and covariance of factors after rotation. Because factors are correlated, they share overlap- 
ping variability, and assignment of variance to individual factors is ambiguous. After oblique rotation 



the size of the SSL associated with ;I f i ~ ~ t o r  is a rough approximation of its i~~ipo~~ancs-factor.; w ~ t h  

I 
bigger SSLs are more imponant-but proportions of variance and covariance cannot be specified. 

An estimate of the internal consistency of the solution-the certainty with which factor axes 
are fixed in the variable space--is given by the squared multiple correlations of factor scores pre- 
dicted frcm scores on observed variables. In a good solution, SMCs range between 0 and 1 ; the larger 
the SMCs, the more stable the factors. A high SMC (say, .70 or better) means that the observed'vari- I ables account for substantial variance in the factor scores. A low SMC means the factors are poorly 

i defined by the observed variables. If an SMC is negative, too many factors have been retained. If an 
SMC is above i, the entire solution needs to be reevaluated. 

I : '  

SPSS FACTOR prints these SMCs as the diagonal of the covariance matrix for estimated 
regression factor scores. In SAS FACTOR, SMCs are printed along with factor score coefficients by 

I the SCORE option. 

13.6.5 Interpretation of Factors 

To interpret a factor, one tries to understand the underlying dimension that unifies the group of vari- 
ables loading on it; In both orthogonal and oblique rotations, loadings are obtained from the loading 
matrix, A, but the meaning of the loadings is different for the two rotations. 

After orthogonal rotation, the values in the loading matrix are correlations between variables 
and factors. The researcher decides on a criterion for meaningful correlation (usually .32 or larger), 
collects together the variables with loadings in excess of the criterion, and searches for a concept that 
unifies them. 

After oblique rotation, the process is the same, but the interpretation of the values in A, the pat- 
tern matrix, is no longer straightforward. The loading is not a correlation but is a measure of the 
unique relationship between the factor and the variable. Because factors correlate, the correlations 
between variables and factors (available in the structure matrix, C) are inflated by overlap between 
factors. A variable may correlate with one factor through its correlation with another factor rather 
than directly. The elements in the pattern matrix have overlapping variance arriong factors "pariialed 
out," but at the expense of coiicepiual simplicity. 

Actually, the reason for interpretation of the pattern matrix rather than the structure matrix is 
pragmatic-it's easier. The difference between high and low loadings is more apparent in the pattern 
matrix than in the structure matrix. 

As a rule of thumb, only variables with loadings of .32 and above are interpreted. The greater 
the loading, the more the variable is a pure measure of the factor. Comrey and Lee (1 992) suggest that 
loadings in excess of .7 1 (50% overlapping variance) are considered excellent, .63 (40% overlapping 
variance) very good, .55 (30% overlapping variance) good, .45 (20% overlapping variance) fair, and 
.32 (10% overlapping variance) poor. Choice of the cutoff for size of loading to be interpreted is a 
matter of researcher preference. Sometimes there is a gap in loadings across the factors and, if the 
cutoff is in the gap, it is easy to specify which variables load and which do not. Other times, the cut- 
off is selected because one can interpret factors with that cutoff but not with a lower cutoff. 

The size of loadings is intluenced by the homogeneity of scores in the sample. If homogeneity 
is suspected, interpretation of lower loadings is warranted. That is, if the sample produces similar 
scores on observed variables. a lower cutoff is used for interpretation of factors. 
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At some polnt. a recearcher usually tries to characterire a factor by assigning i t  a nume or a 
label, a process that involves art as well as science. Rummel ( 1970) provides numerous helpful h i n t s  
on interpreting and naming factors. Interpretation of factors is facilitated by output of the matrix of 
sorted loadings where variables are grouped by their correlations with factors. Sorted loadings rue 
produced routinely by REORDER in SAS FACTOR, and SORT in SPSS. 

The replicability, utility, and complexity of factors are also considered in interpretation. Is the 
solution replicable in time and/or with different groups? Is it trivial or is it a useful addition to sci- 
entific thinking in a research area? Where do the factors fit in the hierarchy of "explanations" about 
a phenomenon? Are they complex enough to be intriguing without being so complex that they are 
uninterpretable? 

13.6.6 Factor Scores 

Among the potentially more useful outcomes of PCA or FA are factor scores. Factor scores are esti- 
mates of the scores subjects would have received on each of the factors had they been measured directly. 

Because there are normally fewer factors than observed variables, and because factor scores 
are nearly uncorrelated if factors are orthogonal, use of factor scores in other analyses may be very 
helpful. Multicollinear matrices can be reduced to orthogonal components using PCA, for instance. 
Or, one could use PCA to reduce a large number of DVs to a smaller number of components for use 
as DVs in MANOVA. Alternatively, one could reduce a large number of IVs to a small number of 
factors for purposes of predicting a DV in multiple regression or group membership in discriminant 
analysis or logistic regression. If factors are few in number, stable, and interpretable, their use 
enhances subsequent analyses. In the context of a theoretical FA, factor scores are estimates of the 
values that would be produced if the underlying constructs could be measured directly. 

Procedures for estimating factor scores range between simple-minded (but frequently ade- 
quate) and sophisticated. Comrey and Lee (1 992) describe several rather simple-minded techniques 
c,. I U L  - estimating hcioi scores. Perhaps the simpiest is to sum scores on var~ables that load highly on 

each factor. Variables with bigger standard deviations contribute more heavily to the factor scores 
produced by this procedure, a preblem that is alleviated if variable scores are standardized first or if 
the variables have roughly equal standard deviations to begin with. For many research purposes, this 
"quick and dirty" estimate of factor scores is entirely adequate. 

There are severai sophisticated statisticai approaches to estimating factors. All produce factor 
scores that are correlated, but not perfectly, with the factors. The correlations between factors and 
factor scores are higher when communalities are higher and when the ratio of variables to factors is 
higher. But as long as communalities are estimated, factor scores suffer from indeterminacy because 
there is an infinite number of possible factor scores that all have the same mathematical characteris- 
tics. As long as factor scores are considered only estimates, however, the researcher is not overly 
beguiled by them. 

The method described in Section 13.4 (especially Equations 13.10 and 13.1 1) is the regression 
approach to estimating factor scores. This approach results in the highest correlations between fac- 
tors and factor scores. The distribution of each factor's scores has a mean of zero and a standard devi- 
ation of I (after PCA) or equal to the SMC between factors and variables (after FA). However, this 
regression method, like all others (see Chapter 5 ) .  capitalizes on chance relationships among vari- 
ables so that factor-score estimates are biased (too close to "true" factor scores). Further, there are 
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often con-elations among scot-ea for factors eben if I'ac~orh are orthogonal and tactor \cores \o~~lc ' -  
times correlate with other factors ( i n  addition to the one the) are eztilna~ing ). 

The regression approach to estimating factor scores is available through SAS and SPSS. Both 
packages write componentlfactor scores to files for use in other analyses. SAS and SPSS print stan- 
dardized componentlfactor score coefticients. 

SPSS FACTOR provides two additional methods of estimating factor scores. In the Bartlett 
method. factor scores correlate only with their own factors and the factor scores are unbiased (that is, 
neither systematically too close nor too far away from "true" factor scores). The factor scores corre- 
late with the factors almost as well as in the regression approach and have the same mean and stan- 
dard deviation as in the regression approach. However, factor scores may still be correlated with each 
other. 

The Anderson-Rubin approach (discussed by Gorsuch, 1983) produces factor scores that are 
uncorrelated with each other even if factors are correlated. Factor scores have mean zero, standard 
deviation 1. Factor scores correlate with their own factors almost as well as in the regression 
approach, but they sometimes also correlate with other factors (in addition to the one they are esti- 
mating) and they are somewhat biased. If you need uncorrelated scores, the Anderson-Rubin 
approach is best; otherwise the regression approach is probably best simply because it is best under- 
stood and most widely available. 

13.6.7 Comparisons among Solutions and Groups 

Frequently, a researcher is interested in deciding whether or not two groups that differ in experience 
or characteristics have the same factors. Comparisons among factor solutions involve the pattern of 
the correlations between variables and factors, or both the pattern and magnitclde of the correlations 
between them. Rummel ( 1970), Levine ( 1977), and Gorsuch ( 1983) have excellent summaries of 
several comparisons that might be of interest. Some of the simpler of these techniques are described 
in an earlier version of this book (Tabachnick & Fideii, i 989 j. 

Tests of theory (in which theoretical factor loadings are compared with those derived from a 
sample) and comparisons among groups are ciirreiitly the pr~vince of strilctgral eq~tation modeling. 
?, 
I hese techniques are discussed in Chapter 14. 

13.7 Complete Example of FA 

During the second year of the panel study described in Appendix B Section B. 1 ,  participants com- 
pleted the Bem Sex Role Inventory (BSRI; Bem, 1974). The sample included 369 middle-class, 
English-speaking women between the ages of 21 and 60 who were interviewed in person. 

Forty-five items from the BSRI were selected for this research, where 20 items measure femi- 
ninity, 20 m a s c u ~ i n i t ~ , ~  and 5 social desirability. Respondents attribute traits (e.g., "gentle," "shy," 
"dominant") to themselves by assigning numbers between 1 ("never or almost never true of me") and 
7 ("always or almost always true of me") to each of the items. Responses are surnmed to produce 
separate masculine and feminine scores. Masculinity and femininity are conceived as orthogonal 

XDue to cler~cal error. one O F  the masculine items. 'aggression." was om~ttecl from the qllestlonntilre\ 
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dimens~ons of personal~ty w ~ t h  hotlh. one. or nzithes descs~ptive of ally siben individual. Files art. 
FACTOR. '::. 

Previous factor analytic work had indicated the presence of between three and five factors 
underlying the items of the BSRI. Investigation of the factor structure for this sample of women is a 
goal of this analysis. " 

13.7.1  valuation of Limitations 1 ! 
Because the BSRI was neither developed through nor designed for factor analytic work, it meets only 
marginally the requirements listed in Section 13.3.1. For instance, marker variables are not included 
and variables from the feminine scale differ in social desirability as well as in meaning (e.g., "ten- 
der" and "gullible"), so some of these variables are likely to be complex. 

13.7.1.1 Sample Size and Missing Data 

Data are available initially from 369 women with no missing values. With outlying cases deleted (see 
below), the FA is conducted on responses of 344 women. Using the guidelines of Section 13.3.2.1, 
over 300 cases provide a good sample size for factor analysis. 

13.7.1.2 Normality 

Distributions of the 44 variables are examined for skewness through SAS MEANS (cf. Chapter 12). 
Many of the variables are negatively skewed and a few are positively skewed. However, because 
the BSRI is already published and in use, no deletion of variables or transformations of them is 
performed. 

Because the variables fail in normality, significance tests are inappropriate. And because the 
direction of skewness is different for different variable, we also anticipate a weakened iinalysis due 
to lowering of correlations in R. 

13.7.1.3 Linearity i 
The differences in skewness for variables suggest the possibility of curvilinearity for some pairs of 
variables. With 44 variables, however, examination of all pairwise scatterplots (about 1,000 plots) is 
impractical Therefore, a spot check on a few plots is rgn through S.4S PLOT. Figure !3.4 shows the 
plot expected to be among the worst-between LOYAL (with strong negative skewness) and MAS- 
CULIN (with strong positive skewness). Although the plot is far from pleasing and shows departure 
from linearity as well as the possibility of outliers, there is no evidence of true curvilinearity (Sec- 
tion 4.1 S.2).  And again, transformations are viewed with disfavor considering the variable set and 
the goals of analysis. 

13.7.1.4 Outliers I 
Multivariate outliers are identified using SAS REG (cf. Chapter 12) which adds a leverage variable 
to the data set, now labeled FACTLEV. Using a criterion of cu = .OO 1 with 4 1  df, critical X 2  = 78.75. 
and using Equation 4.3, hi ,  = 0.2 167. With this criterion, 25 women are identified as outliers. 



p r o c  p l o t  data=SASUSEH.FACTOR; 
p l o t  m a s c u l i n * ! o y a l ;  

run; 

P l o t  o f  M A S C U L I N X L O Y A L .  L e g e n d :  A = 1 obs, B = 2 o b s ,  e t c .  

1 2 3 4 5 6 7 L o y a l  

N OTE: 177 o b s  h i d d e n .  

FIGURE 13.4 Spot check for l~nearity among variables. 
Syntax and output from SAS PLOT. 

leaving 344 nonoutlying cases. Outliers are then sought among the reduced data set, with criticai 
hii = 0.2325. Eleven more cases are identified as p~tefitia! outliers, however, only one of these, with 
hi; = 0.2578, exceeds the criterion suggested by Lunneborg (1994) of critical hi, = 2 ( k / ~ j  = 
0.2558. Therefore, the decision is made not to delete any more cases, and to run remaining analyses 
on the data set with 344 cases. 

Because of the large number of outliers and variables, a case-by-case analysis (cf. Chapter 4) 
is not feasible. Instead, a stepwise discriminant analysis is used to identify variables that signifi- 
cantly discriminate between outliers and nonoutliers. First, a variable labeled D U M M Y  is added to the 
data set, in which each outlier is coded 1 and the remaining cases are labeled 0. Then D U M M Y  is 
declared the c 1 a s s (grouping) variable in the stepwise regression run through SAS STEPDISC, as 
seen in Table 13.10. Means in each group are requested for all variables. On the last step of the dis- 
criminant analysis, two variables (RELIANT and FLATTER) discriminate outliers as a group with 
p < .001. 

A reduced data set that includes only the 344 nonoutlying cases is created, called FACTORR 
to be used for all subsequent analyses. 



TABLE 13.10 Description of Variables Causing hfultivariate Outliers Using SAS REG (Syntax and Selected Output) 

p r o c  s t e p d i s c  d a t a = S A S U S E R . F A C T L E V  s i m p l e ;  
c l a s s  DUMMY; 
v a r  H E L P F U L  R E L I A N T  D E F B E L  Y I E L D I N G  C H E E R F U L  I N D P T  A T H L E T  S H Y  A S S E R T  
S T R P E R S  F O R C E F U L  A F F E C T  F L A T T E R  LOYAL.  A N A L Y T  F E M I N I N E  S Y M P A T H Y  MOODY S E N S I T I V  U N D S T A N D  
C O M P A S S  L E A D E R A B  S O O T H E  R I S K  D E C I D E  S E L F S U F F  C O N S C I E N  D O M I N A N T  M A S C U L I N  S T A N D  H A P P Y  
S O F T S P O K  WARM T R U T H F U L  T E N D E R  G U L L 1 B L . E  L E A D A C T  C H I L D L I K  I N D I V  F O U L L A N G  L O V E C H I L  
C O M P E T E  A M B I T I O U  GENTLE, ;  

run; 

V a r i a b l e  

H E L P F U L  
R E L I A N T  
D E F B E L  
Y I E L D I N G  
C H E E R F U L  
I N D P T  
A T H L E T  
S H Y  
A S S E R T  
S T R P E R S  
F O R C E F U L  
A F F E C T  
F L A T T E R  

T h e  S T E P D I S C  P r o c e d u r e  
S i m p l e  S t a t i s t i c s  

DUMMY = 0 

M e a n  V a r i a n c e  
S t a n d a r d  

D e v i a t i o n  





TABLE 13.10 Continued 

S t e p w i s e  S e l e c t i o n  Summary 

A v e r a g e  
S q u a r e d  

Number P a r 1 : i a L  W i l k s '  P r  > C a n o n i c a l  P r  > 
S t e p  I n  E n t e r e d  Removed R - S q u a r e  F  V a l u e  P r  > F  Lambda Lambda C o r r e l a t i o n  A S C C  

1  RELIANT 
2 FLATTER 
3  TRUTHFUL 
4 LEADACT 
5 LEADERAB 
6 FEMININE 
7 MASCULIN 
8 FOULLANG 
9 SELFSUFF 

1 0  C H I L D L I K  
1 1  DEFBEL 
1 2  HAPPY 
1 3  CHEERFUL 
1 4  Y I E L D I N G  



Nonrotated PCA runs through SAS FACTOR reveal that the smallest eigenvalue is 0.126, not dan- 
gerously close to 0. The largest SMC between variables where each, in turn, serves as DV for the oth- 
ers is .76, not dangerously close to 1 (Table 13.1 1). Multicollinearity is not a threat in this data set. 

The SPSS FACTOR correlation matrix (not shown) reveals numerous correlations among the 
44 items, well in excess of .30, therefore patterns in responses to variables are anticipated. Table 
13.1 1 syntax produces Kaiser's measures of sampling adequacy (msa), which are acceptable 
because all are greater than .6 (not shown). Most of the values in the negative anti-image correlation 
matrix (also not shown) are small, another requirement for good FA. 

13.7.1.6 Outliers among Variables 

SMCs among variables (Table 13.11) are also used to screen for outliers among variables, as dis- 
cussed in Section 13.3.2.7. The lowest SMC among variables is .l  I. It is decided to retain all 44 vari- 
ables although many are largely unrelated to others in the set. (In fact, 45% of the 44 variables in the 
analysis have loadings too low on all the factors to assist interpretation in the final solution.) 

13.7.2 Principal Factors Extraction with Varimax Rotation 

Principal components extraction with varimax rotation through SAS FACTOR is used in an initial 
run to estimate the likely number of factors from eigenva~ues.~ The first 13 eigenvalues are shown in 
Table 13.12. The maximum number of factors (eigenvalues larger than 1) is I I. However, retention 
of 1 1 factors seems unreasonable so sharp breaks in size of eigenvalues are sought using the scree 
test (Section 13.6.2). 

E i g e n v a  1 ues for the first four factors are all larger than two, and, after the sixth factor, 
changes in successive eigznvalues are smzll. This. is tzken as evidence that there are probably 
between 4 and 6 factors. The scree plot visually suggests breaks between 4 and 6 factors. These 
results are consistent with earlier research suggesting 3 to 5 factors on the BSRI. 

A common factor extraction model that removes unique and error variability from each vari- 
able is used for the next several runs and the final solution. Principal factors is chosen from among 
methods for commofi factor extraction. Severa! PFP. runs specifying 4 to 6 factors are planned to find 
the optimal number of factors. 

The trial PFA run with 5 factors has 5 eigenvalues larger than 1 among unrotated factors. But 
after rotation, the eigenvalue for the fifth factor is below 1 and it has no loadings larger than .45, the 
criterion for interpretation chosen for this research. The solution with four factors, on the other 
hand, meets the goals of interpretability, so four factors are chosen for follow-up runs. The first six 
eigenvalues from the four-factor solution are shown in Table 13.13. 

As another test of adequacy of extraction and number of factors, it is noted (but not shown) that 
most values in the residual correlation matrix for the four-factor orthogonal solution are near zero. 
This is further confirmation that a reasonable number of factors is 4. 

The decision between oblique and orthogonal rotation is made by requesting principal factor 
extraction with oblique rotation of four factors. Promax is the oblique method employed; power = 2 

"Prlnclpal components extraction 1s chosert iu estimdte the rnaxi~l-iunl number of factors that might be interesting. Prlnclpal 
factor analysis, which produces fewer eigenvalues greater than 1, is a reasonable alternative for estimation. 



a TABLE 13.1 1 Syntax and Selected SAS Factor Output to Assess Multicollinearity 
V1 
00 --- 

p r o c  f a c t o r  d a t a = S A S U S E R . F A C T O R R  p r i o r = s m c  m s a ;  
v a r  H E L P F U L  R E L I A N T  D E F B E L  Y I E L D I N G  C H E E R F U L  I N D P T  A T H L E T  S H Y  A S S E R T  

S T R P E R S  F O R C E F U L  A F F E C T  F L A T T E R  ' O Y A L  A N A L Y T  F E M I N I N E  S Y M P A T H Y  MOODY S E N S I T I V  U N D S T A N D  
C O M P A S S  L E A D E R A B  S O O T H E  R I S K  D E C I D E  S E L F S U F F  C O N S C I E N  D O M I N A N T  M A S C U L I N  S T A N D  H A P P Y  
S O F T S P O K  WARM T R U T H F U L  T E N D E R  G U L - L I B L E  L E A D A C T  C H I L D L I K  I N D I V  F O U L L A N G  L O V E C H I L  
C O M P E T E  A M B I T I O U  G E N T L E ;  

run; 

P r i ~ o r  C o m m u n a l i t y  E s t i m a t e s :  SMC 

H E L P F U L  R E L I A N T  D E F B E L .  Y I E L D I N G  C H E E R F U L  I N D P T  A T H L E T  S H Y  

P r i o r  C ~ o m m u n a L i t y  E s t i m a t e s :  SMC 

A S S E R T  S T R P E R S  F O R C E F U L  A F F E C T  F L A T T E R  L O Y A L  A N A L Y T  F E M I N I N E  

P r i o r  C o m m u n a L i t y  E s t i m a t e s :  SMC 

S Y M P A T H Y  MOODY S E N S I T I V  [ J N D S T A N D  C O M P A S S  L E A D E R A B  S O O T H E  R I S K  

P r i o r  C o m m u n a l i t y  E s t i m a t e s :  SMC 

D E C I D E  S E L F S U F F  CONSC: [EN [ I O M I N A N T  M A S C U L I N  S T A N D  H A P P Y  S O F T S P O K  

P r i o r  C o m m u n a l i t y  E s t i m a t e s :  SMC 

WARM T R U T H F U L  T E N D E R  G U L L I B L E  L E A D A C T  C H I L D L I K  I N D I V  F O U L L A N G  

P r i o r  C a ~ m m u n a L i t y  E s t i m a t e s :  SMC 

L O V E C H I L  C O M P E T E  A M B I T I O U  G E N T L E  



TABLE 13.12 Eigenvalues and Proportions of Variance for First 13 Components (SAS FACTOR PCA Syntax and Selected Output) 

p r o c  f a c t o r  d a t a = S A S U S E R . F A C T O R R  s i m p l e  c o r r  s c r e e ;  
v a r  H E L P F U L  R E L I A N T  DEFBE:L Y I E L D I N G  CHEERFUL I N D P T  A T H L E T  SHY ASSERT 

STRPERS FORCEFUL A F F E C T  F L A T T E R  L O Y A L  A N A L Y T  F E M I N I N E  SYMPATHY'MOODY S E N S I T I V  UNDSTAND 
COMPASS LEADERAB SOOTHE R I S K  D E C I D E  S E L F S U F F  C O N S C I E N  DOMINANT M A S C U L I N  STAND HAPPY 
SOFTSPOK WARM T R U T H F U L  TENDER G U L L I B L E  LEADACT C H I L D L I K  I N D I V  FOULLANG L O V E C H I L  
COMPETE A M B I T I O U  GENTLE; 

run; 

E i g e n v a l u e s  o f  t h e  C o r r e l a t i o n  M a t r i x :  T o t a l  = 4 4  A v e r a g e  = 1 

E i g e n v a l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  

11 f a c t o r s  w i l l  b e  r e t a i n e d  b y  t h e  M I N E I G E N  c r i t e r i o n .  
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TABLE 13.12 Continued 

S c r e e  P l o t  o f  E i g e n v a l u e s  

9 

N u m b e r  

sets the degree of allowable correlation among factors. The highest correlation (.299) is between fac- 
tors 2 and 3 (see Table i 3.14). 

The request for an output data set ( o ~ t  f i l e = S A S U S E R .  F A C S C O R E )  in the syntax pro- 
duces factor scores, which are plotted in Figure 13.5. The generally oblong shape of the scatterplot 
of factor scores between these two factors confirms the correlation. This level of correlation can be 
considered borderline between accepting an orthogonal solution versus dealing with the complexi- 
ties of interpreting an oblique solution. The simpler, orthogonal, solution is chosen. 

The solution that is evaluated, interpreted, and reported is the run with principal factors extrac- 
tion, varimax rotation, and 4 factors. In other words, after "trying out" oblique rotation, the decision 
is made to interpret the earlier run with orthogonal rotation. Syntax for this run is in Table 13.13. 

Communalities are inspected to see if the variables are well defined by the solution. Commu- 
nalities indicate the percent of variance in a variable that overlaps variance in the factors. As seen in 
Table 13.15, cornmunality values for a number of variables are quite low (e.g., FOULLANG). Ten of 
the variables have communality values lower than .2 indicating considerable heterogeneity among 
the variables. It should be recalled, however, that factorial purity was not a consideration in devel- 
opment of the BSRI. 



TAB1,E 13.13 Eigenvalues and Proportions of Variance for First Six Factors. 
Principal Factors Extraction and Varimax Rotation (SAS FACTOR Syntax and Selected Output) 

p r o c  f a c t o r  data=SASUSER.FACTORR p r i o r = s m c  n f a c t = 4  m e t h o d = p r i n i t  r o t a t e = v a r i m a x  p l o t  
r e o r d e r  r e s i d u a l s  out=SASUSER.FACSCPFA; 

v a r  HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET SHY ASSERT STRPERS FORCEFUL 
AFFECT FLATTER LOYAL ANALYT FEMININE SYMPATHY M O O D Y  SENSIT IV  UNDSTAND COMPASS LEADERAB 
S O O T H E  R ISK DECIDE SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY SOFTSPOK W A R M  
TRUTHFUL TENDER GULLIBLE LEADACT C H I L D L I K  I N D I V  FOULLANG LOVECHIL COMPETE AMBITIOU 
GENTLE; 

r un ;  

I n i t i a l  F a c t o r  M e t h o d :  I t e r a t e d  P r i n c i p a l  F a c t o r  A n a l y s i s  

E i g e n v a l u e s  o f  t h e  Reduced  C o r r e l a t i o n  M a t r i x :  T o t a l  = 1 5 . 6 4 2 5 4 1 8  A v e r a g e  = 0 . 3 5 5 5 1 2 3 1  

E,i ge r l va  l u e  D i f f e r e n c e  P r o p o r t i o n  C u m u l a t i v e  



TABLE 13.14 Syntax and Selected SAS FACTOR PFA Output of Correlations among Factors Fo1lowi11~ Promax Rotation 
- --- -- 

p r o c  f a c t o r  data=SASUSER.FACTORR p r i o r = s m c  n f a c t = 4  r n e t h o d = p r i n i t  ro ta te=pro rnax  power=2 
r e o r d e r  out=SASUSER.FACSCORE; 

v a r  HELPFUL RELIANT DEFBEL YIELDING CHEERFUL INDPT ATHLET S H Y  ASSERT STRPERS FORCEFUL 
A F F E C T  FLATTER LOYAL ANALYT F E M I N I N E  SYMPATHY M O O D Y  SENSITIV UNDSTAND COMPASS LEADERAB 
S O O T H E  RISK D E C I D E  SELFSUFF CONSCIEN DOMINANT MASCULIN STAND HAPPY SOFTSPOK WARM 
TRUTHFUL T E N D E R  GULLIBLE LEADACT CHILDLIK I N D I V  FOULLANG LOVECHIL COMPETE AMBITIOU 
GENTLE; 

run; 

I n t e r - F a c t o r  C o r r e l a t i o n s  

F a c t o r 1  F a c t o r 2  F a c t o r 3  F a c t o r 4  

F a c t o r 1  1.00000 0.13743 0.10612 0.15100 
F a c t o r 2  0.13743 1.00000 0.29925 0.01143 
F a c t o r 3  01.1061 2  0.29925 1.00000 0.03 1  43 
F a c t o r 4  01.15100 0.01143 0.03143 1.00000 
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3i P l o t  o f  F a c t o ~ - 3 * F a c t o r 2 .  
/ L e g e n d :  A = 1 obs ,  B = 2 obs ,  e t c .  

FIGURE 13.5 Scatterplot of factor scores with pairs of factors (2 and 3) as axes 
following oblique rotation. 
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Adequacy of rotation (Section 13.6.3) is assessed, in part, by scatterplots with pairs of rotated 
factors as axes and variables as points, as partially shown in Figure 13.6. Ideally, variable points are 
at the origin (the unmarked middle of tigures) or in clusters at the ends of factor axes. Scatterplots 
between factor 1 and factor 2 (the only one shown), between factor 2 and factor 4, and between 
factor 3 and factor 4 seem reasonably clear. The scatterplots between other pairs of factors show 
evidence of correlation among factors as found during oblique rotation. Otherwise, the scatterplots 
are disappointing but consistent with the other evidence of heterogeneity among the variables in the 
BSRI. 

Simplicity of structure (Section 13.6.3) in factor loadings following orthogonal rotation is 
assessed from R o  t a t e d F a c t o  r Pa  t t e r n table (see Table 13.16). In each column there are a 
few high and many low correlations between variables and factors. There are also numerous moder- 
ate loadings so several variables will be complex (load on more than one factor) unless a fairly high 
cutoff for interpreting loadings is established. Complexity of variables (Section 13.6.5) is assessed by 

A  
A  

A  A *  A  
A  A  B  0  

A M A A  A m  
A A  M A  A  A  

A A A  A  A  A  -- A  A M A M A A  M 
M A  M E  C  M A  A  M 

M B  A  W* A A W  A  
A *  A 8  C I L M A W A  A  A  A  
A M M A  B W 8 M  M M B A  

A  A M  A A M L d B  W A B  A  B A  
A  M B  M A  C B M A A A M  A  -- A  A  A A M  A  U W M  M M A  

A  A  L L M B  A B  CBMM B M  
A  B  B U A W  A  M 

A  M A A  B A  A  M M A  
A A  A  A A A M  M A  

A  A  A  B A M A  A A  A  A  
A  A  A  M A  A 8  A A  A  

-- A  A  A M  B A A  A  A  
A  A  A A  A A W 8  A  

M A  A  A  A A  A  
A A  A  

A  A A  A  A  A  - 1  I A A,A A ; :); ; 

- 3 

- 4 - 3 - 2 - 1 0 1 2 

F a c t o r 2  



TABLE 13.15 Communality Values (Four Factors). Selected Output from SAS FACTOR PFA (See Table 13.13 for Syntax) 
- - - - - - - 

F i n a l  C o m m u n a l i t y  E s t i m a t e s :  T o t a l  = 1 5 . 6 4 2 7 4 8  

H E L P F U L  R E L I A N T  DEFBEL. Y I E L D I N G  CHEERFUL I N D P T  ATHLET SHY 

ASSERT STRPERS FORCEFUL. AFFECT FLATTER LOYAL ANALYT F E M I N I N E  

0 . 4 4 0 2 7 2 9 9  0 . 5 0 7 4 1 8 8 4  0 .46350807  0 . 4 7 9 6 1 5 2 0  0 . 2 0 0 1 8 3 9 2  0 . 2 9 3 7 9 7 2 8  0 . 1 5 1 3 8 4 3 8  0 . 1 5 6 2 0 3 5 5  

SYMPATHY MOODY S E N S I T I V  IJNDSTAND COMPASS LEADERAB SOOTHE R I S K  

0 .44050701  0 . 2 7 1 2 7 1 1 9  0.441399028 0 . 5 8 1 3 0 1 0 5  0 . 6 8 4 5 9 5 3 8  0 . 5 7 7 1 0 6 9 6  0 . 3 8 7 6 6 3 5 6  0 . 2 7 6 2 8 3 6 2  

D E C I D E  S E L F S U F F  C O N S C I E N  IDOMINANT M A S C U L I N  STAND HAPPY S O F T S P O K  

0 . 3 7 6 4 6 7 4 4  0 . 6 3 6 4 6 7 5 1  0 .35022727  0 . 5 4 0 0 4 0 3 2  0 . 1 8 9 3 6 0 9 3  0 . 4 3 8 4 5 6 2 7  0 . 4 4 2 0 7 4 7 4  0 . 2 7 7 4 8 5 9 2  

WARM TRUTHFUL TENDER G U L L I B L E  LEADACT C H I L D L I K  I N D I V  FOULLANG 

0 . 6 3 1 5 5 1 1 7  0 . 1 6 8 2 6 3 0 4  0 . 5 3 4 5 6 9 4 2  0 . 2 2 1 4 0 1 7 8  0 . 5 4 0 7 0 0 7 9  0 . 1 9 2 0 1 8 7 7  0 . 2 3 6 2 1 6 4 3  0 . 0 2 4 7 5 3 4 3  

L O V E C H I L  COMPETE A M B I T I O U  GENTLE 
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P l o t  o f  F a c t o r  P a t t e r n  f o r  ~ a c t o r l  a n d  F a c t o r 2  

F a c t o r  1 
.I 

FIGURE 13.6 Selected SAS FACTOR PFA output showing scatterplot of variable 
loadings with factors 1 and 2 as axes. (Syntax in Table 13.13.) 
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TARI,E 13.16 Factor Loadings for Principal Factors Extraction and Varimas 
Rotation of Four Factors. Selected S.\S FACTOR Output (Syntax Appears in Table 13.13) 

L E A D E R A B  
L E A D A C T  
S T R P E R S  
D O M I N A N T  
F O R C E F U L  
A S S E R T  
S T A N D  
C O M P E T E  
R I S K  
D E C I D E  
A M B I T I O U  
I N D I V  
D E F B E L  
A T H L E T  
H E L P F U L  
N A S C U L I N  
A N A L Y T  
SHY 
COMPASS 
U N D S T A N D  
S E N S I T I V  
S Y M P A T H Y  
EOOTclE 
A F F E C T  
L O Y A L  
T R U T H F U L  
H A P P Y  
WARM 
C H E E R F U L  
G E N T L E  
T E N D E R  
S O F T S P O K  
Y I E L D I N G  
F E M I N I N E  
L O V E C H I L  
F O U L L A N G  
MOODY 
S E L F S U F F  
I N D P T  
R E L I A N T  
C O N S C I E N  
F L A T T E R  
C H I L D L I K  
G U L L I B L E  

R o t a t e d  F a c t o r  P a t t e r n  

F a c t o r 1  F a c t o r 2  

0 .73903  0 .0861  3  
0 .72702  -0 .02385  
0 .70096  0 .10223  
0 .67517 -0 .06437 
0 .64508  0 .05473  
0 . 6 4 2 5 9  0 . 1 4 1 8 4  
0 .59253  0 .24355  
0 .54071  -0 .08335 
0 . 4 9 5 6 9  0 .08158  
0 .48301  0 .08503  
0 .46606  0 . 0 0 0 1 9  
0 .43516  0 .09442  
0 .41270  0 .27996  
0 .32396  -0 .12167 
0 .31087  0 .26951  
0 . 3 0 7 9 6  -0 .10533 
0 .2771  9  0 .23310  

- 0 . 3 8 3 4 8  -0 .07433  
0 .05230  0 .81101  
0 . 0 2 3 7 5  0 .73071  
0 .0561  9  0 .65980  

-0 .041  87 0 . 6 4 9 3 4  
0 . 0 0 9 5 7  0 .53975  
0 . 2 9 9 7 9  0 . 3 9 1 5 4  
0 . 2 0 0 3 9  0 . 3 8 7 6 9  
0 .13882  0 .32001  
0 . 1 2 2 1 7  0 .06907  
0 . 1 4 9 3 9  0 .48347  
0 . 1 6 6 6 4  0 .08795  
0 . 0 2 2 7 8  0 .44682  
0 . 1 0 7 3 4  0 . 4 4 6 2 9  

-0 .29038  0 .12946  
-0 .13886  0 .11282  

0 . 0 5 6 6 6  0 .18883  
0 .02370  0 .20065  

-0 .01  697  0 . 0 3 2 4 8  
0 .03005  0 .10334  
0 . 4 1  835 0 . 1 0 9 6 9  
0 .46602  0 .04291  
0 . 3 6 5 0 2  0 .08295  
0 . 2 0 2 6 3  0 .28468  
0 . 1 6 4 8 9  0 . 0 9 5 3 9  
0 . 0 0 4 9 4  -0 .06847 

-0 .04076  0 .08513  
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V a r i a n c e  E x p l a i n e d  b y  E a c h  F a c t o r  

examining loadings for a variable across factors. With a loading cut of .45 only two variables. WARM 
and INDPT load on more than one factor. 

The importance of each factor (Sections 13.4 and 13.6.4) is assessed by the percent of variance 
andcovariance itrepresents.SSLs,called V a r i a n c e  E x p l a i n e d  by  Each  F a c t o r  below 
the loadings in  able 13.16, are used in the calculations. It is important to use SSLs from rotated fac- 
tors, because the variance is redistributed during rotation. Proportion of variance for a factor is SSL 
for the factor divided by number of variables. Proportion of covariance is SSL divided by sum of 
SSLs. Results, converted to percent, are shown in Table 13.17. Each of the factors accounts for 
between 4 and 16% of the variance in the set of variables, not an outstanding performance. Only the 
first factor accounts for substantial covariance. 

Internal consistency of the factors (Section 13.6.4) is assessed through SMCs, available in 
SAS FACTOR when factor scores are requested ( o u  t = S A S U S E R . F A  C S C P F A  in the syntax of 
Table 13.13).Thesearefoundin the S q u a r e d  Mu1 t i p l e  C o r r e l a t i o n s  o f  t h e  V a r i -  
a b L e  s  w i t h  E a  c  h  Fa c t o  r table, in which factors serve as DVs with variables as IVs. Factors 
that are well defined by the variables have high SMCs, whereas poorly defined factors have low 
SMCs. As can be seen in Table 13.18, all factors are internally consistent. (The off-diagonal elements 
In these matrices are correlations among factor scores. Although un~tormly low, the values are not 
zero. As discussed in Section 13.6.6. low correlations among scores on factors are often obtained 
even with orthogonal rotation.) 

TABLE 13.17 Percents of Variance and Covariance 
Explained by Each of the Rotated Orthogonal Factors 

I Factors 
I 
i 

1 2 3 3 

I 
B SSL 6.0 1 4.00 3.40 2.23 

I Percent of variance 13.66 9.09 7.73 5.07 

Percent of covariance 38.42 25.57 2 1.74 14.26 



TABLE 13.18 SXICs for Factors with Variables as IVs. Selected Output 
from SAS FACTOR PFA with Orthogonal (Yarimax) Rotation (Syntax in Table 13.13) 

-- 

S q u a r e d  M u l t i p l e  C o r r e l a t i o n s  o f  t h e  V a r i a b l e s  w i t h  E a c h  F a c t o r  

TABLE 13.19 Order (by Size of Loadings) in Which Variables Contribute to Factors 

Factor 1: 
Dominance 

Factor 2: 
Empathy 

Factor 3: Factor 4: 
Positive Affect Independence 

Has leadership abilities Compassionate Happy Self-suftkient 
Acts as a leader Understanding Warm Independent 
Strong personality Sensitive to needs of others Cheerful Self-reliant 
Dominant Sympathetic Gentle 
Forceful Eager to soothe hurt feelings Tender 
Assertive Warm 
Willing to take a stand 
Competitive 
Willing to take risks 
Makes decisions easily 
Independent 
Ambitious 

Note: Variables with higher loadings on the factor are nearer the top of the columns. Proposed labels are in italics. 

Factors are interpreted through their factor loadings (Section 13.6.5) from Table 13.16. It is 
decided to use a loading of .45 (20% variance overlap between variable and factor). With the use of 
the .45 cut, Table 13.19 is generated to further assist interpretation. In more informal presentations 
of factor analytic results, this table might be reported instead of Table 13.16. Factors are put in 
columns and variables with the largest loadings are put on top. In interpreting a factor, items near the 
top of the columns are given somewhat greater weight. Variable names are written out in full detail 
and labels for the factors (e.g., Dominance) are suggested at the top of each column. Table 13.20 
shows a more formal summary table of factor loadings, including communalities as well as percents 
of variance and covariance. 

Table 13.21 provides a checklist for FA. A Results section in journal format follows for the 
data analyzed in this section. 



Prlncil.7;~I Component.; and Factor Ani~l!,ci*. 669 

TABLE 13.20 Factor Loadings, Communalities ( i l l ) ,  and 
Percents of Variance and Covariance for Principal Factors 
Extraction and Varimax Rotation on BSRI Items 

Item 

Leadership ability 
Acts as leader 
Strong personality 
Dominant 
Forceful 
Assertive 
Takes stand 
Competitive 
Takes risks 
Makes decisions 
Independent 
Ambitious 
Compassionate 
Understanding 
Sensitive 
Sympathetic 
Eager to soothe hurt feeli 
Warm 

Happy 
Cheerful 
Gentle 
Tender 
Seif-sui'ficieni 
Self-reliant 
Affectionate 
Conscientious 
Defends beliefs 
Masculine 
Truthful 
Feminine 
Helpful 
Individualistic 

Shy 
Moody 

Percent of variance 
Percent of covariance 

Fac tor  labels: 

F, Dominance 

F, Empathy 

F, Positive Affect 

.74 

.73 

.70 

.68 

.65 

.64 

.59 

.54 

.50 

.48 

.47 

.47 

. 00 

.oo 

.oo 

.oo 
ngs . 00 

.oo 

.oo 

.oo 

.oo 

.00 

.GO 

.oo 

.oo 

.oo 

.oo 

.00 

.oo 

.o0 

. 00 

. 00 

. 00 

. 00 
13.66 
38.42 



TAB1,E 13.21 Checklist for Factor Analysis 

I .  Limitations 

a. Outliers anlong cases 

b. Sample size and missing data 

c. Factorability of R 

d. Normality and linearity of variables 

e. Multicollinearity and singularity 

f. Outliers among variables 

2. Major analyses 

a. Number of factors 

b. Nature of factors 

c. Type of rotation ' 

d. Importance of factors 

3. Additional analyses 

a. Factor scores 

b. Distinguishability and simplicity of factors 

c. Complexity of variables 

d. Internal consistency of factors 

e. Outlying cases among the factors 

Results 

Principal factors extraction with varimax rotation was per- 

formed through SAS FACTOR on 44 items from the BSRI for a sample 

of 344 women. Principal components extraction was used prior to 

principal factors extraction to estimate number of factors, pres- 

ence of outliers, absence of multicollinearity, and factorability 

of the correlation matrices. With an a = .001 cutoff level, 25 of 

369 women produced scores that identified them as outliers; these 

cases were deleted from principal factors extraction.1° 

1°0utliers were compared as a group to nonoutliers through discriminant analysis. 4s  a group. a t />  .. Ol. the 1-5 women were 

lets relia-, . ,l,,d -, ,,,,,,, -. Lasi!y tlattcred than ivomzn who iccrc not outliers. 



Four factors were extracted. As indicated by SMCs, all factors 

were internally consistent and well defined by the variables; the 

lowest of the SMCs for factors from variables was .78. [Information 

on SMCs is from Table 13.18.1 The reverse was not true, however; 

variables were, by and large, not well defined by this factor solu- 

tion. Comality values, as seen in Table 13.15, tended to be low. 

With a cutoff of .45 for inclusion of a variable in interpretation 

of a factor, 20 of 44 variables did not load on any factor. Failure 

of numerous variables to load on a factor reflects heterogeneity of 

items on the BSRI.  However, only two of the variables in the solu- 

tion, "warm" and "independent, " were complex. 

When oblique rotation was requested, factors interpreted as 

-thy and Positive Affect correlated .30. However, because the 

correlation was d e s t  and limited to one pair of factors, and because 

remaining correlations were low, orthogonal rotation was chosen. 

Loadings of variables on factors, communalities, and percents 

of variance and covariance are shown in Table 13.20. Variables are 

ordered and grouped by size of loading to facilitate interpreta- 

tion. Loadings under .45  (20% of variance) are replaced by zeros. 

Interpretive labels are suggested for each factor in a footnote. 

In sum, the four factors on the BSRI for this group of women 

are dominance (e.g., leadership abilities and strong personal- 

ity), empathy (e.g., compassion and understanding), positive 

affect (e.g., happy and warm), and independence (e.g., self- 

sufficient and self-reliant). 

13.8 Comparison of Programs I 

i SPSS. SAS, and SYSTAT each have a single program to handle both FA and PCA. The first two pro- 
I grams have numerous options for extraction and rotation and give the user considerable latitude in 
i 

i 
directing the progress of the analysis. Features of three programs are described in Table 13.22. 
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T,\BI,E 13.12 Con~parison of Factor Analysis Programs 

Feature 

- 

SPSS SAS SYST.1.T 
FACTOR FACTOR FACTOR 

Input 

Correlation matrix 

About origin 

Covariance matrix. 

About origin 

SSCP matrix 

Factor loadings (unrotated pattern) 

Factor-score coefficients 

Factor loadings (rotated pattern) and factor correlations 

Options for missing data 

Analyze partial correlation or covariance matrix 

Specify maximum number of factors 

Extraction method (see Table 13.7) 

PCA 

PFA 

Image (Little Jiffy, Harris) 

Maximum likelihood 

Alpha 

Unweighted least squares 

Generalized least squares 

Specify communalities 

Specify minimum eigenvalues 

Specify proportion of variance to be accounted for 

Specify maximum number of iterations 

Option lo allow communalities > 1 

Specify tolerance 

Specify convergence criterion for extraction 

Specify convergence criterion for rotation 

Rotation method (see Table 13.9) 

Varimax 

Quartimax 

Equamax 

Orthogonal with gamma 

Parsimax 

Yes 

No 

Yes 

No 

No 

Yes 

No 

No 

Yes 

No 

FACTORS 

PC 

PAF 

IMAGE 

ML 

ALPHA 

ULS 

GLS 

Yes 

MINEIGEN 

No 

ITERATE 

No 

No 

ECONVERGE 

RCONVERGE 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

NFACT 

PRIN 

PRINIT 

Yesa 

ML 

ALPHA 

ULS 

Yes 

Yes 

MIN 

PROPORTION 

MAXITER 

HEYWOOO 

SING 

CONV 

No 

Yes 

Yes 

Yes 

ORTHOMAX 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Data file 

Yes 

Yes 

No 

NUMBER 

PCA 

IPA 

No 

MLA 

No 

No 

No 

No 

EIGEN 

No 

ITER 

No 

No 

CONV 

No 

Yes 

Yes 

Yes 

ORTHOMAX 

No 
Direct ublimin Yc s NG Yes I 
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TABLE 13.22 Continued 
-- 

SPSS SAS SYSTAT 
Feature FACTOR FACTOR FACTOR 

I Input (continued) 

Rotation method (see Table 13.9) (continued) 

Direct quartimin 

Orthoblique 

Promax 

Procrustes 

DELTA = 0 No No 

No HK No 

No Yes No 

No Yes No 

I Prerotation criteria No Yes No 

Optional Kaiser's normalization Yes Yes Normalized 
only 

Optional weighting by Cureton-Mulaik technique No Yes No 
I 
I Optional rescaling of pattern matrix to covariances No Yes No 

i Weighted correlation matrix No WEIGHT No 

I Alternate methods for computing factor scores Yes No No 

Output 

Means and standard deviations 

Number of cases per variable (missing data) 

Significance of correlations 

Covariance matrix 

Initial communalities 

Final communalities 

Eigenvalues 

Difference between successive eigenvalues 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

I Standard error for each eigenvector element No No Yes 

Percent of variance total variance explained by factors 

Cumulative percent of variance 

Percent of covariance 

Unrotated factor loadings 

Variance explained by factors for all loading matrices 

Simplicity criterion, each rotation iteration 

Rotated factor loadings (pattern) 

Rotated factor loadings (structure) 

Eigenvectors 

Standard error for each eigenvector element 

Transformation matrix 

Factor-score coefticients 

Yes 

Yes 

No 

Yes 

No 

6 

Yes 

Yes 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

Nc 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes Yes No 

Yes Yes Data fileC 

(contin~rrd) 
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TABLE 13.22 Continued 

SPSS S AS S I' S TAT 
Feature FACTOR FACTOR FACTOR 

Output (contirzued) 

Standardized factor scores Data file Data file Data filec 

Residual component scores No No Data fileC 

Sum of squared residuals (Q) No No Data fileC 

Probability for Q No No Data fi lec 

Scree plot Yes Yes Yes 

Plots of unrotated factor loadings No Yes No 

Plots of rotated factor loadings Yes Yes Yes 

Sorted rotated factor loadings 

%* test for number of factors (with maximum 
likelihood estimation) 

,y2 test that all eigenvalues are equal 

x2 test that last n eigenvalues are equal 

Standard errors of factor loadings (with maximum 
likelihood estimation and promax solutions) 

Inverse of correlation matrix 

Determinant of correlation matrix 

Partial correlations (anti-image matrix) 

Measure of sampling adequacy 

Anti-irrtage cuvariance rrlairix 

Bartlett's test of sphericity 

Residual correlation matrix 

Reproduced correlation matrix 

Corre!at!ons among facmrs 

T w o  types. 

h ~ b l i q u e  only 

'PCA only. 

Yes 

Yes 

Yes 

AIC 

AIC, KMO 

AIC 

KMO 

Yes 

Yes 

Ves 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

MSA 

MS A 

Nu 

No 

Yes 

No 

Ves 

Yes 

No 

Yes 

Yes 

No 

No 

No 

No 

No 

NU 

No 

Yes 

No 

Yes 

13.8.1 SPSS Package 

SPSS FACTOR does a PCA or  FA on a correlation matrix or  a factor loading matrix, helpful to the 
researcher who is interested in higher-order factoring (extracting factors from previous FAs). Several 
extraction methods and a variety of orthogonal rotation methods are available. Oblique rotation is 
done using direct oblimin, one of the best methods currently available (see Section 13.5.2.2). 

Univariate output is limited to means, standard deviations, and number of cases per  variable. 
so  that the search for univariate outliers must be conducted through other programs. Similarly, there 
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is no provision for screening for rnulti\ariare outliers among cases. But the program is very helpful 
in  assessing factorability of R. as J~scussed in  Section 1 3.3.2.6. 

Output of extraction and rotation information is extensive. The residual and reproduced corre- 
lation matrices are provided as an aid to diagnosing adequacy of extraction and rotation. SPSS FAC- 
TOR is the only program reviewed that, under conditions requiring matrix inversion, prints out the 
determinant of the correlation matrix, helpful in signaling the need to check for multicollinearity and 
singularity (Sections 13.3.2.5 and 3.1.7). Determination of number of factors is aided by an optional 
printout of a scree plot (Section 13.6.2). Several estimation procedures for factor scores (Section 
13.6.6) are available as output to a file. 

13.8.2 SAS System 

SAS FACTOR is another highly flexible, full-featured program for FA and PCA. About the only 
weakness is in screening for outliers. SAS FACTOR accepts rotated loading matrices, as long as fac- 
tor correlations are provided, and can analyze a partial correlation or covariance matrix (with speci- 
fication of variables to partial out). There are several options for extraction, as well as orthogonal and 
oblique rotation. Maximum-likelihood estimation provides a X2 test for number of factors. Standard 
errors may be requested for factor loadings with maximum-likelihood estimation and promax rota- 
tion. A target pattern matrix can be specified as a criterion for oblique rotation in confirmatory FA. 
Additional options include specification of proportion of variance to be accounted for in determin- 
ing the number of factors to retain and the option to allow communalities to be greater than 1 .O. The 
correlation matrix can be weighted to allow the generalized least squares method of extraction. 

Factor scores can be written to a data file. SMCs of factors as DVs with variables as IVs are 
given, to evaluate the reliability of factors. 

13.8.3 SYSTAT System 

The current SYSTAT FACTOR program is less limited than earlier versions. Wilkinson (1990) advo- 
cated the use of PCA rather than FA because of the indeterminacy problem (Section 13.6.6). How- 
ever, the program now does PFA (called IPA) as well as PCA and maximum likelihood (MLA) 
extraction. Four common methods of orthogonal rotation are provided, as well as provision for 
oblique rotation. SYSTAT FACTOR can accept correlation or covariance matrices as well as raw 
data. 

The SYSTAT FACTOR program provides scree plots and plots of factor loadings and will 
optionally sort the loading matrix by size of loading to aid interpretation. Additional information is 
available by requesting that standardized component scores, their coefficients, and loadings be sent 
to a data file. Factor scores (from PFA or MLA) cannot be saved. Residual scores (actual minus pre- 
dicted z-scores) also can be saved, as well as the sum of the squared residuals and a probability value 
for it. 
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14.1 General Purpose and Description 

Structural equation modeling (SEM) is a collection of statistical techniques that allow a set of rela- 
tionships between one or more IVs, either continuous or discrete, and one or more DVs, either con- 
tinuous or discrete, to be examined. Both 1Vs and DVs can be either factors or measured variables. 
Structural equation modeling is also referred to as causal modeling, causal analysis, simultaneous 
equation modeling, analysis of covariance structures, path analysis, or confirmatory factor analysis. 
The latter two are actually special types of SEM. 

SEM allows questions to be answered that involve multiple regression analyses of factors. 
When exploratory factor analysis (EFA, Chapter 13) is combined with multiple regression analyses 
(Chapter 5 ) ,  you have SEM. At the simplest level, a researcher posits a relationship between a single 
measured variable (say, success in graduate school) and other measured variables (say, undergradu- 
ait: GPA, gender, arid average daiiy caffeine consumpiionj. Tliis simpie modei is a iiiiiitlpie I-egr-es- 
sion presented in diagram form in Figure 14.1. All four of the measured variables appear in boxes 
connected by lines with arrows indicating that GPA, gender, and caffeine (the IVs) predict graduate 
school success (the DV). A line with two arrows indicates a correlation among the IVs. The presence 
of a residual indicates imperfect prediction. 

A more compiicated modei of success in graduate scnooi appears in Figure i4.2. in this moaei, 
Graduate School Success is a latent variable (a factor) that is not directly measured but rather 
assessed indirectly using number of publications, grades, and faculty evaluations, three measured 
variables. Graduate School Success is, in turn, predicted by gender (a measured variable) and by 
Undergraduate Success, a second factor which is assessed through undergraduate GPA, faculty rec- 
ommendations, and GRE scores (three additional measured variables). For clarity in the text, initial 
capitals are used for names of factors and lowercase letters for names of measured variables. 

I would like to thank Barbara Tabachnick and Linda Fidell for the opportunity to write this chapter and also for  their helpful 
comments on an earlier draft. I would also like to thank Peter Bentler who not only performed a detailed review of an earlier 
version of thiq chapter but who has also been responsible for shaping my thinking on SEM I would also like to thank I l a .  

Harlow. Jim Sidanius and an anonymous reviewer for their helpful suggestions. This chapter was supported In part by NlDA 
grant POIDAO1070-32. 
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Figures 1 1 . 1  and 14.2 are examples of p~zrh diagran1.s. These diagrams are fundamental to 
SEM because they allow the researcher to dlagranl the hypothesized set of relationships-the model. 
The diagrams are helpful in clarifying a researcher's ideas about the relationships among variables 
and they can be directly translated into the equations needed for the analysis. 

Severa! conventions are used in developing SEM diagrams. Measured variables, also called 
observed variables, irzdicators, or manifest variables are represented by squares or rectangles. Fac- 
tors have two or more indicators and are also called latent variables, constrcicts, or ~~nobserved vari- 
ables. Factors are represented by circles or ovals in path diagrams. Relationships between variables 
are indicated by lihes; lack of a line connecting variables implies that no direct relationship has been 

residual 

I consumption / 

FIGURE 14.1 Path diagram of multiple regression. 

gender 
dation 

FIGURE 14.2 Path diagram of a structural model. 



hypothrsired. Lines have either one or two arro\\s. A line with one ;lrrow represent\ a hypothe \ i /~~i  
direct relationship between two kariables, and the variable with the arrow pointing to i t  is the DV. A 
line with an arrow at both ends indicates an unanalyzed relationship, simply a covariance between 
the two variables with no implied direction of effect. 

In the model of Figure 14.2, Success in Graduate School is a latent variable (factor) that is pre- 
dicted by gender (a measured variable) and Undergraduate Success (a factor). Notice the line with 
the arrow at both ends connecting Undergraduate Success and gender. This line with an arrow at both 
ends implies that there is a relationship between the variables but makes no prediction regarding the 
direction of effect. Also notice the direction of the arrows connecting the Graduate School Success 
construct (factor) to its indicators: The construct predicts the measured variables. The implication is 
that Graduate School Success drives, or creates, the number of publications, grades, and faculty eval- 
uations of graduate students. It is impossible to measure this construct directly, so we do the next best 
thing and measure several indicators of success. We hope that we are able to tap into graduate stu- 
dents' true level of success by measuring a lot of observable indicators. This is the same logic as in 
factor analysis (Chapter 13). ' 

In Figure 14.2, GPA, GRE, faculty recommendations, Graduate School Success, number of 
publications, grades, and faculty evaluations are all DVs. They all have one-way arrows pointing to 
them. Gender and Undergraduate Success are IVs in the model. They have no one-way arrows 
pointing to them. Notice that all the DVs, both observed and unobserved, have arrows labeled "En 
or "D" pointing toward them. Es (errors) point to measured variables; Ds (disturbances) point to 
latent variables (factors). As in multiple regression, nothing is predicted perfectly; there is always 
residual or error. In SEM, the residual not predicted by the IV(s) is included in the diagram with 
these paths. 

The part of the model that relates the measured variables to the factors is sometimes called the 
measurement model. In this example, the two constructs (factors), Undergraduate Success and Grad- 
uate School Success, and the indicators of these constructs (factors) form the measurement model. 
The hypothesized relationships among the constructs, in this example, the one path between Under- 
graduate Success and Graduate School Success, is called the structural model. 

Note, both models presented so far include hypotheses about relationships among variables 
(covariances) but not about means or mean differences. Mean differences associated with group 
membership can also be tested within the SEM framework. 

When experiments are analyzed, with proper data collection, the adequacy of the manipulation 
can also be accounted for within the analysis (Feldman, Ullman, & Dunkei-Schetter, i 998). Experi- 
ments with or without a mean structure can be analyzed through SEM. For an example from the iit- 
erature of an experiment analyzed through SEM, consider Feldman, Ullman, and Dunkel-Schetter 
(1998). Feldman and colleagues used SEM to analyze an experiment that examined the effects of 
perceived similarity and perceived vulnerability on attributions of victim blame. Aiken, Stein, and 
Bentler (1994). who employed SEM techniques to evaluate the effectiveness of a mammography 
screening program, provide an example of a treatment program evaluation. Even in a simple experi- 
ment, researchers are often interested in processes that are more complex than a standard analysis 
suggests. Consider the diagram in Figure 14.3. 

'Now. t h ~ n k ~ n g  hack to the chapter\ on tactor analysis, MANOVA, d i s c r ~ ~ n ~ n a n t  analys~s. and canon~cal correlatton, what would 
the implication be if the arrows between tht: Graduate School Succeas Pdctor and the ~neasured ~ndicators potnted the oppos~te 
way from the three ~ndicators to~vard Graduate School Success'? It would imply a principal component or linear combination. 



FIGURE 14.3 Path diagram of an experiment. 

treatment 
group 

At the start of a semester, students are randomly assigned to one of two treatment conditions, a 
study skills training group or a waiting-list control. X ,  is a dummy-coded variable (cf. Section 1.2.1) 
that indicates the assigned group, where 0 = control, I = treatment. Final exam scores are recorded 
at the end of the semester. ANOVA essentially tests path a. But is it reasonable to suggest that mere 
assignment to a group creates the change? Perhaps not. Maybe, instead, study skills training increases 
a student's motivational level and higher motivation leads to a higher grade. Motivational level serves 
as an intervening variable between the treatment and the exam score (i.e., the treatment is associated 
with increased motivation and increased motivation is associated with increased exam scores). This is 
a diffe:znr quzslior. than is posed in .4NGV.A QT ever! ANCO\/A or sequential regression. ANOVA asks 
simply "Is there a difference between the treatment and control group on exam score?'ANCOVA asks 
"Is there a difference between groups after the DV has been adjusted by a covariate (e.g., degree of 
motivation)?'These questions are distinct from the hypotheses illustrated in Figure 14.3 that involve 
a process or an indirect effect. The indirect effect can be tested by testing the product of paths b and c. 
TL : 11,s example iiszs only measured variables 2nd is cl!!ec! path analysis; however, indirect effect 
hypotheses can be tested using both latent and observed variables. 

The first step in a SEM analysis is specification of a model, so this is a confirmutory rather than 
an exploratory technique. The model is estimated, evaluated, and perhaps modified. The goal of the 
analysis might be to test a model, to test specific hypotheses about a model, to modify an existing 
model, or to test a set of related models. 

There are a number of advantages to the use of SEM. When relationships among factors are 
examined, the relationships are free of measurement error because the error has been estimated and 
removed, leaving only common variance. Reliability of measurement can be accounted for explicitly 
within the analysis by estimating and removing the measurement error. Additionally, as was seen in 
Figure 14.2, complex relationships can be examined. When the phenomena of interest are complex 
and multidimensional, SEM is the only analysis that allows complete and simultaneous tests of all 
the relationships. 

Unfortunately, there is a small price to pay for the flexibility that SEM offers. With the ability 
to analyze complex relationships among combinations of discrete and continuous variables, both 

exam 
a + score 
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observed and latent. comes more complexity and more ambiguity. Indeed. there i \  quite a bit of j:ir 
con and many choices of analytic techiliques. But if  you love to wallow in data. you'll adore SEiLI! 
L 

14.2 Kinds of Research Questions 

The data set is an empirical covariance matrix and the model produces an estimated population covari- 
ance matrix. The major question asked by SEM is, "Does the model produce an estimated population 
covariance matrix that is consistent with the sample (observed) covariance matrix?'After the adequacy 
of the model is assessed, various other questions about specific aspects of the model are addressed. 

14.2.1 Adequacy of the Model I 
Parameters (path coefficients, variances, and covariances of IVs) are estimated to create an estimated 
population covariance matrix. If the model is good the parameter estimates will produce an estimated 
matrix that is close to the sample covariance matrix. "Closeness" is evaluated primarily with the chi- 
square test statistic and fit indices. For the Graduate School Success model of Figure 14.2, is the esti- 
mated population covariance matrix generated by the model consistent with the sample covariance 
matrix of the data? This is discussed in Sections 14.4.5 and 14.5.3. 

14.2.2 Testing Theory 

Each theory (model) generates its own covariance matrix. Which theory produces an estimated pop- 
ulation covariance matrix that is most consistent with the sample covariance matrix? Models repre- 
senting competing theories in a specific research area are estimated, pitted against each other, and 
evaluated as demonstrated in Section 14.5.4.1. 

14.2.3 Amount of Variance in the Variables Accounted 
for by the Factors 

How much of the variance in the DVs, both latent and observed, is accounted for by the IVs? For 
exampie, how much variance in Graduate Schooi Success is accounted for by gender and Under- 
graduate Success? Which of the variables included in the analysis account for the most variance? 
This question is answered through ~ ~ - t ~ ~ e  statistics discussed in Section 14.5.5. 

14.2.4 Reliability of the Indicators I 
How reliable is each of the measured variables? For the example, is the measure of faculty evalua- 
tions reliable? Reliability of measured variables and internal consistency measures of reliability are 
derived from SEM analyses and are discussed in Section 14.5.5. 

14.2.5 Parameter Estimates I 
Estimates of parameters are fundamental to SEM analyses because they are uaed to generate the 
estimated population covariance matrix for the model. What is the path coefficient for a specific I 

I 
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path'? For example. what is the path coefficient for preclicting Gr~iduatc School Succe\\ from t:nclt.r- 
graduate Success'? Does the coefficient differ significantly from O'! Within the model. uhat i \  the 
relative importance of various paths? For instance. is the path from Undergraduate Succe~s  more or 
less important to the prediction of Graduate School Success than the path fro111 gender? Parameter 
estimates can also be compared across SEA4 models. When a single path is tested, it is called a test 
of a direct effect. Assessment of parameters is demonstrated in Sections 14.4.5, 14.6.1.3, and 
14.6.2.4. 

14.2.6 Intervening Variables 

Does an IV directly affect a specific DV, or does the IV affect the DV through an intermediary, or 
mediating, variable? In the example of Figure 14.3, is the relationship between treatment group and 
exam score mediated by degree of motivation? Because motivation is an intervening variable, this is 
a test of indirect effects. Tests of indirect effects are demonstrated in Section 14.6.2. 

14.2.7 Group Differences 

Do two or more groups differ in their covariance matrices, regression coefficients, or means? For 
example, if the experiment described above (see Figure 14.3) is performed for both grade school and 
high school youngsters, does the same model fit both age groups? This analysis could be performed 
with or without means (c.f., Section 14.5.8). Multiple group modeling is briefly discussed in Section 
14.5.7. Stein, Newcomb, and Bentler (1993) examined the effects of grandparent and parent drug use 
on behavior problems in boys and girls aged 2 to 8. Separate structural equations models were devel- 
oped for boys and girls and then statistically compared. 

14.2.8 Longittidinal Differences 

Differences within and across people across time can also be examined. This time interval can be 
years, days, or microseconds. For the example of the experiment: How, if 2t all, doe: treatment 
change performance and motivation at several different time points in the semester? Longitudinal 
modeling is not illustrated in this chapter. Although there are several different approaches, one excit- 
ing new approach to analyzing longitudinal data with three or more time points is caiieci Laterit 
Growth Curve Modeling. This approach is innovative because it allows tests of individual growth 
patterns. Several hypotheses are tested with this analysis. How does a dependent variable (latent or 
observed), say, adolescent drug use, change across multiple time points, say, the teenage and young 
adult years? Is the change linear? quadratic? Do participants (teenagers) vary in their initial level of 
drug use? Do adolescents' drug use patterns change at the same rate? 

14.2.9 Multilevel Modeling 

Independent variables collected at different nested levels of measurement (e.g., students nested 
within classrooms nested within schools) are used to predict dependent variables at the same level 
or other levels of measurement. For example, using a multiple group model we could examine the 
effectiveness of an intervention given to classrooms of children from characteristics of the children, 
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the classroom. and the school. I n  this example children are nested within clas\~.oorn\ ancl clas\- 
rooms are nested within  school^. This i a  brietly discussed in  Section 14.5.7 and is the topic of 
Chapter 15. 

14.3 Limitations to Structural 
Equation Modeling 

14.3.1 Theoretical Issues 

SEM is a conjirnzator! technique in contrast to exploratory factor analysis. It is used most often to 
test a theory-maybe just a personal theory-but a theory nonetheless. Indeed, one cannot do SEM 
without prior knowledge of, or hypotheses about, potential relationships among variables. This is 
perhaps the largest difference between SEM and other techniques in this book and one of its greatest 
strengths. Planning, driven by theory, is essential to any SEM analysis. The guidelines for planning 
an exploratory factor analysis, as outlined in Section 13.3.1, are also applicable to SEM analyses. 

Although SEM is a confirmatory technique, there are ways to test a variety of different mod- 
els (models that test specific hypotheses, or perhaps provide better fit) after a model has been esti- 
mated. However, if numerous modifications of a model are tested in hopes of finding the best-fitting 
model, the researcher has moved to exploratory data analysis and appropriate steps need to be taken 
to protect against inflated Type I error levels. Searching for the best model is appropriate provided 
significance levels are viewed cautiously and cross-validation with another sample is performed 
whenever possible. 

SEM has developed a bad reputation in some circles, in part because of the use of SEM for 
exploratory work without the necessary controls. It may also be due, in part, to the use of the term 
causal modeling to refer to structural equation modeling. There is nothing causal, in the sense of infer- 
ring cxisaliiji, abuiii iiie use of SEM. Attributing causaiity is a design issue, not a statistical issue. 

Unfortunately, SEM is often thought of as a technique strictly for nonexperimental or  correla- 
tional designs. This is over!y limiting. SEM. !!ke regression, can be applied to both experii-iiental and 
nonexperimental designs. In fact, there are some advantages to using SEM in  the analysis of experi- 
ments: Mediational processes can be tested and information regarding the adequacy of the manipu- 
iations can be inciudeci in tine anaiysis (Feidman, Uilman, 8r Dunkel-Schetter, 1998). 

The same caveats regarding generalizing results apply to SEM as they do to the other tech- 
niques in this book. Results can only be generalized to the type of sample that was used to estimate 
and test the SEM model. 

14.3.2 Practical Issues 

14.3.2.1 Sample Size and Missing Data 

Covariances, like correlations, are less stable when estimated from small samples. SEM is based on 
covariances. Parameter estimates and chi-square tests of fit are also very sensitive to sample size. 
SEM, then, like factor analysis, is a large sample technique. Velicer and Fava (1998) found that in 
exploratory factor analysis ~ i 7 e  of the factor loadings, the number of variables, and the size of the 
cample were important elements in obtaining a good factor model. This can be generalized to SEM 



moclrls. bloctelc w ~ t h  itroll2 expected p:uamzter eqtimares and reliable variables may recluire fewer 
participants Althou~h SEkI is a I:lrze \ample technique new test <tatistics have been developed that 
allow for estimation of models with as few as 60 participants (Bentler bli Yuan. 1999). For estimating 
adequate sample size for power calculations. MacCallum, Browne, and Sugawara (1996) present 
tables of minimum sample sizes needed for tests of goodness of tit. These tables base sa~nple size 
estimates on model degrees of freedom and effect size. 

The Chapter 4 guidelines for the treatment of missing data apply to SEM analyses. However, 
as discussed in Chapter 4, problems are associated with either deleting or estimating missing data. 
An advantage of structural modeling is that the missing data mechanism can be included in the 
model. Some of the software packages now include procedures for estimating missing data, includ- 
ing the EM algorithm. Treatment of missing data patterns through SEM is not demonstrated in this 
chapter but the interested reader is referred to Allison (1987), MuthCn, Kaplan, and Hollis (1987), 
and Bentler ( 1995). 

14.3.2.2 Mzdtivariate Normality and Ozctliers 

Most of the estimation techniques used in SEM assume multivariate normality. To determine the 
extent and shape of nonnormally distributed data, screen the measured vuri~~hles,f?)r outliers, both 
~lnivnriare and multivariate, and the skewness and kurtosis of'the measured variables e.tamined in 
the manner described in Chapter 3. All measured variables, regardless of their status as  DVs or IVs, 
are screened together for outliers. (Some SEM packages test for the presence of multivariate outliers, 
skewness, and kurtosis.) If significant skewness is found, transformations can be attempted; how- 
ever, often variables are still highly skewed or highly kurtotic even after transformation. Some vari- 
ables, such as drug use variables, are not expected to be normally distributed in the population. 
anyway. If transformations do not restore normality, or a variable is not expected to be  normally dis- 
tributed in the population, an estimation method can be selected that addresses the nonnormality 
(Sect~ons 14.5.2, i4.6.i, and i4.6.2). 

14.3.2.3 Linearity 

SEM techniques examine only linear relationships among variables. Linearity among latent vari- 
ables is difficuit to assess; however, iineclr reicliioilships iiilliiiig pairs i?f'mea.i.i~red variah(es can be 
clssessed through inspection o f  scatterplots. If nonlinear relationships among measured variables are 
hypothesized, these relationships are included by raising the measured variables to powers, as in 
multiple regression. For example. if the relationship between graduate school success and average 
daily caffeine consumption is quadratic (a little caffeine is not enough, a few cups is good, but more 
than a few is detrimental), the square of average daily caffeine consumption is used. 

14.3.2.4 Absence of Multicollinearity and Singularity 

As with the other techniques discussed in the book, matrices need to be inverted i n  SEM. Therefore, 
if variables are perfect linear combinations of one another or are extremelv highly correlated. the nec- 
essary matrices cannot be inverted. If possible irzspect the tieterminant of the covariclnce matrix. An 
rxtrelizel~ .,nz~lll deterwlit~ci~lt 1 1 1 t 1 ~  itzdic~~tr LI /7t-oble/11 with /~l~ilticollinet~rity or singlrlurity. Generally. 
S E M  programs abort and provide warning messages if the covariance matrix is singular. If you get 
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such a message. check your data set. I t  often is the case that linear cornhinations of variables h a \ e  
been inadvertently included. Simply delete the variable causing the slngular~ty. If true singularity ic 

found, create composite variables and use them in the analysis. 

14.3.2.5 Residuals 

After model estimation, rlze residuals slzo~ild be srnnll and centered aro~irzd zero. The freqrlencj, 
distrib~ition ofthe residi~al cov~~riances should be symmetrical. Residuals in the context of SEM are 
residual covarinnces not residual scores as discussed in other chapters. SEM programs provide diag- 
nostics of residuals: Nonsymmetrically distributed residuals in the frequency distribution may signal 
a poor-fitting model; the model is estimating some of the covariances well and others poorly. It 
sometimes happens that one or two residuals remain quite large although the model fits reasonably 
well and the residuals appear to be symmetrically distributed and centered around zero. When large 
residuals are found it is often helpful to examine the Lagrange Multiplier (LM) test, discussed in 
Section 14.5.4.2, and consider adding paths to the model. 

14.4 Fundamental Equations for Structural 
Equations Modeling 

14.4.1 Covariance Algebra I I 
The idea behind SEM is that the hypothesized model has a set of underlying parameters which cor- 
respond to (1) the regression coefficients, and (2) the variances and covariances of the independent 
variables in the model (Bentler, 1995). These parameters are estimated from the sample data to be a 
"best guess" about population values. The estimated parameters are then combined by means of 
covaria.n.ce a!aehrr C1 to nrr?dttc~ r - - -  ,?n estimated popfi!ation cev~Jiance matrix. This estimated popuia:iiin 
covariance matrix is compared with the sample covariance matrix and, ideally, the difference is very 
small and not statistically significant. 

Covariance algebra is a helpful tool in calculating variances and covariances in SEM models; 
however, matrix methods are generally employed because covariance algebra becomes extremely 
tedious as models becnme increzsing!y c~r?.p!ex. C~vart-iance algebra is iisefi: to demoiistraie how 
parameter estimates are combined to produce an estimated population covariance matrix for a small 
example. 

The three basic rules in covariance algebra appear below where c is a constant and Xi is a ran- 
dom variable: 

1.  COV(c ,X , )=O 

2. COV(cX,, X2) = cCOV(XI,  X2) (14.1) 

3. COV(X, + X,,  - X,) = COV(X,,  X,) + C0V(X2,  X,) 

By the first rule, the covariance between a variable and a constant is zero. By the second 
rule, the covariance between two variables where one is multiplied by a constant is the 
same as the constant multiplied by the covariance between the two variable\ By the 
third rule. the covariance between the sum (or  difference) of two variables and a third 



variable is the i;um of the covariance of the ti1.4t vxiable and the third and the cov~u-i;lnct. 
of the second variable and the third. 

Figure 14.3 is used to illustrate some of the principles of covariance algebra. (Ignore for now 
the difference between ;f and P ;  the difference is explained in Section 14.4.3.) In SEM. as in multiple 
regression, we assume that the residuals do not correlate with each other or with other variables in 
the models. In this model, both degree of motivation (Y,) and exam score (Y2) are DVs. Recall that 
a DV in SEM is any variable with a single-headed arrow pointing toward it. Treatment group (XI) 
with no single-headed arrows pointing to it is an IV. To specify the model, a separate equation is writ- 
ten for each DV. For motivation, Y1 , 

Degree of motivation is a weighted function of treatment group plus error. Note that c I  in the 
equation corresponds to E l  in Figure 14.3 and for exam score, Y2, 

Exam score is a weighted function of treatment group plus a weighted function of degree 
of motivation plus error. 

To calculate the covariance between X I  (treatment group) and Yl (degree of motivation) the 
first step is substituting in the equation for Y, : 

The second step is distributing the first term, in thls case X 

The last term in this equation, COV(Xlel), is equal to zero by assumption because it is assumed that 
there are no covariances between errors and other variables. Now, 

by rule 2, and because the covariance of a variable with itself is just a variance, 

The estimated population covariance between XI  and Yl is equal to the path coefficient 
times the variance of X I .  

This is the population covariance between XI and Yl as estimated from the model. If the model is 
good, the product of produces a covariance that is very close to the sample covariance. 

Following the same procedures, the covariance between Y I  and Y, - is: 
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because, as can be seen in the diagram, the error terms E ,  and c, - do not correlate with any other 
variables. 

All of the estimated covariances in the model could be derived in the same manner; but as is 
apparent even in this small example, covariance algebra rapidly becomes somewhat tedious. The 
"take home point" of this example is that covariance algebra can be used to estimate parameters and 
then estimate a population covariance matrix from them. Estimated parameters give us the estimated 
population covariance matrix. 

14.4.2 Model Hypotheses 

A truncated raw data set and corresponding covariance matrix appropriate for SEM analysis are 
presented in Table 14.1. This very small data set contains five continuous measured variables: 
( I )  NUMYRS, the number of years a participant has skied, (2) DAYSKI, the total number of days a 
person has skied, (3) SNOWSAT, a Likert scale measure of overall satisfaction with the snow condi- 
tions, (4) FOODSAT, a Likert scale measure of overall satisfaction with the quality of the food at the 
resort, and ( 5 )  SENSEEK, a Likert scale measure of degree of sensation seeking. Note that hypo- 
thetical data are included for only 5 skiers although the analysis is performed with hypothetical data 
from 100 skiers. Matrix computations in SEM are tedious, at best, by hand. Therefore. MATLAB, a 
matrix manipulation program, is used to perform the calcu!ations. Grab MATLAR nr SYSTAT n!- 
SAS IML to perform matrix manipulations yourself as the example develops. Note also that the cal- 
culations presented here are rounded to two decimal places. 

The hypothesized model for these data is diagrammed in Figure 14.4. Latent variables are 
represented with circles and measured variabies are represented with squares. A line with an arrow 

TABLE 14.1 Small Sample of Hypothetical Data 
for Structural Equation Modeling 

Covariance Matrix 

NUMYRS DAYSKI SNOWSAT FOODSA'T SENSEEK 

NUMYRS 1 .OO 
DAYSKI .70 1 1.47 
SNOWS AT .62 .62 1.87 
FOODS AT .34 .34 .95 1.17 
SENSEEK .30 .2 1 .54 .38 1 .00 



FIGURE 14.4 Hypothesized model for small-sample example. 

indicates a hypothesized direct relationship between the variables. Absence of a line implies no 
hypothesized direct relationship. The asterisks indicate parameters to be estimated. Shading indi- 
cates that the variable is an IV. The variances of IVs are parameters of the model and are estimated 
or fixed to a particular value. The number 1 indicates that a parameter, either a path coefficient or a 
variance, has been set (fixed) to the value of I. (At this point, don't worry about why we "fix" paths 
and variances to certain values like I. This will be discussed in Section 14.5.1 .) 

This example contains two hypothesized latent variables (factors): Love of Skiing (LOVESKI), 
and Ski Trip Satisfaction (SKISAT). The Love of Skiing (LOVESKI) factor is hypothesized to have 
two indicators, number of years skied (NIjMYKS) and number of days &ied (DA't'SKi). Greater 
Love of Skiing predicts more numerous years skied and days skied. Note that the direction of the 
prediction matches the direction of the arrows. The Ski Trip Satisfactior. (SKIS.4T) factor also has 
two indicators; smw satisfaction (SNOWSAT) and food satisfaction (FOODSAT). Higher Ski Trip 
Satisfaction predicts a higher degree of satisfaction with both the snow and the food. This model also 
hypothesizes that both Love of Skiing and degree of sensation seeking (SEI'U'SEEK) predici ievei of 
Ski Trip Satisfaction; greater levels of Love of Skiing and sensation seeking predict higher levels of 
Ski Trip Satisfaction. Also notice that no arrow directly connects Love of Skiing with degree of sen- 
sation seeking. There is no hypothesized relationship, either predictive or correlational, between 
these variables. However, we can, and we will, test the hypothesis that there is a correlation between 
Love of Skiing and degree of sensation seeking. 

As in  the discussion of covariance algebra, these relationships are directly translated into equa- 
tions and the model is then estimated. The analysis proceeds by specifying a model as in the diagram 
and then translating the model into a series of equations or matrices. Population parameters are then 
estimated that imply a covariance matrix. This estimated population covariance matrix is compared to 
the sample covariance matrix. The goal. as you might have guessed, is to estimate parameters that pro- 
duce an estimated population covariance matrix that is not significantly different from the sample 
covariance matrix. This is similar to factor analysis (Chapter 13) where the reprodc~ced correlation 
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matrix is compared to the observed correlation matrix. One distinction between SEh2.2 and EFA is that 
in SEM the difference between the satnple co~ariance matrix and the rhtiniated population covariance 
matrix is evaluated with a chi-square test statistic.' 

14.4.3 Model Specification 

One method of model specification is the Bentler-Weeks method (Bentler & Weeks, 1980). In this 
method every variable in the model, latent or measured, is either an IV or a DV. The parameters to be 
estimated are the (1) regression coefficients, and (2) the variances and the covariances of the inde- 
pendent variables in the model (Bentler, 1995). In Figure 14.4 the regression coefficients and covari- 
ances to be estimated are indicated with an asterisk (*). The variances to be estimated are indicated 
by shading the independent variable. 

In the example; SKISAT, SNOWSAT, FOODSAT, NUMYRS, and DAYSKI are all DVs 
because they all have at least one line with a single-headed arrow pointing to them. Notice that 
SKISAT is a latent variable and also a dependent variable. Whether or not a variable is observed 
makes no difference as to its status as a DV or IV. Although SKISAT is a factor, it is also a DV 
because it has arrows from both LOVESKI and SENSEEK. The seven IVs in this example are 
SENSEEK, LOVESKI, D2, E l ,  E2, E3, and E4. 

Residual variables (errors) of measured variables are labeled E and errors of latent variables 
(called disturbances) are labeled D. It may seem odd that a residual variable is considered an IV but 
remember the familiar regression equation: 

In fact the Bentler-Weeks model is a regression model, expressed in matrix a!gebrx I 
I 

where, if q is the number of DVs and r is the number of IVsi then q (eta) is a q X 1 vec- 
tor of DVs, B (beta) is a q X q matrix of regression coefficients between DVs, y (gamma) 
is a q X r matrix of regression coefficients between DVs and IVs, and 5 (xi) is an r X 1 
vector of IVs. 

In the Bentler-Weeks model only independent variables have covariances and these covari- 
ances are in cD (phi), an r X r matrix. Therefore, the parameter matrices of the model are B, y, and 
cD. Unknown parameters in these matrices need to be estimated. The vectors of dependent variables, 
q, and independent variables, 6, are not estimated. 

'A chi-square test statistic can be ~tsed in EFA when maximum likelihood factor extraction is employed. I 
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The dia~ram tor the example is translated into the Bentler-W-erks model. with I -  = 7 and = 5 .  
as below. 

rl 
- - B 9 + Y 6 

Notice that q is on both sides of the equation. This is because DVs can predict one another in 
SEM. The diagram and matrix equations are identical. Notice that the asterisks in Figure 14.4 
directly correspond to the asterisks in the matrices and these matrix equations directly correspond to 
simpIe regression equations. In the matrix equations the number 1 indicates that we have "fixed" the 
parameter, either a variance or a path coefficient, to the specific value of 1. Parameters are generally 
fixed for identification purposes. Identification will be discussed in more detail in Section 14.5.1. 
Parameters can be fixed to any number, most often, however, parameters are fixed to 1 or 0. The pa- 
rameters that are fixed to 0 are also included in the path diagram but are easily overlooked because 
the 0 parameters are represented by the absence of a line in the diagram. 

Carefully compare the model in Figure 14.4 with this matrix equation. The 5 X I vector of val- 
ues to the left of the equal sign, the eta (q) vector, is a vector of DVs listed in the order indicated, 
NVMYRS (V!), DAYSKI (V2), SNOWS.4T (V?), FOODSAT (V4). and SKISAT (F2). The next 
matrix, just to the right of the equal sign, is a 5 X 5 matrix of regression coefficients among the DVs. 
The DVs are in the same order as above. The matrix contains 23 zeros, one 1, and one *. Remember 
that matrix multiplication involves cross multiplying and then summing the elements in the first row 
of the beta (B) matrix with the first column in the eta (q) matrix, and so forth (consult Appendix A as 
iiecessaiy j. The zeros in the first, second, and fifth :=ws of the beta matrix indicate that no regression 
coefficients are to be estimated between DVs for V 1, V2, and F2. The 1 at the end of the third row is 
the regression coefficient between F2 and SNOWSAT that was fixed to 1. The * at the end of the 
fourth row is the regression coefficient between F2 and V4 that is to be estimated. 

Now look to the right of the plus sign. The 5 X 7 gamma matrix contains the regression coef- 
ficients that are used to predict the DVs from the IVs. The five DVs that are associated with the rows 
of this matrix are in the same order as above. The seven IVs that identify the columns are, in the order 
indicated, SENSEEK (V5), LOVESKI (F l), the four E (errors) for V 1 to V4, and the D (disturbance) 
of F2. The 7 X 1 vector of IVs is in the same order. The first row of the y (gamma) matrix times the 
< (Xi) vector produces the equation for NUMYRS. The * is the regression coefficient for predicting 
NUMYRS from LOVESKI (FI) and the 1 is the fixed regression coefficient for the relationship 
between NUMYRS and ~ t s  El For example, consider the equation for NUMYRS (V I )  reading from 
the first row In the matrices. 
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or. by dl-opping the zero-weighted products, and using the d~agram's notation, i 

Continue in this fashion for the next four rows to be sure you understand their relationship to 
the diagrammed model. 

In the Bentler-Weeks model only IVs have variances and covariances and these are in Q, (phi), 
an r X r matrix. ~ o r ' t h e  example, with seven IVs: 

This 7 X 7 phi matrix contains the variances and covariances that are to be estimated for the IVs. The 
*s on the diagonal indicate the variances to be estimated for SENSEEK (V5), LOVESKI (Fl),  El,  
E2, E3, E4, and D2. The 1 in the second row corresponds to the variance of LOVESKI (Fl) that was 
set to 1. There are no covariances among IVs to be estimated, as indicated by the zeros in all the off- 
diagonal positions. 

14.4.4 Model Estimation 

Initial guesses (start values) for the parameters are needed to begin the modeling process. The more 
similar the guess and the start value, the fewer iterations needed to find a solution. There are many 
options available for start values (Bollen, 1989b). However, in most cases it is perfectly reasonable 
to aiiow the SEM computer program to supply ~nitial start values. Computer program-generated 
start values are indicated with asterisks in the diagrams and in each of the three parameter matrices 
in the Bentler-Weeks model, B, q,  and &, that follow below. The A (hat) over the matrices indicates 
that these are matrices of estimated parameters. The B (beta hat) matrix is the matrix of regression 
coefficients between DVs where start values have been substituted for * (the parameters to be esti- 
mated). For the example: 
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The 111atrix containing the start values for resression coefficients betueen D V  and IV:, 15  -j 
(gamma hat). For the example: 

Finally, the matrix containing the start values for the variances and covariances of the IVs is & 
(phi hat). For the example: 

To calculate the estimated population covariance matrix implied by the parameter estimates, 
seiec;iofi matrices :Ire first used to pc!! the meast~red v-?riab!es ofit of the full parameter matrices. 
(Remember, the parameter matrices have both measured and latent variables as components.) The 
selection matrix is simply labeled G and has elements that are either Is or 0s (Refer to Ullman. 200 1, 
for a more detailed treattnent of selection matrices.) The resulting vector is labeled Y, 

where Y is our name for the those measured variables that are dependent. 

The independent measured variables are selected in a similar manner, 

X = G , * { = V S  

where X is our name for the independent measured variables. 
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Computation of the est~niated populatton covariance matrix proceeds by rewriting the b2\lc 

structural rnodeling equation ( 14. !O) as': I 
q = ( I -  ~ ) - ' ~ g  (14.13) I 

where I is simply an identity matrix the same size as B. This equation expresses the DVs 
as a linear combination of the IVs. 

At this point the estimated population covariance matrix for the DVs, i,,,.,, is estimated using: 
. . 

For the example: 

1.04 .72 .41 .34 

.72 11.48 .45 
)Y 

' " = [ . 4 1  .45 2.18 

.34 .38 1.46 1.95 

The estimated population covariance matrix between IVs and DVs is obtained similarly by: 

For the example: 

Finally, (phew!) the estimated population covariance matrix between IVs is estimzred: I 
I 

i = G,&G; 
XX 

For the example: 

In practice a "super G" matrix is used so that all the covariances are estimated in one step. The 
components of C are then combined to produce the estimated population covariance matrix after one 
iteration. 

j ~ h i s  rewritten equation is often called the "reduced form." 
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For the example. using in~tial  start values supplied by EQS: 

After initial start values are calculated, parameter estimates are changed incrementally (iterations 
continue) until the prespecified (in this case maximum likelihood) function (Section 14.5.2) is min- 
imized (converges). After six iterations, the maximum likelihood function is at a minimum and the 
solution converges. The final estimated parameters are presented for comparison purposes in the B, 
y, and @ matrices; these unstandardized parameters are also presented in Figure 14.5. 

! 
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of days skied 
v2 sensation 

seeking 

FIGURE 14.5 Final model for small-sample example with standardized 
(and unstandardized) coefficients. 

The final estimated population covariance matrix is given by i. For the example: 

The final residual matrix is: 

14.4.5 Model Evaluation 

A X 2  statistic is computed based upon the function minimum when the solution has converged. The 
minimum of the function was .09432 in this example. This value is multiplied by N - 1 (N = num- 
ber of participants) to yield the ;C2 value 
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This %' is evaluated with de~rees  of freedom equal to the difference between the total number or 
degrees of freedom and the number of parameters estimated. The degrees of freedom in SEk1 art: 
equal to the amount of unique information in the sample variancelcovariance matrix (variances and 
covariances) minus the number of parameters in the model to be estimated (regression coefficients 
and variances and covariances of independent va~iables). In a model with a few variables it is easy to 
count the number of variances and covariances; however, in larger models, the number of data points 
is calculated as, ' 

number of data points = 
P ( P  + 1) 

2 

where p equals the number of measured variables. 

In this example with 5 measured variables, there are (5(6)/2 =) 15 data points (5 variances 
and 10 covariances). The estimated model includes 11  parameters (5 regression coefficients and 6 
variances) so X2 is evaluated with 4 dfs, X2 (99, df = 4) = 9.337, p = .053. 

Because the goal is to develop a model that fits the data, a nonsigrzi$cant chi square is desired. 
This X 2  is nonsignificant so we conclude that the model fits the data. However, chi-square values 
depend on sample sizes; in models with large samples, trivial differences often cause the to be sig- 
nificant solely because of sample size. For this reason many fit indices have been developed that look 
at model fit while eliminating or minimizing the effect of sample size. All fit indices for this model 
indicate an adequate, but not spectacular, fit. Fit indices are discussed fully in Section 14.5.3. 

The model fits, but what does it mean? The hypothesis is that the observed covariances among 
the measured variables arose because of the relationships between variables specified in the model; 
because the chi square is not significant, we conclude that we should retain our hypothesized model. 

Next, researchers usually examine the statistically significant relationships within the model. 
If the unstandardized coefficients !n the three parameter matrices are divided by their respective stan- 
dard errors, a :-score is obtained for each parameter that is evaluated in the usual manner.' 

parameter estimate 
z=- 

std error for estimate 

8 1 For NUMYRS predicted from LOVESKI - = 2.78, p < .O5 
.29 

86 
DAYSKI predicted from LOVESKI - = 1.93, p = .054 

.45 

70 FOODSAT predicted from SKISAT - = 5.12, p < .05 
.14 

3 9 
SKISAT predicted from SENSEEK - = 3.48, p < .05 

.I I 

62 SKISAT predicted from LOVESKT - = 2.54, p < .05 
.25 

'The standard errors are derived from the Inverse of the inforniar~on n ~ a i i i x  

j 
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Because of differences in scales, ~t I S  sometimes diftic~llt tc) interpret unstandardized regre\- 
sion coefficients. therefore. researchers often examine standardized coefticients. Both the stan- 
dardized and unstandardized regression coefficient for the final model are in Figure 14.5. The 
unstandardized coefficients are in parentheses. T11e paths from the factors to the variables are just 
standardized factor loadings. It could be concluded that number of years skied (NUMYRS) is a sig- 
nificant indicator of Love of Skiing (LOVESKI); the greater the Love of Skiing, the higher the num- 
ber of years skied. Number of total days skied (DAYSKI) is a significant indicator of Love of Skiing, 
(i.e., greater Love of Skiing predicts more total days skied) because there was an a priori hypothesis 
that stated a positive relationship. Degree of food satisfaction (FOODSAT) is a significant indicator 1 
of ski trip satisfaction (SKISAT), higher Ski Trip Satisfaction predicts greater satisfaction with f 
the food. Because the path from SKISAT to SNOWSAT is fixed to 1 for identification, a standard 
error is not calculated. If this standard error is desired, a second run is performed with the FOOD- 
SAT path fixed instead. Higher SENSEEK predicts higher SKISAT. Lastly, greater Love of Skiing 
(LOVESKI) significantly predicts Ski Trip Satisfaction (SKISAT) because this relationship is also 
tested as an a priori, unidirectional hypothesis. i ! 

I 
14.4.6 Computer Analysis of Small-Sample Example i 
Tables 14.2, 14.4, and 14.5 show syntax and minimal selected output for computer analyses of the data 
in Table 14.1 using EQS, LISREL, and AMOS, respectively. The syntax and output for the programs 
are all quite different. Each of these programs offers the option of using a Windows "point and click" 
method in addition to the syntax approach. Additionally, EQS, AMOS, and LISREL allow for analyses 
based on a diagram. The sample example is shown only using the syntax approach. The "point and 
click" method and the diagram specification methods are just special cases of the syntax. 1 

As seen in Table 14.2, and described in Section 14.4.3, the model is specified in EQS using a I 
series of regression equations. In the /EQUATIONS section, as in ordinary regression, the DV I 
appears on the iett sslae o t  the equation, the iVs on the right side. Measured variabies are referred to 
by the letter V and the number corresponding to the variable given in the /LABELS section. Errors 
associated with mezsured vaF,ab!es are indicated by the letter E and :he niirr;bei of the variable. Fzc- 
tors are referred to with the letter F and a number given in the /LABELS section. The errors, or dis- 
turbances, associated with factors are referred to by the letter D and the number corresponding to the 

I 
I 

tactor. An asterisk indicates a parameter to be estimated. Variables included in the equation without 
I 

asterisks are considered parameters fixed to the value 1. In this example start values are not specified 
and are estimated automatically by the program. The variances of IVs are parameters of the model and 
are indicated in the /VAR paragraph. The data appear as a covariance matrix in the paragraph labeled 
/MATRIX. In the /PRINT paragraph, FIT=ALL requests all goodness-of-fit indices available. 

The output is heavily edited. After much diagnostic information (not included here), goodness- 
of-fit indices are given in the section labeled GOODNESS OF FIT SUMMARY. The independence 
model chi square is labeled INDEPENDENCE CHI-SQUARE. The independence chi square tests the 
hypothesis that there is no relationship among the variables. This chi square should always be sig- 
nificant, indicating that there is some relationship among the variables. CHI SQUARE is the model 
chi square that ideally should be nonsignificant. Several different goodness-of-fit indices are given 
(cf. Section 14.7.1) beginning with BENTLER-BONETT NORMED FIT INDEX. Significance tests 
for each parameter of the measurement portion of the model are found in the section labeled i 

I 
MEASUREMENT EQUATIONS WITH STANDAlR-P ERE.0R.S -AND TEST STATISTIC. The 

I 



TABLE 14.2 Structural Equation 5Iodel of Small-Sample Euample through EQS 6.1 
(Syntax and Selected Output) 
- 

/TITLE 
EQS model created by EQS 6 for Windows-C:\JODIE\Papers\smallsample example 
/SPECTFICATIONS 
DATA='C:\srnal~sample example 04.ESS1; 
VARIABLES=5; CASES=100; GROUPS=l; 
METHODS=ML; 
MATRIX=covariance; 
ANALYSIS=COVARIANCE; 
/LABELS 
Vl=NUMYRS; V2=DAYSKI; V3=SNOWSAT; V4=FOODSAT; V5=SENSEEK; 
F1 = LOVESKI; F2=SKISAT; 
/EQUATIONS . 

!Love of Skiing Construct 
V1 = *F1 + El; 
V2 = *F1 + E2; 

!Ski Trip Satisfaction Construct 
V3 = 1F2 + E3; 
V4 = *F2 + E4; 

F2 = *F1 + *V5 + D2; 
/VARIANCES 
v5 = *; 
F1 = 1.00; 
El to E4 = *; 
D2 = *; 
/PRINT 
EFFECT = YES; 
FIT=ALL ; 
TABLE=EQUATION; 
/=EST 
/WEST 
/END 

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 
GOODNESS OF FIT SUMMARY FOR METHOD = ML 

INDEPENDENCE MODEL CHI-SQUARE = 170.851 ON 10 DEGREES OF FREEDOM 

INDEPENDENCE AIC = 150.85057 INDEPENDENCE CAIC = 114.79887 
MODEL AIC = 1.33724 MODEL CAIC = -13.08344 

CHI -SQUARE = 9.337 BASED ON 4 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .05320 

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLU'TIOK IS 8.31C. 
(conr ln~~ed)  
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TABLE 14.2 Continued 

FIT INDICES 
----------- 
BENTLER-BONETT NORMED FIT INDEX = .945 
BENTLER-BONETT NON-NORMED FIT INDEX = .917 
COMPARATIVE FIT INDEX (CFI) - - .967 
BOLLEN (IFI) FIT INDEX = .968 
MCDONALD (MFI 1 FIT INDEX = .974 
LISFC3L GFI FIT INDEX = .965 
LISREL AGFI FIT INDEX = .870 
ROOT MEAN-SQUARE RESIDUAL (RMR) - - .I22 
STANDARDIZED RMR - - .I11 
ROOT MEAN-SQUARE ERROR OF APPROXIMATION(RMSEA) = .I16 
90% CONFIDENCE INTERVAL OF RMSEA ( .OOO, 

MEAS- EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% L m L  ARE MARKED WITH 9. 

DAYSKI =V2 = .865*F1 + 1.000 E2 
.lo5 

8.2509 

FOODSAT =V4 = .701*F2 + 1.000 E4 
.I27 

5.5119 

CONSTRUCT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH 9. 

SKISAT =F2 = .389*V5 + .625*F1 + 1.000 D2 
.lo8 .I28 

3.5919 4.8889 

STANDARDIZED SOLUTION: 

NUMYRS =V1 = .809*F1 + .588 El 
DAYSKI =V2 = .865*F1 + .502 E2 
SNOWSAT =V3 = -839 F2 + .544 E3 
FOODSAT =V4 = .738*F2 + .674 E4 
SKISAT =F2 = .350*V5 + .562*F1 + .749 D2 



~~nstandardized coefficient appear\ on the tirst line. i~nrnediately below i t  i \  the standard error for that 
parameter. The :-score associated with the parameter (the ~~nstandardized coefticient divided by the 
standard error) is given on the third line. The section labeled CONSTRUCT EQUATIONS WITH 
STANDARD ERRORS AND TEST STATISTICS contains the unstandardized regression coeffi- 
cients, standard errors, and :-score significance tests for predicting factors from other factors and 
measured variables. The standardized parameter estimates appear in the section labeled STAN- 
DARDIZED SOLUTION. 

LISREL offers two very different methods of specifying models. SIMPLIS uses equations and 
LISREL employs matrices. Neither program allows the exact model specified in Figure 14.4 to be 
tested. Underlying both these programs is the LISREL model, which, although similar to the 
Bentler-Weeks model, employs eight matrices instead of three. The matrices of the LISREL nlodel 
that correspond to the Bentler-Weeks model are given in Table 14.3. Within the LISREL model there 

T,4BLE 14.3 Equivalence of Matrices in Bentler-Weeks and LISREL Model Specifications 

Bentler-Weeks Model 

Svrnbol Name Contents 

-- 

Q, Phi matrix of 

LISREL Model 

LlSREL 
Two Letter 

Svnzhol Nmle SpeciJicatioiz Contents 

B Beta matrix of 
regression 
coefficients of 
DVs predicting 
other DVs 

y Gamma matrix of 
regression 
coeff~cients 3f 

covariances 
among the IVs 

1. B 1 .  Beta 1 .  BE 1 .  matrix of regression coef- 
ficients of latent DVs pre- 
dicting other latent DVs 

2. A 2. Lambda 2. LY 2. matrix of regression coef- 
Y ficients of measured DVs 

predicted by latznt QVq 

1 .  r I. Gamma 1. GA I .  matrix of regression coef- 
tlcient of iatenr DVs pre- 
dicted by !atent Ivs 

I .  Q, I .  Phi 1. PI I .  matrix of covariances 
among the latent IVs 

2. Y 2. Psi 2. PS 2. matrix of covariances of 
errors associated with 
latent DVs 

3. 0, 3. Theta- 3. TD 3. rnatrix of covariances 
Delta among errors associated 

with measured DVs pre- 
dicted from latent IVs 

I 4. 0, 4. Theta- 4. TE 4. matrix of covariances ~ Epsilon among errors associated 
I with measured DVs pre- 
1 d~cted from latent DVs. 

DVs predicted / 2. A., 2. Lambda 2. LX 2. matrix of regression coef- 
by IVs x ficients o t  measured DVs 

predicted by latent IVs 
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Sk i  Trip 
Satisfaction 

Dummy 
"Latent" 
Variable 

sensation 
seeking 1 SENSEEK 

E = 0 

FIGURE 14.6 LISREL adaptation for small-sample example. 

is no matrix of regression coefficients for predicting latent DVs from measured IVs. To estimate 
these parameters, a little trick, illustrated in Figure 14.6, is employed. A dummy "latent" variable 
with one indicatog is specified. in this example SENSEEK. The dummy latent variable then predicts 
SKISAT. The regression coefficient from the dummy "latent" variable to SENSEEK is fixed to one 
and the error variance of SENSEEK is fixed at zero. With this modification, the solutions are identi- 
cal, because SENSEEK = (dummy latent variable) + 0. 

LISREL uses matrices, rather than equations, to specify the model. Syntax and edited output are 
presented in Table 14.4. Matrices and commands are given with two-letter specifications defined in 
Table 14.3. CM with an asterisk indicates analysis of a covariance matrix. Following LA (for label) the 
measured variable names are given in the same order as the data. LISREL requires that the DVs appear 
before the IVs, so the specification SE (select) reorders the variables. The model specification begins 
with MO. The number of measured DVs is indicated after the key letters NY (number of Ys). The num- 
ber of measured IVs is specified after the key letters NX (number of Xs). The latent DVs are specified 
after NE and the latent IVs are specified after NK. Labels are optional, but helpful. The labels for the 
latent DVs follow the key letters LE and labels for the latent IVs follow the key letters LK. 

By default, elements of the matrices are either fixed at zero or are free. Additionally, matrices 
are one of four possible shapes: full nonsymmetrical, symmetrical, diagonal, or zero. Matrices are 
referred to by their two-letter designation, for example, LX (lambda x) is a full nonsymmetrical and 
fixed matrix of the regression coefficients predicting the measured DVs from latent IVs. 

The model is specified by a cornbination of freeing (FR) or fixing (FI)  elements of the rele- 
vant matrices. Freeing a parameter means estimating the parameter. When an element of a matrix is 

SNote this dummy variable is not a true latent variable. A one indicator latent variable is simply a measured variable. 
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TiBI ,E  14.4 Structural Equation %lode1 for Small-Sample Example through LISREI, 8.5.4 
(Syntax and Edited Output) 

TI Small Sample Example - LISREL 
DA NI=5 NO=100 NG=1 MA=CM 
CM 
* 
1.00 
.70 11.47 
.623 .623 1.874 
.436 -436 .95 1.173 
.3 .21 .54 .38 1.00 

LA 
NUMYRS DAYSKI SNOWSAT FOODSAT SENSEEK 
SE 
SNOWSAT FOODSAT NUMYRS DAYSKI SENSEEK 
MO NY =2 NX = 3 NE =1 NK = 2 

i LE 
I 
I SKISAT 

LK 
LOVESKI DUMMY 
FR LX(1,l) LX(2,l) LY(2,l) 
FI PH(2,l) TD(3,3) 
VA 1 LX(3,2) LY(1,l) PH(1,l) 
OU SC SE TV RS SS MI ND=3 

i 
LISREL Estimates (Maximum Likelihood) 

I 
LAMBDA-Y 

CUTCAT --.&u.-- -------- 
1 SNOWSAT 1.000 
I 
1 FOODSAT 0.701 
! (0.137) 
I 5.120 

I LAMBDA-X 

LOVESKI DUMMY - - - - - - - - - - - - - - - - 
I NUMYRS 0.809 - - 
I (0.291) 
! 2.782 

DAYSKI 0.865 
(0.448) 
1.930 

SENSEEK - - 
GAMMA 

LOVESKI 
- - - - - - - - - 

SKI SAT 0.62 5 
(0.185) 
2.540 

DUMMY 
- - - - - - - 
0.389 

(0.112) 
3.480 
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TABLE 11.1 Coritinued 

Covariance Matrix of ETA and KSI 

SKISAT L3VESKI DUMMY -------- - - - - - - - - -------- 
SKI SAT 1 . 2 3 6  

LOVESKI 0.625 1. 000 
D L ?  ' 0 .389 - - 1 .000  

PHI 
Note: This matrix is diagonal. 

LOVESKI DUMMY -------- -------- 
1 . 0 0 0  1 .000  

( 0 .142 )  
7 . 036  

PSI 

SKISAT - - - - - - - - 
0.694 

(0 .346 )  
2 .007 

Squared Multiple Correlations for Structural Equations 

THETA-EPS 

SNOWSAT FOODSAT 
- - - - - - - - - - - - - - - - 

0.520 0 .507  
( 0 .223 )  ( 0 . 126 )  

2 .327  4 .015  

Squared Multiple Correlations for Y - Variables 

THETA-DELTA 

NLTMYRS DAYSKI SENSEEK - - - - - - - - - - - - - - - - - - - - - - - - 
0 .345  10 .722  - - 

(0 .454 )  ( 1 . 6 0 9 )  
0 . 760  6 .664  

Squared Multiple Correlations for X - Variables 



TAR1,E 14.4 Continued 

Goodness of Fit Statistics 

Degrees of Freedom = 4 
Minimum Fit Function Chi-Square = 9.337 (P = 0.0532) 

Normal Theory Weighted Least Squares Chi-Square = 8.910 (P = 0.0634) 
Estimated Non-centrality Parameter (NCP) = 4.910 

j 90 Percent Confidence Interval for NCP = (0.0 ; 17.657) 
I 
I Minimum Fit Function Value = 0.0943 

Population Discrepancy Function Value (FO) = 0.0496 
90 Percent Confidence Interval for FO = (0.0 ; 0.178) 

Root Mean Square Error of Approximation (RMSEA) = 0.111 
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.211) 
P-Value for Test of Close Fit (RMSEA c 0.05) = 0.127 

1 Expected Cross-Validation Index (ECVI) = 0.312 
I 90 Percent Confidence Interval for ECVI = (0.263 ; 0.441) 

I ECVI for Saturated Model = 0.303 

I ECVI for Independence Model = 1.328 

Chi-Square for Independence Model with 10 Degrees of Freedom = 121.492 
Independence AIC = 131.492 

Model AIC = 30.910 
Saturated AIC = 30.000 

Independence CAIC = 149.518 
Model CAIC = 70.567 

Saturated CAIC = 84.078 

I Normed Fit Index (NFI) = 0.923 
Non-Nom.ed Fit Index (39IFI) = 0.880 

j Parsimony Normed Fit Index (PNFI) = 0.369 
Comparative Fit Index (CFI) = 0.952 
Incremental Fit Index !IFI! = 0.955 

I 

i Relative Fit Index (RFI) = 0.808 

Critical N (CN) = 141.770 

I Root Mean Square Residual (RMR) = 0.122 

I Standardized RMR = 0.0974 

i Goodness of Fit Index (GFI) = 0.965 
I Adjusted Goodness of Fit Index (AGFI) = 0.870 
i Parsimony Goodness of Fit Index (PGFI) = 0.257 

Completely Standardized Solution 

LAMBDA- Y 

SKI SAT 
- - - - - - - - 

SNOWSAT 0.839 
FOODSAT 0.769 



TABLE 14.4 Continued 
i 

LAMBDA-X I 
LOVESKI DUMMY - - - - - - - - - - - - - - - - 

NUMYRS 0.809 - - 
DAYSKI 0.255 - - 
SENSEEK - - 1.000 

GAMMA I i 

LOVESKI - - - - - - - - DUMMY ------ -- 
SKI SAT 0.562 0.350 

Correlation Matrix of ETA and KSI I 
SKI SAT - - - - - - - - LOVESKI - - - - - - - - DUMMY - - - - - - - - 

SKISAT 1.000 
LOVESKI 0.562 1.000 

DUMMY 0.350 - - 1.000 

PSI i 

SKISAT 
- - - - - - - - 

0.562 

THETA-EPS I 

THETA-DELTA I 
NUMYRS DAYSKI 

- - - - - - - - - - - - - - - - SENSEEK - - - - - - - - 
0.345 0.935 - - 

Regression Matrix ETA on KSI (Standardized) I 

fixed with the key letters F I ,  it is fixed at zero. A command line begins with either F I  (for fix) or FR 
(for free). Following this F I  or FR specification, the particular matrix and specific element (row, col- 
umn) that is to be freed or fixed is indicated. For example, from Table 14.4, FR LX ( 1 ,  1 ) means free 
(FR) the element of the lambda x matrix (LX) that is in the first row and the first column (1, 1 ) , that 
is, the factor loading of NUMYRS on LOVESKI. Similarly F I  PH ( 2 , l )  indicates that the covari- 
ance that is in the 2nd row, 1st column ( 2  , 1 ) of the phi matrix (pH) is fixed to zero ( F I )  (i.e., there 
is no relationship between LOVESKI and DUMMY). 

In this example LX (LAMBDA-X) is a 3 X 2 full and fixed matrix of regression coefficients of 
measured variables predicted by latent IVs. The rows are the three measured variables that are the indi- 
cators of latent IVs: NUILIYRS, DAYSKI, SENSEEK, and the: coluinns are the latent IVs: LOVESKI 



and DUMMY. LY (LAMBDA-Y) 1s a full and fixed tnarriu ot the regrr\sion coefficient\ prctiicting 
measured DVs from the latent DV. In this example LY is a 2 X 1 vector. The rows are the measured 
variables SNOWSAT and FOODSAT and the column is SKISAT. The PH (phi matrix) of covariances 
among latent IVs is by default symmetrical and free. In this example phi is a 2 X 2 matrix. No covari- 
ance is specified between the dummy latent variable and LOVESKI therefore pH ( 2 , l )  is fixed, F I .  
To estimate this model the error variance associated with SENSEEK must be fixed to zero. This is 
done by specifying F I  TD (3, 3 ) . TD refers to the theta delta matrix (errors associated with measured 
IVs serving as indicators of latent IVs); by default this matrix is diagonal and free. A diagonal matrix 
has zeros everywhere but the main diagonal. In the small-sample example it is a 3 X 3 matrix. 

Only four of the eight LISREL matrices (LX, LY, PH, and TD) are included on the model (MO) 
line. LISREL matrices have particular shapes and elements specified by default. If these defaults are 
appropriate for the model there is no need to mention the unmodified matrices on the MO line. In this 
example the default specifications for TE, GA, PS, and BE are all appropriate. TE (theta epsilon) is 
diagonal and free by default. TE contains the covariances associated with the measured DVs associ- 
ated with the latent DVs. In this example it is a 2 X 2 matrix. Gamma (GA) contains the regression 
coefficients of latent IVs predicting latent DVs. By default this matrix is full and free. In this exam- 
ple GA is a 1 X 2 vector. PS contains the covariances among errors associated with latent DVs, by 
default it is diagonal and free. In the small-sample example there is only 1 latent DV, therefore, PS 
is simply a scalar (a number). BE contains the regression coefficients among the latent DVs, by 
default a matrix of zeros. The small-sample example contains no relationships among latent DVs- 
there is only 1 latent DV-so there is no need to mention BE. 

Finally, for identification, a path is fixed to I on each factor and the variance of LOVESKI is 
fixed at the value I .  (See Section 14.5.1 for a discussion of identification.) This is accomplished with 
the key letters VA 1 and the relevant matrices and corresponding elements. The OU line specifies out- 
put options (SC completely standardized solution, SE standard errors, TV t values, RS residual infor- 
-,,+:,, ,, urLv,,, dd cc r >,tanda:dized s~!ut ion ,  2nd F E  nnmber of decim-l! P!~CPS!, nnt a!! of which are inc!uded 

in the edited output. 
The highly edited output provides the unstandardized regression coefficients, standard errors 

for the regression coefficients, and t tests jilnstandardized regression coefficient divided by standard 
error) by matrix in the section labeled LISREL Estimates (Maximum Likelihood). The sta- . . tisiical significance iif p=zmeter es:ima:e:; is determined with a t:~b!e c.f t dist:ibuticns (Tzb!e C.2). 'A. 

r statistic greater than 1.96 is needed for signiticance at p < .05 and 2.56 for significance at p < .O 1. 
These are two-tailed tests. If the direction of the effect has been hypothesized a priori a one-tailed test 
can be employed, t = 1.65, p < .05, one-tailed. The goodness-of-fit summary is labeled Goodness 
Of Fit Statistics. A partially standardized solution appears, by matrix, in the section labeled 
Completely Standardized Solution. The regression coefficients, and variances and covari- 
ances, are completely standardized (latent variable mean of 0, sd = 1 ,  observed variable mean = 0, 
sd = 1) and are identical to the standardized solution in EQS. The error variances given in Com- 
pletely Standardized Solution for both measured variables and latent variables are not 
actually completely standardized and are different from EQS (Chou & Bentler, 1993). An option in 
LISREL (not shown) is the Standardized Solution, a second type of partially standardized solution in 
which the latent variables are standardized to a mean = 1 and sd = 0 but the observed variables 
remain in their original acale. 

AMOS syntax uses equations to bpecify the model. Syntax and edited output are presented in 
Table 14.5. After an SEM new model is specified with Dim Sem As New AmosEngine, general 
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TABLE 14.5 Structural Equation \lode1 of Small-Sample Evample through AXIOS 
(Syntax and Selected Output) 

Sub Main 
Dim Sem As New AmosEngine 
Sem.TableOutput 
Sem.Standardized 
Sem.Mods 0 

Sem.BeginGroup "UserGuide.xls", "smsample" 
Sem.Structure "numyrs<---loveski" 
Sem.Structure "dayski i---loveskit' 
Sem.Structure "snowsat<---skisat (1)" 
Sem.Structure "foodsat<---skisat" 
Sem.Structure "loveski (1)" 

Sem. Structure "numyrs<---error1 ( 1) " 
Sem.Structure 'dayski<---error2 (1)" 
Sem.Structure "snowsat <---error3 (1)" 
Sem.Structure "foodsat <---error4 (1)" 

Sem.Structure "skisat <---loveski" 
Sem.Structure "skisat <---senseek" 
Sem.Structure "skisat <---error5 (1)" 
Sem.Structure 'loveski<--->senseek (0)" 

End Sub 

Computation of degrees of freedom (Model 1) 

Number ef distinct sample m~ments:  ? 5 
Number of distinct parameters to be estimated: 11 

Degrees of freedom (1 5 - 11): 4 

Result (Model 1) 

Minimum was achieved 
Chi-square = 9.337 
Degrees of freedom = 4 
Probability level = ,053 

Group number 1 (Group number 1 - Model 1) 
Estimates (Group number 1 - Model 1) 
Scalar Estimates (Group number 1 - Model 1) 
Maximum Likelihood Estimates 
Regression Weights: (Group number 1 - Model 1) 

Estimate S.E. C.R. P Label 
~~ ~ 

skisat <-- loveski ,622 ,245 2.540 ,011 
skisat <-- senseek ,389 .I12 3.480 *** 

numyrs <-- loveski ,805 ,289 2.782 ,005 
dayski <-- loveski .861 ,446 1.930 .054 

snowsat <-- skisat 1.000 
foodsat <-- skisat ,701 ,137 5.120 *** 
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TABLE 14.5 Continued 
- - 

Standardized Regression Weights: (Group number 1 - Model 1) 

Estimate 

skisat <-- loveski .562 
skisat <-- senseek .350 

numyrs <-- loveski .809 
dayski <--. loveski .255 

snowsat <-- skisat .839 
foodsat <-- skisat .739 

Covariances: (Group number 1 - Model 1) 

Estimate S.E. C.R. P Label 

loveski <--> senseek .000 

Model Fit Summary 
CMlN 

Model NPAR CMlN DF P CMINIDF 

i Default model 11 9.337 4 .053 2.334 
Saturated model 15 .OOO 0 
Independence model 5 102.841 10 .OOO 10.284 

RMR, GFI 

Model RMR 
Default model .I21 
Saturated model .OOO 
Independence model ,451 

Baseline Comparisons 

Model NFI 
Delta1 

Default model .909 
Saturated model 1 .OOO 
Independence model .OOO 

Parsimony-Adjusted Measures 

Model PRATIO 
Default model .400 
Saturated model .OOO 
lndependence model 1.000 

NCP 

Model NCP 
Default model 5.337 
Saturated model ,000 
lndependence model 92.841 

GFI AGFl PGFl 
.965 ,870 ,257 

1 .ooo 
,671 .506 .447 

RFI IF1 TLI 
rho1 Delta2 rho2 
.773 .946 .856 

1 .ooo 
.ooo .ooo .ooo 

PNFl PCFl 
.364 .377 
.ooo .ooo 
.ooo .ooo 

CFI 
.943 

1 .ooo 
.ooo 

(continued) 
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TABLE 14.5 Continued 

FMlN 

Model FMlN 
Default model .094 
Saturated model .OOO 
Independence model 1.039 

RMSEA 

PCLOSE 
.I10 
.ooo 

Model RMSEA 
Default model .I16 
Independence model .306 

AIC 

Model AIC 
Default model 31.337 
Saturated model 30.000 
lndependence model 11 2.841 

ECVl 

BCC 
32.757 
31.935 

1 13.486 

BIC 
59.994 
69.078 

125.867 

Model ECVl 
Default model .317 
Saturated model .303 
Independence model 1.140 

HOELTER 

HOELTER 
Model .05 
Default model 101 
Independence model 18 

HOELTER 
.O1 
141 
23 

commands regarding output options are given. Each command begins with the letters Sem. 
Sem. Tableoutput indicates that output be presented in table form similar to SPSS for Windows 
style. Other options are available. Sem. Standardized requests a completely standardized solu- 
tion. Sem . Mods 0 requests all modification indices. 

Heavily edited table output follows. The first section after Computation of degrees of free- 
dom contains the model chi-square information. The model chi-square information is contained in 
the section labeled Chi-square. Detailed goodness-of-fit information follows in the section labeled 
Fit Measures. Significance tests for each parameter are given in the sections labeled Regression 
Weights. The first column in this table is parameter estimate, labeled Estimate. The next column, 
labeled S.E. contains the standard errors. The third column, labeled C.R., the critical ratio is the 
estimate divided by the S.E. The C.R. is the same as the z test in EQS. The final column, labeled P, 
contains the P value for the critical ratio. The completely standardized solution is given in the table 
labeled, Standardized Regression Weights. 
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The model specific~tron begin\ by 9pecity111~ the locat~on ot the data with the comln,~nd. Sem- 
Beg~nGroup "UserGu~de.xls". "smsample". In  th~s exdniple the datd are In ,In Excel v,orkbook 
"UserGutde.xls" in a work\heet called "srnsdmple." Following speclticatlon of the data ceparate equa- 
tions are wrltten for each dependent variable in the model. The specific equation is stated double 
quotes (") after the comlnand Sem.Structure. As with EQS paths that are fixed to 1 have ( I )  follow- 
ing the equation. AMOS automatically correlates the IV, in this example Love of Skiing (LOVESKI) 
and degree of sensation seeking (SENSEEK). To specify no relationship between these variables the 
command Sem.Structure "loveski <--> senseek(0)" is given. AMOS makes use of colors in the 
syntax specification method. When each line is correctly imputed the keywords, for example, Struc- 
ture, on the line change color. If the line of syntax is incorrect there is no color change. 

14.5 Some Important Issues 

14.5.1 Model Identification 

In SEM, a model is specified, parameters for the model are estimated using sample data, and the pa- 
rameters are ~ ~ s e d  to produce the estimated population covariance matrix. But only models that are 
identified can be estimated. A model is said to be identified if there is a unique numerical solution for 
each of the parameters in the model. For example, say both that the variance of Y = 10 and that the 
variance of Y = a + 8. Any two values can be substituted for a and as long as they sum to 10. There 
is no unique numerical solution for either a or 8; that is, there are an infinite number of combinations 
of two numbers that would sum to 10. Therefore, this single equation model is not identified. However, 
if we fix ai to 0 then there is a unique solution for p, 10, and the equation is identified. It is possible to 
use covariance algebra to calculate equations and assess identification in very simple models; however, 

. . in large models this procedure quickly becomes unwie!dy. Fnr a detailed, terhnica! rtiscussinn nf :den- 
tification, see Bollen (1989b). The following guidelines are rough, but may suffice for many models. 

The first step is to count the numbers of data points and the number of parameters that are to 
be estimated. The data in SEM are the variances and covariances in the sanzple covariance matrix. 
The number of data points is the number of sample variances and covariances (found through Equa- 
tion 14.17). The number of parameters is found hy adding together the nuzbe: ef regressi~:: coeffi- 
cients, variances, and covariances that are to be estimated (i.e., the number of asterisks in a diagram). 

If there are more data points than parameters to be estimated, the model is said to be overiden- 
tified, a necessary condition for proceeding with the analysis. If there are the same number of data 
points as parameters to be estimated, the model is said to be just identified. In this case, the estimated 
parameters perfectly reproduce the sample covariance matrix, chi square and degrees of freedom are 
equal to zero, and the analysis is uninteresting because hypotheses about adequacy of the model can- 
not be tested. However, hypotheses about specific paths in the model can be tested. If there are fewer 
data points than parameters to be estimated, the model is said to be underidentified and parameters 
cannot be estimated. The number of parameters needs to be reduced by fixing, constraining, or delet- 
ing some of them. A parameter may be fixed by setting it to a specific value or constrained by setting 
the parameter equal to another parameter. 

In the small-sample example of Figure 13.4, there are 5 measured variables so there are 15 data 
points: 5 ( 5  + 1 ) / 2  = 15 ( 5  variances and I0 covariances). There are 1 1  parameters to be estimated 
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In the hypothes~zed model: 5 regrehsion coefficients and 6 variances. The hypothesi~ed model ha5 4 
fewer parameters than data points. s o  [he model may be identitied. 

The second step in determining model identifiability is to examine the measurement portion of 
the model. The measurement part of the model deals with the relationship between the measured 
indicators and the factors. It is necessary both to establish the scale of each factor and to assess the 
identifiability of this portion of the model. 

To establish the scale of a factor, you either fix the variance for the factor to 1 ,  or fix to 1 the 
regression coefficient from the factor to one of the measured variables (perhaps a marker variable cf. 
Section 13.3.1). Fixing the regression coefficient to 1 gives the factor the same variance as  the mea- 
sured variable. If the factor is an IV, either alternative is acceptable. If the factor is a DV, most 
researchers fix the regression coefficient to 1. In the small-sample example, the variance of the Love 
of Skiing factor was set to 1 (normalized) and the scale of the Ski Trip Satisfaction factor was set 
equal to the scale of the snow satisfaction variable. 

To establish the identifiability of the measurement portion of the model, look at the number of 
factors and the number of measured variables (indicators) loading on each factor. If there is only one 
factor, the model may be identified if the factor has at least three indicators with nonzero loading and 
the errors (residuals) are uncorrelated with one another. If there are two or more factors, again con- 
sider the number of indicators for each factor. If each factor has three or more indicators, the model 
may be identified if errors associated with the indicators are not correlated, each indicator loads on 
only one factor and the factors are allowed to covary. If there are only two indicators for a factor, the 
model may be identified if there are no correlated errors, each indicator loads on only one factor, and 
none of the variances or covariances among factors is equal to zero. 

In the small-sample example, there are two indicators for each factor. The errors are uncorrelated 
and each indicator loads on only one factor. Additionally, the covariance between the factors is not 
zero. Therefore, this part of the model may be identitied. Please note that identification may still be 
possible if errors are correlated or variables load on more than one factor. but it is more complicated. 

The third step in esrabiisning modei identifiabiiity is to examine the structural portion of the 
model, looking only at the relationships among the latent variables (factors). Ignore the measured 
variables for a moment; consider only the structural portion of the model that deals with the regres- 
sion coefficients relating latent variables to one another. If none of the latent DVs predicts each other 
(the beta matrix is all zeros) the structural part of the model may be identified. The small-sample 
exampie has oniy one iatent DV so this part of the model may be identified. If the latent DVs do pre- 
dict one another, look at the latent DVs in the model and ask if they are recursive or nonrecursive. If 
the latent DVs are recursive there are no feedback loops among them, and there are no correlated dis- 
turbances (errors) among them. (In a feedback loop, DV1 predicts DV2 and DV2 predicts DV 1. That 
is, there are two lines linking the factors, one with an arrow in one direction and the other line with an 
arrow in the other direction. Correlated disturbances are linked by single curved lines with double- 
headed arrows.) If the structural part of the model is recursive, it may be identifiable. These rules also 
apply to path analysis models with only measured variables. The small-sample example is a recur- 
sive model and therefore may be identified. 

If a model is nonrecursive either there are feedback loops among the DVs or there are corre- 
lated disturbances among the DVs, or both, see Bollen 1989a. 

Identification is often difficult to establish and frequently. despite the best laid plans, problems 
emerge. One extremely common error that leads to identification problems is failure to set the scale of 
a factor. In the small-sample example; if we had fnrgotten to set the scale of the Ski Trip Satisfactior! 



factor. each of the programs would have incilcated a proble~i~. The error messages for each program 
are given in  Table 14.6. Note that SIILIPLIS fives the problem automatically without printing o ~ ~ t  :I 

warning message. Potentially. this could lead to some confusion. 
Part (a) of Table 14.6 illustrates how EQS signals this type of identitication problem. This mes- 

sage usually indicates an identitication problem either with the particular variables mentioned, as in 
this case, or in the general neighborhood of the variables mentioned. Part (b) illustrates the LISREL 
message given the same identification problem. TE 2 , 2  refers to an element in the theta epsilon 
matrix (cf. Table 14.3). This indicates that the error variance for SNOWSAT may not be identified. 

Part (c) of Table 14.6 shows the error message provided by AMOS. The first section indicates 
a possible identification problem and the second section indicates equations where the identification 
problem may have occurred. 

When these messages occur, and despite the best of intentions they will, it is often helpful to 
compare the diagram of the model with the program input and be absolutely certain that everything 
on the diagram matches the input and that every factor has a scale. Application of these few basic 
principles will solve many identification problems. 

Another common error is to fix both the factor variance to 1 and a path from the factor to an 
indicator to 1. This does not lead to an identification problem but does imply a very restricted model 
that almost certainly will not fit your data. 

TABLE 14.6 Condition Codes When Latent Variable Variance Is Not Fixed 

PARAMETER CONDITION CODE 
V3, F2 LINEARLY DEPENDENT ON OTHER PARAMETERS 

(b) LISREL 

W-A-R-N-I-N-G: TE 2,2 may not be identified. 
Standard Errors, T-Values, Modification Indices, 
sad Standardized Residi~als cannot be computed. 

(c) AMOS 

Regression Weights 

Estimate S.E. C.R. P Label 

skisat <-- loveski Unidentified 
skisat <-- senseek Unidentified 
skisat <-- error 

numyrs <-- loveski 
dayski <-- loveski 

snowsat <-- skisat Unidentified 
foodsat <-- skisat Unidentified 

Covariances 

Estimate S.E. C.R. P Label 

loveski <-->senseek 
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TABLE 14.6 Continued 

I 

Variances I 
Estimate S.E. C.R. P Label 

loveski 
senseek 
error Unidentified 
error1 
error2 
error3 
error4 

Computation of degrees of freedom I 
I 

Number of distinct sample moments = 15 
Number of distinct parameters to be estimated = 12 
Degrees of freedom = 15-1 2 = 3 

The model is probably unidentified. In order to achieve 
identifiability, it will probably be necessery to impose 1 
additional constraint. 

The (probably) unidentified parameters are marked. 

TABLE 14.7 Summary of Estimation Techniques and Corresponding Function Minimized 

Estimation Function Interpretation of W, 
Method Minimized the Weight Matrix 

Unweighted Least 1 
Squares" (ULS) F,Jlzs = p [ ( S  - z(@)l21 

Generalized Least 1 
Squares (GLS) F,,, = tr{[(s - Z(@))] w ' } *  

W = 1, the identity matrix 

W = S. W is any consistent 
estimator of X. Often the sample 
covariance matrix, 3, is used. 

W = C-I. the inverse of the ! 
Maximum 

~ ~ ~ = l o g l ~ I  - l o g I ~ I  + t r (SC- ' ) -p  estimated population covariance 
Likelihood (ML) matrix. The number of measured 

variables is p. 1 
Elliptical F~~~ = - ( K  1 + 1)-ltr{[s - ~ ( @ ) ] ~ - 1 ) 2  W = any consistent estimator of 
Distribution 2 C. K and 6 are measures of 
Theory (EDT) kurtosis. 

Asymptotically W has elements, 
Distribution Free FADF = [S - (@) 1'W- ' [s - 0 (011 wqkl = cVk[ - cijdkl (bVkl is 
(ADF) the kurtosis, cii is the covariance) 

T i c  X' statistic.. or r t~ndard  errors are available by the usual formii!ae, SLI: :some programs give these using more general 
computations. 



S t r ~ ~ c t u r a l  Ecl i tat ion Modeling 7 13 

14.5.2 Estimation Techniques 

After a model i h  specified, population parameter:, are sr~tirnated with the goal of ~ninirni~irig the dlf- 
ference between the observed and estimated population covariance matrices. To accomplish this goal 
a function, Q, is minimized where 

s is the vector of data (the observed sample covariance matrix stacked into a vector): o is 
the vector' of the estimated population covariance matrix (again. stacked into a vector) 
and O indicates that o is derived from the parameters (the regression coefficients, vari- 
ances and covariances) of the model. W is the matrix that weights the squared differ- 
ences between the sample and estimated population covariance matrix. 

Recall that in factor analysis (Chapter 13) the observed and reproduced correlation matrices are com- 
pared. This notion is extended in SEM to include a statistical test of the difference. If the weight matrix, 
W, is chosen correctly to minimize Q, Q multiplied by (N - I) yields a chi-square test statistic. 

The trick is to select W to minimize the squared differences between observed and estimated 
population covariance matrices. In an ordinary chi square (Chapter 3), the weights are the set of 
expected frequencies in the denominators of the cells. If we use some other numbers instead of the 
expected frequencies, the result might be some sort of test statistic, but it would not be a ,y2 statistic; 
i.e., the weight matrix would be wrong. 

In SEM, estimation techniques vary by the choice of W. A summary of the most popular es- 
timation techniques and the corresponding functions minimized is presented in Table 14.7.~ 
Unweighted least squares estimation (ULS) does not usually yield a ,y2 statistic or standard errors. 
Because researchers are usually interested in the test statistic, ULS estimation is not discussed fur- 
ther (see Bollen, 1989b, for a further discussion of ULS). 

Other estimation procedures are GLS (Generalized Least Squares), ML (Maximum Likeli- 
hood), EDT (Elliptical Distribution Theory), and ADF (Asymptotically Distribution Free). Satorra 
and Bentler (1988) have also developed an adjustment for nonnormality that can be applied to the 
chi-square test statistic following any estimation procedure. Briefly, the Satorra-Bentler scaled ;C2 is 
a correction to the ,y2 test statistic.' EQS also corrects the standard errors associated with the pa- 
rameter estimates for the extent of the nonnormality (Bentler & Dijkstra, 1985). These adjustments 
to the standard errors and the Satot7-a-Bentlef scaled chi squark so far have been implemented only 
in the ML estimation procedure in EQS. 

The performance of the X2  test statistic derived from these different estimation procedures is 
affected by several factors, among them (1) sample size, (2) nonnormality of the distribution of 
errors, of factors, and of errors and factors, and (3) violation of the assumption of independence of 

6Really, it's not rhar technical! See Appendix A for additional guidance in deciphering the equations. 

te he Satorra-Bentler Scaled %' is the maximum likelihood test statistic (ThfL) adlusted using the following formula: 

dfs in  the model 
Satorra-Bentlrr Scaled /' = 

t r ( i T ~ , )  Twi 

where U is the weight mat r~x  ;~nd residual weight rnatrix under the model and S,, i s  the asymptotic covariance inatrix 
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factors and elrors. The goal is to select an estimation procedure that. in hlonte Carlo studies. pro- 
duces a test statistic that neither rejects nor accepts the true model too many times as defined by a 
prespecified alpha level, conimonly p < .05. Two studies provide guidelines for selection of an 
appropriate estimation method and test statistics. The following sections summarize the performance 
of estimation procedures examined in Monte Carlo studies by Hu, Bentler, and Kano (1 992) and 
Bentler and Yuan ( 1  999). Hu et al. (1992) varied sample size from 150 to 5,000 and Bentler and Yuan 
(1999) examined samples sizes ranging from 60 to 120. Both studies examined the performance of 
test statistics derived from several estimation methods when the assumptions of normality and inde- 
pendence of factors were violated. 

14.5.2.1 Estimation Methods and Sample Size 

Hu and colleagues (1992) found that when the normality assumption was reasonable, both the ML 
and the Scaled ML performed well with sample sizes over 500. When the sample size was less than 
500, GLS performed slightly better. Interestingly, the EDT test statistic performed a little better than 
ML at small sample sizes. It should be noted that the elliptical distribution theory estimator (EDT) 
considers the kurtosis of the variables and assumes that all variables have the same kurtosis although 
the variables need not be normally distributed. (If the distribution is normal, there is no excess kur- 
tosis.) Finally, the ADF estimator was poor with sample sizes under 2,500. Bentler and Yuan (1 999) 
found that a test statistic similar to Hotelling's ir: based on an adjustment to the ADF estimator, per- 
formed very well in models with small sample sizes (N = 60 to 120) and more subjects than the 
number of nonredundant variances and covariances in the sample covariance matrix (i.e.. 
[ p (p  + 1)]/2, where p is the number of measured variables). This test statistic (Yuan-Bentler) 
adjusts the chi-square test statistic derived from the ADF estimator as, 

Where N is the number of subjects, p" = [ p ( p  + 1)]/2, where p is the numbcr of mea- 
sured variables, q is the number of parameters to be estimated, and TADF is the test sta- 
tistic based on the ADF estimator. 

14.5.2.2 Estimation Methods and Nonnormality 

When the normality assumption was violated, Hu et al. (1992) found that the ML and GLS estima- 
tors worked well with sample sizes of 2,500 and greater. The GLS estimator was a little better with 
smaller sample sizes but led to acceptance of too many models. The EDT estimator accepted far too 
many models. The ADF estimator was poor with sample sizes under 2,500. Finally, the Scaled ML 
performed about the same as the ML and GLS estimators and better than the ADF estimator at all but 
the largest sample sizes.8 With small sample sizes the Yuan-Bentler test statistic performed best. 

"his is interesting in  that the .-\DF e>tilri,~tor 114s lit, J i> t r~bu t io i~a l  as\ulripLiorls . ~ r ~ c l .  theo~.et~cnlly. should pertorm quite well 
iinder conditions of  nonilorniality. 



I 14.5.2.3 Estirnntiort ,Wethocls ulld Depeizderzce 

I The assumption that error\ are indepentlcut i~ndrrlit.:, SESI ~ i n d  othcl. rnulti~~lrii~ttt  techniyiiex. Hu er 
al. ( 1999) also investigated estimatio~l methods and test statistic performance when the errors and 
factors were dependent but uncorrelated." ML and GLS performed poorly. always rejecting the true 
model. ADF was poor unless the sample size was greater than 2,500. EDT was better than ML, GLS, 

! and ADF, but still rejected too many true models. The Scaled ML was better than the ADF at all but 
the !argest sample sizes. The Scaled ML z2 performed best overall with medium to larger sample 
sizes, the Yuan-Bentler test statistic performed best with small samples. 

I 

14.5.2.4 Some Recommendations for Choice of Estimation Method 

Sample size and plausibility of the normality and independence assumptions need to be considered 
in selection of the appropriate estimation technique and test statistic. ML, the Scaled ML, or GLS 
estimators may be good choices with medium to large samples and evidence of the plausibility of the 
normality and independence assumptions. The Scaled ML is fairly computer intensive. Therefore, if 
time or cost are an issue, ML and GLS are better choices when the assumptions seem plausible. ML 
estimation is currently the most frequently used estimation method in SEM. In medium to large sam- 
ples the Scaled ML test statistic is a good choice with nonnorrnality or suspected dependence among 
factors and errors. Because scaled ML X 2  is computer intensive and many model estimations may be 
required, it is often reasonable to use the ML X2 during model estimation and then scaled ML X2 for 
the final estimation. In small samples the Yuan-Bentler test statistic seems best. The test statistic 
based on ADF estimator (without adjustment) seems like a poor choice under all conditions unless 
the sample size is very large (>2,500). 

14.5.3 Assessing the Fit of the Model 
A f t e r  t h e  m n r l e l  h n c  hpen ~ n e r i f i e r i  a n r l  then estimated, the m a i n r  n ~ ~ ~ c t i n n  jc, ''1: i t  2 good me&!?'' 
..a'-. ".-"'..-- '..-',"--" y - ~ . . . ~ U . L . . U  "'LLJ"' yUI,IL..I.. 

One component of a "good" model is the fit between the sample covariance matrix and the estimated 
population covariance matrix. Like multiway frequency analysis (Chapter 16) and logistic regression 
(Chapter 1 O), a good fit is sometimes indicated by a nonsignificant K2. Unfortunately, assessment of 
f i t  is not always as straightforward as assessment of With large samples, trivial differences 
h o t t l ~ o ~ n  cqmnlo . > n A  ~ ~ t ; r n q i ~ r l  nnnllInt;nm rrnxrnr;.lnr.o rnntr:rrnr nro r\(li-- c;rrn;Grnnt hn<.,>xnc~ t h ~  m;n 
V b L V V b b L 1  O U t L L y I b  U L l U  b r ) L I I I I C L L L U  ~ V ~ U I U L I U I I  L U V U I I U L L b L  L L l U L l L b L J  UlL U L L L I I  D L E L I I I I C U L L L  V L b U C I k I b  L 1 1 b  11I11I- 

imum of the function is multiplied by N - 1. With small samples, the computed X2,  may not be dis- 
tributed as ,y2, leading to inaccurate probability levels. Finally, when assumptions underlying the x2 

test statistic are violated, the probability levels are inaccurate (Bentler, 1995). 
Because of these problems, numerous measures of model fit have been proposed. In fact, this 

is a lively area of research with new indices seemingly developed daily. One very rough "rule of 
thumb," however, directly related to the X 2  value is that a good-fitting model may be  indicated when 
the ratio of the X 2  to the degrees of freedom is less than 2. The following discussion presents only 

"actor< were clependrlit but ~ inc~o~-re lnts t l  by cleating ;I cul .v~l~nenr I-elation,hip hetween the factors and the errors. Correla- 
t lon coef t ic lent  r'uumlnc o~ i l> /  l i ne~ l r  relation\hip\: therefore. . r l tho~~gh ihc. correlation i\ / f r o  between t':~ctor\ ant1 error-\, the) 
;Ire dependent 
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- 7  some exalnples ot each type ot fit Index. I he ~nterested reader is referred to Tcitiaka ( 199.3 j .  I31.o~rie 
and Cudech i 1993). and Willi;~rns and Hvlahari ( 1994) for excellr~it Jibcussion5 of f i t  ind~ces. 

14.5.3.1 Comparative Fit Zfzdices 

One method of conceptualizing goodness of fit is by thinking of a series of models all nested within 
one another. Nested,models are like the hierarchical models in log-linear modeling discussed in 
Chapter 16. Nested models are models that are subsets of one another. At one end of the continuum 
is the independence model: the model that corresponds to completely unrelated variables. This 
model would have degrees of freedom equal to the number of data points minus the variances that 
are estimated. At the other end of the continuum is the saturated (full or perfect) model with zero 
degrees of freedom. Fit indices that employ a comparative fit approach place the estimated model 
somewhere along this continuum. The Bentler-Bonett (1980) normed tit index (NFI) evaluates the 
estimated model by comparing the z2 value of the model to the X2  value of the independence model, 

L - .L 
Xindep Arnodel 

NFI = 1 
A .* 

This yields a descriptive fit index that lies in the 0 to 1 range. For the small-sample example, 

102.84 1 - 9.337 = .909 
NFI = 

102.841 

High values (greater than .95) are indicative of a good-fitting model. Therefore, the NFI for the 
small-sample example indicates only a marginal fit as compared to a model with completely uncor- 
related variables. Unfortunately. the NFI may ~~nderest in~ate the tit of the m d e !  in geed-fi tting mcd- 
els with small samples (Bearden, Sharma, & Teel, 1982). An adjustment to the NFI incorporating the 
degrees of freedom in the model yields the non-normed fit index (NNFI), 

2 dfindep 2 Y. .,._ - - '-llluep Y dfmOdel ,- rnvdei 

NNFI = 
&dep - dfindep 

The adjustment improves on the problem of underestimating the fit in extremely good-fitting mod- 
els but can sometimes yield numbers outside of the 0 - 1 range. The NNFI can also be much too 
small in small samples, indicating a poor fit when other indices indicate an adequate fit (Anderson & 
Gerbing, 1984). 

The problem of the large variability in the NNFI is addressed by the incremental fit index (IFI) 
(Bollen, 1989b), 

- - 2  
&dep Arnodel 

IF1 = , 
Xmdep df model 



i 
I The con~parati~e tit 1nde.r; (CFI: Bentler. 1988) also assesses fit relatibe to other models a\ the 

I name implies. but uses a different approach. The CFI enlploys the noncentral %' distribution with 

I noncentrality parameters, ti. The larger the value of ri, the greater the model rnisspecitication: i . ~ . ,  

I 
if the estimated model is perfect. Ti = 0. The CFI is defined as, 

'est. model CFI = I - 
'indep. model 

So, clearly. the smaller the noncentrality parameter, ti, for the estimated model relative to the t i ,  for 
the independence model, the larger the CFI and the better the fit. The r value for a model can be esti- 
mated by, 

- 2 - 
'indep. model - Xindep. model dfindep. model 

- , 2  - 
',st. model - Lest. model dfest. model 

For the small-sample example, 

- 102.84 - 10 = 92.84 'independence model - 

Testimated model = 9.337 - 4 = 5.337 

5 337 
CFI  = 1 - - = .943 

92.84 

CFI values greater than .95 are often indicative of good-fitting models (Hu & Bentler, 1999). The 
CF! is nermed to the 0 - ! rznee L and dees 8 go:::! J& =f e:;timating mode! f i t  ever, ix sma!! samples 
(Bentler, 1989). It should be noted the values of all of these indices depend on the estimation method 
used. 

The root mean square error of approximation (RMSEA; Browne & Cudeck, 1993) estimates 
the lack of fit in a model compared to a perfect (saturated) model. The equation for the estimated 
P,?*ISEA is given by 

estimated RMSEA = 

2 
A Xmodel - 'f model 

where F, = 
N 

or 0 whichever is smaller but positive. 

When the model is perfect, eo = 0. The greater the model mispecification the larger ko. Values 
of .06 or less indicate a good-fitting model relative to the model degrees of freedom (Hu & Bentler, 
1999). Values larger than .I0 are indicative of poor-fitting models (Browne & Cudeck, 1993). Hu and 
Bentler (1999) found that in small samples the RMSEA overrejected the true model, i.e.. the value 
was too large. Because of this problem, this index may be less preferable w~th small samples. As with 
the CFI the choice of estimation method affects the size of the KMSEA. 



For the mall-xample example. I 
therefore, I 

14.5.3.2 Absolute Fit Index 

McDonald and Marsh (1990) have proposed an index that is absolute in that it does not depend on a 
comparison with another model such as the independence or saturated models (CFI) or the observed 
data (GFI). This index is illustrated with the small-sample example, 

(9.337 - 4) 
MFI = exp -.5 [ 100 I = .974 

14.5.3.3 Indices of Proportion of Variance Accounted 

'l'wo wtdely available fit indices calculate a weighted proportion of variance in the sample covariance 
accounted for by the estimated population covariance matrix (Bentler, 1983; Tanaka & Huba, 1989). 
The goodness-of-fit index, GFI, can be defined by, 

GF; = t r (ci'W6) 
t r (s 'Ws) 

where the numerator is the sum of the weighted variances from the estimated model 
covariance matrix and the denominator is the sum of the squared weighted variances 
from the sample covariance. W is the weight matrix that is selected by the choice of esti- 
mation method (Table 14.7). 

Tanaka and Huba (1989) suggest that GFI is analogous to R? in multiple regression. This fit 
index can also be adjusted for the number of parameters estimated in the model. The adjusted fit 
index, labeled AGFI, is estimated by 

1 - GFI 
AGFI = 1 

. Number of est. parameters 
I - 

Number of data points 
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For the sn~all-sample example. 

1 - .965 
AGFI = 1 - = .87 

. 1 1  

The fewer the number of estimated parameters relative to the number of data points, the closer the 
AGFI is to the GFI. In this way the AGFI adjusts the GFI for the number of parameters estimated. 
The fit improves by estimating lots of parameters in SEM. However, a second goal of modeling i:; to 
dewelop a parsimonious model with as few parameters as possible. 

14.5.3.4 Degree of Parsimony Fit Indices 

Several indices have been developed that take into account the degree of parsimony in the model. 
Most simply, an adjustment can be made to the GFI (Mulaik et al., 1989), to produce PGFI 

PGFI = [ I  - ( Number of est. parameters 
Number of data points 

For the small-sample example, 

PGFI = I - - .965 = ,257 [ (;:)I 
The larger the fit index the better (values closer to 1.00). Clearly, there is a heavy penalty for esti- 
mating a lot of parameters with this index. This index will always be substantially smaller than 
other indices unless the number of parameters estimated is much smaller than the number of data 
points. 

Completely different methods of assessing fit that include a parsimony adjustment are the 
Akaike Information Criterion (AIC) and the Consistent Akaike Information Criterion (CAIC) 
(Akaike, 1987; Rozdnganj 1987); These indices are also functions of x2 and dfj 

7 Model AIC = - 2dfmOde, 

Model CAIC = - (In N + I )dfmodel 

For the small-sample example, 

Model AIC = 9.337 - 2(4) = 1.337 

Model CAIC = 9.337 - (In LOO + 1)4 = - 13.08 

Small values indicate a good-fitting, parsimonious model. How small is small enough? There is no 
clear answer because these indices are not normed to a 0 - I scale. "Small enough" is small as 
compared tu other co~npetir~g ~r~odels.  Thix irldex is applicable tu rnodels estimated with rnilxi~nun~ 



likelihood methods. I t  i s  useful for cl-oxs-\.aliciution because ~t 1s not dependent on sample data 
(Tarlaka, 1993). EQS uses Equations 14.31 and 14.32 to calculate the AIC and CAIC. LISREL ant1 
AMOS, however, use 

Both sets of equations are correct. LISREL and AMOS compute the AIC and CAIC with a constant 
included; EQS computes the AIC and CAIC without the constant. Therefore, although both sets of 
computations are correct, the AIC and CAIC computed in EQS are always smaller than the same val- 
ues in LISREL and AMOS. 

14.5.3.5 Residual-Based Fit Indices 

Finally there are indices based on the residuals. The root mean square residual (RMR) and the stan- 
dardized root mean square residual (SRMR) are the average differences between the sample vari- 
ances and covariances and the estimated population variances and covariances. The root mean 
square residual is given by 

The RMR i s  the sqgnre root (indic'ted by the pn\.ver nf !/2) ~f ~ W O  times the sum, ever a!! 
of the variables in the covariance matrix, of the average squared differences between each 
of the sample covariances (or variances) and the estimated covariances (or variances). 

Good-fitting models have small RMR. It is sometimes difficult to interpret an unstandardized resid- 
iial because the scaie of iiie variables affect the size of the residuai; therefore, a standardized root 
mean square residual (SRMR) is also available. Again, small values indicate good-fitting models. 
The SRMR has a range of 0 to 1, values of .08 or less are desired (Hu & Bentler, 1999). 

14.5.3.6 Choosing among Fit Indices 

Good-fitting models produce consistent results on many different indices in many, if not most, cases. 
If all the indices lead to similar conclusions, the issue of which indices to report is a matter of per- 
sonal preference and, perhaps, the preference of the journal editor. The CFI and RMSEA are perhaps 
the most frequently reported fit indices. The RMSEA is particularly helpful if power calculations are 
to be performed. The AIC and CAIC are helpful indices to use when comparing models that are not 
nested. Often multiple indices are reported. If the results of the tit indices are inconsistent, the model 
should probably be re-examined; if the inconsistency cannot be resolved, consider reporting multi- 
ple indices. Hu and Bentler (1999) suggest reporting two types of tit indices; the SRMR and then a 
comparative fit index. 



I 14.5.4 Model Modification 
I 
I 

There are at least two reasons for modifying a SEM model: to improve fit  (especially in exploratory 
work) and to test hypotheses (in theoretical work). The three basic methods of model modification 

I are chi-square difference tests, Lagrange multiplier tests (LM), and Wald tests. All are asymptoti- 
I cally equivalent under the null hypothesis (act the same as the sample size approaches infinity) but 
I approach model'modification differently. 

14.5.4.1 Chi-Square Difference Test 

1 If models are nested (one model is a subset of another), the X 2  value for the larger model is subtracted 
from the X2  value for the smaller nested model and the difference, also a X2, is evaluated with degrees 
of freedom equal to the difference between the degrees of freedom in the two models. When the data 
are normally distributed the chi squares can simply be subtracted. However, when the data are non- 
normal and the Sat'orra-Bentler scaled chi square is employed an adjustment is required so that the 
Satorra-Bentler chi square is distributed as a chi square (Satorra & Bentler, 2002). This will be 
denlonstrated in Sections 14.6.2.3 and 14.6.2.4 

Recall that the residual between LOVESKI and SENSEEK is very high. We might allow these 
IVs to correlate and ask, "Does adding (estimating) this covariance improve the fit of the model?" 
Although our "theory" is that these variables are uncorrelated, is this aspect of theory supported by 
the data? To examine these questions, a second model is estimated in which LOVESKI and 
SENSEEK are allowed to correlate. The resulting model produces X2 = 0.084, df = 3. In the small- 
sample example solution in Section 14.4.5, x2 = 9.337, df = 4. The X 2  difference test, (or likelihood 
ratio for maximum likelihood) is 9.337 - .084 = 9.253, df = 4 - 3 = - 1,p < .O5. The model is sig- 
nificantly improved with the addition of this covariance; in fact, one of the tit indices (CFI) increases 
to 1 and the RMSEA drops to zero. Although the theory specifies independence between Sensation 
Seeking and Love of Skiing, ihe data support the notion that, indeed, these variabies are correlated. 

There are some disadvantages to the X 2  difference test. Two models need to be estimated to get 
the X2 difference value and estimating two models for each parameter is time consuming with very 
iarge models and/or a slow computer. A second problem relates to X 2  itself. Because of the relation- 
ship between sample size and x2, it is hard to detect a difference between models when sample sizes 
are srnaii. 

14.5.4.2 Lagrange Multiplier (LM) Test 

The LM test also compares nested models but requires estimation of only one model. The LM test 
asks if the model is improved if one or more of the parameters in the model that are currently fixed 
are estimated. Or, equivalently, What parameters should be added to the model to improve the fit? 
This method of model modification is analogous to forward stepwise regression. 

The LM test applied to the small-sample example indicates that if we add a covariance 
between LOVESKl and SENSEEK the approximate drop in X2 value is 8.801. This is one path, so 
the x2 value of 8.801 is evaluated with 1 df. The p level of this difference is .003. The model is then 
re-estimated if the decision is made to add the path. When the path is added, the drop is slightly 
larger. 9.253, but yields the same result. 

The LM test can be examined either univariately or multivariately. There is a danger in examin- 
ing only the results of univariate LM tests because overlapping variance between parameter estimates 
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[nay make several parameters appear as if their addition woiild significantly improve the model. t \ I I  of 
these parameters are candidates for inclusion by the results of i~nivariatz LM tests but the multivariate 
LM test identifies the single parameter that would lead to the largest drop in model %' and calc~~lates  
the expected change in %?. After this variance is removed, the parameter that accounts for the next 
largest drop in model xZ is assessed in a manner analogous to Roy-Bargmann stepdown analysis in. 
MANOVA (Chapter 7). 

EQS provides'both univariate and multivariate Lkl tests. Additionally, several options are 
available for LM tests on specific sets of matrices and in specific orders of testing. The default LM 
test was requested for the small-sample example. Portions of the LM test output are presented in 
Table 14.8. 

LM univariate output is presented first. The parameter that the LM test suggests adding is 
listed under the column labeled PARAMETER. The convention used in EQS is DV, IV. or  IC7,IV. 
Because both F1 and V5 are IVs, this refers to a covariance between LOVESKI and SENSEEK. The 
CHI-SQUARE column'indicates the approximate chi square associated with this path, 8.801. The 

TABLE 14.8 Edited Output from EQS for Lagrange Multiplier Tests (Syntax Appears in Table 14.2) 

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS) 

ORDERED UNIVARIATE TEST STATISTICS: 

CHI - PARAMETER STANDARD1 ZED 
NO CODE PARAMETER SQUARE PROBABILITY CHANGE CHANGE 

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1 

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE: 

P W  PFV PFF PDD G W  GVF GFV GFF BVF BFF 

CUMULATIVE MULTIVARIATE STATISTICS UNIVARIATE INCREMENT 

STEP PARAMETER CHI-SQUARE D.F. PROBABILITY CHI-SQUARE PROBABILITY 
---- --------- ---------- ---- ----------- ---------- ----------- 

1 Fl,V5 8.801 1 .003 8.081 .003 
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TABLE 14.9 Syntax and Edited Output fro111 LISREL for Modification Indices 
- -- 

Modification Indices and Expected Change 

No Non-Zero Modification Indices for LAMBDA-Y 

Modification Indices for LAMBDA-X 

LOVESKI --------- DUMMY -------- 
NUMYRS - - 8.529 
DAYSKI - - - - 
SENSEEK 8.801 - - 

Expected Change for LAMBDA-X 

LOVESKI DUMMY - - - - - - - - - - - - - - - - 
NUMYRS - - 0.287 
DAYSKI - - - - 
SENSEEK 0.366 - - 

Standardized Expected Change for LAMBDA-X 

LOVESKI - - - - - - - - DUMMY - - - - - - - - 
NUMYRS - - 0.287 
DAYSKI - - - - 
SENSEEK -0.366 - - 

Completely Standardized Expected Change for LAMBDA-X 

LOVESKI DUMMY 
- - - - - - - - - - - - - - - - 

NUMYRS - - 0.287 
DAYSKI - - - - 
SENSEEK 0.366 - - 

No Non-Zero Modification Indices for GAMMA 

hiodification indices for P H I  

LOVESKI DUMMY -------- - - - - - - - - 
LOVESKI - - 

DUMMY 8.801 - - 
Expected Change for PHI 

LOVESKI DUMMY 
- - - - - - - - ----- --- 

LOVESKI - - 
DUMMY 0.366 - - 

Standardized Expected Change for PHI 

LOVESKI DUMMY 
- - - - - - - - - - - - - - - - 

LOVESKI - - 
DUMMY 0.366 - - 

No Non-Zero Modification Indices for PSI 
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Modification Indices for THETA-DELTA-EPS 

SNOWSAT FOODSAT - - - - - - - - - - - - - - - - 
NUMYRS 0.000 0.000 
DAYSKI . 0.000 0.000 
SENSEEK 0.000 0.000 

~kpected Change for THETA-DELTA-EPS 

SNOWSAT FOODSAT - - - - - - - - - - - - - - - - 
NUMYRS 0.003 -0.002 
DAYSKI 0.000 0.000 
SENSEEK 0.003 0.002 

Completely Standardized Expected Change for THETA-DELTA-EPS 

SNOWSAT - - - - - - - - FOODSAT - - - - - - - - 
NUMYRS 0.002 -0.002 
DAYSKI 0.000 0.000 
SENSEEK -0.002 0.002 

Modification Indices for THETA-DELTA 

NUMYRS DAY SKI - - - - - - - - - - - - - - - - SENSEEK ------- - 
NOMYRS - - 
DAYSKI A - - - 
SENSEEK 8.529 - - - - 

Expected Change for THETA-DELTA 

Completely Standardized Expected Change for THETA-DELTA 

NUMYRS - - - - - - - - DAYSKI SENSEEK -------- -------- 
NUMYRS - - 
DAYSKI - - - - 
SENSEEK 0.287 - - - - 

1 Maximum Modification Index is 8.80 for Element ( 3, 1) of LAMBDA-X 

When the Wald test is applied to the small-sample example, the first candidate for deletion is 
error variance associated with NUMYRS. If this parameter is dropped, the X 2  value increases by 
,578, a nonsignificant change ( p  = ,447). The model is not significantly degraded by deletion of this 
parameter. However, because i t  is generally not reasonable to drop an error variance from a model, 
the decision is to retain the error variance associated with NUMYRS. Notice that, unlike the LM test, 
nonsignificnnce is desired when using the Wald test. 
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This illustrates an important point. Both the Lhl and Wald tests are based on statistical. not sub- 
stantive. criteria. If there is conflict between these two criteria. substantive criteria are more important. 

Table 14.1 1 presents edited output of both the univariate and multivariate Wald test from EQS. 
The specific candidate for deletion is indicated and the approximate multivariate x2 with its proba- 
bility value is provided. The univariate tests are shown in the last two columns. In this example only 
the one parameter is, suggested. By default, parameters are considered for deletion only if deletion 
does not cause the multivariate X2 associated with the Wald test to become significant. Remember, 

TABLE 14.10 Edited Output from AMOS of Modification Indices (Syntax in Table 14.5) 

Modification Indices (Group number 1 - Model 1) 
Covariances: (Group number 1 - Model 1) 

M.I. Par Change 

loveski <-- senseek 
error5 <-- senseek 
error5 <-- loveski 
error4 <-- senseek 
error4 <-- loveski 
error4 <-- error5 
error3 <-- senseek 
error3 <-- loveski 
error3 <-- error5 
error3 <-- error4 
error2 <-- senseek 
error2 <-- loveski 
error2 <-- error5 
error2 C-- error4 
error2 <-- error3 
error1 <-- senseek 
errori <-- iovesici 
errorl <-- error5 
errorl <-- error4 
errorl <-- error3 
errorl <-- error2 

Variances: (Group number 1 - Model 1) 

M.I. Par Change 

senseek 
loveski 
error5 
error4 
error3 
error2 
errorl 
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TABLE 14.10 Continued 

Modification Indices (Group number 1 - Model 1) 
Covariances: (Group number 1 - Model 1) 
Regression Weights: (Group number 1 - Model 1) 

M.I. Par Change 

skisat <-- senseek 
skisat <---loveski 

foodsat <-- senseek 
foodsat <-- loveski 
foodsat c-- skisat 
foodsat <-- snowsat 
foodsat c-- dayski 
foodsat <-- numyrs 

snowsat <-- senseek 
snowsat <-- loveski 
snowsat <-- skisat 
snowsat <-- foodsat 
snowsat <-- dayski 
snowsat <-- numyrs 

dayski <-- senseek 
dayski <-- loveski 
dayski <-- skisat 
dayski <-- foodsat 
dayski <-- snowsat 
dayski <-- numyrs 

ngrnyrs <-- senseek 
numyrs <-- loveski 
numyrs <-- skisat 
numyrs <-- foodsat 
numyrs :-- snowsat 
numyrs <-- dayski 

TABLE 14.11 Edited Output From EQS For Wald Test (Syntax Appears in Table 14.2) 

WALD TEST (FOR DROPPING PARAMETERS) 
MULTIVARIATE WALD TEST BY SIMULTANEOUS PROCESS 

CUMULATIVE MULTIVARIATE STATISTICS 
.................................. 

UNIVARIATE INCREMENT 
_____--_--_--__--___ 

STEP PARAMETER CHI-SQUARE D.F. PROBABILITY CHI-SQUARE PROBABILITY 
I ---- --------- ---------- ---- ----------- __- ----------- 

1 E l ,  E l  .578 1 .447 .578 .447 
2 V2, F1 3.737 2 . I 5 4  3.159 .076 



the p a l  1s to drop parameters that do contribute \rg~i~ticat~tly to the riiodel. LISKEL ~ n d  AMOS do 
not provide the Wald test. 

14.5.4.4 Some Caveats and Hiizts on Illode1 Modification 

Because both the LM test and Wald test are stepwise procedures, Type I error rates are inflated but 
there are, as yet, no available adjustments as in ANOVA. A simple approach is to use a conservative 
probability value (say, p < .01) for adding parameters with the LM test. Cross validation with 
another sample is also highly recommended if modifications are made. If numerous modifications 
are made and new data are not available for cross-validation, compute the correlation between the 
estimated parameters from the original, hypothesized model and the estimated parameters from the 
final model using only parameters common to both models. If this correlation is high (>.90), rela- 
tionships within the model have been retained despite the modifications (Tanaka & Huba, 1984). 

Unfortunately, the order that parameters are freed or estimated can affect the significance of 
the remaining parameters. MacCallum (1986) suggests adding all necessary parameters before delet- 
ing unnecessary parameters. In other words, do the LM test before the Wald test. Because model 
modification easily gets very confusing, it is often wise to add, or delete, parameters one at a time. 

A more subtle limitation is that tests leading to model modification examlne overall changes 
in X2, not changes in individual parameter estimates. Large changes in X2 are sometimes associated 
with very small changes in parameter estimates. A missing parameter may be statistically needed but 
the estimated coefficient may have an uninterpretable sign. If this happens it is best not to add the 
parameter. Finally, ~f the hypothesized model is wrong, tests of model modification, by themselves, 
may be insufficient to reveal the true model. In fact, the "trueness" of any model is never tested 
directly, although cross validation does add evidence that the model is correct. Like other statistics, 
these tests must be used thoughtfully. 

T,? 
11 rrluciei ~~~ociifi~dilvris LLIC civlle ill ilvpes vf dcvciopillg ii good-fitting ir~ociei, ihc fewer rrlucil- 

tications the better, especially if a cross-validation sample is not available. If the LM test and Wald 
test are used to test specific hypotheses, the hypothesis will dictate the number of necessary tests. 

14.5.5 Reliability and Proportion of Variance 

Reliability is defined in the classic sense as the proportion of true variance relative to total variance 
(true plus error variance). Both the reliability and the proportion of variance of a measured variable 
are assessed through squared multiple correlation (SMC) where the measured variable is the DV and 
the factor is the IV. Each SMC is interpreted as the reliability of the measured variable in the analy- 
sis and as the proportion of variance in the variable that is accounted for by the factor, conceptually 
the same as a communality estimate in factor analysis. 

To calculate a SMC: 

The factor loading for  variable i i s  squared and divided by that value plus the residual 
variance associated with the variable i. 



This equation i s  applicable only for when there are no complex factor loadin2s or correlated er-1-~I.s.'" 
The proportion of variance in the variables accounted for by the factor is assessed as: 

The disturbance (residual) for the DV factor j is squared and subtracted from 1 .  

14.5.6 Discrete and Ordinal Data 

SEM assumes that measured variables are continuous and measured on an interval scale. Often, how- 
ever, a researcher desires to include discrete andlor ordinally measured, categorical variables in an 
analysis. Because the data points in SEM are variances and covariances, the trick is to produce rea- 
sonable values for these types of variables for analysis. 

Discrete (nominal level) measured variables such as favorite baseball team are included as IVs 
in a model by either dummy-coding the variable (i.e., Dodger fan or other) or by using a multiple 
group model where a model is tested for each team preference, as discussed in the next section. 

Ordinal, categorical variables require special handling in SEM. Imagine that there is a nor- 
mally distributed, continuous variable underlying each ordinal variable. To convert an ordinal vari- 
able to a continuous variable, the categories of the ordinal variables are converted to thresholds of the 
underlying (latent), normally distributed, continuous variable. 

For example, say we ask people lingering outside a candy store if they: (1) hate, (2) like, or 
(3) love chocolate. As in Figure 14.7, underlying the ordinal variable is a normally distributed, latent, 
continuous construct representing love of chocolate. It is assumed that people who hate chocolate or 
absolutely loathe chocolate fall at, or below, the first threshold. Those who like chocolate fall 
between the two thresholds, and people who love chocolate, or who are enraptured by chocolate, fall 
at or above the second threshold. The proportion of people falling into each category is calculated 
and this proportion is used to calculate a z-score from a standardized normal table. The z-score is the 
threshold. 

SEM proceeds by using polychoric correlations (between two ordinal variables), or polyserial 
correlations (between an ordinal and an interval variable) rather than covariance as the basis of the 
analysis. 

Both EQS and LISREL (in PRELIS) compute thresholds and appropriate correlations. To 
incorporate categorical dependent variables in EQS, the statement CATEGORY = in the SPECIFI- 
CATIONS section is followed by the discrete variable labels, e.g., V1, V3. All measured variables 
must be DVs when models with categorical variables are estimated in EQS (Lee, Poon, & Bentler, 
1994). If a model contains measured IVs, these IVs are first converted to factors in a method similar 
to LISREL. For example, if V 1 was a measured IV, it is converted to a measured DV in the \EQUA- 
TIONS section with V I = Fl . F1 is then used in equations in place of V I .  

Using PRELIS, the procedure file specifies both the continuous and ordinal variables and 
requests matrix output of polyserial and polychoric correlations with the statement OUTPUT 
MATRIX = PMATRIX. This matrix is then used in LISREL as the sample correlation matrix: PM is 

" ' ~ o t e  that factor loadings are denoted by i, In this chapter to stay consistent with general SEM terminology. In Chapter 13. 
factor loadings are denoted by (I,, . Both mean the same thing. 
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I I 

latent construct 
1. Hate it! I , 2. Like it! 1 3. Love it! "Love of Chocolate" 

I I - I I - 
I I Ordinal Variable with 

threshold 1 threshold 2 3 levels 
"How much do you like 
chocolate?" 

FIGURE 14.7 Representation of thresholds underlying ordinal data categories. 

substituted for CM in the LISREL procedure file. AMOS does not accommodate categorical data. 
Although not illustrated in this chapter a particularly helpful SEM program for models with cate- 
gorical data is Mplus (MuthCn & MuthCn, 2004). 

14.5.7 Multiple Group Models 

Although each of the models estimated in this chapter uses data from a single sample, it is also pos- 
sible to estimate and compare models that come from two or more samples, called multiple group 
models. The general null hypothesis tested in multiple group models is that the data from each group 
are from the same population. For example, if data from a sample of men and a sample of women are 
drawn for the small-sample example. the general null hypothesis tested is that the two groups are 
drawn from the same population. 

The analysis begins by developing good-fitting models in separate runs for each group. The 
models are then tested in one run with none of the parameters across models constrained to be equal. 
This unconstrained multiple group model serves as the baseline against which to judge more restricted 
models. Following baseline model estimation, progressively more stringent constraints are specified 
by constraining various parameters across all groups. When parameters are constrained they are 
forced to be equal to one another. After each set of constraints is added, a chi-square difference test is 
performed for each group between the less restrictive and more restrictive model. The goal is to not 
degrade the models by constraining parameters across the groups; therefore, you want a nonsigniji- 
cant X2.  If a significant difference in X 2  is found between the models at any stage, the LM test is exam- 
ined to locate the specific parameters that are different in the groups and these parameters are 
estimated separately in each group, i.e., the specific ncross-group parameter constraints are released. 

Various hypotheses are tested in a specific order. The first step is usually to constrain the fac- 
tor loadings (regression coefficients) between factors and their indices to equality across groups. 
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Typ~cally latent nie:tns .Ire e\t~mated In  the contevt ot a mulr~ple group model To a\k. In  the 
small-sample example. if men and women have the same mean Love of Skiing or if gender makes a 
difference in the mean of Ski Trip Satisfaction, the data are estimated as a two group model, con- 
straints on the factor structure are made, the measured variable means estimated, and the latent 
means for both Love of Skiing and Ski Trip Satisfaction estimated. The most interpretable latent 

! 
1 
! 

mean models are those in which the factor structure is identical or highly similar in both groups. For 
identification, the latent mean for one group is fixed at zero and the other estimated. The difference 1 
between the means.is then estimated and evaluated with a z test like any other parameter, where the 

I 

estimated parameter is divided by standard error. Demonstration of latent mean models is outside the 
scope of this chapter; however, Bentler (1995) and Byme, Shavelson, and MuthCn (1989) provide 
examples and detailed discussion of these models. 

14.6 Complete'Examples of Structural Equation 1 

Modeling Analysis I 
i 

The first example is a confirmatory factor analysis (CFA) model performed through LISREL. The 
data used in this example are described in Appendix B. The factor structure underlying the subscales 
of the WISC in a sample of learning disabled children is examined. The model assesses the relation- 
ship between the indicators of IQ and two potential underlying constructs representing IQ. This type 
of model is sometimes referred to as a meascrrement model. 

The second example is performed through EQS and has both measurement and structural com- 
ponents. In this example, mediators of the relationship between age, a life change measure, and 
latent variables representing Poor Sense of Self, Perceived I11 Health, and Health Care Utilization are 
examined. Data for the second example are from the women's health and drug study, described in 
Appendix B. I .  

14.6.1 Confirmatory Factor Analysis of the WISC 

The first example demonstrates confirmatory factor analysis (CFA) of I I subtests of the Wechsler 
Intelligence Scale for Children (WISC) in a sample of learning-disabled children. 

14.6.1 . I  Model Specification for CFA 

The hypothesized model is presented in Figure 14.8. In this model, a two-factor model is  hypothe- 
sized: a Verbal factor (with the information, comprehension, arithmetic, similarities, vocabulary, and 
digit span subscales of the WISC as indicators) and a Performance factor (with the picture comple- 
tion, picture arrangement, block design, object assembly, and coding subscales of the WISC serving 
as indicators). For clarity within the text, the labels of latent variables have initial capital letters and 
the measured variables do not. Two main hypotheses are of interest: ( I )  Does a two-factor model 
with simple structure (each variable loading only on one factor) fit the data? (2) Is there a significant 
covariance between the Verbal and Performance factors? 

After the hypotheses are formulated and the model diagrammed. the first step of the modeling 
process is complete. At this point it is a good idea to do a preliminary check of the indentifiability of 
the model. Count the number of data points and the number of parameters to be estimated in the 



8 ,  -- dl information,, 1ql 
I 

= 1 
Verbal IQ 

*'66 -1 digit span,, 

picture 
w877 completion,, 

*8,, arrangement,, 

Performance IQ 
*699 - r p * 9 2  7 "~i  ' ) design,, 

object 
l -1 assembly,,, 

FIGURE 14.8 Hypothesized CFA model. 

I model. With 11 variables there are (1 l ( 1 1  + 1))/2 = 66 data points. The hypothesized model indi- ! cates that 23 parameters are to be estimated (1 1 regression coefficients, 1 covariance, and 1 1  vari- 
ances have asterisks); therefore, the model is overidentified and is tested with 43 dfs (66 - 23). 

14.6.1.2 Evaluation of Assumptions for CFA 

Computer evaluation of assumptions is shown only when the procedure or output differs from that of 
other chapters in this book. 

14.6.1.2.1 Sample Size and Missing Data 
For this example there are 177 participants and I 1  observed variables. The ratio of cases to 

observed variables is 16: 1. The ratio of cases to estimated parameters is 8: 1 .  This ratio is adequate 
given that the re!iabi!ity of the subtests of :he WISC-R is high. There are nci missing data. 

I 
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14.6. 1.3.2 N o t . t / i c l l i t ~ .  rrtlcl I.itiptrt.it\. 

Normalit) of the obssrt,ed variablcc M ' ; I ~  ;lscessed through evainin;~tion o f  histogrnrnc usin: 
SPSS FREQUENCIES. None of the observed variables was significantly skewed or highly kurtotic. 
No variables had a standardized skewness greater than 3.75. It was not feasible to examine all pair- 
wise scatterplots to assess linearity: therefore, randomly selected pairs of scatterplots were examined 
using SPSS GRAPHS SCATTER. All observed variables appeared to be linearly related, if at all. 

14.6.1.2.3 Olitliers 
Using SPSS DESCRIPTIVES, one participant was found to have an extremely high score on 

the arithmetic subtest (19, z = 4.1 I) and was deleted. Using SPSS REGRESSION and Mahalanobis 
distance, 1 multivariate outlier was also detected and deleted (1' < .OO I). This child had an extremely 
low comprehension subtest score and an extremely high arithmetic subtest score. The analysis was 
performed on 175 participants. SPSS was used to create a new file without the two outliers. (PRELIS 
could also have been used.) A new file was necessary because within the LISREL program itself out- 
liers cannot be deleted (nor transformations made). 

14.6.1.2.4 M~ilticollineczrity and Singularity 
The determinant of the covariance matrix is not given in LISREL output but the program con- 

verged so the covariance matrix was assumed to be nonsingular. 

14.6.1.2.5 Resid~ials 
Evaluation of the residuals is performed as part of evaluating the model. 

14.6.1.3 CFA Model Estimation and Preliminary Evaluation 

The syntax and edited output for the CFA analysis are presented in Table 14.12. As a first step it is 
hal~-t.ril t.-. .-ha;.L- thot tho  n:;romatarc th-t -TO ;n.A;,-~tp;l I C  fro- ~ r a  thnco t h ~ t  txloro roqI1x~ ;ntonrioA to ho LILIYIUI L V  LLLLLR L l l U L  LI1L YU1UIIIbLbI,I C l l U L  'ILL LLLUILLLLCU U.1 L 1 - b  U1L L L 1 \ 1 . 1 L  llluL YILIL ICUI1J L I I I C I I I I L U  t \ r  C I L  

estimated. It is also a good idea to check that the covariance matrix is correct, i.e., that it matches the 
covariance matrix from preliminary analyses. The output labeled Parameter Specifications 
lists each matrix specified in the model section and numbers each free parameter. Lambda-X is the 
matrix of regression coefficients to be estimated between indicators and factors. PHI is the matrix of 

-.. ..---- C--.--.- rnrrnrnn n n z  rnn :, .L, A:,,,--l ,,+,:., ,FA,,,..n +- La A n t ; m n + , x A  rnr unnh 
CUVdILclllLC> i l l l l U 1 1 ~  LLLLLUI>. J.nfiJ.fi-UfiIJI1). 15 LLIG U l U ~ U I I U I  IllULI LA UI G l l U I >  LU UG C5LIIIIULGU LVI LULII 

measured variable. Only the diagonal of matrix is shown as all other entries in this matrix are zero, i.e., 
no correlated errors. In the other matrices, zeros indicate parameters that are fixed, i.e., not estimated. 
After checking the parameter specifications we confirm that they match the path diagram. 

Next, it is helpful to assess the overall fit of the model by looking at the jy2 and fit indices that 
appear in the section labeled Goodness of Fit Statistics (Table 14.13). The Chi-Square 
for Independence Model with 55 Degrees of Freedom is X:nclcp (55, N = 175) = 
5 16.237, p < .0 1.  This X 2  tests the hypotheses that the variables are unrelated; ~t should always be 
significant. If it is not, as is possible with very small samples, modeling should be reconsidered. The 
model chi square is significant, X 2  (43, N = 175) = 70.24, p = .005. Ideally, a nonsignificant chi 
square is desired. The model X2 in this case is significant, but it  is also less than two times the model 
degrees of freedom. This ratio gives a very rough indication that the model may tit the data. LISREL 
output includes rnany other fit indices. including the CFI = .94, GFI - .93, and the standardi~ccl 
RMSEA = .06. These indices all seem to indicate a good-fitting model. 
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TABI,E 14.12 Syntax and Parameter Specifications for CF\ Using I,lSKEI, 

I -- 

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R 
DA NI = 13 NO = 175 
RA FI = WISCSEM.DAT 
LA 
CLIENT, AGEMATE, INFO, COMP, ARITH, SIMIL, VOCAB, 

1 DIGIT, PICTCOMP, PARANG, BLOCK, OBJECT, CODING 
SE 
INFO, COMP,. ARITH, SIMIL, VOCAB, 
DIGIT, PICTCOMP, PARANG, BLOCK, OBJECT CODING/ 
MO NX=11 NK=2 
LK 
VERBAL PERFORM 
FR LX(1,l) LX(2,l) LX(3,l) LX(4,l) LX(5,l) LX(6,l) 
FR LX(7,2) LX(8,2) LX(9,2) LX(10,2) LX(11,2) 
VA 1 PH(1,l) PH(2,2) 
OU SC SE TV RS SS MI ND=3 

I 
CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R 

Number of Input Variables 13 
Number of Y - Variables 0 
Number of X - Variables 11 
Number of ETA - Variables 0 
Number of KSI - Variables 2 
Number of Observations 175 

I 

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R 

I Covariance Matrix to be Analyzed 

- 
INFO 
COMP 

i ARITH 

I 
STMTL - ---- 
VOCAB 

I DIGIT 
PICTCOMP i PARANG 

I BLOCK 
I OBJECT 

CODING 

INFO 
- - - - - - - - 
8.481 
4.034 
3.322 
4 .?58  
5.338 
2.720 
1.965 
1.561 
1.808 
1.531 
0.059 

COMP - - - - - - - 

Covariance Matrix to be Analyzed 

SIMIL 
------ -- - DIGIT ------- 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
PICTCOMP 8.610 
PARANG 1.941 7.074 
BLOCK 3.038 2.532 7.343 
OBJECT 3.032 1.916 3.077 8.088 
CODING -0.605 0.289 0.832 0 -433 8.249 

(conrin~led) 
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T.ARI,E 14.12 Continued 

CONFIRMATORY FACTOR ANALYSIS OF THE WISC-R 

Parameter Specifications 

LAMBDA-X 

INFO 
COMP 

ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

VERBAL -------- 
1 

2 
3 
4 
5 
6 
0  
0 
0  
0  
0  

PERFORM -------- 
0  
0  
0  
0  
0  
0  
7 
8 
9  

1 0  
11 

PHI 

VERBAL PERFORM -------- -------- 
VERBAL 0  
PERFORM 1 2  0  

THETA-DELTA 

INFO COMP ARITH SIMIL VOCAB DIGIT 
- - - - - - - - - - - - - - - - - - -= - - - -  -------- -------- -------- 

13 14 15 16 17 18 

THETA-DELTA 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
1 9  2  0  2 1 2 2 2 3 

Residuals are examined after evaluation of fit. Residual diagnostics are requested with RS on 
the OU (output line) of the syntax in Table 14.12. LISREL gives numerous residual diagnostics. 
Residuals in both the original scale of the variables, labeled FITTED RESIDUALS (not shown), and 
partially standardized residuals, labeled STANDARDIZED RESIDUALS, are included. For both 
types of residuals, the full residual covariance matrix, summary statistics, and a stem leaf plot are 
given. Partially standardized residual output appears in Table 14.14. Although the model fits the data 
well, there is a sizable residual (standardized residual 3.06) between picture arrangement 
(PARANG) and comprehension (COMP). This indicates that the model does not adequately estimate 
the relationship between these two variables. The large residual between PICTCOMP and COMP i q  

also clearly indicated in the stem leaf plot. The stem leaf plot also shows that the residuals are cen- 
tered around zero and symmetrically distributed. The med~an residuai is zero. LISREL also provides 



TABLE 15.13 Goodness-of-Fit Statistics for CFA hlodel Using LISREI, 
(Syntax Appears in Table 14.12) 

Goodness of Fit Statistics 

I Degrees of Freedom = 43 
Minimum Fit Function Chi-Square = 70.236 (P = 0.00545) 

I Normal Theory Weighted Least Squares Chi-square = 71.045 (P = 0.00454) 

Estimated Non-centrality Parameter (NCP) = 28.045 
90 Percent Confidence Interval for NCP = (8.745; 55.235) 

Minimum Fit Function Value = 0.404 
Population Discrepancy Function Value (FO) = 0.161 

1 90 Percent Confidence Interval for FO = (0.0503; 0.317) 
I 

Root Mean Square Error of ~pproximation (RMSEA) = 0.0612 
90 Percent Confidence Interval for RMSEA = (0.0342; 0.0859) 

P-Value for Test of Close Fit (RMSEA < 0.05) = 0.221 

Expected Cross-Validation Index (ECVI) = 0.673 
90 Percent Confidence Interval for ECVI = (0.562; 0.829) 

ECVI for Saturated Model = 0.759 
ECVI for Independence Model = 3.093 

I 

I Chi-square for Independence Model with 55 Degrees of Freedom = 516.237 
Independence AIC = 538.237 

I Model AIC = 117.045 
I Saturated AIC = 1 3 2 . n 0 0  

Independence CAIC = 584.050 
Model CAIC = 212.835 

Saturated CAIC = 406.876 

Root Mean Square Residual !?-W..! = 0.468 
Standardized RMR = 0.0585 

Goodness of Fit Index (GFI) = 0.931 
Adjusted Goodness of Fit Index (AGFI) = 0.894 
Parsimony Goodness of Fit Index (PGFI) = 0.606 

Normed Fit Index (NFI) = 0.864 
Non-Normed Fit Index (NNFI) = 0.924 

Parsimony Normed Fit Index (PNFI) = 0.675 
Comparative Fit Index (CFI) = 0.941 
Incremental Fit Index (IFI) = 0.942 
Relative Fit Index (RFI) = 0.826 

Critical N (CN)  = 168.123 
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T.4BI.E 14.11 Partially Standardized Residuals for ('FA L1sing I,ISREI, 
(Syntau Appears in Table 14.12) 

STANDARDIZED RESIDUALS 

INFO 
COMP 
ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

INFO COMP ARITH SIMIL -------- -------- -------- -------- VOCAB DIGIT -------- -------- 

STANDARDIZED RESIDUALS 4 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
PICTCOMP - - 
PARANG -0.779 - - 
BLOCK -1.004 0 . 8 6 1  - - 
OBJECT 0.751  -0.319 0.473 - - 
CODING -2.133 0.059 1 .284  0.215 

Summary Statistics for Standardized Residuals I 
Smallest Standardized Residual = -2.394 
Median Standardized Residual = 0 .000  
Largest Standardized Residual = 3 .065  

Stemleaf Plot I 
- 2 1431 
- 11755443310 
- O(9988777443332211OO0OOOOOOOOO 

011123556688899 
1101133788 
2 10113 

3 1 1  
Largest Positive Standardized Residuals 
Residual for PICTCOMP and COMP 3.065  

a QPLOT of partially standardized residuals as shown in Figure 14.9. If the residuals are normally 
distributed the Xs hover around the diagonal. As in multiple regression, large deviations from the 
diagonal indicate nonnormality. Once again the large residual between PICTCOMP and COMP is 
clearly evident in the upper right hand corner of the plot. 



QPlot of Standardized Residuals 

Standardized Residuals 

FIGURE 14.9 Q Plot output of partially standardized residuals 
for CFA model in LISREL. Syntax appears in Table 14.12. 

Finally, estimates of the parameters are examined (Table 14.15). In the section labeled LIS- 
REL Estimates (Maximum Likelihood) are, by row, the unstandardized regression coeffi- 
cients, standard errors in  parentheses, and :-scores (coefficiendstandard error) for each indicator.' ' 

.............. 3,5 " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

"Pop quiz! With your knowledge of both SEM and EFA (Chapter 13), what are the ~.e,ores<ion coefficients in this CF:\ equi."- 
alent to in EFA? Answer: Elements in the patterns matrix. 



TABLE 14.15 Output from LISREL of Parameter Estimates, Standard Errors, and : Test 
and Partially Standardized Solution for CFA hIodel I S j  ntav Appears in Table 11.11) 

LISREL Estimates (Maximum Likelihood) 

LAMBDA- X 

INFO 

COMP 

ARITH 

SIMIL 

VOCAB 

DIGIT 

PICTCOMP 

PARANG 

BLOCK 

OBJECT 

CODING 

VERBAL - - - - - - - - 
2 .212  

( 0 . 2 0 1 )  
1'0. 997 

PHI 

VERBAL PERFORM - - - - - - - - - - - - - - - - 
VERBAL 1 . 0 0 0  

PERFORM 0 .589  1 . 0 0 0  
( 0 . 0 7 6 )  

7 . 792  



S t r ~ ~ c t ~ ~ r a l  Equation Modeling 74 1 

TABLE 14.15 Continued 

THETA-DELTA 

INFO C O W  ARITH SIMIL VOCAB DIGIT -------- -------- -------- -------- -____--- -------- 

THETA-DELTA 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
5.558 5.494 3.916 5.499 8 .206  

(0.764)  (0 .664)  (0 .646)  (0 .726)  ( 0 . 8 8 2 )  
7'. 276 8.275 6.066 7.578 9 .309  

Completely Standardized Solution 

LAMBDA-X 
I 

I 

INFO 
C O W  

ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

VERBAL -------- 
0.760 
0 . 6 9 1  
0.565 
0.703 
0.770 
0.390 

P H I  

VERBAL PERFORM -------- -------- 
VERBAL 1 .000  
PERFOR 0.589 1.000 

THETA-DELTA 

INFO COMP ARITH SIMIL VOCAB DIGIT -------- -------- -------- -------- -------- - - - - - - - - 

THETA-DELTA 

PICTCOMP 
- - - - - - - - PARANG BLOCK OBJECT CODING 

- - - - - - - - - - - - - - - - -------- -------- 
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All of the indicators are significant ip  < .O I ) w~th the exception of coding. Sometimes the different 
scales of the measured variables make the unstandardized coefficients difficult to interpret and often 
the scales of the measured variables lack inherent meaning. The standardized solution. labeled Com- 
pletely Standardized Solution in Table 14.15, is often easier to interpret in such cases. 
Completely standardized output is requested with SC (on the OU - output line) in the syntax of 
Table 14.12. Note that this output is not completely standardized regarding error variances. 1 

The first hypothesis, that the model fits the data, has been evaluated and supported, although 
there is a large residual between PICTCOMP and COMP. The final model with significant parameter 
estimates presented'in standardizec! form appears in Figure 14.10. Other questions of interest are now 
,examined. Is there a significant correlation between the Verbal and Performance factors? Looking at 
the completely standardized solution (or Figure 14. lo), the Verbal and Performance factors are sig- 
nificantly correlated, r = .589, supporting the hypothesis of a relationship between the factors. 

I 

.76 
.42 - information 

I*\ 

completion 

.52 - 

,,a -1 arrangement Picture "\b/ 

comprehension 

5 3  - y l p y ~ e r f o r m a n c e  design IQ) 

.68 - 
assembly 

6 8  -1 arithmetic 

.99 + coding 

.51 - 

FIGURE 14.10 CFA model before modifications. I 

similarities 

. - vocabulary 

8 5  -1 digit span , , 

1 .59 

r 1 I 



TABLE 14.16 Output of Squared hlultiple Correlations for Indicators of k'erhal and Performance 
Factor from LISREL (SJ ntas Appears in Table 14.12) 

Squared Multiple Correlations for X - Variables 
I INFO COMP ARITH SIMIL VOCAB DIGIT 
I -------- -------- -------- -------- -------- - - - - - - - - 

, 0.577 0.477 0 .319  0.494 0.592 0.152 

Squared Multiple Correlations for X - Variables 

PICTCOMP PARANG BLOCK OBJECT CODING 
-------- -------- -------- -------- -------- 

0.354 0.223 0.467 0.320 0 .005  

LISREL provides estimates of the squared multiple correlations of the variables with the fac- 
tors in the section labeled SquaredMultiple Correlations For X - Variables in Table 

I 
14.16. It is also clear upon examining these SMCs that coding, with an SMC of .005, is not related 
to the performance factor. 

14.6.1.4 Model Modification 
I At this point in the analysis there are several choices. The model fits the data, and we have confirmed 
! that there is a significant correlation between the factors. Therefore, we could stop here and report 

the results. Generally, however, several additional models are examined that test further hypothesis 
(either a priori or p o , ~ t  hoc)  and/or attempt to improve the fit of the model. At least two post hoc 
hypotheses are of interest in this modei: ( i )  Couid the residuai between the comprehension and pic- 
ture completion be reduced by adding additional paths to the model? and (2) Could a good-fitting, 
more parsimonious model be estimated without data from the coding subtest? 

Before demonstrating model modification, be warned that when adding and deleting parame- 
ters, there too often comes a point of almost total confusion: What have I added'? What have I 

I 
deleted? and What anz I doing anyway? One hint for avoiding this sort of confusion is to diagram the 
estimated model, prior to any modifications, and make a few copies of it. Then, as parameters are 

I added and deleted, draw the modifications on the copies. In this way, the model can be viewed at 
each stage without having to redraw the diagram each time. When one copy gets too messy, move to 
the next, and make more copies as necessary. 

With copies of the diagram firmly in hand, modification indices are examined. Completely 
standardized modification indices are presented in Table 14.17. The largest univariate modification 
index is for the regression path predicting comprehension from the Performance factor, i12 = 9.767, 
with an approximate completely standardized parameter value of .3 17. Because this path may also 
reduce the residual between the comprehension and picture completion subtests, a model is run with 
this path estimated, X2(42, N = 172) = 60.29, p = .03, CFI = .96. The estimated (first) model and 
the newly modified model are nested within one another; the estimated model is a subset of this mod- 
ified model. Therefore. a chi-square difference test was performed to see if the addition of this path 
significantly improves the model. The estimated (first) model has 43 dfs, and the moditied model had 
42 dfs; therefore, this is a 1 df test. The X2 for the first model was 70.236, for the second, 60.295. The 
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TABLE 14.17 Output from LISREL of hlodification Indices for CFA Xlodel 
(Syntax Appears in Table 14.12) 

Modification Indices and Expected Change i 
Modification Indices for LAMBDA-X ! 

INFO 
COMP 

ARITH 
SIMIL 
v o w  
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

INFO 
COMP 
ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

INFO 
corn 
ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

VERBAL -------- PERFORM - - - - - - - - 
4.451 
9.767 
0.177 
2.556 
1.364 
1.852 

Expected Change for LAMBDA-X i 
PERFORM - - - - - - - - 
-0.597 
0.940 
-0.106 
0.512 

-0.331 
-8.435 

Standardized Expected Change for LAMBDA-X 

VERBAL -------- PERFORM -------- 
-0.597 
0.940 
-0.106 
0.512 

-0.331 
-0.435 



Completely Standardized Expected Change for LAMBDA-X 

VERBAL PERFORM -------- -------- 
INFO - - -0.205 
COMP 
ARITH 
SIMIL 
VOCAB 
DIGIT 

PICTCOMP 
PARANG 
BLOCK 
OBJECT 
CODING 

No Non-Zero Modification Indices for PHI 

I Modification Indices for THETA-DELTA 

i 
INFO COMP ARITH -------- -------- -------- - - 

INFO - - 
COMP 5.192 - - ! 

I ARITH 4.110 0.003 - - 
SIMIL 0.744 0.668 0.559 
VOCAB 4.378 0.000 2.332 
DIGIT 1.637 0.567 0 .804  

PICTCOMP 1.318 4.659 1 .672  
PARANG 0.087 1.543 2 .081  
BLOCK 1.415 1.205 2 .561  
OBJECT 0 .101  2.798 6.326 
CODING 0.762 0.035 0.832 

SIMIL ------ 

Modification Indices for THETA-DELTA 

PICTCOMP PARANG BLOCK OBJECT CODING - - - - - - - - - - - - - - - - -------- -------- -------- 
PICTCOMP - - 
PARANG 0.607 - - 
BLOCK 1 .008  0.742 - - 
OBJECT 0.564 0.102 0.223 - - 
CODING 4.549 0.004 1.648 0.046 - - 

difference between the two chi-square values is a XZ equal to 9.94 1 ,  Xa,l?( 1. N = 172) = 9.94 1.  
p < .O1, about the value of 9.767 anticipated from the modification index (LM test). We conclude that 
the addition of a path predicting comprehension from the Performance factor significantly improves 
the model. The largest standardized residual is now 2.614, and the plot of residuals is improved. 
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TABLE 14.17 Continued 

Expected Change for THETA-DELTA 

INFO COMP ARITH SIMIL -------- -------- VOCAB -------- -------- -------- DIGIT - - - - - - - - 
INFO - - 
COMP -0.990 - - 
ARITH 0 . 7 0 1  0.020 - - 
SIMIL -0.403 0 . 3 9 1  -0 .291  - - 
VOCAB 0.918 -0.003 -0.530 -0.065 - - 
DIGIT 0.544 -0.342 0.344 -0.165 -0 .071  

PICTCOMP -0.479 0.975 -0.498 0.865 0.003 
PARANG 0.117 -0.533 0.529 0.835 -0.802 
BLOCK -0.444 0.442 0.548 -0.627 0.213 
OBJECT -0.130 0 .741  -0.950 0.422 -0.338 
CODING -0.404 0.093 0.392 -0.962 0.566 

Expected Change for THETA-DELTA 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
PICTCOMP - - 
PARANG -0.419 - a 

BLOCK -0.643 0.447 - - 
OBJECT 0.449 -0.165 0.283 - - 
CODING -1.232 0.032 0.679 0 .121  - - 

Completely Standardized Expected Change for THETA-DELTA 

INFO COMP ARITH - - - - - - - - SIMIL 
-------- - - - - - - - - 

VOCAB 
- - - - - - - - 

INFO - - 
COMP -0 .115 - - 
ARITH 0.104 0.003 - - 
SIMIL -0.043 0 .041  -0.040 - - 
VOCAB 0.107 0.000 -0.078 -0.007 - - 
DIGIT 0.069 -0.043 0.055 -0.019 -0.009 

PICTCOMP -0.056 0.112 -0.074 0.093 0.000 
PARANG 0.015 -0.068 0.086 0.099 -0.103 
BLOCK -0.056 0.055 0.088 -0.073 0.027 
OBJECT -0.016 0.088 -0.145 0.047 -0 .041  
CODING -0.048 0 .011  0.059 -0.105 0.067 

Completely Standardized Expected Change for THETA-DELTA 

PICTCOMP PARANG BLOCK OBJECT CODING -------- -------- -------- -------- -------- 
PICTCOMP - - 
PARANG -0 .054 - - 
BLOCK - 0 .081  0.062 - - 
OBJECT 0.054 -0.022 0.037 - - 
CODING -0 .146 0.004 0.087 0.015 - - 

Maximum Modification Index is 9.77 for Element ( 2 ,  2 )  of LAMBDA-X 



Additional paths could be aclded to the model but the decixion is made to next test a third model 
with the coding subtest rernobed. The Wald tesr ih  unavailable in LlSREL so we delete coding and 
estimate the third model. %'(33, iV = 172) = 45.018, p = .08, CFI = ,974. By dropping the coding 
subtest completely we have changed the h r c i  and the parameters so the model is no longer nested and 
the chi-square difference test is no longer appropriate. Although a statistical test of an improvement is 
not available, other fit indices can be examined. The model AIC and CAIC can be compared between 
the models with small values indicating good-fitting, parsimonious models. The AIC for the model 
with the coding subtest is 108.30; without the coding subtest, the AIC drops to 89.01 8. The CAIC also 
drops after the coding subtest is deleted, CAIC with coding = 208.25 and without coding CAIC = 
180.64. It is unclear if this drop is large enough as the AIC and CAIC are not normed: however, there 
does seem to be a sizable increase in fit and parsimony when the coding subtest is removed. The third 
model, with significant coefficients included in standardized form, is presented in Figure 14.1 1. 

.68 - arithmetic 

.52 - similarities ,, 

[ Performance IQ 1 
.78 - picture .45 

arrangement x8 

.68 - object / assembly x,y 

.53 - 

FIGURE 14.11 Final modified CFA model with significant 
coefficients presented in standardized form. 

block 
design ,9 

J 
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The rnodel modifications in this example were post hoc and may have capitallred o n  chance. 
Ideally, these results would be cross-validated with a new sample. However, in the absence of a new 
sample. a helpful measure of the extent to which the parameters changed in the course of modifica- 
tions is the bivariate correlation between the parameter estimates of the first and third models. This 
correlation, as calculated by SPSS CORRELATE, is r(18) = .947, p < .Ol, which indicates that, 
although model modifications were made, the relative size of the parameters hardly changed. 

Table 14.28 (near the end of Section 14.6) contains a checklist for SEM. A Results section for 
the CFA analysis follows, in journal fonnat. 

Results 

The Hypothesized Model 

A confirma.tory factor analysis, based on data from learning- 

disabled children, was performed through LISREL on the eleven sub- 

tests of the WISC-R. The hypothesized model is presented in Figure 

14.8 where circles represent latent variables, and rectangles rep- 

resent measured variables. Absence of a line connecting variables 

implies no hypothesized direct effect. A two factor model of IQ, 

Verbal and Performance, is hypothesized. The information, compre- 

hension, arithmetic, similarities, vocabulary, and digit span sub- 

tests s e n e  as icdicators ~f the  Verbal IQ factor. The pictiire 

comprehension, picture arrangement, block design, object assembly, 

and coding subtests serve as indicators of the Performance IQ fac- 

tor. The two factors are hypothesized to covary with one another. 

Assumptions 

The assumptions of multivariate normality and linearity were 

evaluated through SPSS. One child had an extremely high score on 

the arithmetic subtest (19, z = 4.11, p < -01) and his data were 

deleted from the analysis. Using Mahalanobis distance, another 

child was a multivariate outlier, p < .001, and the data from this 

child were also deleted. This child had an extremely low compre- 

hension subtest score and an extremely high arithmetic score. 

Structural equation modeling (SEMI analyses were performed using 

data from 175 children. There were no missing data. 



Model E s  t ima ti on 

Maximum likelihood estimation was employed to estimate all 

models. The independence model that tests the hypothesis that all 

variables are uncorrelated was easily rejectable, x2 (55, N = 175) = 

516.24, p c .01. The hypothesized model was tested next and sup- 

port was found for the hypothesized model, ~ ~ ( 4 3 , ~  = 175) = 70.24, 

p = .005, comparative fix index (CFI) = .94. A chi-square differ- 

ence test indicated a significant improvement in fit between the 

independence model and the hypothesized model. 

Post hoc model modifications were performed in an attempt to 

develop a better fitting and possibly more parsimonious model. On 

the basis of the Lagrange rrmltiplier test, a path predicting the 

comprehension subtest from the Performance factor was added, x2 (42, N 
= 172) = 60.29, p = .03, CFI = .96, CAIC = 108.25, AIC = 108.295. A 

chi square difference test indicated that the model was signifi- 

cantly improved by addition of this path, x~,,(l,N = 172) = 9.941, 

p < -01. Second. because the coefficient predicting the coding 

subscale from the Performance factor (.072) was not significant, 

SMC = .005, this variable was dropped and the model re-estimated, 

x2 (33 ,N = 172) = 45.018, p = .08, CFI = .974, CAIC = 180.643, 

AIC = 89.018. Both the CAIC and AIC indicated a better fitting, more 

parsimonious model after the coding subtest is dropped. 

Because post hoc model modifications were performed, a corre- 

lation was calculated between the hypothesized model parameter 

estimates and the parameter estimates from the final model, r(18) 

= -95, p < .01; this indicates that parameter estimates were 

hardly changed despite modification of the model. The final model, 

including significant coefficients in standardized form, is 

illustrated in Figure 14.11. 
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14.6.2 SEhI of Health Data 

The second example demonstrates SEM of health and attitudinal variables 

14.6.2.1 SEM Model Specijicatiort 

EQS 6.1 is used to assess the fit of the hypothesized model in Figure 14.12 using data in Appendix 
B. 1 .  The model includes three hypothesized factors: Poor Sense of Self (with self-esteem-ESTEEM, 
satisfaction with marital status-ATTMAR, and locus of control-CONTROL, as indicators), Per- 
ceived I11 Health (with number of mental health problems-MENHEAL, and number of physical 
health problems-PHYHEAL as indicators), and Health Care Utilization (with number of visits to 
health professionals-TIMEDRS, and extent of drug use-DRUGUSE, as indicators). It is hypothe- 
sized that age and number of life stress units (STRESS), both measured variables, as well as poor 
sense of self (SELF), a latent variable, all predict perceived ill health (PERCHEAL) and health care 

FIGURE 14.12 Hypothesized SEM model. 



utilization (USEHE.4L). both latent v:iriahles. .!Iddition:~ll! perceived i l l  health (PERCHEAL-) prc-  
dicts health care utilization. As is typic~tlly done, all three independent v~u-iablea (age. st re^. ~ ~ n d  
poor sense of selt] are allowed, initially, to freely covary. 

Several questions are of interest: (I i How well does this model estimate the population covari- 
ance matrix, i.e., reproduce the sample covariance matrix? (2) How well do the constructs predict the 
measured indicator variables, e.g., how strong is the measurement model? (3) Do age, stress; and 

f poor sense of self directly predict perceived il l  health andlor health care utilization? (4) Does per- 
ceived ill health directly predict health care utilization? (5) Does perceived ill health serve as in inter- 
vening variable between age, life stress units, poor sense of self, and health care utilization? Said 

1 . another way, is there an indirect relationship between age, life stress units, poor sense of self, and 
health care utilization 

I As a preliminary check of the identifiability of the model, the number of data points and parame- 
ters to be estimated are counted. With 9 variables there are 9(9 + 1)/2 = 45 data points. The hypothe- 
sized model contains 23 parameters to be estimated (10 regression coefficients, 3 covariance, 12 
variances); therefore, the model is overidentified and is tested with 22 df. To set the scales of the factors, 
the path predicting number of physical health problems from Perceived I11 Health, the path predicting 
number of visits to health professionals from Health Care Utilization, and the path predicting self- 

i esteem from poor sense of self are fixed to 1. EQS syntax and summary statistics appear in Table 14.18. 

14.6.2.2 Evaluation of Assumptions for SEM 

Output from the evaluation of assumptions is shown only when the procedure or output is different 
from that in other chapters or the CFA example. 

14.6.2.2.1 Sample Size and Missing Data 
The dataset contains responses from 459 participants. There are complete data for 443 partic- . . . . 
=fi the nine va;-i2b!es of Five parlicipaiits (1 .1  'jc) are bata ofi niiitUdes toward 

marriage (ATTMAR), 4 participants (.9%) are missing age (AGE), and 7 (1.5%) are missing the 
stress measure (STRESS). After examination of the pattern of missing data there i s  no evidence of a 
nonignorable missing data pattern (cf. Section 4.1.3). Although it would be reasonable to estimate 
the missing data, this analysis will use complete cases only. Given the number of measured variables 
and the hypciihesized relationships the sample is adequate. 

14.6.2.2.2 N o r m a l i ~  and Linearity 
Normality of the observed variables was assessed through examination of histograms using 

SPSS DESCRIPTIVES and E Q S ' ~  and summary descriptive statistics in EQS. Eight of the ten 
observed variables were significantly skewed; 

( 1 ) TIMEDRS : = 24.84 (2) PHYHEAL : = 9.28 

(3) MENHEAL : = 5.06 (4) DRUGUSE z = 10.79 

( 5 )  ESTEEM : = 3.22 (6 j CONTROL z = 4.46 

17) STRESS - = 6 9 6  (8) ATTMAR : = 8 7 5  

12~catterplots  also could have been exaln~ned through the EQS Windows program 
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TABLE 13.18 Syntax and Partial Output from EQS SEM Model of Health Utilization 

/TITLE 
Large sample example 
/SPECIFICATIONS 
DATA = 'healthsem.ESS'; 
VARIABLES=21; CASES=459; GROUPS=l; 
METHODS=ML,ROBUST; 
MATRIX=RAW 
ANALYSIS=COVARIANCE; 
/LABELS ' 

Vl=SUBNO; V2=EDCODE; V3=INCODE; V4=EMPLMNY; V5=TIMEDRS; 
V6=PHYHEAL; V7=MENHEAL; V8=DRUGUSE; Vg=STRESS; VlO=ATTMED; 
Vll=ESTEEM; V12=CONTROL; V13=ATTMAR; V14=ATTROLE; V15=ATTHOUSE; 
V16=ATTWORK; V17=AGE; V18=SEL; V19=LTIMEDRS; V2O=LPHYHEAL; 
V21=SCSTRESS; Fl=SELF; F2=PERCHEAL; F3=USEHEAL; 
/EQUATIONS 
!F1 Poor sense of self 
V11'= IF1 + 1Ell; 
V12 = *F1 + 1E12; 
V13 = *F1 + E13; 
V14 = *F1 + E14; 

! F2 PERCHEAL 
V6 = 1F2 + 1E6; 
V7 = *F2 + 1E7; 

!F3 USEHEAL 
V5 = F3 + E5; 
V8 = *F3 + E8; 

/COVARIANCES 
Fl,V17 = *; 

/PRINT 
FIT=ALL ; 
TABLE=EQUATION; 
EFFECT = YES; 
/LMTEST 
/ WTEST 
/ END 



TABLE 14.18 Continued 

SAMPLE STATISTICS BASED ON COMPLETE CASES 
I 

UNIVARIATE STATISTICS 
..................... 

VARIABLE TIMEDRS PHYHEAL MENHEAL DRUGUSE ESTEEM 
I 

MEAN 7.5730 4.9412 6.0871 8.5643 15.8301 

SKEWNESS (01 ) 2.9037 1.0593 .6175 1.2682 .4870 

i 
I 

KURTOSIS (G2) 9.9968 1.2271 -. 2605 1.0620 .2822 
! 
I STANDARD DEV. 9.9821 2.3768 4.1858 9.0952 3.9513 

I VARIABLE CONTROL ATTMAR ATTROLE AGE SCSTRESS 

MEAN 6.7429 22.7298 35.1503 4.3638 2.0087 

SKEWNESS (GI ) .4912 .7937 .0551 .0372 .7637 

KURTOSTS (G2 ) -. 3978 .8669 -. 4190 -1.1624 .2436 

STANDARD DEV. 1.2657 8.8654 6.7708 2.2284 1.2967 

MLTLTIVARIATE KURTOSIS 
..................... 

MARDIA' S COEFFICIENT (G2, P )  = 23.7537 
NORMALIZED ESTIMATE = 16.4249 

MARDIA-BASED KAPPA IS USED IN COMPUTATION. KAPPA= .I979 

COVARIANCE MATRIX TO BE ANALYZED: 10 VARIABLES 
( SELECTED FROX 2 1 VPS.ILaSLES ) 

BASED ON 459 CASES. 

TIMEDRS PHYHEAL MENHEAL DRUGUSE ESTEEM 
V 5 V 6 V 7 V 8 V 11 

TIMEDRS V 5 99.643 
PHYHEAL V 6 10.912 5.649 
MENHEAL V 7 10.705 4.957 17.521 
DRUGUSE V 8 26.779 9.151 14.136 82.722 
ESTEEM v 11 .726 .852 3.600 -1.541 15.613 
CONTROL V 12 .279 .328 1.490 .779 1.690 
ATTMAR V 13 4.332 1.683 9.026 7.262 10.251 
ATTROLE V 14 -5.460 - .  814 -1.926 -5.897 4.947 
AGE V 1 7  - .  336 .I44 -. 757 - .  544 .031 

SCSTRESS V 21 3.315 .926 2.099 3.619 -. 468 
(rnt~tinued) 

ELLIPTICAL THEORY KURTOSIS ESTIMATES 
.................................... 

MARDIA-BASED KAPPA = .I979 MEAN SCALED UNIVARIATE KURTOSIS = .3813 
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TABLE 14.18 Continued 

CONTROL ATTMAR ATTROLE AGE SCSTRESS 
V 12 V 13 V 14 V 17 V 21 

CONTROL V 12 1.602 
ATTMAR V 13 2.173 78.595 
ATTROLE V 14 -. 009 -3.804 45.844 

AGE V 1 7  -. 376 -1.762 3.423 4.966 
SCSTRESS V 21 .099 1.251 -2.114 -.838 1.681 

BENTLER-WEEKS STRUCTURAL REPRESENTATION: 

NUMBER OF DEPENDENT VARIABLES = 11 
DEPENDENT V'S : 5 6 7 8 11 12 13 14 21 
DEPENDENT F'S : 2 3 

NUMBER OF INDEPENDENT VARIABLES = 13 
INDEPENDENT V'S : 17 
INDEPENDENT F' S : 1 
INDEPENDENT E'S : 5 6 7 8 11 12 13 14 
INDEPENDENT D'S : 2 3 

NUMBER OF FREE PARAMETERS = 25 
NUMBER OF FIXED NONZERO PARAMETERS = 14 

DETERMINANT OF INPUT MATRIX IS .11552D+12 

PARAMETER ESTIMATES APPEAR IN ORDER, 
NO SPECIAL PROBLEMS WERE ENCOUNTERED DURING OPTIMIZATION. 

EQS also provides information on multivariate normality (see Table 14.18). In the section labeled, 
MULTIVARIATE KURTOSIS, Mardia's coefficient and a normalized estimate of the coefficient are 
given; the normalized estimate can be interpreted as a =-score. In this example, after deletion of all 
outliers, NORMALIZED ESTIMATE = 16.42, suggesting that the measured variables are not dis- 
tributed normally. 

It is not feasible to examine all pairwise scatterplots to assess linearity; therefore, randomly 
selected pairs of scatterplots are examined using SPSS GRAPHS.'~ All observed pairs appear to be 
linearly related, if at all. Transformations are not made to these variables because it is reasonable to 
expect these variables to be skewed in the population (most women use few drugs, are not ill, and do 
not go to the doctor often). Instead, given the sample size (N = 443, a large sample) the decision is 
made to use provisions in the EQS program to take the nonnormality into account when assessing 
X 2  statistics and standard errors by use of maximum likelihood estimation with the Satorra-Bentler 
scaled chi square and adjustment to the standard errors to the extent of the nonnormality. This analp- 
sis is requested from EQS by ME=ML, ROBUST (see Table 14.18). 

"~catterplots also could have been examined through the EQS Windows program 



14.6.2.2.-5 O ~ i t l i r ~ : ~  
Using SPSS FREQUENCIES and GRAPHS there were no ~~ni\.ariate outliers detected. 

Although there were :-scores on several variables greater than 3.3, these large scores were associated 
with naturally skewed distributions, i.e.. most women don't go to the doctor often and a diminishing 
number go frequently. Using SPSS REGRESSION there were also no multivariate outliers. 

I 
1 14.6.2.2.4 Miilticollineari~ and Singltlarity 

The determinant of the matrix, given in EQS (Table 14.18), as DETERMINANT OF INPUT 
MATRIX IS .'1552D+12. This is much larger than 0, so there is no singularity. 

I 

i 
14.6.2.2.5 Adequacy of Covariances 
SEM programs have difficulty with computations if the scales of the variables, and therefore 

the covariances, are of vastly different sizes. In this example, the largest variance is 17,049.99 for 
STRESS, the smallest variance is 1.61 for CONTROL. This difference is large and a preliminary run 
of the model does not converge after 200 iterations. Therefore the STRESS variable was multiplied 
by .01. After this resealing, the new variable SCSTRESS had a variance of 1.70 and there were no 

1 further convergence problems. 

14.6.2.2.6 Residuals 
Evaluation of residuals is performed as part of model evaluation. 

! 
I 14.6.2.3 SEM Model Estimation and Preliminary Evaluation 
I 

The syntax and edited output for SEM analysis are presented in Table 14.18. As a first step, look in 
the printout for the statement, P W E T E R  ESTIMATES APPEAR IN ORDER, shown at the end 
of Table 14.18. If there are identification problems or other problems with estimation, this statement 
does not appear and, instead, a message about CONDITION CODES, as discussed in Section 14.5.1. 
is printed. This message is used to diagnose problems that come up during the analysis. 

1 After checking the covariance matrix for reasonable relationships, examine the portion of the 
printout labeled BENTLER-WEEKS STRUCTURAL REPRESENTATION that lists the IVs and 
DVs as specified by the model. These should, and do in this case, match the path diagram. 

Table 14.19 presents residuals and goodness-of-fit information for the estimated model in the 
section labeled GOODNESS OF FIT SUMMARY. A necessary condition for evaluating and interpret- 
ing a model is that the hypothesized model is a significant improvement over the independence 
model. The independence model tests the hypothesis that all the measured variables are independent 
of one another. Our proposed model hypothesizes that there are relationships among the measured 
variables therefore it is necessary that our hypothesized model is a significant improvement over the 
independence model. The test of improvement between independence and model chi squares is 
assessed with a chi-square difference test. Had the data been normal we simply could have subtracted 
the chi square test statistic values and evaluated the chi square with the dfs associated with the dif- 
ference between the models. However, because the data were nonnorrnal and we used the Satorra- 
Bentler scaled chi square we need to make an adjustment as follows (Satorra & Bentler, 2002). First 
a scaling correction is calculated. 
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cumpallson model 

Scal~ng correction = 
%s-B coinpal , o n  inodel 

- 
(dfnested model dfcornparlson model) 

(eq. 14.36) 

Scaling correction = 

The scaling correction is then employed with the ML X2 values to calculate the S-B scaled X2 dif- 
ference test statistic value, 

L - 
2 - - X~~ nested model x ~ L  comparison model 

%-B difference scaling correction 

This chi-square difference is evaluated with degrees of freedom equal to, dfneSted model - 

dfcomparison model = 36 - 20 = 16. The adjusted S-B X 2 ( ~  = 443, 20) = 525.91, p < .01. The chi- 
square difference test is significant, therefore, the model is a significant improvement over the inde- 
pendence model and model evaluation can continue. In practice, just about the only time this 
difference is not significant is when sample sizes are very small or there is a major problem with the 
hypothesized model. 

TABLE 14.19 Standardized Residuals and Goodness-of-Fit Information from EQS Complete 
Example (Syntax Appears in Table 14.18) 

STANDARDIZED RESIDUAL MATRIX: 

TIMEDRS V 5 
PHYHEAL V 6 
MENHEAL V 7 
DRUGUSE V 8 
ESTEEM V 11 
CONTROL V 12 
ATTMAR V 13 

AGE V 17 
SCSTRESS V 21 

CONTROL 
v 12 

CONTROL V 12 .000 
ATTMAR V 13 - .  034 

AGE V 17 - , 0 7 5  
SCSTRESS V 21 .058 

ATTMAR 
V 13 

AGE 
V 17 

SCSTRESS 
v 21 



TABL,E 14.19 Continued 

AVERAGE ABSOLUTE STANDARDIZED RESIDUALS = .0404 
AVERAGE OFF-DIAGONAL ABSOLUTE STANDARDIZED RESIDUALS = .0505 

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 

LARGEST STANDARDIZED RESIDUALS: 

NO. ESTIMATE 
- - - - - - - - 

.I59 
-. 150 
.I45 
.lo7 

-. 094 
.094 

-. 085 
-. 079 
- .  075 
.073 

NO. 
--- 
11 
12 
13 
14 
15 
16 
17 
18 
19 
2 0 

PARAMETER 
- - - - - - - - - 
v11, v7 
V11, V6 
v21, v7 

ESTIMATE 

DISTRIBUTION OF STANDARDIZED RESIDUALS 
.......................... 
I ! 

4 0 - - 
I ! 
I ! 

I I ! 
I ! 

30- - RANGE FREQ PERCENT 
I ! 1 -0.5 - - 0 . O O %  
I ! 2 -0.4 - -0.5 0 .OO% 
I ! 3 -0.3 - -0.4 0 .OO% 
I * * ! 4 -0.2 - -0.3 0 .OO% 

20- * * - 5 -0.1 - -0.2 1 2.22% 
I * * ! 6 0.0 - -0.1 19 42.22% 

I 
! I * * ! 7 0-1 - 0-0 2 2 48.89% 
I 

I ! * * ! 8 0.2 - 0.1 3 6.67% 
I * * ! 9 0.3 - 0.2 0 -00% 

I 10- * * - A 0.4 - 0.3 0 .OO% 
I * * * ! B 0.5 - 0.4 0 .OO% 
I * * * ! C ++ - 0.5 0 .OO% 
! * * * *  I ................................. 
! X X * * X *  I TOTAL 45 100.00% 
.......................... 
1 2 3 4 5 6 7 8 9 A B C  EACH ' *"  REPRESENTS 2 RESIDUALS 

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 

GOODNESS OF FIT SUMMARY FOR METHOD = ML 

INDEPENDENCE MODEL CHI-SQUARE = 7 0 5 .5 3 1 ON 3 6 DEGREES OF FREEDOM 
(continued) 
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TABLE 14.19 Continued 

I 
INDEPENDENCE AIC = 633.53117 INDEPENDENCE CAIC = 448,88536 

MODELAIC= 59.94157 MODEL CAIC = -42.63943 

CHI-SQUARE = 99.942 BASED ON 20 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR TXE CHI-SQUARE STATISTIC IS .00000 

I 

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 102.834.  j 

FIT INDICES . 
----------- 
BENTLER-BONETT NORMED FIT INDEX = .858 
BENTLER-BONETT NON-NORMED FIT INDEX = .785 
COMPARATIVE FIT INDEX (CFI) - - . 8 8 1  
BOLLEN (IFI) FIT INDEX - - .883 
MCDONALD (MFI) FIT INDEX - - -917  
LISREL GFI FIT INDEX - - 9 5 2  - 
LISREL AGFI FIT INDEX - - .893 
ROOT MEAN-SQUARE RESIDUAL (RMR) - - 1 . 4 7 1  
STANDARDIZED RMR - - .059 
ROOT MEAN-SQUARE ERROR OF APPROXIMATION(RMSEA) = .093 
90% CONFIDENCE INTERVAL OF RMSEA ( .075 ,  .112)  
GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST 

ROBUST INDEPENDENCE MODEL CHI-SQUARE = 613.174 ON 36 DEGREES OF FREEDOM 
INDEPENDENCE AIC = 541.17402 INDEPENDENCE CAIC = 356.52821 

MODEL AIC = 46.90838 MODEL CAIC = -55.67262 

SATORRA-BENTLER SCALED CHI-SQUARE = 86.9084 ON 29 DEGREES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS -00000 

RESIDUAL-BASED TEST STATISTIC = 70.815 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00000 

FJ*~J?- nxnmI;xF, ~ E C  ID~_TPL - BsaASED TEST CTP-TI STIC - - 61.350 

PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00000 

WAN-BENTLER RESIDUAL-BASED F-STATISTIC = 3.394 
DEGREES OF FREEDOM = 20,439 
PROBABILITY VALUE FOR THE F-STATISTIC I .00000 

FIT INDICES 

BENTLER-BONETT NORMED FIT INDEX = .858 
BENTLER-BONETT NON-NORMED FIT INDEX = . 7 9 1  
COMPARATIVE FIT INDEX (CFI) - - .884 
BOLLEN (IFI) FIT INDEX - - .887 
MCDONALD (MFI) FIT INDEX - - .930 
ROOT-MEAN SQUARE ERROR OF APPROXIMATION (RMSEA) = .085  
908 CONFIDENCE INTERVAL OF RMSEA ! .067 ,  - 1 0 4 )  



Howetw. the S:ltorra-Bentier scaled chi-square test of the robust ML estimation is also si3nii'- 
icant. z2(20, N = 143) = 86.9 I .[I  < .OUI. indicating a bigtiiticant difference betueen the ebtiniated 
and observed covariance matrices. In  a large sample like this, trivial differences can produce a sta- 
tistically significant %' so fit indices often provide a better gauge of fit when sample size is large. 
However. none of the fit indices indicates a good fitting model. The residuals are sy~nmetrically dis- 
tributed around zero, but large. The iargest standardized residual is .159, and a few are greater than 
.lo. Because the hypothesized model does not fit the data, further inspection of parameters is 
deferred, and instead the Lagrange multiplier test is examined. 

I 
I 14.6.2.4 Model Modification 
! The hypothesized model does not fit. Models can be improved by adding paths so a first approach is 

to carefully examine the hypothesized model set-up to insure that important paths were not forgot- 
ten. No paths were obviously forgotten in our model so the next step is to examine the Lagrange mul- 
tiplier test (LM Test). Doing model modifications to improve the fit of a model moves the analysis 
from a confirmatory analysis to an exploratory analysis and caution should be exercised in interpret- 
ing signiticance levels. Results of initial univariate and multivariate LM tests with default settings 
are presented in Table 14.20. Note that these tests are based on ML statistics because EQS does not 
yet print out Satorra-Bentler LM tests. 

The multivariate LM test suggests that adding a path predicting V7 from F I (predicting num- 
ber of mental health problems from Poor Sense of Self) would significantly improve the model and 
lead to an approximate drop in model X2 of 32.199. This means that in addition to the relationship 
between poor sense of self and number of mental health problems through perceived ill health there 
is also a direct relationship between these two variables. This may be a reasonable parameter to add. 
It may be that women who have a poor senae of self also report more mental health problems over 
and above the relationship between poor sense of self and perceived ill health. The path is added and 
the model re-estimated (not shown). 

Instead of the message, PARAMETER ESTIMATES APPEAR I N  ORDER, however, the fol- 
lowing message is found: 

p m T Z R  CONEITION CODE 

D 3 ,  D3 CONSTRAINEDATLOWERBOUND 

This indicates that during estimation, EQS held the disturbance (residual variance) of the third fac- 
tor, the Health Care Utilization factor, at zero rather than permit it to become negative. This message 
may well indicate a potential problem with interpretation (negative error variance?). This path was 
not hypothesized and we add the path and re-estimate the model. Unfortunately we create a condi- 
tion code (indicating a problem with the model). Therefore this path is not added, instead the corre- 
lations among the residuals are examined through the LM test. 

Adding correlated residuals is conceptually and theoretically tricky. First and foremost this is 
dangerously close to data fishing! When we add correlated residuals we are correlating the parts of 
the dependent variable that are not predicted by the independent variable. So in essence we don't 
know exactly what we are correlating only what we are not correlating. Sometimes this makes good 
sense and other times i t  does not (Ullman, in  press.) 
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TABLE 14.20 Edited EQS Output of Univariate and %Iultivariate Lagrange Multiplier Test 
(Syntax Appears in Table 14.18) 

LAGRANGE MULTIPLIER TEST (FOR ADDING PARAMETERS) 

ORDERED UNIVARIATE TEST STATISTICS: 

CODE 
---- 
2 12 
2 10 
2 16 
2 22 
2 11 
2 11 
2 11 
2 20 
2 20 
2 11 

PARAMETER 
L - - - - - - - - 

V7, F1 
D3, D2 
F3, F1 
F2, F3 
Vll,V21 
V6,V21 
V7 ,V21 
Vll, F3 
V6, F3 
Vll ,V17 

CHI - 
SQUARE 
------ 
32.199 
15.027 
15.027 
15.027 
14.052 
9.991 
9.991 
9.956 
9.212 
8.931 

HANCOCK 
20 DF 

PROB. PROB. 
----- ----- 
.OOO .041 
.ooo .775 
.ooo -775 
.ooo -775 
.OOO .828 
.002 .968 
.002 .968 
.002 .969 
.002 .960 
.003 .984 

PARAMETER 
CHANGE 

- - - - - - - - 
.573 

6.352 
-. 765 
2.691 
-. 596 
- .364 
.598 

-. 168 
1.385 
.283 

STANDARD- 
I ZED 
CHANGE 

- - - - - - - - - 
.055 

2.898 
-. 059 
.295 

-. 116 
- .  118 
.I10 

-. 008 
.I13 
.032 

MAXIMUM LIKELIHOOD SOLUTION (NORMAL DISTRIBUTION THEORY) 

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1 

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE: 

P W  PFV PFF PDD GW GVF GFV GFF BVF BFF 

CUMULATIVE MULTIVARIATE STATISTICS 
.................................. 

STEP PARAMETER CHI-SQUARE D.F. PROB. 
---- --------- ---------- ---- ----- 

1 v7, PI 32.199 1 .,,, nnn 

2 V7, F21 62.428 2 .000 
3 Vll,V21 76.480 3 .OOO 
4 Vll,Vl7 80.363 4 .OOO 

UNIVARIATE INCREMENT 
.................... 

HANCOCK ' S 
SEQUENTIAL 

CHI-SQUARE PROB. D.F. PROB. 
---------- ----- ---- ----- 

nAl nnn 20 .,,, 32.199 .,,, 
30.229 .OOO 19 .049 
14.052 .OOO 18 .726 
3.883 .049 17 1.000 

The LM test is again employed to examine the usefulness of adding correlated errors to the 
model.14 Correlated errors are requested in EQS by the inclusion of 

/LMTEST 
SET = PEE; 

Table 14.21 shows that if the residuals between E6 and E5 are added the chi square will drop 
approximately 30.529 points. It may be that even after accounting for the common relationship 

14Note: Adding post hoc paths is a little like eating qalted peanuts-one is never enough. Extreme caution should be used 
when adding paths as they are generally post hoc and therefore potentially capitalizing on chance. Conservative p levels ( p  < 
,001) may be used as a criterion for adding post hoc parameters to the model. 



TABLE 14.21 Syntax klodifications and Edited EQS Zlultivariate LXl Test for idding Correlated 
Errors (Full Syntau 4ppears in 'I'able 11.26) 

/ W E S T  
Set=pee; 
LAGRAxGE MClLTIPLIER TEST (FOR ADDING PARAMETERS) 

ORDERED UNIVARIATE TEST STATISTICS: 

HANCOCK STANDARD - 
CHI- 20 DF PARAMETER I ZED 

NO CODE PARAMETER SQUARE PROB. PROB. CHANGE CHANGE 
- - ---- - - - - - - - - - ------ ----- ----- -------- --------- 
1 2 6  E6,E5 30.259 .OOO .062 5.661 .418 

I 
2 2 6  E7,E5 18.845 .OOO .532 -7.581 - .295 

MULTIVARIATE LAGRANGE MULTIPLIER TEST BY SIMULTANEOUS PROCESS IN STAGE 1 

PARAMETER SETS (SUBMATRICES) ACTIVE AT THIS STAGE ARE: 

PEE 

CUMULATIVE MULTIVARIATE STATISTICS 
.................................. 

STEP PARAMETER CHI -SQUARE 
--------- ---------- 

E6, E5 30.529 
Ell, E8 41.280 
E12, E7 51.575 
E13, E7 50.250 
Ell, E7 69.941 

D.F. PROB. 
- - - - - - - - - 

1 .ooo 
2 .ooo 
3 .ooo 
4 .GOO 
5 .ooo 

UNIVARIATE INCREMENT 
.................... 

HANCOCK ' S 
SEQUENTIAL 

CHI-SQUARE PROB. D.F. PROB. 
---------- ----- ---- ----- 

30.529 .OOO 20 -062 
10.750 .OOO 19 .932 
10.295 .OOO 18 .922 
8.675 . O O O  i7 .95u 
9.690 .OOO 16 .882 

between number of physic.! hez!th prob!ems and aumber of visits to health professioiials ihioiigh 
their respective factors there is still a unique significant relationship between these two measured 
variables. This seems reasonable therefore the path is added and the model re-estimated. 

The model Satorra-Bentler ;C2 for the new model = 60.37, Robust CFI = .93, RMSEA = .07. 
The adjusted scaled x2 difference test is calculated using equation 14.36, Satorra-Bentler 

3 
2-. 

difference 
(1, N = 459) = 17.54, p < .05. The model is significantly improved by adding this path 

(not shown). It would be feasible to stop adding paths at this point. However, the RMSEA is somewhat 
high and CFI is a little too low so the decision is made to examine the correlated residuals one more 
time with the goal of improving the model a little bit more if conceptually justifiable. The LM test is 
examined after the addition of the correlated residual between E6 and E5 and the test indicates that 
adding the covariance between E8 and E6 will be associated with an approximate drop in the model 
x2 of 23.63 (not shown). Again, it seems reasonable that there may be a unique relationship between 
frequency of drug use and number of physical health probletns. A word of warning here about model 
modifications is necessary. These decisions to add paths are being made post hoc, afier looking at the 
data. It is very easy to fool yourself into a convincing story about the theoretical importance of a path 

I 

I 
when you see that adding it would significantly improve the model. Exercise caution here! 
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The covariance hetueerl EX and E6 i i   tided and the model Satorra-Bentler %' for the ne\+ 
model = 40.16. Robust CFl = .96, RhISEA = .05. The adjusted scaled z2 difference test is calcu- 
lated using equation 14.36. Satorra-Bentler (1, N = 459) = 20.60, p < .05. 

The final model goodness-of-fit information is presented in Table 14.32. The final model with 
significant parameter estimates presented in standardized form is diagrammed in Figure 14.13. Two 
paths were added that were not hypothesized therefore it is important to provide some evidence that 
the hypothesized model has not substantially changed. Ideally, the model should be tested on new 
data. No new data are available for analysis however so instead the bivariate correlation between the 
initial parameter estimates and the final parameter estimates is calculated. If this correlation is high 
(>.90) we can conclude that although paths were added, the model did not change substantially. The 
correlation between the final parameters and the hypothesized paths was calculated and exceeded .90 
(r = .97) therefore although the model was changed it was not changed substantially. 

Specific parameter estimates are now examined. The syntax for the final model, portions of the 
printout related to parameter estimates, and the standardized solution are shown in Table 14.23. The 
section labeled MEASUREMENT EQUATIONS WITH STANDARD ERRORS AND TEST STA- 
TISTICS contains the parameter estimates, standard errors, and, because robust estimation was 
employed, the robust statistics in parentheses. These are the standard errors and the z tests to interpret. 

Number of 

.07' (. 12) Ill Health 

v21* 

Poor Sense Health Care 
Utilization 

1.00 \ (SELF) / 29' 

1.62' 
Self-esteem Locus of 

(ESTEEM) control 

satisfaction 

Visits to health 

D3' 

FIGURE 14.13 Final SEM model. 



T.AHI,E 14.22 Edited EQS Output for Final Jlodel Goodness-of-Fit Summary 

GOODNESS OF FIT SUMMARY FOR METHOD = ML 

INDEPENDENCE MODEL CHI-SQUARE = 705.531ON 36DEGREESOFFREEDOM 

INDEPENDENCE AIC = 633.53117 INDEPENDENCE CAIC = 448.88536 
MODEL AIC = 8.72072 MODEL CAIC = -83.60219 

CHI-SQUARE = 44.721 BASED ON 18 DEGREES OF FREEDOM 
PROBABILITYNALUE FOR THE CHI-SQUARE STATISTIC IS .00045 

THE NORMAL THEORY RLS CHI-SQUARE FOR THIS ML SOLUTION IS 
I 

I FIT INDICES 

BENTLER-BONETT NORMED FIT INDEX = .937 
BENTLER-BONETT.NON-NORMED FIT INDEX = .920 
COMPARATIVE FIT INDEX (CFI) - - .960 
BOLLEN (IFI) FIT INDEX = .961 
MCDONALD (MFI) FIT INDEX = .971 
LISREL GFI FIT INDEX = -980 
LISREL AGFI FIT INDEX = .950 
ROOT MEAN-SQUARE RESIDUAL (RMR) - - .992 
STANDARDIZED RMR - - .044 
ROOT MEAN-SQUARE ERROR OF APPROXIMATION(RMSEA) = 
90% CONFIDENCE INTERVAL OF RMSEA ( .036, 

I GOODNESS OF FIT SUI!UvK3Y FOR METHOD = ROBUST 

INDEPENDENCE MODEL CHI-SQUARE = 613.174ON 36DEGREES OFFREEDOM 

INDEPENDENCE AIC = 541.17402 INDEPENDENCE CAIC = 356.52821 
MODEL AIC = 4.166650 MODEL CAIC = -88.15640 

SATORRA-BENTLER SCALED CHI-SQUARE = 40.1665 ON 18 DEGmES OF FREEDOM 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00198 

I RESIDUAL-BASED TEST STATISTIC - - 51.064 
! nnnnnnss smrr ~ r r  s r m  -nn m r r n  m r r s  m r r r r r - n  -mr m--m-- 

I rnuDtxaAuA~~ v m u n  run Inn L ~ L - ~ ~ U M E  ~ L A L L ~ ~ L L  IS nnnrrr . uuuu3 

WAN-BENTLER RESIDUAL-BASED TEST STATISTIC - - 45.952 
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS .00030 

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC - - 2.732 
DEGREES OF FREEDOM = 18, 441 
PROBABILITY VALUE FOR THE F-STATISTIC IS .00018 

FIT INDICES 

BENTLER-BONETT NORMED FIT INDEX = .934 
BENTLER-BONETT NON-NORMED FIT INDEX = .923 
COMPARATIVE FIT INDEX (CFI) - - .9 62 
BOLLEN (IFI) FIT INDEX = .963 
MCDONALD (MI? I ) FIT INDEX = .976 
ROOT MEAN-SQUARE ERROR OF APPROXIMATION(RMSEA) = 
90% CONFIDENCE INTERVAL OF RMSEA ( .030, 



TABLE 14.23 Syntax and Edited Output from EQS Fia l  RIdel Parameter Estimates 
and Standardized Solution 

/TITLE 
Large Sample &ample Final Model 

/SPECIFICATIONS 
DATA='healthsem 5th editcn.ESS1; 
VARIABLES=21; CASES=459; GROUPS=l; 
METHODS=rn, ROBUST ; 
MATRIX=RAW; 
ANALYSIS=COVARIANCE; 

/LABELS 
Vl=SUBNO; V~=EDCODE; V3=INCODE; V4=ENPLMNY; VS=TIMEDRS ; 
V6=PHYHEAL; V7=MENHEAL; V8=DRUGUSE; V9=STRESS; VlO=ATIMED; 
Vll=ESTEEM; Vl2=CONTROL; Vl3= ATTMAR; Vl4=ATI'ROLE; Vl5=ATITIOUSE; 
Vl6=ATIWF?K; Vl7= AGE; VlS=SEL; Vl9= LTIMEDRS; V20= LPHYHEAL; 
V21= SCSTRESS; Fl=SELF; FZ=PERCHEAL; F3=USEHEAL; 
/EQUATIONS 

! F1 Poor sense. of self 
Vl1 = IF1 + 1Ell; 
V12 = *F1 + 1E12; 
V13 = *F1 + E13; 

F2 = *V17 + *F1 + *V21 + D2; 
F3 = *F2 + *V17 + *V21 + D3; 

/VARIANCES 
F1 = *; 
D2,D3 = *; 
V17 = *; 
E6,E7 = *; 
E5,E8 = *; 
Ell,E12,E13, = *; 

/COVARIANCES 
Fl,Vl7 = *; 
Fl,V21 = *; 
vl7, V21 = *; 
E6,E5 = *; 
E8,E6 = *; 

/ PRLNT 
FIT=- ; 

TABLE=EQUATION; 
EFFECT = YES; 

/ m E S T  
SET = PEE; 
/WEST 
/EM) 



i TABLE 14.23 Continued 
- 

MEASUREMhPT EQUATIONS WITH STANDARD ERRORS AND TEST STATISTICS 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH @. 
(ROBUST STATISTICS IN PARENTHESES ) 

I 
TIMEDRS =V5 . = 1.000 F3 + 1.000 E5 

DRUGUSE =V8 = 1.244*F3 + 1.000 E8 
.207 

5.998@ 
( .212) 
( 5.8554 

ESTEEM =V11 = 1.000 F1 + 1.000 Ell 

mnan-wnnvrmm m n T v m m - v n m r m  T.--T mm=n-=-- m - n - m  -.- --- ---------- 
LVLI~I ~ n u ~  L CIVUAL IULVD WI L n  3 ~mu- muna iulu '~~lb ' l '  b'l'3Xl'lb'l'lL.b 

STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE: MARKED WITH @. 
(ROBUST STATISTICS IN PARENTHESES) 



TABLE 14.23 Continued 

COVARIANCES AMONG INDEPENDENT VARIABLES 
....................................... 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH 4. 

V F 
--- --- 

F21 - SCSTRESS -. 838*I. 
Vl7 - AGE ' .I41 I 

-5.95841 
( .136) I 
( -6.14341 

I 
F1 - SELF - .642*I 
V17 - AGE .338 I 

-1.899 I 
( .343)I 
( -1.873) I 

I 
F1 - SELF .049*I 
V21 - SCSTRESS, .I94 I 

.254 I 
( -19911 
( .248)I 

I 

DECOMPOSITION OF EFFECTS WITH NONSTANDARDIZED VALUES 
STATISTICS SIGNIFICANT AT THE 5% LEVEL ARE MARKED WITH 4. 

PARAMETER INDIRECT EFFECTS 



DECOMPOSITION OF EFFECTS WITH STANDARDIZED VALUES 

PARAMETER INDIRECT EFFECTS 

DRUGUSE =V8 = . 3 3 3  F2 + .060 V17 + .315 V21 
+ .252 D2 + .464 D3 



T.ABLE 14.23 Continued 

STANDARDIZED SOLUTION: R- SQUARED 

TIMEDFG =V5 - - 
PHYHEAL =V6 - - 
MENHEAL =v7 - - 
DRUGUSE =V8 - - 
ESTEEM =V11 = 
CONTROL =Vl2 ' = 
A?TMAR =V13 = 
PERCHEAL=F2 - - 
USEHEAL =F3 - - 

.461 F3 + .887 E5 

.555*F2 + .831 E6 

.903 F2 + .430 E7 

.629*F3 + .777 E8 

.603*F1 + .798 Ell 

.552*F1 + .834 El2 

.434*F1 + .901 El3 

.116*Vl7 + .464*V21 

.529*F2 + .034*V17 

CORRELATIONS AMONG INDEPENDENT VARIABLES 
........................................ 

--- --- 
V21 - SCSTRESS - .290*I 
Vl7 - AGE I 

I 
F1 - SELF -. 121*I 
Vl7 - AGE I 

I 
F1 - SELF .016*I 
V21 - SCSTRESS I 

I 

All of the path coefficients between measured variables and factors in the model are significant, 
p < .05. The section labeled CONSTRUCT EQUATIONS WITH STANDARD ERRORS contains the 
same information for the equations that relate one factor to another. The coefficients that are significant, 
3 tailed, at p < .05 are marked with an @ sign. Increasing age, more life change units (stress), and 
poorer sense of self all significantly predict worse perceived ill health (unstandardized coefficient age 
[V17] = ,069. stress [V21] = .473. poor sense of self [F l ]  = ,369). Increased health care utilization is 
predicted by increased stress (unstandardized coefficient = .905) and perceived ill health (F2, unstan- 
dardized coefficient = 1.837). In this model, age does not significantly predict increased health care 
utilization. (Note: In the interest of developing a parsimonious model, it would have been reasonable to 
run a final model and drop all the nonsignificant paths.) 



Ev~luation of ~nd~rect  effect\ I \  done from the wction labeled DECOMPOSITION O F  

EFFECTS WITH NONST.9NDARDIZED VALUES PARAMETER INDIRECT EFFECTS. Age, 
number of life change units, and Poor sense of Self all indirectly affect Health C u e  Utilization. Said 
another way, perceived ill health serves as an intervening variable between age, stress, Poor Sense of 
Self and Health Care Utilization. Increasing age, more stress, and Poor Sense of Self all predict greater 

! 
Perceived I11 Health, which in turn predicts greater health care utilization over and above the direct 

I effects of these variables on Health Care Utilization (age unstandardized indirect effect = .127, 
z = 2.1 12, stress unstandardized indirect effect = 369,  z = 3.83, Poor Sense of Self unstandardized 
indirect effect = .494, z = .49). The standardized solution for the indirect effects appears in the sec- 
tion labeled DECOMPOSITION OF EFFECTS WITH STANDARDIZED VALUES. The standardized 

j direct effects included in the model are shown in the section labeled STANDARDIZED SOLUTION. 
The percent of variance in the dependent variables accounted for by the predictors is found in 

the R-SQUARED column in the STANDARDIZED SOLUTION section of Table 14.23: 42.6% of the 
variance in Perceived I11 Health is accounted for by age, stress, and Poor Sense of Self; 45.7% of 
the variance in Health Care Utilization is accounted for by Perceived I11 Health, age, and stress. The 
checklist for the SEM analysis is in Table 14.24. A Results section for the SEM analysis follows. 

TABLE 14.24 Checklist for Structural Equations Modeling 

1. Issues 
a. Sample size and missing data 
b. Normality of sampling distributions 
c. Outliers 
d. Linearity 
e,  Adiquacj; of iovarianies 

f. Identification 
g. Path diagram-hypothesized model 
h. Estimation method 

2. Major analyses 
a. Assessment of fit 

( 1 j Residuals 
(2) Model chi square 
(3) Fit indices 

b. Significance of specific parameters 
c. Variance in a variable accounted for by a factor 

3. Additional analyses 
a. Lagrange Multiplier test 

( I ) Tests of specific parameters 
(2) Addition of parameters to improvr fit 

b. Wald test for dropping parameters 
c. Correlation between hypothes~zed and final model or cross-validate model 
d. Diagram-final model 



iiesiilts 

The Hmo t h e s i z e d  Mode: 

The hypothesized model is in Figure 14.12. Circles represent 

latent variables, and rectangles represent measured variables. 

Absence of a line connecting variables implies lack of a hypothe- 

sized direct effect. 

The hypothesized model examined the predictors of health care 

utilization. Health care utilization was a latent variable with 2 

indicators (number of visits to health professionals and £re- 

quency of drug use). It was hypothesized that perceived ill health 

(a latent variable with 2 indicators-number of mental health 

problems and number of physical health problems!, age, and number 

of life stress units directly predicted increased health care 

utilization. 

Additionally it was hypothesized that perceived ill health is 

directly predicted by poorer sense of self, greater number of life 

change units, and increasing age. Perceived ill health served as 

an intervening variable between age, life change units, poor sense 

of self and health care utilization. 

Assump ti ons 

The assumptions were evaluated through SPSS and EQS. The 

A,+,,,& ,,,t,: ,, ,,,,,,,,, F,,, A cn ..,,,, &,,, ...,,, ,,,I ,en u a ~ a a c ~  L u u L a A u a  L c a p u ~ ~ c a  LLULLL 3 - 1 2  WULLLCLL. LLLCLC WCLC L U L L ~ L C L C  

data for 443 participants on the nine variables of interest. Five 

participants (1.1%) were missing data on attitudes toward mar- 

riage (ATTMAR), 4 participants (.9%) were missing age (AGE), and 7 

(1.5%) are missing the stress measure (STRESS). This analysis used 

complete only cases ( N  = 443) . 
There were no univariate or multivariate outliers. There was 

evidence that both univariate and multivariate normality were vio- 

lated. Eight of the measured variables (TIMEDRS, PHYHEAL, MENHEAL, 

ERUGUSE, ESTEEX, CDPJTRGL, STRXSS, ATFMAR) were sig~if izantly- 
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p < .05). Increasing age did not significantly predict increased 

health care utilization, (unstandardized coefficient = .07, 

p > .05). 

Perceived ill health increased as stress increased (number of 

life change units, unstandardized coefficient = .47, p < .05), age 

increased (unstandardized coefficient = .07, p < .05), and women had 

a poorer sense of self (unstandardized coefficient = .27, p < -05) . 
Indirect Effects 

The significance of the intervening variables was evaluated 

using tests of indirect effects through EQS (Sobel, 1988). This 

method of examining intervening variables has more power than the 

mediating variable approach (Baron & Kenny, 1986; MacKinnon, 

Lockwood, Hoffman, West, & Sheets, 2002). 

Perceived ill health served as an intervening variable 

between age, life change units, and poor sense of self. Increased 

age predicted greater perceived ill health which predicted 

greater health utilization ; .a-l3 t&-Idardiz& i;;direzt ef feet 

coefficient = .13, p < .05, standardized coefficient = -06). More 

life change units predicted worse perceived ill health, greater 

perceived ill health predicted greater health care utilization, 

(unstandardized indirect effect coefficient = .87, p < .05, stan- 

dardized coefficient = .25). A poorer sense of self also predicted 

worse perceived ill health which was associated with greater 

health care utilization (unstandardized indirect effect coeffi- 

cient = .49, p < .05, standardized coefficient = .26). 

Almost half (45.7%) of the variance in health care utiliza- 

tion was accounted for by perceived ill health, age, stress, and 

poor sense of self. Poor sense of self, stress, and age accounted 

for 42.6% of the variance in perceived ill health. 



14.7 Comparison of Programs 

The four SEM programs discussed, EQS, LISREL, SAS CALIS. and AMOS, are full-service, mul- 
tioption programs. A list of options included in each package is presented in Table 14.25. 

14.7.1 EQS' 
i EQS is the most user-friendly of the programs. The equation method of specifying the model is 
j 

clear and easy to use and the output is well organized. Colors distinguish key words from user input 

I in the equation method. In addition to the equation method of model specification there are also 
options to specify the model through a diagram or with a windows "point and click" method. EQS 

I offers numerous diagnostics for evaluation of assumptions and handles deletion of cases very sim- 
ply. Evaluation of multivariate outliers and normality can be performed within this program. Miss- 
ing data can be imputed within EQS. EQS is the only program to impute nonnormal data. EQS reads 
data sets from a variety of other statistical and database programs. Several methods of estimation 
are offered. EQS is the only program that offers the correct adjusted standard errors and Satorra- 
Bentler scaled ,y2 for model evaluation and the Bentler-Yuan (1999) test statistic. This is the pro- 
gram of choice when data are nonnormal. A specific estimation technique is available if the 
measured variables are nonnormal with common kurtosis. A second method for treatment of non- 
normal data, through estimation of polychoric or polyserial correlations, is also available. Addi- 

1 tionally, EQS is able to analyze multilevel models. 
EQS is also the program of choice if model modifications are to be performed. EQS is very 

flexible, offering both multivariate and univariate Lagrange multiplier tests as well as the multivari- 
ate Wald test. EQS offers several options for matrices to be considered for modification and allows 
specification of order of consideration of these matrices. Categorical variables can be included 
within the model without preprocessing. EQS allows multiple group modeis to be specified and 
tested easily. Diagrams are available in EQS. The entire EQS Manual is included within the program. 

14.7.2 LISREL 

LISREL is a set of three programs; PRELIS, SIMPLIS, and LISREL. PRELIS preproccsscs data, 
e.g.. categorical or nonnonnal data. for SEM analyses through LISREL. SIMPLIS is a program that 
allows models to be specified with equations. SIMPLIS is very simple to use but is somewhat lim- 
ited in options, and some output, e.g., a standardized solution, must be requested in LISREL output 
form. Models can be specified through diagrams or point and click methods with SIMPLIS. LISREL 
specifies SEM models with matrices and some models become quite complicated to specify when 
using this method. Missing data can be imputed with PRELIS. LISREL also is capable of estimating 
multilevel models. 

LISREL offers residual diagnostics, several estimation methods, and many fit indices. LIS- 
REL includes two types of partially standardized solutions. The univariate Lagrange multiplier test 
is also available. Nonnormal and categorical data can be included in  LISREL by first preprocessing 
the data in  PRELIS to calculate polyseric and polychoric correlations. LISREL also calculates the 
SMC for each variable In the equations. Coefficients of determination are calculated for the latent 
DVs in the model. Diagrams are svailab!e ir. SIMPLIS. 
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TABLE 14.25 Comparison of Programs for Structural Equation hludeling 

Feature EQS LISREL AMOS SASCALIS 

Input 

Covariance matrix 

Lower triangular 

Full symmetric . 
Input stream 

Asymptotic covariance matrix 

Multiple covariance matrices 

Correlation matrix 

Lower triangular 

Full symmetric 

Input stream 

Matrix of polychoric, polyserial correlations 

Correlation matrix based on optimal scores 

Multiple correlation matrices 

Moment matrices 

Sum of squares and cross-products matrix 

Raw data 

User specified weight matrix 

Categorica! !ordinal! data 

Means and standard deviations 

Delete cases 

Estimate model from diagram 

Windows "point and click" method 

Multilevel models 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Estimation methods 

Maximum likelihood (ML) Yes 

Unweighted least squares (LS) Yes 

Generalized least squares (GLS) Yes 

Two-stage least squares No 

Diagonally weighted least squares No 

Elliptical least squares (ELS) Yes 

Elliptical generalized least squares (EGLS) Yes 

Elliptical reweighted least squares (ERLS) Yes 

Arbitrary distribution generalized least squares (AGLS) Yes 

Satorra-Bentier scaled chl square Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes" 

Yes 

Yesa 

Yesb 

yesb 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 
- - 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Nc! 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

No 

Yes 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

No 
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TABLE 14.25 Continued 

Feature EQS LISREL AMOS SAS CALIS 

Estimation methods (continued) 

Bentler-Yuan ( 1999) F 

Robust standard errors 

Elliptical cor. chi square 

Instrumental variables 

Specify number of groups 

Scale free least squares 

Specify elliptical kurtosis parameter-kappa 

Specify model with equations 

Specify model with matrix elements 

Specify models with intercepts 

Start values 

Automatic 

User specified 

Specify confidence interval range 

Automatically scale latent variables 

Specify covariances 

Specify general linear constraints 

Nan!inear censtraints 

Specify cross-group constraints 

Specify inequalities 

Lagrange multiplier test-Univariate 

Lagrange multiplier test-Multivariate 

Lagrange multiplier options 

Indicate parameters to be considered first for addition 

Indicate specific order for entry consideration 

Specify LM testing process 

Specify specific matrices only 

Set probability value for criterion for inclusion 

Specify parameters not to be included in LM test 

Wald test-Univariate 

Wald test-Multivariate 

Wald test options 

Indicate parameters to be considered first for dropping 

Indicate specific order for dropping consideration 

Yes No 

Yes No 

No No 

No Yes 

Yes Yes 

No No 

Yes No 

Yes yesb 

No Yes 

Yes Yes 

Yes Yes 

Yes Yes 

No No 

No Yes 

Yes Yes 

Yes Yes 

KG Yes 

Yes Yes 

Yes Yes 

Yes Yes 

Yes No 

Yes No 

Yes No 

Yes No 

Yes Yes 

Yes Yes 

Yes Yes 

Yes No 

Yes No 

Yes No 

Yes No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Na 

Yes 

No 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Yes 

YesC 

Yes 

No 

No 

Yes 

Yes 

NG 

No 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

No 

(continued) 
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TABLE 14.15 Continued 

Feature 

Wald test options (continued) 

Set probability value 

Specify parameters not to be included in Wald test 

Specify number of iterations 

Specify maximum CPU time used 

LISREL AMOS SAS CALIS 

Yes 

Yes 

Yes 

No 

Specify optimization method No 

Specific convergence criterion 

Specify tolerance 

Specify a ridge factor ' 

Diagram 

Effect decomposition 

Simulation 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Bootstrapping Yes 

Missing data estimation Yes 

Output 

Means 

Skewness and kurtosis 

Mardia's coefficient 

Yes 

Yes 

Yes 

Mardia based kappa Yes 

Mean scaled univariate kurtosis 

Multivariate least squares kappa 

Multivariate mean kappa 

Adjusted mean scaled univariate kurtosis 

Relative multivariate kurtosis coefficient 

Case numbers with largest contribution to normalized 
multivariate kurtosis 

Sample covariance matrix 

Sample correlation matrix 

Yese 

Yese 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Estimated model covariance matrix Yes 

Correlations among parameter estimates Yes 

Asymptotic covariance matrix of parameters No 

Iteration summary Yes 

Determinant of input matrix 

Residual covariance matrix 

Largest raw residuals 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

No 

No 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 

No 
I T -  L'IV 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

yesd 

Yes 

No 

Yes 

Yes 

Yes 
v- '. lL> 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 



TABLE 14.25 Continued 

Feature LISREL SAS CALIS 

Output (contin~recl) 

Completely standardized residual matrix 

Largest conlpletely standardized residuals 

Frequency distribution of standardized residuals 

Largest partially standardized residual 

Partially standardized residual matrix 

Q plot of partially standardized residuals 

Frequency distribution of partially standardized residuals 

Estimated covariance matrix 

Estimated correlation matrix 

Largest eigenvalue of BY:B' 

Goodness of fit indices 

Normed fit index (NFI) (Bentler & Bonett, 1980) 

Non-normed fit index (NNFI) (Bentler & Bonett, 1980) 

Comparative tit index (CFI) (Bentler, 1995) 

Minimum of tit function 

Non-centrality parameter (NCP) 

Confidence interval of NCP 
C - - A  ---- ,.C C* :-A^..  : P r T ;  
uuuullcha UI L I L  IIIUCA (u1.1) 

Adjusted goodness of fit index 

Root mean square residual 

Standardized root mean square residual 

Population discrepancy function (PDF) 

Confidence interval for PDF 

Root mean square error of approximation (RMSEA) 

Confidence interval for RMSEA 

Akaikes information criterion model 

Akaikes information criterion-independence model 

Akaikes information criterion-saturated model 

Consistent information criterion model 

Consistent information criterion-independence model 

Consistent information criterion-saturated model 

Schwartz Bayesian criterion 

McDonald's centrality ( 1989) 

James, Mulaik, & Brett (1982) parsimony index 

Z test (Wilson & Hilferty, 193 1) 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 
x,-. . 
I C.4 

Yes 

Yes 

Yes 

!'Jo 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
x7- - 
1 C.4 

Yes 

Yes 

Yes 

yes  

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes .,~ 
I c.4 

Yes 

Yes 

No 
Nn - . -  

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

No 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 
- 7  r es 

Yes 

Yes 

No 

NO 

No 

No 

No 

Yes 

No 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 
(continued) 
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TABLE 14.25 Continued 

Feature EQS LISREL AMOS SAS CALIS 

Goodness of fit indices (continued) 

Normed index rho I (Bollen. 1986) No Yes No Yes 

Non-normed index delta 2 (Bollen, 1989a) Yes Yes No Yes 

Expected cross validation index (ECVI) No Yes Yes No 

Confidence interval for ECVI 

ECVI for saturated model 

ECVI for independence model 

Hoelter's critical N 

Brown-Cudeck criterion 

Bayes information critericn 

P for test of close fit 

R~ square for dependent variables 

SMC for structural equations 

Coefficient of determination for structural equations 

Latent variable score regression coefficients 

Unstandardized parameter estimates 

Completely standardized parameter estimates 

Partially standardized solution 

Standard error\ for Fararneter estimates 

Variances of independent variables 

Covariances of independent variables 

Test statistics for parameter estimates 

Save output to file 

Condition code flag 

Convergence flag 

Function minimum 

Independence model x2 

Model x2 value 

Model degrees of freedom 

Probability level 

Bentler-Bonett normed fit index 

Bentler-Bonett non-normed fit index 

Comparative fit index 

GFI 

AGFI 

Root mean square residual 

No Yes 

No Yes 

No Yes 

No Yes 

No No 

No No 

No No 

Yes Yes 

No Yes 

No Yes 

No Yes 

Yes Yes 

Yes No 

No Yes 

Yes Yes 

Yes Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

No 

Yes 

Yes 
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TABLE 14.25 Continued 

Feature EQS LISREL AMOS SAS CALIS 

Save output to file (contin~led) 

1 Number of parameters in model No No No Yes 

I AIC NO Yes NO Yes 
i 

C AIC No Yes No Yes 

Schwartz's Bayesian criterion No No No Yes 

1 James, Mulaik, & Hilferty parsimony index No Yes No Yes 

1 z test of Wilson & Hilferty No No No Yes 

Hoelter's critical N No Yes No Yes 

Generated data Yes Yesa No yes'' 

Derivatives Yes No No Yes 

Gradients Yes No No Yes 

Matrix analyzed Yes Yes No Yes 

Means No No No Yes 

Standard deviations No No No Yes 

Sample size No No No Yes 

Univariate skewness No No No Yes 

Un~variate kurtosis No No No Yes 

Information matrix No No No Yes 

Inverted information matrix 

Weight matrix 

Estimated population covariance matrix 
1 

i Asymptotic covariance matrix 

I Asymptotic covariance matrix of parameter estimates 

I Parameter estimates 

Residual matrix 

1 Standard errors 
LM test results 

Wald test results 

Updated start values 

Automatic model modification 

"n PRELIS 

h ~ n  SIMPLIS 

'Not d~dl ldbl t?  w ~ t l ~  COSAh 111odel s p e ~ ~ t i ~ d t ~ o ~ ~  

*W~th  SAS IML 

"With AGLS estlrnatlon only 

'Kurtoa~b only 
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14.7.3 AMOS 

AMOS allows models to be specified through diagrams or equations. Different options are available 
for the equation method. AMOS makes clever use of colors in the equation specification method. 
Key words are presented in a different color than user-specified words. If the line is correct the color 
changes. If the line is incorrect the color remains. Several different estimation methods are available. 
Detailed goodness-of-fit information is given in output. Missing data can be estimated in AMOS. 
AMOS also has extensive bootstrapping capabilities. Multiple group models can be tested. Categor- 
ical data is not treated in AMOS. Table or text options are also presently available. AMOS has a 
clever output feature. If the cursor is placed over certain elements of the output within the AMOS 
program a little help screen pops up and explains that portion of the output. One limitation of AMOS 
is the inability to save output without transporting it to a word-processing program. 

14.7.4 SAS Syste'm 

SAS CALIS offers a choice of model specification methods: 1 i neq s (Bentler-Weeks), ram, and 
c o s a n (a form of matrix specification). Diagnostics are available for evaluation of assumptions; for 
instance, evaluations of multivariate outliers and multivariate normality can be done within CALIS. 
If data are nonnormal, but with homogenous kurtosis, the chi-square test statistics can be adjusted 
within the program. Several different estimation techniques are available and lots of information 
about the estimation process is given. Categorical data are not treated in CALIS, nor can multiple 
group models be tested. 
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Mu1 tilevel 
Linear Modeling 

15.1 General Purpose and Description 

Multilevel (hierarchical) linear modeling' (MLM) is for research designs where the data for partici- 
pants is organized at more than one level. For example, student achievement (the DV) is measured 

I for pupils within classrooms, which are, in turn, organized within schools. Different variables may 
be available for each level of analysis; for example, there may be a measure of student motivation at 1 the pupil level, a measure of teacher enthusiasm at the classroom level, and a measure of poverty at 
the school level. You may recognize this as the nested ANOVA design of Section 3.2.5.1. It also has 
many of the characteristics of the random effects ANOVA of Section 3.2.5.4, because most often the 
lower level units of analysis were not randomly assigned to higher levels of the hierarchy (pupils 
within classrooms or classrooms within schools). 

MLM provides an alternative analysis to several different designs discussed elsewhere in this 
voiume. Aitnough the iowest ievei of data in M i M  is usuaiiy an individual, it may instead be 
repeated measurements of individuals. For example, there may be measures of student achievement 
at the beginning, middle, and end of the school year, nested within pupils, nested within classrooms, 
nested within schools. Thus, MLM provides an alternative to univariate or multivariate analysis of 
repeated measures. Because there are separate analyses of each case over time, individual differ- 
ences in growth curves may be evaluated. For example, Do students differ in their pattern of growth 

I in achievement over the school year? If so, Are there variables, such as hours of homework, that pre- 
dict these differences? MLM also has been developed within the framework of structural equation 
modeling to permit analysis of latent variables (where, for example, there might be several factors 
representing different aspects of teacher enthusiasm) and yet another approach to longitudinal data. 

Another useful application of MLM is as an alternative to ANCOVA where DV scores are 
adjusted for covariates (individual differences) prior to testing treatment differences (Cohen, Cohen, 
West, & Aiken, 2003). MLM analyzes these experiments without the often-pesky assumption of 
homogeneity of regression, in which it is assumed that the relationship between the DV and CV(s) is 
the same for all treatment groups. 

'We have chosen multilevel linear modeling (MLM) rather than hierarchical linear modeling (HLM) to avo~d  confusion with 
the HLM software package. 
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*epeated-measures terminology is customary in MLM rather than within-subjects terminology. 

3 ~ r o u p ,  cluster. and context are terms are used synonymously in MLM to denote higher-level unlts of analysis. Thus. mu1t1- 
level models are sometimes referred to as contextual or clu!,tered models (not to be confused with cluster analysis). 

An advantage of I~ILIM over alternative analyses is that independence of errors is not requirrcl 
In fact. independence is often violated at each level of analysis. For euample. students in  3 classroom 
intluence each other, so are ap1 to be more alike than students in different classrooms; similarly, stu- 
dents within one school are apt to be more alike than students in different schools. In a repeated- 
measuresZ design, measurements made on occasions close in time are likely to be more highly cor- 
related than measurements made on occasions farther apart in time (recall sphericity of Chapter 8). 
In addition, there may be interactions across levels of the hierarchy. For example, student motivation 
at the lowest level may well interact with teacher enthusiasm at the classroom level. 

Analyzing data organized into hierarchies as if they are all on the same level leads to both 
interpretational and statistical errors. Suppose, for example, that data for student achievement are 
aggregated to the classroom level to see if goups3 that differ in teacher enthusiasm have different 
mean scores. Interpretation is restricted to the classroom level, however, a common error of inter- 
pretation is to apply group level results to the individual level. This is called the ecological fallucy. 
Statistically, this type of analysis usually results in decreased power and loss of information because i 

the unit of analysis for'purposes of deriving the ANOVA error term is the group. That is, n is the num- ! 
ber of groups, not the number of participants in each group. 

A less common but equally misleading approach is to interpret individual-level analyses at the 
group level, leading to the atomistic fallacy (Hox, 2002). A multilevel model, on the other hand, per- I 

mits prediction of individual scores adjusted for group differences as well as prediction of group 
scores adjusted for individual differences within groups. Statistically, if individual scores are used 
without taking into account the hierarchical structure, the Type I error rate is inflated because analy- 
ses are based on too many degrees of freedom that are not truly independent. 

Multilevel linear modeling (MLM) addresses these issues by allowing intercepts (means) and 
slopes (IV-DV relationships) to vary between higher level units. For example, the relationship 
between student achievement (the DV) and student motivation (the IV) is allowed to vary between 

I 
different classrooms. This variability is modeled by treating group intercepts and slopes as DVs in 1 
the next ievei of anaiysis. For the exampie, there is an attempt to predict differences in means and 
slopes within classrooms from differences in teacher enthusiasm between classrooms. These group 
differences, in turn, can vary across yet higher level units (e.g., schools), so that third-level equations 
can be built to model the variability between second-level units, and so on. 

Multilevel models often are called random coefficient regression models. That is because the 
regression coefficients (the intercepts and predictor slopes) may vary across groups (higher-level 
units), which are considered to be randomly sampled from a population of groups. For the example, 

I 
the regression coefficients for the relationship between student achievement and student motivation 
are considered to be randomly sampled from a population of classrooms. In garden-variety (OLS) 
regression, it is the individual participants who are considered to be a random sample from some 
population; in multilevel modeling the groups also are considered to be a random sample. 

One advantage of the multilevel modeling approach over other ways of handling hierarchical 
data is the opportunity to include predictors at every level of analysis. For the example, a predictor 
of student achievement might include student motivation and/or study time and/or gender at the stu- 
dent level of analysis, teacher enthusiasm and/or teacher emphasis on homework at the classroom 

I 
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level of analysis, and school poverty level alidlor school type (puhllc \ 5 .  private, and/or hchooi h i l t .  

at the school level. Higher-lecel predictors may help explain lower-lz\'el differences i n  intercept. and 
slopes. For example, differences between average classroom achievement (the Intercept) and the 
relationship between student achievement and student motivation (the slope) could be a function of 
school poverty level. Within-level interactions among predictors (e.g., between school poverty level 
and school size) can be modeled, as well as cross-level interactions (e.g., between teacher emphasis 

) 

[ on homework and school type). 
Rowan, Raudenbush, and Kang (199 1) used MLM to study effects of organizational design on 

high school teachers. Teachers within schools were the lower-level unit of analysis, and provided rat- 
ings of structure or climate as the DVs and, as IVs, race, sex, years of education, years of experience, 

I track (teacher-estimates of student achievement relative to school average), and dummy variables 
representing the teachers' most frequently taught course. School level variables were sector (public 
vs. Catholic), size, percentage minority enrollment, urbanicity, average student achievement, and 
average student SES. The researchers found that differences among high schools in perception of 
structure or climate are strongly related to whether they are ~ u b l i c  or private. However, there are also 
large differences between teachers within schools in perceptions of organizational design, and these 
are related to academic departments and cuniculum tracks as well as demographic characteristics of 
teachers. 

McLeod and Shanahan ( 1996) analyzed data from the National Longitudinal Survey of Youth 
in which children were assessed annually over several years on a variety of psychological, behav- 
ioral, and demographic measures. Data were analyzed using a two-level latent growth curve model 
(Section 15.5.1). The lowest level analysis was year of assessment, the second level was child. 
McLeod and Shanahan found higher levels of depression and antisocial behavior in children who 
were poor when first measured or who had prior histories of poverty. They also found that the num- 
ber of years that the children are in poverty is correlated with the slope of their antisocial behavior 
over the assessment period, with rates of increase in antisocial behavior greater for children who had 
been in long-term poverty cornpared iiiose \iiiio were ofi!y ::ansient!y peer c r  "he 1,vere net 

poor. The authors conclude that poverty experiences are related to the way that children develop and 
not just to scores measured during a single assessment period-the longer a child is poor, the greater 
the rate of behavioral disadvantages. 

Barnett, Marshall, Raudenbush, and Brennan (1 993) studied dual-earner couples in terms of 
the reiationship between their psychoiogicai distress as uv's and fca:i;res of their job experiences 
and demographic variables as IVs. Individuals within each of the 300 couples comprised the lower- 
level unit of analysis and provided scores on the DVs as well as lower-level predictors such as age, 
education, occupational prestige, quality of job role, job rewards, job concerns, quality of marital 
role, and gender. Couples were the higher-level unit of analysis and provided measures of income, 
number of years together, and a joint measure of parental status. They found that features of subjec- 
tive experiences that individuals reported about the job were significantly associated with distress for 
both men and women, and the magnitude of effect depends little on gender. 

Multilevel modeling is a highly complex set of techniques; we can only skim the surface of this 
fascinating topic. Several recent books address MLM in greater depth. One that is especially easy to 
follow and discusses software without being tied to any one package is Hox (2002). Snijders and 
Bosker (1999) offer an introduction to multilevel modeling as well as ample discussion of more 
advanced top~cs. The book is a rich source of examples in the social sciences, as well as discussion of 
more exotic transformations than we cover in this book to produce better-fitting models. The classic 
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lnultllevel modeling text is by Raudenbush and Bryk (7001). who al\o are the authors of HLM. ,I 

stand-alone package. Kreft and DeLeeuw ( 1998) offer a helpful ~ntroductor) guide to MLM that I \  

tied to MlwiN, another stand-alone package. An introductory text by Heck and Thomas (2000) pro- 
vides detailed information for multilevel factor and structural equation modeling as well as for the 
more common multilevel regression models emphasized in this chapter. 

We (reluctantly) demonstrate only SPSS and SAS MIXED programs in this chapter. However, 
there are two excellent stand-alone packages, HLM and MLwiN, in addition to SYSTAT MIXED 
REGRESSION, that also handle MLM and have features absent in SPSS and SAS. Therefore, we 
discuss these programs throughout the text and compare their features in the final section of this 
chapter. 

15.2 Kinds of Research Questions 

The primary questions in MLM are like the questions in multiple regression: degree of relationship 
among the DV and various IVs (Is student achievement related to student motivation or teacher 
enthusiasm?); importance of IVs (How important is student motivation? Teacher enthusiasm?); 
adding and changing IVs (What happens when school poverty level is added to the equation?); con- 
tingencies among IVs (Once differences due to student motivation are factored into the equation, 
what happens to teacher enthusiasm?); parameter estimates (What is the slope of the equation that 
relates student motivation to student achievement?); and predicting DV scores for members of a new 
sample. However, additional questions can be answered when the hierarchical structure of the data 
is taken into account and random intercepts and slopes are permitted. Only these additional questions 
are discussed here. 

i5.2.i Group Differences in Means 

This question is answered as part of the first step in routine hierarchical analyses. Is there a signifi - 
cant difference in intercepts (means) for the various groups'? For example, Is there a significant dif- 
ference in mean student achievement in the different classrooms? As in ANOVA, this is a question 
ahout vau-iahi!ity; is the variance between g r e y s  (b~,tv:een-sub;ect J variance ix ,AXNOVA) greater than 
would be expected by chance (within-subject variance in ANOVA)? Section 15.4.1.2 discusses 
analysis of first-level intercepts. These differences also are evaluated as precursors to MLM through 
calculation of intraclass correlations (Section 15.6.1). 

15.2.2 Group Differences in Slopes 

This question may also be answered as part of routine hierarchical analyses. Is there a significant dif- 
ference in slopes for the various groups? For example, Is there a significant difference in the slope of 
the relationship between student achievement and student motivation among the different class- 
rooms? Group differences in slope between a predictor and the DV are called a failure of homo- 
geneity of regression in ANCOVA, but in MLM such differences are expected and included in the 
model. These differences are assessed separately for all first-level predictors if there is more than 
one. Section 15.4.2.2 discusses second-level analysis of first-level predictors. 
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15.2.3 Cross-Level Interactions 

Doea 3 bdridble at one lebel interact w~th a \anable at anothel level In ~ t s  effect on the DV ! For exam- 
ple, does xhool-level poverty (a third-level variable) interact w~th student motivat~on (a first-level 
variable) to produce differences in student achievement? Or, does teacher level of enthusiasm (a 
second-level variable) interact with student motivation to produce differences in student achieve- 
ment? Or, does school-level poverty interact with teacher enthusiasm to produce differences in stu- 
dent achievement? Addition of such cross-level interactions to the multilevel regression equation is 
discussed in Section 15.6.3. Cross-level interactions may be especially interesting in the context of 
experiments where the treated (as opposed to the control) group displays a different relatiorship 
between a predictor and the DV. Cohen et al. (2003) discuss an example in which the treatment mod- 

I erates the relationship between weight loss (the DV) and motivation (a predictor)-treatment gives 
more highly motivated participants the means for effective dieting. 

15.2.4 Meta-Analysis 

MLM provides a useful strategy for meta-analyses in which the goal is to compare many studies 
from the literature that address the same outcome. For example, there may be hundreds of studies 
evaluating various aspects of student achievement. Original raw data usually are not available, but 
statistics for numerous studies are available in the form of effect sizes, p values, and often means and 
standard deviations. A common outcome measure is derived for the various studies, often a stan- 
dardized effect size for the outcome measure (student achievement). When these problems are 
addressed through MLM, individual studies provide the lowest level of analysis. A simple analysis 
(Section 15.4.1) determines whether there are significant difierences among studies in effect size. 
IVs (such as student motivation, teacher enthusiasm, or school poverty level) are then investigated to 
try to determine whether differences in the various studies are predicted by those IVs (cf. Hox, 2002, 
Chapter 6). 

15.2.5 Relative Strength of Predictors at Various Levels 

What is the relative size of the effect for individual-level variables versus group-level variables? Or, 
are interventions better aimed at the individual level or the gmup !eve!? Fer euamp!e, if there is to be 
an intervention should it be directed at the motivation of individual students or the enthusiasm levels 
of teachers? Analytic techniques are available through SEM (cf. Chapter 14) to evaluate the relative 
strengths of individual versus group effects. Hox (2002), as well as Heck and Thomas (2000), 
demonstrates such multilevel factor and path analyses. 

15.2.6 Individual and Group Structure 

Is the factor structure of a model the same at the individual and group level? Do individual students 
and teachers have the same pattern of responses to a questionnaire? That is, do the same items 
regarding homework, extra curricular activities, and the like load on the same factors at the individ- 
ual and group levels? These and similar questions can be answered through application of SEM tech- 
niques to analysis of covariance structures (variance-covariance matrices) aimed at data at the 
individual level and the group level. Section 15.5.3 discusses these models. 
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15.2.7 Path Analysis at Individual and Group Levels I 

What IS the path model for pred~ctlon of the DV from level-one vanables, level-two vanables, and 
level-three variables? For example, what is the path model for predicting student achievement from 
student-level variables (e.g., student motivation, study time, and gender), teacher/classroom-level 
variables (teacher enthusiasm and teacher emphasis on homework), and school-level variables 
(poverty level, type of school, and school size)? Hox (2002) provides an example of this type of 
analysis in an educational setting. All of the power of path analysis and, indeed, latent factor analy- 
sis can be tapped by the application of SEM techniques to multilevel data. 

15.2.8 Analysis of Longitudinal Data 

What is the pattern of change over time on a measure? Do students show a linear trend of improve- 
ment over the school year or do improvements level off after a while? Do individuals differ in their 
trend of improvement (growth curves) over time? There are two MLM techniques that address this 
type of question without the restrictive assumptions of repeated-measures ANOVA: (1) direct appli- 
cation of MLM with occasions as the lowest level of analysis, and (2) latent growth modeling using 
the techniques of SEM (cf. Chapter 14). Section 15.5.1 demonstrates the first application and dis- 
cusses the second. Section 15.7 provides a complete example of a three-level repeated-measures 
model through MLM techniques. 

15.2.9 Multilevel Logistic Regression I 
What is the probability of a binary outcome when individuals are nested within several levels of a 
hierarchy'? For example, what is the probability that a student will be retained when students are 
nested within classrooms and classrooms are nested within schools? Nonnormal, including binary, 
outcomes are discussed in Section 15.5.4. 

15.2.10 Multiple Response Analysis 

What are the effects of variables at different levels on multiple DVs at the individual level? For exam- 
ple, what are the effects of predictors atthe student !eve!, the te~cher!c!zssr~orr? !eve!, and the s&=~! 
level on several different types of student achievements (achievement in reading, achievement in 
math, achievement in problem solving, and so on-the DVs)? In these analyses, the multivariate DVs 
are presented as the lowest level of analysis. Section 15.5.5 discusses the multivariate form of MLM. 

15.3 Limitations to Multilevel Linear Modeling 

15.3.1 Theoretical Issues 

Correlated predictors are even more problematic in MLM than in simple linear regression. In MLNI, 
equations at multiple levels are solved and correlations among predictors at all levels are taken into - 
account simultaneously. Because effects of correlated predictors are all adjusted for each other, i t  
becomes increasingly likely that none of their regression coefficients will be statistically significant. 
The best advice, then, is to choose a very small number of relatively uncorrelated predictors. A 
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strong theoretical fra~nrwork helps limit the number of predictors and tac~litates decisions a b ~ t ~ t  how 
to treat them. 

If interactions are formed (Section 15.6.3), predictors in the interactions are bound to be cor- 
related with their main effects. The problem of multicollinearity between interactions and their main 
effects can be solved by centering (see Section 15.6.2). 

Raudenbush and Bryk (2001) recommend a build-up strategy for MLM analyses. First, a series 
of standard multiple regression analyses are run, starting with the most interesting (or theoretically 
important) predictor and adding predictors in order of importance. Then, predictors that do not 
enhance prediction are dropped unless they are components of cross-level interactions. This strategy 
is discussed more fully in Section 15.6.8. 

Modeling high-level predictors at their own level is not always the best way to deal with them. 
If there are only a few of them, they are often best entered at the next lower level as categorical pre- 
dictors. For example, if there are only a few schools, with several classrooms from each and many 
students in each class, then school can be considered a categorical predictor at the classroom (sec- 
ond) level of analysis, rather than a third level of analysis. The problem with considering schools at 
the third level is that there are too few of them to generalize to a population of schools (Rasbash et 
al., 2000). 

15.3.2 Practical Issues 

Multilevel linear modeling is an extension of multiple linear regression, so the limitations and 
assumptions of Section 5.2 apply to all levels of the analysis. Thus, conformity with distributional 
assumptions and outliers in the data and in the solution are considered using methods for multiple 
regression. The assumptions are evaluated for the set of predictors at each level and also for sets of 
predictors that are used within cross-level interactions. Raudenbush and Bryk (2001) recommend 
using exploratory multiple regression analyses to look for outliers among first-level predictors . . . . .:+h:* .~.e>,.,-.-.l 1.>.,.,1 ..*:+.. C..-sh-, -..-- I -  ..-.....-.. +- - - A  -..I+: ..-- :-be -..el:--- --- "-.... h +  F - . - n t , . ~ l . x n +  
w ILIIIII  > C L U I I U - I L V L I  U I I I L ~ .  I UI LIIG G A ~ I I I ~ I G ,  ulllvallarr; ~ I I U  I I I U I L ~ V ~ I L ~ L C  UULIICI>  11c S U U ~ I I L  IUI >LUUGIIL 

achievement, student motivation, study time, and student gender within each classroom. Ideally, all 
screening of first-level predictors should be within second-level units; however, this may be imprac- 
tical when the number of second-level units is very large. In that case, they may be combined over 
the second-level units. Similarly, second-level predictors are examined within third-level units if 
- - - -  1 L 1 -  ' C - -  At__.. --- ------- r-l -..- ~ . r L -  &I.. 2 1 .-.. 1 .A. n.-- .- - - -  r. n r r  n m  -.--.:A- - - - I  pobb~u~e, i l  llui ~ ~ l e y  ale agglegaicu vver LIIG ~rilru-level uriiis. rrvgrams lur ML~VI  P I - U V I U ~  allaryseb 
of residuals or permit residuals to be saved to a file for analysis in other modules. 

MLM uses maximum likelihood techniques, which pose some further problems, and the use of 
multiple levels creates additional complications, so issues of sample size and multicollinearity need 
to be addressed differently from garden-variety multiple regression. MLM also addresses indepen- 
dence of errors differently. 

15.3.2.1 Sample Size, Unequal-n, and Missing Data 

The price of large, complex models is instability and a requirement for a substantial sample size at each 
level. Even small models, with only a few predictors, grow rapidly as equations are added at higher 
levels of analysis. Therefore, large samples are necessary even if there are only a few predictors. 

As a maximum likelihood technique, a sample size of at least sixty is required if only five or 
fewer parameters are estimated (Eliason. 1993). Parameters to be estimated include intercepts and 
slopes as well as effects of interest at each level. In practice, convergence often is difficult even with 
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larger 4~111ple \ize\. A I I ~  YOU niay be unpleasantly \urpr~\ed at the lengthy procejjlng tlnie on e\cn 
speedy computers when dealing w~th bILh1. 

Unequal sample slzes at each ot the levels pose no problems and are, indeed, expected. hI14\- 
ing values can be tolerated in repeated-measures analyses (unlike the requirement for complete data 
at all levels of the repeated-measures IV in ANOVA [Rasbash et al., 2000, pp. 129-1301). In MLM. 
for example, some of the occasions for measurement may be missing for one or more cases. In other, 
nonrepeated measures designs, missing data are estimated using the techniques of Section 4.1.3 and 
inserted at the appropriate level of analysis. Group sizes may be as small as one, as long as other I 
groups are larger (Snijders & Bosker, 1999). Group size itself predicts the DV, as in the example in 
which school size is one of the predictors. 

As in most analyses, increasing sample sizes increases power while smaller effect sizes and 
I 

larger standard errors decrease power. There are other issues that affect power in MLM, however, 
and their effects are not so easily predicted (Kreft & DeLeeuw, 1998). For example, power depends 
on compliance with assumptions of the analysis; with each type of assumption leading to a different 

i 
I 

relationship between the probability of rejecting the null hypothesis and the true effect size. Power 
issues also differ for first- versus higher-level effects, and whether effects are considered fixed or 
random (with tests of random effects usually less powerful because standard errors are larger). For 
example, Kreft and DeLeeuw (1998) conclude that power grows with the intraclass correlation (dif- 
ference between groups relative to differences within groups, Section 15.6. I), especially for tests of 
second-level effects and cross-level interactions. Sufficient power for cross-level effects is obtained 
when sample sizes at the first level are not too small and the number of groups is twenty or larger. In 
general, simulation studies show that power is greater with more groups (second-level units) and 
fewer cases per group (first-level units) than the converse, although more of both leads to increased 
power. Hox (2002) devotes an entire chapter to power and sample size issues and provides guidelines I 
for a simulation-based power analysis. Software for determining power and optimal sample size in I 
MLM is available as a free download from Scientific Software International (Raudenbush, Liu, & 

I 

Congdon, 2005) 

15.3.2.2 Independence of Errors 

MLM is designed to deal with the violation of the assumption of independence of errors expected 
when individuals within groups share experiences that may affect their responses. The problem is 
similar to that of heterogeneity of covariance (sphericity), in that events that are close in time are 
more alike than those farther apart. In MLM it usually is the individuals within groups who are closer 
to each other in space and experiences than to individuals in other groups. Indeed, when the lowest 
level of the hierarchy is repeated measures over time, multilevel modeling provides an alternative to 
the assumption of heterogeneity of covariance (sphericity) required in repeated-measures ANOVA. 

The intraclass correlation (p, Section 15.6.1) is an explicit measure of the dependence of errors 
because it compares differences between groups to individual differences within groups. The larger 
the D, the greater the violation of independence of errors and the greater the inflation of Type I error 
rate if the dependence is ignored. If multilevel data are analyzed using non-MLM statistics and there 
is dependence of errors, Type I error can be dramatically increased. Barcikowski (1981) shows that 
Type I error rates at a nominal .05 level can be as high as .17 when group sample size is 100 and the 
intraclass correlation is as small as .01; the Type I error rate rises to .70 when the intraclass correla- 
tion is .20. Thus, significant effects of treatment cannot be trusted if independence of errors 1s 
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assumed without j~~stification. Inhtead. the hierarchical structure of the data must be consitierrd 
when choosing the appropriate analysis. 

15.3.2.3 Absence of Multicollinearity and Singularity 

Collinearity among predictors is especially worrisome when cross-level interactions are formed, as 
is common in MLM, because these interactions are likely to be highly correlated with their compo- 
nent main effects. At the least, the problem often leads to a failure of significance for the main 
effect(s). At worst, multicollinearity can cause a failure of the model to converge on a solution. The 
solution is to center predictors, a practice with additional benefits, as discussed in Section 15.6.2. 

15.4 Fundamental Equations 

Small data sets are difficult to analyze through MLM. The maximum likelihood procedure fails to 
converge with multiple equations unless samples are large enough to support those equations. Nor is 
it convenient to apply MLM to a matrix (or a series of matrices). Therefore, we depart from our usual 
presentation of a small sample data set or a matrix of sample correlations and, instead, use a portion 
of a data set developed by others, with the names of variables changed to reflect our usual silly 
research applications.4 

Two ski resorts provide a total of 10 ski runs; one at Aspen Highlands (mountain = I )  and nine 
at Mammoth Mountain (mountain = 0). There are 260 skiers in all, with different skiers on each run 
at each mountain. Table 15.1 shows the data for a single run, labeled 7472, at Mammoth Mountain. 
The dependent variable is speed of skiing a run, with slull level of the skier as a level-one predictor.5 
The column labeled ' skill deviation" is the skill score for each skier minus the average skill for skiers 
on that run (used in some later analyses). 

The hierarchy to be modeled is composed of skiers at the first level and runs (the grouping vari- 
able) at the second level. Skiers and runs are considered random effects. Skiers are nested within runs 
and runs are nested within mountains; however, with only two mountains, that variable is considered a 
fixed predictor at the second-level rather than specifying an additional third level of analysis. The major 
question is whether speed of skiing varies with mountain, after adjusting for average skier skill, differ- 
ences in speed among runs, and differences in the relationship between skill and speed among runs. 

MLM often is conducted in a sequence of steps. Therefore, the equations and computer analy- 
ses are divided into three models of increasing complexity. The first is an intercepts-only ("null") 
model in which there are no predictors and the test is for mean differences between runs (groups- 
considered random) on the DV (skiing speed). The second is a model in which the first-level predic- 
tor, skill, is added to the intercepts-only model. The third is a model in which the second-level 
predictor, mountain, is added to the model with the first-level predictor. Table 15.2 identifies the 10 

l ~ h e  data set is a selection by Kreft and DeLeeuw (1998) of 260 cases from the NELS-88 data collected by the National Cen- 
ter for Educational Statistics of the US Department of Education. Actual variables are public vs. private sector schools for 
mountain, school for run, math achievement (rounded) for speed, and homework for skill level. 

5The term covariate is used generically for predictors in MLM as in survival analysis. In this chapter we use the terms CVs 
for continuous predictors and TVs for categorical predictors. the term "predictors" here refers generically Lo a combination of 
CVs and IVs and/or random effects. 
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TABLE 15.1 Partial Listing of Sample Data 

Skill 
Run Skier Skill Mountain Speed Deviation 

TABLE 15.2 Intercepts and Slopes for 10 Ski Runs in Sample Data 

- nun iviouniain Intercept Siope Sample Size 
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runs (the grouping kariable), the mountain for each run, :lntl the intercept (mean speed) and slope of 
the relationship between skill and speed from separate bivariate regressions for each run. as well as 
sample size. 

Table 15.3 summarizes the symbols that are typically used in MLM texts (e.g., Kreft & 
DeLeeuw, 1998) and software as a reference for demonstrating equations for the three models. 

Prior to an MLM analysis, a number of choices have to be made. First is a decision about which 
predictors, if any, are to be included. Second is the choice between "fixing" value of a "parameter" to 

TABLE 15.3 Equations and Symbols Typically Used in MLM 

Symbol Meaning 

Level 1 
Equation 

yij 

e . .  
'J 

Level 2 
Equations 

Y.. = Poj + lJv(Xij) + eij 
'I. 

The DV score for a case at Level 1, i indexes the individual within a group, j indexes the 
group 
A Level- 1 predictor 

The intercept for the DV in group j (Level 2) 

The slope for the relationship in group j (Level 2) between the DV and the Level- 1 
predictor 

The random errors of prediction for the Level- 1 equation (sometimes called r . .) 
'J 

At Level 1, both the intercepts and the slopes in the j groups can be: 
1. Fixed (all groups have the same values, but note that fixed intercepts are rare) 
2. Nonrandomly varying (the intercepts and/or the slopes are predictable from an IV at 

Level 2) 
3. Randomly varying (the intercept and/or the slopes are different in the differentj groups. 

each with an overall mean and a variance) 

The DVs are the intercepts and slopes for the IV-DV Level-1 relationships in the j groups 
of Level 2. 

P O ~ = Y ~ + ' J O I W , + U ~ ~  
By = y l o  4- X y  

The overall intercept; the grand mean of the DV scores across all groups when all 
predictors = 0 

A Level-2 predictor 

The overall regression coefficient for the relationship (slope) between a Level-:! predictor 
and the DV 

Random error component for the deviation of the intercept of a group from the overall 
intercept; the unique effect of Group j on the intercept 

The overall regression coefficient for the relationship (slope) between a Level- 1 predictor 
and the DV 

An error component for the slope; the deviation of the group slopes from the overall slope. 
Also the unique effect of Group j on slope when the value of the Level-2 predictor W is 
zero 

(cr?ntinned) 
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TABLE 15.3 Continued 

Symbol &leaning 

Combined 
Equation with 
Cross-Level 
Interaction Y,! = ;'oo + ;lol WJ + ; ~ , o X I J  + y1 , WJXl, + cigJ + u I J X V  + ell 

W  
101 J 

A Level-:! regression coefficient ( yo l )  times a Level-2 predictor 

YI&, A Level-2 regression coefficient times a Level- 1 predictor 

7 I I YX,j A Level-2 regression coefficient (y, times the cross-product of the Level-2 and Level- 1 
predictors; the cross-level interaction term 

1lOj + U , jX i j  

+ eii The random error components for the combined equation 

Variance Components 

t (tau) Variance-covariance matrix for the estimates of the values of random error components 

Variance among random intercepts (means) 

= I  I Variance among random slopes 

z~~ Covariance between slopes and intercepts 

a constant over all groups or letting the value be a random effect (a different value for each group). For 
example, is the intercept to be considered a fixed effect over all groups or will it be allowed to vary 
over the groups. Typically, even random effects have their fixed component. That is, we are interested 
in looking at the overall mean of the DV (fixed effect, ync) as well as the difference in means over 
higher-level units (random effect, zoo) Thus, we will have two parameters to estimate for the inter- 
cept: the fixed mean and the random variability in means. For predictors, we sometimes are interested 
in their variabiiity in relationship with the DV over higher-level units (a random effect, e.g., r1 ,) but 
are interested in their average relationship as well (a fixed effect, e.g., yol). This decision is made sep- 
arately for each predictor at each level except that highest-level predictors may not be considered ran- 
dom because there is no higher level within which they can vary. A decision also is made as to whether 
to evaluate the covariance between slopes and intercepts (a random effect, e.g., rlo) for each predic- 
tor that is considered random. Then, a decision is made to as to whether to evaluate covariance among 
slopes of different random-effect predictors if there is more than one (not shown in Table 15.3 because 
there is only one first-level predictor and the second-level predictor may not vary). 

The parameters are the elements of Table 15.3 that are to be estimated (ys and zs as well as e$. 
Finally, there is the choice of the type of estimation to use (e.g., maximum likelihood or restricted 
maximum likelihood). 

15.4.1 Intercepts-Only Model 

The MLM is expressed as a set of regression equations. In the level- I equation for the intercepts-only 
model (a model without predictors). the response (DV score) for an individual is predicted by an 
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Intercept that var~es across groups. The intercepts-only model 15 01' hingi~lar importance in  XILM. 
because i t  provides inr'ormation about the intraclabs cot-relation (Section 15.6. I ). a \.atus helpful i n  
determining whether a multilevel model is required. 

15.4.1.1 The Intercepts-Only Model: Level-1 Equatiorz 

y . .  = p + e.. 
' I  01 II 

(15.1) 

An individual score on the DV, Y,. is the sum of an intercept (mean), PojJ that can vary 
over thej  groups and individual error, eij (the deviation of an individual from her or his 
group mean). 

The terms Y and e that in ordinary regression have a single subscript i, indicating case, now 
have two subscripts, ij, indicating case and group. The intercept, Po (often labeled A in a regression 
equation; cf. Sections 3.5.2 and 5.1) now also has a subscript, j, indicating that the coefficient varies 
over groups. That is, each group could have a separate Equation 15.1. 

Poj is not likely to have a single value because its value depends on the group. Instead, a pa- 
rameter estimate ( T ~ ~ )  and standard error are developed for the variance of a random effect. The 
parameter estimate reflects the degree of variance for a random effect; large parameter estimates 
reflect effects that are highly variable. For example, the parameter estimate for the groups represents 
how discrepant they are in their means. These parameter estimates and their significance tests are 
shown in computer runs to follow. The z test of the random component, too divided by its standard 
error, evaluates whether the groups vary more than would be expected by chance. 

15.4.1.2 The Intercepts-Only Model: Level3 Equation 

The second-level analysis (based on groups as research units) for the intercepts-only model uses the 
level- 1 intercept (group mean) as the DV. To predict the intercept for group j : 

An intercept for a run Poj, is predicted from the average intercept over groups when there 
are no predictors, yoc', and group error. ~1~~ (deviation from average intercept for group j). 

A separate Equation 15.2 could be written for each group. Substituting right-hand terms from 
Equation 15.2 into Equation 15.1 : 

The average intercept (mean) is yoo (a "fixed" component). The two random components 
are uq (the deviation in intercept for cases in group j) and e, (the deviation for case i 
from its group j). 

The two-level solution to the intercepts-only model for the sample data is 

Speed, = 5.4 + u o j  + e,; 
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The ~~nweighted mean speed (average of the meanx fo r  each of the I0 groups) is 5.4. Thus. the Y ~ I -  

ing speed for an individual skier is the grand mean for all groups 15.4) plus the deviation of the skier'\ 
group from the grand mean plus the deviation of an indiv~dual's speed from his or her group. Those 
familiar with ANOVA recognize this way of thinking about an individual's score; it is conceived as 
the grand mean plus the deviation of the individual's group mean from the grand mean plus the devi- 
ation of the individual's score from her or his group mean. 1 

! 
In MLM, components that resolve to constants are called "fixed." In Equation 15.3, the grand 

mean is a fixed component and also an estimated parameter (5.4) with its own standard error. The 
ratio of the parameter estimate to its standard error is evaluated as a two-tailed z test at a predeter- 
mined cr level. Here, the test is that the grand mean for speed differs from zero and is uninteresting: 
it is akin to the test of the intercept in standard bivariate or multiple regression. More interesting are 

t 

i 
the tests of the variances (uoj and eoj), shown in computer runs. 1 

I 
! 

15.4.1.3 Computer Analyses of Intercepts-Olzly Model 

Tables 15.4 and 15.5 show syntax and selected output for computer analysis of the data described in 
Section 15.4.1 through SAS MIXED and SPSS MIXED. 

As seen in Table 15.4, SAS MIXED produces a "null'' solution in a single level-2 run. The usual 
mod e  1 instruction declares SPEED to be the DV, there is nothing after the "=" because there are no I 
predictors in this model. The request for s  o  1 u t i o n  provides parameter estimates and significance 
tests for fixed effects. The c  o v  t e  s t instruction provides hypothesis testing of the variance and 
covariance components of the random errors in the model. The maximum likelihood method 
(me t h od=m 1) has been chosen. Research units (s  u b j e  c  t )  for the random part of the model are 
RUNS, which is identified as a c 1 a  s  s  (categorical) variable. This indicates how the level-2 units 
(runs) are formed from the level- 1 units (skiers). The r a  n  d  om instruction sets the group i n  t e  r - j 
c  e  p t to be random. The fixed effect of intercept (the grand mean combined over groups) is included 
implicitly. The t yp e =  u n instruction indicates that there are no assumptions made about the struc- 
ture of the variance-covanance matrix (e.g., no assumption of sphericity). 

The D i me n  s  i o n  s  section provides information useful for comparing models by showing 
the number of parameters in the model. C o v  a r i a n c e P a  r a me t e  r s  refers to the two random 
effects in the model: group intercepts and residual. C o  1 umn s  i n  X refers to the single fixed effect 
in the model at this point: overall intercept. Thus, the total number of parameters for the model is 3, 
the two random effects and one fixed effect. 

The C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  section applies to the random compo- 

I 
I 

nents in the model. U N  ( 1 ,I is the variance in intercepts across runs (too of Table 15.3), and with 
a one-tailed test (appropriate for testing whether intercepts vary more than expected by chance) at 
cr = .05 (critical value = 1.58) there is evidence that, indeed, the intercepts vary. This suggests the 
desirability of taking group differences into account when predicting speed.6 The significant Resid- 
ual indicates that there are individual differences among skiers within runs after accounting for dif- 
ferences between runs. 

i 
I 

Fit statistics are useful for comparing models (recall Section 10.4.3). The Nu 1 1 Mode 1 i 
L i k e  1 i h o o d  R a  t i o  T e  s  t indicates that the data with groups identitied differ significantly i 

from a model with just a single fixed intercept. 

"It ib  important also to evaluate the intraclass correlation, a measure of the strength of the between-group differences (Section 1 
15.6.1 ). because tnferent~al teyts are highly influenced by sample size. 
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TABLE 15.4 Syntax and Selected Output for S,\S MIXED Analysis of Intercepts-Only Model  

p r o c  m i x e d  d a t a = S a s u s e r . S s - h l m  c o v t e s t  m e t h o d = m l ;  
c l a s s  RUN; 
m o d e l  SPEED= / s o l u t i o n ;  
r a n d o m  i n t e r c e p t  / t y p e = u n  sub jec t=RUN;  

r u n ;  

D i m e n s i o n s  

C o v a r i a n c e  P a r a m e t e r s  2 
C o l u m n s  i n  X 1 
C o l u m n s  i n  Z P e r  S u b j e c t  1 
S u b j e c t s  10 
Max Obs P e r  S u b j e c t  67 

C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  

Cov Parm 

UN(1 ,I 1 
R e s i d u a  1  

S t a n d a r d  Z 
S u b j e c t  E s t i m a t e  E r r o r  V a l u e  P r  Z 

RUN 0.3116 0.1484 2-10 0.0178 
0.7695 0.06872 11.20 <. 0001 

F i t  S t a t i s t i c s  

-2 L o g  L i k e l i h o o d  693.5 
A I C  ( s m a l l e r  i s  b e t t e r )  699.5 
A I C C  ( s m a l l e r  i s  b e t t e r )  699.6 
B I C  ( s m a l l e r  i s  b e t t e r )  700.4 

N u l l  M o d e l  L i k e l i h o o d  R a t i o  T e s t  

D F  C h i - s q u a r e  P r  :, C h i S q  

S o l u t i o n  f o r  F i x e d  E f f e c t s  

S t a n d a r d  
E f f e c t  E s t i m a t e  E r r o r  D F  t V a l u e  P r  > I t 1  

I n t e r c e p t  5.4108 0.1857 9 29.13 <. 0001 

The remaining output is for the fixed effects in the model. The I n t e r c e p t = 5.4 108 is the 
unweighted mean of the 10 groups (mean of the 10 means, yoo of Table 15.3). The fact that it differs 
significantly from zero is of no research interest. 

Table 15.5 shows syntax and output for SPSS MIXED analysis. The DV is shown in the first line 
of syntax as speed; nothing more is specified when there are no predictors. The syntax for the FIXED 
equation also shows no predictors; the test for the fixed effect of the overall intercept is included by 
default. Method chosen is ML rather than the default REML. The PRINT instruction requests 
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T.1BL.E 15.5 Syntax and Output for SPSS XIIXED Analysis of Intercepts-Only hlodel -- -. i 
MIXED 

speed 
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ASSOLUTE) 
/FIXED = I SSTYPE(3) 
/METHOD = ML 
/PRINT = SOLUTION TESTCOV 
/RANDOM INTERCEPT I SUBJECT(run) COVTYPE(VC) . 

Mixed Model Analysis 

Model ~ i m e n s i o n ~  

aAs of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
using EWSS ' ! syntax, piease csfisul: the ~"iiefii sji'ni~x iefeieiice guide for more lniormaiion 

bDependent Variable: speed. 

lnformation Criteriaa 

. 

Subject 
Variables 

run 

The information criteria are displayed in 
smaller-is-better forms. 

aDependent Variable: speed. 

Number of 
Parameters 

1 

1 

1 

3 

- - 

-2 Log Likelihood 

Akraike's Information 
Criterion (AIC) 

Hurvich and Tsai's 
Criterion (AICC) 

Bozdogan's Criterion (CAIC) 

Schwarz's Bayesian 
Criterion (BIC) 

Covariance 
Structure 

Variance 
Components 

Fixed Effects Intercept 

Random Effects Intercepta 

Residual 

Total 

693.468 

699.468 

699.562 

71 3.150 

710.150 

Number 
of Levels 

1 

2 



TABLE 15.5 Continued 

Fixed Effects 

Type I l l  Tests of Fixed Effectsa 

aDependent Variable: SPEED. 

Estimates of Fixed Effectsa 

Sig. 

.OOO 

Source Numerator df 

Intercept 1 

I 

aDependent Variable: SPEED. I 

Denominator 
d f 

10.801 

Covariance Parameters 

Estimates of Covariance Parametersa 

F 

848.649 

t 

29.1 32 

df 

10.797 

Parameter Estimate 

Intercept 5.4108323 

aDependent Variable: speed. 
4 
V, 
4 

Std. Error 

,1857377 

Sig. 

.OOO 

Parameter Estimate 

Residual .7694610 
Intercept [subject = run] Variance .3115983 

Wald Z 

11.197 
2.100 

Std. Error 

.0687191 
,1483532 

95% Confidence Interval 

Lower Bound 

5.001 0877 

Sig. 

.OOO 

.036 

Upper Bound 

5.8205769 

95% Confidence Interval 

Lower Bound 

.6459031 

.I225560 

Upper Bound 

.9166548 
,7922380 
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parameter estimates and tests for the single fixed effect (SOLUTION) and the two random effect\ 
(COVTEST). The RANDOM equation explicitly lista the ~ ~ U L I P  intercept. Runs are declared to be 
"subjects" (i.e., units of analysis at 2nd level). Remaining syntax is produced by the menu system.' 

The output begins with an indication of fixed and random effects, the type of covariance struc- 
ture for the random effects, number of parameters (cf. Section 15.6.5.1), and the variable used to 
combine subjects (run). Helpfully, total number of parameters also is sh6wn. Then information is 
provided that is useful to test differences between models, such as -2 Log Likelihood. 

Fixed effects.follow, with two tables: one for significance tests of combined effects and 
another for parameter estimates, single-df tests, and confidence intervals. Results match those of 
SAS, except for denominator df. The presence of random effects and varying levels can complicate 
the calculation of denominator df for fixed effects. SPSS applies corrections for random effects and 
multiple levels even in the simplest models, resulting in fractional values for denominator df. SAS 
does not apply these corrections unless requested (see Table 15.10). 

The output concludes with a table for random effects, labeled Estimates of Covariance 
Parameters. The test for lntercept (whether runs differ in mean speed) is statistically significant at 
z = 2.100. Note that the Sig. value of ,036 is for a two-tailed test rather than the more appropriate 
one-tailed test; we are concerned only with whether intercepts vary more than would be expected by 
chance. Therefore the appropriate p value for comparison is .036/2 = .018. 

Table 15.6 summarizes the parameter estimates for both random and fixed effects and their 
interpretation. 

TABLE 15.6 Summary of Symbols and Interpretations for Intercepts-Only Model 

Parameter Estimate 
for Effect and 
Software Label 

Symbol 
from Sample-specific Generalized 
Table 15.3 Interpretation Interpretation 

Random Eflects (Covariance Pammeter Estimates) 
- - 

Value = 0.3 i 16 The variance in the The variance In the group 
SPSS: Intercept [subject = run] means of speed for means on the DV around 

Variance the runs around the the grand mean on the DV 
SAS:iiN i 7 ,  i 1 grand mean of speed (variance between groups) 

Value = 0.7695 e.. Variance in speed The variance among cases 
[I 

SPSS: Residual for individual skiers on the DV within groups 
SAS: R e s i d u a  1 within runs around around their own group 

the mean speed for means (variance within 
the run groups) 

Fixed Eflect (Parameter Estimate) 

Value = 5.4108 
SPSS: lntercept 
SAS: I n t e r c e p t  

700 The unweighted The overall intercept: 
grand mean of speed unweighted mean of the 
for the runs means for the groups 

7 ~ o t e  that there was a change in specification of COVTYP beginning with Version 1 1.5 of SPSS. 



15.4.2 hlodel with a First-Level Predictor 

The next model is one in which a predictor, skill of skier. is added to the equations to predict skiing 
speed. 

15.4.2.1 Level-1 Equation for a Model with a Level-1 Predictor 

The level- 1 equation is now expanded so that the DV score for an individual is predicted by a ran- 
dom intercept that varies across groups (as in the previous section) and a random slope for the rela- 
tionship between the DV and the level-1 predictor (that also varies across groups). 

Y.. = /3 9i + j?,jXy + e0 (1 5.4) 

An individual score on the DV, Yq, is a sum of an intercept, par, that may vary over the j 
groupe, a slope, P y, that may vary over groups times an individual's score on a predic- 
tor, x,,~ and error, ey (the deviation of an individual from his or her group mean). 

Except for the subscripts, this is highly similar to the usual bivariate regression equation 
(Yi = Po + PIXi + e;). All of the terms (Y, X, and e) that ordinarily would have a single subscript, i, 
indicating case, now have two subscripts, ij, indicating case and group. The regression coefficients, 
Po and /3,, now also have a subscript, j, indicating that each of these coefficients varies over groups. 

In  terms of the example, 

Speed.. LJ = Po, + PljSkillq + eij 

An individual's skiing speed is the sum of the intercept, ,!Ioi, for that skier's run (group); 
a weighting, /3,,, for that skier's run (group) times the sk~er's skill level; and error, eij  
(deviation nf indi\.ridg$ S C Q ~ ~  ffrnm its run) 

Coefticients that vary across groups are treated as random. Thus, this is often called a random 
coefficients tnodel, referring to the random coefficients for the intercept, Poj, and for the slope, Pip 

t that vary over groups (runs). Error always is considered random. These varying coefficients can be 
I illiistrated in scatteri;!ots bep::eex ski!! 2nd speed thzt differ hetween runs. For examplei Figure 15.1 

i shows the skill-speed relationships for the run at Aspen Highlands and for the first run at Mammoth. 

! There is a srnall positive relationship between skill and speed at the Aspen Highlands run, with 
an intercept at about 6.25, but a negative relationship for the first run at Mammoth Mountain, with 
an intercept at about 5.8. Thus, both the intercepts and slopes vary for these runs. A variety of other 
slopes and intercepts are noted for the remaining Mammoth runs, as seen in Figure 15.2, which 
shows all ten of the runs. You may recognize this as a failure of homogeneity of regression, as dis- 
cussed in Chapter 6 (cf. Figure 6.2). That is, there is an interaction between skill (the predictor) and 
runs (the groups) on speed (the DV): slopes vary over runs. 

The varying intercepts and slopes are found through a separate regression analysis for each 
higher-level research unit, in this case each run. For the data in Table 15.1, a bivariate regression 
analysis is done, per Equations 3.30 through 3.32 with skill as X and speed as I: The resulting slopes 

8~ is sometimes centered, for example, a deviation from the mean for the group may be used (cf. Section 15.6.2) 
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FIGURE 15.2 Relationship between speed and skill for all ten runs. 
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and intercept> are shown i n  Table 15.1. The procedures of Section 5.4 apply i f  there are \everat I e \ r l -  
1 predictors. 

15.4.2.2 Level-2 Equations for a Model with a Level-1 Predictor 

Each random effect (other than individual error) requires a separate second-level equation. There- 
fore, the second-level analysis (where groups are research units) requires two equations with level- 1 
intercept and level-1 slope as DVs (see Table 15.2). To predict the random intercept: 

Po; = Yoo + Uoi (15.6) 

An intercept for a run Poj, is predicted by the average intercept over groups when all pre- 
dictors are zero, yoo (a fixed effect), and error, uoj (a random effect: deviation from aver- 
age intercept for group j). 

Note that this is the same as Equation 15.2 for the intercepts-only model. 
To predict the random slope: 

The slope for a run, j? y, is predicted by a single intercept, y l o  (a fixed effect: the average 
IV-DV slope), and error, u (a random effect: the deviation from average slope for group 
j>. 

Substituting right-hand terms from Equations 15.6 and 15.7 into Equation 15.5: 

Thus the entire two-level equation, with terms rearranged, is: 

Y..  o = yo, + y l o X  LJ + u Oj + u l j X i j  + eq (15.9) 

The two fixed components are yoo (the average intercept) and y l o  (the average slope). 
The three random components are ~i (the deviation in imei-cepi f ~ r  cases i:: grsup j ) ,  tl 

Oj 
(the deviation in slope for cases in group j) times the first-level predictor score for case i 
in group j, and eij (the deviation for case i from its group j). 

The solution to Equation 15.5 produced by SAS and SPSS software is 

Boj = 4.981 + uOj 

The intercept = 4.98 1 and is the unweighted mean for the 10 runs when predicted skill = 0. As usual, 
there is no research import to its test of significance. 

The solution to Equation 15.6 produced by software is 

p l ,  = 0.216 + u,, 

With a standard error = 0.15 1 for the average slope, z = 0.216/0.15 1 = 1.43. Thus, there is no evi- 
dence at a = .05 of a relationship between the DV, speed, and the level- l predictor. average skill. 
That is, skiing speed cannot be predicted from skill when it is averaged over all runs. 
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The entire two-level solut~on 1s: 
I 

Recall that Poj is the intercept for group j and PU is ihe slope for group j. As described for the i 
intercepts-only model, parameter estimates for fixed effects are based on average values over runs. 1 
so that tests for them are tests of central tendency, using two-tailed z tests. Tests of some random 
effects are based on variances as parameter estimates and typically are tested using one-tailed z tests; 
is the variance grealer than zero? That is, do intercepts and slopes vary more than expected over runs? 
Tests of whether intercepts and slopes differ among runs are shown in the following computer analy- 
ses, as is the test of whether slopes and intercepts are correlated (not included in these equations). I 

i 
15.4.2.3 Computer Analysis of a Model with a Level-1 Predictor 1 
The SAS MIXED mode 1 instruction in Table 15.7 declares SPEED to be the DV, with SKILL as an 
IV. Note that SKILL has been added to group intercept as a r a  n  d  om effect and also has been included 
in the mode 1 instruction as a fixed effect. Remaining syntax is as for the intercepts-only model. 

Asbefore,the C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  sectionappliestotherandom , 
components in the model. U N ( 1 ,I 1 is the variance in group intercepts (means) across runs (zoo of 
Table 15.3), and with a one-tailed test at a = .05 (critical value = 1.58) there is still evidence that, 
indeed, the group intercepts vary across runs. U N ( 2.1 is the covariance between group intercepts 
and group slopes ( t lo  of Table 15.3); there is no indication of a relationship between intercepts and 
slopes over runs (P r Z = .0692). That is, there is no evidence that the effects of skill on speed dif- 
fer depending on average speed on the run. Note that this is tested with a two-tailed probability value, 
because covariances can be either negative or positive. U N ( 2.2 1 is the variance in group slopes 
across runs ( t ,  , of Table 15.3); there is evidence that the relationship between skill and speed differs 
among runs, so a fixed effect of SKILL may not be interpretable. The significant Re s i d u a L indi- 
cates that there are individual differences among skiers within runs after accounting for differences 
due to group membership and to skill. Note that the - 2 L o g  L i k e  1 i h  o  o  d  value is smaller than 
that of the intercepts-only model of Table 15 4 This difference can be evaluated through X2 to pro- 
vide a test of model improvement by the addition of skill as a predictor, as seen in Section 15.6.5.1. 
The N u  11 Mode 1 L i  k e  1 i h o o d  R a t  i o  T e s t  indicates that the specified model differs sig- 
nificantly from a model with just a single fixed intercept. 

I 
The remaining output is for the fixed effects in the model. The I n t e  r c  e  p t = 4.9808 is the I 

mean of the 10 groups when predicted skill = 0. The overall relationship between SPEED and 
SKILL is not statistically significant (p = .1868) but the result cannot be interpreted due to the sig- 
nificant random variance in slopes across runs, U N ( 2.2 1. 

I 
Table 15.8 shows syntax and output for SPSS MIXED analysis. The continuous predictor, 

skill, is shown as a WITH variable (called a covariate on the menu). Skill appears as both a fixed and I 

a random predictor, as in SAS. COVTYP(UN) specifies an unstructured covariance matrix and pro- 
duces output that matches other s ~ f t w a r e . ~  Remaining syntax is as for the intercepts-only model. 

The output begins with an indication of fixed and random effects, the type of covariance struc- I 

ture for the random effects, and the variable used to combined subjects (RUN), as well as the number 1 
of parameters in the model Then information is provided that ic useful to test differences between 
models, such as -2 Log L~kelihood. Fixed effects follow, with two table?. one for significance tests of 

I 

 h hanks to Jodie Ullman for uncovering this trick in Version 1 1.5. 
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TABLE 15.7 Syntax and Selected Output for SAS MIXED Analysis of Level-1 Predictor Model 

p r o c  m i x e d  d a t a = S a s u s e r . S s - h l m  c o v t e s t  m e t h o d = m l ;  
c l a s s  RUN; 
m o d e l  SPEED= S K I L L  / s o l u t i o n ;  
r a n d o m  i n t e r c e p t  S K I L L  / t y p e = u n  s u b j e c t  = RUN; 

run ;  

The M i x e d  P r o c e d u r e  

C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  

S t a n d a r d  Z 
Cov P a r m  S u b j e c t  E s t i m a t e  E r r o r  Va l u e  P r  Z 

UN(1 ,I 1 . RUN 0 .6281 0.3050 2.06 0.01 97 
U N ( 2 , I  1 RUN -0.2920 0.1607 -1  - 8 2  0.0692 
UN(2,2> RUN 0.2104 0.1036 2.03 0.0211 
R e s i d u a l  0 .4585 0.04184 10.96 <. 0001 

F i t  S t a t i s t i c s  

-2 L o g  L i k e l i h o o d  587.9 
A I C  ( s m a l l e r  i s  b e t t e r )  599.9 
AICC ( s m a l l e r  i s  b e t t e r )  600.2 
B I C  ( s m a l l e r  i s  b e t t e r )  601.7 

N u l l  M o d e l  L i k e l i h o o d  R a t i o  T e s t  

D F C h i - s q u a r e  P r  > C h i S q  

3 ?39 .50  <. 0001 

S o l u t i o n  f o r  F i x e d  E f f e c t s  

S t a n d a r d  
E f f e c t  E s t i m a t e  E r r o r  D F t V a l u e  P r  > I t1 
I n t e r c e p t  4.9808 0.2630 9 18.94 <. 0001 
S K I L L  0.2160 0.1512 9 1 .43  0.1868 

T y p e  3 T e s t s  o f  F i x e d  E f f e c t s  

Num Den 
E f f e c t  D F D F F V a l u e  P r  > F 

S K I L L  1 9 2 - 0 4  0 .1868 
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T.%BI,E 15.8 Syntax and Selected Output for SPSS \IIXED Analysis of RIodel with Level-1 Predictor 

MIXED 
speed WITH skill 
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ABSOLUTE) 
/FIXED = skill I SSTYPE(3) 
/METHOD = ML 
/PRINT = SOLUTION TESTCOV 
/RANDOM INTERCEPT skill I SUBJECT(run) COVTYPE(UN) . 

Model Dimensionb 

aAs of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
using SPSS 11 syntax, please consult the current syntax reference guide for more information. 

bDependent Variable: speed. 

Fixed Effects Intercept 

skill 

Random Effects Intercept 
+ skilla 

Residual 

Total 

lnformation Criteriaa 

Number 
of Levels 

1 

1 

2 

4 

The information criteria are displayed in 
smaller-is-better forms. 

-2 Log Likelihood 

Akraike's lnformation 
Criterion (AIC) 

Hurvich and Tsai's 
Criterion (AICC) 

Bozdogan's Criterion (CAIC) 

Schwarz's Bayesian 
Criterion (BIC) 

aDependent Variable: speed 

Covariance 
Structure 

Unstructured 

587.865 

599.865 

600.1 97 

627.229 

621.229 

Number of 
Parameters 

1 

1 

3 

1 

6 

Subject 
Variables 

run 



TABLE 15.8 Continued 
---.- 

Fixed Effects 

Type Ill Tests of Fixed Effectsa 

aDependent Variable: speed. 

Estimates of Fixed Effectsa 

Sig. - 
.OOO 
.I83 . 

aDependent Variable: speed. 

Covariance Parameters 

F 

358.755 
2.041 

Source Numerator df 

Intercept 1 
skill 1 

Estimates of Covariance Parametersa 

Denominator df 

10.955 
10.330 

Sig. 

.OOO 

.I83 

95% Confidence Interval 

Wependent Variable: speed. 

t 

18.941 
1.429 

Lower Bound 

4.401 7434 
-. 1 1 93769 

df 

10.955 
10.330 

Parameter Estimate 

Intercept 4.9808208 
skill ,215981 6 

Upper Bound 

5.5598981 
.5513400 

t 

Parameter 

Res~dual 
Intercept + skill UN(1 , I )  
[subject = run] UN(2,l) 

UN(2,2) 

Std. Error 

.2629674 
151 11620 

Sig. 

.OOO 

.039 

.069 

.042 

Wald Z 

10.959 
2.059 

-1.81 7 
2.031 

Estimate 

.4585221 

.6:180971 
-.2919760 

.2'104463 

95% Confidence Interval 

Std. Error 

.0418398 

.3050274 
1 606737 
.I 036264 

Lower Bound 

.3834324 
,2424664 

-.6068906 
.0801676 

Upper Bound 

54831 71 
1.6270543 
,0229386 
,5524383 
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comb~ned effects and another for palametel.estimates. single-df :ests. and confidence intervals. Resuit, 
match those of SAS; SKILL differences are not statistically sisniticnnt when averaged over- runs. 

Labeling and tests for random eft'ects match those SAS. That is, U N ( 1 .I indicates statisti- 
cally significant variance of the group intercept. Note that thep = .039 is incorrect for this one-tailed 
test, instead the obtained p value should be half that amount because the test is whether variance is 
greater than would be expected by chance. Similarly, the p value for U N ( 2.2 1, the test of the vari- 
ance among group slopes, should be .02 1 rather than .042. The test for U N ( 1 ,2 1, the covariance 
between intercepts and slopes, is correctly interpreted as a two-tailed test because the relationship 
can be either negative or positive. 

Table 15.9 summarizes the parameter estimates for both random and fixed effects of the model 
with a level- 1 predictor and their interpretation. 

TABLE 15.9 Summary of Symbols and Interpretations for Model with Level-1 Predictor 

Parameter Estimate Symbol 
for Effect and from Sample-specific Generalized 
Software Labels Table 15.3 Interpretation Interpretation 

Random Effects (Covariance Parameter- Estimates) 

Value = 0.628 1 Too The variance in the means The variance in the group means 
SPSS: UN(l , I )  of speed for the runs on the DV around the grand 
SAS: UN(1 , I  around the grand mean of mean on the DV (variance 

speed when skill is taken between groups) when the 
into account predictor is taken into account 

Value = -0.2920 The covariance between The covariance between 
SPSS: UN(2,l) means for runs and slopes intercepts and slopes (predictor- 
SAS: UN!2,1) ( s ~ c i ~ l - s p w ~  zss=ciatior,; assiiciiltioiij for giOiiPs 

for runs 

Value = 0.2 ! 04 The variance in the siopes The variance in the slopes for a 
SPSS: UN(2,2) ":I for skill around the predictor around the average 
SAS: UN(2,2) average slope for all runs slope for all group 

Value = 0.4585 The variance in speed for The variance among cases on the 
SPSS: Residual e.. 

LJ individual skiers within DV within groups around their 
SAS: Res idua  L runs around the mean own group means (variance 

speed for the run when within groups) when the 
skill is taken into account predictor is taken into account 

Fixed Effect (Parameter Estimates) 

Value = 5.4 108 The unweighted grand The overall intercept; 
SPSS: Intercept ioo  mean of speed for the unweighted mean of the means 
SAS: I n t e r c e p t  runs when skill level is for the groups when the 

zero predictor level is zero 

Value = 0.2 160 The unweighted average The unweighted average of 
SPSS: skill )lo of slopes for skill over all slopes for the predictor over all 
SAS: S k i  1 1  runs groups 
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15.4.3 Model with Predictors at First and Second Levels 

The full model adds a second-level pred~ctor, mountain, to the model w~th a first-level pred~ctor. 
skill. Mountain is a categorical IV (although with only two levels it can be treated as either categor- 
ical or continuous). 

15.4.3.1 Level-1 Equation for Model with Predictors at Both Levels 

The level- 1 equation for a model with predictors at both levels does not differ from that of the level- 
1 equations for a model with a predictor only at the first level. That is, the inclusion of the second- 
level IV does not affect the equations for the first level of analysis. However, it can affect the results 
of those equations, because all effects are adjusted for all other effects. 

15.4.3.2 Level-2 Equations for Model with Predictors at Both Levels 

The second-level analysis (based on groups as research units) uses all three variables of Table 15.2: 
level- l intercept, level- l slope, and the level-2 IV (mountain). For these analyses, level- l slope and 
intercept again are considered DVs. To predict the random intercept: 

An intercept for a run Po,. is predicted by yoo (the average intercept over groups when all 
predictors are zero), the slope yol (for the relationship between the intercepts of the 
level-l analysis and the levels of the fixed level-2 IV) multiplied by Wj (the average 
value of the IV for the group), and error, uoj (the deviation from average intercept for 
z r ~ u p j ! .  

The coefficient, yol, is the relationship between the original DV, Yij ,  and the IV. W,. 
To predict the random slope for the level- 1 predictor: 

The slope for a run, PIJ, is predicted by a single intercept, ylo (the average level-1 
predictor-DV slope), and error LL (the deviation from average slope for group j). 

Substituting right-hand terms from Equations 15.10 and 15.1 1 into Equation 15.5: 

y.. = y 
Y oo + YOIW, + uoj + (Y,,, + u,j)Xii + ejj 

Thus the entire two-level equation, with terms rearranged, is: 

The three tixed components are ;'oo (the average intercept-grand mean). ;loI WJ (the over- 
all slope for the relationship between a level-2 predictor and the DV times the second- 
level predictor score for group j), and yIO XIi (the unique effect of group j on slope when 
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the value of the level-: predictor b!! is zero times the first-ievel predictor score for case i 
in group 1 ) .  The three random components are qlj (the deviation i n  intercept tor cases in  
group j ) ,  l i I j  X i j  (the deviation in slope for cases in group j times the first-level predictor 
score for case i in group j), and eij (the deviation for case i from its group j). 

The solution to Equation 15.9 produced by software is 

The intercept 4.837 is the unweighted mean for the Mammoth runs (mountain = 0) when skill is 0. 
The slope has a value of 1.472 and a standard error of 0.216; thus, z = 1.472/0.197 = 7.467, a sig- 
nificant result at ai = .05. That means that the intercepts (means) for Mammoth Mountain (coded 0) 
are lower than the mean for Aspen Highlands (coded 1). Skiing speed is significantly different for the 
two mountains. 

The solution to Equation 15.10 produced by software is 

The average slope is 0.209 with a standard error of 0.156; thus, z = 0.209/0.156 = 1.343. There is 
no evidence at a: = .05 of a relationship between the DV, speed, and the predictor, skill. That is, ski- 
ing speed cannot be predicted by skill when averaged over all runs. 

The entire two-level (Equation 15.12) solution is 

Yo = 4.837 + 1.472(Mountain) + 0.209(Skill) + (Po, - 4.837) 

+ (p ,j  - 0.209) (Skill) + eij 

Recall that Po; is the intercept for group j and PI; is the slope for the relationship between the DV and 
level- 1 predictor in group j. 

Tests of whether intercepts and slopes differ among runs are shown in the following computer 
runs, as is the test of whether slopes and intercepts are correlated. 

15.4.3.3 Computer Analyses of Model with Predictors 
at First and Second Levels 

As seen in Table 15.10, SAS syntax adds MOUNTAIN to the mod e 1 instruction. Because MOUN- 
TAIN is a dichotomous variable, it may be treated as continuous, simplifying interpretation of out- 
put. Note that SKILL has been defined as a random effect, but MOUNTAIN remains only a fixed 
effect. There is no way to specify MOUNTAIN as a fixed level-2 (rather than level-1) variable (using 
runs rather than skiers as subjects), so that df for its tests need to be adjusted. The use of d d f m = 
k e n w a r d r o g e r approximates the appropriate df. 

The total number of parameters in the model now is 7, as seen in the D i men s i on s section. 
The four C ova r i a n c e Pa r a me t e r s are the variance in  intercepts, variance in slopes, covari- 
ance between intercepts and slopeb, drid residual. The three fixed parameters ( C  o 1 umn s i n X )  are 
the overall intercept, skill, and mountain. 
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TABLE 15.10 Syntax and Selected Output for S.AS MIXED Analysis of Full Xlodel 

p r o c  m i x e d  da ta=Sasuser .Ss-h lm c o v t e s t  method=ml ;  
c l a s s  RUN; 
mode l  SPEED= SKILL  MOUNTAIN / s o l u t i o n  dd fm  = k e n w a r d r o g e r ;  
random i n t e r c e p t  SKILL 1 t y p e = u n  s u b j e c t  = RUN; 

run; 

D i m e n s i o n s  

C o v a r i a n c e  P a r a m e t e r s  4  
Columns i n  X 3  
Columns i n  Z Pe r  S u b j e c t  2 
S u b j e c t s  1 0  
Max Obs Per  S u b j e c t  6 7  

Number o f  O b s e r v a t i o n s  

Number o f  O b s e r v a t i o n s  Read 2 7 4  
Number o f  O b s e r v a t i o n s  Used 2 6 0  
Number o f  O b s e r v a t i o n s  No t  Used 1 4  

C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  

Cov Parm 

UN(1,l) 
UN(2,I) 
UN(2,2) 
R e s i d u a l  

E f f e c t  

I n t e r c e p t  
SKILL  
MOUNTAIN 

S t a n d a r d  Z 
S u b j e c t  E s t i m a t e  E r r o r  V a l u e  P r  Z 

RUN 0.4024 0 .2063  1 .95  0 .0256  
RUN -0.2940 0.1473 -2 .00  0.0460 
R U N  0 .2250  0 .1098  2.05 0 .0202  

0.4575 0 .041  67  1 0 . 9 8  <. 0001 

F i t  S t a t i s t i c s  

-2 Log  L i k e l i h o o d  570 .3  
A I C  ( s m a l l e r  i s  b e t t e r )  584.3 
A I C C  ( s m a l l e r  i s  b e t t e r )  584 .8  
BIC ( s m a l l e r  i s  b e t t e r )  586 .4  

N u l l  Model  L i k e l i h o o d  R a t i o  T e s t  

D F C h i - s q u a r e  Pr  > Ch iSq  

S o l u t i o n  f o r  F i x e d  E f f e c t s  

S t a n d a r d  
E s t i m a t e  E r r o r  D F t V a l u e  P r  > I t 1  
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Type 3 T e s t s  o f  F i x e d  E f f e c t s  

Num Den 
E f f e c t  D  F D F F V a l u e  P r  > F 

S K I L L  1  9 . 6 8  1 . 8 0  0 . 2 1 0 5  
MOUNTAIN 1 7 . 0 9  4 4 . 6 8  0 . 0 0 0 3  

i 

Again, U N  ( I .I 1 is the variance in intercepts (means) across runs; with a one-tailed test at i 
1 

a = .05 (critical value = 1.58) there is evidence that the intercepts vary after adjusting for all other 
effects. U N ( 2.1 1 is the covariance between intercepts and slopes, and there now is indication at 
a = .05 of a negative relationship between intercepts and slopes over runs. The negative parameter 
estimate of -0.2940 indicates that the higher the speed the lower the relationship between skill and 
speed, after adjusting for all other effects. This effect was not statistically significant before entry of 
MOUNTAIN into the model. U N ( 2.2 1 is the variance in slopes across runs, and there is evidence 
that the relationship between skill and speed differs among runs (making a fixed effect of SKILL dif- 
ficult to interpret). The significant R e s i d u a 1 indicates that there are individual differences 
among skiers within runs even after accounting for all other effects. Fit statistics are as described 
earlier. 

The remaining output is for the fixed effects in the model. The statistically significant e s t i - 
ma t e of 1.47 19 indicates greater speed for the mountain with the code of 1 (Aspen Highlands). 

I 
f 

The I n  t e r c e p t = 4.8367 is the mean of the groups in the mountain coded 0 (Mammoth) 
when skill level is 0. The overall relationship between SPEED and SKILL. is sti!! not statistically c i a -  L ' . ~  

nificant O, = .2120) but is not interpretable, in  any event, in the face of the significant random vari- 
ance in slopes across runs. U N ( 2.2 1. 

Table 15.1 1 shows syntax and output for SPSS MIXED analysis. Both skill and mountain are 
declared continuous (WITH) variables-as a dichotomous variable, MOUNTAIN may be treated as 
continuous. Subjects are nested within runs; Skl!l appears as bnth a !=!XED 2.n.d a !?P,NDOM pre- 
dictor; Mountain is only a fixed predictor. Remaining syntax is as previously described. 

i 
The output begins with specification of fixed and random effects (note that random effects are 

also listed in the fixed rows), the type of covariance structure for the random effects, and the variable 
used to combined subjects (RUN). Results for fixed effects are the same as those of SAS (except for 
df); MOUNTAIN differences are statistically significant but the average relationship between 
SKILL and SPEED is not. 

I I 
The random effect test, UN(1 , I ) ,  for I n t e r c e p t (whether runs differ in mean speed) is I 

statistically significant at z = 1.95 if a one-tailed criterion is used at a = .05; the Sig. value of .05 1 
is for a two-tailed test. The UN(2,2) test for skill (slope differences among runs) also shows signifi- I 

cant differences, z, = 2.049, as does the two-tailed test for the covariance between intercepts and 
slopes. I 

Table 15.12 summarizes the parameter estimates for both random and tixed effects of the I 

model with a level- I predictor and their interpretation. 
I 
I 
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TARLE 13.1 1 Syntax and Selected Output for SPSS .ZIIXEI) Analysis of Full hIodel 

i MIXED 
1 speed WITH skill mountain 
i /CRITERIA = CIN(95) MXITER(1OO) MXSTEP(5) SCORING(1) 

SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ABSOLUTE) 
/FIXED = skill mountain ( SSTYPE(3) 
/METHOD =. ML 
/PRINT = SOLUTION TESTCOV 
/RANDOM INTERCEPT skill I SUBJECT(run) COVTYPE(UN) . 

Model ~ i m e n s i o n ~  

aAs of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your 
command syntax may yield results that differ from those produced by prior versions. If you are 
uslng SPSS 11 syntax, please consult the current syntax reference gu~ae for more ~riforrnat~on. 

bDependent Variable: speed. 

information Criteriaa 

I 

Fixed Effects Intercept 

skill 

mountain 

Random Effects Intercept 
+ skilla 

Residual 

Total 

Number of 
Parameters 

1 

1 

1 

3 

1 

7 

The information criteria are displayed in 
smaller-is-better forms. 

aDependent Variable: SPEED. 

Subject 
Variables 

run 

Number 
of Levels 

1 

1 

1 

2 

5 

-2 Log Likelihood 

Akraike's Information 
Criterion (AIC) 

Hurvich and Tsai's 
Criterion (AICC) 

Bozdogan's Criterion (CAIC) 

Schwarz's Bayesian 
Criterion (BIC) 

Covariance 
Structure 

Unstructured 

570.31 8 

584.31 8 

584.762 

61 6.242 

609.242 
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h) -- -- 

Fixed Effects 

Type Ill Tests of Fixed Effectsa 

aDependent Variable: speed. 

Estimates of Fixed Effectsa 

. 

Source Numerator dt 

Intercept 1 
skill 'I 
mountain 1 

aDependent Variable: speed. 

Parameter Estimate 

Intercept 4.8366975 
skill .2089697 
mountain 1.471 8779 

Covariance Parameters 

Denominator df 

12.206 
1 1.826 
7.086 

Estimates of Covariance Parametersa 

Std. Error 

.2164!292 
1 555458 
1971118 

F 

500.345 
1.805 

55.759 

aDependent Variable: speed. 

Sig. 

.OOO 

.204 

.OOO 

df 

1,2206 
1 1.826 
'7.086 

Parameter 

Residual 
Intercept + skill UN(1,l) 
[subject = run] UN(2,1) 

UN(2,2) 

t 

22.368 
1.343 
7.467 

Wald Z 

10.980 
1.950 

-1.995 
2.049 

Estimate 

.45175351 

.40124587 
-.2941195 

.2250488 

Sig. 

.OOO 

.204 
,000 

Std. Error 

,041671 1 
,2063647 
1 47402 1 
1098392 

Sig. 

.OOO 

.051 

.046 

.040 

95% Confidence Interval 

95% Confidence interval 

Lower Bound 

4.3664530 
-. 1 304878 
1.0069237 

Lower Bound 

.3827358 

.I473191 
-.5830223 

.0864633 

Upper Bound 

5.3069421 
,5484272 

1.9368322 

Upper Bound 

,5469526 
1.0994700 
-.0052168 

.5857622 
I 
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1:ABLE 15.12 Summar! of Symbols and Interpretations for ZIodels with Predictors at Both Levels 

Parameter Estimate Symbol 
for Effect and from Sample-specific Generalized 
Software Labels Table 15.3 Interpretation Interpretation 

Randorn Effects (Covariance Parameter Estimates) 

Value = 0.628 1 Too The variance in the means The variance in the group means 
SPSS: UN(1, l )  . of speed for the runs around on the DV around the grand 
SAS: U N ( 1 , I )  the grand mean of speed mean on the DV (variance 

when skill and mountain between groups) when 
are taken into account predictors are taken into account 

Value = -0.2920 To I The covariance between The covariance between means 
SPSS: UN(2,l)  . means for runs and slopes for groups and slopes (predictor- 
SAS: U N ( 2 , I )  (skill-speed association) DV association) for runs when 

for runs when mountain is mountain is taken into account 
taken into account 

Value = 0.2 104 5~ I The variance in the slopes The variance in the slopes for a 
SPSS: UN(2,2) for skill around the average predictor around the average 
SAS: U N ( 2 , Z )  slope for all runs when slope for all groups when other 

mountain is taken into predictors are taken into account 
account 

Value = 0.4585 n.a. The variance in speed for The variance among cases on 
SPSS: Residual individual skiers within the DV within groups around 
SAS: R e s i d u a  1 runs around the mean their own group means 

speed for the run when (variance within groups) when 
skill and mountain are predictors are taken into account 
taken into account 

Fixed Effect (Parameter Estimates) 

I . .  c A I n o  
V?l lUC = 2.- I \ I 0  r 00 The unweighted grand The overall intercept; 
SPSS: Intercept mean of speed for the runs unweighted mean of the means 
SAS: I n t e r c e p t  when skill level and for the groups when all 

mountain are zero predictor levels are zero 

Value = 0.2 160 yo I The average slope for skill The average slope for the 
SPSS: skill over all runs when predictor over all groups when 
SAS: S k i  11 mountain is taken into all other predictors are taken 

account into account 

Value = 1.472 yo I The average slope for The average slope for the 
SPSS: mountain mountain over all runs predictor over all groups when 
SAS: M O U N T A I N  when skill is taken into all other predictors are taken 

account into account 
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Types of MLM 

MLM 1s an extrenlely versat~le technique that. like SEhl, can be used for a variety of research 
designs. The ones discussed here are those that are implemented in one or more of the programs 
discussed. This chapter demonstrates repeated-measures designs and higher-order models. Other 
topics described in this section-latent variables, nonnormal outcome variables, multiple response 
models-are described only briefly, with references to other sources. 

15.5.1 Repeated Measures 

One of the more common uses of MLM is to analyze a repeated-measures design, which violates 
some of the requirements of repeated-measures ANOVA. Longitudinal designs (called growth curve 
data) are handled in MLM by setting measurement occasions as the lowest level of analysis with 
cases (e.g., students) the grouping variable. However, the repeated measures need not be limited to 
the first level of analysis (e.g., there could be repeated measurement of teachers and/or schools, as 
well). A big advantage of MLM over repeated-measures ANOVA is that there is no requirement for 
complete data over occasions (although it is assumed that data are missing at random), nor is there 
need for equal numbers of cases or equal intervals of measurements for each case. Another impor- 
tant advantage of MLM for repeated-measures data is the opportunity to test individual differences 
in growth curves (or other patterns of responses over the repeated measure). Are the regression coef- 
ficients the same for all cases? Because each case has its own regression equation when random 
slopes and intercepts are specified, it is possible to evaluate whether individuals do indeed differ in 
their mean response andlor in their pattern of responses over the repeated measure. 

An additional advantage is that sphericity (uncorrelated errors over time) is not an issue 
because, as a linear regression technique, MLM tests trends for individuals over time (if individuals 
are the grouping variable). Finally, you may create explicit time-related level- 1 predictors, other than 
tihe time period itself. 'Lime-related predictors (a.k.a. time-varying covariates) come in a variety of 
forms: days in the study, age of participant, grade level of participant, and so on. 

Unlike ANOVA, there is no overaii test of the "repeated measures" factor unless one or more 
time-related predictors are explicitly entered. Once the time-related predictor is entered into the 
equation, it is evaluated as a single df test (e.g., linear relationship between time and the DV, a lon- 
gitudinal growth curve), so that the assumption of sphericity is avoided. If other trends are of inter- 
est, they are coded and entered as separate predictors (e.g., time-squared for the quadratic trend). 
Thus, MLM can be used to provide all of the advantages of a trend analysis if relevant predictors are 
created and entered. 

Table 15.13 shows a small, hypothetical data set prepared for SPSS MIXED with five cases in 
which number of books read per month serves as the DV and type of novel (science fiction, romance, i 

mystery) serves as a fixed IV. The first column is the type of novel, the second is indicator of month, i 
the third is the identification of the case, and the final column is the DV (number of books read that 
month). This corresponds to a two-way within-between-subjects design with month as the repeated- I 

measures IV and novel as the between-subjects IV. The sample size is highly inadequate, especially I 
! 

for tests of random effects (although a solution miraculously emerged). but provides a convenient ! 
! 

vehicle for demonstrating various facets of MLM repeated-measures analysis and has the further ! 

advantage of being sufficiently silly. 
Figure 15.3 shows the Iayoi!t of the data for this design. I 
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T,\BLE 15.13 Data Set for SPSS AIlXED 
Analysis of Repeated illeasures Data 

Novel Month Case Books 
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Level 2 Case 1 . . .  . . . Case 5 

Level 1 . Month 1 Month 2 Month 3 Month 1 Month 2 Month 3 
Repeated 
measures 

FIGURE 15.3 Layout of Table 15.13 data. 

Table 15.14 shows syntax and partial output for analysis of effects of linear trend of month, ! 
novel type, and their interaction, as well as tests of mean differences among readers. The intercept i s  
a RANDOM effect. The linear trend of month (1 to 2 to 3) i s  evaluated (rather than main effect) 
because MONTH i s  not declared to be a categorical variable (i.e., i t  i s  a WlTH variable rather than a 

TABLE 15.14 Syntax and Selected Output from SPSS MIXED Analysis of Repeated-Measures Data I 
MIXED 

books BY novel WlTH month 
/CRITERIA = CIN(95) MXITER(1OO) MXSTEP(5) SCORING(1) SINGULAR(0.000000000001) 
HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ABSOLUTE) 
/FIXED = novel month month*novel I SSTYPE(3) 
/METHOD = REML 
/PRi\T = TESiC' 

/RANDOM INTERCEPT month I SUBJECT(case) COVTYPE(UN). 

Model Dimensionb 

aAs of version 11.5, the syntax rules for the RANDOM subcommand have changed.Your command 
syntax may y~eld results that differ from those produced by prior versions. If you are using SPSS 11 
syntax, please consult the current syntax reference guide for more information. 

bDependent Variable: books. i 

Fixed Effects Intercept 

novel 

month 

novel month 

Random Intercept 
Effects + montha 

Residual 

Total 

Covariance 
Structure 

Unstructured 

Number 
of Levels 

1 

3 

1 

3 

2 

10 

Number of 
Parameters 

1 

2 

1 

2 

3 

1 

10 

Subiect 
Variables 

case 
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BY variable). The linear trend of month b) novel intel-act~on as well ah the main zffect of no~t.1 a[-2 
declared to be fixed by listing them in the FIXED instruction. hlonth 15 declared 1.ando1-n by listing 1 1  

in the RANDOM instruction. CASE is the group identifier. 
No significant random effects are found. The test of UN(1 , I ) ,  the variance of the intercept 

(p = .794), shows that there is no significant difference in the mean number of books read among the 
five cases. The random test of UN(2,2), p = 304,  shows no significant difference among readers in 
the linear trend of month; this test is not available in ANOVA using either univariate or multivariate 
approaches. Finally, the test of UN(2, l)  the random INTERCEPT by MONTH covariance 
(p = 3 2 )  shows no significant difference in the relationship between the mean number of book: 
read and the linear trend of month across readers. If any of these were statistically significant, it 
might be worthwhile to explore some characteristics of individuals to "explain" those individual 
differences. 

With respect to fixed effects, there is no significant fixed linear trend of month averaged over 
subjects 0, = 2182). The main effect of novel is statistically signiticant 0, = .002) but this is inter- 
preted with great caution in the presence of the significant month by novel interaction ( p  < ,001). 
Thus, averaged over readers, the linear trend of month is different for the different types of novels. A 
plot of the interaction (as per Figure 8.1) would assist interpretation; cell means can be found by 
using the "split cases" instruction in SPSS, specifying NOVEL and MONTH as the grouping vari- 
ables in a DESCRIPTIVES analysis. 

This analysis shows that there is nothing special or different about repeated-measures vs. non- 
repeated-measures analysis in MLM. The repeated measures are simply treated as any other tirst- 
level unit of analysis, and participants become a second-level unit of analysis. If cases are nested 
within multiple units (e.g., students in classrooms), then classrooms become the third level unit of 
analysis, and so on. Thus, repeated measures add another, bottom-level, unit of analysis to any 
design. Because of this, models involving repeated measures often require more than two levels of 
analysis (see the complete example of Section 15.7.2). 

. . 
Another issGe chat can arise iii using MLM fGr iiieasures is the scais (codingj of the 

time variable. Section 15.6.2 addresses centering of predictors and how that affects interpretation. A 
problem in repeated measures is that the correlation between slnpes and intercepts may be ~f partic- 
ular interest if, for example, we want to know whether children who start high on the DV (e.g., read- 
ing achievement) have a steeper or shallower slope over time. The difficulty is that the correlation 
changes as a result of ihe ciiding of dme. Tilerefore, the correiation can oniy be interpreted in light 
of the particular scaling of the occasions (Hox, 2002, pp. 84-86). 

The example here has an IV for the level-2 analysis, novel, but no time-varying predictor for 
the level-1 analysis; that is, there is no variable that indicates case characteristics that change over 
time such as age, fatigue, or the like. A level-I, time-varying predictor can be especially useful in a 
longitudinal study because intervals between levels of the repeated measure can be unequal and dif- 
ferent for each participant. For example, reading achievement can be evaluated on multiple occa- 
sions, with each child tested at different ages as well having as different numbers of tests. MLM 
permits evaluation of the relationship between age (the level- 1 predictor) and reading (the DV) with- 
out requiring that each child be tested according to a standard schedule. 

Additional level-2 predictors might be gender, or any other grouping variable that applies to 
cases and is stable over time, such as employment status, or some other stable case characteristic 
measured on a continuous a ~ a l e ,  such as SES. 
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.4nother method for analyzing repeated-measure. des~gns 1s through SEhI C I ~  LI latent growth 
(or curve) model. The time variable is defined in the measurement of the latent factors (Hou. 2 0 0 2 ) .  
There is one latent variable for the intercept and another for each slope (linear, quadratic. etc. ). Th15 
also is a random coefficient model and Hox (2002) shows it to be equivalent to a two-level MLM as 
long as data are complete and time intervals are equally spaced. 

The advantage of latent curve analysis is that it can be used for more complex two-level inod- 
els, for example when slope is a predictor of some outcome. Although higher level models are pos- 
sible, they require complicated program setups (Hox, 2002). Advantages of the MLM approach 
include automatic dealing with missing data and no requirement for equally spaced time intervals. 
Hox (2002) compares the two approaches in detail (pp. 273-274). Little, Schnabel, and Baumert 
(2000) also discuss analysis of growth models through MLM and SEM in detail. Singer and Willett 
(2003) concentrate on analyzing longitudinal data, including MLM strategies. Singer (1998) focuses 
on the use of SAS PROC MIXED to analyze individual growth models as well as other applications 
of MLM. The SAS and SPSS MIXED programs permit two approaches to repeated measures: the 
MLM approach illustrated here or the "repeated" approach in which the structure of the variance- 
covariance is specified. 

15.5.2 Higher-Order MLM 

The model described in Section 15.4 has two levels: skiers and runs. This is the most common type 
of model and, obviously, the easiest to analyze. Most MLM software is capable of analyzing three- 
level models; and some programs accommodate even more levels. An alternative strategy if the soft- 
ware is limited is to run a series of two-level models, using the slopes and intercepts from one level 
(as seen in Table 15.2) as DVs for the next higher level. A three-level example with repeated mea- 
sures is demonstrated in Section 15.7. 

15.5.3 Latent Variables 

Latent variables are used in several ways in MLM-observed variables combined into factors (cf. 
Chapters 13 and 14), analysis of variables that are measured without error, analyses with data miss- 
ing on one or more predictors, and models in which the iatent factors are based on time. 

The HLM manual (Raudenbush et al., 2004) shows examgles of two applications. In the first, 
the latent variable regression option is chosen to analyze a latent variable measured without error, 
gender, which is entered on both levels of a two-level repeated-measures model (occasion and par- 
ticipant), with age as a level- I, occasion-level predictor. The DV is attitude toward deviant behaviors. 
Coefficients are available to test the linear growth rate in the DV (trend over occasions); the effect of 
gender on the growth rate; the effect of the initial value of the DV on the linear growth rate; and the 
total, direct, and indirect associations between gender and growth rate. 

In the second example, the latent variable regression option in HLM is chosen to do garden- 
variety, single level, multiple regression with missing data. Data are reorganized so that a participant 
with complete data has as many rows as there are DVs; a participant with missing data has fewer 
rows. The value of the variable is entered in one column of the data set, and there are as many addi- 
tional (indicator) columns as there are DVs. Each measure has a 1 in the column representing the 
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variable that i t  measures and a zero in the remaining columns. Rac~denbush et al. (2004) also S ~ O L G  

how to do HLM analyses with data that have multiply-imputed balues (cf. Section 4.1.3.2 ). 
SEM programs are designed to analyze multilevel models with latent variables (factors) 

composed of several measured variables (IVs). Variables associated with factors are specified as 
seen in Table 14.2 using EQS. Analysis of such models is based on a partition of variance-covariance 
matrices into within-group (first-level) and between-group (second-level) matrices. A single set of 
summary statistics provides information about fit of the combined multilevel model, and the usual 
information is provided to test the model against alternatives (cf. Chapter 14). Also available are 

I 
parameter estimates for both levels of the model-the structures of the first-level (individual) and 
second-level (group) models. 

I 
Partitioning variance-covariance matrices into within-group and between-group matrices also 

permits MLM when groups are very small as, for example, when couples or twins form the level-2 

I 
grouping unit. With garden-variety MLM performed on such data, the separate regressions for each 
two-participant group may be problematic if there are level-2 predictors. 

Another useful application of MLM with latent variables is confirmatory factor analysis which 
investigates the similarity of factor structures at different levels (e.g., at the individual and the group 
level). Do the loadings of variables on factors from individual-level data change substantively when 
group membership is taken into account or do we see the same factor structure when analyzing indi- 
vidual versus group covariance matrices? Put another way, does the same factor structure explain 
group differences as well as individual differences? 

MLM confirmatory factor analysis is also useful in determining whether there are any group 
(higher level) differences worth taking into account before adding predictors to a model. By provid- 
ing information to compute intraclass correlations (see Section 15.6.1) for factors, one can determine 
whether a multilevel model is necessary when adding predictors to a model. 

I 
1 

Heck and Thomas (2000) devote fully half of their introductory MLM book to models with 
I 

latent variables, including a demonstration of confirmatory factor analysis with a hierarchical data 
s tn~ct l~r~. .  Hex (2Q02) .is.:, &v~:es a chapter mi;ltilevei facior iilodeij. 

15.5.4 Nonnormal Outcome Variables 

As a variant of the general linear model, MLM assumes multivariate normality so the usual diag- 1 
nostic techniques and remedies of Section 4.1.5 can be applied. However some MLM programs also 
provide specialized techniques for dealing with nonnormal data (see Table 15.33). Models with non- 
normai outcomes (DVs) are often referred to as multilevel generalized linear models. 

MLwiN allows analysis of binomial and Poisson as well as normal error distributions for 

I 
MLM. A binary response variable is analyzed using the binomial error distribution, as is a response 1 

i 
variable that is expressed as a proportion. These are analogous to the two-outcome logistic regres- I 

sion models of Chapter 10. The Poisson distribution is used to model frequency count data. The 
MLwiN manual (Rasbash et al., 2000, Chapters 8 and 9) describes many choices of link functions 
and estimation techniques and demonstrates examples of these models. A special MLwiN manual 
(Yang et al., 1999) discusses categorical responses with ordered and unordered categories. 

HLM also permits a variety of nonl~near options: Bernoulli (logistic regression for 0-1 out- 
comes), two types of Po~sson distributions (constant or variable exposure), arid binomial inumber of 
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trials). multinc~mial (log~stic regression with more than two outcomeh), and ordinal  outcome^. The 
HLM6 manual (Raudenbush et al.. 7-003) demonstrates several of these models. Yet ~u1otht.1- 
approach offered through HLM is computation of standard errors that are robust to violation of nor- 
mality, provided by default for all fixed effects, with a note describing their appropriateness. Hox 
(2002) devotes a chapter to the logistic model, in which generalized and multilevel generalized mod- 
els are discussed thoroughly. 

SAS has a separate nonlinear mixed models procedure (PROC NLMIXED) for dealing with 
such models. SPSS does not have nonnormal options for MLM at this time. However, as discussed 
in Chapter 10, SPSS COMPLEX SAMPLES LOGISTIC REGRESSION is available for two-level 
models with dichotomous outcomes by declaring groups (2nd-level units) to be clusters. 

15.5.5 Multiple Response Models 

The true multivariate analog of MLM is the analysis of multiple DVs as well as multiple predictors. 
These models are specified by providing an additional lowest level of analysis, defining the multi- 
variate structure in a manner similar to that of repeated measures. That is, a case has as many rows 
as there are DVs, and some coding scheme is used to identify which DV is being recorded in that row. 
Snijders and Bosker (1994) discuss some of the advantages of multivariate multilevel models over 
MANOVA. First, missing data (assuming they are missing at random) pose no problem. This is a less 
restrictive assumption than required by MANOVA with imputed values for missing data-that data 
be missing completely at random (Hox, 2002). Second, tests are available to determine whether the 
effect of a predictor is greater on one DV than another. Third, if DVs are highly correlated, tests for 
specific effects on single DVs are more powerful because standard errors are smaller. Fourth, covari- 
ances among DVs can be partitioned into individual and group level, so that it is possible to compare 
size of correlations at the group vs. the individual level. 

MLwiN and ELM have a speci.1 mu!tivariatr model techniq.~ for dealing with multiple DVs. 
The first level simply codes which response is being recorded. Chapter I I of Rasbash et al. (2000) 
discusses multiple response models and demonstrates a model with two DVs (in which the level- l 
predictor is a 0, l  dummy code indicating which response is recorded). That is, there is a separate row 
of data for each response in the multivariate set and a dummy variable to indicate whether it is one 
iespoiise or ihe other. This dummy uar;,ab!e is :he !eve!- ! pre&ctnr. Obviously. things get more com- 
plicated with more then two DVs. A separate dummy variable is required for every df-i.e., one 
fewer dummy variables than the number of DVs. The coding reflects the comparisons of interest. For 
example, if DVs were scores on arithmetic, reading, and spelling and the interest is in comparing 
reading with spelling, one of the dummy codes should be something like O=reading, l=spelling. The 
second comparison might be a contrast between arithmetic and the other two measures. 

Chapter 9 of Hox (2002) discusses a meta-analysis with two responses, in which the lowest 
level is, again, a dummy code for response type, the second level is data collection condition (face- 
to-face, telephone, or mail), and the third level is the study. Each of the response types has a separate 
regression equation, and significance of differences between them is tested. Hox also discusses a 
model of a measurement instrument, in which item is the lowest level, student is second level, and 
school is the third level. This is similar to a repeated-measurement rnodel as discussed in Section 
15.5.2 although the emphases may differ. 
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15.6 Some Important Issues 

15.6.1 Intraclass Correlation 

The intraclass correlation (p)I0 is the ratio of variance between groups at the second level of the hier- 
archy (ski runs in the small-sample example) to variance within those groups. High values imply that 
the assumption of independence of errors is violated and that errors are correlated-that is, that the 
grouping level matters. An intraclass correlation is like q2 in a one-way ANOVA, although in MLM 
the groups are not deliberately subjected to different treatments. 

The need for a hierarchical analysis depends partially on the size of the intraclass correlation. 
If y is trivial, there is no meaningful average difference among groups on the DV, and data may be 
analyzed at the individual (first) level, unless there are predictors and groups differ in their relation- 
ships between predictors and the DV. In any event, Barcikowski (1981) shows that even small values 
of y can inflate Type I error rate with large groups. For example, with 100 cases per group, p of .0 1, 
and nominal a of .05, the actual a level is as high as .17; with 10 cases per group, p of .05, and nom- 
inal o of .05, the actual a level is .11. A practical strategy when the need for a hierarchical analysis is 
ambiguous is to do the analysis both ways to see whether the results differ substantively and then 
report the simpler analysis in detail if results are similar. 

The intraclass correlation is calculated when there is a random intercept but no random slopes 
(because then there would be different correlations for cases with different values of a predictor). 
Therefore, p is calculated from the two-level intercept-only model (the "null" or unconditional model 
of Section 15.4.1). Such a model provides variances at each level; p is the level-2 variance (s2 

b'?' 
between-group variability) divided by the sum of level- 1 and level-2 variances (s& + 6). 

These components show up in the random effects portion of output. For example, in SAS 
(Table 15.4), the level-2 variance, 0.31 16, is labeled U N  ( 1 ,I and the level-1 variance, 0.7695, is 
labeled R e s i d u a  1. Thus, 

That is, about 29% of the variability in the DV (skiing speed) is associated with differences 
between ski runs. Table 15.15 summarizes the labeling of information for intraclass correlations for 
several programs. 

For a three-level design, there are two versions of the intraclass correlation, each with its 
own interpretation (Hox, 2002). For either version, a model is run with no predictors (a three-level 
intercepts-only model). The intraclass correlation at the second level is: 

- 2  

"'Note that intraclass correlation. the term conventionally used. is a misnomer: thix really I \  a quared  correlation or \trength 
of associat~on (effect slze) measure. 
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TABLE 15.15 Labeling of Variances for Intraclass Correlations through Five Softuare Programs; 
Intercept-only Models for the Sample Data 

Software (Table) Within-Group Variance (s$) Between-Group Variance (s&) 

SAS(Table15.4) R e s i d u a l  = 0.7695 UN(1,I) = 0 .3116 
SPSS (Table 15.5) Residual = .7694610 Intercept [subject = RUN] = .3115983 

HLM level-1, R = 0.76946 INTRCPTl, UO = 0.31160 

SYSTAT Residual variance = .769 Cluster variance = -312 

MLwiN - 0.769 eOskier,run - /lorun = 0.3 1 1 

7 where siLq2 is the variance between the level-2 groups at level 2 and sZs3 is the variance between the 
level-3 groups. The intraclass correlation at the third level is: 

Each is interpreted as a proportion of variance at the designated group level. 
The second interpretation is as the expected shared variance between two randomly chosen 

elements in the same group (Hox, 2002). The equation for level 3 is the same for both interpretations 
(Equation 15.16). The level-2 equation for this interpretation is: 

Intraclass correlations for a three-level model is demonstrated in the complete example of Sec- 
tion 15.7. 

15.6.2 Centering Predictors and Changes 
in Their Interpretations 

Subtracting a mean from each predictor score, "centering" it, changes a raw score to a deviation 
score. One major reason for doing this is to prevent multicollinearity when predictors are compo- 
nents of interactions or raised to powers, because predictors in their raw form are highly correlated 
with the interactions that contain them or with powers of themselves (cf. Section 5.6.6). 

Centering is most commonly performed on level- 1 predictors. Level-2 predictors are not usu- 
ally centered (although it might be done if that enhanced interpretation). An exception would be 
when interactions are formed among two or more continuous level-2 predictors. Centering DVs is 
unusual because it is likely to make interpretation more difficult. 

The meaning of the intercept changes when predictors are centered. For example, if all IVs are 
centered in multiple regression, the intercept is the mean of the DV. I n  multilevel models with no 
centering and viewed as a single equation (e.g., speed as a function of both skill and mountain), the 
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intercept 1s the value of the DV (speed) when a11 1Vs (skill and mountain) are zero. If. on the 0 t h ~ ~ .  
hand, the level-l IV (skill) is centered and 0 is the code fur one of the mountains. then the intercept 
becomes the speed for skiers with an average skill level at that mountain. 

Therefore, centering can facilitate interpretation when there is no meaning to a value of zero 1 ; 
on a predictor. If, for example, IQ is a predictor, it does not make sense to interpret an intercept for a, 1 
value of zero on IQ. On the other hand, if IQ is centered, the intercept becomes the value of the DV 
when IQ is equal to the mean of the sample. That is, with uncentered data, the intercept can be inter- 
preted as the expected score of a student with an IQ of zero-an unrealistic value. On the other hand, 
centering changes the interpretation of the intercept as the expected score for a student with average 
IQ . 

In multilevel models, there is a choice between centering a predictor around the grand mean 
(overall skill), centering around the means of the second-level units (mean skill at different ski runs) j 

or even around some other value such as a known population mean. Centering around the grand 
mean reduces multicollinearity when interactions are introduced and produces models that are eas- 
ily transformed back into models based on raw scores. Some values of parameters change, but the 
models have the same fit, the same predicted values, and the same residuals. Further, the parameter 
estimates are easily transformed into each other (Kreft & DeLeeuw, 1998). Thus, the goal of enhanc- 
ing statistical stability by reducing multicollinearity is reached without changing the underlying 

I 
model. 

The more common practice of centering around group means has more serious consequences 
for interpretation unless group means are reintroduced as level-2 predictors. Differences in raw- 
score and group-centered models without reintroduction of group means as level-2 predictors can be 
large enough to change the direction of the findings, as illustrated by Kreft and DeLeeuw (1998, I I 

pp. 110-1 13), because important between-group information is lost. That is, mean differences I 

between groups on an IV can be an important factor in prediction of the DV. Reintroducing the mean 
brings those between-group differences back into the model. In the small-sample example, this 
.-..- 1 c-A:-- &L- ! - : I 1  r-- -..* L J .- J. - - . 
~ I I V U I V G ~  1111~111g LLIC L L I C ~ ~ L L  SKILL LUI  cil~11 ~ I U U ~  ~ : L U  ddul11g li to tile sec011Ci ievei modei, so that Equa- 
tion 15.10 becomes 

Boj = yoo + yo (Mountain) + yo, (Meanskill) + uoj I 
The predictor at the first ievei here is group-centered at the second ievei-the "siciii deviation" of 
Table 15.1. That is, DEV-SKL is fonned by taking the raw score for each case and subtracting from 
it the group mean. 

A model in which first-level predictor scores are centered around group means is shown 
through SAS MIXED in Table 15.16. 

I 
1 

Conclusions have not changed substantively for this model. Notice that the new predictor , 

ME A N-S KL  is not a statistically significant addition to the model ( p  = .4501). Indeed, the larger 
value for - 2 L o g  L i k e 1 i h o o d suggests a poorer fit for the expanded and centered model (a 
direct comparison cannot be made because the models are not nested). 

In this example, the level-1 intercept is the mean speed for a skier with a mean skill level 
(DEV-SKL coded 0) skiing on the mountain coded 0; the slope for the level-:! IV is the gain (or loss) 
in DV units for the other group (mountain coded 1). It is often worthwhile with a level-1 mean- 
centered IV to try a model with the group means introduced at level two to see if between-group (run) 
differences in the predictor are significant. And, of course, this is the method of choice if there is 

1 



rABLE 15.16 Sjntax and Selected Output for hIodel with $lean Skill Added to Second-Level 
Equation for SAS MIXED Analysis 

p r o c  m i x e d  d a t a = S a s u s e r . M e a n s k l  c o v t e s t  m e t h o d = m l ;  
c l a s s  RUN; 
m o d e l  SPEED= DEV-SKL MOUNTAIN MEAN-SKL / 

. s o l u t i o n  d d f m  = k e n w a r d r o g e r ;  
r a n d o m  i n t e r c e p t  DEV-SKL / t y p e = u n  s u b j e c t  = RUN; 

r u n ;  

The M i x e d  P r o c e d u r e  

C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  

Cov Parm 

UN(1 ,I 
UN(2,I 1 
UN(2,2) 
R e s i d u a  1 

S t a n d a r d  Z 
S u b j e c t  E s t i m a t e  E r r o r  V a l u e  P r  Z 

RUN 0.08085 0.04655 1.74 0.041 2 
RUN 0.07569 0.05584 1.36 0.1752 
RUN 0.2078 0.1025 2.03 0.0213 

0.4594 0.04201 10.94 <.0001 

F i t  S t a t i s t i c s  

-2 L o g  L i k e l i h o o d  576.4 
A I C  ( s m a l l e r  i s  b e t t e r )  592.4 
A I C C  ( s m a l l e r  i s  b e t t e r )  592.9 
BIG / -  ,,mal!er i s  b e t t e r )  594.8 

S o l u t i o n  f o r  F i x e d  E f f e c t s  

S t a n d a r d  
E f f e c t  E s t i m a t e  E r r o r  D F t V a l u e  P r  > ! t l  

I n t e r c e p t  5.5328 0.3865 10.9 14.32 <. 0001 
DEV-SKL 0.21 73 0.1505 9.69 1.44 0.1802 
MOUNTAIN 1.9192 0.5026 8.85 3.82 0.0042 
MEAN-SKL -0.1842 0.2348 10.5 -0.78 0.4501 

T y p e  3 T e s t s  o f  F i x e d  E f f e c t s  

Num Den 
E f f e c t  D F D F F  V a l u e  P r  > F 

DEV-SKL 1 9.69 2.09 0.1802 
MOUNTAIN 1 8.85 14.58 0.0042 
MEAN-SKL 1 10.5 0.62 0.4501 
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research interest: in those between-group ciitt'erences. Reintroduction of the group mean is unnecec- 
Gary if centering is done around the grand mean. 

The topic of centering in MLM is discussed and illustrated in I I I U C ~  greater detail by Kreft and 
DeLeeuw (1998). Raudenbush and Bryk (2001) provide useful insights into interpretation of MLM 
parameters under various types of centering. Snijders and Bosker ('1999) recommend that group- 
mean centering be used only when there is theory indicating that the DV is related not to the predic- 
tor but to the relative value of the predictor within a group. For example, if the DV is teacher's rating 
of student performance, the relative score within each group with the same teacher makes sense 
because teachers ma) use different rating criteria. 

15.6.3 Interactions 

Interactions of interest in MLM can be within a level or across levels. The small-sample example has 
only one predictor at each level. Had there been another level- 1 predictor, such as skier age, the inter- 
action between skill and age (if included in the model) would be a within-level interaction. However, 
if the interaction between skill and mountain is added to the small-sample example it is across lev- 
els, because skill is measured at level one and mountain at level two. 

Inclusion of interactions is straightforward in MLM and follows the conventions of multiple 
regression: continuous predictors from which interactions are formed are centered and the interac- 
tion term is added. The interaction is formed in the small sample data set from the centered level- l 
predictor, SKILL, and the level-2 predictor, MOUNTAIN (DEV-SKL*MOUNTAIN). This interac- 
tion tests whether the relationship between skill and speed (measured at the skier level) differs for the 
two mountains. Note that the interaction is added to the mode 1 equation after the main effects 
included in it. Changing the order of entry can affect parameter estimates for fixed effects even when 
Type 111 (default) sums of squares are used. 

Table 15.17 shows SAS syntax and selected output for a model which includes the skill by 
mountain interaction. The table of fixed effects shows that there is no statistically significant differ- 
ence in the relationship between skill and speed between the two mountains (p = 3121). (Note that 
this cross-level interaction is indeed predictive of the DV in the full NELS-88 data set from which 
this small sample was taken and relabeled.) 

15.6.4 Random and Fixed Intercepts and Slopes 

Multilevel modeling typically includes random intercepts because one of its goals is to deal with the 
increased Type I error rate that occurs in hierarchical data when groups differ in their average value 
of the DV. Random slopes, however, may or may not be appropriate in any given model. Inclusion of 
random slopes allows the relationships between the IV and DV to differ among groups. 

Figure 15.4 illustrates some idealized combinations of random and fixed parameters with three 
groups (level-2 units). Figure 15.4(a) shows a need to include random intercepts in a model because 
the groups cross the Y axis at different places, but no need to include random slopes, because all of 
them are the same. That is, the rates of change in Y with change in X (the predictor) are the same for 
all groups. Figure 15.4(b) shows a need for both random intercepts and random slopes; groups cross 
the Y axis at different places, and the changes in Y from low to high values of the predictor (X) are 
different. Figure 15.4(c) shows a rare situation: a need for random slopes but a fixed intercept. That 
is, all of the groups have the same mean, but they differ in their change in Y with change in X from 
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TABLE 15.17 SAS ;LIIXED Syntax and Output for 'resting the Cross-Level Interaction for the Data 
of Table 15.1 

1 p r o c  m i x e d  d a t a = S a s u s e r . M e a n s k l  c o v t e s t  me thod=ml ;  
\ c l a s s  RUN ; 

m o d e l  SPEED=DEV-SKL MOUNTAIN DEV-SKL*MOUNTAIN MEAN-SKL/ 
s o l u t i o n  d d f m = k e n w a r d r o g e r s ;  

r a n d o m  i n t e r c e p t  DEV-SKL / t y p e = u n  s u b j e c t  = RUN; 
r u n ;  

C o v a r i a n c e  P a r a m e t e r  E s t i m a t e s  

S t a n d a r d  Z 
Cov P a r m  S u b j e c t  E s t i m a t e  E r r o r  Va 1  u e  P r  Z 

UN(1, I )  . RUN 0.08068 0.04641 1.74 0.0411 
UN(2,I) RUN 0.07520 0.05546 1.36 0.1751 
UN(2,2) RUN 0.2061 0.1020 2.02 0.0216 
R e s i d u a l  0.4595 0.04202 10.93 <. 0001 

E f f e c t  

F i t  S t a t i s t i c s  

-2 L o g  L i  k e  1 i h o o d  576.3 
A I C  ( s m a l l e r  i s  b e t t e r )  594.3 
A I C C  ( s m a l l e r  i s  b e t t e r )  595.0 
B I C  ( s m a l l e r  i s  b e t t e r )  597.0 

N u l l  M o d e l  L i k e l i h o o d  R a t i o  T e s t  

S o l u t i o n  f o r  F i x e d  E f f e c t s  

S t a n d a r d  P r  > 
E s t i m a t e  E r r o r  DF t V a l u e  I t 1 

I n t e r c e p t  5.5366 0.3863 10 .9  14.33 <.0001 
DEV-SKL 0.2302 0.1587 9.83 1.45 0.1781 
MOUNTAIN 1.8765 0.5111 10 .3  3.67 0.0041 
DEV-SKLXMOUNTAIN -0.1186 0.4834 8.5 -0.25 0.8121 
MEAN-SKL -0.1839 0.2346 10.5 -0.78 0.4503 

T y p e  3 T e s t s  o f  F i x e d  E f f e c t s  

E f f e c t  
Num Den 

D F D F F V a l u e  P r  > F 

DEV-SKL 1 9 .83  2.10 0 .1781 
MOUNTAIN 1 10.3 13.48 0 .0041 
DEV-SKLkMOUNTAIN 1 8.5 0.06 0.8121 
MEAN-SKL 1 10.5 0.61 0.4503 
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0 1 2 3 4 
X-COVARIATE 

0 1 2 3 4 
X-COVARIATE 

0 1 2 3 4 
X-COVARIATE 

FIGURE 15.4 Regression lines for three groups varying in 
(a) intercepts but not slopes, (b) both intercepts and slopes, and 

(c) slopes but not intercepts. Generated in SYSTAT PLOT. 

low to high values. If both intercepts and slopes can be fixed, there would be a single regression line, 
because regression lines for all groups would be superimposed. Garden-variety (single-level) regres- 
sion is appropriate in such a case; there is no need for MLM. 

The test of random intercepts in the small-sample example asks whether speed differs among 
runs. It may be the case, however, that those differences disappear with the addition of predictors. If. 
for example, different runs were chosen on the basis of skiing skill, then variance in intercepts in 
speed could go away once skill is taken into account. Remember that in any (standard) regression 
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15.6.5 Statistical Inference 

Three issues arise regarding statistical inference in MLM. Is the model any good at all? Does mak- 
ing a model more complex make it any better'! What is the contribution of individual predictors4? 

15.6.5.1 Assessiltg Models 

Does a model predict the DV beyond what would be expected by chance, that is, does it do any bet- 
ter than an intercepts-only model? Is one model better than another? The same procedures are used 
to ask if the model i k  at all helpful and to ask whether adding predictors improves it. The familiar ;C2 

likelihood-ratio test (e.g., Equation 10.7) of a difference between models is used as long as models 
are nested (all of the effects of the simpler model are in the more complex model) and full ML (not 

L 
REML) methods are used to assess both models. 

There are several ways of expressing the test, depending on the information available in  
the program used. Table 15.1 8 shows x2 equations using terminology from each of the software 
packages. 

Degrees of freedom for the x2 equations of Table 15.18 are the difference in the number of 
parameters for the models being compared. Recall that SPSS provides the total number of parame- 
ters directly in the Model Dimension section of output (cf. Table 15.5). SAS presents the informrt- 
tion in the D i m e n s i o n s  section in the form of C o v a r i a n c e  P a r a m e t e r s  plus 
Columns i n  X (cf.,Table 15.4). 

The test to answer the question, "Does the model predict better than chance?', pits the intercept- 
only model of Table 15.5 (with a -2 Log Likelihood value of 693.468 and 3 df) against the full 
model of Table 15.1 1 (with a -2 Log Likelihood value of 570.318 and 7 df]. From Table 15.18: ! 

This value is clearly statistically significant with (7 - 3) = 4 df, so the full model leads to prediction 
that is significantly better than chance. SAS MIXED provides the Nu L 1 Mod e  L L i k e  L i h o  o  d 
R a  t i o  T e s t routinely for all models. 

To test for differences among nested models, chi-square tests are used to evaluate the conse- 
quences of makin  effects random. or to test a dummy-coded categorical variable as a single effect. 

TABLE 15.18 Equations for Comparing Models Using Various Software Packages 

Program Equation 1 

SAS MIXED x2= ( - 2  Log L i k e l i h ~ o d ) ~  - ( - 2  Log L i k e l i h o o d ) ,  

SPSS MIXED x2 = (-2 Log Likelih~od)~ - (-2 Log Likelihood), 

MLwiN x2 = (-2:bloglikelihood), - (-2*loglikelihood)~. 

HLM x2 = (Deviance) - (Deviance) 

SYSTAT MIXED 
REGRESSION x2 = 2 ( ~ o ~ ~ i k e l i h o o d ) ~ -  2(LogLikelih0od)~ 

Note: Subscripts = simpler model, c = more complex model 
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or for model building in  general (Section l j . h . 8 ) .  Also. Wald tests of individual predictors can he 
veritied. especially when suniples ;u.e small, by testing the difference in models with and without 
them. Note, however, that if the test is for a random effect (variance component) other than covari- 
ance, the obtained p value associated with the chi-square difference test should be divided by two in  
order to create a one-tailed test of the null hypothesis that variance is no grecrter than expected by 
chance (Berkhof & Snijders, 200 1). 

Non-nested models can be compared using the AIC that is produced by SAS and SPSS (Hox, 
2002). AIC can be calculated from the deviance (which is -2 times the log-likelihood) as: 

AIC = d + 2p  (15.18) 

where d is deviance andp is the number of estimated parameters. Although no statistical test is avail- 
able for differences in AIC between models, the model with a lower value of AIC is preferred. 

15.6.5.2 Tests of Individual Effects 

The programs reviewed provide standard errors for parameter estimates, whether random (variances 
and covariances' I) or fixed. Some also provide z values (parameter divided by standard error-Wald 
tests) for those parameters, and some add p (probability) values as well. These test the contribution 
to the equation of the predictors represented by the parameters. However, there are some difficulties 
with these tests. 

First, the standard errors are valid only for large samples, with no guidelines available as to 
how large is large enough. Therefore, it is worthwhile to verify the significance of a borderline pre- 
dictor using the model-comparison procedure of Section 15.6.5. I .  Second, Raudenbush and Bryk 
(2001) argue that, for fixed effects, the ratio should be interpreted as t (with df based on number of 
groups) rather than z. They also argue that the Wald test is not appropriate for variances produced by 
random effects (e.g., variability among groups) because the sampiing distributions of variances are 
skewed. Therefore, their HLM program provides chi-square tests of random effects. That is, the tests 
as to whether intercepts differ among groups is a chi-square test. 

When tests with and without individual predictors (Section 15.6.5.1) are used for random 
effects, recall that, except for covariances, one-tailed tests are appropriate. One wants to know if the 
predictor differs among higher level units (e.g., among level-'! groupsj more than expected by 
chance? Therefore. the p value for the chi-square difference test should be divided by two (Hox, 
2002). 

An example of this test applied to a fixed predictor is available by comparing results of Sec- 
tions 15.4.2 and 15.4.3, in which the level-2 IV, mountain, is added to a model that already has the 
level- l predictor, skill: 

With 1 df produced by adding the single level-2 predictor to the less complex model, this is clearly a 
statistically significant result. The model is improved by the addition of mountain as a predictor. 

"Recall that variar~ce.\ represent differences among groups in ilopes or intercepts. Covltriances are relationship$ between 
slopes and intercepts or between slopes for two predictors if there is more than one predictor considered random. 
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An application of the test to addition of a ranciorn predictor is available by comparing the mocl- 
21s of Sections 15.4.1 and 15.4.2. in  which SKILL is added to the intercepth-only model. C;x~ng the 
most common form of the test: 

This is clearly a significant effect with 6 - 3 = 3 df. Remember to divide the probability level by two 
because the predictor is specified to be random. 

15.6.6 Effect Size 

Recall that effect size (strength of association) is the ratio of systematic variance associated with a 
predictor or set of predictors to total variance. How much of the total variance is attributable to the 
model? I i 

Kreft and DeLeeuw (1998) point out several ambiguities in the ill-defined methods currently 
available for calculating effect size in MLM. Counterintuitively, the error variances on which these 
measures are based can increase when predictors are added to a model, so that there can be "negative 
effect sizes." Further, between-groups and within-groups estimates are confounded unless predictors 
are centered. 

Kreft and DeLeeuw (1998) provide some guidelines for calculation of r12, with the caution that 
these measures should only be applied to models with random intercepts and should not be applied 
to predictors with random s ~ o p e s . ' ~  Further, separate calculations are done for the within-groups 
(level- 1) and between-groups (level-2) portions of the MLM, because residual variances are defined 
differently for the two levels. 

i i 
In general, for fixed predictors an estimate of effect size is found by subtracting the residual 

variance with the predictor !the larger mode!! from the residl-!a! variance of the intercepts-on!y mode! 
(the smaller model), and dividing by the residual variance without the predictor13: 

s2  - s; 
1;12 = L (15.19) : I 

where s: is the residual variance of the intercepts-only model and s; is the residual variance of the 
larger model (note that the larger model generally has the smaller residual variance). There is as yet 
no convenient method for finding confidence intervals around these effect sizes. 

i i 
Refer to Kreft and DeLeeuw (1998, pp. 115-1 19) for a full discussion of the issues involved I 

l 
and definitions of these variances at the within-group and between-group levels of analysis for those 
relatively few instances when the measures can be applied and interpreted. 

'2~a lcu la t ions  for models with random slopes are much more difficult. Snijders and Bosker (1999. p. 105) point out that the 
required values are available in the HLM software. They also suggest that effect sizes calculated in Equation 15.1 9 do not d ~ f  
fer much if the values are taken from a run in which only the fixed part of the slopes is included. 

" ~ h ~ c  is different from p. the intraclass correlation. The intraclass correlat~on evaluates difference in variation between and 
within groups without consideration of predictors. The current effect size measure evaluates pred~cted variance-~mprovement 

in a model due to fixed predictors. 



15.6.7 Estimation Techniques and Convergence Problems 

As in all iterative procedures, a variety of estimation algorithms are availablc. with different pro- 
grams offering a somewhat different choice among them. Table 15.19 shows the methods relevant to 

I MLM in several programs. 
The most common methods are maximum likelihood and restricted maximum likelihood. 

Maximum likelihood (ML) is a good choice when nested models are to be compared (e.g., when an 
effect has several parameter estimates to evaluate as when a categorical variable is represented as a 
series of dichotomous dummy variables, or when a comparison with an intercepts-only model is 
desired). In the case of categorical variables, models are compared with and without the set of 
dummy-coded predictors representing the categorical variable of interest. Maximum likelihood is 

i the only method available in SYSTAT MIXED REGRESSION; the MLwiN form of ML is IGLS. 
1 Restricted maximum likelihood (REML) estimates the random components averaged over all 

possible values of fixed effects, as opposed to ML, which estimates random components as well as 
fixed level-2 coefficients by maximizing their joint likelihood (Raudenbush et al., 2000). The advan- 
tage of REML is that the estimates of variances and covariances (random coefficients) depend on 
interval rather than fixed estimates of fixed effects. The method is more realistic and less biased 
because it adjusts for uncertainty about the fixed effects. The disadvantage is that the chi-square dif- 
ference, likelihood-ratio test of Table 15.18, is available only for testing random coefficients. That is, 
REML cannot be used compare nested models, which differ in their fixed components. The two 
methods (ML and REML) produce very similar results when the number of level-2 units is large, but 
REML produces better estimates than ML when there are few level-2 units (Raudenbush & Bryk, 
200 1). The MLwiN form of REML is RIGLS. MLwiN also has some Bayesian modeling methods, 
fully discussed in the manual (Kasbash et al., 2000). 

TABLE 15.19 Estimation Methods Available in Software Programs 

Estimation Method Programs Providing Comments 

Maximum Likelihood SAS Can be used for testing pairs of nested models. 
(Wij SPSS 

HLM 
SYSTAT (only j 

Restricted Maximum SAS (default) Random components estimated averaging over all 
Likelihood (REML) SPSS (default) possible values of fixed effects. Recommended 

HLM (default) when not testing pairs of nested models. 

Iterative Generalized MLwiN (default) An iterative version of generalized least squares. 
Least Squares (IGLS) Produces results congruent with ML. 

Restrictive Generalized MLwiN 
Least Squares (RIGLS) 

Minimum Variance SAS 
Quadratic Unbiased 
Estimation (MIVQUEO) 

Leads to unbiased estimates of random 
parameters. Equivalent to REML with normal 
random variables. 

Recommended only for large data sets and when 
ML and REML fail to converge 



Con~ersrnce problem\ 'ire comrnon 111 MI,hl All term\ ot m~u~n iu rn  I~krl~hood c'\tlln,lt~on 
requlre Iterations. and e~ther the number ot Iterations to conbergenct: r n ~ j  be bery lar, ~e or convel- 
gence may never happen. What's more, different program3 vary widely in the default number of iter- 
ations allowed and how that number is increased. Usually lack of convergence occur5 simply 
because the model is bad. However, if samples are small even a good model may not produce con- 
vergence (or may require many, many iterations). Or there may be numerous random predictors with 
very small effects (e.g., the actual variance in slopes over groups may be negligible). A solution to 
this problem is to try changing random predictors to fixed. 

Another solution in S 4 S  is to use minimum variance quadratic unbiased estimation 
(M I V Q U  E 0). The procedure does not require the normality assumption and does not involve itera- 
tion. Actually, SAS uses MIVQUEO estimates as starting values for ML and REML. However, the 
procedure should be used with caution and only if there is difficulty in convergence with MI, and 
REML (Searle, Casella, & McCulloch, 1992; Swallow & Monahan, 1984). 

Hox (2002) points out that generalized least squares (GLS) estimates of coefficients are 
obtained from ML solutions when only one iteration is allowed. Thus, GLS estimates are the ML 
analog to MIVQUEO. These estimates are accurate when samples are very large. Although estimates 
produced through GLS are less efficient, and have inaccurate standard errors, they at least provide 
some information about the nature of the model, and may help diagnose failure to converge. 

15.6.8 Exploratory Model Building 

MLM often is conducted through a series of runs in which a model is built up. If there are numerous 
potential predictors, they are first screened through linear regression to eliminate some that are obvi- 
ously not contributing to prediction. Hox (2002) provides a helpful step-by-step exploratory strategy 
to select an MLM model. 

Analyze the simplest intercept-only model (the Null model) and examine the intraclass corre- 
lation (Section 15.6.1). 
Analyze a model with all level-1 predictors (e.g.. SKILL) fixed. Assess the contribution of 
each predictor and/or look at the differences in the models, using the techniques of Sections 
15.6.5.1 and 15.6.5.2. 
Assess models in which the slope for each predictor is permitted to be random one at a time; 
include predictors that were nonsignificant in step two because they may vary among level-2 
units, as was the case for SKILL in the small-sample example. If the intraclass correlation is 
sufficiently small and there are no significant random effects of predictors, a simple single- 
level regression analysis may be used. 
Test the difference between the model with all necessary random components and the model 
from the second step in which all predictors were fixed (see Section 15.6.5.1 for figuring the 
difference in the number of parameters to use as df). 
Add higher-level predictors and cross-level interactions. (Recall that ML rather than REML 
must be used to compare models unless comparisons are made only between random predictors.) 

Alternatively. a top-down approach may he used for building a model That is, you can start 
with the most complex model, which includes all possible random effects as well as higher-level pre- 
dictors and cross-level interactions, and then systematically eliminate nonsignificant effects. Indeed, 
this is probably a more efficient strategy if it works, but may not work because the most complex 
model often is likely to result in a failure to converge on a solution. 



I f  the overall sanlple is large enough to support it. explorator nlodcl-huilding procedure5 are 
best tested w~th cross-validation. Half the sample is used to build the model. and the other half for 
cross-validation. Otherwise, the results of the exploratory technique may be ~mduly intluenced by 
chance. Even with a model based on theory, the full model as hypothesized may well fail to provide 
a solution. These "exploratory" techniques may be used to tweak the model ~intil an acceptable solu- 
tion can be found. Such modification, of course, is reported in the results. 

15.7 Complete Example of MLM 

These data are from field studies of the effects of nighttime aircraft noise in the vicinity of two airports 
and one control site. Airports were Castle Air Force Base in Merced, CA (site I ), neighborhoods in the 
Los Angeles area that were not exposed to nighttime aircraft noise but were exposed to high levels of 
road traffic noise (site 2), and LAX (site 3). For the current analysis, 50 participants were selected in 
24 households with at least two participants each providing data for at least 3 consecutive nights. Inte- 
rior noise levels (NIGHTLEQ) were monitored between 10:00 PM and 8:00 AM. Each test participant 
used a palmtop computer at bedside to answer an evening and morning questionnaire, including items 
about time taken to fall asleep the previous night (LATENCY) and annoyance by aircraft noise the 
previous night (ANNOY). Latency was measured on a scale of 1 to 5 (1 = less than 10 minutes, 2 = 
1 0-20 minutes, 3 = 20-30 minutes, 4 = 30-60 minutes, 5 = more than an hour). 

Annoyance served as the DV for the MLM analysis, with nights as a repeated-measures first- 
level unit. ANNOY was measured on a scale of 0 to 5 (0 = not at all annoyed to 5 = extremely 
annoyed), First-level predictors were LATENCY and NIGHTLEQ. Participants served as the 
second-level unit, with AGE as the predictor. Households served as the third-level unit with SITE1 
(Castle AFB vs. other sites) and SITE2 (control neighborhoods vs. other sites) as dummy-variable 
- - - A : , . & - - -  t i iGci i; i i i i : , ,  TL..- iiii:, ,  W C  ,,ciL.i: .. ci b i i i i i j i i C A  , - - - - I - . ,  .I i i i i C c - i c v c i  ---- I -..- I -<. :vxv:i~h obse;ved predictors at each icvei 2nd no 
hypothesized interactions. Appendix B provides additional information about the Fidell, Pearsons, 
Tabachnick. Howe. Silvati. and Barber (1995) research. Data files are MLM.". 

Figure 15.5 shows the layout for the data to be analyzed in this example. 

15.7.1 Evaluation of Assumptions 

15.7.1.1 Sample Sizes, Missing Data, and Distributions 

There were 747 nights of data collected from 50 participants (only those participants providing at 
least 3 nights of data were included in this analysis) residing in 24 households (only households with 
at least 2 participants were included). This is not a very large sample for MLM, so that convergence 
difficulties may be anticipated, particularly with this relatively large number of predictors. The exis- 
tence of only 24 households (and few participants per household) is particularly problematic. 

First-level variables were ANNOY (the DV), NIGHTLEQ, and LATENCY. Two participants 
each failed to provide latency values for one night; missing values were replaced with the average 
latency for that participant (1.22 for SUBNO = 219 and 2.5 for SUBNO = 323). SPSS FREQUEN- 
CIES provided descriptive statistics and histograms 5hown in Table 15.20. 

All three variables have extreme positive skewness. LATENCY and NIGHTLEQ are consid- 
erably improved with logarithmic transf~rmations, however, modeling with and without transferma- 
tion of the variables produces results that do not differ substantively. Therefore, the decision was 
made to model untransformed predictors i n  the interest of interpretability. Various transformations of 
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Level 3 Household 1 . . . . . . Household 44 
Between subjects 
(Predictor = s~te 1, 
site 2) 

J 
Ledel 2 Participant 201 Participant 202 Participant 41 9 Participant 420 

Level 1 Night . . . Night Night . . . Night Night . . . Night Night . . . Night 
Repeated measures 10 30 2 30 2 1 27 5 28 
(Predictors = latency, 
nightleq) 

FIGURE 15.5 Layout of data in complete example. 

TABLE 15.20 Descriptive Statistics for First-level Variables Using SPSS Frequencies 

FREQUENCIES 
VARIABLES=nightleq latency annoy /FORMAT=NOTABLE 
/STbTISTICS=.sTDDE?,/ MINlhAbM MAXiMbM SKE!J$NC,SS SESKEW KURTGSIS SEKURT 
/HISTOGRAM NORMAL 
/ORDER= ANALYSIS. 

Frequencies 

Histogram 

Statistics 

N Valid 
Missing 

Mean 
Std. Deviation 
Skewness 
Std. Error of Skewness 
Kurtosis 
Std. Error of Kurtosis 
Minimum 
Maximum 

NIGHTLEQ 

747 
0 

74.0855 
7.73557 

1.090 
.089 

1.572 
179 

LATENCY 

745 
2 

1.7651 
1.00796 

1.447 
.090 

1.705 
179 

ANNOY 

747 
0 

1.27 
1.341 
.829 
.089 

-.218 
,179 

60.60 1 1.00 
111.50 1 5.00 

0 
5 



TABLE 15.20 Continued 

Mean = 1.27 
Std. Dev. = 1.341 

1 N = 747 

annoy 

latencv 

Mean = 1.7651 
Std. Dev. = 1.00796 
N = 745 

latency 

nightleq 

$ 60 
C 

3 u 
m 
LC 40 

20 Mean = 74.0855 
Std. Dev. = 7.73557 
N = 747 

0 
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ANNOY increase the negatice kurtosis to unacceptable levels. so the decision i s  ~natir to Ieacr the 
DV untransforn~e:! as well. 

AGE, the only second-level variable. is acceptably distributed, as seen in Table 15.3- 1 ,  using a 
reduced data set in which there is one record per participant (as differentiated from the major data set 
which has one record for each participant-night combination). 

Frequency distributions are shown in Table 15.22 for the two dichotomous third-level predic- 
tors, SITE1 and SITE2, using a further reduced data set in which there is one record'per household. 
Distributions are not optimal, but there are more than 10% of the households in the least frequent site 
(non-airport neighborhoods). 

15.7.1.2 Outliers 

At least one univariate outlier with extremely high noise level was noted in the transformed data 
(L-LEQ, z = 4.19, not shown). A check of multivariate outliers through SPSS REGRESSION (Table 
15.23) shows three extreme cases (sequence numbers 73, 74, and 75 from participant #205) to be 
beyond the critical X 2  of 13.8 15 for 2 df at a = .OO 1. 

Examination of the original data revealed that several of the noise levels for participant #205 
were highly discrepant from those of the housemate (participant #206) and were probably recorded 
erroneously. Thus, noise values for nights 17 through 23 for participant #205 were replaced with those 
recorded for participant #206. This produced acceptable Mahalanobis distance values for all cases. 

TABLE 15.21 Descriptive Statistics for Second-level Predictor through SPSS Frequencies 1 
1 

FREQUENCIES 
VARIABLES=age /FORMAT=NOTABLE 
/STATISTICS=STDDEV MAXIMUM MEAN SKEWNESS SESKEW KURTOSIS SEKURT 
/HISTGGRAM NORivlAi 
/ORDER= ANALYSIS. 

Frequencies 
Histogram 

Statistics 

Mean = 48.060 
Std. Dev. = 17.5492 
N = 50 

L 

AGE 

N Valid 
Missing 

Mean 
Std. Deviation 
Skewness 
Std. Error of 

Skewness 
Kurtosis 
Std. Error of 

Kurtosis 
Minimum 
Maximum 

50 
0 

48.060 
17.549 

.033 

.337 
-1.380 

,662 
19.0 
78.0 
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T4RLF: 15.22 Frecluenc~ Distributions for the Third-lehel Predictors through SPSS Freqi~encie\ 

1 FREQUENCIES 
1 VARIABLES=sitel site2 

/STATISTICS=STDDEV MEAN SKEWNESS SESKEW KURTOSIS SEKURT 
/ORDER= ANALYSIS . 

Frequencies 

Frequency Table 

Table 15.21 reveals no univariate outliers for the single second-level predictor, AGE. Splits 
were not too highly discrepant for the third-level predictors (SITE1 and SITE2, dichotomous vari- 
ab!es) s~ that there were no outliers at that !eve!. 

Cumulative 
Percent 

66.7 Valid 0 
1 
Total 

15.7.1.3 Multicollinearity and Singularity 

Cumulative 
Percent 

87.5 
100.0 

Valid 0 
1 
Total 

There are no interactions to be modeled, so no problems concerning collinearity are anticipated. A 
multiple regression run through SPSS REGRESSION that included the five predictors from all lev- 
els (Table 15.24) revealed no cause for concern about collinearity, despite the rather high condition 
index for the 6th dimension. 

Frequency 

16 

15.7. I .4 Independence of Errors: Intraclass Correlations 

Frequency 

2 1 
3 

24 

Intraclass correlation is evaluated by running a three-level (nights, subjects, and households) model 
through SPSS, with random intercepts but no predictors. Table 15.25 shows the syntax and relevant 
output. Note that SPSS changes the Covariance Structure from COVTYP(UN) to Identity when- 
ever there is a random effect with only one level (i.e., I n  t e r c e p  t) .  

The null model has four parameters, one each for the fixed intercept (grand mean), variability 
in  participant intercepts, variability in household intercepts, and residual variance. 

Percent 

66.7 

Valid Percent 

66.7 

Percent 

87.5 
12.5 

100.0 

Valid Percent 

87.5 
12.5 

100.0 
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TABLE 15.23 Syntax and Selected SPSS REGRESSION Output for 
Multivariate Outliers for I.evel 1 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL 
/CRITERIA=PIN(.05) POUT(.I 0) 
/NOORIGIN 
/DEPENDENT annoy 
/METHOD=ENTER nightleq latency 
/RESIDUALS=OUTLIERS(MAHAL). 

Outlier Statisticsa 

aDependent Variable: annoy 

I 

Mahal. Distance 1 
2 
3 
4 
5 
6 
6 
8 
9 

10 

Applying Equation 15.15 for the second level: 

With about 16% of the variability in annoyance associated with individual differences (differences 
among participants), an MLM is advisable. 

Applying Equation 15.16 for the third level: 

Case Number 

75 
74 
73 
72 

665 
21 2 
71 

554 
2 1 

645 

With about 23% of the variance in annoyance associated with the third level of the hierarchy (differ- 
ences among households) a three-level MLM is advisable. 

Statistic 

23.408 
21.026 
16.494 
13.491 
13.476 
12.354 
1 1.834 
1 1.768 
1 1.648 
11.557 

15.7.2 Multilevel Modeling 

A three-level model is hypothesized with predictors at all three levels (noise, time to fall asleep, age, 
and site). Recall that no interactions are hypothesized, either within or between levels. Only nightleq 
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TABI,E 15.24 Synta\ and Selected SPSS REGRESSION Output for 3lulticollincarit? 

REGRESSION 
/MISSING LISTWISE 
/STATISTICS COEFF OUTS R ANOVA COLLIN TOL 
/CRlTERIA=PIN(.05) POUT(.10) 
INOORIGIN 
IDEPENDENT'annoy 
/METHOD=EI\ITER age nightleq latency site1 site2 . 

Regression 
Coefficientsa 

Model 

1 (Constant) 
age 
nightleq 
latency 
site1 
site2 

aDependent Variable: annoy 

Collinearity Diagnosticsa 

Collinearity 
Statistics 

I 
Unstandardized 

Coefficients 

Tolerance I VIF 

Standardized 
Coefficients 

Beta 

.I51 

.I93 

.I44 
-.066 
-.I11 

B 

-2.110 
.012 
.035 
.I92 

-.I83 
-.431 

Model Dimension 

Std. 
Error 

.517 

.003 

.007 

.047 

.I06 

.I59 

t 

-4.079 
3.903 
5.097 
4.104 

-1.733 
-2.713 

aDependent Variable: annoy 

Sig. 

.OOO 

.OOO 

.OOO 

.OOO 

.084 

.007 

I ! \Jariance Proportions 

is predicted to have a random slope; individual differences are expected in the relationship between 
noise and annoyance. 

A model in which noise was treated as random failed to converge, even when number of itera- 
tions was increase to 500 and probability of convergence was relaxed to .OO 1 .  Therefore, the decision 
was made to treat all predictors as fixed effects. Table 15.26 shows syntax and output for the full 
three-level model. 

The full model has nine parameters. the four noted in Table 15.25 for the random effects of 
intercepts and residual as well as the fixed effect of the intercept, plus one parameter each for the five 
fixed predictors. 

Eigen- Condition 
value Index 

4.281 
1.021 
.447 
193  
.055 
.004 

(Constant) 

.OO 

.OO 

.OO 

.OO 

.03 

.97 

1.000 
2.048 
3.096 
4.71 3 
8.822 

32.006 

latency 

.01 

.OO 

.02 

.93 

.04 

.OO 

age 

.OO 

.OO 

.02 

.06 

.91 

.O1 

site1 

.01 

.ll 

.77 

.OO 

.04 

.06 

night- 
leq 

.OO 

.OO 

.00 

.OO 

.03 

.96 

site2 

.OO 

.45 

.25 

.04 

.20 

.05 
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For random effects. there was qignific~lnt \.:triability in annoyance among p~uticipants with111 
. - 

households (;? = .(305/1 - .0015) L::, \LC!! AS i g i l i t i i ~ i l t  ~ariabiliiy in annuyance arnung l-lousehoid~ 
(17 = .048/2 = .024). Unfortunately. there also M;as significant residual (unexplained) variance over 
nights after taking into account all effects in this hierarchical model 0, < .001). 

For fixed effects, nighttime noise level ( p  < .001) and time to fall asleep ( p  = .010) signifi- 
cantly predicted annoyance when averaged over participants and households. The parameter esti- 
mates show that annoyance is greater when nighttime noise was louder; for each leq unit increase in 

TABLE 15.25 Three-level Intercepts-only Model through SPSS MIXED (Syntax and Selected Output) 

MIXED 
annoy BY site1 site2 WITH nightleq latency 
/CRITERIA = CIN(95) MXITER(100) MXSTEP(5) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.000001, ABSOLUTE) 
/FIXED = I SSTYPE(3) 
/METHOD = ML 
/PRINT = SOLUTION TESTCOV 
/RANDOM INTERCEPT / SUBJECT(subn0) COVTYPE(UN) 
/RANDOM INTERCEPT ( SUBJECT(house) COVTY PE(UN) . 

Model Dimensiona 

aDependent Variable: annw. 

lnformation Criteriaa 

Fixed Effects Intercept 

P,an.dom Effects !nte:c-nt -r * 

Intercept 

Residual 

Total 

The information criteria are displayed in 
smaller-is-better forms. 

aDependent Variable: annoy. 

Number 
of Levels 

1 

-2 Log Likelihood 

Akraike's Information 
Criterion (AIC) 

Hurvich and Tsai's 
Criterion (AICC) 

Bozdogan's Criterion 
(CAIC) 

Schwarz's Bayesian 
Criterion (BIC) 

2307.764 

231 5.764 

2315.818 

2338.228 

2334.228 

Covariance 
Structure 

- identity 1 subno 

1 Identity 1 1 house 

I I 1 1  

Number of 
Parameters 

1 

3 

Subject 
Variables 

4 
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T.4RI.E 15.25 Continued 
- - 

Covariance Parameters 

Estimates of Covariance Parametersa 

aDependent Variable: annoy. 

noise level, annoyance increased by about 0.04 on a scale of 0 to 5. Annoyance also increased on 

Parameter 

Residual 
Intercept 
[subject Variance 
tntercept 
[subject Variance 

nights when the time to fall asleep was greater. Each one-unit increment in time to fall asleep 
increased annoyance by about 0.12. No statistically significant effects were found for age or either 
of the dummy variables for site. 

Comparison between this model and the intercepts-only model of Table 15.25 shows that 
annoyance is predicted at better-than-chance level as a result of the set of two predictors. Following 
the equation in Table 15.18 

Estimate 

1.1 20963 

.2860726 

.4114774 

Std. 
Error 

.0599997 

.I044476 

.I789685 

A significant difference with (9 - 4) = 5 df at a = .05. 
A final, parsimonious, model eliminates the three nonsignificant effects (age and the two 

dummy-coded site variables). Table 15.27 shows the final model. 
Comparison between this model and the full model of Table 15.26 shows that prediction of 

annoyance does not suffer when the three predictors are dropped. Following the equation in Table 15.18 

a nonsignificant difference with (9 - 6) = 3 df at a = .05. Table 15.28 compares the three models. 

Wald 
Z 

18.683 

2.739 

2.299 

TABLE 15.26 Three-Level Model of Annoyance as Predicted by Noise Level, Time to Fall Asleep, 
Age, and Site (SPSS MIXED Syntax and Selected Output) 

MIXED 
annoy BY site1 site2 WITH age nightleq latency 
/CRITERIA = CIN(95) MXITER(500) MXSTEP(l0) SCORING(1) 
SINGULAR(0.000000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) 
PCONVERGE(0.001, ABSOLUTE) 
/FIXED = age nightleq latency site1 site2 I SSTYPE(3) 
/METHOD = ML 
!PRINT = SOLUTION TESTCOV 
/RANDOM = INTERCEPT ( SUBJECT(subn0 ) COVTYPE(UN) 
/RANDOM = INTERCEPT / SUBJECT(house ) COVTYPE(UN) 

Sig. 

.OOO 

.006 

.021 

95% Confidence Interval 

Lower 
Bound 

1.0093239 

.I398605 

.I754378 

Upper 
Bound 

1.2449502 

.5851367 

.9650918 
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TAR1,E 15.26 Continued 

Mixed Model Analysis 

Model Dimensiona 

Wependent Variable: annoy. 

lnformation Criteriaa 

Fixed Intercept 
Effects age' 

nightleq 

latency 

site1 

site2 , 

Random Intercept 

Effects lntercept 

Residual 

Total 

The information criteria are displayed in 
smaller-is-better forms. -- 
aDependent Variable: annoy 

Fixed Effects 

Type Ill Tests of Fixed Effectsa 

Number of 
Levels 

1 

1 

1 

1 

2 

2 

1 

1 

10 

L 

-2 Log Likelihood 

Akraike's Information Criterion (AIC) 

Huryich 2nd Tsai's Criteiicfi (A(CC) 

Bozdogan's Criterion (CAIC) 

Schwarz's Bayesian Criterion (BIC) 

2260.286 

2278.286 

2278.530 

2328.830 

281 9.830 

aDependent Variable: annoy. 

Covariance 
Structure 

Identity 

Identity 

Source 

Intercept 
age 
nightleq 
latency 
site1 
site2 

Number of 
Parameters 

1 

1 

1 

1 

1 

1 

1 

1 

1 

9 

Numerator df 

1 
1 
1 
1 
1 
1 

Subject 
Variables 

- 

subno 

house 

Denominator df 

163.137 
36.847 

718.546 
744.681 
22.899 
24.387 

F 

16.794 
.671 

37.464 
6.627 

.564 
1.223 

Sig. 

.OOO 

.418 

.OOO 
,010 
,460 
.280 



TABLE 15.26 Continued 
p-- -- 

Estimates of Fixed Effectsa 

aThis parameter is set to zero because it is redundant. 

bDependent Variable: annoy. 

Covariance Parameters 

Estimates of Covariance Parametersa 

Sig. 

.OOO 

.418 

.OOO 

.010 

.460 

,280 

Parameter Estimate 

Intercept -3.1 95 
age .007 
nightleq .043 
latency .I22 
[sitel =0] .249 
[site1=1] Oa 

aDependent Variable: annoy. 

d f 

77.21 0 
36.84.7 

71 8 3 6  
744.681 
22.899 

Std. Error 

.786i 

.0091 

.007' 

.047' 

.33E! 
Cl 

Estim~;;~ 1 Std Error Parameter 

Residual '1.049 ,056 
Intercept [subject Variance . I  14 
Intercept [subject Variance .332 .I68 

t 

-4.063 
.819 

6.121 
2.574 

.751 

95% Confidence Interval 

1.106 [site2=0] 569 
[site2=l] Oa 

Lower Bound 

-4.761 
-.011 

.029 

.029 
-.437 

-.492 

Wald Z 

18.661 
2.780 
1.974 

51; 24.387 

Upper Bound 

-1.630 
.025 
,057 
.214 
,935 

1.630 

Sig. 

.OOO 

.005 

.048 

95% Confidence Interval 

Lower Bound 

.944 

.I57 

.I23 ' 

- 

Upper Bound 

1.165 
.642 
,895 



Table 15.19 displays the results in a format for journal reporting. 
Table 15.30 is a checklist of items to consider in MLM. An example of a Results section in 

journal format appears after Table 15.30. i 
TABLE 15.27 Final Three-Level Model of Annoyance as Predicted by Noise Level and Time to Fall 

I 

Asleep (SPSS MIXED Syntax and Selected Output) 

MIXED 
annoy BY site1 site2 WITH age nightleq latency j 
/CRITERIA = CIN(95) MXITER(500) MXSTEP(10) SCORING(1) i 
SINGULAR(Q.OOQ000000001) HCONVERGE(0, ABSOLUTE) LCONVERGE(0, ABSOLUTE) t 

PCONVERGE(0.001, ABSOLUTE) 
/FIXED = nightleq latency I SSTYPE(3) 
/METHOD = ML 
/PRINT = SOLUTION TESTCOV 
/RANDOM = INTERCEPT ( SUBJECT(subn0 ) COVTY PE(UN) 
/RANDOM = INTERCEPT I SUBJECT(house ) COVTYPE(UN). i 

Mixed Model Analysis 

Model Dimensiona 

Wependent Variable: annoy. 

lnformation Criteriaa 

Fixed Effects Intercept 

Random Effects nightleq 

latency 

Intercept 

Intercept 

Residiiai 

Total 

The information criteria are displayed in smaller-is- 
better forms. 

Number of 
Parameters 

1 

1 

1 

1 

1 

1 

6 

-2 Log Likelihood 

Akraike's Information Criterion (AIC) 

Hurvich and Tsai's Criterion (AICC) 

Bozdogan's Criterion (CAIC) 

Schwarz's Bayesian Criterion (BIC) 
2 

aDependent Variable: annoy. 

Number 
of Levels 

1 

Subject 
Variables 

subno 

house 

2263.41 4 

2275.41 4 

2275.527 

2309.1 1 0 

2303.1 10 

Covariance 
Structure 

1 I 
Identity 

1 Identity I 
5 



TABLE 15.27 Continued 
---. 

Fixed Effects 

Type Ill Tests of Fixed Effectsa 

aDependent Variable: annoy. 

Source Numerator df 

Intercept 1 
nightleq 1 
latency t- 1 

Covariance Parameters 

Denominator df 

532.093 
71 0.846 
743.913 

Estimates of Fixed Effectsa 

Estimates of Covariance Parametersa 

95% Confidence Interval 
I I 

F 

16.048 
38.674 
5.990 

I Parameter Estimate I Std. Error 1 Wald Z I Sig. I Lower Bound I Upper Bound I 

Sig. - 
.OOO 
.OOO 
.015 

Wependent Variable: annoy. 

Parameter Estimate 

Intercept -2.206 
nightleq .044 
latency .I16 

950h Confidence Interval 

I Residual 
lntercept [subject Variance 
lntercept [subject Variance 

d f 

532.093 
71 0.846 
743.!313 

Std. Error 

.5!5 1 

.007 

.047 

Lower Bound 

-3.288 
,030 
.023 

aDependent Variable: annoy. 
P 
4 

Upper Bound 

-1.124 
,058 
,208 

1 

t 

-4.006 
6.21 9 
2.448 

Sig. 

.OOO 

.OOO 

.015 
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TABLE 15.28 Comparison of hIultilevel AIodels for Annoyance Due 
to Noise 

Model -2 Log Likelihood df 2 Difference Test 

Intercepts only 2307.764 4 
Full 2260.286 9 M 1 - M2 = 47.48": 
Final 2254.000 6 M3-M2 =3.13 

TABLE 15.29 Results of Final Three-Level Model of Annoyance Due to Nighttime Noise 
Exposure (Excerpted from Table 15.27) 

Random effect at Level 3 (Household Differences) 

95% Confidence 
Interval 

Parameter Standard Wald P 
Effect Estimate Error Z (1-sided) Lower upper 

Intercepts 0.427 0.190 2.25 .013 0.179 0.622 

Random effect at Level 2 (Individual Differences) 

95% Confidence 
Interval 

Parameter Standard Wald P 
Effect Estimate Error Z (1-sided) Lower Uppe 1- 

Intercepts 0.309 0.110 2.80 .003 0.153 0.622 

Random effect at Level 1 (Nights) 

95 % Confidence 
Interval 

Parameter Standard Wald P 
Effect Estimate Error Z (1-sided) Lower upper 

Residual 1.049 0.056 18.66 <.001 0.944 1.165 

Fixed effects (Averaged over Participants and Households) 

95 % Confidence 
Interval 

Parameter Standard Approx P 
Effect Estimate Error t ratio df (2-sided) Lower Upper 

Intercepts -2.206 0.55 1 -4.01 532 <.001 -3.288 -1.124 
Noise level 0.044 0.007 6.22 71 1 <.001 0.030 0.058 
Latency 0.1 16 0.047 2.45 744 .008 0.023 0.208 
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T.IBLE 15.30 Checklist for hlultilevel hlodeling 

I. Issues 
1 a. Adequacy of sample sizes and missing data 

b. Normality of distributions at each level 

c. Absence of outliers at each level 

d. Absence of multicollinearity and singularity 

e. Independence of errors (intraclass correlation) 

2. Major analyses 

a. Analysis with first-level predictors 

b. Analysis with second-level predictors and significant 
first-level predictors, etc. 

c. Determination of final model 

(1) Parameter estimates for final model 

(2) Comparison of final with an intercepts-only 
model 

3. Additional analyses 

a. Adding main effects andlor interactions 

b. Additional exploratory analyses 

-- -- 

Results 

Hypothesized Model 

A three-level hierarchical model assessed the effects of 

nighttime noise exposure, latency to fall asleep, age, and loca- 

tion on annoyance due to nighttime aircraft noise. It was expected 

that annoyance would be positively related to noise exposure, 

latency, age, and proximity to an Air Force base. 

First-level units were nights in which respondents partici- 

pated in the study, with respondents limited to those who pro- 

vided at least three nights of data, resulting in a total of 747 

nights for analysis. Second-level units were the 50 participants 

residing in the 24 households, comprising the third-level units. 

Only households with at least two participants were selected for 
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analysis. Multilevel modeling was implemented through SPSS MIXED 

MODELS, Version 13. 

Hierarchical models are those in which data collected at dif- 

ferent levels of analysis (e.g., people, households, sites) may be 

studied without violating assumptions of independence in linear 

multiple regression. For example, the fact that individuals respond 

together and have the same exposure within a household means that 

responses from individuals within each household are not indepen- 

dent of one anqther. Multilevel modeling takes account of these 

dependencies by estimating variance associated with group (e.g., 

household) differences in average response (intercepts) and group 

differences in associations (slopes) between predictors and W s  

(e.g., group differences in the relationship between annoyance and 

noise). This is accomplished by declaring intercepts and/or slopes 

to be random effects. Figure 15.5 shows the layout of the design. 

In the hypothesized model, individuals and households are 

declar-3 r z q d ~ ~  effects t- s==ac= UVYIYY I~SF' i-lii -1-' 1 '-- i y  Giiiiiii! ----- iiiiiilriiiiidis '-"'--' '---' 

within households as well as variability among households. Also, 

one of the predictors, noise level, was declared a random 

effect, reflecting the hypothesis that there would be individual 

differences in the association between noise level and 

annoyance. 

Assumptions 

One missing latency value each for two participants was 

replaced by the mean for that participant. Extreme positive skew- 

ness was noted for latency and noise level, but modeling with log- 

arithmically transformed predictors did not substantively change 

the results. Therefore the untransfomed values were used. Trans- 

formation of annoyance produced unacceptable values of kurtosis, 

so that Dl7 also remained untransformed. Distributions for second- 



blultile~ei Linear Modeling 85 1 

and third-level predictors were acceptable. There were no out- 

liers ( p  < .001) once presumably erroneous noise levels were 

replaced by those recorded for the housemate. The intraclass cor- 

relations of .16 and .23 for second and third levels, respec- 

tively, indicate the value of including participants as a random 

second-level unit and households as a random third-level unit. 

Mu1 ti1 eve1 Modeling 

One predictor, noise level, initially was entered as a random 

effect, based on the hypothesis that there would be individual 

differences in the relationship between noise and annoyance. That 

model failed to converge, so that the full model considers all of 

the predictors to be fixed effects. 

The full model as a whole was significantly better than one 

in which only the intercepts were included (i.e., differences 

among individual and households), x2(6, N = 747) = 2307.764 - 
2260.286 = 47.48, p < .001. Thus, the predictors as a group 

improved =he model beyond ti-mt prod-uced -DDyy coilSi~eriIig -"--ari&il- 

ity in individuals and households. 

Two of the five predictors were significantly associated with 

annoyance, but age and the two indicators of site were not. There- 

fore, a final model was proposed in which only two fixed predic- 

tors were evaluated: nighttime noise level and time to fall 

asleep. This model did not differ significantly from the full 

model, x2 (3, N = 747) = 2263.414 - 2260.286 = 3.13, p > .05. Table 

15.28 summarizes the three models evaluated. 

Table 15.29 shows that there are individual and household 

differences in intercepts (average annoyance varies for house- 

holds and participants within households). Also noted is the sta- 
I 

1 tistically significant residual, indicating room to improve the 

model . 



852 C H A P T E R  1 s  

On average, annoyance is positively related to nighttime 

noise level; for each leq unit increase in noise level, annoyance 

increased by about 0.04 on a scale of 0 to 5. Annoyance also 

increased on nights when the time to fall asleep was greater. Each 

10 minute increment in time to fall asleep increased annoyance by 

about 0.12. 

Thus, although annoyance differs among individuals and house- 

holds, there is increased annoyance on average on nights when 

noise is louder and when it takes longer to fall asleep. No sta- 

tistically significant associations were found between age and 

annoyance, nor between site and annoyance. That is, there is no 

evidence that annoyance due to nighttime noise increases with age, 

nor is there evidence that annoyance is greater in proximity to an 

Air Force base, after adjusting for the effect of the noise level 

itself. 

15.8 Comparison of Programs 

The programs discussed in this chapter vary widely in the kinds of models they analyze and even in 
the results of analyses of the same models. These programs have far less in common than those used 
for other statistical techniques. SAS MIXED is part c?f the S F S  package and is ased fs: m&yy ana!y- 
ses other than MLM. Indeed, at the time of writing this chapter, neither the SAS manuals nor special 
SAS publications directly address the issue of MLM. SPSS MIXED MODEL is part of the SPSS 
package starting with Version 11 and has been substantially revised since Version 1 1.5. MLwiN and 
HLM are stand-alone programs for MLM. SYSTAT MIXED REGRESSION is part of the SYSTAT 
package starting with Version 10. Table 15.31 compares features of these programs. 

15.8.1 SAS System 

The program in the SAS system that handles multilevel modeling is PROC MIXED, although it is 
not specifically designed for that purpose. The program is so flexible, however, that judicious use of 
its RANDOM feature and nesting specifications can be applied to a wide variety of MLM models, 
including those with more than two levels (Suzuki & Sheu, 1999). However, it is probably a good 
idea to limit the use of PROC MIXED to relatively simple MLM models until there is more infor- 
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TABLE 15.31 Comparison of Programs for Prediction of Survival 'Time from Covariates 

SY STAT 
S AS SPSS MIXED 

MIXED MIXED HLM MLwiN REGRESSION Feature 

Input 

Multiple estimation techniques 

Handles model? with more than 2 
levels 

Specify random or fixed slopes 

Accepts files from other software 
packages 

Can be used for data simulation 

Syntax mode available for input 

Requires explicit column of data for 
constant 

Specify categorical variables and 
interactions without recode 

Specify nonnormal response 
variables andlor nonlinear model 

Specify Bayesian modeling 

Bootstrapping 

Special specification for cross- 
classified models (overlapping 
groupings) 

Specify multiple membership models 
(lower-level units belonging to 
more than one higher-level unit) 

Specify latent variables 

Yes Yes Yes Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes Yes Yes Yes 

No" 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

NoC 

No 

Yes Yes 

Yes 

Yes 

Yes 

No 

Specify known variance and 
covariance values Yes Yes 

Specify structure of variance- 
covariance matrix Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No Specify design weights 

Test specific hypotheses in a single 
run 

Test and deal with failure of level- l 
homogeneity of variance 

Yes Yes Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

Yes 

Delete intercept from level-l model 

Constrain effects to be equal 

Specify fixed intercept 

Specify latent variables free of 
measurement error No 

(continued) 

Yes 



TABLE 15.31 Continued 

SYSTAT 
MIXED 

MLwiN REGRESSION 
S AS SPSS 

Feature MIXED MIXED HLhI 

Input (continued) 

Special procedure for single-level 
multiple regression analysis with 
missing data ' Yes 

Procedure to deal with multiply- 
imputed data Yes 

Control maximum number of 
iterations 

Additional controls on iterations 

Control number of units for OLS 
equations 

Determine convergence criterion 
and/or tolerance 

Alternatives for correcting 
unacceptable start values 

Alternative approaches for repeated- 
measures analysis 

Data restructuring for repeated 
measures 

Q~t"::t r-= 

Parameter estimates and standard 
errors 

Parameter estimates with robust 
standard errors 

Log-likelihood, -2*log-likelihood 
value, and/or deviance 

Other fit statistics 

t or z ratio or X2 for effects 

df for effects 

Probability value for tests of effects 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes Yes Yes Yes Yes 

Yes 

Yes Yes Yes 

Yes Yes 

Yes Yes Yes Yes Yes 

Yes 

Yes 

Yes 

Yes 

yesd 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

No 

Yes 

No 

Yes 

Printed confidence limits for fixed 
and random effects 

Number of estimated parameters 

Yes 

Yes 

No 

Yes 

Summary of model in equation 
format Yes Yes 

Reliability for least-squares 
estimates of level-! coefficients 
across set of level-2 units No No Yes No No 



r \ . iu l t~ levr l  L ~ n e a r  hlodel~n? 855 

TABLE 15.31 Continued 

Feature 

SY STAT 
S AS SPSS MIXED 

MIXED MIXED HLM MLwiN REGRESSION 

Output (continued) 

~u l l l inde~endence  model test Yes No No No No 

Level- 1 intercepts and slopes and 
summary over level- 1 units No No Yes No No 

Results for an OLS analysis and 
with robust SEs No No Yes No No 

Prints start values andor  progress of 
iterations Yes No Yes Noe Yes 

Prints variance-covariance (andor 
correlation) matrix of parameters Yes Yes Yes No Yes 

Residual variance-covariance 
matrices No Yes No No No 

Intraclass (intracluster) correlation 
for fixed-coefficient models No No No No Yes 

Summary of hierarchical structure 
with sample sizes No No No Yes Yes 

Univariate statistics NO' Yes Yes Yes Yes 

Analysis of residuals No No Yes Yes No 

Plots 

Scattergrams of variables Not No No Yes No 

Plots of residuals  NO^ No Yes Yes No 

Graph of predicted values  NO^ No Yes Yes No 

Trellis plot No No No Yes No 
N ~ '  - - 

-. *. -. 
Additional diagnostic plots No Yes Yes yes 

Saved on request 

Residuals and predicted scores Yesg Yes Yes No Yes 

Variance-covariance matrices of 
estimates and parameters Yes No Yes No No 

Confidence limits for fixed and 
random effects Yes No No Yes No 

"PROC NLMIXED handles nonlinear MLM. 
bTwo-level models with dichotomous DVs may be analyzed through SPSS COMPLEX SAMPLES LOGISTIC REGRESSION. 
"mpirical Bayes estimates are routinely provided of all randomly varying level- l coefficients. 
QPpropriate df for fixed effects provided by ddfm=kenwardroger. 
T a n  be seen interactively on screen as analysis progresses. 
'~vailable in other programs in package. 
SAny table from SAS MIXED can be converted to an SAS data set. 
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mation about ~ t s  dppl\cabillty Only the features of the program that apply to kILb1 dre reb~ewed 
here. 

SAS MIXED has many options for specifying the structure of a variance-covariance matrix 
(unstructured is the most common choice for MLM) and permits input of known values. Bayesian I 1 

modeling can be specified through the P R I0 R instruction. A number of fit statistics are provided, i 

including deviance (-2 log-likelihood), AIC, AICC, and BIC. SAS also shows the nulyindependence 
goodness-of-fit test. 

Categorical predictors may be specified directly as C L A  S S variables; however, the default 
coding is unusual add produces results that may be more difficult to interpret than those of other pro- 
grams unless adjustments are made, such as recoding the categorical variable in the data set. Degrees 
of freedom for higher-level fixed effects require adjustment (cf. Table 15.10). 

15.8.2 SPSS Package 

The MIXED MODEL module of SPSS is a full-featured MLM program. Options are available for 
specifying fixed and random effects as well as alternative methods for dealing with repeated mea- 
sures (including specification of the variance-covariance matrix, but not known values within it). As 
usual, output is well formatted and easy to follow; however, the menu system is somewhat confus- 
ing, with rather subtle ways to specify multiple levels of the hierarchy. This is the only program that 
lets you specify size of confidence intervals for effects and routinely prints them out. 

A variety of fit indices (information criteria) are shown. A handy feature is a listing of the num- 
ber of parameters in a model, and whether each is fixed or random. This is the only program reviewed 
that makes available the residual variance-covariance matrix. 

15.8.3 HLM Program 

The HLM program reviewed here is Version 6 (Raudenbush et al., 2004) and is designed to handle 
both 2-level and 3-level data. Indeed, there are separate modules for the two models (labeled HLM2 
and HLM3). The manual makes extensive reference to the textbook on hierarchical linear models 
written by two of its authors: Raudenbush and Bryk (2001). 

The program permits input of SAS, SPSS, STATA, =d SYSTAT as we:: as ASCII data and 
may use the same file for all levels or separate files for each level. In any event, variables have to be 
defined for each level, a sometimes confusing process. Analyses with and without robust standard 
errors are routinely provided in output. 

HLM has procedures for dealing with variables measured without error (e.g., gender) and for 
single-level garden-variety multiple regression analysis with missing data; both are considered latent 
variable techniques in HLM. The manual also shows how to do an MLM analysis using multiply- 
imputed data. Also available is a procedure for 2-level MLM when variances and covariances are 
known rather than to be estimated. HLM provides for analysis of a large variety of nonnormal and 
nonlinear models. 

Parameter estimates and variance-covariances matrices as well as residuals can be printed and 
saved to file. The residuals file contains Mahalanobis' distances for the level-2 groups. 

Level- 1 parameters such as intercept and slope(s) are printed aa part of output. Also printed are 
OLS results for fixed effects; comparing these with the final results shows the distortion that would 



have resulted t ~ o m  the u\e ot \~mple iniilt~ple regres\ion ~nstead ot bILM. Extensive fac~l~rle\ are 
available for Bayesian modeling. 

15.8.4 MLwiN Program 

This program was developed as part of a project in the Institute of Education at the University of 
London (Rasbas'h et al., 2000). It is a comprehensive program that permits a large variety of models 
to be fit, with up to 5 levels permissible for a model. There is extensive capability for producing 
graphs to exploi-e, diagnose, and interpret models. 

The manual is extremely helpful in setting up both simple and complex models, with numer- 
ous examples and special handling of such models as multivariate, repeated-measures, and nonnor- 
ma1 (binary and count) data. T k r e  is an extensive simulation facility, including Bayesian modeling 
and bootstrapping. The manual also shows how to deal with cross-classified data, in which cases are 
partly but not fully nested, for example when children belong to neighborhoods and schools, but 
there is overlap between the neighborhoods and schools. Multiple membership models are also pos- 
sible, in which lower level units can belong to more than one higher level unit, as for example, when 
students in a longitudinal study change schools. 

15.8.5 SYSTAT System 

The MIXED REGRESSION module of SYSTAT, as are most modules in SYSTAT, is simple to use 
and produces output that is easy to interpret. There are even a few special features not widely avail- 
able in other programs; conversion of repeated measures data to that required for MLM is simple and 
the intraclass (intracluster) correlation is provided by default when a model is specified without pre- 
dictors. Although not rich in special features, all the basics are provided as well as two approaches to 
repeated measures. The major iimitation is that oniy 2-ievei modeis can be anaiyzed. 
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Multiway Frequency 
Analysis 

16.1 General Purpose and Description 

Relationships among three or more discrete (categorical, qualitative) variables are studied through 
multiway frequency analysis or an extension of it called log-linear analysis. Relationships between 
two discrete variables, say, area of psychology (clinical, general experimental, developmental) and 
average number of publications a year (0, 1,2,3, and 4 or more), are studied through the two-way X2 
test of association. If a third variable is added, such as number of statistics courses taken (two or fewer 
vs. more than two), two- and three-way associations are sought through multiway frequency analy- 
sis. Is number of publications related to area of psychology andlor to number of statistics courses 
taken? Is number of statistics courses taken related to area of psychology? Is there a three-way rela- 
tionship among number of publications, area of psychology, and number of statistics courses taken? . . T,- ,.,. m ...-... r - . .  r---..--- 

1" 4" a l l l u ; i i w a y  I ~ I G ~ U G I I L Y  ~ L L ~ ~ I Y ~ I S ,  iabies are hi-iiied ihai contain the one-way, two-way, 
three-way, and higher-order associations. A linear model of (the logarithm of) expected cell fre- 
quencies is developed, The log-linear model starts with all of the one-, two-, three-, and higher way 
associations and then eliminates as many of them as possible while still maintaining an adequate fit 
between expected and observed cell frequencies. In the preceding example, the three-way associa- I 
. - -  . .  L .  r 1 - 3  - - 

L ~ V I I  ~ I I I U I I ~  IIUIIIUCI UI pu~~icaiions, area of psychology, and number of statistics courses is tested 
i 

first and then eliminated if not statistically significant. Then the two-way associations (number of 
publications and area of psychology, number of publications and number of statistics courses, area 
of psychology and number of statistics courses) are tested and, if not significant, eliminated. Finally, 
there is a one-way test for each of the variables against the hypothesis that frequencies are equal in 
each cell (e.g., that there are equal numbers of psychologists in each area-a test analogous to equal 
frequency goodness-of-fit tests in ;C2 analysis). 

The researcher may consider one of the variables a DV whereas the others are considered IVs. 
For example, a psychologist's success as a professional (successful vs. unsuccessful) is studied as a ! 
function of number of publications, area of psychology, number of statistics courses taken, and their i 
interactions. Used this way, multiway frequency analysis is like a nonparametric analysis of variance i 

I 
! 

with a discrete DV as well as discrete IVs. However, the method of choice with a discrete DV usu- i 

ally is logistic regression (Chapter 10). 
Uses of multiway frequency analysis (MFA) include stability in types of errors made on math 

tests by boys and girls (Marshall, 1983). Analyzing only incorrect responses, a three-way contin- 



pency table wa\ formed fur each Itern. \eu by vear ( 1976 through 1979) by cl~stractor (three Incorrect 
alternatives plus no answer). The clear winner among models was l ~ m ~ t e d  to second-order (two-way) 
effects. The distractor by sex association was significant as hypothesized, as was the distractor by 
year association. This was the best-fit model for 128 of the 160 items. 

Pope and Tabachnick (1995) used 2 X 2 X 2 MFAs to investigate each of 10 types of responses 
(e.g., a client that claimed recovered memories of childhood sex abuse and found external validation 
that it had occurred?) among 382 licensed psychologists as a function of (a) having at least one male 
client with that characteristic or not, (b) having at least one female client with that characteristic or 
not, and (c) th&apist orientation-psychodynan~ic or not. No statistically significant three-way asso- 
ciations were found. Indeed, the only significant relationships found were between male and female 
clients reporting the experience. For example, therapists who believed the abuse had not really 
occurred in one or more male clients was more common among therapists who believed the abuse 
had not occurred in one or more female clients. 

16.2 Kinds of Research Questions 

The purpose of multiway frequency analysis is to discover associations among discrete variables. 
Once a preliminary search for associations is complete, a model is fit that includes only the associa- 
tions necessary to reproduce the observed frequencies. Each cell has its own combination of param- 
eter estimates for the associations retained in the model. The parameter estimates are used to predict 
cell frequency, and they also reflect the importance of each effect to the frequency in that cell. If one 
of the variables is a DV, the odds that a case falls into one of its categories can be predicted from the 
cell's combination of parameter estimates. The following questions, then, are addressed by multiway 
frequency analysis. 

16.2.1 Associations among Variables 

Which variables are associated with one another? By knowing which category a case falls into on 
one variable, can you predict the category it falls into on another? The procedures of Section 16.4 
snow, for a simpie data ser, how to determine statisticaiiy which variabies are associated and how to 
decide on the level of complexity of associations necessary to describe the relationships. 

As the number of variables increases so do the number of potential associations and their com- 
plexity. With three variables there are seven potential associations: one three-way association, three 
two-way associations, and three one-way associations. With four variables there is a potential four- 
way association, four three-way associations, and so on. With more variables, then, the highest-level 
associations are tested and eliminated if nonsignificant until a preliminary model is found with the 
fewest required associations. 

In the previous example, the three-way association between number of publications, number 
of statistics courses, and area in psychology might be ruled out in preliminary analysis. The set of 
two-way associations is then tested to see which of these might be ruled out. Number of statistics 
courses and number of publications might be associated, as wlell as area of psychology and number 
of statistics courses, but not area of psychology and number of publications. Finally, one-way "asso- 
ciations" are tested. For example, there is a one-way association for area of psychology if numbers 
of psychologists differ significantly among areas. 



16.2.2 Effect on a Dependent Variable 

In the usual multiway frequency table, cell frequency is the DV that is influenced by one or more dis- 
crete variables and their associations. Sometimes, however, one of the variables is considered a DV. 
In this case, questions about association are translated into tests of main effects (associations 
between the DV and each IV) and interactions (association between the DV and the joint effects of 
two or more IVs). . 

Under most circumstances this type of data is more efficiently analyzed through logistic 
regression, the subject of Chapter 10. Logistic regression uses a discrete DV but has the flexibility to 
include both discrete and continuous IVs. Thus, this chapter is limited to analyses in which none of 
the variables is considered a DV. 

16.2.3 Parameter Estimates 

What is the expected frequency for a particular combination of categories of variables? First, statis- 
tically significant effects are identified, and then coefficients, called parameter estimates, are found 
for each level of all the statistically significant effects. Section 16.4.3.2 shows how to calculate pa- 
rameter estimates and use them to find expected frequencies. 

16.2.4 Importance of Effects 

Because parameter estimates are developed for each level (or combinations of levels) of each signif- 
icant effect, the relative importance of each effect to the frequency in each cell can be evaluated. 
Effects with larger standardized parameter estimates are more important in predicting that cell's fre- 
quency than effects with smaller standardized parameter estimates. If, for instance, number of sta- 
tistics co.rses has a h i o h r r  . -sb--L stafid2rdized pararr.e[er esdmace [hafi r,umbe: =f pub!ica:ion; in :he cclj 
for successful psychologists, it is the more important effect. 

16.2.5 Effect Size 

How xe'll does a m ~ d d  fit the observed freqiiencies? Effect size measures typically are not avaiiabie 
in statistical packages used for log-linear analysis. The X2 value that is a measure of the fit between 
the model and observed frequencies can be considered a measure of effect size, considering that the 
expected value of x2/df is 1 when there is no association among variables. Section 16.6.2.3 demon- 
strates software that calculates the confidence interval around a X2 value. 

Bonett and Bentler (1983) describe the use of a normed fit index (NFI). Although influenced 
by sample size, NFI may give a better notion of how well a model fits observed frequencies than is 
available from formal goodness-of-fit tests such as chi square. See Section 14.5.3.1 for further dis- 
cussion of NFI and other indices of model fit. 

16.2.6 Specific Comparisons and Trend Analysis 

If a significant association is found, it may be of interest to decompose the association to find its sig- 
nificant components. For example, if area of psychology and number of publications, both with sev- 
eral levels, are associated, which areas differ in number of publications'? These questions are 
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analogous to rhos? of analyc~s o f  variance where a many-celled interaction is investigated in terms ot 
simpler interactions or in terms of simple effects (cf. Section 8.5.'). Similarly. if the categories ot 
one of the variables differ in quantity (e.g., number of publications), a trend analysis often helps one 
understand the nature of its relationship with other variables. SAS CATMOD and SPSS LOGLIN- 
EAR (available only in syntax) provide procedures for specifying contrasts. 

16.3 Limitations to Multiway Frequency 
~ n a l ~  sis 

16.3.1 Theoretical Issues 

As a nonparametric statistical technique with no assumptions about population distributions, multi- 
way frequency anqlysis is remarkably free of limitations. The technique can be applied almost uni- 
versally, even to continuous variables that fail to meet distributional assumptions of parametric 
statistics if the variables are cut into discrete categories. 

With the enormous flexibility of current programs for log-linear analysis, many of the ques- 
tions posed by highly complex data sets can be answered. However, the greatest danger in the use of 
this analysis is inclusion of so many variables that interpretation boggles the mind-a danger fre- 
quently noted in multifactorial analysis of variance, as well. 

16.3.2 Practical Issues 

The only limitations to using multiway frequency analysis are the requirement for independence, 
adequate sample size, and the size of the expected frequency in each cell. During interpretation, how- 
ever: certain cells may turn out to be poorly predicted by the solution. 

16.3.2.1 Independence 

Only between-subjects designs may be analyzed in most circumstances, so that the frequency in each 
cell is independent of the frequencies in all other cells. If the same case contributes values to more 
+L-- - -A --I1 +LA-- .--11- --t :-rf----rl--c 11a.2L, tL ,+  + L a  + , + , I  A1 :, ,,..,I t- + I h  ,..,Anu - K n n n n n  
Ltlall  UIIG LGII, LIIU~G LGI I~  air; IIUL 1llur;pr;lrur;llr. v c r  1 j . v  L I L U L  L r i c  L U L U L  L V  LA c y u u L  ~v L I L C  r L u r r c v e r  vj ~ u a c a .  

Sometimes the restriction to between-subjects designs is circumvented by inclusion of a time 
variable, as in McNemar's test for two-way X2. A case is in a particular combination of cells over the 
time periods. Similarly, "yes-no" variables may be developed. For example, in a 2 X 2 design, a per- 
son attends karate classes but does not take piano lessons (yes on karate, no on piano), or does nei- 
ther (no on both), or does both (yes on both), or takes piano lessons but not karate (no on karate, yes 
on piano). Each case is in only one of four cells, despite having "scores" on both karate and piano. 
SAS CATMOD has a procedure for analyzing designs in which a discrete DV is measured repeat- 
edly. SPSS COMPLEX SAMPLES also may be used for repeated-measures designs with a dichoto- 
mous DV when cases are defined as clusters. 

16.3.2.2 Ratio of Cases to Variables 

A number of problems may occur when there are too few cases relative to the number of variables. 
Log-linear analysis may fail to converge when combinations of variables result in too many cells 
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with no ca\tt\ 2011 \ I ~ o r ( l t i  1 1 1 1 1 ~ ~  L I I  / o ( i \ t  f i l  P tr1110\  t i l t '  / r i r r r r ! ~ f ~ r  of ( t r \ c l \  ( I \  ( ( I / / \  l r l  \0r1r i l r \ ~ , y t r  In the 
example, ,ued ot pbycholugy h,is t111t.e levels and nurrlbel ot publlcat~ons t i b e  level\. 50 3 A 5 A 5 or 
75 cases are needed. Software programs are ava~lable to a ~ d  in estlmatlng required sample sues for 
two-way but not multiway frequency analysis. 

16.3.2.3 Adequacy of Expected Frequencies 

The fit between observed and expected frequencies is an empirical question in tests of association 
among discrete variables. Sample cell sizes are observed frequencies; statistical tests compare them 
with expected frequencies derived from some hypothesis, such as independence between variables. 
The requirement in multiway frequency analysis is that expected frequencies are large enough. Two 
conditions produce expected frequencies that are too small: a small sample in conjunction with too 
many variables with too many levels (as discussed in Section 16.3.2.2) and rare events. 

When events are rare, the marginal frequencies are not evenly distributed among the various 
levels of the variables. For example, there are likely to be few psychologists who average four or 
more publications a year. A cell from a low-probability row andlor a low-probability column will 
have a very low expected frequency. The best way to avoid low expected frequencies is to attempt to 
determine in advance of data collection which cells will be rare, and then sample until those cells are 
adequately filled. 

In any event, examine expected cell frequencies for all two-way nssocintions to assure that (111 

are greater than one, and that no more than 20% are less thanfive. Inadequate expected frequencies 
generally do not lead to increased Type I error (except in some cases with use of the Pearson X2 sta- 
tistic; cf. Section 16.5.2). But power can be so drastically reduced with inadequate expected fre- 
quencies that the analysis is worthless. Reduction of power becomes notable as expected frequencies 
for two-way associations drop below five in some cells (Milligan, 1980). 

I .  ' ' TC -T.v-Li,-.tY IIY,-..IY ->,-. .-.- '> L>-.,>,-..- C C . - Y  ,!-Cf.::.. ,...- r. :-. 1.--... - .-1- ..,...- -,.-- !- ~ ,-.,---! 
1 1  I U W  L A p L C L L U  I I L ~ U L L L C l L ~  U L C  L L L C U U L I L L I L U  U L S P L L C  C U L L  111 U U L U I I I I I I ~  Y U U l  S U l I I ~ L G .  S L V G I L L I  

choices are available. First, you can simply choose to accept reduced power for testing effects asso- 
ciated with low expected frequencies. Second, you can collapse categories for variables with more 
than two levels. For example, you could collapse the "three" and "four or more" categories for num- 
ber of publications into one category of "three or more." The categories you collapse depend on the- 

. . 
oi.eiiza: consideradoi,s as as oiies 'jecaiise it is qiiite possil"ie that assoclaiions 

disappear as a result. Because this is equivalent to a complete reduction in power for testing those 
associations, nothing has been gained. 

Finally, you can delete variables to reduce the number of cells. Care is taken to delete only 
variables that are not associated with the remaining variables. For example, in a three-way table, you 
might consider deleting a variable if there is no three-way association and if at least one of the two- 
way associations with the variable is nonsignificant (Milligan, 1980). The common practice of 
adding a constant to each cell is not recommended because it has the effect of further reducing power. 
Its purpose is to stabilize Type I error rate, but as noted before, that is generally not the problem and 
when it is, other remedies are available (Section 16.5.2). Some of the programs, such as SPSS LOG- 
LINEAR and HILOGLINEAR, add the constant by default anyway under circumstances that do not 
affect the outcome of the analysis. 

Section 16.6.1. demonstrates procedures for screening a multidimensional frequency table for 
expected cell frequencies. 
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Reading Type 

16.3.2.4 Absetzce of Outliers itt the Solutiotz 

Sometimes there are substantial differences between observed and expected frequencies derived 
from the best-fitting model for some cells. If the differences are large enough. there may be no model 
that adequately fits the data. Levels of variables may have to be deleted or collapsed or new variables 
added before a model is fit. But whether or not a model is fit, examination of residuals in search of 
discrepant cells leads to better interpretation of the data set. Analysis of residuals is discussed in Sec- 
tions 16.4.3.1 and 16.6.2.3. 

16.4 Fundamental Equations for Multiway 
Frequency Analysis 

Analysis of multiway frequency tables typically requires three steps: (1) screening, (2) choosing and 
testing appropriate models, and (3) evaluating and interpreting the selected model. A small-sample 
example of hypothetical data with three discrete variables is illustrated in Table 16.1. The first vari- 
able is type of preferred reading material, READTYP, with two levels: science fiction (SCIFI) and 
spy novels (SPY). The second variable is SEX; the third variable is three levels of profession, PRO- 
FESS: politicians (POLITIC), administrators (ADMIN), and belly dancers (BELLY). 

In this section, the simpler calculations are illustrated in detail, and the more complex arith- 
metic is covered only enough to provide some idea of the methods used to model multidimensional 
data sets. The computer packages used in this section are also the most straightforward. With real 
data sets, the various computer packages allow choice of strategy on the basis of utility rather than 
simplicity. Computer analyses of this data set through SAS CATMOD, SPSS GENLOG, and 
HILOGLINEAR are in Section 16.4.4. 

TABLE 16.1 Small Sample of Hypothetical Data for Illustration 
of Multiway Frequency Analysis 

Pmforrinn a n "n.,.,".".. 
C*" 
"b'. 

C r I c I  ' 
U b 1 1  a 

C D V  

Politicians Male 15 15 30 
Female 10 15 25 

Total 25 30 5 5 

Administrators Male 10 30 40 
Female 5 10 15 

Total 15 40 55 

Belly dancers Male 5 5 10 
Female 10 25 3 5 

Total 15 30 45 
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if only a .single ahsociation is o f  interest. a4 is usua11y the caw in  the analysis o f  a tho-42) 
table, the famil~ar %' statist~c 1s used: 

where f, represents observed frequencies in each cell of the table and F, represents the 
expected frequencies in each cell under the null hypothesis of independence (no associ- 
ation) between the two variables. Summation is over all cells in the two-way table. 

If the goodness-of-fit tests for the two marginal effects are also computed, the usual ;C2 tests for 
the two one-way and one two-way effects do not sum to total X2.  This situation is similar to that of 
bmeqblal-n ANOVA, where F tests of main effects and interactions are not independent (cf. C w e r  
6). Because overlapping variance cannot be unambiguously assigned to effects, and because over- 
lapping variance is repeatedly analyzed, interpretation of results is not clear-cut. In multiway fre- 
quency tables, as in ANOVA, nonadditivity of X2 becomes more serious as additional variables 
produce higher-order (e.g., three-way and four-way) associations. 

An alternative strategy is to use the likelihood ratio statistic, G'. The likelihood ratio statistic 
is distributed as ;c', so the X2 tables can be used to evaluate significance. However, under conditions 
to be described in Section 16.4.2, C2 has the property of additivity of effects. For example, in a two- 
way analysis, 

The test of overall association within a two-way table, G;, is the sum of the first-order 
goodness-of-fit tests, G: and G;, and the test of association, CjB. 

G', like ;c', has a single equation for its various manifestations that differ among themselves 
only in how the expected frequencies are found. 

For each cell, the natural logarithm of the ratio of obtained to expected frequency is mul- 
tiplied by the obtained frequency. These values are summed over cells, and the sum is 
doubled to produce the likelihood ratio statistics. 

16.4.1 Screening for Effects 

Screening is done if the researcher is data snooping and wishes simply to identify statistically sig- 
nificant effects. Screening is also done if the researcher hypothesizes a full model, a model with all 
possible effects included. Screening is not done if the researcher has hypothesized an incomplete 
model, a model with some effects included and others eliminated; in this case, the hypothesized 
model is tested and evaluated (see Section 16.4.2) followed by, perhaps, post hoc analysis. 

The first step in screening is to determine if there are any effects to investigate. If there are. 
then screening progresses to a computation of F, for each effect, a test of the reliability (significance) 
of each effect (finding GL for the first-order effects, the second-order or two-way associations, the 
third-order or three-way associations, and so on), and an estimation of the size of the statistically sig- 
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nificant effects. Because Equation 16.3 is used for all tests of the observed frequencies ( , I ; :  ). the trick 
is to find the F, necessary to test the various hypotheses. as illustrated in what follows using the data 
of Table 16.1. 

16.4.1.1 Total Effect 

If done by hand, the process starts by calculation of overall G;, which is used to test the hypothesis 
of no effects in the table (the hypothesis that all cells have equal frequencies). If this hypothesis can- 
not be rejected, there is no point to proceeding further. (Note that when all effects are tested simul- 
taneously, as in computer programs, one can test either G; or C2 for each of the effects, but not both, 
because degrees of freedom limit the number of hypotheses to be tested.) 
k- - - - - - - - -- - 

Expected frequencies, F,, for testing the hypothesis of no effects are the same for each 
cell in the table and are found by dividing the total frequency (N) by the number of cells 
in the table, i.e., the number of levels of READTYP (represented by r )  times the number 
of levels of SEX (s) times the number of levels of PROFESS (p). 

For these data, then, 

Applying Equation 16.3 for the test of overall effect, 

G: = 2 (f,) ln (f,/~,) df = rsp  - I 
ijk 

where1 = l , 2  ,..., r ; j =  l , 2  ,..., s ;andk=  1 , 2  ,..., p. 
Fiiiing in frequencies for each of the ceiis in h b i e  i6.i, then, 

With df = 12 - 1 = 1 1 and critical X 2  at n = .05 equal to 19.68 (cf. Table C.4 in Appendix C), 
there is a statistically significant departure from equal frequencies among the 12 cells.' Further 

' ~ h r o u ~ h o u t  this section, calculations may differ slightly from those produced by computer programs due to rounding error. 
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analysis is now required to screen the table for sources of t h~s  departure. 111 the normal course of data 
analysis the highest-order association is tested first, and so on. Because, however, of the greater com- 
plexity for finding expected frequencies with higher-order associations, the presentation here is in 
the reverse direction, from the first-order to highest-order associations. 

16.4.1.2 First-Oi'der Effects 

There are three first-order effects to test, one for each of the discrete variables. Starting with READ- 
TYP, a goodness-of-fit test evaluates the equality of preference for science fiction and spy novels. 
Only the marginal sums for the two types of reading material are relevant, producing the following 
observed frequencies: 

SCIFI SPY 

Expected frequencies are found by dividing the total frequency by the number of relevant "cells," 
that is, r = 2, yielding <, = 15512 = 77.5. The expected frequencies, then, are 

SCiFI SPY 

and the test for goodness of fit is 

Because critical X 2  with df = 1 at a = .05 is 3.84, a significant preference for spy novels is suggested. 
As in ANOVA, however, significant lower-order (main) effects cannot be interpreted unambiguously 
if there are higher-order (interaction) effects involving the same variable. 

Similar tests for main effects of SEX and PROFESS produce G: = 0.16 with 1 df and 
G; = 1.32 with 2 df. suggesting no statistically significant difference in the number of men (80) 
and women (75), nor a significant difference in the numbers of politicians (55), administrators (551, 
and belly dancers (451, and an interesting sampling strategy. 



16.4.1.3 Second-Order Effects 

Tests of partial associations use an iterative procedure to develop a full set of expected frequencies 
in which all marginal sums (except the one to be tested) match the observed marginal frequencies.' 
First, the three-way table is collapsed into three two-way tables, one for each two-way interaction. 
For the R X S association, for instance, the cells for each combination of reading type and sex are 
summed over the three levels of profession (P), forming as the observed frequencies: 

SCIFI SPY 

WOMEN 

1 00 155 

The expected frequencies are found as in the usual way for a two-way ;C2 test of association: 

Cell F, = (row sum)(column  sum)/^ ( 16.5) 

for the appropriate row and column for each cell; that is, for the first cell, men preferring science fiction, 

After the computations are completed for the remaining cells, the following table of expected fre- 
quencies is found: 

SCIFI SPY 

28.387 1 51.6129 

WOMEN 26.6 129 48.387 1 

Once found, the expected frequencies are duplicated at each level of the other variable. The 
results of this iteration for the partial test of the R X S association appear in Table 16.2. Notice that 
computation of the expected frequencies is repeated for politicians, administrators, and belly dancers. 

All the entries are too large because the two-way table has simply been duplicated three times. 
That is, N = 465 instead of 155, there are 80 male politicians instead of 30, and so on. A second iter- 
ation is performed to adjust the values in Table 16.2 for another two-way association. in this case the 

'Other methods tor find~ng partiai associations are based vn dii'fcreiicea in G' "vtwezii hicraichical m ~ d e l s  
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TABLE 16.2 First Iteration Estimates of Expected Frequencies for the 
Partial Test of the READTYP X SEX Association 

Reading Type 

Profession Sex SCIFI SPY Total 

Politicians Male 
Female 

Total 

Administrators Male 
Female 

Total 

Belly dancers Male 
Female 

Total 55 100 155 

R X P association. This iteration begins with the R X P table of observed frequencies and relevant 
marginal sums: 

SCIFI SPY 

POLITIC 25 30 

ADMIN 15 40 

BELLY 15 30 

Note that the actual number of politicians preferring science fiction is 25, whereas after the first iter- 
ation (Table 16.2), the number is (28.3871 + 26.6129) = 55. The goal is to compute a proportion 
that, when applied to the relevant numbers in Table 16.2 (in this case, both male and female politi- 
cians who prefer science fiction), eliminates the effects of any R X P interaction: 

producing 

F,#* = ~,#'(0.45455) = (28.3871)(0.45455) = 12.9032 

and 

for male and female politicians preferring science fiction, respectively. 



To find second iterat~on expected frequency for female belly dar~cers preferr~ng bpy stories, the 
last cell in the table, 

Table 16.3 shows the results of applying this procedure to all cells of the data matrix. 
Notice that correct totals have been produced for overall N, for R, P, and S, and for R X P, but 

that the S X P values are incorrect. The third and final iteration, then, adjusts the S X P expected val- 
ues from the second iteration for the S X P matrix of observed values. These S X P matrices are: 

For the first cell, male politicians preferring to read science fiction, the proportional adjustment 
(rounded off) is 

fo 

Men Women 

POLITIC 30 25 

ADMIN 40 15 

BELLY 10 35 

TABLE 16.3 Second Iteration Estimates of Expected Frequencies 
for the Partial Test of the READTYP X SEX Association 

Fe 

Men Women 

POLITIC 28.3871 26.6 129 

ADMIN 28.387 1 26.6129 

BELLY 23.22258 2 1.7742 

Reading Type 

Profession Sex SCIFI SPY Total 
-- - 

Politicians Male 
Female 

Total 

Administrators Male 
Female 

Total 

Belly dancers Male 
Fernale 
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to produce 

F:~ = F~# ' ( I  .0568) = ( 12.9032)( 1.0568) = 13.6363 

And for the last cell, female belly dancers who prefer spy stories, 

Following this prodedure for the remaining 10 cells of the matrix produces the third iteration esti- 
mates, as shown in Table 16.4. These values fulfill the requirement that all expected marginal fre- 
quencies are equal to observed marginal frequencies except for R X S, the association to be tested. 

At this point, we have the F, necessary to calculate G& -- - 

I 

However, a final adjustment is made for the three-way association, GiSP (as computed in what 
follows). The partial likelihood ratio statistic for the association between READTYP and SEX, then. is 

This partiai test shows a lack of association. 

TABLE 16.4 Third Iteration Estimates of Expected Frequencies 
for the Partial Test of the READTYP X SEX Association 

Reading Type 

Profession Sex SCIFI SPY Total 

Politicians Male 13.6363 16.3637 30 
Female 11.3637 13.6363 25 

Administrators 

Belly dancer< 

Total 

Male 
Female 

Total 

Male 
Female 

Total 
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The sane process i h  (tediously! followed for the partial tests of the R X P and the S ,< P ahso- 
ciations. The resultant partial likelihood ratio statistic for the R X P association is 

2 
G~~ (part) 

= 4.42 

showing lack of association between reading preferences and profession. For the S X P association, 
the partial likelihood ratio result is 

astatistically siaifican! association. - - - 

Corresponding partial tests of intermediate associationsin this erampieproducethe samecen- 
clusions and interpretation is clear-cut: There is a statistically significant association between sex 
and profession and no evidence of association between sex and reading preferences or between read- 
ing preferences and profession. In some situations, however, interpretation is more problematic 
because the results of marginal and partial tests differ. Procedures for dealing with such situations are 
discussed in Section 16.5.3. 

26.4.1.4 Third-Order Effect 

The test for the three-way R X S X P association requires a much longer iterative process because all 
marginal expected frequencies must match observed frequencies (R, S ,  P, R X S, R X P, and S X P). 
Ten iterations are required to compute the appropriate F, for the 12 cells (not shown in the interests 
of brevity and avoidance of terminal boredom), producing 

= 2 ~ ( f o ) l n ( f , / ~ , )  d f = ( r -  l ) (s-  I ) (P-  1) 
G R ~ ~  

ijk 

= 1.85 df = 2 

The three-way association, then, shows no statistical significance. 
A summary of the results of the calculations for all effects appears in Table 16.5. At the bottom 

of the table is the sum of all one-, two-, and three-way effects using partial methods for calculating 
G2. As can be seen, this fails to match G;; the sum is too large. Further, depending on the data, either 
over- or underadjustment of each effect may occur. Therefore, additional modeling may be required 
(see Section 16.5.3). 

16.4.2 Modeling 

In some applications of multiway frequency analysis, results of screening provide sufficient infor- 
mation for the researcher. In  the current example, for instance, the results are clear-cut. One first- 
order effect, preference for reading type, is statistically significant, as is the sex-by-profession 
association. Often, however, the results are not so evident and consistent, and/or the goal is to find 
the best model for predicting frequencies in each cell of the design. 
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TABLE 16.5 Summary of ScreeningrTests 
for Small-Sample Example of hlultiway 
Frequency Analysis 

Effect d f G2 Prob 

All (total) 1 I 

READTYP i 

SEX I' 
PROFESS 2 

R  X S  1 

R X P  2 

S X P  2 

R X S X P  2 

Sums 1 1 48.74 

A log-linear model is developed where an additive regression-type equation is written for (the 
log of) expected frequency as a function of the effects in the design. The procedure is similar to mul- 
tiple regression where a predicted DV is obtained by combining the effects of several IVs. 

A full3 model includes all possible effects in a multiway frequency analysis. The full model for 
the three-way design of the example is 

For each cell (the natural logarithm of) the expected frequency, In F,, is an additive sum 
of the effect parameters, i s ,  and a constant, 0. 

For each effect in the design, there are as many values of &-called effect parameters-as 
there are ieveis in the effect, and these values sum to zero. In the example, there are two levels of 
READTYP, so there is a value of AR for SCIFI and for SPY, and the sum of these two values is zero. For 
most cells, then, the expected frequency is derived from a different combination of effect parameters. 

The full (saturated) model always provides a perfect fit to data so that expected frequencies 
exactly equal observed frequencies. The purpose of modeling is to find the incomplete model with 
the fewest effects that still closely mimics the observed frequencies. Screening is done to avoid the 
necessity of exploring all possible incomplete models, an inhumane effort with large designs, even 
with computers. Effects that are found to be nonsignificant during the screening process are often 
omitted during modeling. 

Model fitting is accomplished by finding G~ for a particular incomplete model and evaluating 
its significance. Because G~ is a test of fit between observed and expected frequencies, a good model 

"ull models are also called saturated models. 



1s one w~th  a nor~s lpnl f icc l l l t  G?.  Because there dre otten many .'good" models. however.. there 1, .L 
problem in choosing among them. The task IS to compare nonslgn~ficant models w~th one anotller. 

I Models come in two tlavors, hierarchical and nonhierarchical. Hierarchical (nested) models 
1 include the highest-order statistically significant association and all its component parts; nonhierar- 

chical models do not necessarily include all the components (see Section 16.5.1). For hierarchical 
models, the optimal model is one that is not significantly worse than the next most complex one. 
Therefore, the choice among hierarchical models is made with reference to statistical criteria. There 
are no statistical criteria for choosing among nonhierarchical models and they are not recommended. 

Several methods for comparing models are available, as discussed in Section 16.5.3. In the 
simplest method, illustrated here, a few hierarchical models are selected on the basis of screening 
results and compared using the significance of the difference in C2  between them. When the models 
are hierarchical, the di&rence betw~en ,he two G2s is itselfa C2. That is, 

if Model 1 is a subset of Model 2 in which all the effects in Model 1 are included in Model 2. For the 
example, a Model I with R X P, R,  and P effects is nested within a Model 2 with R X S ,  R X P, R, S, 
and P effects. 

To simplify description of models, the preceding Model 1 is designated ( R P )  and Model 2 
(RS,RP). This is a fairly standard notation for hierarchical models. Each association term (e.g., 
RS) implies that all lower-order effects ( R  and S )  are included in the model. In the example, the most 
obvious model to choose is ( S f ,  R) ,  which includes the S X P association and all three first-order 
effects. 

In practice, the first step is to evaluate the highest-order effect before sequentially testing 
lower-order effects. During screening on the example, the three-way association is ruled out but at 

. . -  
least one of the two-way- associatiofis is statistically signiticant. Because there are nnly three effects 
in the design, it would not be difficult by computer to try out a model with all three two-way associ- 
ations (RS ,  RP,SP) and compare that with models with all pairwise combinations of two-way asso- 
ciations. If there are ambiguities in the partial tests of effects, models with and without the 
ambiguous effects are compared. 

In the example, iack of significance for partial tests of the RP and RS effects would ordinarily 
preclude their consideration in the set of models to be tested. The RP effect is included in a model to 
be tested here for illustrative purposes only. 

For each model to be tested, expected frequencies and C2  are found. To obtain C2 for a model, 
the G2 for each of the effects is subtracted from total G2 to yield a test of residual frequency that is 
not accounted for by effects in the model. If the residual frequencies are not significant, there is a 
good fit between obtained and expected frequencies from the reduced model. 

For the example, C 2  values for the (SP,R) model are available from the screening tests shown in 
Table 16.5. For the two-way effects, the G2 values from the partial tests are used. C2 for the (SP,R) 
model is, then 
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Degrees of freedom are those associated uith each of the effects as in Section 16.1.1. s o  that 
d f = l ! - ? - [ - ? -  I =  5 .  Because :.esic!~~als t'ronl this miidel are not siatisti~ally significan[. the 
model is adequate. 

For the example, a more complex model includes the R X P association. Following the earlier 
procedures, the (SP,RP) model produces G~ = 2.48 with 3 df. The test of the difference between 
(SP,R) and (SP,RP) is simply the difference between G'S (Equation 16.7) for the two models. using 
the difference between degrees of freedom to test for significance: 

2 
':difg = ' :SP.R) - ' ( sP.RP)  

= 6.24 - 2.48 = 3.76 with df = 5 - 3 = 2 

a msigffificaat refttlt. B e c a w  the diffefence between rrtedelx is nut strrtisticafly significant, the 
more parsimonious (SP,R) model is preferred over the more complex (SP,RP) model. The model of 
choice, then, is 

16.4.3 Evaluation and Interpretation 

The optimal model, once chosen, is evaluated in terms of both the degree of fit to the overall data 
matrix (as discussed in the previous section) and the amount of deviation from fit in each cell. 

16.4.3.1 Residuals 

Once a model is chosen, expected frequencies are computed for each cell and the deviation between 
the expected and observed rrequencies in each cell (the residual) is used to assess the adequacy of the 
model for fitting the observed frequency in that cell. In some cases, a model predicts the frequencies 
in some cells well, and in others very poorly, to give an indication of the combination of levels of 
variables for which the model is and is not adequate. 

For the example, the observed frequencies are in Table 16.1. Expected frequencies under the 
(SP,R) model, derived through an iterative procedure as demonstrated in Section 16.4.1.3, are shown 
in Table 16.6. Residuals are computed as the cell-by-cell differences between the values in the two 
tables. 

Rather than trying to interpret raw differences, residuals usually are standardized by dividing 
the difference between observed and expected frequencies by the square root of the expected fre- 
quency to produce a z value. Both raw differences and standardized residuals for the example are in 
Table 16.7. The most deviant cell is for male politicians preferring science fiction, with 4.4 fewer 
cases expected than observed and a standardized residual of z = 1.3. Although the discrepancies for 
men are larger than those for women, none of the cells is terribly discrepant; so this seems to be an 
acceptable model. 

16.4.3.2 Parameter Estimates 

There is a different linear combination of parameters for most cells, and the sizes of the parameters 
in a ceii retlect the contr~but~on of each of the effects in the model to the frequency found in that cell. 



TABLE 16.6 Expected Frequencies under 
the lLIodel 

Reading Type 

Profession Sex SCIFI SPY Total 

Politicians Male 10.6 19.4 30.0 
Female 8.9 16.1 25.0 

Total 19.5 35.5 55.0 

Administrators Male 14.2 25.8 40.0 
F m a k  5.3 9.7 15.0 

Total 19.5 35.5 55.0 

Belly dancers Male 3.5 6.5 10.0 
Female 12.4 22.6 35.0 

Total 16.0 29.0 45.0 

One can evaluate, for example, how important READTYP is to the number of cases found in the cell 
for female politicians who read science fiction. 

Parameters are estimated for the model from the F, in Table 16.6 in a manner that closely fol- 
lows ANOVA. In ANOVA, the size of an effect for a cell is expressed as a deviation from the grand 
mean. Each cell has a different combination of deviations that correspond to the particular combina- 
tion of ieveis of (he stat~sticaiiy s~gn~ficanr effects i'or ihai cell. 

In MFA, deviations are derived from natural logarithms of proportions: In (ejk).  Expected 
frequencies for the model (Table 16.6) are converted to proportions by dividing F, for each cell by 
N = 155, and then the proportions are changed to natural logarithms. For example, for the first cell, 
male politicians who prefer science fiction: 

Table 16.8 gives all the resulting values. 
The values in Table 16.8 are then used in a three-step process that culminates in parameter esti- 

mates, expressed in standard deviation units, for each effect for each cell. The first step is to find both 
the overall mean and the mean (in natural logarithm units) for each level of each of the effects in the 
-model. The second step is to express each level of each effect as a deviation from the overall mean. 
The third step is to convert the deviations to standard scores to compare the relative contributions of 
various parameters to the frequency in a cell. 

In the first step, various means are found by summing In ( f : j k )  across appropriate cells and 
dividing each sum by the number of cells involved. For example, to find the overall mean, 
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- 
. t . ,  = , l / r s p )  - '5- l n q , L  1 

i jk  

TABLE 16.7 Raw and Standardized Residuals 
for Hypothetical Data Set under Model (SP,R) 

Reading Type 

Profession Sex SCIFI SPY 

Raw residuals (f, - F,): 
Politicians Male 4.4 -4.4 

Female 1.1 -1.1 

Administrators Male -4.2 4.2 
Female -0.3 0.3 

Belly dancers Male 1.5 -1.5 
Female -2.4 2.4 

Standardized residuals (f, - F,)/F;'*: 

Politicians Male 1.3 -1.0 
Female 0.4 -0.3 

Administrators Male -1.1 0.8 
Female -0.1 0.1 

Belly dancers Male 0.8 -0.6 
Female -0.7 0.5 

TABLE 16.8 Expected In eik for Model (SP,R) 

Reading Type 

Profession Sex SCIFI SPY 

Politicians Male -2.682571 1 -2.0781521 
Female -2.8573738 -2.2646058 

Administrators Male -2.3901832 - 1.7930506 
Female -3.3757 183 -2.77 12992 

Belly dancers Male -3.7906621 -3.1716229 
Female -2.5257286 - 1.9254752 

Note: = (~ ; ,~ /155)  = - In(155). 
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To find the mean for SCIFI, the first level of READTYP: 

The mean for belly dancers is 

and so on for the first-order effects. 
The means for second-order effects are found in a similar manner. For instance, for the S X P 

association, the mean for male politicians is 
I 

x-, [ = ( l / r )  1 ln(ejk) 
1 

= (1/2)[-2.6825711 + (-2.0781521)J 

= -2.38036 16  

In the second step, parameter estimates are found by subtraction. For first-order effects, the 
overall mean is subtracted from the mean for each level. For example, lR,, the parameter for SCIFI, 

i the firs: level of READTYP is 

- 
l = x,.. - x... 

R I 

For belly dancers, the third level of PROFESS 
- A = x3 .. - x... 

p3 

= -2.8533722 - (-2.63555346) 

= -.218 

and so on. 
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To find 1. tor a cell In two-wa)  effect. the two .ippropriate maln effect mean4 are subtracted from 
the two-way mean. and the oberall mean 1s '~dded (111 a pattern t h ~ t  I \  also f;rrn~ll,lr from -^\NOVA\) Fo: 
example, j .SP13, the parameter for female belly dancers (second level of sex, third level of profesuion). 
is found by subtracting from the female belly dancer mean (averaged over the two types of reading 
material) the mean for women and the mean for belly dancers, and then adding the overall mean. 

- - - - 
' L S P ? ~  7 X23. - x.. 2 - X.. 3 + 3. .  . 

All the 3, values, as shown in Table 16.9, are found in a similar, if tedious, fashion. In the table, 
B is the conversion of the overall mean from proportion to frequency units by addition of In (N): 

- - 

B = 35.. + In (155) 

The expected frequency generated by the model for each cell is then expressed as a function of 
the appropriate parameters. For example, the expected frequency (19.40) for male politicians who 
read spy novels is 

within rounding error. 

TABLE 16.9 Parameter Estimates for Model (SP,R). 6 (MEAN) = 2.4079 

Effect Level 1 RJSE 

READTYP SCIFI 
SPY 

SEX MALE 
FEMALE 

PROFESSION POLITICIAN 
ADMINISTRATOR 
BELLY DANCER 

SEX BY PROFESS MALE POLITICIAN 
FEMALE POLITICIAN 
MALE ADMINISTRATOR 
FEMALE ADMINISTRATOR 
MALE BELLY DANCER 
FEMALE BELLY DANCER 
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These parameters are used to find expected frequencies for each cell bc~t are not interpreted i n  
terms of magnitude until step 3 is taken. During step 3, parameters are divided by their respecti~,e 
standard errors to form standard normal deviates that are interpreted according to their relative niag- 
nitudes. Therefore, the parameter values in Table 16.9 are given both in their i form and after divi- 
sion by their standard errors. 

Standard errors of parameters, SE, are found by squaring the reciprocal of the number of lev- 
els for the set of parameters, dividing by the observed frequencies, and summing over the levels. For 
example, for READTYP: 

and 

Note that this is the simplest method for finding SE (Goodman, 1978) and does not weight the num- 
ber of levels by unequal marginal frequencies, as do some other methods. 

To find the standard normal deviate for SCIFI (the first level of READTYP), A for SCIFI is 
dlvided by irs standard enor 

This ratio is interpreted as a standard normal deviate ( 2 )  and compared with critical z to assess 
the contribution of an effect to a cell. The relative importance of the various effects to a cell is also 
derived from these values. For female belly dancers preferring spy novels, for example, the standard 
normal deviates for the parameters are 3.598 (SPY), 0.186 (FEMALE), -2.702 (BELLY), and 
-7.200 (FEMALE BELLY). The most important influences on cell frequency are, in order, the sex 
by profession association, preferred type of reading material, and profession-all statistically sig- 
nificant at p < .01 because they exceed 2.58. Sex contributes little to the expected frequency in this 
cell and is not statistically significant. 

Because of the large number of effects produced in typical loglinear models, a conservative 
criterion should be used if statistical significance is evaluated. A criterion ,: of 4.00 often is consid- 
ered reasonable. 

Further insights into interpretation are provided in Section 16.6.2.4. Conversion of parameter? 
to odds when one variable is a DV is discussed in Section 10.6.3. 
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16.4.4 Computer Analyses of Small-Sample Example 

Syntax and selected output for colnputer andlyse:, df thz ddta in Tdblt: 16. i appear In Tables 1 b. 10 
through 16.12. SPSS HILOGLINEAR and GENLOG' are in Tables 16.10 and 16.1 1, respectively, 
and SAS CATMOD is in Table 16.12. 

The syntax of SPSS HILOGLINEAR (Model Selection on Loglinear menu) in Table 16.10 
produces output appropriate for screening a hierarchical multiway frequency analysis. Additional 
instructions are necessary to test models. The instruction PRINT=FREQ produces the table of 

TABLE 16.10 Multiway Frequency Analysis of Small-Sample Example through SPSS 
HILOGL~NEAR~Sy@axandSelectedOutpufl 

WEIGHT by freq. 
HILOGLINEAR 

profess(1 3) sex(1 2) readtyp(1 2) /METHOD=BACKWARD 
/CRITERIA MAXSTEPS (1 0) p(.05) ITERATION(20) DELTA(.5) 
/PRINT=FREQ ASSOCIATION ESTlM 
/DESIGN. 

Hi Log 
Observed, Expected Frequencies and Residuals. 

Factor Code OBS count EXP count 

profess 
sex 
readtyp 
readtyp 
sex 
readtyp 
readtyp 

profess 
sex 
readtyp 
readtyp 
sex 
readtyp 
readtyp 

profess 3 
sex 1 
readtyp 1 5.5 5 . 5  
readtyp 2  5.5 5 .5  
sex 2 
readtyp 1 1 0 . 5  10 .5  
readtyp 2  25 .5  25 .5  

.................................................................. 

'Another program, SPSS LOGLINEAR, is available only through syntax and is demonstrated in Section 16.6.2. 
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TABLE 16.10 Continued 

Estimates for Parameters. 

Parameter Coef f . 

Parameter Coef f . 

Parameter Coef f . 

Std. Err. 

Std. Err. 

Std. Err. 

Z-Value Lower 95 CI Upper 95 CI 

Z-Value Lower 95 CI Upper 95 CI 

Z-Value Lower 95 CI Upper 95 CI 

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI 

profess 

Parameter Coeff. Std. Err. Z-Value Lower 95 CI Upper 95 CI 

sex 

Parameter Coeff, Stdi Err. Z-Value Lower 95 CI Upper 35 CI 

1 -.0065095139 -09098 -. 07155 -. 18483 .I7181 

readtyp 

Parameter Coef f. Std. Err. Z-Value Lower 95 CI Upper 95 CI 

1 -.2491455461 .09098 -2.73844 -. 42747 - .07082 

Observed, Expected Frequencies and Residuals. Because no model is specified in the 
syntax, a full model (all effects included in the model) is produced in which expected and observed 
frequencies are identical. SPSS adds 0.5 to each observed frequency for a full model; however, this 
has no effect on subsequent values. The table of Goodness-of -f it test statistics also 
reflects a perfectly fitting model. 
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The next three tables are produced by the ASSOCIATION inhtruction and consist of tt.$t\ ot 

all effects individually. effects combined at each order, and effect5 combined at each c,~.cizr ilnd higher 
orders. The table labeled Tests of PARTIAL associations shows rests ul' each two-way atid 
one-way effect. These values are the same as those of Table 16.5, produced by hand calculation. 
Tests of the combined associations at each order are presented in the table labeled Tests that K- 
way effects are zero. In the row labeled 2 is the test of the three two-way associations com- 
bined which, in this case, shows statistical significance using both the likelihood ratio (L . R .  ) and 
Pearson chisq criteria. This output suggests that at least one of the two-way associations is sig- 
nificant by both criteria. The test of the single three-way association is also provided in this table 
when k = 3; it is not significant. In the table labeled Tests that K-way and higher order 
effects are zero, the row labeled 1 contains the test of the combination of all one-way, two- 
way, and three-way associations, significant in this case by both likelihood ratio and Pearson chi- 

- -- 

squ i re  criteria. T h e - r e ~  hCabekd- 2 contains _the lest ~f the-combination - - of all two- and three-way 
associations, and so on. 

The final section of Table 16.10 contains parameter estimates, an alternative way of testing 
effects. Instead of a partial test for each effect, parameter estimates for the effect are tested by divid- 
ing each Coef f. by its standard error (Std. Err. ) to produce a Z-Value and a 95% confidence 
interval (Lower 95 CI and Upper 95 CI).~ These parameter estimates are available only for 
saturated models-models that include all possible effects. Note that if an effect has more than 1 df, 
a single test for the effect is not provided because the parameter estimate for each df is tested 
separately. 

Table 16.11 shows the results of an unspecified (full, saturated) model run through SPSS 
GENLOG. Note that specification of cell weight occurs outside the GENLOG procedure. Output 
begins with a description of observed and expected cell frequencies and percentages for the speci- 
fied model, spelled out in footnote b of the first output table shown. All cell counts are automati- 
cally incremented by 0.5. Although the title of the table includes residuals, they do not appear 
because this is a saturated modei; the observed and expected c o ~ n t s  are eq~a!. The final table shows 
parameter estimates, each shown with its standard error (Std. Error), as well as z value: the Esti- 
mate divided by Std. Error. The final two columns show the 95% confidence interval for each 
parameter estimate. Note that the difference between the parameters and their standard errors for 
SPSS HILOGLINEAR and GENLOG are due to the different ways that the models are parameter- 
ized in the two programs. 

SAS CATMOD syntax and output for MFA appear in Table 16.12. The full model is specified 
by listing the three-way association, P R 0 F E S S * S E X  * R E A D T Y P equal to -r e s p o n s e-, a key- 
word that induces a log-linear model. Unneeded output is suppressed with no  i t e r . The 1 o g 1 i n 
instruction is used; the instructions in this syntax specify that all variables-PROFESS, SEX, 
READTYP-are to be treated the same, that none is the DV. 

After information on description of the design, CATMOD provides details about the response 
profiles.The Maximum Likelihood A n a l y s i s  o f  V a r i a n c e  table containslikelihood 

' ~ h e s e  parameter estimates differ somewhat from those produced by hand calculation (Table 16.9) because of the different 
nlgorithm used bv this program. 
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ratlo C h i - Sq u a r e tests ot each effect ~ncii\~~dually Note that due to d~ffirence$ in the dlgotithnls 
used, these eitimatei d~ffer a b ~ t  trom thoie of SPSS HILOGLINEAR dnd J great deal from thaw ot 

SPSS GENLOG. 
There are also tests of Individual parameter estimates in the follow~ng sectlon (Ana 1 y s  i s 

o f  Maximum L i k e l i h o o d  E s t i m a t e s ) ,  althoughsomeofthesedifferfromboththeones 
shown for hand calculation (Table 16.9) and those produced by SPSS HILOGLINEAR and GEN- 
LOG (Tables 16.10 and 16.11). Chi-Square tests (rather than z )  are given for each of the parameter 
estimates. 

TABLE 16.11 Multiway Frequency Analysis - of Small-Sam* - Example throu&SPSS - 

GENLOG ( ~ n t a Y a n d S e ~ ~ t e d ~ u t p u t ) ~  

GENLOG 
profess sex readtyp 
/MODEL = POISSON 
/PRINT = FREQ ESTlM 
/CRITERIA = CIN(95) ITERATE(20) CONVERGE(.001) DELTA(.5) 
/DESIGN 

Cell Counts and Fiesidualsapb 

I 

aModel: Poisson 

bDesign: Constant + profess + sex + readtyp + profess * sex + profess* 
readtyp + sex readtyp + profess * sex * readtyp 

profess sex readtyp 

1 .OO 1.00 1.00 
2.00 

2.00 1.00 
2.00 

2.00 1.00 1.00 
2.00 

2.00 1.00 
2.00 

3.00 1.00 1.00 
2.00 

2.00 1.00 
2.00 

Expected Observed 

Count 

15.500 
15.500 

10.500 
15.500 

10.500 
30.500 

5.500 
10.500 

5.500 
5.500 

10.500 
25.500 

Count 

15.500 , 

15.500 

10.500 
15.500 

10.500 
30.500 

5.500 
10.500 

5.500 
5.500 

10.500 
25.500 

YO 

9.6% 
9.6% 

6.5% ' 9.6% 

6.5% 
18.9% 

3.4% 
6.5% 

3.4% 
3.4% 

6.5% 
15.8% 

% 

9.6% 
9.6% 

6.5% 
9.6% 

6.5% 
i 8.9"/0 

3.4% 
6.5% 

3.4% 
3.4% 

6.5% 
15.8% 
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Parameter Estimatesb?= 

aThis parameter is set to zero because it is redundant. bModel: Poisson 
c Design: Constant + profess + sex + readtyp + profess * sex + profess * readtyp + 

sex * readtyp + profess * sex *readtyp 885 

h 

- 

- - - 

Parameter 

Constant 
[profess = 1.001 
[profess = 2.001 
[profess = 3.001 
[sex = 1.001 . 
[sex = 2.001 
[readtyp = 1.001 
[readtyp = 2.001 
~profess=l,OO~[sex=l .Oq - 
[profess = l.OO]*[sex = 2.001 
[profess = 2.00]*[sex = 1.001 
[profess = 2.00]*[sex = 2.001 
[profess = 3.00]*[sex = 1.001 
[profess = 3.00]*[sex = 2.001 
[profess = 1 .OO]*[readtyp = 1.001 
[profess = 1 .OO]*[readtyp = 2.001 
[profess = 2,00]*[readtyp = 1.001 
[profess = 2.00]*[readtyp = 2.001 
[profess = 3.00]*[readtyp = 1.001 
[profess = 3.00]*[readtyp = 2.001 
[sex = 1 .OO]*[readtyp = 1.001 
[sex = 1 .OO]*[readtyp = 2.001 
[sex = 2.00]*[readtyp = 1.001 
[sex = 2.00]*[readtyp = 2.001 
[profess = l.OO]*[sex = 1.00]* 
[readtyp = 1 001 
[profess = 1 .00]*[sex = 1.00]* 
[readtyp = 2.001 
[profess = l.OO]*[sex = 1.00]* 
[readtyp = 2.001 
[profess = l.OO]*[sex = 2.00]* 
[readtyp = 1.001 
[profess = l.OO]*[sex = 2.00]* 
[readtyp = 2.001 
[profess = 2.00]*[sex = 1.00]* 
[readtyp = 2.001 
[profess = 2.00]*[sex = 2.00]* 
[readtyp = 1.001 
[profess = 2.00]*[sex = 2.00]* 
[readtyp = 2.001 
[profess = 3.00]*[sex = 1.00]* 
[readtyp = 1.001 
[profess = 3.00]*[sex = 1.00]* 
[readtyp = 2.001 
[profess = 3.00]*[sex = 2.001' 
[readtyp = 1.001 
[profess = 3.00]*[sex = 2.00]* 
[readtyp = 2.001 

I 
I 

Estimate 

3.239 
-.498 

.887 
Oa 

-1.534 
Oa 

-.887 
Oa 

- 1.534 
- TI* -- 

2.600 
Oa 
Oa 
Oa 

.498 
Oa 

.241 
Oa 
Oa 
Oa 

.887 
Oa 
Oa 
Oa 

-.498 

95% Conf~dence I 1 i Interval 

Std. 
Error 

,198 
.322 
.367 

.470 

.367 

592 
- 

.591 

,542 

.641 

.706 

.887 

Z 

16.355 
-1.546 
-2.420 

-3.262 

-2.420 

2.593 
-- - - 

4.401 

.918 

.375 

1.257 

-.561 

o " I  I I I I 

Sig. 

.OOO 

.I22 

.016 

.001 

.016 

.010 

,000 

.359 

.708 

.209 

575 

Oa I 
Oa I 

-1.307 

Oa 

Oa 

Oa 

Oa 

Oa 

Oa 

Oa 

Lower 
Bound 

2.851 
-1 . I29 
-1.605 

-2.455 

-1.606 

.374 
- 

1.442 

-.565 

-1.017 

-.496 

-2.236 

.556 -1.375 .950 

Upper 
Bound 

3.627 
133 

-.I69 

-.612 

-.I69 

2.694 
- - - 

3.758 

1.561 

1.498 

2.271 

1.241 

' I  
.I69 -3.170 
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TABLE 16.12 hIultiway Frequency Analysis of Small-Sample Example through SAS C.-1TT;ClO 
(Syntax and Selected Output) 

p r o c  catmod data=SASUSER.SSMFA; 
w e i g h t  f r eq ;  
model PROFESSXSEX*READTYP=-response_/ 

n o i  t e r ;  
l ' o g l i n  PROFESSISEXIREADTYP; 

run; 

The CATMOD Procedure  
Data Summary 

R e s ~ o n s e ~ -  -- -- PR(IEESS-X*BEADTE R e s p m s e  L e v e l s -  +2 - -- - 

Weight  V a r i a b l e  . FREQ P o p u l a t i o n s  I 
Data Set  SSMFA T o t a l  Frequency 155 
Frequency M i s s i n g  0 O b s e r v a t i o n s  12 

P o p u l a t i o n  P r o f  i l e s  

Sample Sample S i z e  
..................... 

I 155 

Response P r o f  i l e s  

Response PROFESS S E X  READTY?  

Maximum L i k e l i h o o d  A n a l y s i s  

Maximum l i k e l i h o o d  compu ta t i ons  converged.  
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TABLE 16.12 Continued 

Maximum L i k e l i h o o d  A n a l y s i s  o f  Var iance 

Source D F ........................... 
PROFESS 2 
SEX 1 
PRO FESSkSEX 2 
READTYP 1 
PROFESS*READTYP 2 
SEX*READTYP 1 
PROFESS*SEX*READTYP 2 

Chi-Square 
-------------- 

3.46 
0.01 

17.58 
7.61 
2.62 
0.66 
1.89 

Pr > ChiSq 
,------------ 

0.1777 
0.9256 
0.0002 
0.0058 
0.2691 
0.4168 
0.3894 

t i -ke4 +hood R a t  i a  -0- 

Ana l ys i s  o f  Maximum L i k e l i h o o d  Es t imates  

Standard Chi- 
Parameter Es t imate  E r r o r  Square P r  > ChiSq ....................................................................... 
PROFESS I 

2 
SEX 1 
PROFESS*SEX 1 1  

2 1 
READTYP 1 
PROFESS*READTYP 1 1  

2 1 
SEX*READTYP 1 1  
PROFESS*SEXkREADTYP 1 1 1 

2 1 1  

15.5 Some Important Issues 

16.5.1 Hierarchical and Nonhierarchical Models 

A model is hierarchical, or nested, if it includes all the lower effects contained in the highest-order 
association that is retained in the model. A hierarchical model for a four-way design, ABCD, with a 
significant three-way association, ABC, is A X B X C ,  A X B, A X C ,  B X C, and A, B, and C. The 
hierarchical model might or might not also include some of the other two-way associations and the 
D first-order effect. A nonhierarchical model derived from the same four-way design includes only 
the significant two-way associations and first-order effects along with the significant three-way asso- 
ciation; that is, a nonsignificant B X C association is included in a hierarchical model that retains the 
ABC effect but is not included automatically in a nonhierarchical model. 

In log-linear analysis of multiway frequency tables, hierarchical models are the norm (e.g., 
Goodman, 1978; Knoke & Burke, 1980). Nonhierarchical models are suspect because higher order 
effects are confounded with !ower order components. Therefore, it is best to explicitly include com- 
ponent lower order associations when specifying models in general log-linear programs. 
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One major advantage of hierarchical models is the availability of a signiticance test for the dif- 
ference between models. so that the most parsimonious adequately fitting model can be identified 
using inferential procedures. With nonhierarchical models. a statistical test for the difference 
between models is not available unless one of the candidate models happens to be nested in the other. 

SPSS LOGLINEAR and GENLOG, and SAS CATMOD have the Newton-Raphson algorithm . 
for assessing models and are considered general log-linear programs because they do not automati: 
cally impose hierarchical modeling. SPSS HILOGLINEAR is restricted to hierarchical models. 

16.5.2 Statistical Criteria 

A potential source of confusion is that tests of models look for statistical nonsignificance while tests 
of effects look for statistical significance. Both kinds of tests commonly use the same statistics- 
forms of X2. This is usual practice in model-fitti 

16.5.2.1 Tests of Models 

Both Pearson X2 and the likelihood ratio statistic G2 are often available for screening for the com- 
plexity of model necessary to fit data and for testing overall fit of models. Between the two, consis- 
tency favors use of G2 because it is available for testing overall fit, screening, and testing for 
differences among hierarchical models. Also, under some conditions, inadequate expected frequen- 
cies can inflate Type I error rate when Pearson i12 is used (Milligan, 1980). 

In assessing goodness-of-fit for a model, you look for a nonsignificant G2 where the frequencies 
estimated from the model are similar to the observed frequencies. Thus, retention of the null hypoth- 
esis is the desired outcome-an unhappy state of affairs for choosing an appropriate alpha level. In 
order to avoid finding too many "good models, you need a less strict criterion for a, say .10 or .25. 

Further, with very large samples, small discrepancies between expected and observed fre- 
. . - & ,-" - quencies often result in statistical significance, A sign:fizani modzl, s e n  dc - .Q5, may actuaiij; 

have adequate fit. With very small samples, on the other hand, large discrepancies often fail to reach 
statistical significance so that a nonsignificant model, even at a = .25, actually has a poor fit. Choice 
of a significance level, then, is a matter of considering both sample size and the nature of the test. 
With larger samples, smaller tail probability values are chosen. 

16.5.2.2 Tests of Individual Effects 

Two types of tests typically are available for testing individual effects in multiway frequency tables: 
chi-square tests of partial effects and z tests for single df parameter estimates. 

SPSS HILOGLINEAR and SAS CATMOD provide partial G2 tests of all effects in a full 
model. In addition, all programs print parameter estimates and their standard errors, which are con- 
verted to z tests of parameters or, in the case of SAS, X2  tests. However, SPSS HILOGLINEAR prints 
these only for saturated models. 

SPSS LOGLINEAR and GENLOG provide parameter estimates and their associated z tests, 
but no omnibus test for any effect that has more than one degree of freedom. If an effect has more 
than two levels, there is no single inferential test of that effect. Although one can attribute statistical 
significance to an effect if any of its single df tests is significant, no overall tail probability level is 
available. Also, an effect may be statistically significant even though none of its single df parameters 
reaches significance. With only the single df ,- tests of parameters, such an effcct is not identified. 



16.5.3 Strategies for Choosing a hlodel 

If you have one or more models hypothesized a priori, then there is no need for the strategie.4 d ~ s -  
cussed in this section. The techniques in this section are used if you are building a model, or trying 
to find the most parsimonious incomplete model. As in all exploratory modeling, care should be 
taken in overgeneralizing results which may be subject to overfitting and inflated Type I error. 

Strategies for choosing a model differ depending on whether you are using SPSS or SAS. 
Options and features differ among programs. You may find it handy to use one program to screen and 
another to evaluate models. Recall that hierarchical programs automatically include lower order 
components of higher order associations; general log-linear programs require that you explicitly 
include lower order components when specifying candidate hierarchical models. 

1K53.1 SPSS HILOGLTNEAR fHfirarchimt) 

This program provides a test of each individual effect (with partial x2 reported where appropriate), 
simultaneous tests of all k-way effects (all one-way effects combined, all two-way effects combined, 
and so on), and simultaneous tests of all k- and higher-way effects (with a four-way model, all three- 
and four-way effects combined, all two-, three-, and four-way effects combined, and so on). Both 
Pearson and likelihood ratio X2 (c2)  are reported. A strategy that follows the recommendations of 
Benedetti and Brown (1978) proceeds as follows. 

Consider the ABC effect in a four-way design with ABCD. First, look at the tests of all three- 
way effects combined and three-way and four-way effects combined because combined results take 
precedence over tests of individual effects. If both combined tests are nonsignificant, the ABC asso- 
ciation is deleted regardless of its partial test unless this specific three-way interaction has been 
hypothesized beforehand. If the combined test is significant, and the ABC effect is significant, the 
ABC effect is retained in the final model. If some of the tests are significant while others are not, fur- 
ther screening is recoiiimeiided. This process is dernonst:ated in Section 16.6.2. l .  (Recall that the 
cutoff p values for assessing significance depend on sample size. Larger samples are tested with 
smaller p values to avoid including statistically significant but trivial effects.) 

Further screening of effects with ambiguous results (disagreement, say, between G~ and Pear- 
son X2, or a result between a: = .01 and a = .05) proceeds stepwise. SPSS HILOGLINEAR provides 
only backward stepping, in which one starts with all the unzimbiguously significant effects plus all 
ambiguous effects from the initial screening of the full model. The term that is least helpful to the 
model is deleted first, followed by assessment of the remaining terms of the same order. x2 for the 
difference between simpler and more complex models is reported. Terms that do not significantly 
degrade the model when deleted are excluded. 

Note that this stepwise procedure, like others, violates rules of hypothesis testing. Therefore, 
don't take the X2 and probability values produced by the stepping procedure too seriously. View this 
as a search for the most reasonable model, with X2 providing guidelines for choosing among models, 
as opposed to a stricter view that some models are truly significantly better or worse than others. 

16.5.3.2 SPSS GENLOG (General Log-Linear) 

This program provides neither simultaneous tests for associations nor a stepping algorithm. There- 
fore, the procedure for choosing an appropriate model i s  simpler but less flexible. 

A preliminary run with a tull model is used to identify effects whose parameters diRer signif- 
icantly from zero. Recall that each cell of a design has a parameter for each effect and that, if the 
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effect has tnore than two !eveis. the 4 i ~ e  of the parameter for the same effect may be different In the 
different cells. If an effect has a parameter that IS h ~ ~ h l y  .;~gn~ticnnt for any cell. the effect is retained 
If all the parameters for an effect are clearly nonsignificant, the effect is deleted. 

Ambiguous cases occur when some parameters are marginally significant. Subsequent runs 
are made with and without ambiguous effects. In these runs, the significance of parameters is . 
assessed along with the fit of the overall model. The strategy of backward elimination of simple 
effects, as described above, is followed for the safest route to the most reasonable model. 

16.5.3.3 SAS CATMOD and SPSS LOGLINEAR (General Log-Linear) 

Although these programs have no provision for stepwise model building and no simultaneous tests 
of association for each order, they do provide separate tests for each effect in a model, including - 
effects with more than one - df. -- A -- preliminary - run with - - - a full -- model, - - - then, is used to identify candi- 
dates for model testing through the maximum likelihood chi-square test of association. Evaluation of 
models follows the spirit of backward elimination of simple effects as described in Section 16.5.3.1. 

16.6 Complete Example of Multiway 
Frequency Analysis 

Data to illustrate multiway frequency analysis were taken from the survey of clinical psychologists 
described in Appendix B, Section B.3. The example is a hierarchical analysis of five dichotomous 
variables: whether the therapists thought (1) that their clients were aware of the therapist's attrac- 
tion to them (AWARE), (2) the attraction was beneficial to the therapy (BENEFIT), and (3) the 
attraction was harmful to the therapy (HARM), as well as whether the therapists had (4) sought con- 
sultation when attracted to a client (CONSULT), or (5) felt uncomfortable as a result of the attrac- 

1 . . .  
A:-- /nronr\n,tr \  -L:, . .,-. .._-.,.-,.7,.,.. ..--......p. -.-----.- 
i i i i i i  ~ ~ i ~ i ~ i v ~ l  j. i 1113 is iili ihp;uIituIY LLII L L I ~  513, L L L L L L L I ~ L ; I I ~  io ili a modei as opposed to a rriodei in 
which hypothesized effects are specified. Concerns regarding overfitting apply as in all atheoretical 
models. Files are MFA.*. 

16.6.1 Evaluation of Assumptions: Adequacy of Expected Frequencies 

There are 585 psychologists in the sample. Of these, 151 are excluded from the analysis because of 
missing data and because only therapists who had felt attraction to at least one client answered the 
questions used for the analysis. The usable sample, then, consists of 434 psychologists for the hier- 
archical analysis, as seen in the SPSS CROSSTABS run of Table 16.13. The first part of syntax 
COMPUTES a FILTER to assure that cases missing data on any of the variables are omitted from 
the analysis. Then the CROSSTABS instructions request observed frequency COUNTS and 
EXPECTED frequencies for all combinations of 2 X 2 tables. Only a few tables are shown. 

Sample sizes are adequate for the analysis. The 2 X 2 X 2 X 2 X 2 data table contains 32 cells, 
for which a sample of 434 should be sufficient; more than five cases are expected per cell if the 
dichotomous splits are not too bad. All the two-way contingency tables of Table 16.13, are examined 
to determine the adequacy of expected frequencies. The smallest expected frequency, 41.3 for the 
cell in which clients probably were aware of the attraction and the attraction was beneficial, is well 
in excess of the required minimum of 5 cases. Discussion of outliers in the solution appears in the 
section on adequacy of fit of the selected model that follows the section on selection of a model. 
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16.6.2 Hierarchical Log-Linear Analysis 

16.6.2.1 Preliminary Model Screerzing 

The full model is proposed because there are no a priori reasons to eliminate any associations. There- 
fore, screening and model building are used to eliminate associations that do not contribute to 
observed cell frequencies. Table 16.14 contains the information needed to start the model-building 
procedure; the simultaneous tests for effects of each order, each order and higher, and the tests of 
individual association, all requested through the ASSOCIATION instruction. 

Both likelihood ratio and Pearson criteria are used to evaluate the k-way and higher 
order effects and the k-way effects. Note that the probability levels for more than two- 
way associations are greater than 0.05 for the simultaneous tests of both k-way effects and 
k-way and higher order effects. The two sets of simultaneous tests agree that variables are - 

- - -  - 

independent in three-way and higher-order effects. Thtt-the modd need contain m~associations 
greater than two-way." 

TABLE 16.13 Syntax and Partial Output from Preliminary SPSS CROSSTABS RUN 
for Hierarchical Loglinear Analysis 

USE ALL. 
COMPUTE filter-$=(aware < 3 and benefit < 3 and harm < consult < 3 and 

discomf < 3). 
VARIABLE LABEL filter-$ 'aware < 3 and benefit < 3 and harm < consult < 3 and'+ 

' discomf < 3 (FILTER)'. 
VALUE LABELS filter-$ 0 'Not Selected' 1 'Selected'. 
FORMAT filter-$ (fl.O). 
FILTER BY filter-$. 
EXECUTE. 

CROSSTABS 
/TABLES=aware benefit harm BY consult discornf 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED ROW COLUMN. 

CROSSTABS 
/TABLES=aware BY benefit harm 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED ROW COLUMN. 

CROSSTABS 
/TABLES=benefit BY harm 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED ROW COLUMN. 

CROSSTABS 
/TABLES=consult BY discomf 
/FORMAT= AVALUE TABLES 
/CELLS= COUNT EXPECTED ROW COLUMN . 

(continued) 

hAlthough one three-way effecr. BENEF:T by HA!?R,! hy AWARE. approaches the 11 < .01 criterion. the three-way associa- 
tions are not considered for inclusion because the simultaneous tests take precedence over the component assoc~ations. 
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TARLE 16.13 Continued 

Crosstabs 

Was client aware of attraction? *Was there consultation about attraction? Crosstabulation 

- -- pp -- -- - 

Was client aware PROB-NOT Count 
of attraction? Expected Count 

% within Was client 
aware of attraction? 

- 
% within Was there 
consultation about 
attraction? 

YES Count 
Expected Count 
% within Was client 
aware of attraction? 
% within Was there 
consultation about 
attraction? 

Total Count 
Expected Count 
% within Was client 
aware of attraction? 
% within Was there 
consultation about 
attraction? 

The final portion of the table provides the basis of a search for the best model of one- and two- 
way effects. Among the two-way effects, several associations are clearly significant (p < .01): 
AWARE by BENEFIT, AWARE by CONSULT, AWARE by HARM, BENEFIT by CONSULT, 
HARM by DISCOMF, and CONSULT by DISCOMF. Two of the two-way associations are clearly 
nonsignificant: AWARE by DISCOMF and BENEFIT by DISCOMF. The remaining two-way 
effects-BENEFIT by HARM and HARM by CONSULT-are ambiguous (.01 < p < .05) and are 
tested through a stepwise analysis. 

All first-order effects need to be included in the final hierarchical model, most because they 
are highly significant, and HARM because it is part of a significant two-way association. Recall that 
in a hierarchical model a tenn automatically is included if it is a part of an included higher-order 
association. 

Was there consultation 
about attraction? 

NEVER YES Total 
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TABLE 16.13 Continued 

I Was client aware of attraction? *Was there discomfort due to attraction? Crosstabulation 

(continued) 

16.6.2.2 Stepwise Model Selection 

~ 

Was client aware PROB-NOT Count 
of attraction? Expected Count 

% within Was client 
aware of attraction? 
4 / 5 ~ i t h i ~ W t h e r e  - 

discomfort due to 
attraction? 

YES Count 
Expected Count 
O h  within Was client 
aware of attraction? 
% within Was there 
discomfort due to 
attraction? 

Total Count 
Expected Count 
O/O within Was client 
aware of aitracticn? 
% within Was there 
discomfort due to 
attraction? 

7 

Stepwise selection by simple deletion from the model with 8 of the 10 two-way terms is illustrated 
in the SPSS HILOGLINEAR run of Table 16.15. Although 10 steps are permitted by the instruction 
MAXSTEPS(1 O), the selection process stops after the second step because the criterion probability 
(.01) is reached. 

Recall that each potential model generates a set of expected frequencies. The goal of model 
selection is to find the model with the smallest number of effects that still provides a fit between 
expected frequencies and observed frequencies. First, the optimal model must have a nonsignificant 
Likelihood r a t i o  chi square value (cf. Section 16.5.2.1, for choice between Pearson and 
likelihood ratio values). Second, the selected model should not be significantly worse than the next 
more complicated model. That is, if an effect is deleted from a model, that model should not be sig- 
nificantly worse than the model wich the term still ir, it. 

Was there discomfort 
due to attraction? 

NEVER 

119 
107.9 

38.9% 

- 

77.8% 

34 
45.1 

26.6% 

22.2% 

153 
153.0 

35.3% 

100.0% 1 100.OO/~ / 100.0% 
I I 

YES 

187 
198.1 

61 . l %  

66.5% 

94 
82.9 

73.4% 

33.5% 

28 1 
281 .O 

64.7% 

Total 

306 
306.0 

100.0% 

70.5% ~ 

128 
128.0 

100.0% 

29.5% 

434 
434.0 

100.0% 
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TABLE 16.13 Continued 

Was client aware of attraction? 'Was attraction beneficial to therapy? Crosstabulation 

Notice first in Table 16.15 that the first model (before Step 1) includes 8 effects, certain and 
ambiguous, that might be included. This model is not significant, meaning that it provides an acceptable 
fit between expected and observed frequencies, ;2(18) = 24.549, p = .138. At Step 1, effects are 
deleted one at a time. CONSULT by HARM is deleted at Step 1 because eliminating it produces the 
least Chisq Change with p = .0366. This model also is nonsignificant, x2(19) = 28.9 17, p = .067. 

Any further deletion of effects violates the criterion p = .O1; deletion of BENEFIT by HARM 
hasp = .0053 for Chisq Change. Therefore, the model at the end of Step 1 is retained. 

However, the second criterion is that the model should not be significantly different from the 
next more complicated model. The next more complicated model is the initial model that contains 
CONSULT by HARM. Deletion of CONSULT by HARM at Step 1 results in a significant dif- 
ference between the models, x2( l )  = (28.917 - 24.492) = 4.37, p < .05. Therefore, the model at 
Step 1 is unsatisfactory because it is significantly worse than the next more complicated model. 
(Use of a more conservative alpha, for example p < .O 1 ,  would lead to a decision in favor of the best 
model at Step 1 with seven effects.) 

The best model (8 two-way effects) is satisfactory by all criteria. Observed and expected fre- 
quencies based on this model do not differ significantly. Remember that this model iniiudex ail une- 
way effects because all variables are represented in one or more associations. 

L 

Was client aware PROB-NOT Count 
of attraction? Expected Count 

% within Was client 
aware of attraction? 
% within Was attraction 

beneficial to therapy? 
- 

YES Count 
Expected Count 
% within Was client 
aware of attraction? 
O/O within Was attraction 
beneficial to therapy? 

Total Count 
Expected Count 
% within Was client 
aware of attraction? 
% within Was attraction 
beneficial to therapy? 

- 
Was attraction 

beneficial to therapy? 

NEVER 

129 
98.7 

42.2% 

-92.w - 

11 
41.3 

8.6% 

7.9% 

140 
140.0 

32.3% 

1 oo.oO/o 

YES 

177 
207.3 

57.8% 

60.2% 

117 
86.7 

91.4% 

39.8% 

294 
294.0 

67.7% 

1 OO.oO/o 

Total 

306 
306.0 

100.0% 

- 76.5% 

128 
128.0 

100.0% 

29.5% 

434 
434.0 

100.0% 

100.0% 
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'The inodel of choice for explainins the ob\erved frequencies. then. ~ncludes all tit-\[-orclr~ 
effects and the two-way aasociatioi1.i bt.:weet? benefit anti harm. benefit and awarrnesh. benefit ilnd 
consultation, harm and awareness. harm and discomfort. harm and consultation, awarenehs and 
consultation, and discomfort and consultation. Not required in the model are the two-way associa- 
tions between benefit and discomfort or discomfort and harm. 

16.6.2.3 Adequacy of Fit 

Overall evalualion of the model is made on the basis of the likelihood ratio X 2 ,  which, as seen in Table 
16.16, indicates a good fit between observed and expected frequencies. For the model of choice, the 
likelihood ratio value is 24.55 with 18 df and p = .138. Confidence limits around z2 (recall that like- 
lihood ratio is a form of X 2 )  are found by entering X 2  and df for the selected model and the percentage 
for-tbe desired confidet.lce interval-into Smiths0113 (20031 NoncChi.sav - - - -  and running it through 
NoncChi.sps. Results are added to NoncEsav, as seen in Table 16.16. confidence limits SIT 0 to27.49. 
Even the upper value is less than the critical value of 28.87 with 18 df at a = .05. This again shows 
inability to reject the null hypothesis of a good fit between observed and expected frequencies. 

Assessment of fit of the model in individual cells proceeds through inspection of the standard- 
ized residuals for each cell (cf. Section 16.4.3.1). These residuals, as produced by SPSS HILOG- 
LINEAR, are shown in Table 16.17. The table displays the observed frequencies for each cell, the 
expected frequencies for each cell (EXP count), the differences between observed and expected 

TABLE 16.14 Syntax and Edited Output for SPSS HILOGLINEAR Preliminary Run of 
Simultaneous and Component Associations 

HILOGLINEAR 
awarejl 2j befiefit;: 2) harm(! 2) consu!t(l 2) discomf(1 2) 
/CRITERIA ITERATION(20) DELTA(0) 
/PRINT=ASSOCIATION 
/DESIGN. 

Tests that K-way and higher order effects are zero. 

K Dl? L.R. Chisq Prob Pearson Chisq Prob Iteration 

Tests that K-way effects are zero. 

K DF L.R. Chisq Prob Pearson Chisq Prob Iteration 



'TABLE 16.14 Continued 

Tests of PARTIAL associations. 

Effect Name 

aware*benefit*harm*consult 
aware*benefit*harm*discomf 
aware*benefit*consult*discomf 
aware*harm*consult*discomf 
benefit*harm*consult*discomf~ 
awarekbenefit*harm 
aware*benefit*consult 
aware*harm*consult 
benefit*harm*consult 
aware*benefit*discomf 
aware*harm*discomf 
benefit*harm*discomf 
aware*consult*discomf 
benefit*consult*discomf 
harm*consult*discomf 
aware*benefit 
aware *harm 
benefit*harm 
aware*consult 
benefit*consult 
harm* consult 
aware*discomf 
benefit*discomf 
harm*discomf 
consult*discomf 
aware 
benefit 
harm 
consult 
discomf 

L O G  L I N E A R * * * * , * * * *  

DF Partial Chisq qrob Iter 

3 
3 ' 
3 
4 
3 
4 
4 
4 
4 
3 
4 
4 
4 
4 
4 
6 
6 
5 
6 
5 
5 
5 
5 
5 
5 
2 
2 
2 
2 
2 



T,\BI,E 16.15 Syntax and Partial Output from SPSS HILOGLINEAR hlodel Selection RUN for 
Hierarchical Log-Linear Analysis 

HILOGLINEAR 
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2) IMETHOG=BACK\vVARD 
/CRITERIA MAXSTEPS(10) P(.01) ITERATION(20) DELTA(0) 
/PRINT=ASSOCIATION 
/DESIGN aware*benefit aware*consult aware*harm benefit*consult benefit*harm 
consult*discomf consult*harm discomf*harm. 

* * * * * * H I E R A R C H I C A L  L O G  L I N E A R * * * * * *  

Backward ~limination (p = .010)  for DESIGN 1 with generating class 

awareXbenefit 
aware*consult 
aware*ham 
benefit*consult 
benef it*harm 
consult*discomf 
consult*harm 
discomf *harm 

If Deleted Simple Effect is DF L.R.ChisqChange Prob Iter 

aware*benef it 
aware*consul t 
aware * h m  
benefit*consult 
benefit*harm 
corsult*&scopLf 
consult *harm 
di scomf *harm 

Step 1 

The best model has generating class 

aware*benefit 
aware*consult 
aware *ham 
benefit*consult 
benefit*harm 
consult*discomf 
discomf *harm 

Likelihood ratio chi square = 28.91701 DF = 19 P = .067 
.............................................................................. 

If Deleted Simple Effect is DF L. R. Chisq Qlange Prob Iter 

aware*benef it 
aware*consul t 
aware*- 
benefit*consult 
benef itkharm 

1 30.474 .OOOO 4 
1 19.227 .OOOO 4 
1 14.992 .0001 4 
1 13.289 .0003 4 
1 7.784 -0053 4 

(continued) 
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T.4RL.E 16.15 Continued 

* * * * * * H I E R A R C H I C A L  L O G  L I N E A R * * * * * *  ! 
If ~eleted Simple Effect is DF L.R. Chisq Change Prob Iter 

Step 2 

The best model has generating class 

Likelihood ratio chi square = 28 .91701  DF = 1 9  P = .067 
....................................................................... 

I 

* * * * * * H I E R A R C H I C A L  L O G  L I N E A R * * * * * *  

The final model has generating class 

aware*benefit 
aware*consult 
aware* h a m  
benefit*consult 
benefit*ham 
consult*discomf 

c r n - f  * h = m  
-&U--*..L LL-A.... 

The Iterative Proportional Fit algorithm converged at iteration 0. 
The maxim difference between observed and fitted marginal totals is .071 
and the convergence criterion is .250 I 

....................................................................... i 

Goodness-of-fit test statistics 1 I 
Likelihood ratio chi square = 28 .91701  DF = 19 P = .067  

Pearson chi square = 28.04255 DF = 1 9  P = .083  

TABLE 16.16 Data Set Output from NoncChi.sps for Likelihood Ratio (Chi Square) with 95% 
Confidence Limits (lc2 and uc2). 
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TABLE 16.17 Syntax and Partial Output of SPSS HILOCI.INEAR RUN to Evaluate Residuals 

HILOGLINEAR 
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2) 
/CRITERIA ITERATION(20) DELTA(0) 
/PRINT=FREQ RESlD 
/PLOT=RESID NORMPROB 
/DESIGN aware*benefit aware*consult aware*harm benefit*consult benefit*harm 
consult*discomf consult*harm discomf*harm. 

Observed, Expected Frequencies and Residuals. 

OBS EXP Std 
count count Residual R e i d  Factor Code 

aware 
benefit 
harm 
consult 
discomf 
discomf 
consult 
discomf 
discomf 

harm 
consult 
discomf 
discomf 
consult 
discomf 
discomf 

benefit 
harm 
consult 
discomf 
discomf 

consult 
discomf 
discomf 

harm 
consult 
discomf 
discomf 
consult 
discomf 
discomf 

' PROB NOT 
NENER 

NEVER 
NEVER 
NEVER 
YES 
YES 
NEVER 
YES 

YES 
NEVER 
NEVER 
YES 
krE3 
NEVER 
YES 
YES 

NEVER 
NEVER 
NEVER 
YES 

YES 
NEVER 
YES 

YES 
NEVER 
NEVER 
YES 
YES 
NEVER 
YES 

(continued) 
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TABLE 16.17 Continued 
- -- 

Observed, Expected Frequencies and Residuals (continued) 

OBS EXP Std 
Factor Code count count Residual Resid 

aware YES 
benefit NEVER 
harm . NEVER 
consult NEVER 
discom£ NEVER .O 1.3 -1.27 -1.13 
discomf YES .O .7 -.75 -. 87 
consult YES 
dissomf NWFER f .O .9 .06 .66 
discomf . YES .O 1.6 -1.60 -1.26 

harm YES 
consult NEVER 
discomf NEVER 1.0 .6 -41 .54 
discomf YES 3.0 1.2 1.84 1.71 
consult YES 
discomf NEVER .O .7 -.70 -. 83 
discomf YES 6.0 4.0 2.05 1.03 

benefit YES 
harm NEVER 
consult NEVER 
discomf NEVER 3.0 5.4 -2.36 -1.02 
discomf YES 7.0 3.2 3.85 2.17 
consult YES 
dizzanf I'mv-& 10.0 8.5 1.49 . 5 i  
discomf YES 15.0 14.4 .57 .15 

harm YES 
consult NEVEZ. 
discomf NEVER 5.0 4.3 .73 .35 
discomf YES 6.0 8.4 -2.44 -. 84 
consult YES 
discomf NEVER 14.0 10.9 3.08 .93 
discomf YES 57.0 62 .O -4.99 -. 63 

........................................................................... 

Goodness-of-fit test statistics 

Likelihood ratio chi square = 24.54925 DF = 18 P = .I38 
Pearson chi square = 22.01415 DF = 18 P = .231 

....................................................................... 
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frequencies (Residual),  and the standardized deviates (Std R e s i d .  the standardired re\idual 
vaiues from which discrepancies are evaluated). 

Most of the standardized residual values are quite small: only one cell has a value that exceeds 
the critical z value of 1.96. Since the classification table has 32 cells, a standardized residual value of 
2.17 (the largest of the standardized residuals) for one of them is not unexpected; this cell is not 
deviant' enough to be considered an outlier. However, the fit of the model is least effective foi this 
cell, which contains therapists who felt their attraction to clients was beneficial to the therapy, who 
thought their clients were aware of the attraction, and who felt uncomfortable about it, but who never 
felt it harmful to the therapy or sought consultation about it. As seen from the observed frequency 
table, seven of the 434 therapists responded in this way. The expected frequency table shows that, 
according to the model, only about three were predicted to provide this pattern of responses. 

The syntax of Table 16.17 also requests a normalized probability plot of residuals 
(/PLOT=RESID NORMFROB). Figure 16.1 shows the output produced by this request, in which 
observed standardized residuals are seen to be acceptably close to those that are expected (the diag- 
onal line). 

16.6.2.4 Interpretation of the Selected Model 

Two types of information are useful in interpreting the selected model: parameter estimates for the 
model and marginal observed frequency tables for all included effects. 

The log-linear parameter estimate, lambda (Coef f .), and the Z-Value-ratio of the 
Coef f . /Std. Err. (cf. Section 16.4.3.2)-from SPSS LOGLINEAR (available only in syntax) 
are shown in Table 16.18 for each effect included in the model-recall that these are not available 
through HILOGLINEAR for an unsaturated model. Because there are only two levels of each 

Normal Q-Q Plot of Standardized Residuais 

I 
I I I I 

-2 -1 0 1 2 
Observed Value 

FIGURE 16.1 Normal probability plot 
for selected model. 
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variable. each effect i.4 sumrnarire~l by a \inglt. parameter value where one level of the r t kc t  has the 
positive wlue of the parameter and :he other the nqa t i \e  value of the parameter. 

Especiaiiy useful for interpretat~on are the standardized parameter estimates (2-Values). 
Effects with the largest standardized parameter estimates are the most important in influencing the 
frequency in a cell. If the effects are rank ordered by the sizes of their standardized parameter 
estimates, the relative importance of the various effects becomes apparent. With a standardized pa- 
rameter estimate of 8.8 15, the strongest predictor of cell size is whether or not the therapist thought 
the client was aware of the therapist's attraction. The least predictive of all the effects in the model, 
with a standardized parameter estimate of 0.508, is whether the therapist's attraction to the client was 
believed to be harmful to the therapy. (Recall from Table 16.17 that this one-way effect is included 
in the hierarchical model only because it is a component of at least one two-way association; it was 
not statistically significant by itself.) 

Parameter estimates are useful in determining the relative strength of effects and in creating a 
prediction equation, but they do not provide a simple view of the direction of effects. For interpreta- 
tion of direction, the marginal tables of observed frequencies for each effect in the model are useful, 
as illustrated in the CROSSTABS output of Table 16.13. 

The results as displayed in Table 16.13 are best interpreted as proportions of therapists 
responding in a particular way. For example, the BENEFIT marginal subtable (see third subtable) 
shows that 32% (1401434) of the therapists believe that there was never any benefit to be gained 
from the therapist being attracted to a client. The BENEFIT by HARM marginal subtable (next to 
last subtable) shows that, among those who believe that there was no benefit, 64% (90/140) also 
believe there was no harm. Of those who believe there was at least some benetit, 59% (175/294) also 
believe there was at least some harm. 

Table 16.19 summarizes significance tests and their confidence intervals, as found per Smith- 
son (2003). Recall that the expected value of chi square when the null hypothesis is true is equal to 
the df. Table 16.20 summarizes parameter estimates. 

TABLE 16.18 Syntax and Partial Output for SPSS LOGLINEAR Run on Parameter Estimates 

LOGLINEAR 
aware(1 2) benefit(1 2) harm(1 2) consult(1 2) discomf(1 2 )  

/PRINT=ESTIM 
/DESIGN aware*benefit aware*consult aware*harm benefit*consult benefit*harm 
consult*discomf consult*harm discomf*harm aware benefit consult harm discomf. 

* * * * * * * * * L O G  L I N E A R  A N A L Y S I S * * * * * * * *  

Estimates for Parameters 

aware * benefit 
Parameter Coef f . Std. Err. Z-Value Lower 95 CI Upper 95 CI 

1 .4275530136 .08643 4.94693 .25815 .59695 

aware * consult 

Parameter Coeff . Std. Err. Z-Value Lower 95 CI Upper 95 CI 



TABLE 16.18 Continued 

aware * harm 

Parameter Coef f . 

3 .2055847749 

benefit * consult 

Parameter Coef f . 
4 . I915142665 

benefit *.harm 

Parameter Coef f . 
5 .I381059298 

consult * discomf 
Parameter Coeff. 

6 .2649530804 

consult * harm 

Parameter Coef f . 
7 .I182768367 

discomf * harm 

Parameter Coef f . 
8 -3022378758 

aware 

Parameter Coef f . 
9 -7935949466 

benefit 

Parameter Coef f . 
1 0  -.617075264 

consult 

Parameter Coef f . 
11 -.I66275582 

harm 

Parameter Coef f . 
1 2  .0351320444 

discomf 

Parameter Coef f . 
1 3  -.301825163 . . . . . . . . . . . . . . . . . . . . . . . . .  

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.06127 3.35516 .08549 .32568 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.05724 3.34580 .07932 .30370 

Std. Err. Z-Value Lower 9 5  CI Upper 95 CI 

.05766 2.39509 .02509 .25112 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.05507 4.81159 . I5702 .37288 

Std. Err. Z-Value Lower 9 5  CI Upper 95 CI 

.05644 2.09545 .00765 .22891 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.05582 5 .41421 . I9282 .41165 

Std. Err. .z-'jaiue Le:..;er 95 CI Upper 95 CI 

.09003 8 .81471 .61713 .97006 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.08537 -7.22819 - -78440 -. 44975 

Std. Err. Z-Value ~ower 95 CI Upper 95 CI 

.07171 -2.31865 -. 30683 - .02572 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 

.06924 .50742 -. 10057 . I7084 

Std. Err. Z-Value Lower 95 CI Upper 95 CI 



TABLE 16.19 Significance Tests for Hierarchical Model of Therapists' Attraction 
to Clients. N = 434 

- -- -. 

95 % Confidence 

Effect 

Interval for Chi Square 
Partial Association 
Chi Square df = 1 Lov~.er- 

First-order effects: 
Aware 72.20"" 42.73 109.35 
Benefit 55.85"" 30.39 88.98 
Discomfort 38.32"" 17.91 66.43 
Consult 12.68:k* 2.56 30.48 
Harm 0.59 0 7.42 

Second-order effects: 
Benefit by aware 3 1.95"" 13.64 57.95 
Harm by discomfort 28.99"" 1 1.72 53.94 
Discomfort by consult. 21.47** 7.15 43.47 
Aware by consult 15.95"" 4.14 35.45 
Harm by aware 11.71"" 2.14 28.97 
Benefit by consult 9.77"" 1.36 25.86 
Benefit by harm 4.69" 0 17.02 
Harm by consult 4.28" 0 16.23 

* p  < .05. 

* * p <  .01. 

TABLE 16.20 Parameter Estimates for Hierarchical Model of Therapists' 
Attraction to Clients; N = 434, Constant = 1.966 

Log-linear Parameter 
EtTect Estimate (Lambda) Lam bdalSE 

First-order effects: 

Aware 

Benefit 

Discomfort 

Consult 

Harm 

904 

hob.  not Yes Prob. not Yes 

0.794 1 -0.794 1 1 8.815 1 -8.815 1 
L I I I I 

Never Yes Never Yes 

Never Yes Never Yes 

Never Yes Never Yes 

Never Yes Never Yes 



TABLE 16.20 Continued 

Log-linear Parameter 
Estimate (Lambda)  LambdalSE Effect 

Second-order effects: 

Prob. not Yes Prob. not Yes 

Never 
Benefit by aware 

Yes 

Never Yes Never Yes 

Never 
Harm by discomfort 

Yes 

Never Yes Never Yes 

Never 
Discomfort by consult 

Yes 

Never Yes Never Yes 

Prob. not 
Aware by consult 

Yes 

Prob. not Yes Prob. not Yes 

Harm by aware 

Never Yes 

Tq-. P* 
1 L. J+L 

Never Yes 

Benefit by consult 

Never Yes Never Yes 

Never 
Benefit by harm 

Yes 

Never Yes Never Yes 

Never 

Yes 
Harm by consult 
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T,\RL.E 16.21 Checklist for Hierarchical 
Multiway Frequency Analysis 

I .  Issues 

a. Adequacy of expected frequencies 

b. Outliers in the solution 

2. Major analysis . 

a. Model screening 

b. Model selection 

c. Evaluation of overall fit. If adequate: 

( 1 )  Significance tests for each model effect 
and their confidence intervals 

(2 )  Parameter estimates 

3. Additional analyses 

a. Interpretation via proportions 

b. Identifying extreme cells (if fit inadequate) 

A checklist for hierarchical multiway frequency analysis appears in Table 16.2 1. A Results 
section, in journal format, follows for the analysis described. 

Results 

A five-way exploratory frequency analysis was performed to 

develop a hierarchical log-linear model of attraction of thera- 

pists to clients. Dichotomous variables analyzed were whether the 

therapist (1) believed the attraction to be beneficial to the 

client, (2) believed the attraction to be harmful to the client, 

(3) thought the client was aware of the attraction, (4) felt 

discomfort, and (5) sought consultation as a result of the 

attraction. 

Four hundred thirty-four therapists provided usable data for 

this analysis. All two-way contingency tables provided expected 

frequencies in excess of five. After the model was selected, none 

of the 32 cells was an outlier. 
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Stepwise selection by simple deletion of effects using SPSS 

HILOGLINEAR produced a model that included all first-order 

effects and eight of the ten possible two-way associations. The 

model had a likelihood ratio x2 (18) = 24.55 with 95% confidence 

limits from 0 to 27.49, p = .14, indicating a good fit between 

observed frequencies and expected frequencies generated by the 

model. A summary of the model with results of tests of signifi- 

cance (partial likelihood ratio x2) and their 95% confidence lim- 
its is in Table 16.19. A summary of log-linear parameter estimates 

in raw and standardized form appears in Table 16.20. 

Most of the therapists (68%) reported that the attraction 

they felt for clients was at least occasionally beneficial to 

therapy, while a slight majority (52%) also reported that it was 

at least occasionally harmful. Seventy-one percent of the thera- 

pists thought that clients were probably aware of the attraction. 

Most therapists (65%) felt at least some discomfort about the 

attraction: m-d more than half (58%) sought consultation as a 

result of the attraction. 

Of those therapists who thougnt the attraction beneficial to 

the therapy, 60% also thought it harmful. Of those who thought the 

attraction never beneficial, 36% thought it harmhi. Perception 

of benefit was also related to client's awareness. Of those who 

thought their clients were aware of the attraction, 91% thought it 

beneficial. Among those who thought clients unaware, only 58% 

thought it beneficial. 

Those who sought consultation were also more likely to see 

the attraction as beneficial. Of those seeking consultation, 78% 

judged the attraction beneficial. Of those not seeking consulta- 

tion, 53% judged it beneficial. 
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Lack of harm was associated with lack of awarmess. Fifty- 

seven percent of therapists who thought their clients unaware felt 

the attraction was never harmful. Only 28% of those who thought 

their clients aware considered it never harmful. Discomfort was 

more likely to be felt by those therapists who considered the 

attraction harmful to therapy (80%) than by those therapists who 

thought it was not harmful to therapy (49%). Similarly, consulta- 

tion was more likely to be sought by those who felt the attraction 

harmful (71%) .than by those who did not feel it harmful (45%). 

Seeking consultation was also related to client awareness and 

therapist discomfort. Therapists who thought clients were aware 

of the attraction were more likely to seek consultation (80%) than 

those who thought the client unaware (43%). Those who felt discom- 

fort were more likely to seek consultation (69%) than those who 

felt no such discomfort (39%). 

No statistically significant two-way associations were found 

between benefit and discomfort or between awareness and discom- 

fort. None of the higher-order associations reached statistical 

significance. 

16.7 Comparison of Programs 

Five programs are available in SAS, SPSS, and SYSTAT for analysis of multiway frequency tables. 
There are two types of programs for log-linear analysis, those that deal exclusively with hierarchical 
models and general log-linear programs that can handle nonhierarchical models as well (cf. Section 
16.5.1). SPSS GENLOG and LOGLINEAR, SYSTAT LOGLIN and SAS CATMOD are general 
programs for nonhierarchical as well as hierarchical models (cf. Section 16.5.1). SPSS HILOGLIN- 
EAR deals only with hierarchical models, but includes features for stepwise model building (cf. Sec- 
tion 16.5.3). All five programs provide observed and expected cell frequencies, tests of fit of 
incomplete models, and parameter estimates accompanied by their standard errors. Beyond that, the 
programs differ widely. Features of the five programs appear in Table 16.22. 
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TABLE 16.22 Comparisons of Programs for SIultiway Frequency Analysis 

SPSS SPSSHJLOG- SPSSLOG- SAS SYSTAT 
Feature GENLOG LINEAR LINEAR CATMOD LOGLIN 

Input 

Individual case data Yes Yes Yes Yes Yes 

Cell frequencies and indices NoC WEIGHT WEIGHT WEIGHT FREQ 

Cell weights (structural zeros) CSTRUCTURE 

Convergence criteria CONVERGE 

CWEIGHT CWEIGHT Yes ZERO 
CELL 

CONVERGE CONVERGE EPSILON CONV, 
LCONV 

TOL 

No 

Tolerance No 

CIN Level of confidence interval 

Epsilon value for redundancy 
checking EPS 

Specify maximum number of 
iterations MAXITER 

No 

N.A. 

N.A. 

ITER 

HALF 

N.A. 

N.A. 

ITERATE 

No 

N.A. 

N.A. 

ITERATE 

No 

Yes 

Yes 

ITERATION 

No 

N.A. 

N.A. 

Maximum number of halvings 

Stepping options 

Specify maximum no. of steps 

Specify significance level for 
adequate fit N.A. 

N.A. 

N.A. 

Yes 

Yes 

No 

DELTA 

P 

MAXORDER 

No 

No 

No 

No 

DELTA 

N.A. 

N.A. 

N. A. 

Yes 

Yes 

Yes 

DELTA 

N.A. 

N.A. 

N.A. 

No 

Yes 

Yes 

ADDCELL 

N.A. 

N.A. 

N. A 

No 

No 

No 

DELTA 

Specify maximum order of terms 

Force terms into stepping model 

Covatiates (continuous) 

Logit model specification 

Single df partitions & contrasts 

Specify delta for each cell 

Include cases with user-missing 
values INCLUDE INCLUDE INCLUDE 

Specify a repeated measures 
factor (DV only) 

Specify ordered factor(s) 

Poisson model 

Multinomial logit model 

Specify weighted least-squares 
method 

 NO^ 
Yes 

No 

Yes 

 NO^ 
No" 

Default 

Yes 

 NO^ 
No 

No 

Yes 

Yes 

Yes 

No 

Yes 

No 

No 

No 

Yes 

No 
(continued) 

Yes 
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TABLE 16.22 Continued 

SPSS 
GENLOG 

SPSS HILOG- SPSS LOG- 
LINEAR LI1LiAR 

SYSTAT 
LOGLIN Feature 

Output 

Nonhierarchical models Yes 

No 

No 

Yes 

Yes 

No 

Yes 

Yes 

Yes 

No Tests of partial association 

Tests of models with and 
without each item Yes 

Maximum likelihood (,y2) tests 
of association (ANOVA) 
- 

Tests of k-way effects . 

Yes 

No 

No 

No 

Yes 

No 

No 

No 

Yes 

Yes 

No 

No 

Yes 

Yes 

Yes 

Tests of k-way & higher effects Yes 

Pearson model tests Yes Yes 

Likelihood ratio model tests Yes Yes 

Observed & expected 
(predicted) frequencies Yes Yes Yes Yes Yes 

Observed & expected 
probabilities or percentages Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

No 

No 

No 

No 

Yes 

Yes 

No 

No 

No 

No 

No 

No 

Yes 

Yes 

Yes 

No 

Yes 

Yes 

No 

KO 

No 

Yes 

Yes 

No 

No 

No 

Nu 

No 

No 

No 

Yes 

Yes 

Yes 

No 

No 

No 

Yes 

Yes 

Yes 

Raw residuals 

Standardized residuals 

Deviation residuals 

Generalized residuals 

Adjusted residuals 

Freeman-Tukey residuals 

Likelihood ratio components 

Contribution to log likelihood 
for each cell No 

Coeff 

No 

Estimate 

Yes 

Param 

No 

Parameter Log-linear parameter estimates 

Standard error of parameter 
estimate Std. ErrJ Std. Err. Standard 

error 

No 
Ratio of parameter estimate to 

standard error ( z  or t )  

Confidence limits for parameter 
estimates Yes Yes" 

Chi-square tests for parameter 
estlmate Yes 
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TARLE 16.22 Continued 

SPSS SPSS HILOG- SPSS LOG- SAS SYSTAT 
Feature GENLOG LINEAR LINEAR CATMOD LOGI,IN 

Output (corrtinued) 

Multiplicative parameter 
estimates No No No No Yes 

Index of dissimilarity No No No No Yes 

Correlation matrix for 
parameter estimates 

- -  - -  

Covariance matrix for 
parameter estimates 

Yes No Yes Yes Yes 

Yes No No - Ms Yes 

Design matrix Yes No Yes Yes No 

Plots of standardized or adjusted 
residuals vs. observed and 
expected frequencies Yes Yes Yes No No 

Normal plots of adjusted 
residuals Yes Yes Yes No No 

Detrended normal plots of 
adjusted and deviance residuals Yes Yes Yes No NO" 

Raftery's BIC No No No No Yes 

Dissimilarity No No No No Yes 

"Saturated model only. 

'Ava~lable through PPLOT. 

CDone outside the program (see Table 16.1 I ) .  

d ~ o n e  through SPSS COMPLEX SAMPLES LOGISTIC REGRESSION. 

16.7.1 SPSS Package 

Currently there are two programs for handling multiway frequency tables in the SPSS package: 
HILOGLINEAR, which deals with only hierarchical models and GENLOG, which deals with hier- 
archical and nonhierarchical models. 

SPSS HILOGLINEAR, labeled Model Selection in the Loglinear menu, is well suited to 
choosing among hierarchical models, with several options for controlling stepwise selection of 
effects. Simultaneous tests of all k-way effects and of all k-way and higher effects are available for a 
quick screening of the complexity of the model from which to start stepwise selection. Parameter 
estimates and partial tests of association are available, but only for full models. 

SPSS GENLOG does not provide stepwise selection of hierarchical models, although it can be 
used to compare user-specified models of any sort. The program permits specification of continuous 
covariates. Also available is a simple specification of a logit model (in which one  factor is a DV). 
SPSS GENLOG also provides single-degree-of-freedom partitions for contrasts among specified 
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cells (cf. Section 16.4.4). Specltication of a celi we~ghting var~able must occur outside the GENLOC; 
program. 

No inferential tests of model components are provided in  the program. Parameter estimates 
and their z tests are available for any specified model, along with their 95% confidence intervals. 
However, the parameter estimates are reported by single degrees of freedom, so that a factor with 
more than two categories has no omnibus significance test reported for either its main effect or its 
association with other effects (cf. Section 16.5.2.2). No quick screening for k-way tests is available. 
Screening information can be gleaned from a full model run, but identifying an appropriate model 
may be tedious with a large number of factors. Both SPSS programs offer residuals plots. SPSS 
GENLOG is the only program offering specification of Poisson models, which do not require that 
the analysis be conditional on total sample size. 

SPSS LOGLINEAR, available only through syntax, fills in where SPSS HILOGLINEAR 
l e a v m f f  when &eloping amodeLprov&g parameter e s t k t e s f e r  m&ls that arenot s&rate$. 
SPSS LOGLINEAR also may be used for nonhierarchical models and permits specification of con- 
tinuous covariates. SPSS COMPLEX SAMPLES LOGISTIC REGRESSION may be used when a 
dichotomous DV is repeatedly measured on the same cases by defining cases as clusters. 

16.7.2 SAS System I 
SAS CATMOD is a general program for modeling discrete data, of which log-linear modeling is 
only one type. The program is primarily set up for logit analyses where one variable is the DV but 
provision is made for log-linear models where no such distinction is made. The program offers sim- 
ple designation of logit models, contrasts, and single df tests of parameters as well as maximum like- 
lihood tests of more complex components. The program lacks provision for continuous covariates 
and stepwise model building procedures. 

SAS CATMOD uses different algorithms from the other three programs both for parameter 
. . 

estimation arid iiicjcie: i~siiiig. The output iri Tdvie i6.22 compared with that of Tabies i6.iO and 
16.1 1 demonstrates some of the inconsistencies. 

This is the only program that allows specification of factors that are ordered. Also, this is the 
only program that permits multiple DVs that are defined as repeated measurements of the same 
variable. 

i 
16.7.3 SYSTAT System 

SYSTAT LOGLIN is a general program for log-linear analysis of categorical data. The program uses 
its typical MODEL statement to set up the full, saturated, model (i.e., observed frequencies) on the 
left-hand side of the equation, and the desired model to be tested on the right. Structural zeros can be 
specified, and several options are available for controlling the iterative processing of model estima- 
tion. All of the usual descriptive and parameter estimate statistics are available, as well as multiple 
tests of effects in the model, both hierarchical and nonhierarchical. The program also prints outlying 
cells, designated "outlandish." Estimated frequencies and parameter estimates can be saved to a file. 



C H A P T E R  

An Overview of the 
General Linear Model 

17.1 Linearity and the General Linear Model 

To facilitate choice of the most useful technique to answer your research question, the emphasis has 
been on differences among statistical methods. We have repeatedly hinted, however, that most of 
these techniques are special applications of the general linear model (GLM). The goal of this chap- 
ter is to introduce the GLM and to fit the various techniques into the model. In addition to the aes- 
thetic pleasure provided by insight into the GLM, an understanding of it provides a great deal of 
flexibility in data analysis by promoting use of more sophisticated statistical techniques and com- 
puter programs. Most data sets are fruitfully analyzed by one or more of several techniques. Section 
17.3 presents an example of the use of alternative research strategies. 

Linearity and additivity are important to the GLM. Pairs of variables are assumed to have a lin- 
car :e!ationship with each other; that is, it is assumed that relationships between pairs of variables are 
adequately represented by a straight line. Additivity 1s also relevant, because if one set of variables 
is to be predicted by a set of other variables, the effects of the variables within the set are additive in 
the prediction equation. The second variable in the set adds predictability to the first one, the third 
adds to the first two, and so on. In all multivariate solutions, the equation relating sets of variables is 
composed of a series of weighted terms added together. 

These assumptions, however, do not prevent inciusion of vaiiab!es with curvilinear or multi- 
plicative relationships. As is discussed throughout this book, variables can be multiplied together, 
raised to powers, dichotomized, transformed, or recoded so that even complex relationships are eval- 
uated within the GLM. 

17.2 Bivariate to Multivariate Statistics 
and Overview of Techniques 

17.2.1 Bivariate Form 

The GLM is based on prediction or, in jargon, regression. A regression equation represents the value 
of a DV, Y ,  as a combination of one or more IVs, Xs, plus error. The simplest case of the GLM, then, 
is the familiar bivariate regression: 

A + B X + e = Y  (17.1) 
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where B is the change in Y ashociated wi th  3 one-unit change in .Y; .A is a constant rep- 
resenting the value of Y when .Y is 0; and r is a random ~ariable representing error ot 
prediction, 

If X and Yare converted to standard :-scores, :, and s,, they are now measured on the same 
scale and cross at the point where both s-scores equal 0. The constant A automatically becomes 0 
because z, is 0 when z ,  is 0. Further, after standardization of variances to 1,  slope is measured in 
equal units (rather than the possibly unequal units of X and Y raw scores) and now represents strength 
of the relationship between X and Y; in bivariate regression with standardized variables, /? is equal to 
the Pearson product-moment correlation coefficient. The closer P is to 1.00 or - 1.00, the better the 
prediction of Y from X (or X from Y). Equation 17.1 then simplifies to 

As discussed in Chapters 1 and 2, one distinction that is sometimes important in statistics is 
whether data are continuous or discrete.' There are, then, three forms of bivariate regression for sit- 
uations where X and Y are (1) both continuous, analyzed by Pearson product-moment correlation, 
(2) mixed, with Xdichotomous and Y continuous, analyzed by point biserial correlation, and (3) both 
dichotomous, analyzed by phi coefficient. In fact, these three forms of correlation are identical. If the 
dichotomous variable is coded 0-1, all the correlations can be calculated using the equation for Pear- 
son product-moment correlation. Table 17.1 compares the three bivariate forms of the GLM. 

17.2.2 Simple Multivariate Form 

The first generalization of the simple bivariate form of the GLM is to increase the number of IVs, Xs, 
used to predict I: It is here that the additivity of the model first becomes apparent. In standardized 
form: 

That is, Y is predicted by a weighted sum of Xs. The weights, pi, no longer reflect the correlation 
between Y and each X because they are also affected by correlations among the Xs. Here, again, as 
seen in Table 17.1, there are special statistical techniques associated with whether all Xs are contin- 
uous; here also, with appropriate coding, the most general form of the equation can be used to solve 
all the special cases. 

If Y and all Xs are continuous, the special statistical technique is multiple regression. Indeed, 
as seen in Chapter 5, Equation 17.3 is used to describe the multiple regression problem. But if Y is 
continuous and all Xs are discrete, we have the special case of regression known as analysis of vari- 
ance. The values of X represent "groups" and the emphasis is on finding mean differences in Y 

'when  discrete variables have more than two levels, they are dummy variable coded into k - I (df) dichotomous variables to 
eliminate the possibility of nonlinear relationships. In thia section, when we speak ot' statist~cal techniques uslng discrete van- 
ables, we imply that recoding is unnecessary or is handled internally in computer programs designed for the particular analysis. 
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TABLE 17.1 Overview of Techniques in the General Linear XIodel 

A. Bivariate form (Eq. 17.2) 

1. Pearson product-moment correlation: X continuous, Y continuous 

2. Point biserial correlation: X dichotomous, Y continuous 

3. Phi coefficient: X dichotomous, Y dichotomous 

B. Simple multivariate fonn (Eq. 17.3) 

1. M~ltiple~regression: all Xs continuous, Y continuous 

2. ANOVA: all Xs discrete, Y continuous 

3. ANCOVA: some Xs continuous and some discrete, Y continuous 

47 - T w - g m p  disc_riminantanalysis: all Xs continuous, Y dichotomous 

5. Multiway frequency analysis: all Xs discrete, Y is category frequency (of 
dichotomous in logit analysis) 

6. Two-group logistic regression analysis: Xs continuous andlor discrete, Y 
dichotomous 

7. Multilevel modeling: Xs at each level may be continuous or discrete. Ys at 
each level are continuous 

8. Survival analysis: Xs continuous and/or dichotomous, Y continuous (time) 

9. Time series analysis: Xs continuous (time) and dichotomous, Y 
continuous 

C. Full multivariate form (Eq. 17.4) 

I. Canonical correlation: all Xs continuous, all Ys continuous 

2. MANOVA: all Xs discrete, all Ys continuous 

3. klAhCOtA. sume X i  i ~ i i t inuQus  2nd $one dscrete. all Ys continuous 

4. Profile analys~s: all Xs discrete, all Ys continuous and commensurate 

5.  Discrim~nant analysis: all Xs continuous, all Ys discrete 

6. Factor analysis (FA)/principal component analysis (PCA): ali Ys 
continuous. all Xs latent 

7. Structural equations modeling: Xs continuous and/or latent, Ys continuous 
and/or latent 

8. Multiway frequency analysis: all Xs discrete, Y is category frequency 

9. Polychotomous logistic regression analysis: Xs continuous and/or discrete, 
Y discrete 

among groups rather than on predicting Y, but the basic equation is the same. A significant difference 
among groups implies that knowledge of X can be used to predict performance o n  Y 

Analysis of variance problems can be solved through multiple regression computer programs. 
There are as many Xs as there are degrees of freedom for the effects. For example, in a one-way 
design, three groups are recoded into two dichotomous Xs, one representing the first group versus the 
other two and the second representing the second gruup versus the ether two. The third group is those 
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who are not ~n either of the other two groups. Inclusion of a third X would produce sing~~larity 
because i t  is perfectly predictable from the combination of the other two. 

If IVs are factorially combined, main effects and interactions are still coded into a series of 
dichotomous X variables. Consider an example of one IV, anxiety level, divided into three groups and 
a second IV, task difficulty, divided into two groups. There are two X components for the 2 df asso- 
ciated with'anxiety level and one X component for the 1 df associated with task difficulty. An addi- 
tional two X components are needed for the 2 df associated with the interaction of anxiety level and 
task difficulty. The five X components are combined to test each of the two main effects and the inter- 
action or are tested individually if the comparisons coded into each component are of interest. 
Detailed description of analysis of variance through multiple regression is available in Tabachnick 
and Fidell(2007) as well as in such books as Cohen et al. (2003) and Keppel and Zedeck (1989). 

If some Xs are continuous and others are discrete, with Y continuous, we have analysis of 
covaiancg. T h e w t i w s  A h r e  tk-co&atesmd tkedisefete o m  arethe IFkTheeffectsof 1% 
on Yare assessed after adjustments are made for the effects of the covariates on Y. Actually, the GLM 
can deal with combinations of continuous and discrete Ys in much more general ways than tradi- 
tional analysis covariance, as alluded to in Chapters 5 and 6. 

If Y is dichotomous (two groups), with Xs continuous, we have the simple multivariate form of 
discriminant analysis. The aim is to predict group membership on the basis of the Xs. There is a 
reversal in terminology between ANOVA and discriminant analysis; in ANOVA the groups are rep- 
resented by X; in discriminant analysis the groups are represented by Y The distinction, although 
confusing, is trivial within the GLM. As seen in forthcoming sections, all the special techniques are 
simply special cases of the full GLM. 

If Y and all Xs are discrete we have multiway frequency analysis. The log-linear, rather than 
simple linear, model is required to evaluate relationships among variables. Logarithmic transforms 
are applied to cell frequencies and the weighted sum of these cell frequencies is used to predict group 
membership. Because the equation eventually boils down to a weighted sum of terms, it is consid- 
ered here to ue part of the GLWi. 

If Y is dichotomous and Xs are continuous and/or discrete, we have logistic regression analy- 
sis. Again a nonlinear model, in this case the logistic model, is required to evaluate relatiotiships 
among variables. Y is expressed in terms of the probability of being in one or the other level. The lin- 
ear regression equation is the (natural log of the) probability of being in one group divided by the 
probability of being in fhe other group. Because the linear regression equation does appear in the 
model, it can be considered part of the GLM. 

Multilevel modeling deals with a hierarchy of Ys and Xs and equations to relate them. At the 
first level, Ys may be individual scores for each case on a single DV, individual scores for each case 
at a particular time (repeated-measures application of MLM) on a single DV, or scores for each case 
on multiple DVs. Ys at subsequent levels are intercepts and/or slopes over units at lower levels. Xs at 
each level are predictors of scores at that level. Although there are multiple Ys at each level except 
the first one (and even at the first one if there is more than one DV) and may be multiple Xs, they are 
never formed into combinations. Therefore, this is not a true multivariate strategy. 

If Y is continuous and is the time it takes for something to happen, we have survival analysis. 
Xs can be continuous covariates and/or treatment(s), dichotomously coded. Here the equation is 
based on a log-linear rather than a linear model, but like logistic regression may be considered part 
of the GLM. The difference between logistic regression and survival analysis is that the Y in logistic 
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regression is the probability of something happening and in survival analysis the 2' is how long i t  
takes to happen. 

In time-series analysis, Y is continuous, and one X is always time. Intervent~on studies alho 
require at least one dichotomous X, usually a treatment but rarely experimentally manipulated. 

17.2.3 Full .Multivariate Form 

The GLM takes a major leap when the Y side of the equation is expanded because more than one 
equation may be required to relate the Xs to the Ys: 

Root 

where m equals k or p, whichever is smaller, and y are regression weights for the stan- 
dardized Y variables. 

In general, there are as many equations as the number of X or Y variables, whichever is smaller. 
7 -  ., 
\ii nen ihere i: only one Y. Xs are combined to produce one straight-line relationship with t: Once 
there is more than one Y, however, combined Ys and combined Xs may fit together in several differ- 
ent ways. Section 9.1 and Figure 9.1 show how the combination of two or three groups (Ys) and three 
predictors (Xs) might fit together. 

Each combination of Ys and Xs is a root. Roots are called by other names in the special statis- 
tical iechilique ir, which they are developed: discriminant functions, principal components, canoni- 
cal variates, and so forth. Full multivariate techniques need muitidimensioi~al space to describe 
relationships among variables. With 2 df, two dimensions might be needed. With 3 df, up to three 
dimensions might be needed, and so on. 

The number of roots necessary to describe the relationship between two sets of variables may 
be smaller than the number of roots maximally available. For this reason, the error tern  for Equation 
17.4 is not necessarily associated with the mth root. It is associated with the last necessary root, with 
"necessary" statistically or psychometrically defined. 

As with simpler forms of the GLM, specialized statistical techniques are associated with 
whether variables are continuous, as summarized in Table 17.1. Canonical correlation is the most 
general form and the noble ancestor of the GLM where all Xs and Ys are continuous. With appropri- 
ate recoding, all bivariate and multivariate problems (with the exceptions of PCA, FA, MFA, logis- 
tic regression, survival, and time series) could be solved through ca~~onical correlation. Practically, 
however, the programs for canonical correlation tend not to give the k~nds of information usually 
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des~red when one or more of the X or Y v,~rlahle\ 1s cl~wrete Program5 for the "rnult~var~ate general 
Ilne~t model" tend to he r~ch. but tliuch niore d~tficult to ube. 

W ~ t h  dl1 X's d~screte and a11 Y s  continuous, we have rnultlvariate analys~r of variance. The dls- 
crete X variables represent groups, and combinations of Y variables are examined to see how their 

- centroids differ as a function of group membership. If some Xs are continuous, they can be analyzed 
as covariates, just as in ANCOVA; MANCOVA is used to discover how groups differ on Ys after 
adjustment for the effects of covariates. 

If the Ys are all measured on the same scale and/or represent levels of a within-subjects IV, pro- 
file analysis is available-a form of MANOVA that is especially informative for these kinds of data. 
And if there are multiple DVs at each level of a within-subjects IV, doubly-multivariate analysis of 
variance is used to discover the effects of the IVs on the Ys. 

When Y is discrete (more than two groups) and Xs are continuous, the full multivariate form of 
discriminant analysis is used to predict membershb i n  I! 

-- - - 

There is a famill! of procedures-FA and PCA-in which the continuous Ys are measured 
empirically but the Xs are latent. It is assumed that a set of roots underlies the Ys; the purpose of 
analysis is to uncover the set of roots, or factors, or Xs. 

In structural equations modeling, continuous and latent variables are acceptable on both sides 
of the equations, the X side as well as the Y side. For each Y,  whether continuous (an observed indi- 
cator variable) or latent (a factor composed of multiple observed indicator variables) there is an 
equation involving continuous andlor latent Xs. Ys for some equations may serve as Xs for other 
equations, and vice versa. It is these equations that render structural equations modeling part of the 
GLM. 

Finally, if Y is discrete and Xs are continuous and/or discrete, we have logistic regression 
analysis. As for MFA, a nonlinear model, the logistic model, is required to evaluate relationships 
among variables. Y is expressed in terms of the probability of being in one versus any of the other 
levels, with a separate equation for each level of Y but one. For each equation, the linear regression . . 
equation 1s the (nztur.! log of the) prnbability nf being ir, one group divided by ihe piobabiiity uf 
being in any of the other groups. Because the model includes the linear regression equation, it can be 
considered part of the GLM. 

Tables 17.2 and 17.3 show how each techniqut: couid be set up in SPSS anci SAS GLM, along 
with the interpretation of the B weights produced by the program. In some cases, such as logistic 
regression or surviva! ana!ysis, the variables rec~ire  t r a n ~ f o ~ a t i o i i  to counteract the nonlinear 
nature of the relationships within that technique. And, of course, GLM programs do not necessarily 

I 
1 

present the information of greatest interest in the technique. For example, GLM programs do not 
show correlations between Y variables and roots for canonical correlation or factor analyses. 

17.3 Alternative Research Strategies 

For most data sets, there is more than one appropriate analytical strategy, and choice among them 
depends on considerations such as how the variables are interrelated, your preference for interpret- 
ing statistics associated with certain techniques, and the audience you intend to address. -- 

A data set for which alternative strategies are appropriate has groups of people who receive one 
of three types of treatments. behavior modification. short-tern~ psychotherapy, or a waiting-list con- 
trol group. Suppose a great many variables are measured: self-reports of symptoms and moods, 
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T.IRI,E 17.2 Syntax and Interpretation of Coefficients for Techniques in GLhI: Bivariate and 
Simple XIultivariate Farms 

- - - - - - - 

Technique SPSS GLM Syntax SAS G L b I  Syntax Interpreting Weights 

Pearson product- GLM 
moment Y WITH X 
correlation, point. /METHOD = SSTY PE(3) 
biserial correlation, /PRINT = PARAMETER 
phi coefficient . /DESIGN = X. 

Multiple regression GLM 
Y WITH XI  X2 

- -  - - -  /METHOD = SSTYPE(3) 
/ P R I N ~ =  PARAMETER - 

. /DESIGN = X I  X2. 

ANOVA GLM 
YBYX 
/METHOD = SSTY PE(3) 
/PRINT = PARAMETER 
/DESIGN = X. 

GLM 
Y BY X2 WITH XI  
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
/DESIGN = XI X2. 

ANCOVA 

Two-group GLM 
discriminant Y WITH X I  X2 
analysis: Y /METHOD = SSTY'PE(3) 
represents groups, /PRINT = PARAMETER 
coded 0,l /DESIGN = XI X2. 

Multiway frequency GLM 
analysis, Y Y WITH X I  X2 
represents natural /METHOD = SSTYPE(3) 
logarithm of /PRINT = PARAMETER 
frequency, X /DESIGN = X I  X2 
represents cell 

GLM not feasible for 
combination in 

saturated model (no error 
contingency table 

term available) 

p r o c  glm; B for X is the increase in 
m o d e l  Y=X; Y for every one-unit 

run ;  increase in X. 

p r o c  glm; 
m o d e l  Y = X I  X2; 

run ;  
- - - -  

p r o ~  glm; 
c l a s s  =X; 
m o d e l Y = X ;  

run;  

p r o c  glm; 
c l a s s  = X2; 
mode L Y = X I  X2; 

r un ;  

p r o c  g lm;  
mode 1 Y = X I  X2; 
run; 

p r o c  glm; 
mode 1 Y = X I  X2; 

run; 

B for each X is the 
increase in Y for every 
one-unit increase in that 
X 3 d d i n g a k t & e ~  Xs - 
constant. 

B for each df of X is the 
increase in Y for every 
one-unit increase in that 
df of X ,  holding all other 
dfs of X constant. 

B for each df of X 2  is the 
increase in Y for every 
one-unit increase in that 
df of X2 ,  holding all 
other dfs of X2 and XI 
constant. B for XI is the 
increase in Y for each 
one-unit increase in X1, 
holding X2 constant. 

B for each X is the 
increase in Y for every 
one-unit increase in that 
X ,  holding all other Xs 
constant. If Y is greater 
than 0.5, then case is 
predicted to be in group 
coded 1, otherwise in 
group coded 0. 

B for each X is the 
increase in expected 
frequency for a cell by 
considering the effect of 
that cell combination. 
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TABLE 17.2 Continued 
- - -  - 

Technique SPSS GLhl Syntax SAS GLM Syntax Interpreting Weights 

Two-group logistic 
regression analysis, 
Y is the natural 
logarithm of the 
odds of being in a 
group (see Equation 
10.3) 

Multilevel 
modeling: after first 
l e d ,  Y w e  - 
intercepts and 
slopes from lower 
levels; there are 
separate equations 
for each Y 

Survival analysis: Y 
is the probability of 
survival 

Time-series 
analysis: Xs are 
ARIMA parameters 
(see Section 
18.4. I), time, and, 
if present, 
inteiveniion 

GLM p r o c  g l m ;  
Y WITH X I  X2 mode l  Y = X I  X2; 
/METHOD = SSTYPE(3) r u n  ; 
/PRINT = PARAMETER 
/DESIGN = X I  X2. 

GLM p r o c  g l m ;  
Y WITH X I  X2  mode l  Y = X I  X2; 
#vlEWOb SSTYP€(3) - m;- - - -  - 

. /PRINT = PARAMETER 
/DESIGN = X I  X2. 

GLM p r o c  glm; 
Y WITH X I  X2 model  Y = X I  X2; 
/METHOD = SSTYPE(3) run; 
/PRINT = PARAMETER 
/DESIGN = X I  X2. 

GLM p r o c  glm; 
Y WITH X i  X2 model  Y = X I  X2; 
/METHOD = SSTYPE(3) run; 
/PRINT = PARAMETER 
/DESIGN = X I  X2. 

--  

eB for each X is the 
increase in the odds of 
being in one of the 
groups for every one- 
unit increase in that X, 
holding all other Xs 
constant. 

Separately for each 
equation: B for each X is 
thEncEase in Y for 
every one-unit increase 
in that X, holding all 
other Xs constant over 
all equations. 

eB for each X is the 
increase in the 
probability of survival 
for each one-unit 
increase in that X, 
holding all other Xs 
constant. 

B fnr each X i s  the 
increase in Y for every 
one-unit increase in that 
X, holding all other Xs 
constant. 

reports of family members, therapist reports, and a host of personality and attitudinal tests. The 
major goal of analysis is probably to find out if, and on which variable(s), the groups differ after 
treatment. 

The obvious strategy is MANOVA, but a likely problem is that the number of variables 
exceeds the number of clients in some group, leading to singularity. Further, with so many variables, 
some are likely to be highly related to combinations of others. You could choose among them or 
combine them on some rational basis, or you might choose first to look at empirical relationships 
among them. 

A first step in reducing the number of variables might be examination of squared multiple cor- 
relations of each variable with all the others through regression or factor analysis programs. But the 
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TABLE 17.3 Syntax and Interpretation of Coefficients for Techniques in CLSI: Full Xlulti\ariate 
Forms 

Technique SPSS GLM Syntax SAS GLM Syntax Interpreting Weights 

Canonical GLM p r o c  g lm; Separately for each 
correlation: Y1 Y2 WITH XI X2 m o d e l  Y1 Y2 Y: B for each X is the 
Separate /METHOD = SSTYPE(3) = X 1 X2 ; increase in Y for 
analyses for each /PRINT = PARAMETER r u n  ; every one-unit 
set of variables' /DESIGN = XI  X2. increase in that X, 
considered Ys. holding all other Xs 
Canonical and Ys constant. 
variate analysis 

-- 

requires 
specialized 
software. 

MANOVA GLM p r o c  g lm; Separately for each 
Y1 Y2BY X c l a s s  = X; Y: B for each df of X 
/METHOD = SSTYPE(3) mode 1  Y 1  Y 2 = X; is the increase in Y 
/PRINT = PARAMETER r u n  ; for every one-unit 
/DESIGN = X. increase in that df of 

X, holding all other 
Ys and all other dfs of 
X constant. 

MANCOVA G LM p r o c  g lm; Separately for each 
Y1 Y2 BY X2 WITH XI  c l a s s  = X2; Y: B for each df of X2 
!METHOD = S.STYPE(3) mode ! Y ?  Y 2 = X ?  X 2  ; is !he increase in Y 
/PRINT = PARAMETER r u n  ; for every one-unit 
/DESIGN = X1 X2. increase in that df of 

X2, holding all other 
Ys and all other dfs of 
X2 and XI constant. 
B for XI is the 
increase in Y for each 
one-unit increase in 
XI, holding X2 
constant. 

Profile analysis: GLM 
Y1 Y2 BY X 
NVSFACTOR = factorl 2 
Polynomial 
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
NVSDESIGN = factorl 
/DESIGN = X. 

p r o c  g l m ;  Separately for each 
c l a s s  = X; Y: B for each df of X 
mode 1 Y1 Y2 = X; is the increase in Y 
r e p e a t e d f a c t o r l 2  foreveryone-unit 

p r o f  i l e ;  increase in that df of 
r u n ;  X, holding all other 

Ys and all other dfs of 
X constant. 

( ~~o~ l r r nue t l i  
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TARLE 17.3 Continued 

Technique SPSS GLICI Syntax SAS GLICI Syntax Interpreting Weights 

Discriminant G LM 
analysis: Ys are Y1 Y2 WITH X I  X2 
dummy-coded groups /METHOD = SSTYPE(3) 

/PRINT = PARAMETER 
/DESIGN = X1 X2. 

Factor and principal 
components analysis: 
Each X is a factor 
score based on a 
linear combination of 
Ys. 

Structural equations 
modeling: some X 
and/or some Ys are 
factor %cores based (2s 
a linear combination 
of the other. 

Multiway frequency 
analysis: Y is the 
naiurai iogarithm of 
frequency, X 
represents a cell 
combination in 
contingency table 

Polychotomous 
logistic regression 
analysis, each Y is the 
natural logarithm of 
the odds of being in a 
group (see Equation 
10.3). groups are 
dummy-coded. 

G LM 
Y1 Y2 WlTH X1 X2 
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
/DESIGN = X1 X2. 

G LM 
Y1 Y2 WlTH X1 X2 
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
/DESIGN = X1 X2 

GLM 
Y WITH XI  X2 
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
/DESIGN = X I  X2 

GLM not feasible for 
saturated model (no error 
term available) 

GLM 
Y1 Y2 WlTH X1 X2 
/METHOD = SSTYPE(3) 
/PRINT = PARAMETER 
/DESIGN = X1 X2. 

p r o c  glm; 
model  Y1 Y2 
= X I  X2;  run; 

p r o c  g l m ;  
model  Y1 Y 2  
= X I  X2; 

run; 

p r o c  glm; 
model Y1 Y2 
= X I  X2; 

run; 

p r o c  g lm ;  
mode 1 Y 
= X I  X2; 

run; 

Separately for each 
contrast on Y groups 
(e.g., group 1 vs. groups 2 
and 3): B for each X is 
the increase in Y for every 
one-unit increase in that 
X, holding all other Ys 
and all other Xs constant. 
If Y is greater than 0.5, 
then case is predicted to 
be in group coded 1, 
otherwise in one of 
groups coded 0. 

Separately for each Y: B 
for each X is the increase 
in Y for every one-unit 
increase in that X, 
holding all other Ys and 
all other Xs constant. 

Separately for each Y: B 
for each X is the increase 
in Y for every one-unit 
increase in chat X, 
holding all other Ys and 
all other Xs constant. 

B for each Xis the 
increase in expected 
frequency for a cell by 
considering the effect of 
that cell combination. 

p r o c  glm; Separately for each Y, eB 
model Y1 Y2 for each X is the increase 
= X I  X2; in the odds of being in 

run; one of the groups for 
every one-unit increase In 
that X. holding all other 
Ys and all other Xs 
constant. 



SMCc ~ n ~ g h t  or misfit not provide \ufficient  inti)^-rn:ition l i w  a Judicious decision a b u ~ i t  ~ h l c h  ~ a r i -  
ables to delete and/or combine. If not, the next likely step is a principal component analysis on the 
pooled within-cells correlation matrix. 

The usual procedures for deciding the number of components and type of rotation are fol- 
lowed. Out of this analysis come scores for each client on each component and some idea of the 
meaning of each component. Depending on the outcome, subsequent strategies might differ. If the 
principal components are orthogonal, the component scores can serve as DVs in a series of univari- 
ate ANOVAs, with adjustment for experimentwise Type I error. If the components are correlated, 
then MANOVA is used with component scores as DVs. The stepdown sequence might well cure- 
spond to the order of components (the scores on the first component enter first, and so on). 

Or you might want to analyze the component scores through a discriminant analysis to learn, 
for instance, that differences between behavior modification and short-tern~ psychotherapy are most 
notable on components loaded heavily with attitudes and self-reports, but differences between the 
treated groups and the control group are associated with components loaded with therapist reports 
and personality measures. 

You could, in fact, solve the entire problem through discriminant analysis or logistic regres- 
sion. Both types of analyses protect against multicollinearity and singularity by setting a tolerance 
level so that variables that are highly predicted by the other variables do not participate in the solu- 
tion. Logistic regression is especially handy when the predictors are a mix of many different types of 
variables. 

These strategies are all "legitimate" and simply represent different ways of getting to the same 
goal. In the immortal words spoken one Tuesday night in the Jacuzzi by Sanford A. Fidell, "You 
mean you only know one thing, but you have a dozen different names for it?" 
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A A Skimpy Introduction 
to Matrix Algebra 

The purpose of this appendix is to provide readers with sufficient background to follow, and duplicate 
as desired, calculations illustrated in the fourth sections of Chapters 5 through 14. The purpose is not to 
provide a thorough review of matrix algebra or even to facilitate an in-depth understanding of it. The 
reader who is interested in more than calculational rules has several excellent discussions available, 
particularly those in Tatsuoka (197 l), Carroll, Green, and Chaturvedi (1997), and Rummel ( 1970). 

Most of the algebraic manipulations with which the reader is familiar-addition, subtraction, 
multiplication, and division-have counterparts in matrix algebra. In fact, the algebra that most of us 
learned is a special case of matrix algebra involving only a single number, a scalar, instead of an 
ordered array of numbers, a matrix. Some generalizations from scalar algebra to matrix algebra seem 
"natural" (i.e., matrix addition and subtraction) while others (multiplication and division) are con- 
voluted. Nonetheless, matrix algebra provides an extremely powerful and compact method for 
manip~!a:lng sets of niir;tbers to anive at desirabie staiisticai products. 

The matrix calculations illustrated here are calculations performed on square matrices. Square 
matrices have the same number of rows as columns. Sums-of-squares and cross-products matrices, 
variance-covariance matrices, and correlation matrices are all square. In addition, these three very 
commonly encountered matrices are symmetrical, having the same value in row 1, column 2, as in 
ce!u=n 1, :ow 2, and so forth. Symiiietilcai matrices are mirror images of themselves about the main 
diagonal (the diagonal going from top left to bottom right in the matrix). 

There is a more complete matrix algebra that includes nonsquare matrices as well. However, 
once one proceeds from the data matrix, which has as many rows as research units (subjects) and as 
many columns as variables, to the sum-of-squares and cross-products matrix, as illustrated in Sec- 
tion 1.6, most calculations illustrated in this book involve square, symmetrical matrices. A further 
restriction on this appendix is to limit the discussion to only those manipulations used in the fourth 
sections of Chapters 5 through 14. For purposes of numerical illustration, two very simple matrices, 
square, but not symmetrical (to eliminate any uncertainty regarding which elements are involved in 
calculations), will be defined as follows: 
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A.l 'The Trace of a Matrix 

The trace of a matrix is the sum of the numbers on the diagonal that runs from the upper left to lower 
right. For matrix A, the trace is 16 (3 + 5 + 8); for matrix B it is 19. If the matrix is a sum-of-squares 
and cross-products matrix, then the trace is the sum of squares. If it is a variance-covariance matrix, 
the trace is the sum of variances. If it is a correlation matrix, the trace is the number of variables (each 
having contributed a value of 1 to the trace). 

A.2 Addition or Subtraction of a Constant 
to a Matrix 

If one has a matrix, A, and wants to add or subtract a constant, k, to the elements of the matrix, one 
simply adds (or subtracts) the constant to every element in the matrix. 

If k = -3. then 

A.3 Multiplication or Division of a Matrix 
by a Constant 

Multiplication or division of a matrix by a constant is a straightforward process. 
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and 
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Numerically, if k = 2, then 

A.4 Addition and Subtraction of Two Matrices 

These procedures are straightforward, as well as useful. If matrices A and B are as defined at the begin- 
ning of this appendix, one simply performs the addition or subtraction of corresponding elements. 

and 

= d - ~ i  e - v  b - s  f - w l  c-rl  
1 , g - x  h - y  i - r  

For the numerical example: 



Calculatinn of LI difference between two matrices is requ~red when. for instance. one des~res a 
residuals matrix, the matrix cibtaiiird bq siibtracting a reproduced matrix from an obtained matrix (as 

in factor analysis, Chapter 13). Or, if the matrix that is subtracted happens to consist of columns with 
appropriate means of variables inserted in every slot, then the difference between it and a matrix of 
raw scores produces a deviation matrix. 

A.5 Multiplication, Transposes, and Square 
Roots of Matrices 

Matrix multiplication is both unreasonably complicated and undeniably useful. Note that the 0th ele- 
ment of the resulting matrix is a function of row i of the first matrix and column j of the second. 

Numerically, 

Regrettably, AB # BA in matrix algebra. Thus 

If another concept of matrix algebra is introduced, some useful statistical properties of matrix 
algebra can be shown. The transpose of a matrix is indicated by a prime ( ' )  and stands for a 
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rearrangement of the element\ of the matrlu such that the first roLv hecome< the first column. the \cc 

ond row the ~econd column. and so forth Thus 

When transposition is used in conjunction with multiplication, then some advantages of matrix mul- 
tiplication become clear, namely, 

The elements in the main diagonal are the sums of squares and those off the diagonal are cross 
products. 

Had A been multiplied by itself, rather than by a transpose of itself, a different result would 
have been achieved. 

If AA = C, then c"' = A. That is, there is a parallel in matrix algebra to squaring and taking the 
square root of a scalar, but it is a complicated business because of the complexity of matrix multipli- 
cation. If, however, one has a matrix C fmm which a square root is desired (as i:: canonical coiiela- 
tion, Chapter 12), one searches for a matrix, A, which, when multiplied by itself, produces C. If, for 
example, 

then 



A.6 Matrix "Division" 
(Inverses and Determinants) 

If you liked matrix multiplication, you'll love matrix inversion. Logically, the process is analogous 
to performing division for single numbers by finding the reciprocal of the number and multiplying 
by the reciprocal: if a -  = l /a ,  then (a)(a- ') = a/a = 1. That is, the reciprocal of a scalar is a 
number that, when multiplied by the number itself, equals 1. Both the concepts and the notation are 
similar in matrix algebra, but they are complicated by the fact that a matrix is an array of numbers. 

To determine if the reciprocal of a matrix has been found, one needs the matrix equivalent of 
the 1 as employed in the preceding paragraph. The identity matrix, I, a matrix with I s  in the main 
diagonal and zeros elsewhere, is such a matrix. Thus 

Matrix division, then, becomes a process of finding A-' such that 

A-'A = A A - 1  = I (A. 10) 

One way of finding A- ' requires a two-stage process, the first of which consists of finding the deter- 
minant of A, noted I A I . The determinant of a matrix is sometimes said to represent the general- 
ized variance of the matrix, as most readily seen in a 2 X 2 matrix. Thus we define a new matrix as 
fr?l!c?\us: 

I D I  = a d - b c  (A. 1 1 )  

If D is a variance-covariance matrix where a and d are variances while b  and c are covariances, then 
ad  - bc represents variance minus covariance. It is this property of determinants that makes them 
useful for hypothesis testing (see, for example, Chapter 7, Section 7.4, where Wilks' lambda is used 
in MANOVA). 

Calculation of determinants becomes rapidly more complicated as the matrix gets larger. For 
example, in our 3 by 3 matrix, 

IAI = a ( e i - f h ) + b ( f g - d i ) + c ( d h - e g )  (A. 12) 

Should the determinant of A equal 0, then the matrix cannot be inverted because the next operation 
in inversion would involve division by zero. Multicollinear or singular matrices (those with variables 
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that are linear combinativnx of one ~lnother, ;IS diccusseci i n  Chapter -4) h a ~ e  ~ e r o  determinant that 

prohibit inversion. 
A full inversion of A is 

(A. 13) 
r e i - f h  c h - b i  b f - c e 1  

a i -cg  cd -a f  

d h - e g  b g - a h  ae -bd  1 
Please recall that because A is not a variance-covariance matrix, a negative determinant is pos- 

sible, even somewhat likely. Thus, in the numerical example, 

and 

Confirm that, within rounding error, Equation A. 10 is true. Once the inverse of A is found, "division" 
by it is accomplished whenever required by using the inverse and performing matrix multiplication. 

A.7 Eigenvalues and Eigenvectors: Procedures 
for Consolidating Variance from a Matrix 

We promised you a demonstration of computation of eigenvalues and eigenvectorb for a matrix, so 
here it is. However, you may well find that this discussion satisfies your appetite for only a couple of 
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hours. Dur~ng that titne, rouncl up Tatsuokn ( 197 1 1. zet the cat off your ta~ol-ite chair. and prepare tor 
an intelligibie, if somewhat lengthy, description uf the same subject. 

Most of the multivariate procedures rely on eigenvalues and their corresponding eigenvectors 
(also called characteristic roots and vectors) in one way or another because they consolidate the vari- 
ance in a matrix (the eigenvaliie) while providing the linear combination of variables (the eiyenvec- 
tor) to do it. The coefficients applied to variables to form linear combinations of variables in all the 
multivariate procedures are rescaled elements from eigenvectors. The variance that the solution 
"accounts for" is associated with the eigenvalue and is sometimes called so directly. 

Calculation of eigenvalues and eigenvectors is best left up to a computer with any realistically 
sized matrix. For illustrative purposes, a 2 X 2 matrix will be used here. The logic of the process is 
also somewhat difficult, involving several of the more abstract notions and relations in matrix alge- 
bra, including the equivalence between matrices, systems of linear equations with several unknowns, 
and roots of polynomial equations. 

Solution of an eigenproblem involves soiution of the following equation: 

(D - i1) v = 0 (A. 14) 

where i, is the eigenvalue and V the eigenvector to be sought. Expanded, this equation becomes 

or: by applying Equation A.5, 

(A. 15) 

If one considers the matrix D, whose eigenvalues are sought, a variance-covariance matrix, one can 
see that a solution is desired to "capture" the variance in D while rescaling the elements in D by v ,  
and v2 to do so. 

It is obvious from Equation A. 15 that a solution is always available when v ,  and v2 are 0. A 
nontrivial solution may also be available when the determinant of the leftmost matrix in Equation 
A. 15 is 0. ' That is, if (following Equation A. I I )  

( u - i ) ( d - i ) - b c = O  (A. 16) 

' ~ e a d  T~~tsuoka i 197 1 ): a lnatrlr is 5a1d to be positive Jclinite when all ;., 0, positive sernidefin~te when all i ,  2 0. and ill- 

conditioned when some ;.; < 0. 
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then there may exist values of E. and values of I , ,  and \,, that satisfy the equation and are not 0. Hou - 
ever. expansion of Equation '4.16 gives a polynorni:~.! equation, ir? /., of degree 2 :  

i2- (a + d ) i  + ad - bc = 0 (A. 17) 

Solving for the eigenvalues, A, requires solving for the roots of this polynomial. If the matrix has cer- 
tain properties (see footnote l) ,  there will be as many positive roots to the equation as there are rows 
(or columns) in the matrix. 

If Equation A. 17 is rewritten as xA2 + y l  + z = 0, the roots may be found by applying the fol. 
lowing equation: 

For a numerical example, consider the following matrix. 

Applying Equation A. 17, we obtain 

The roots to this polynomial may be found by Equation A. 18 as follows: 

and 

(A. 18) 

(The roots could also be found by factoring to get [ A  - 61 [l - 11.) 
Once the roots are found, they may be used in Equation A. 15 to find v ,  and v2,  the eigenvec- 

tor. There will be one set of eigenvectors for the first root and a second set for the second root. Both 
solutions require solving sets of two simultaneous equations in two unknowns, to wit, for the first 
root. 6, and applying Equation A.15. 
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so that 

and 

When v ,  = I and v2 = 1, a solution is found. 
For the second root, 1, the equations become 

so that 

4 v ,  + lv, = 0 

and 

When v l  = - 1 and v2 = 4, a solution is found. Thus the first eigenvalue is 6, with [l, 11 as a cor- 
responding eigenvector, while the second eigenvalue is 1, with [ - 1,4] as a corresponding eigenvector. 

Because the matrix was 2 X 2, the polynomial for eigenvalues was quadratic and there were 
two equations in two unknowns to solve for eigenvectors. Imagine the joys of a matrix 15 X 15, a 
polynomial with terms to the 15th power for the first half of the solution and 15 equations in 15 
unknowns for the second half. A little more appreciation for your computer, please, next time you 
use it! 
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B Research Designs for 
Complete Examples 

B.l Women's Health and Drug Study 

Data used in most of the large-sample examples were collected with the aid of a grant from the 
National Institute on Drug Abuse (#DA 00847) to L. S. Fidell and J. E. Prather in 1974-1976. Meth- 
ods of collecting the data and references to the measures included in the study are described here 
approximately as they have been previously reported (Hoffman & Fidell, 1979). 

Method 

A structured interview, containing a variety of health, demographic, and attitudinal measures, was 
given to a randomly selected group of 465 female, 20- to 59-year-old, English-speaking residents of 
the San Fernando Valley, a suburb of Los Angeles, in February 1975. A second interview, focusing 
primariiy on health variables but also containing the Bem Sex Role Inventory (BSRI; Bem, 1974) 
and the Eysenck Personality Inventory (EPI; Eysenck & Eysenck, 1963), was conducted with 369 
(79.4%) of the original respondents in February 1976. 

The 1975 target sample of 703 names was approximately a .003 probability sample of appro- 
priately aged female residents of the San Fernando Valley and was randomly drawn from lists pre- 
pared by listers during the weeks immediately preceding the sample selection. Lists were prepared 
for census blocks that had been randomly drawn (proportional to population) from 217 census 
tracks, which were themselves randomly drawn after they were stratified by income and assigned 
probabilities proportional to their populations. Respondents were contacted after first receiving a let- 
ter soliciting their cooperation. Substitutions were not allowed. A minimum of four callbacks was 
required before the attempt to obtain an interview was terminated. The completion rate for the target 
sample was 66.1 %, with a 26% refusal rate and a 7.9% "unobtainable" rate. 

The demographic characteristics of the 465 respondents who cooperated in 1975 confirmed 
the essentially white, middle- and working-class composition of the San Fernando Valley and 
agreed, for the most part, with the profile of characteristics of women in the valley that was calcu- 
lated from 1970 Census Bureau data. The final sample was 91.2% white, with a median family 
income (before taxes) of $17,000 per year and an average Duncan scale (Featherman, 1973) socio- 
economic level (SEL) rating of 5 1. Respondents were also well educated ( 1  3.2 years of school corn- 



Rc.\eal-c.h Design\ f o r  Complete Esaniplcs 935 

pleted, on average) and predominantly Protestant (38'2.). with 36'+ Catholic. 2OLZ- Jewish. and the 
remainder "none" or "other." A total of 52.9% worked (either S~ll-tirne~-3?.5~7c-or part-time- 
19.4%). Seventy-eight percent were living with husbands at the time of the first interview, with 9% 
divorced. 6% single, 3% separated, 3% widowed, and fewer than 1 % "living together." Altogether, 
82.4% of the women had children; the average number of children was 2.7, with 2.1 children, on the 
average, still living in the same house as the respondent. 

Of the o&inal 465 respondents, 369 (79.4%) were re-interviewed a year later. Of the 96 
respondents who were not re-interviewed, 5 1 refused, 36 had moved and could not be relocated, 8 
were known to'be in the Los Angeles area but were not contacted after a minimum of 5 attempts, and 
1 was deceased. Those who were and were not re-interviewed were similar (by analyses of variance) 
on health and attitudinal variables. They differed, however, on some demographic measures. Those 
who were re-interviewed tended to be higher-SEL, higher-income white women who were better- 
educated, were older, and had experienced significantly fewer life change units (Rahe, 1974) in 
1975. 

The 1975 interview schedule was composed of items assessing a number of demographic, 
health, and attitudinal characteristics (see Table B. I). Insofar as possible, previously tested and val- 
idated items and measures were used, although time constraints prohibited including all items from 
some measures. Coding on most items was prearranged so that responses given large numbers 
reflected increasingly unfavorable attitudes, dissatisfaction, poorer health, lower income, increasing 
stress, increasing use of drugs, and so forth. 

The 1976 interview schedule repeated many of the health items, with a shorter set of items 
assessing changes in marital status and satisfaction, changes in work status and satisfaction, and so 
forth. The BSRI and EPI were also included, as previously mentioned. The interview schedules for 
both 1975 and 1976 took 75 minutes on average to administer and were conducted in respondents 
homes by experienced and trained interviewers. 

To obtain median vai~ies for :he rnasczline and feminine scores of the BSRI for a comparable 
sample of men, the BSRI was mailed to the 369 respondents who cooperated in 1976, with insti-uc- 
tions to ask a man near to them (husband, friend, brother, etc.) to fill out and return it. The completed 
BSRI was received from 162 (46%) men, of whom 82% were husbands, 8.6% friends, 3.7% fiances, 
1.9% brothers, 1.2% sons, 1.2% ex-husbands, 0.6% brothers-in-law, and 0.6% fathers. Analyses of 
variance were used to compare the demographic characteristics of the men who returned the BSRI 
with those who did not (insofar as such characteristics could be determined by responses of the 
women to questions in the 1975 interview). The two groups differed in that, as with the reinterviewed 
women, the men who responded presented an advantaged socioeconomic picture relative to those 
who did not. Respondents had higher SEL2 ratings, were better educated, and enjoyed higher 
income. The uriweighted averages of the men's and women's median masculine scores and median 
feminine scores were used to split the sample of women into those who were feminine, masculine, 
androgynous, and undifferentiated. 

B.2 Sexual Attraction Study 

Data used in the large-sample multiway frequency analysis example (Section 7.6) were collected in 
1984 as part of a survey assessing issues surrounding the nature of sexual attraction to clients among 
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TABLE B.l  Description of Some of the Variables Available from 1975-1976 Interviews 
-- 

Variable Abbreviation Brief Description Source 

Demographic 
variables 

Socioeconomic ' SEL, SEL2 Measure of deference accorded employment Featherman ( 1973), 
level categories (SEL2 from second interview) update of 

Duncan Scale 

Education EDUC Number of years completed 
EDCODE Categorical variable assessing whether or not 

education proceeded beyond high school 

Income INCOME Total family income before taxes 
INCODE Categorical variable assessing family 

income 

Age AGE Chronological age in 5-year categories 

Marital status MARITAL A categorical variable assessing current 
marital status 

MSTATUS A dichotomous variable assessing whether 
or not currently married 

Parenthood CHILDREN A categorical variable assessing whether or 
not one has children 

Ethnic group RACE A categorical variable assessing ethnic 
membership affiliation 

Employment EMPLMNT A categorical variable assessing whether or 
status not one is currently employed 

WORKSTAT A categorical variable assessing current 
employment status and, if not, attitude 
toward unemployed status 

Religious 
affiliation 

Attitudinal 
variables 

RELIGION A categorical variable assessing religious 
affiliation 

Attitudes toward ATTHOUSE 
housework 

Attitudes toward ATTWORK 
paid work 

Attitudes toward ATTROLE 
role of women 

Locus of control CONTROL 

Frequency of experiencing various favorable Derived from 
and unfavorable attitudes toward Johnson (195.5) 
homemaking 

Frequency of experiencing various favorable Johnson ( 1955) 
and unfavorable attitudes toward paid work 

Measure of conservative or liberal attitudes Spence and 
toward role of women Helmreich ( 1972) 

Measure of control ideology: internal or Rotter ( 1966) 
external 
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TABLE B.l Continued 

Variable Abbreviation Brief Description Source 

Attitudinal 
variables (cont.) 

Attitudes toward ATTMAR Satisfaction with current marital status From Burgess & 
marital status LOC ke ( 1960); 

Locke &Wallace 
(1959); and 
Rollins & 
Feldman (1 970) 

Personality 
variables 

Self-esteem 

Neuroticism- 
stability index 

Introversion- 
extraversion 
index 

Androgyny 
measure 

Health variables 

Menta! health 

Physical health 

Number of visits 

Use of psycho- 
tropic drugs 

Use of psycho- 
tropic and 
over-the- 
counter drugs 

Attitudes toward 
medication 

Life change 
units 

ESTEEM Measures of self-esteem and confidence in Rosenberg (1965) 
various situations 

NEUROTIC A scale derived from factor analysis to Eysenck & 
measure neuroticism vs. stability Eysenck ( I  963) 

INTEXT A scale derived from factor analysis to Eysenck & 
measure introversion vs. extraversion Eysenck (1963) 

ANDRM A categorical variable based on femininity Derived from Bem 
and masculinity (1974) 

MENHEAL 

PHYWEAL 

mrr s ~ n n  o 
I IlVICURCJ 

DRUGUSE 

PSYDRUG 

ATTDRUG 

STRESS 

Frequency count of mental health problems Langer (1962) 
(feeiing somewhi apart, can't get alone. u 

etc.) 
Frequency count of problems with various 

body systems (circulation, digestion. 
etc.), general description of health 

Frequency count of visits to physical and 
mental health professionals 

A frequency, recency measure of Balter & Levine 
involvement with prescription and (1971) 
nonprescription major and minor 
tranquilizers, sedatives-hypnotics, 
antidepressants, and stimulants 

DRUGUSE plus a frequency, recency 
measure of over-the-counter rnood- 
modifying drugs 

Items concerning attitudes toward use of 
medication 

Weighted items reflecting number and Rahe (1974) 
importance of change in life situation 
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dren. who were diagnosed as learning-disabled. whose parents agreed to be ~ncluded i n  the data 
bank. and whose parents answered a question about the child's preference for playmates' age. Avail- 
able answers to this question were: ( I )  older, (2) younger, (3) same age, and (4) no preference. The 
latter two categories were combined into a single one for the Chapter 8 analysis because either cate- 
gory by itself would have been too small. Of the 26 1 children tested between 1972 and 1984, 177 
were eligible for inclusion in the Chapter 8 sample. 

For the entire sample of 261 cases, average age is 10.58 years with a range of 5 to 61 years. 
(The Chapter 8 sample consists of school-age children only.) About 75% of the entire sample is 
male. At the time of testing, 63% of the entire sample attended public school; 33% were enrolled in 
various types of private schools. Of the 94% of parents who revealed their educational level, moth- 
ers had completed an average of 13.6 years of schooling and fathers had completed an average of 
14.9 years. 

B.4 Reaction Time to Identify Figures 

Data for this study were collected by Damos (1989). Twenty right-handed males were required to 
respond "standard or "mirror" on a keypad as quickly as possible to a stimulus (the letter G or a 
symbol) and its mirror image. Each trial consisted of 30 presentations of the stimulus and 30 pre- 
sentations of its mirror image, five presentations in each of six orientations: upright (O), 60, 120, 180, 
240, and 300 degrees of rotation. In all, the experiment required ten sessions over two consecutive 
weeks. Each session had four blocks of nine trials distributed over morning and afternoon periods. 
Thus, each subject made 21,600 responses during the study. Half the subjects were given stimulus G 
in the first week and a symbol in the second week; the others participated only for one week and were 
given the symbol stimulus. Order of presentation of all stimuli was random on all trials. 

The two DVs were average correct reaction time and error rate. Responses to 60" of absolute . m A0 rotatlon were averaged w~th  those of JOO", and responseb to i ~ v  %ere a\eraged with those nf 240". 
Averages were calculated separately for standard and mirror-image trials. Linear regression on the 
averages for each subject in each session yielded a slope and intercept. 

Data selected for analysis in Section 8.6.2 were slopes and intercepts from the first faur ses- 
sions: morning and afternoon sessions for days 1 and 2 of the first week, bo that practice effects could 
be oherved. Only the trials on which the subject responded "standard" were used. Thgs, ezch of the 
20 subjects provided eight scores, and a slope and an intercept for each of the four sessions. 

B.5 Field Studies of Noise-Induced 
Sleep Disturbance 

These data are from field studies of the effects of nighttime noise on sleep disturbance reported by 
Fidell et al. (1995). Measurements were taken in the vicinity of two airports and one control site. Air- 
ports were Castle Air Force Base in Merced, CA, neighborhoods in the Los Angeles area that were 
not exposed to nighttime aircraft noise but were exposed to high levels of road traffic noise, and 
LAX. Indoor and outdoor noise exposure was measured for periods of approximately one month in 
45 homes of 82 test participants for a total of 1,887 subject nights. Responses included awakenings, 
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time to fall asleep, number of recalled awakenings, behavioral awaken~ngs. sleep quality. sleep time. 
annoyance, tiredness in the morning, reported time awake, and awakenings by aircraft noise. 

A number of personal characteristics also were recorded, including age, gender, spontaneous 
awakening rate, duration of residence, use of alcohol and medications, and tiredness upon retiring. 
Event-based awakening was predicted in a logistic regression analysis by event noise level, ambient 
noise level, rate of spontaneous awakening, age, time since retiring, duration of residence, and tired- 
ness on retiring. However, the slope of the relationship between awakening and noise exposure was 
rather shallow. Results were found to be in good agreement with those of other field studies, but quite 
different from laboratory studies. 

Clinical Trial for Primary Biliary Cirrhosis 

Data in this example were collected during a double-blind randomized clinical trial conducted at the 
Mayo Clinic January 1974 and May 1984. Of the 424 patients who met eligibility requirements for 
the study, 312 (with their physicians) agreed to participate in the randomized trial. A number of clin- 
ical, biochemical, serologic, and histologic measurements were made for the 3 12 patients, in addi- 
tion to the date of random assignment to either a placebo group or to a group treated with the drug 
D-penicillamine. Data from the clinical trial were analyzed in 1986 for presentation in the clinical 
literature. 

Data from the 3 12 cases used in the survival analysis in Chapter 1 1 included 125 who had died 
(the 11 patients whose deaths were not attributable to PBC were not distinguished) and 19 who had 
undergone liver transplant. The data and some analyses are described by Fleming and Harrington 
(1991, Chapters 1 and 4) and by Markus et al. (1989). The latter paper focuses on the efficacy of liver 
transplantation, but also discusses the Mayo model which determined the variables used in the sur- 
vival analysis of Section 1 1.7. 

F!eming 2nd Ilarrington describe PBC as ". . . a :xe but fiiial chronic iiver disease of unknown 
cause, with a prevalence of about 50 cases per million population. The primary pathologic event 
appears to be the destruction of interlobular bile ducts. which may be mediated by immunologic 
mechanisms" (p. 2). 

B.7 Impact of Seat Belt Law 

Rock (1992) applied an ARIMA approach to evaluating the impact of the Illinois seat belt use law on 
accidents, deaths, and various degrees of injury. Data were collected monthly starting January 1980 
and continued through December 1990, with the seat belt law taking effect in 1985. Accident statis- 
tics are available from the Illinois Department of Transportation (IDOT). Rock considered other sta- 
tistical techniques in addition to ARIMA, which he concluded was preferable (less biased). 

Dependent variables, evaluated separately, were monthly fatalities, accidents, and A-, B-, and 
C-level injuries. A-level injuries, the ones chosen for demonstration in Section 18.7 (Chapter 18 is 
available online at ablongman.corn/tabachnick5e) are the most serious, defined as incapacitating; 
C-level injuries are the least severe, possibly not visible. Different ARIMA models were applied to 
the five DVs, with a statistically significant impact of the law found only for A-level injuries. Rock 
concluded that overall he net impact of the law was a reduction in injury severity. 
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c Statistical Tables 

Table C.1 Normal Curve Areas 

Table C.2 Critical Values of the t Distribution for a = .05 
and .01, Two-Tailed Test 

Table C.3 Critical Values of the F Distribution 

Table C.4 Critical Values of Chi Square ( X 2 )  

Table C.5 Critical Values for Squared Multiple 
Correlation ( R ~ )  in Forward Stepwise 
Selection 

Table C.6 Critical Values of F,,, (s;,,/s;~~) 
Distribution for a = .05 and .01 



942 A P P E N D I X  c 

TABLE C.1 Normal Curve Areas 

Source: Abridged from Table 1 of Statistical Tables and Formulas, by A. Hald. Copyright O 1952, John Wiley & Sons, Inc. 
Reprinted by permission of A. Hald. 
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1:-\BLE C.2 Critical Values of the t Distribution 
for n = .05 and .01, Two-Tailed Test 

Degrees of Freedom .05 .01 

Source: Adapted from Table 9 in Biometrika Tablesfor Sta- 

tisticians, vol. 1 ,  3d ed., edited by E. S. Pearson and H. 0. 
Hartley (New York: Cambridge University Press, 1958). 
Reproduced with the permission of the Biometrika 

trustees. 
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TABLE C.3 Critical Values of the F Distribution 
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TABLE C.3 Continued 

5.28 4.86 
3.95 3.67 
3.12 2.93 
2.40 2.29 
8.72 7.81 
5.73 5.19 
4.73 4.31 
3.61 3.33 
2.90 2.71 
2.28 2.16 
7.64 6.76 
4.64 
4.33 3.91 
3.37 3.08 
2.74 2.54 
2.18 2.06 
6.85 6.00 
4.76 4.23 
4.02 3.60 
3.17 2.88 
2.61 2.40 
2.10 1.97 
6.25 5.42 
4.43 3.90 
3.78 3.36 
3.02 2.72 
2.50 2.30 
2.04 1.90 
5.78 4.97 
4.17 3.65 
3.59 3.16 
2.89 2.60 
2.42 2.21 
1.98 1.85 
5.41 4.60 
3.96 3.44 
3.43 3.00 
2.79 2.49 
2.35 2.13 
1.94 1.80 
5.10 4.31 
3.79 3.26 
3.29 2.87 
2.70 2.40 

(continued) 
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T.4BLE C.3 Continued 
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TABLE C.3 Continued 



TABLE C.3 Continued 

4.02 3.70 3.47 3.17 2.84 2.47 2.01 
3.25 3.03 2.87 2.65 2.41 2.14 1.79 
2.69 2.53 2.42 2.27 2.09 1.89 1.62 
2.14 2.05 1.98 1.88 1.77 1.64 1.46 
5.70 5.13 4.73 4.21 3.64 3.01 2.23 
4.37 3.99 3.71 3.35 2.95 2.50 1.93 
3.83 3.51 3.29 2.99 2.66 2.29 1.80 
3.13 2.90 2.74 2.53 2.29 2.01 1.64 
2.61 2.45 2.34 2.18 2.00 1.79 1.51 
2.09 2.00 1.93 1.83 1.71 1.57 1.38 
5.31 4.76 4.37 3.87 3.31 2.69 1.90 
4.14 3.76 3.49 3.13 2.74 2.29 1.69 
3.65 3.34 3.12 2.82 2.50 2.12 1.60 
3.01 2.79 2.63 2.41 2.17 1.88 1.48 
2.52 2.37 2.25 2.10 1.92 1.70 1.39 
2.04 1.05 1.37 1.77 1.66 1.51 1.20 
4.95 4.42 4.04 3.55 3.02 2.40 1.56 
3.92 3.55 3.28 2.93 2.54 2.09 1.43 
3.48 3.17 2.96 2.66 2.34 1.95 1.38 
2.89 2.67 2.52 2.30 2.05 1.76 1.31 
2.45 2.29 2.17 2.02 1.83 1.61 1.25 
1.99 1.90 1.82 1.72 1.60 1.45 1.19 

? ?? 2.74 2.13 1 C.7 4. ) O  3.74 - .-, -T.<:- ! . .\,%, I!!! 

3.72 3.35 3.09 2.74 2.36 1.90 1.00 
3.32 3.02 2.80 2.51 2.18 1.79 1.00 
2.79 2.57 2.41 2.19 1.94 1.64 1.00 
2.37 2.21 2.09 1.94 1.75 1.52 1.00 
1.94 1.85 1.77 1.67 1.55 1.35 1.00 

Source: Adapted from Table 18 in Biotnetrikn Table~for Statitticians, vol. 1 ,  3d ed., edited by E. S. Pearson and H. 0. Hart- 
ley (New York: Cambridge University Press, 1958). Reproduced with the permission of the Biometrika trustees. 





TABLE C.5 Critical Values for Scli~ared AIultiplr Correlation t K 2 )  
in Forward Step\+ise Selection: u = .05 



T.1RI.E C.5 Continued rr = . O l  

Nora: Decimals are omitted: k = nurnber of candidate predictors: N = sample \ize: F = criterion F-to-enter. 

So~irce: Adapted from Tables I and 2 in "Tests of significance in forward selection regression." by L. Wilkinson and G.  E. 
Dallal. Technornerrics. 198 I ,  23(4), 377-380. Reprinted with permission from Techi~oinetric~. Copyright 198 1 by the Amer- 
ican Statistical Association and the American Society for Quality Control. All rights reserved. 



TARLE C.6 Critical Values for F,,,, (s:,,,/s',,,,) Distributiori for a = .05 and .01 

4 23.2 37 49 59 69 79 89 97 
5 14.9 22 28 33 3 8 42 46 50 
6 1 1  1 !5 5 I . !  23 25 27 ?r? 3 2 
7 8.89 12.1 14.5 16.5 18.4 20 22 23 
8 7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 
9 6.54 8.5 9.9 11.1 12.1 13.1 139 147 

10 5.85 7.4 8.6 9.6 10.4 11.1 1 l 8 12.4 
12 4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 
15 4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 
20 3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 
30 2.63 3.0 3.3 3.4 3.6 3.7 3.8 3.9 
60 1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 
CO 1 .oo 1 .o 1 .o 1 .o I .o 1.0 1.0 1 .o 

Note: s iAX  is the largest and s iIN the smallest in a set of k independent mean squares, each based on degrees of freedom (df). 

Source: Adapted from Table 3 1 in Biometrika Rzbles for Statisticians, vol. I .  3d ed., edited by E. S. Pearson and H. 0. Hart- 
ley (New York: Cambridge University Press, 1958). Reproduced with the permission of the Biornetrika trustees. 
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INDEX 

Absolute fit index (MFI), 7 18 
Addition, matrix, 925 
Additivity 

of eta squared, 54 
inGLM,913 
in MFA, 864,872 
orthogonality and. 8-9 
of sums of squares, 49 

AGFI (adjusted fit index), 7 18-7 19 
AIC (Akaike's information criterion) 

in multilevel modeling, 83 f 
in structural equation modeling, 7 19-724 
in time series analysis, 18-45, 18-47 (online) 

a. See Type I error 
Alpha factoring, 633,637 
Alternative hypotheses, 34-36 
AMOS 

compared with other programs for SEM, 705-709, 
780 

fit indices, 720 
identification problems, 7 12-7 13 
modification indices, 723,726-728 
output, 706708,7  1 1-7 12,726-727 
small-sample example, 705-709 

Analysis of covariance (ANCOVA), 20, 195-242 
adjusted means, 195-1 96, 199,200,2 18-2 19,232 
alternatives to, 22 1-223 
assumptions of, 200-203,223-230 
c:leckiisi far. 238 
covariates, choice of, 200,2 1 1-2 12 
data set, 204 
effect size, 199, 208-209,232-233 
evaluation of covariates, 2 1 2 
experimental control and, 200-20 1 
GLMand,916,919 
homogeneity of regression, 202-203,2i3,237 
homogeneity of variance, 202,228-230 
MLM and, 78 I ,  784,789 
paltition of sums of squares, 204-208 
power, 195,200,201,202,203,204,2 12,2 14-215, 

2 17,222-223,240 
programs compared, 209-2 1 1,240-242 
reliability of covariates, 196,203 
results, 238-239 
significance of covariates, 199,235-236 
specific comparisons and trend analysis, 199, 

2 18-22 1 
sphericity, 2 14-2 15 
strength of association, 199, 208-209, 232-233 
unequal n, 20 1,2 17-3- 18 
uses of. 195- 197 
within-subjects designs, 2 14-2 15 

Analysis of variance (ANOVA), 19-20,3749 
GLM and, 915-9 16,919 
as multiple regression, 1 19, 155-157.919 

normality in, 78 
A priori comparisons. See Planned comparisons 
Atomistic fallacy. 782 
Autocorrelation of errors, 128 

Bartlett's test 
for canonical correlation, 574 
for factorability, 6 14 
for MANOVA (sphericity), 307 

Belly dancing, 17-19,23, 152-153,222,3 16-328, 
5 1 1-526,54 1,572-586,863-887 

Best fitting straight line. See Bivariate correlation and 
regression 

8. See Type I1 error 
Bivariate correlation and regression, 3, 17-1 8 ,5658 .  

See uDo Correlation; Correlation matrix 
equations for, 56-58 
in factor analysis, 6 14,6 15-622 
GLM and, 913-915.919 

Bivariate statistics, defined, 2 
Blocking 

as alternative to covariates, 222-223 
in matched-randomized design, 44-45 

Bonferroni, 268,270 
Bootstrapping, 14 1 
Box's M test, 252, 28 1,3 15,383 

Canonical correlation analysis, 18- 19, 567-606 
assumptions of, 569-572,588-595 
canonical coefficients, 574-577. 5 9 8 4 u i  
canonical variate scores, 569,576477,584 
checklist for, 60 1 
compared with regression, 567,573,574 
eigenvalues and eigenvectors, 573-575,580,595 
GLM and, 9 17-9 18,92 1 
!~ac!ing ~atrices,  577-578,584, 595 
problems with use of, 569-570 
programs compared, 580-586,604-606 
proportion of variance, 579-580, 595,598 ei, 573-574,578,587 
redundancy, 580,583-584,587,598 
results, 602-604 
scatter~lots of canonical variates. 57 I .  588.590.59 I 
signifiiance tests for, 574475,580-58 1,584-585, 

595-596 - - - -  

Case-control studies, 469 
Case deletion, 49,62,63,66,7 1,76,96, 100, 106, 109 
Case-to-variable ratio. See Sample size 
Categorical variables. See Discrete variables 
Causal analysis. See Structural equation modeling 
Causality, attribution of. 2-3. 7 
Centering, 

in MLM. 823-826 
in multiple regression, 157- 159 

Central limit theorem, 78 
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Centrods 
in DISCRIb1. 376. 3Xh--3117. 39 1-19?. .W7. 

398-399 
in Hotelling's T'. 2.1 
Mahalanobis distance and, 74,397 

CFI (conlparative fit index), 7 16-7 18,720, 743. 747 
Characteristic roots and vectors. See Eigenvalues and 

eigenvectors 
Checklist 

for ANCOVA, 238 
for canonical correlation, 60 1 
for direct DISCRIM, 425 
for doubly multivariate analysis of variance, 369 
for factor analysis, 670 
for logistic regression 

sequential, multiple-group, 496 
standard, two-group, 479 

for MANCOVA, 303 
for MANOVA, 292 . 
for MFA, 906 
for MLM, 849 
for profile analysis, 357 
for screening data, 9 1 
for sequential regression, 177 
for standard multiple regression, 172 
for structural equation modeling, 769 
for survival analysis, 556 
for time series analysis, 18-59 (online) 

Chi-square test of independence, 58-59 
Choice of statistical techniques, 17, 28-3 1 
Classification, 375-376,379,387-389,391-392, 

404407,468 
complete direct DISCRIM example, 4 18 
complete direct logistic regression example, 475 
complete sequential logistic regression example, 

49 1 
Coefficient of variation, 136 
Collinearity diagnostics, 88-91, 104, 114. See also 

Multicollinearity and singularity, 
Communality. See Factor analysis, communality 
Complex variables in FA, 6 12,647 
Composite variable, h !  
Computer output. See Output of AMOS, EQS, 

LISRELPRELIS, SAS. and SPSS 
Confirmatory factor analysis, 609-610,611,644,646 

in SEM, 676,732-749 
Confidence intervals, 37,54,55 
Confidence intervals around effect sizes, 

in ANCOVA, 232-233 
in DISCRIM, 402403.42 1,425 
in doubly-multivariate analysis of variance, 363, 

367 
in logistic regression, 461 
in MANCOVA, 300,302 
in MANOVA, 286,289,291-292 
in multiple regression. 150-1 5 1 
in profile analysis, 35 I ,  354 
in survival analysis, 538 
R2 software for, 150- 15 1,402-403 
Smithson 

SAS software for, 232-233,35 I ,  354 

SPSS softwitst. tl~s. 286. 7119. 29 1-19?. j00. 302 .  
363.36: 

Constant. Src Ititrrcept 
Continuous variables. 5-7 

i n  a data set, 12, 14 
in GLM, 9 13-9 1 8 

Contrast coding for ANOVA, 155-1 57 
Contrasts. See Specific comparisons 
Cook's distance, 75 
Correlated errors in SEM, 7 10,729,734,759 
Correlation, 56-57. See ulso Bivariate colrelation and 

regression 
for comparing solutions in FA, 65 1 
in GLM,914-915,919 
honest, 6 1 4 2  

Correlational research. See Nonexperimental research 
Correlation matrix, 13. See atso W i n - m t l  

correlation matrix 
factorability of, 614,642,675 
in multiple regression, 13 1-132 
observed in FA, 608,609,610,617,635,636,642, 

644 
reproduced in FA, 608,609,610,622,624, 

627428,633,635,636,637,643,644.675 
residual in FA, 609,622,628,633434,635,637, 

657,675 
from sum-of-squares and cross-products matrix, 15 
between variables and canonical variates, 577-578. 

See also Loading matrix 
Covariates. See also Analysis of covariance 

in DISCRIM, 380,396 
in logistic regression, 440 
in MANCOVA, 245-246,247,248-249,252,253, 

254,265-268,296 
in MANOVA, stepdown F, 272 
in multiple regression, 1 19-120 
in sequential regression, 18, 138 
in survival analysis, 507,526-535,55 1-556 

Cross-products matrix. See Sum-of-squares and cross- 
products matrix 

Cross-validation 
in D!SCPd?*I, 405,4 1 8-42 1 
in SEM, 682,720,728 
in statistical regression, 14@-141 

Data deletion. See Case deletion; Variable, deletion 
Data matrix, 12- 13 
Data snooping. See also Post hoc comparisons 

in FA, 634 
in multiple regression, 147 
in SEM. See Structural equation modeling, Type I 

error rate 
Delta, as criterion for rotation, 638-640 
Descriptive statistics, defined, 7-8 
Determinant, 929-930 

in DISCRIM, 385 
in MANCOVA, 267 
in MANOVA, 258,285 
multicollinenrity and singularity md, 89-90. 253 
in profile analysis, 321, 363 
in SEM, 683,755 



Detrended norninl probab~lity plots. X I  -X 
Dichotomous variables. 3-7 

in correlation. 62 
inGLM,914-918 
and linearity, 83 
in logistic regression, 437,441,442,443,444,445. 

456,464,499,504505 
in MLM, 808 
in outliers, 73 
in regression, 119 

Difference scores, as alternative to ANCOVA, 222 
Dimensions, 10 . 

in DISCRIM, 376-377,378-379,386,403 
in GLM, 917-918 
statistical criteria in MANOVA and, 269 

Direct effects in SEM, 681 
Direct oblimin rotation, 639-640 
Discrepancy 

outliers, 74-75 . 
in sample sizes, 86 

Discrete variables, 5-7 
in a data set, 12 
and dummy variable coding, 6, 155-157 
inGLM, 914-916,918 
in logistic regression, 437,44 1 , 4 4 2 , 4 4 3 4 , 4 4 5 ,  

458-459,464,48 1,499,505 
in SEM, 676,729-730 
in survival analysis, 526,535 

Discriminant analysis (DISCRIM), 23-24,25, 
375436 

assumptions of, 38 1-383,407-412 
canonical correlation, 380,386-387,389, 392-393, 

398,402 
centroids, 376,392-393,397,398-399 
ii,ci~;is~ for diizc; D ; S C ~ ~ M ,  425 
classification, 375-376,379, 387-389,404407, 

42 1 
classification coefficients, 387-389,392,405, 
compared with MANOVA, 23-24,25,243, 

376-378,380,38 1,384,386,395-396, 
397,402,403-404 

covariates, 377,380,396 
cross-validation, 405,4 18-42 1 
data set for, 384 
dimensions, 376-377,378-379,386,403 
direct DISCRIM, 395,4101129 
discriminant function coefficients, 386,391-392, 

394,400,402 
effect size. 402-403,42 1,425 
eigenvalues, 386-387,389-390,392-393,398,402 
GLM and, 9 16,9 18-9 19,922 
interpretation of discriminant functions, 376, 

398-399 
loading (structure) matrix, 387, 39 1-392,394, 

400-400l,402,412,416,430 
McNen~ar's change test, 405406 
Mahalanobis distance, 397,436 
number of discriminant functions. 376-377, 

378-379.386.398 
partition of sum of squares, 384-385 
plots of centroids, 376, 398-399,4 12,4 18 

plots o f  di\c~iminant t'ullction \ C L ) I . C ~ .  3Y.i 
programs compared. 1X4-3c)5.430-16 
quadratic d i~cr i~ l~~nanr  ~ n ~ i q s ~ s ,  383. 4 IS. 

42042  l 
Rao's V,  397 
results. 426-429 
rotation of loading matrix. 38 1.40 1 
sequential DISCRIM, 396 
significance of successive discriminant functions, 

390-39 1,392-393,4104 12.4 15 
significance test for DISCRIM, 385-386,397 
stepwise DISCRIM, 396 
strength of association. See effect size 
structure matrix, 387,39 1-392,394,400-40 1,402, 

412,416,430 
tolerance, 383,397,4 1 1 
unequal n, 378,384,N-383,389,396,404,408 

Dispersion matrix. See Variance-covariance matrix 
Division, matrix, 9 1 3-9 14 
Doubly-multivariate analysis, 3 11,339-344,360-369 

complete example, 360-369 
syntax and location of output, SPSS GLM, SPSS 

MANOVA, SAS GLM, 342-344 
Dummy variable coding, 6, 155-1 57 See also 

Dichotomous variables; Discrete variables 
Durbin-Watson statistic, 128 

Ecology fallacy, 782 
Effect stze, 54-55 

in ANCOVA, i 99,208-209,232-233 
in ANOVA, 54-55 
in DISCRIM, 379-380,389-39 1,402403,42 1, 

425 
in logistic regression, 44  1,449,45 1,460-46 1,463, 

465-468 
in MANOVA/MANCOVA, 248,260,270,273, 

289,292,300,302 
in MFA, 860.902 
in hqLM. 785.832 

as squared correlation, 54-55 
in survival analysis, 509,538-539,553 
in time series analysis. 18-44 to 18-45, 18-58 

(online) 
Eigenvalues and eigenvectors, 930-933 

in canonical correlation, 573-575,580,595 
in DISCRIM, 386-387,389-390,392-393,398, 

402 
in FA, 6 14.61 5-6 19,628,644646,657 
in missing data correlation matrix, 70-7 1 

EM for missing data, 63,6668-69, 7 1-72 
SPSS MVA output, 64-66.47W73 

EQS 
categorical data, 729 
conipared with other programs for SEM, 696-699. 

773-780 
fit indices, 696,698,761 -763 
identification problems. 7 1 1 
Lagrange multiplier test in, 722-723,759-76 1 
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EQS ic~or~trt~~~et!)  
output. 697-698.723.727. 752-754. 7567.78, 

760.76 1,763.761-768 
small-sample SEM example, 696-699 
structural equations mode1,75 1-769 
Wald test, 723-726 

Equality of slopes. See Homogeneity of regression; 
Profile analysis of repeated measures 

Equal n. See Unequal r z .  
Equamax rotation, 638-639 
Error of prediction. See Residuals 
Error variance, reduction 

in ANCOVA, 195-196,200 
in MANCOVA, 324 
in within-subjects ANOVA, 44 

Eta squared. See Effect size 
Expccted frequencies, adequacy of, 

in logistic regression, 442,48 1 4 8 4  
in MFA, 862,890-894 . 

Expected normal probability plots, 8 1-83 
in time series, 18-53 to 18-55 (online) 

Experimental research, 2-3 
ANCOVA and, 195-196,200-20 1,203 
blocking versus covariates, 222-223 
cross-level interactions in MLM, 785 
MANOVA and, 245-246,249,250 
MLM and, 78 1 
multiple regression and, 1 17, 122, 155-157 
profile analysis and, 3 14. 329 
sampling in, 7 
in SEM, 678479,68 1,682 
in survival analysis. 509,510,796 
in time series analysis, 18-2, 18-6, 18-30 (online) 
unequal n and, 2 17-2 18 

Factor anaiysis (FA) and pnnclpal components 
analysis (PCA), 25-26,607475 

alpha factor extraction, 633,637 
assumptions of, 61 1-6 15,652-660 
checklist for, 670 
communality, 62 1422,628439,63 1-632, 

634437,640,643,644,6~6,047,650, 
660,664,668,675 

complexity of variables, 6 12,647 
confirmatory, 6 0 9 4  10,6 1 1,644,65 1 
data set for, 6 17 
eigenvalues and eigenvectors, 614,615-619,628, 

-6,657 
exploratory, 609-6 10,6 1 1 ,6  13,6 1 4,643 
factor correlation matrix, 609,626,6464547,675 
factor extraction, 6164520,633-637.657 
factor scores, 6 1 1,6 14,622-625, 646,649, 

650-65 1,660,667,675 
GLM and, 9 18,922 
group comparisons in, 65 1 
image extraction. 633,636 
internal consistency of solutions, 6J7-649. 

667-668 
interpretation 

of factors, 608, 6 1 I .  6 15, 620, 635, 646, 647, 
649-650,657,668,675 

geometric. 6-10-642 
KaI\er'$ MSA. 6 14 
loading rnutsis. 6U9.6 i 9-620. (32 I .  63.7-A2-1. 655. 

638,640-642.646.649--650.669.675 
marker variables, 6 12.6 13.647 
maximum likelihood extraction, 633, 636. 643. 

646,675 
naming factors, 649450 
number of factors, 608,610,6 1 1 - 6 1  2.6 13,6 17, 

628,634,640,642,643,644-646,650, 
657,675 

number of variables per factor, 644-646 
oblique rotation, 609,625-628,638-642,646-647, 

648449,657,660,663,675 
direct oblimin, 639-640 
direct quartimin, 639-640 
gamma d delta, 638-640 
orthoblique, 639-640 

orthogonal rotation, 609,620-62 1,638-639,642, 
643,646,647,649,657,660,663,667,675 

equarnax, 638-639 
orthogonal with gamma, 638439 
quartimax, 638439 
varimax, 620-62 1.628,638-639,657,660 

pattern matrix, 609,615,625427,628,646,649, 
675 

PCA (principal components analysis), 25, 607409, 
614,633-635,643,645,650,657,675 

PCA versus FA, 609,614,634-636,643 
principal factors extraction (PFA), 636,643, 

657-660 
programs compared, 628-632,67 1-675 
reliability of factors, 614,615,637,644-646 
reproduced correlation matrix, 609,622,627428, 

637.643; 644.675 
residual correlation matrix, 609,622,627-628 
results, 670-67 1 
scree test, 645446,657,660 
simple structure, 640,644-640 
stability of solutions, 634, 647-649 
structure matrix. 609,627,649 
sum ~f squared loadings (SSLs), 62 1,628,6 35, 

647-649,667 
transformation matrix, 620,628,640 
two-variable factors, 6 14,644 

Factorial designs 
in ANOVA. 4 2 4 3 , 4 6 4 7  
in DISCRIM, 377,399,403-404 
specific comparisons for, 52,53 

Fixed effects, 49 
in MLM, 788,791-792,794,799,826-829,83 I ,  

832,833,834,856 
Flatness test, in profile analysis, 313, 321-323, 324, 

35 1-352.356 
F,,,, test, 86 
F ratio, adjusted for post hoc contrasts. See Scheffk 

test 

Gamma, as criterion for rotation. 638-639 
Generalized variance. See Determinant 
General linear model (GLM), 9 13-9 18 



GFI (~oodness of tit Index I. 7 18-7 19 
GLM. See General linear motiel 
Group differences in SEbl. 68 1. 7.10-732 

Hierarchical analysis. See sequential analysis 
Hierarchical analysis, in MFA, 887 
HLM. See Multilevel modeling 
HLM, compared with other programs for MLM. 

852-857 
Homogeneity of covariance. See Sphericity 
Homogeneity of regression 

in ANCOVA, 202-203,2 13 
interaction and, 222 
in MANOVA and MANCOVA, 252-253,281-284 
in MLM, 78 1,784,799 
outliers and, 201 

Homogeneity of variance, 86. See also 
Homoscedasticity 

in ANCOVA, 202,.228-230 
in ANOVA, 49 

Homogeneity of variance-covariance matrices, 86 
in DISCRIM, 382-383,410-411 
in MANOVA, 25 1-252,269,280-28 1 
in profile analysis, 3 15-3 16,349-35 I ,  360-362 

Homoscedasticity, 78, 85. See also Homogeneity of 
variance 

in multiple regression, 125-1 27, 16 1 - 165 
Hosmer-Lemeshow statistic in logistic regression, 459 
Hotelling's T', 21 

for flatness test in protile analysis, 322 
Hotelling's trace. 761-262.269 
Hypothesis testing, 33-36 

Identification in SEM, 709-7 1 1 
iFi (11-icremenid fit index), 7! 6 
Image factor extraction, 633,636,643 
Importance of variables 

in DISCRIM, 380.40 1-402 
in logistic regression, 4 3 9 4 0 , 4 4 5 4 6 , 4 6 9  
in MANOVA, 247-248,270-273 
in MFA, 860 
in multiple regression, i i 9, 136, iU-146 
in survival analysis, 508 
suppressor variables. 154-1 55 

Imputing missing data, 66-70 
in logistic regression, example, 470-473 
in multiple regression, example, 179- 188 

Incremental F ratio. 149- 150 
Independence. See Orthogonality 
Independence of errors, 8 1 

in logistic regression, 443-444 
in MLM, 782,788-789,822-823.839-840 
in multiple regression. 128 

Indeterminacy in FA. 650 
Indirect eff'ects in SEM, 679.68 I ,  769 
Individual differences 

in ANCOVA, 195 
as a source of variance. 44 

Inferential statistics. defined, 7-8 
Influence, 75-76 
Initial values. See Start values in SEM 

Input. .Sea Outp~~r 01 AXIOS. LQS. L.ISKk~l_iPKEL.IS. 
S:IS. lllld SPSS 

Inteructiun contra\th. 333. 1-40 
Interactions. See LIISO Sililple conipa~isol~s Simple 

effects 
in ANOVA. 43 ,4445 ,4647  
centering, 157-1 59. 823-83-6 
in DISCRIM. 399,403 4 0 4  
hierarchical and nonhiemrchical models, 468169. 

887 
between IVS and covariates, 202-203,2 13, 

222-223 
in logistic regression analysis, 440,456,468469 
in MANOVA. 247,285-286,296-297 
in MFA, 859 
in MLM, 782,785,787,789,826-827,834 
in n~ultiple regression, centering, 157- 159 
in profile analysis, 3 12-3 13.3 18-321. See also 

Parallelism test in profile analysis 
between subjects and treatment. 44 
in time series analysis, 18-27 (online) 
and unequal n, 2 17-2 18 

Intercept (constant), A 
in bivariate regression, 57 
in logistic regression, 438,44748,449,458,469 
in MLM, 782,784,792-798,8 14,822-824, 

826-829,83&83 1,833-834,8394340,843 
in multiple regression, 1 18, 129, 133, 136, 156 
in time series analysis, 18-23 (online) 

Interpretation 
in canonical correlation, 587 
in DISCRIM, 376-377,379-380.398401 
in FA, 608,6 1 1,6 15,620,635,646,647,649-650, 

657,668,675 
of linear combination, 1 0 -  1 1 
in  logistic regression, 4484-19, 46! -363 
in MANOVA (with inconsistent results), 244, 273 
in MFA, 879.90 1-902 
in MLM, 823-824,826-829 
of output. 4 
in SEM, 696,720,732,768-769 
in survival analysis, 540-541 
in time series analysis, 18-56 (online) 

Interval scales, 5-7 
Intraclass correlation in MLM, 784, 788,793, 

822-823,839-840,842-843,857 

Jackknifed classification, 405,4 18 

Kaiser's MSA, 6 14 
Kurtosis, 79-8 1,86,96-97 

in SEM, 683,7 13-7 14,754,773,780 

Lagrange multiplier test. in SEM, 684.721-723, 
725-726.759-76 1,773 

Lambda, in MFA, 872 
Lambda, Wiiks' 

in canonicai col~eiation. 573-575 
in DISCRIM, 385.397 
homogeneity of variance-covariance ~natr-ices and, 

252 
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Lambda. L V i l k '  r c  otititr~reti/ 
for improvement in ~lassitication. 406 
in M24N0V,4. 2%-759.769 

Latent means in SEM. 73 1-732 
Latent variables 

in MLM, 8 19-820 
in SEM, 676480,686-687,688,69 1,700, 

704-705,7 10,723,73 1-732 
Latin square designs, 47.48 
Level of confidence. See Type I error 
Levels test, in profile analysis, 3 13,3 16, 3 18, 

35 1-353,363-364 
Leverage, 75-76,111-112,124,224-227,408-4 10 
Likelihood ratio statistic, 449,45 1,457458, 864 
Linearity, 78, 83-84,9698 
Linearity in the logit, 443,474-475,48 1,485 
LISREL 

categorical data, 729-730 
compared with other programs for SEM, 699-705, 

773-780 
confirmatory factor analysis example, 734-748 
fit indices, 720 
identification problems, 7 1 1 
Lagrange multiplier test in, 723 
output, 701-704,724-725,735-741,743-746 
small-sample SEM example, 699-705 
Wald test, 728 

LM test. See Lagrange multiplier test 
Loading matrix 

in canonical correlation, 577-578.584, 595,598, 
60 1 

in DISCRIM, 387,392,400-40 1,402,4 1 1 ,4  16, 
421,430 

in FA, 609,619-620,62 1,622424,625,638, 
640442,646,649-650,663,666. 
668469,675 

Logistic regression, 2625,437-505 
assumptions of, 44 1-444,470-474,48 1 
casz-control studies, 469 
checklist 

for direct two-group, 479 
for sequential multiple group. 496 

classification of cases, 468,475,477,491 
coefficients, 438,439-440,445-446,45 1, 

459-460,461-463,469,491,499,504 
tests of, 44546,459-460,474-476,487-492 

comparing models, 457-459 
comparison with a perfect model, 458-459 
constants-only versus full model, 453 
covariates, 440 
Cox and Snell R ~ ,  460-46 1 
criterion for classification, 468 
data set for, 444 
deciles of risk, 459 
direct, 454,474-478 
discrete variables, coding of, 449,45 1,463,464 
effect size, 44 I. 460463 
expected frequencies. adequacy of, 442.48 1484  
full model, 439.44 I ,  448,449-450.454.457-458, 

460,474,476,505 
GLM and, 9 16.9 18,920,922 

goodness-ot-ti t. 4-42, WM4X. 457459 
hierarchical and nunhlsrarchlcal models. -168-469 
Hosmet-Lzmesho \tatistic, 459 
importance of predictors. 439440,445-46.169 
interactions. 440,456,468469 
interpretation, 448-449.46 1-463 
likelihood ratio test of individual variables, 459 
logit, 437-438,440,442,445,456-457,504 
McFadden's rho, 460 
matched groups, 469 
maximum likelihood test, 442,445,449,456 
multiple outcome categories, 464-468 
Nagelkerke R', 461 
odds, 438,439,440,445,461-464 
ordered outcome categories, 464-468 
parameter estimates. See Logistic regression, 

coefficients 
power, 442 
probit transformation, 456457 
programs compared, 449453,499-505 
receiver operating characteristic (ROC) curves, 46 1 
residuals, 448-449 
results 

for direct two-group. 479-480 
for sequential multiple-group, 496-498 

saturated model. See Logistic regression, full model 
sequential, 454 
stepwise, 454,456 
trend analysis, 464 
Wald test, 444,445,449,45 1,456,459,467, 

474-475,499 
Logit analysis, 9 1 1, 9 12. See cllso Logistic regression 
Loglinear model. See Multiway frequency analysis 

McNemar's change test, 405406 
Man~f-est variables In SEM, 677 
Magnitude of effect. See Effect size 
Mahalanobis' distance 

as criterion in DISCRIM. 397 
for multivariate outliers, 74-76,99-10 1, 1 1 1 

in ANCOVA, 224,228 
in canonical correlation, 594 
in DISCFUM, 408-409 
in MANOVA, 280-28 1 
in MLM, 838,840 
in regression, 124, 166-168 
in survival analysis, 545,547-548 

Mardia's coefficient, 754 
Marginal test, in MFA, 866-867, 870 
Marker variables, 6 12,6 13,647 
Matched-randomized design, 44-45 
Maximum likelihood estimation 

in MLM, 833-834 
in SEM, 713 

Maximum likelihood factoring, 633,636,643,646, 
675 

Maximum likelthood test, in logtstic regression. 
438 339,442 

Means, adjusted 
in ANCOVA, 195-1 96, 199-300,3 I4,2 18-2 19, 

232,409 



In .LIANCOV,-\ ;uld .LI.ANOV.A. 24F. 2x9. 3 0 0 .  373 
Mean square 

in ANCOVA. 206 
in ANOVA. 4 2 4 8  

Measurement errors in SEM, 679 
Measurement models. in SEM. 678,732 
Measurement scales, 5-7 
Mediation, 159-1 6 1 .  See also Indirect effects in SEM 
MFI (absolute fit index), 7 18 
MIANALYZE, 67,70, 179, 186-1 87 

output, 18 1, 186 
Missing data, 62-72 
MLR. See Maximum likelihood test 
MLwiN compared with other programs for MLM, 

852-857 
Multicollinearity and singularity, 9 1-92. See LZLFO 

Collinearity diagnostics 
Multidimensional space and GLM, 9 17 
Multilevel modeling (.MLM), 19,78 1-857 

ANCOVA and, 78 1,784,789 
assumptions of, 789-789,835-840 
atomistic fallacy, 782 
centering, 823-826 
checklist, 849 
comparing models, 830-83 1 
cross-level interactions,785,787,826-827 

and collinearity, 789 
and power, 788 

data set for, 790,8 15 
ecology fallacy, 782 
effect size, 832 
equations in, 791-792 
exploratory model building, 834-835 
fixed effects, 78 1-792,83 1,856 
tixed intercepts and aiupes, 826,828-829 
GLM and, 9 16,920 
homogeneity of regression and, 781,784,799 
LGLS, 833 
independence of errors, 782,783-789,822-823, 

839-840.842-843 
interactions. 782,785,787,789,826-827, 834 
intercepts-only model, 792-798 
interpretation, 830,832 
intraclass correlation, 784,788,793,822-823, 

839-840.842-843,857 
latent variables in, 8 19-820 
log-likelihood. 83 1, 856 
MIVQUEO, 834 
multiple-response analysis, 82 1 
nonnormal outcome variables, 82G82 1 
null model, 789,792-798 
parameter estimates, 784, 793, 802-806, 808-8 13, 

83 1,842-848 
and centering, 824 

power, 782,788,829 
predictors, number of, 786-787 
programs compared. 794798.802-806.808-8 ! 3. 

852-857 
random coefticients, 782. 799, 833 
random effects, 78 1,788, 79 1-792, 83 1-832, 834, 

856 

random intercepts i~nd lopea. 876. Y2Y-829 
repeated measures in. 7S I .  8 14-8 19. 835--852 
residuals. 787. 824. 856 
results, 849-852 
y,  784,788,793,822-823.839-8.10.842-843.857 
RIGLS, 833 
symbols in, 79 1-792 
three-level model, 8 19, 835-852 

and intraclass correlation, 822-823, 839-840, 
842-843 

variance-covariance matrix, structure of, 785,794 
Wald test, 83 1, 843-848 

Multiple correlation. See Multiple regression 
Multiple imputation of missing data, 67,69-70,72, 

179-188 
Multiple regression, 18, 1 17-194 

assumptions of, 121-128, 161-167 
autocorrelation, Durbin-Watson statistic, 128 
centering, 157-159 
checklist 

for sequential, 177 
for standard, 172 

choice of variables, 122 
covariates, 18, 138 
data set for, 129 
difference between two sets of predictors, 152-1 53 
Durbin-Watson statistic, 128 
GLM and,914-915,919 
incremental F, 149-1 50 
partial correlation, 144-1 45, 146 
partition of sum of squares, 130 
post hoc tests, 147-148 
programs compared, 134- 136, 188- 194 
R*, 131-133 

adj,~sted: 153-!54 
significance test for, 147-148 

regression coeficients, 1 16-1 17, 121, 129-1 34, 
148-149 

confidence limits for, ! 50- ! 5 1, 163- 1 70 
significance of, 148- 149 
suppressor variables and, 154- 155 

residuals, 125- 127, i 6 1,  165- 167 
results 

sequential, 178-179 
standard, 172-1 73 

ridge regression, 125 
semipartial correlation, 145- 146 
statistical (stepwise), 138-143 

and case-to-variable ratio, 123 
unique versus shared variance, 17 1 

Multiple regression analysis of covariates in 
MANCOVA, 296-299 

Multiplication, matrix, 927-928 
Multivariate analysis of variance (MANOVA) and 

multivariate analysis of covariance 
(MANCOVA), 21-22,243-3 10 

adjusted means. 248,289-29 1,300-302 
versus ANOVA. 243-244,268 
assessing DVs, 270-273, 286-289. 296. 299-300 
assumptions of, 249-253.277-285 
Box's M ,  252.28 1 
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Multivariate analysis o f  ~ariance ! bIANOC:,A and 
m~~ltivaliatr anal!& of co\ari;l~lci) 
(h1ANCOVA) icolltrill/riij 

checklist 
for MANCOVA. 303 
for MANOVA, 292 

choice of DVs. 249-250,268 
covariates, 248-249,296-306 

reliability of, 253,,284 
data set for, 254 
discriminant analysis, compared with, 23-24,25, 

243,376-378,380,38 1,384,386, 
395-396,397,402,403-404 

effect size, 260-26 1,286,289,292,300,302 
GLM and, 9 18,92 1 
homogeneity of regression, 252-253,28 1-284 
hemogeneity of variance-covariance matrices, 

25 1-252,280-28 1 
multivariate significance tests, 259-260,269 
partition of sums of squares, 255-257 
power, 244,250-25 1 
programs compared, 26 1-265,307-3 I0 
results 

for MANCOVA, 303-306 
for MANOVA, 293-295 

robustness. 25 1.269 
specific cohpa&sons and trend analysis, 248, 

273-274 
stepdown analysis, 245, 249-250,252-253, 

27 1-272,273,286-289,300 
Type I error rate, 244,270,272,274 
unequal n, 250,269,276277,279 

~ultivariate normality, 78 
Multivariate outliers, 72-77. See also Cook's distance: 

Mahalanohis' distance: C)ut!iers 
Multiway frequency analysis (MFA), 19,24, 860-9 12 

additivity, 864, 872 
assumptions of, 86 1-863.890 
checklist, hierarchical analysis, 906 
data set for, 863 
DV in, 858 
effect size, 860 
evaluation, 874-879 
expected frequencies, adequacy of, 862,890-894 
full models, 864, 87 1-874, 880-887 
G', 864 
GLM and, 9 16,9 18-9 19,922 
hierarchical and nonhierarchical models, 873,887, 

889 
importance of effects, 860,874-879 
interpretation, 874-879, 90 1-902 
lambda, 872,879 
likelihood ratio statistic, 864 
logit analysis, 912 
log-linear model, 858, 872 
marginal test, 866-867, 870 
modeling, 87 1-874 
Newton-Raphson algorithm, 887 
parameter estimates, 876879.90 1-903 
partial test, 867-87 1,888 
power, 862 

progrnnix compared. 880-887. 008-9 I I 
1.epeatt.d n1rabure.s in. 86 I 
residuals. 874. 899-90 1 
results, 906-908 
saturated models, 864, 87 1-874. 880-887 
screening, 86487 1.89 1-892, 895-896 
significance tests, 888 
specific comparisons and trend analysis, 860-860 
stepwise model selection, 589490,893-894, 

897-898 
theta, 872. 878 

N. See Sample size 
Nested designs 

in ANOVA, 47 
in MLM, 78 1 
in SEM, 68 f-682 

Nested models 
in MLM, 830-831,833,852,857 
in SEM, 716,720,721,731 
in survival analysis, 534,535 
in time series analysis, 18-47 (online) 

Newton-Raphson algorithm, 887 
NFI (normed fit index), 7 16 
NNFI (non-normed fit index), 7 16 
Nominal scales, 5 
Nonexperimental research, 2-3,7,9 

ANCOVA and, 195-1 96,200-20 1,203 
profile analysis and, 329-330 
SEM and, 682 
unequal n and, 48-49,2 17-2 18,38 1 

Nonindependence of errors. See Durbin-Watson 
statistic 

Nonindependence of errors, in MLM, 782,788-789. 
822-823. 83P-840.*42-843 

Nonrecursive, 7 10 
Normality, 78-83, 86-88 

in residuals, 125-1 27, 16 1-1 67 
Normal probability plots, 8 1-83 

in MFA, 899,90 1 
in time-series, 18-49, 18-53, 18-55 (online) 

iu'ORPvi software for missing data, 69 
Null hypothesis, 33-36 

in ANOVA, 37-38 
and specific comparisons, 50 

Odds 
in logistic regression, 438,439,440,445, 449-453, 

46 1-464,475477,487-492 
in survival analysis, 508,540-541, 552-556 

Omega squared, in ANOVA, 55 
Omnibus F test and specific comparisons, 49-53 
One-sample z test, 33-35 
Order of entry 

in MANOVA, stepdown, 249-250,273 
in sequential DISCRIM, 398 
in sequential regression, I38 

Ordinal scales. 6-7 
in logistic regression, 464468 
in SEM. 729-730 

Orthoblique rotation, 639, 640 



Orthogonali~y. 8- I0 
In ANOVA. 48-49 
of canonical variates. 557 
of discriminant functions, 378 
specific comparisons and. 50-5 1 

Outliers, multivariate. 72-76,99-104 
SAS REG example, 1 I 1-1 13.224.227.308 -4 10. 

59 1,592-594 
SPSS REGRESSION example. 99- 103, 166- 168. 

279-28 1,545-549,838,840 
Outliers, in a solution, 77 

in logistic regression, 443,474 
in MFA, 863,899-901 
in multiple regression, 128 
in time-series analysis, 18-7 , 18-48, 18-53 (onlinej 

OLttiiers, tmimriate, 72-74,77, 106-109 
SAS MEANS example, 106-109,224226, 

349-350,59 1-593 
SAS STANDARD'example, 59 1-593 
SPSS DESCRIPTIVES example, 545 
SPSS EXPLORE example, 162-1 66 
SPSS FREQUENCIES example, 96,838-839 

Outliers, among variables in FA, 614615,657458 
Output, interpretation of, 4 
Output of AMOS, EQS, LISRELIPRELIS, SAS, and 

SPSS 
analysis of covariance (ANCOVA) 

adjusted cell means, SAS GLM, 234 
homogeneity of regression, SAS GLM, 237 
homogeneity of regression, SPSS MANOVA, 21 3 
repeated measures, SAS GLM, 2 16-2 17 
SASGLM,211,231 
SPSS GLM (UNIANOVA), 2 10 

canonical correlation 
SAS CANCORR, 58 1-583,596-600 
scatterplots, SAS CANCORR and PLm,  590, 

59 1 
SPSS CANCORR; 584-586 

conf nnatory factor analysis through SEM. 
LISREL, 735-74 I ,  743,744-746 

discrimifiant ana!ysis (DISCRIM) 
contrasts, SAS GLM, 422-424 
cross-validation, SAS DISCRIM, 4 19-42 1 
direct, SAS DISCRIM, 392-395,4 1 1-4 17 
direct, SPSS DISCRIMINANT, 389-39 1 
homogeneity of variance-covariance matrices, 

SAS DISCRIM, 4 10-4 12 
factor analysis and principal components analysis 

communalities, SAS FACTOR, 664 
confirmatory factor analysis through SEM, 

LISREL, 735-741,743,744-746 
correlations among factors, SAS FACTOR, 662 
eigenvalues and proportions of variance, SAS 

FACTOR, 659.66 1 
factor loadings. SAS FACTOR. 666 
linearity scatterplot, SAS PLOT, 653 
multivariate outliers, variables causing, SAS 

REG, 654-656 
SAS FACTOR, 63 1432,  658468 
scatterplot of factor loadings, SAS FACTOR, 

665 

scatterplot of factor scores. SAS F.4CTOK. hhS 
\Cree plot. S.AS FACTOR. hh0 
SblCs for factors. SAS FACTOR. (xi8 
SPSS FACTOR. 629-630 

logistic regression 
adequacy of expected frequencies, SPSS 

CROSSTABS, 482384 
classification, SAS LOGIS'TIC, 477 
direct, SAS LOGISTIC. 45045 1 
direct, SPSS LOGISTIC REGRESSION, 

452453 
group means, SPSS DESCRIPTIVES. 493-494 
linearity in the logit, 475,485 
missing values analysis, SPSS MVA, 470373 
multiple outcome categories, SPSS NOMREG, 

486,487-49 1 
ordered categories, SAS LOGISTIC, 466-467 
sequential, SPSS LOGISTIC REGRESSION, 

455 
sequential, SPSS NOMREG, 486-49 1 

missing data, SPSS MVA, 64-66,470-473 
multicollinearity 

SAS FACTOR, 1 15,228,, 658 
SPSS REGRESSION, 100-101, 168,841 

multilevel modeling 
centered predictor, SAS MIXED, 825 
cross-level interaction, SAS MIXED, 827 
descriptive statistics, SPSS FREQUENCIES, 

636637,638,638 
intercepts-only model, SPSS MIXED, 842-843, 

796797 
intercepts-only model, two-level, SAS MIXED, 

795 
multicollinearity, SPSS REGRESSION, 841 
miiltivaiiate ouilicis, SPSS REGRESSION. Q41! 
repeated measures, SPSS MIXED, 8 16-8 17, 

842-847 
three-level model. SPSS MIXED, 842-847 
two-level modei, SAS MIXED, 795,803, 

809-8 10 
two-level model, SPSS MIXED, 796-797, 

804-805,8 1 1-8 12 
multiple regression 

correlation between predicted and actual scores, 
SAS CORR, 143 

multiple imputation, 18 1 ,  183- 185, 186, 187 
sequential, SPSS REGRESSION, 139, 174-176 
standard, SAS REG, 135 
standard, SPSS REGRESSION, 134-135, 

169-170 
statistical (stepwise) with cross-validation, SAS 

REG, 142- 143 
multivariate analysis of covariance (MANCOVA) 

adjusted and unadjusted marginal means, SPSS 
MANOVA, 30 1-302 

homogeneity of regression. SPSS MANOVA, 
253-284 

multiple regression analysis, 198 
SPSS MANOVA, 297-300 
stepdown results. SPSS MANOVA, 300 
univariate results. SPSS MANOVA, 299 



Output ofAMOS. EQS. LISRELIPRELIS. SXS. and 
SPSS (c.orlrOlrlrt1) 

multivariate analysib of variance (blANOLX) 
adjusted and unadjusted marginal means, SPSS 

MANOVA. 29 1 
homogeneity of regression, SPSS MANOVA, 

282-283 
pooled within-cell correlations, SPSS 

MANOVA, 287 
SAS GLM, 264-266 
SPSS GLM 262-263 
SPSS MANOVA; 261,285,287-288 
stepdown results, SPSS MANOVA, 288 
univariate results, SPSS MANOVA, 287 

multiway frequency analysis 
associations, SPSS HILOGLINEAR, 895-896 
SASCATMOD, 886-887 
SPSS GENLOG, 884-885 
SPSS HILOGLINEAR, 880-882 
model selection, SPSS HILOGLINEAR, 

897-898 
observed frequencies, SPSS CROSSTABS, 

89 1-894 
parameter estimates, SPSS LOGLINEAR. 

902-903 
residuals, SPSS HILOGLINEAR, 899-90 1 
screening, SPSS HILOGLINEAR, 895-896 

normality and descriptive statistics 
SAS Interactive Data Analysis, 108-109 
SAS MEANS, 107,225-226,229,293, 

349-350,592, 18-59 (online) 
SPSS DESCRIPTIVES, 103-104,544,545, 

546 
SPSS EXPLORE, 162- 165 
SPSS FREQUENCIES. 94-95.97.99. !66. 

278-279,836837,838,839 
normal probability plots 

SAS UNIVARIATE. 18-55 (online) 
SPSS HILOGLINEAR, 90 1 
SPSS PPLOT, 82 

outliers 
rnultivaiiate described, SAS MEANS, i i4 
multivariate described, SPSS DESCRIF'TIVES, 

103-104 
multivariate described, SPSS SUMMARIZE, 

547 
multivariate identified, SAS REG, 11 1, 1 12,228 
multivariate identified, SPSS REGRESSION, 

100-101,168,280-281.840 
univariate, 93-96, 108,277-279,544,545,546, 

836837,838,839 
univariate identified, SAS MEANS, 349-350 
variables causing multivariate, 102, 103, 1 13, 

548,654-656 
profile analysis 

homogeneity of regression, SPSS MANOVA, 
363 

SAS GLM. 327-328.352-353 
SPSS DESCRIPTIVES. 361-362. 
SPSS GLM, 323-326 
SPSS MANOVA, 322,364-366 

residual5 
SAS tiNIVt\RIXTE. 18-55 conllner 
SPSS HILOGLINEAR. 899-90 I 
SPSS REGRESSION. 162. 167 

structural equations modeling 
AMOS, 706-708,726-727 
EQS, 697-698,722,724725,752-754. 

756-758,760,761,763,764-768 
LISREL, 701-704,724-725,735-736,735,737. 

739,740-741,743,744-746 
survival analysis 

SAS LIFEREG, 533 
SAS LIFETEST, 821-823 
SAS PHREG, 528,536,542-543 
SPSS COXREG, 530-532,55 1,553-555 
SPSS DESCRIPTIVES, 544,545,546 
SPSS FACTOR, 552 
SPSS KM, 525-526 
SPSS REGRESSION, 547,548,550 
SPSS SUMMARIZE, 547 
SPSS SURVIVAL, 5 18-520 

time-series analysis (online) 
SAS ARIMA, 18-21 to 18-22,18-24 to 18-26, 18-35, 

1 8-39, 18-46,1849 to 18-54,18-56 to 18-58 
SAS MEANS, 18-59 ' 

SAS UNIVARIATE, 18-55 
SPSS ACF, 18-17,18-20, 18-28 to 18-29, 18-3 1 
SPSS ARIMA, 18-2 1 to 18-22, 18-34, 18-37 
SPSS TSPLOT, 18-9, 18- 1 1, 18- 13 

Overfitting, I1 
in DISCRIM, 38 1 
in MFA, 862 
in regression, 140, 144 

Overlapping variance, 8-10,4849 
i n  canonica! co~e!n:ion. 574-575, 586-587. -595 
in FA, 649 
in MANOVA, 270-273 
in regression, 136-137 
within unequal ri in ANOVA, 48-49 

Painvise comparisons. See Specific comparisons 
Paralleiism test in profiie analysis, 3 12-3 13, 3 18-32 1 ,  

323-325,328,35 1-352,363-365 
Parameter estimation of means, 53-54 
Part correlation, 145-147, 17 1, 177 
Partial correlation, 144-145, 146 
Partial test in MFA, 867-87 I ,  888 
Path analysis, 677 
Pattern matrix, 609,6 15,6254327,628,646,649,675 
PCA. See Factor analysis and principle components 

analysis 
Percent of covariance, 62 1,647449,667 
Percent of variance. See Proportion (percent) of 

variance 
PFA. See Factor analysis and principle components 

analysis 
PGFl (parsimony goodness of fit index!, 7 19 
Phi coefficient, 9 14-9 15,9 19 
Pillai's criterion, 252, 269, 397 
Planned comparisons, 49-52. See cdso Specific 

comparisons 



in ..\NCOVA. 2. IX-220 
in MANOVA, 273-275 

Plots. See Scatterplots 
Point biserial correlation coefiicient. 2 11,9 14-9 15, 

919 
Polychoric correlations in SEM, 729 
Polyserial correlations in SEM, 729 
Population. 7 

in hypothesis testing, 3 1-34 
Post hoc comparisons, 53. See also Scheff6 test 

in ANCOVA, 2 19-22 1 
in MANOVA, 274 
in multiple regression, 147-148 
in profile analysis, 334-336,339,351,356357 
in SEM, 72 1-728 

Power, t t-t 2 , 5 3 7 .  fee also Type I1 ener ( B )  
in ANCOVA, 20, 195,200.20 1,202,203,204,2 12, 

2 14-215,2 17,222-223,240 
in logistic regression analysis, 442 
in MANOVA and MANCOVA, 244.250-25 1 
in MFA, 862 
in MLM, 782,788,829 
number of variables and, I 1  
in profile analysis, 3 15 
in SEM, 683,695,720 
in survival analysis, 509,5 10,538-539 
in time series analysis, 18-6 (online) 
unequal n and, 2 17-2 1 8 

Powers, variables raised to, 10, 157 
PRELIS, categorical data, 729-730. See also LISREL 
Pretest scores as covariates, 20,195 

versus difference scores, 222-223 
Principal components analysis. See Factor analysis 

.?nd princip!e components analysis 
Principal factor analysis. See Factor analysis and 

principle components analysis 
Priority order. See Order of entry 
Prior probabilities ir, DISCRIM, 38!, 389,404,4! 8 
Probit analysis, 456-457 
Profile analysis of repeated measures, 23,31 1-374 

assumprions of. 3 14-3 16,34635 !, 36Pr363 
Box's M, 3 15 
checklist for doubly-multivariate analysis, 369 
checklist for profile analysis. 357 
classification in profile analysis, 345 
confidence interval of pooled profiles, 35 1,356-357 
data set for, 3 17 
doubly-multivariate analysis, 339, 341-344, 

360-37 1 
effect size, 3 14,3 18,32 I ,  322-323,35 1,354,363, 

367 
tlatness test, 3 13,32 1-323,324,35 1-352,356 
GLM and, 9 1 8,92 1 
levels test. 3 13, 3 16, 3 18, 35 1-353.363-364 
missing values imputation, 345-346 
parallelism test. 3 12-3 13. 3 18-32 1 .  323-325, 328, 

35 1-352.363-365 
partition of sum of squares. 3 l6 ,?  18 
power, 3 15 
programs compared, 323-328,37 1-374 
results 

for  doi~blq'-~ni~lti~ariatt '  ~lnalc\ib. 770-37 I 
for profile anal) si<. Y X - 1 5 C )  

specific comparisons. 33 1-34). 35 1.356-357 
s~hericitv. 33-9 
(ersus urhariate repeated measures, ANOVA, 3 I I .  

3 14,329-33 1 
Proportion (percent) of covariance in FA. 62 1.  

647449,667 
Proportion (percent) of variance. 54-55. See ~ l l s o  

Effect size 
in FA, 62 1,643,644.647-649,667 

Quadratic discriminant analysis, 383,418,420 
Quartimax rotation, 638-639 

B2 software, 46 1,475,49 1,538,553 
demonstrated, 150-15 1,402-403 

R2. See Multiple regression 
R2, in SEM, 680,7 18,728-729 
Random assignment, 2-3,7 

and ANCOVA, 1 95,200-20 1 
Random coetlicients 782,799, 833 
Random effects, 47,78 1,788,79 1-792.83 1-832, 

834,856 
Randomized blocks, 43 

as alternative to ANCOVA, 222-223 
Random loss of subjects. 49 ,6243  
Random sampling, 7 
Rao's V in DISCRIM, 397 
Recursive, 7 10 
Redundancy, 580,583-584,587,698 
Reflecting variables, 88 
Regression coefficient. See also Multiple regression 

in ANCOVA, 206.2 12.2 13 
In b~variate regression, 57-58 
in canonical correlation, 573, 575 
in factor analysis, 622-623 
homogeneity of regression in ANCOVA, 202,2 13, 

237 
in logistic regression, 438,43940,445-446.45 1 ,  

459,461-463.469,491,499,504 
in MLM, 782,786,799,8 14 
in SEM, 680-68 1,734,739-742 
in survival analysis, 508,527, 540,541,559 
in time-series analysis, 18-32 (online) 

Regression weight. See Regression coefficient 
Reliability, I I 

of covariates, 196,203 
of factors, 589.614.615,637,644-646,667-668 
in MANOVA, stepdown analysis, 284 
in SEM, 728-729 

Repeated measures. See Within-subjects design 
Reporting results. See Results 
Residuals, 16, 76 

in logistic regression, 448449 
in MFA,874.899-90 1 
in MLM. 787.824.856 
in multiple regression. 125-1 27, 16 1 .  165-1 67 
in SEM. 736739,755-757 
in time-series analysis, 1&2,18-6 to 18-7,18-19,18-41, 

18-44 to 18-45, 18-53, 18-55, 18-61 (online) 
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Re\tricted niaxiinuni Ilhellhood t.stiin,lt~on 
In IMLM. 787.8'4.856 

Kewlts 
for ANCOVA. 238-739 
for canonical correlation, 602-604 
for DISCRIM, 426-429 
for doubly-multivariate ANOVA, 370-37 1 
for FA, 670-67 1 
for logistic regression 

sequential multiple-group, 496-498 
two-group direct, 479-480 

for MANCOVA, 303-306 
for MANOVA, 293-295 
for MFA, 906-908 
for MLM, 850-852 
for profile analysis, 358-359 
for screening grouped data, 115-1 I6 
for screening ungrouped data, 104-1 05 
for SEM, 748-749,716772 
for sequential regression, 178-179 
for standard multiple regression, 172- 173 
for survival analysis, 557-558 
for time-series analysis, 18-59 to 18-60 (online) 

p, see Intraclass correlation in MLM 
Ridge regression, 125 
RMR (root mean square residual) fit index, 720 
RMSEA (root mean square error of approximation), 

717 
Robustness of F to violation of assumptions, 78,202, 

25 1,252,3 15-3 16,382-383 
Roots, 905-906. See also Eigenvalues and 

eigenvectors; Dimensions 
Rotation. See also Factor analysis and principle 

components analysis 
~f canonica! ?;&-;ates, 569 
in DISCRIM, 38 1,401 

Roy's gcr, 269.397 

Sample, 7 
in hypothesis testing, 33 

Sample size. See also Unequal n; Power 
in ANCOVA, 20 1 
in canonical correlation, 570 
central limit theorem, 78 
in DISCRIM, 38 1-382 
in factor analysis, 613 
in logistic regression, 442-443 
in MANOVA, 250-25 1 
in MFA, 86 1-862 
in MLM, 787-788 
in profile analysis, 3 15 
in regression, 123- 124 
in SEM, 682-683,694,7 14 
standard deviation of sampling distribution, 33-34 
in survival analysis, 509-5 10 

Sampling distribution for means, 33-34, 37 
and normality, 77. a!  

SAS, 4. See nl.so O~ltpilt of AMOS, EQS, 
LISRELIPRELIS, SAS, and SPSS 

residuals analysis, 1 2 6  137, 
in time series, 18-53, 18-55 (online) 

S,\S ARIX1.A (online I 
.4CF and P.4CF plots. IS-2-1 !(j 18-25. !S-40 ! X  53 
compared with other time-series pro, wtns. 

18-60 to 18-63 
cornplete example, 18-49 to 18-59 
for continuous vaiiables. 18-40 
forecasting, 18-45 to 18-46 
identification syntax, 18-23 
intervention analysis, 18-32, 18-37 to 18-38, 

18-55 to 18-59 
O L I ~ P U ~ ,  18-24 to 18-25, 18-26, 18-35, 18-39, 

18-49 to 18-53, 18-56 to 18-58 
small-sample example, 18-23 to 18-27 

SAS CALIS, compared with other SEM programs, 
773-780 

SAS CANCORR 
compared with other programs for canonical 

correlation, 604-606 
complete example 589-600 
output, 58 1-583,596-600 
plots of canonical variates, 590,59 1 
small-sample canonical correlation example, 

5 80-5 84 
SAS CANDISC, compared with other DISCRIM 

programs, 430-436 
SAS CATMOD 

compared with other MFA programs, 908-912 
for general loglinear MFA models, 890 
small-sample MFA example, 883 
tests of effects, 888 

SAS CHART, 74 
SAS CORR, 71,315 
SAS DISCRIM 

classification with separate covariance matrices, 383, 4 i8  

compared with other DISCRIM programs, 430-436 
cross-validation, 409,418-421 
output, 392-395,410-417,419-424 
quadratic discriminant analysis, 383,418,420 
for sequential DISCRIM, 396 
small-sample example. 392-395 

SAS FACTOR 
adequacy of rotation, 644 
alpha factor extraction, 637 
compared with other factor programs, 67 1-675 
complete example of FA, 658-665 
generalized least squares factoring, 637 
image factoring, 636 
interpretation of factors, 650 
maximum likelihood factoring, 636 
multicollinearity, 1 15, 227-228,658 
orthogonal rotation with gamma, 638 
output, 1 15,228.63 1-632.658-668 
promax and Procrustean rotation, 640 
small-sample FA exan~ple, 628. 63 I 4 3 2  
SMCs. 643 
unweightecl lea\t $qu,tres factoring, 6 3 - 6 3 7  

SAS GLM 
compared w~th other ANCOVA program\, 240-2-12 
compared with other MANOVA programs, 

307-3 10 



compared ulth other ploy,un\ t ; ~  jxotile .un,ll)si\. 
37 1-374 

complex ANCOVA designs. 7 14-7 15.2 19-110 
discrimi~iarrt functions. 273 
doubly multivariate. 341--344 
homogeneity of regression. 237 
linearity and, 224 
multicollinearity and singularity in ANCOVA, 227 
output, 21 1,23 1,264-265.327-328.3.52-353 
pooled within-cell correlation matrix, 235-236.27 1 
profile analysis.. 352-353 
small-sample ANCOVA example, 2 10-2 I I 
small-sample MANOVA example, 264-266 
small-sample prof le analysis example, 324, 

327-328 
syntax a d  focatim of output for 

doubly-multivariate ANOVA, 342-344 
interaction contrasts. 340 
orthogonal and painvise comparisons, 220 
simple comparisons, 38 
simple effects, 334,335 

unequal n, 2 18.277 
SAS Interactive Data Analysis, 108-1 09 
SAS LIFEREG 

accelerated failure-time models, 797, 803-804 
censoring, 808-809 
Cox proportional-hazards model, 797,801-803 
effect size, 685,733-734 
output, 802 

SAS LIFETEST 
group differences, 5 15,539-540 
output, 52 1-523 
product-limit method, 524 
rm:!!l-s?mp!e example. 5 18,53- 1-53-3 

SAS LOGISTIC 
case-control studies, 469 
classification of cases, 468 
coding of discrete predictors, 464 
coding of outcome categories, 464 
compared with other logistic regression programs, 

499-505 
direct analysis in, 454 
discrete predictor variables, coding of, 464 
effect size measures, 46 1 
interactions, coding of, 469 
multiple outcome categories in, 465-467 
odds ratios in, 462 
ordered response categories, 465-467 
output, 450-45 1,466467,474,475,476-477,478 
sequential analysis in. 454 
small-sample logistic regression example, 449-45 1 
stepwise analysis in, 454 

SAS MEANS. 6 I ,  8 1 
output, 107- 108, 1 14, 23-5226,229, 347-348, 

349-350,592 
in time series, 18-59 (online) 

SAS MI. 179 
output, I X 1 

SAS MIXED 
centering example, 81-4-826 
compared with other programs for MLM, 852-857 

comparing model.; in. 830 
cross-level Interaction es;unple. S2(7-X37 
estimation methods. 833-834 
intraclass correlations in. 823 
O L I ~ P U ~ .  795.803,809-S 10. 825, 827 
repeated-measures factors, 8 19 

SAS PHREG, 527-529,536,541-543 
output. 528.536,542-543 

SAS PLOT, 84.653 
SAS PROBIT, 57 
SAS REG 

compared with other programs for regression, 
188-194 

multiple imputation example, 182- 185 
multivariate outliers 

identification, 1 1 1-1 12,227-228 
variables causing, H2-t 14,653456- 

output, 1 13-1 14,135,142-143,183-185,187, 
228,654-656 

semipartial and partial correlations, 146, 149 
sequential regression, I38 
small-samplt?multiple regression example, 

135-1 36 
standard multiple regression, 136 
statistical (stepwise) with cross-validation, 

141-143 
test of regression components, 148-149 

SAS STANDARD, standard scores, 67-73 
SAS STEPDISC 

compared with other DISCRIM programs, 430-436 
stepwise DISCRIM, 397,430,434-436 

SAS UNIVARIATE, 6 1,74,8 1 
in time series, 18-53, 18-55 (online) 

Saturated models in MFA, 864,87 1-874, 880-887 
SGC in iime-series .n:llyt:is, ! 8-47 !c?n!ine) 
Scatterplots 

between canonical variates, 588.590.59 1 
between discriminant functions, 383 
homoscedasticity, 85 
linearity, 83-84,98, 100, 1 10,653 
residuals, 126-127, 16 1-1 62, 167 
within-cell, 110 

Schefik test, 53 
in ANCOVA, 2 19,22 1 
in profile analysis, 334, 336,339 

Schwarz's Bayesian Criterion, 18-47 (online) 
Screening data, 92-1 16 

checklist for, 9 1 
flow diagrams for, 93, 106 

Scree test, 644-645.657,660 
Semipartial correlation, 145- 147, 17 1, 177. See also 

Multiple regression 
Sensitivity. See Power 
Sequential analysis, 8-10 

in DISCRIM, 24,25,396 
in logistic regression, 25,454455 
in multiple regression, ! 8; 1 19-1 20. 136-1 38, 

149-150, 174-177 
in survival analysis, 527 

Setup. See Output of AMOS, EQS, LISRELIPRELIS, 
SPSS, and SAS 
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S~rniticance te\t. 33-36 
for added w h e t  ot 1L \ in mult~ple le, cTre\\~oii. 

I -19-! 50 
for ANCOVA, 208 
for ANOVA, 42-46 
for canonical correlation. 575-575.580.595 
for comparing two sets of predictors, 152-153 
for comparing two time-series models, 18-45, 

18-47 (online) 
for DISCRIM, 385-386 
for DVs in MANOVA, 270-27 1 
for goodness of fit in logistic regression, 446448, 

457-459 
for group differences in survival analysis, 5 15-5 17, 

539-540 
for improvement in classification, difference 

between lambdas, 4 0 5 4 7  
for improvement in fit in logistic regression, 

458-459 
for interventions in time-series analysis, 18-32, 

18-34 (online) 
for kurtosis, 79-80 
for logistic regression coefficients, 459-460 
McNemar's change test, 405-406 
for MFA, 879 
for multiple R, 147-148 
for multivariate effect 

in MANCOVA, 268 
in MANOVA, 259-260 

for parameter estimates 
in MLM, 832,832 
in SEM, 695496,705 

for prediction from covariates, in survival analysis, 
540 

for profile analysis, 3 18.32 1 .  322 
for regression coefticlents, 148- 149 
for sample versus population value, 33-35,357 
for semipartial correlations, 148 
for skewness, 79 
for stepwise regression, 148 
for subset of IVs in multiple regression, 149-150 
f ~ r  successive discriminant functions, 398 

Simple comparisons, 336,338 
Simple effects, 334, 336-337 
Simple minded. See Statistics 
Simple structure, 640,644-646 
SIMPLIS. See LISREL 
SIMPLIS, model modification, 699 
Singular cells, in MANOVA, 250 
Skewness, 79-83 

in bivariate scatterplots, 8 1,84 
in EQS, 75 1 
illustrated. 93-96 
transformations and, 86-88 

Skiing, 444-455.6 15432,686-709,789-8 13 
SMC, 90. See also Factor analysis and principle 

components analysis; Multiple regression 
multicollinearity and singularity. 82-85 

SOLAS MDA, 67.69 
Speciti c comparisons, 49-53 

in ANCOVA, 199,2 18-22 1 

in DISCRIbl. 4 19. -12 I 4 7 4  
in RIANOVA. 273-276 
in MFA. 860-86 1 
in profile analysis, 33 1-340. 35 I ,  356-357 

Sphericity, 214-2 15,329 
SPSS, 4. See alsa Output of AMOS, EQS, 

LISRELPRELIS, SPSS, and SAS 
SPSS ACF (online) 

for diagnosis and estimation, 18- 19 to 18-20, 18-23 
for differenced scores, 18-16 to 18-17,18-28 to 18-30 
output, 18- 17, 18-20, 18-28 to 18-29, 18-3 1 
of residuals, 18- 16 to 18- 18 

SPSS ARIMA (online) 
compared with other programs for ARIMA, 

18-60 to 18-63 
intervention analysis, 18-19 to 18-27, 18-32 to 18-34, 

18-38 
output, 18-2 1 to 18-22, 18-34. 18-37 

SPSS CANCORR, compared with other canonical 
correlation programs, 604-606 

SPSS CONDESCRIPTIVE. See SPSS 
DESCRIPTIVES 

SPSS COXREG 
compared with other Cox Regression programs, 

559,562-566 
complete example, 55 1-558 
output, 53&532,55 1,55 1-555 
prediction from covariates, test statistics for, 540 
proportionality of hazards, 5 10, 535-536, 549, 55 1 
sequential analysis, 527,529-532,552-555 

SPSS DESCRIPTIVES 
describilig outliers, example, 103-104 
output, 103-104,361-362,544,545,546 

SFSS DISCRIMINANT 
BOX'S M. 383 
classification matrix, 404,405 
classification with separate covariance matrices, 

383 
compared with other DISCRIM programs, 430-436 
cross-validation, 405 
evaluation of successive discriminant functions, 

398 
loading matrix, 40 1 
output, 389-39 1 
plots of group centroids, 399 
rotation of loading matrices, 401 
scatterplots, discriminant function scores, 383 
small-sample example, 389-392 
stepping methods, 397 

SPSS EXPLORE, 162- 166 
SPSS FACTOR 

adequacy of rotation, 647 
alpha factor extraction, 637 
compared with other FA programs, 67 1-675 
factorability of R, 6 14 
factor extraction procedures, 633, 636437 
factor scores. 65 1 
generalized leaat squares tactor~ng. b37 
image factoring, 636 
maximum likelihood extraction. 636 
multicollinearity, to evaluate, 55 1-552 



oblique rotntion. 638-6-10 
output. 629-630 
partial correlation n~atrices. 61 4 
PFA. 636 
rotation, 638-640 
scree test, 644 
smalk-sample FA example, 628-630 
SMCs in FA, @I3 
uaweighted least squares factoring, 636-637 

SPSS FREQUENCIES 
data screening example, 93-97,99 
example of skewness, 94-96 
grouped data example, 277-279 
histograms, 95,97,99 
normality, 8 1 
output, 9+%,97,99, 166,278-279,636437,638 
univariate descriptive statistics, 6 1 
univariate outliers, 73, 124 

SPSS GENLOG 
compared with other MFA programs, 908-9 12 
general loglinear models, 889-890 
output, 884-885 
small-sample MFA example, 883-885 
tests of individual effects in MFA, 888 

SPSS GLM 
compared with other ANCOVA programs, 240-242 
compared with other MANOVA programs, 

307-3 10 
compared with other programs for profile analysis, 

37 1-374 
small-sample example 

ANCOVA, 208-209 
MANOVA, 261-263 
p;-:jf;,!e z!:a!ysis, 3 2 1  326 

syntax and location of output for 
doubly-multivariate ANOVA, 34 1-344 
interaction contrasts, 339-340 
orthogonal and pairwise comparisons, 2 19-220 
simple comparisons, 335,338 
simple effects, 334, 337 

SPSS GRAPH 
homoscedasticity in canonical correlation, 57 1 
linearity, 84,96,98, 100 
output, 98, 100 

SPSS HILOGLINEAR 
compared with other MFA programs, 908-9 12 
complete example, 895-90 1 
hierarchical MFA models and, 889 
output, 880-882,895496,897-898.902-903 
small-sample MFA example, 880-883 
tests of effects, 888 

SPSS KM 
compared with other survival programs. 559-56 1 ,  

565-566 
group differences, tests for, 359-360 
output, 526527 

SPSS LIST VARIABLES, describing outliers, 
example, 103 

SPSS LOGISTIC REGRESSION 
classification of cases, 468 
coding discrete variables, 464 

coeficlents. te\ts of, 459 
Cox and Snell R', 460 
direct logistic regression, 454 
Nagelkerke R', 460 
odds ratios in, 462 
output, 352353,455 
sequential logistic regression, 454 
small-sample logistic regression example, 48 1 1 8 3  
stepwise logistic regression, 454 
unbiased classification with, 468 

SPSS LOGLINEAR 
compared with other MFA programs, 908-9 12 
complete example, 902-903 
fm general loglinear models, 890 
output, 902-903 
tests of effects, 888 

SPSS MANOVA 
adjusted means example, 289-29 1,300-302 
Box's M, 252,28 1 
compared with other ANCOVA programs, 240-242 
compared with other canonical correlation 

programs, 604-606 
compared with other DISCRIM programs, 430-436 
compared with other MANOVA programs, 

307-3 10 -. - - .  

compared with other programs for profile analysis, 
37 1-374 

complete doubly-multivariate example, 363-366 
complete MANCOVA example, 296-302 
complete MANOVA example, 28 1-29 1 
complex ANCOVA designs in, 2 15 
discriminant functions, 273 
doubly-multivariate anaiysis, 341-344, 363-366 
homogeneity of regression, 202-203,2 13 
homogeneity of regression examples, 2 13, 

282-283,283-284,363 
interaction contrasts, 339-340 
multicollinearity and singularity, 253,285 
mu!tip!e regression analysis in MANCOVA, 296, 

298 
normal probability plots, 8 1-82 
output, 2 13,26 1,282-285,287-288,291, 

297-302,301-302,322,363-366 
pooled within-cell correlation matrix, 27 1,287 
rotation of loading matrices, 401 
simple effects analysis, 333-339 
small-sample example of profile analysis, 323-324 
small-sample MANOVA example, 261 
syntax and location of output for 

doubly-multivariate analysis, 34 1-344 
interaction contrasts, 339-340 
orthogonal and pairwise comparisons, 2 19-220 
simple comparisons, 335-336 
simple effects, 334,337 

tests of adjusted means. 3- 19-220 
unequal 1 1 ,  2 18, 276 

SPSS MIXED 
compared with other programs for MLM, 852-857 
comparing models in, 830-83 1 



SPSS MIXED 11 o i l t r / r r r c , d )  

complete eu,unple of hIL.2.I. 842-847 
estimation methods. 833 
intraclass correiatrons in. 823. 839-840, 842-843 
repeated-measures F~ctors, 8 14-8 18 

SPSS MVA, 6346,470473 
SPSS ONEWAY for simple effects and comparisons. 

333-336 
SPSS NOMREG 

compared with other logistic regression programs, 
499-504 . 

complete example, 48 1,485-49 1 
multiple unordered categories, 465 

SPSS PLOT. See SPSS GRAPH 
SPSS PLUM 

compared with other logistic regression programs, 
499-504 

SPSS PPLOT, data screening, 8 1-83 
SPSS PROBIT, 457 
SPSS REGRESSION 

compared with other regression programs, 188-1 94 
complete sequential example, 174- 176 
complete standard example, 167-1 7 1 
confidence limits, 150 
group differences in survival analysis, 549-550 
multicollinearity and singularity, examples, 10 1, 

104,167-1 68,839-840 
multivariate outliers, 75-76 

examples, 99-101, 166-168.838,840 
normal probability plots of residuals, 8 1-82 
output, 100-101. 102, 103, 134-135, 139, 162, 167, 

168, 169-170, 174-176,280- 281,547, 
548,550 ,840,84 1 

partial and semipartial correlations, 146-147 
residuais exam~ie. i 62-i61 

t ,  

small-sample sequential regression example, 
138-1 39 - -  - -  

small-sample standard example, 134-1 35 
standard multiple regression. 138 
stepwise regression, 14 1 
test of regression coefficientsi 148- 149 

SPSS SCAITERGRAM. See SPSS GRAPH 
SPSS SURVIVAL 

compared with other survival programs, 559-565 
group differences, 539-540 
output, 5 18-520 
small-sample example, 5 18-520 
and types of survival analysis, 524 

SPSS TSPLOT, 18-9, 18- 1 1. 18- 13 (online) 
Squared multiple correlation. See SMC 
Square root of a matrix, 928 
SRMR (standard root mean square residual) fit index, 

720 
SSL. See Factor analysis and principal components 

-. . analysis 
Standard analysis, 8-10 
Standard deviation, detinitinn of. 38 
Standard multiple regression. 136-1 38 
Standard normal distributinn, 34 
Start values in SEM, 690 
Statistical criteria 

for cornparing Sk1.l mudel5 . 732 
for comparing tinie->tries nloclrls. i S-45 to i 8-47 

(online) 
in DISCRIM, 397 
in logistic regression, 457460 
in MANOVA, 269 
in statistical (stepwise) regression, 148 

Statistical decision theoiy. 32-36 
Statistical matching 

in ANCOVA, 195-196 
in MANCOVA, 245 

Statistical (stepwise) analysis 
DISCRIM, 396-397 
logistic regression, 454-456 
MFA, 889-890,893-894 
multiple regression, 138- I43 

Statistics, 1-962 
for time series, 18- 1 to 18-63 (online) 

Stepdown analysis. See Multivariate analysis of 
variance and multivariate analysis of 
covariance 

Stepwise analysis. See Statistical (stepwise) analysis 
Strength of association. See Effect size 
Structural equation modeling (SEM), 676-780 

absolute tit index (MFI), 7 18 
advantages of, 679 
AGFI (adjusted fit index), 7 18-71 9 
AIC (Akaike infonnation criterion), 719-724 
CFI (comparative fit index), 7 16-7 18,720,743,747 
comparing models, statistical criteria for, 695-696, 

705 
correlated errors, 7 10, 729,734,759 
cross-validation, 682,720,728 
determinant, 683.755 
direct effects, 68 1 
effect size, 680,728-729 
elliptical distribution theory (EDT), 7 13 
equations; model, 687 
errors, 688 
estimated population covariance matrix, 688, 

69 !-694 
experiments, 678479,68 1,682 
factor analysis and, 687-688 
fixed parameters, 687,689,696,700,704-705, 

709,721,723,732,734,75 1 
generalized least squares estimation (GLS), 

713-718 
GFI (goodness of fit index), 7 18-7 19 
group differences, 68 1,730-732 
hypotheses, 682 
hypothesized model, 686-688 
identification, 709-7 1 1 
IF1 (incremental fit index), 7 16 
indirect effects, 679,68 I, 769 
initial values, 690 
interpretation, 696, 720,732,768-769 
just-identified model. 709 
kurtosis. 683, 7 13-7 14,754,773, 780 
Lagrange multiplier (LM) test, 684, 72 177-3, 

725-726,759-76 1,773 
latent means. 73 1-732 



latent \anable\. (>,M>XO. 6Xh-hX7. h8Y. 691. 700 .  
704-705. 7 10. 723. 73 1-73? 

LM test. 684.72 1-723.725-776.759-76 1.773 
manifest variables. 677 
Mardia's coetlicient. 754 
maximum likelihood (ML). 7 13 
mean differences, 68 1,730-732 
measurement error. 679 
measurement model, 678,732 

identifiability, 7 10 
mediation, 679,.68 1,769 
MFI (absolute fit index), 7 18 
nested designs, 68 1-682 
nested models, 7 16,720,72 1,73 1 
nonexperimental research, 682 
non-normed fit index (NNFI), 7 4 6 
nonrecursive. 7 10 
normed fit index (N.FI), 7 16 
ordinal variables, 729 
overidentification,709 
parameter estimates, 680-68 1,734,739-742 

significance tests for. 695496,705 
parameter matrices, 688-389,692-693 
parameters, 680-68 1,684,686 

fixed, 687,689,696,700,704-705,709,721, 
723,732,734,75 1 

PGFI (parsimony goodness of fit  index), 7 19 
path analysis in, 679 
path diagrams, 679 
polychoric correlations, 729 
polyserial correlations, 729 
post hoc comparisons, 72 1-728 
power, 683,695,720 
p~:ograms colnpared, 696-709.780 
K-, 68ij. 7 18. 728-129 
recursive, 7 10 
reliability, 680, 728-729 
residual covariance matrix, 684,694,736-738 
residual diagnostics, 736739,755-757 
residual variables, 688 
restricted model, 730 
results 

for confirmatory factor analysis, 748-749 
for structural equations model, 770-772 

RMR (root mean square residual) fit index, 720 
RMSEA (root mean square error of 

approximation), 7 17 
sample covariance matrix, 680,684,709, 7 13,7 15 
Satorra-Bentler scaled chi square, 7 13.72 1.754, 

755.758-759,773 
scale of a factor. 7 10-7 1 I 
SMC, 680,7 18,728-729 
SRMR (standard root mean square residual) fit 

index, 720 
start values, 690 
strength of association, 680, 728-729 
stn~ctural model. 678 
Type 1 error rate. 682.728 
underidentitication, 709 
unweighted least squares (ULS). 7 13 
Wald test, 723.725-726, 728 

\\eight Inatnu. 7 1 1 .  7 1 ;. i l X  
Struct~~re !ii~tl.is. 

in DISCRIM. 1x7. 39 1-39?. 394.4OO~Ol,401. 
41 1.4lh.430 

in factor analysis, 609,627,649 
Student's r. See t test 
Subtraction, matrix. 926-927 
Sum of squared loadings (SSL). See Factor analysis 

and principle components analysis 
Sum of squares, 39 

in ANCOVA, 204-208 
in ANOVA, 39-46 
in multiple regression, 130 
in profile analysis, 3 16, 3 18 

Sum-of-squares and cross-products matrix, 14-15 
in ANCOVA, 208 
to correlation matrix, 15 
in DISCRIM, 384-385 
in MANCOVA, 264-267 
in MANOVA, 257-258 
in multiple regression. 132 
in profile analysis, 32 1 

Suppressor variables, 154-1 55 
Survival analysis, 26,506-566 

accelerated failure-time model, 529,533-535 
assumptions of, 509-5 10,543-55 1 
censoring, 538 
checklist for, 556 
complete example, 54 1-558 
Cox proportional-hazards model, 55 1-556 
data set for. 5 1 1 
distributions for accelerated failure-time models, 

529,532,534 
GLM and, 9 16-9 1 7,920 
g:c!up differences. tests fnr, 5 15-5 16.539 
Kaplan-Meier analysis. 527 
likelihood ratios and log-likelihoods, 529,535, 

539-540 
output, 5 18-520,525-526,510432,533,536, 

55 1-555 
power, 509.538-539 
prcdicdoii, 540-542 
proportioilality of hazards, 536 
results, 557-558 

Syntax. See Output of AMOS, EQS, 
LISRELJPRELIS, SPSS, and SAS 

SYSTAT, 4 
SYSTAT ANOVA, 240-242 
SYSTAT DISCRIM, 436 
SYSTAT FACTOR, 675 
SYSTAT GLM 

compared with other ANCOVA programs, 240-242 
compared with other MANOVA programs, 307-3 10 
compared with other programs for profile analysis, 

37 1-374 
SYSTAT LOGIT, 504505 
SYSTAT LOGLIN, 908-9 12 
SY STAT REGRESS, i 04 
SYSTAT SERIES. 18-60 to 18-61 (online) 
SYSTAT SETCOK. 60J-606 
SYSTAT SURVIVAL, 566 
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Theta. in h1F.A. 873. 878 
Time-series analy$is, 27 
Time-series analysis (online). 18- 1 to 18-6 1 

ACF and PACF plots. 18-13 to 18-16, 18-41 to 18-44, 
18-49 to 18-53 

assumptions of. 18-6 to 18-7, 18-48 
checklist, 18-5 
comparing time series, 18-45, 18-47 
covariates in, 18-5, 18-38, 18-40 
data set for, 18-8 
diagnosis of models, 18- 19, 18-48 to 18-55 
effect size, 18-6, 18-44 to 18-45 
forecasting, 18-5, 18-45, 18-46 
GLM and, 917,920 
identification of ARIMA, 18-8 to 18- 16, 

18-48 to 18-5 1 
syntax for, 18-23 

interventions in, 18-5, 18-30.to 18-38, 18-55 to 18-58 
syntax for, 18-40 

output, 18-9. 18-1 1, 18-13, 18-17 to 18-18, 18-20, 
18-21, 18-22, 18-24 to 18-26, 18-28 to 18-29, 
18-3 1 ,  18-34. 18-35. 18-37, 18-39, 18-46, 
18-49 to 18-54, 18-56 to 18-58 

parameter estimates, 18-16. 18- 18 to 18-19, 18-49 
power, 18-6 
results, 18-60 
seasonality, 18-5, 18-27 to 18-30 
terminology, 18-4 

Tolerance 
in DISCRIM, 381-382,383,397 
and multicollinearity and singularity, 90 
in multiple regression, 124-1 25 

Trace of a matrix, 925 
Transformations, 78, 8688.98 
Transpose of a matrix. 927-928 
Trend analysis. See also Specific comparisons 

in ANCOVA, 219 
to circumvent failure of sphericity, 329 
in logistic regression, 464 
in MANOVA, 274,276 

t test. in hypothesis testing, 37 
Type I error (0) ,34 

classification of cases in logistic regression, 468 
in DISCRIM, 401 
in MANOVA, 244,268,270 
in MFA, 862 
outliers, 25 1 
in profile analysis, 334,336,339,35 I ,  356 
in SEM, 682,728 
in specific comparisons. 53,2 19 
sphericity, 329-330 
unequal n, 49 
unreliable covariates, 203 
in within-subjects ANOVA, 44 

Type 11 error (b), 33. See also Power 
classification of cases in logistic regression, 468 

outlien. 25 1 
unreliable co\,ari;itcs. 103 

Unequal rz.4839 
in ANCOVA, 20 1.2 17-2 18,224 
in DISCRIM, 38 1 
in MANOVA, 250,269,279 
in MLM, 788 
in profile analysis, 3 15, 349 

Unique variance. See Multiple regression 
Univariate F in MANOVA, 270-27 1,286,296 
Univariate statistics, defined, 2 
Unweighted least squares, 7 13 
Unweighted means analysis, 48-49,2 17-2 18 

Variable 
composite, 6 1 
deletion, 66,77,91 
selection, I I 

Variables. See also Continuous variables; 
Dichotomous variables; Discrete variables; 
1001 variables 

correlated 
in MANOVA, 244-245,249,270-27 1 
in multiple regression, 1 17- 1 18 

dependent (DV) and'independent (IV), 2 
uncorrelated, in multiple regression, 123 

Variance, defined, 38 
Variance, overlapping. See Overlapping variance 
Variance-covariance matrix, 14-15.929. See also 

Homogeneity of variance-covariance 
matrices 

in multiple regression, 132 
Varimax rotation, 620,628,638,657-660 
Vectors. SPP Eigenva.!ues and eigenvectors 

Wald test 
In logistic regression, 444,445,449,45 1,456,459, 

467,475,499 
in MLM, 83 1 
in SEM, 723,725-726,728 
In survival analysis, 540 

Weight matrix in SEM, 7 12-7 13,7 18 
Wilks' lambda. See Lambda, Wilks' 
Within-cell correlation matrix 

determinant of, 253 
SPSS MANOVA example, 365 

Within-subjects design, 43-47 
in ANCOVA, 2 14-2 15 
versus ANCOVA, 22 1-223 
in MANOVA, 249,274,276 
in MLM, 781,814-8 19,835-852 
versus profile analysis, 3 1 I ,  329-33 1 

z test, one sample, 33-35 
profile analysis example, 356-357 
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