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PREFACE

This book is designed to help students learn how to analyze and interpret research data with basic
statistics. It is intended to be a supplemental text in an introductory (undergraduate or graduate)
statistics or research methods course in the behavioral sciences or education and it can be used in
conjunction with any mainstream text. We have found that the book makes SPSS for Windows
easy to use so that it is not necessary to have a formal, instructional computer lab; you should be
able to learn how to use SPSS on your own with this book. Access to the SPSS program and
some familiarity with Windows is all that is required. Although SPSS for Windows is quite easy
to use, there is such a wide variety of options and statistics that knowing which ones to use and
how to interpret the printouts can be difficult, so this book is intended to help with these
challenges.

SPSS 12 and Earlier Versions

We use SPSS 12 for Windows in this book, but, except for enhanced tables and graphics, there
are only minor differences from versions 10 and 11. In fact, as far as the procedures
demonstrated, in this book there is only one major difference (in how data are entered) between
versions 7 and 12. We also expect future Windows versions to be similar. You should not have
much difficulty (except in Chapter 2) if you have access to SPSS versions 7 through 9. Our
students have used this book, or earlier editions of it, with all of these versions of SPSS; both the
procedures and outputs are quite similar. We will point out some of the changes at various points
in the text.

Goals of This Book

This book demonstrates how to produce a variety of statistics that are usually included in basic
statistics courses, plus some (e.g., reliability measures) that are useful for doing research. Our
goal is to describe the use and interpretation of these statistics as much as possible in
nontechnical, jargon-free language.

Helping you learn how to choose the appropriate statistics, interpret the outputs, and
develop skills in writing about the meaning of the results are the main goals of this book
Thus, we have included material on:

1) How the appropriate choice of a statistic is based on the design of the research.

2) How to use SPSS to answer research questions.

3) How to interpret SPSS outputs.

4) How to write about the outputs in the Results section of a paper.

This information will help you develop skills that cover the whole range of the steps in the
research process: design, data collection, data entry, data analysis, interpretation of outputs, and
writing results. The modified high school and beyond data set (HSB) used in this book is similar
to one you might have for a thesis, dissertation, or research project. Therefore, we think it can
serve as a model for your analysis. The compact disk (CD) packaged with the book contains the
HSB data file and another data set (called the College Student data) that is used for the extra
problems at the end of each chapter. However, you will need to have access to or purchase the
SPSS program.

Partially to make the text more readable, we have chosen not to cite many references in the text;
however, we have provided a short bibliography of some of the books and articles that we have
found useful. We assume that most students will use this book in conjunction with a class that has

viii



Preface

a textbook; it will help you to read more about each statistic before doing the assignments. Our
“For Further Reading” list should also help.

Our companion book, Leech, Barrett, and Morgan (2004), SPSS for Intermediate Statistics: Use
and Interpretation, also published by Lawrence Erlbaum Associates, is on the “For Further
Reading” list at the end of this book. We think that you will find it useful if you need to do
complex statistics including ones such as Cronbach’s alpha, multiple regression, and factorial

ANOVA that are introduced briefly in this book.
Special Features

Several user friendly features of this book include:

1. The key SPSS windows that you see when performing the statistical analyses. This has been
helpful to “visual learners.”

2. The complete outputs for the analyses that we have done so you can see what you will get
(we have done some editing in SPSS to make the outputs fit better on the pages).

3. Callout boxes on the outputs that point out parts of the output to focus on and indicate what

they mean.

For each output, a boxed interpretation section that will help you understand the output.

Chapter 6 provides specially developed flow charts and tables to help you select an

appropriate inferential statistic and interpret statistical significance and effect sizes.

This chapter also provides an extended example of how to identify and write a research

problem, several research questions, and a results paragraph.

6. For the inferential statistics in Chapters 7-11, an example of how to write about the output
and make a table for a thesis, dissertation, or research paper.

7. Interpretation questions that stimulate you to think about the information in the chapter and
outputs.

8. Several extra SPSS problems at the end of each chapter for you to run with SPSS and
discuss.

9. A Quick Reference Guide to SPSS (Appendix A) which provides information about many
SPSS commands not discussed in the chapters.

10. Appendixes B, C, and D, which provide examples of how to write research problems and
questions/hypotheses (B) and how to get started with SPSS (C), and how to make tables
and figures (D).

11. Answers to the odd numbered interpretation questions (Appendix E).

12. Two data sets on a CD. These realistic data sets are packaged with the book to provide you
with data to be used to solve the chapter problems and the extra problems at the end of each
chapter.

gt

Overview of the Chapters

Our approach in this book is to present how to use and interpret SPSS in the context of
proceeding as if the HSB data were the actual data from your research project. However, before
starting the SPSS assignments, we have three introductory chapters. The first chapter describes
research problems, variables, and research questions, and it identifies a number of specific
research questions related to the HSB data. The goal is to use SPSS as a tool to help you answer
these research questions. (Appendix B provides some guidelines for phrasing or formatting
research questions). Chapter 2 provides an introduction to data coding, entry, and checking with
sample questionnaire data designed for those purposes. We developed Chapter 2 because many of
you may have little experience with getting “messy”, realistic data ready to analyze. Chapter 3
discusses measurement and its relation to the appropriate use of descriptive statistics. This chapter
also includes a brief review of descriptive statistics.
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Chapters 4 and 5 provide you with experience doing exploratory data analysis (EDA), basic
descriptive statistics, and data manipulations (e.g., compute and recode) using the high school and
beyond (HSB) data set. These chapters are organized in very much the way you might proceed if
this were your project. We calculate a variety of descriptive statistics, check certain statistical
assumptions, and make a few data transformations. Much of what is done in these two chapters
involves preliminary analyses to get ready to answer the research questions that you might state
in a report.

Chapter 6 provides a brief overview of research designs (between groups and within subjects).
This chapter describes flowcharts and tables useful for selecting an appropriate statistic. Also
included is an overview of how to interpret and write about the results of an inferential statistic.
This section includes not only testing for statistical significance but also a discussion of effect
size measures and guidelines for interpreting them.

Chapters 7-11 are designed to answer the several research questions posed in Chapter 1 as well as
a number of additional questions. Solving the problems in these chapters should give you a good
idea of the basic statistics that can be computed with SPSS. Hopefully, seeing how the research
questions and design lead naturally to the choice of statistics will become apparent after using this
book. In addition, it is our hope that interpreting what you get back from the computer will
become more clear after doing these assignments, studying the outputs, answering the
interpretation questions, and doing the extra SPSS problems.

Our Approach to Research Questions, Measurement and Selection of Statistics

In Chapters 1, 3, and 6, our approach is somewhat nontraditional because we have found that
students have a great deal of difficulty with some aspects of research and statistics but not others.
Most can learn formulas and “crunch” the numbers quite easily and accurately with a calculator
or with a computer. However, many have trouble knowing what statistics to use and how to
interpret the results. They do not seem to have a “big picture” or see how research design and
measurement influence data analysis. Part of the problem is inconsistent terminology. We are
reminded of Bruce Thompson’s frequently repeated, intentionally facetious remark at his many
national workshops: “We use these different terms to confuse the graduate students.” For these
reasons we have tried to present a semantically consistent and coherent picture of how research
design leads to three basic kinds of research questions (difference, associational, and descriptive)
which, in turn, lead to three kinds or groups of statistics with the same names. We realize that
these and other attempts to develop and utilize a consistent framework are both nontraditional and
somewhat of an oversimplification. However, we think the framework and consistency pay off in
terms of student understanding and ability to actually use statistics to answer their research
questions. Instructors who are not persuaded that this framework is useful can skip Chapters 1, 3,
and 6 and still have a book that helps their students use and interpret SPSS.

Major Changes and Additions to This Edition

The following changes and additions are based on our experiences using the book with students,

feedback from reviewers and other users, and the revisions in policy and best practice specified

by the APA Task Force on Statistical Inference (1999) and the 5™ Edition of the APA Publication

Manual (2001). We have included more discussion of:

1. Effect size. We discuss effect size in each interpretation section to be consistent with the
requirements of the revised APA manual. Unfortunately because SPSS doesn’t provide effect
sizes for all the demonstrated statistics, we often had to show how to estimate or compute

them by hand.
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Writing about outputs. We include examples of how to write about and make APA type
tables from the information in SPSS outputs. We have found the step from interpretation to
writing quite difficult for students so we now put more emphasis on research writing.
Assumptions. When each statistic is introduced, we have a brief section about its assumptions
and when it is appropriate to select that statistic for the problem or question at hand.
Descriptive statistics and testing assumptions. We have expanded emphasis on exploratory
data analysis (EDA) and how to test assumptions. Also there is more on data file management
than was in the first edition.

Reliability assessment. We present some ways of assessing reliability in the crosstabulation,
correlation, and ¢ test chapters of this book. More emphasis on reliability and testing
assumptions is consistent with our strategy of presenting SPSS procedures that students
would use in an actual research project.

One-way ANOVA and t tests. We have made separate chapters for these statistics. In the
ANOVA chapter, we also include an introduction to factorial ANOVA.

Nonparametric statistics. We include the nonparametric tests that are similar to the ¢ tests
(Mann-Whitney and Wilcoxon) and single factor ANOVA (Kruskal-Wallis) in appropriate
chapters as well as several nonparametric measures of association. This is consistent with the
increased emphasis on checking assumptions because it provides alternative procedures for
the student when key assumptions are markedly violated.

Data entry and checking. Chapter 2, on data entry, variable labeling, and data checking is
based on a small data set (6 variables and 12 participants) developed for this book. What is
new and unusual is that the data are displayed as if they were on copies of actual
questionnaires answered by participants. We built in problematic responses that require the
researcher or data entry person to look for errors or inconsistencies and make decisions. We
hope this quite realistic task will help students be more sensitive to issues of data checking
before doing analyses.

Interpretation questions. We have added more interpretation questions to each chapter
because we have found them useful for student understanding. We include the answers to the
odd numbered questions in Appendix E for self-study.

Extra SPSS problems. We have developed additional extra problems to give you more
practice in running and interpreting SPSS.

SPSS syntax. We show the syntax along with the outputs because a number of professors and
skilled students like seeing and prefer using syntax to produce outputs. How to use SPSS
syntax is presented in the Quick Reference Guide.

Quick Reference Guide for SPSS procedures. We have condensed several of the appendixes
of the first edition into the alphabetically organized Appendix A, which is somewhat like a
glossary. It includes how to do basic procedures like print and save, which are tasks you will
use several times and/or may already know. It also includes brief directions of how to do
things like import a file from Excel or export to PowerPoint, do split files, and make 3-D
figures.

13. AnlInstructor CD. This manual is available to course instructors who request it from LEA.

It contains aids for teaching the course, including PowerPoint slides, the answers to the even
numbered Interpretation Questions, and information related to the Extra SPSS Problems.

Bullets, Arrows, Bold and Italics
To help you do the problems with SPSS, we have developed some conventions. We use bullets to
indicate actions in SPSS Windows that you will take. For example:

Highlight gender and math achievement.
Click on the arrow to move the variables into the right hand box.

xi



CHAPTER 1

Variables, Research Problems and Questions

Research Problems

The research process begins with an issue or problem of interest to the researcher. This research
problem is a statement that asks about the relationships between two or more variables'. Almost
all research studies have more than two variables. Appendix B provides templates to help you
phrase your research problem, and provides examples from the expanded high school and beyond
(HSB) data set that will be described in this chapter and used throughout the book.

The process of moving from a sense of curiosity, or a feeling that there is an unresolved problem
to a clearly defined, researchable problem, can be a complex and long one. That part of the
research process is beyond the scope of this book, but it is discussed in most books about
research methods and books about completing a dissertation or thesis.

Variables

Key elements in a research problem are the variables. A variable is defined as a characteristic of
the participants or situation for a given study that has different values in that study. A variable
must be able to vary or have different values. For example, gender is a variable because it has
two values, female or male. Age is a variable that has a large number of values. Type of
treatment/intervention (or type of curriculum) is a variable if there is more than one treatment or
a treatment and a control group. Number of days to learn something or to recover from an
ailment are common measures of the effect of a treatment and, thus, are also variables. Similarly,
amount of mathematics knowledge is a variable because it can vary from none to a lot.

If a concept has only one value in a particular study it is not a variable; it is a constant. Thus,
ethnic group is not a variable if all participants are European American. Gender is not a variable
if all participants in a study are female.

In quantitative research, variables are defined operationally and are commonly divided into
independent variables (active or attribute), dependent variables, and extraneous variables.
Each of these topics will be dealt with in briefly the following sections.

Operational definitions of variables. An operational definition describes or defines a variable in
terms of the operations or techniques used to make it happen or measure it. When quantitative
researchers describe the variables in their study, they specify what they mean by demonstrating
how they measured the variable. Demographic variables like age, gender, or ethnic group are
usually measured simply by asking the participant to choose the appropriate category from a list.

' To help you, we have identified the SPSS variable names, labels, and values using italics (e.g., gender and
male) and have put in bold the terms used in the SPSS windows and outputs (e.g., SPSS Data Editor), and
we use bold for other key terms when they are introduced, defined, or are important to understanding.
Underlines are used to focus your attention on critical points or phrases that could be missed. Italics are
also used, as commonly the case, for emphasizing a word or two and for the titles of books.
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Types of treatment (or curriculum) are usually operationally defined much more extensively by
describing what was done during the treatment or new curriculum. Likewise, abstract concepts
like mathematics knowledge, self-concept, or mathematics anxiety need to be defined
operationally by spelling out in some detail how they were measured in a particular study. To do
this, the investigator may provide sample questions, append the actual instrument, or provide a
reference where more information can be found.

Independent Variables

There are two types of independent variables active and attribute. It is important to distinguish
between these types when we discuss the results of a study. As presented in more detail below,
an active independent variable is a necessary but not sufficient condition to make cause and
effect conclusions.

Active or manipulated independent variables. An active independent variable is a variable, such
as a workshop, new curriculum, or other intervention, at least one level of which is given to a

group of participants, within a specified period of time during the study.

For example, a researcher might investigate a new kind of therapy compared to the traditional
treatment. A second example might be to study the effect of a new teaching method, such as
cooperative learning, on student performance. In these two examples, the variable of interest was
something that was given to the participants. Thus, active independent variables are given to the
participants in the study but are not necessarily given or manipulated by the experimenter. They
may be given by a clinic, school, or someone other than the investigator, but from the
participants’ point of view, the situation was manipulated. Using this definition, the treatment is
always given after the study was planned so that there could have been (or preferably was) a
pretest. Other writers have similar but, perhaps, slightly different definitions of active
independent variables. Randomized experimental and quasi-experimental studies have an
active independent variable.

Attribute or measured independent variables. A variable that cannot be manipulated, yet is a
major focus of the study; can be called an attribute independent variable. In other words, the
values of the independent variable are preexisting attributes of the persons or their ongoing
environment that are not systematically changed during the study. For example, education,
gender, age, ethnic group, 1Q, and self-esteem are attribute variables that could be used as
attribute independent variables. Studies with only attribute independent variables are called non

experimental studies.

In keeping with SPSS, but unlike authors of some research methods books, we do not restrict the
term independent variable to those variables that are manipulated or active. We define an
independent variable more broadly to include any predictors, antecedents, or presumed causes or
influences under investigation in the study. Attributes of the participants as well as active
independent variables fit within this definition. For the social sciences and education, attribute
independent variables are especially important. Type of disability or level of disability may be
the major focus of a study. Disability certainly qualifies as a variable since it can take on
different values even though they are not given during the study. For example, cerebral palsy is
different from Down syndrome, which is different from spina bifida, yet all are disabilities. Also,
there are different levels of the same disability. People already have defining characteristics or
attributes that place them into one of two or more categories. The different disabilities are
already present when we begin our study. Thus, we might also be interested in studying a class of
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variables that are not given or manipulated during the study, even by other persons, schools, or
clinics.

Other labels for the independent variable. SPSS uses a variety of terms such as factor (Chapter
10), and grouping variable (Chapter 9). In other cases, (Chapters 7 and 8) SPSS and statisticians
do not make a distinction between the independent and dependent variable; they just label them
variables. For example, there is no independent variable for a correlation or chi-square.
However, even for chi-square and correlation, we think it is sometimes educationally useful to
think of one variable as the predictor (independent variable) and the other as the outcome
(dependent variable), as is the case in regression.

Type of independent variable and inferences about cause and effect. When we analyze data
from a research study, the statistical analysis does not differentiate whether the independent
variable is an active independent variable or an attribute independent variable. However, even
though SPSS and most statistics books use the label independent variable for both active and
attribute variables, there is a crucial difference in interpretation.

A major goal of scientific research is to be able to identify a causal relationship between two
variables. For those in applied disciplines, the need to demonstrate that a given intervention or
treatment causes change in behavior or performance is extremely important. Only the approaches

that have an active independent variable (randomized experimental and, to a lesser extent, quasi-

experimental) can provide data that allow one to infer that the independent variable caused the
change or difference in the dependent variable.

In contrast, a significant difference between or among persons with different values of an
attribute independent variable should not lead one to conclude that the attribute independent
variable caused the dependent variable to change. Thus, this distinction between active and
attribute independent variables is important because terms such as main effect and effect size
used by SPSS and most statistics books might lead one to believe that if you find a significant
difference the independent variable caused the difference. These terms can be misleading when
the independent variable is an attribute.

Although non experimental studies (those with attribute independent variables) are limited in
what can be said about causation, they can lead to solid conclusions about the differences
between groups and about associations between variables. Furthermore, if the focus of your
research is on attribute ind ent variables, a non experimental s is the only available
approach. For example, if you are interested in learning how boys and girls learn mathematical
concepts, you are interested in the attribute independent variable of gender.

Values of the independent variable. SPSS uses the term values to describe the several options or
values of a variable. These values are not necessarily ordered, and several other terms,
categories, levels, groups, or samples are sometimes used interchangeably with the term values,
especially in statistics books. Suppose that an investigator is performing a study to investigate the
effect of a treatment. One group of participants is assigned to the treatment group. A second
group does not receive the treatment. The study could be conceptualized as having one
independent variable (treatment type), with two values or levels (treatment and no treatment).
The independent variable in this example would be classified as an active independent variable.
Now, suppose instead, that the investigator was interested primarily in comparing two different
treatments but decided to include a third no-treatment group as a control group in the study. The
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study still would be conceptualized as having one active independent variable (treatment type),
but with three values or levels (the two treatment conditions and the control condition). This
variable could be diagrammed as follows:

Variable Label Values Value Labels

1 = Treatment I
Treatment type 2 = Treatment 2
= No treatment (control)

As an additional example, consider gender, which is an attribute independent variable with two
values, as male and female. It could be diagrammed as follows:

Variable Label Values Value Labels
1 Male

]

Gender

2 = Female

Note that in SPSS each variable is given a variable label; moreover, the values, which are often
categories, have value labels (¢.g., male and female). Each value or level is assigned a number
used by SPSS to compute statistics. It is especially important to know the value labels when the
variable is nominal; i.e., when the values of the variable are just names and, thus, are not
ordered.

Dependent Variables

The dependent variable is assumed to measure or assess the effect of the independent variable.
It is thought of as the presumed outcome or criterion. Dependent variables are often test scores,
ratings on questionnaires, readings from instruments (electrocardiogram, galvanic skin response,
etc.), or measures of physical performance. When we discuss measurement in Chapters 2 and 3,
we are usually referring to the dependent variable. Dependent variables, like independent
variables must have at least two values; most dependent variables have many values, varying
from low to high so they are not as easy to diagram as the independent variables shown above.

SPSS also uses a number of other terms for the dependent variable. Dependent list is used in
cases where you can do the same statistic several times, for a list of dependent variables (e.g., in
Chapter 10 with one-way ANOVA). The term test variable is used in Chapter 9 for the ¢ test.

Extraneous Variables

These are variables (also called nuisance variables or, in some designs, covariates) that are not of
interest in a icular study but could influence the dependent variable. Environmental factors
(e.g., temperature or distractions), time of day, and characteristics of the experimenter, teacher,
or therapist are some possible extraneous variables that need to be controlled. SPSS does not use
the term extraneous variable. However, sometimes such variables are “controlled” using statistics

that are available in SPSS.
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Research Hypotheses and Questions

Research hypotheses are predictive statements about the relationship between variables.
Research questions are similar to hypotheses. except that they do not entail specific predictions

and are phrased in question format. For example, one might have the following research

question: “Is there a difference in students’ scores on a standardized test if they took two tests in
one day versus taking only one test on each of two days?” A hypothesis regarding the same issue
might be: “Students who take only one test per day will score better on standardized tests than

will students who take two tests in one day.”

We divide research questions into three broad types: difference, associational, and descriptive
as shown in the middle of Fig 1.1. The figure also shows the general and specific purposes and
the general types of statistics for each of these three types of research question.

General Purpose Explo?“’mwimablﬁ

Specific Purpose Compare Groups

|

Type of Question/Hypothesis Difference

|

General Type of Statistic Difference Inferential
Statistics (e.g., # test,
ANOVA)

Find Strength of
Associations, Relate
Variables

|

Associational

|

Associational

Inferential Statistics

(e.g., correlation,
multiple regression)

Description (Only)

|

Summarize Data

Descriptive Statistics

(e.g., mean,

percentage, range)

Fig. 1.1. Schematic diagram showing how the purpose and type of research question

correspond to the general type of statistic used in a study.

Difference research questions. For these questions, we compare scores (on the dependent
variable) of two or more different groups, each of which is composed of individuals with one of
the values or levels on the independent variable. This type of question attempts to demonstrate

that groups are not the same on the dependent variable.

Associational research questions. Here we associate or relate two or more variables. This
approach usually involves an attempt to see how two or more variables co-vary (e.g., higher
values on one variable correspond to higher, or lower, values on another variable for the same
persons) or how one or more variables enables one to predict another variable.
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Descriptive research questions. These are not answered with inferential statistics. They merely
describe or summarize data, without trying to generalize to a larger population of individuals.

Figure 1.1 shows that both difference and associational questions or hypotheses are similar in
that they explore the relationships between variables.” Note that difference and associational
questions differ in specific purpose and the kinds of statistics they use to answer the question.

Difference versus associational inferential statistics. We think it is educationally useful to
divide inferential statistics into two types corresponding to difference and associational
hypotheses or questions’. Difference inferential statistics (e. g., ¢ test or analysis of variance) are
used for approaches that test for differences between groups. Associational inferential statistics
test for associations or relationships between variables and use, for example, correlation or
multiple regression analysis. We will utilize this contrast between difference and associational
inferential statistics in Chapter 6 and later in this book.

Table 1.1 provides the general format and one example of a basic difference question, a basic
associational question, and a basic descriptive question. Remember that research questions are
similar to hypotheses, but they are stated in question format. We think it is advisable to use the
question format when one does not have a clear directional prediction and for the descriptive
approach. More details and examples are given in Appendix B. As implied by Fig. 1.1, it is
acceptable to phrase any research question that involves two variables as whether or not there is
a relationship between the variables (e.g., is there a relationship between gender and math
achievement or is there a relationship between anxiety and GPA?). However, we think that
phrasing the question as a difference or association is desirable because it helps one choose an
appropriate statistic and interpret the result.

Complex Research Questions

Some research questions involve more than two variables at a time. We call such questions and
the appropriate statistics complex. Some of these statistics are called multivariate in other texts,
but there is not a consistent definition of multivariate in the literature. We provide examples of
how to write certain complex research questions in Appendix B, and in Chapters 8 and 10 we
introduce complex statistics, multiple regression and factorial ANOVA.

*This similarity is in agreement with the statement by statisticians that all common parametric inferential
statistics are relational. We use the term associational for the second type of research question rather than
relational or correlational to distinguish it from the general purpose of both difference and associational
questions/hypothesis, which is to study relationships. Also we wanted to distinguish between correlation, as
a specific statistical technique, and the broader type of associational question and that group of statistics.

3 We realize that all parametric inferential statistics are relational so this dichotomy of using one type of
data analysis procedure to test for differences (when there are a few values or levels of the independent
variables) and another type of data analysis procedure to test for associations (when there are continuous
independent variables) is somewhat artificial. Both continuous and categorical independent variables can be
used in a general linear model approach to data analysis. However, we think that the distinction is useful
because most researchers utilize the above dichotomy in selecting statistics for data analysis.



Chapter 1 — Variables, Research Problems, and Questions

Table 1.1. Examples of Three Kinds of Basic Research Questions/Hypotheses

1. Basic Difference (group comparison) Questions

e Usually used for Randomized Experimental, Quasi-Experimental, and Comparative
Approaches.

e For this type of question, values or categories of the independent variable (e.g., anxiety)
are used to categorize the participants into groups (e.g., high and low), which are then
compared to see if they differ in respect to the average scores on the dependent variable
(e.g., GPA).

e Example: Do persons with low and high anxiety differ on their average grades? In other
words, will the average GPA of the high anxiety persons be significantly different from
the average GPA for low anxiety persons?

2. Basic Associational (relational) Questions

e Used for the Associational Approach, in which the independent variable is usually
continuous (i.e., has many ordered levels).

e For this type of question, the scores on the independent variable (e.g., anxiety) are
associated with or related to the dependent variable scores (e.g., GPA).

¢ Example: Will students’ degree of anxiety be associated with their overall GPA? In other
words, will knowing students’ level of anxiety tell us anything about their tendency to
make higher versus lower grades? If there is a negative association (correlation) between
anxiety scores and grade point average, those persons who have high levels of anxiety
will tend to have low GPAs, those with low anxiety will tend to have high GPAs, and
those in the middle on anxiety will tend to be in the middle on GPA.

3. Basic Descriptive Questions

Used for the Descriptive Approach. )
For this type of question, scores on a single variable are described in terms of their
central tendency, variability, or percentages in each category/level.

e Example: What percentage of students make a B or above? What is the average level of
anxiety found in 9" grade students? The average GPA was 2.73, or 30% had high
anxiety.

A Sample Research Problem:
The Modified High School and Beyond (HSB) Study

The SPSS file name of the data set used with this book is hsbdata.sav; it stands for high school
and beyond data. It is based on a national sample of data from more than 28,000 high school
students. The current data set is a sample of 75 students drawn randomly from the larger
population. The data that we have for this sample includes school outcomes such as grades and
the number of mathematics courses of different types that the students took in high school. Also,
there are several kinds of standardized test data and demographic data such as gender and
mother'’s and father's education. To provide an example of rating scale questionnaire data, we
have included 14 items about mathematics attitudes. These data were developed for this book
and, thus, are not really the math attitudes of the 75 students in this sample; however, they are
based on real data gathered by one of the authors to study motivation. Also, we made up data for



SPSS for Introductory Statistics

religion, ethnic group, and SAT-math, which are somewhat realistic overall. These inclusions
enable us to do some additional statistical analyses.

The Research Problem

Imagine that you are interested in the general problem of what factors seem to influence
mathematics achievement at the end of high school. You might have some hunches or hypotheses
about such factors based on your experience and your reading of the research and popular
literature. Some factors that might influence mathematics achievement are commonly called
demographics: e.g., gender, ethnic group, and mother’s and father’s education. A probable
influence would be the mathematics courses that the student has taken. We might speculate that
grades in mathematics and in other subjects could have an impact on math achievement.*
However, other variables, such as students’ IQs or parents’ encouragement and assistance, could
be the actual causes of both high grades and math achievement. Such variables could influence
what courses one took, the grades one received, and might be correlates of the demographic
variables. We might wonder how spatial performance scores, such as pattern or mosaic test
scores and visualization scores, might enable a more complete understanding of the problem, and
whether these skills seem to be influenced by the same factors as math achievement.

The HSB Variables

Before we state the research problem and questions in more formal ways, we need to step back
and discuss the types of variables and the approaches that might be used to study the above
problem. We need to identify the independent/antecedent (presumed causes) variables, the
dependent/outcome variable(s), and any extraneous variables.

The primary dependent variable. Given the above research problem, which focuses on
achievement tests at the end of the senior year, the primary dependent variable is math
achievement.

Independent and extraneous variables. The number of math courses taken up to that point is
best considered to be an antecedent or independent variable in this study. What about father's
and mother's education and gender? How would you classify gender and parents’ education in
terms of the type of variable? What about grades? Like the number of math courses, these
variables would usually be independent variables because they occurred before the math
achievement test. However some of these variables, specifically parental education, might be
viewed as extraneous variables that need to be “controlled.” Visualization and mosaic pattern
scores probably could be either independent or dependent variables depending upon the specific
research question, because they were measured at approximately the same time as math
achievement, at the end of the senior year. Note that student’s class is a constant and is not a
variable in this study because all the participants are high school seniors (i.e., it does not vary; it
is the population of interest).

Types of independent variables. As we discussed previously, independent variables can be
active (given to the participant during the study or manipulated by the investigator) or attributes
of the participants or their environments. Are there any active independent variables in this
study? No! There is no intervention, new curriculum, or similar treatment. All the independent
variables, then, are attribute variables because they are attributes or characteristics of these high
school students. Given that all the independent variables are attributes, the research approach

* We have decided to use the short version of mathematics (i.e., math) throughout the book to save space
and because it is used in common language.
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cannot be experimental. This means that we will not be able to draw definite conclusions about
cause and effect (i.e., we will find out what is related to math achievement, but we will not know

for sure what causes or influences math achievement).

Now we will examine the Asbdata.sav that you will use to study this complex research problem.
We have provided a CD that contains the data for each of the 75 participants on 38 variables. The
variables in the Asbdata.sav file have already been labeled (see Fig 1.2) and entered (see Fig 1.3)
to enable you to get started on analyses quickly. The CD in the back of this book contains SPSS
data files for you to use, but it does not include the actual SPSS program, which you will have to
have access to in order to do the assignments.

The SPSS Variable View

Figure 1.2 is a piece of what SPSS calls the variable view in the SPSS Data Editor for the
hsbdata.sav file. Figure 1.2 shows information about each of the first 17 variables. When you
open this file and click on Variable View at the bottom left comer of the screen, this is what you
will see. We will describe what is in the variable view screen in more detail in Chapter 2; for
now focus on the Name, Label, Values, and Missing columns. Name is a short name for each
variable (e.g., faed or algl)’. Label is a longer label for the variable (e.g., father's education or
algebra 1 in h.s.). The Values column contains the value labels, but you can see only the label
for one value at a time (e.g., 0=male). That is, you cannot see that 1=female unless you click on
the value column. The Missing column indicates whether there are any special, user identified

missing values. None just means that there are no special missing values, just the usual SPSS
system missing value, which is a blank.

HSDDATA - SPSS Data [ ditor

Fle Edk View Duota Tranaform Andyre Graghe URbes Addors Window Help

@S B o k] B S Q)
Name [ Type f Width } Decimals | Label [ Walues | Misging I Columns [ Align l Measuie ]
1] gander Numaenc 1 0 gender {0, mala) Nona B Right Nominal
2|faed Numenc 2 0 father's educali (2, < h.s. grad) None 6 Faght Crdinal
I maed Numenc 2 0 mother’s educ [2, <hs.) None [ Fight Ordinal
4]algl Numenc 1 1} (algebra 1 in h. [, not taken).. None B Right Nominal
S5|alg2 _-'-thc 1 0 algebra 2 in h. {0, not taken) . None ] Reght Nominal
6|geo MNumenc 1 0 geometry in h. {0, not taken).. None 6 Right Nominal
7]inig Numenc 1 0 tngonometry in| (0, not taken).. None 5 Right |Nominal
8|calc Mumenc 1 0 calculus in h.s |0, not laken) . None 5 Right Mominal
9| mathgr Mumeric 1 0 math grades 'JU. less A-B)... None ] Right Mominal
10| grades MNumanc 'I (1] [1, lass than D None B Right Ordinal
11| mathach MNumanc 4 2 math achievem {-8.3, low) None & Right Scale
12| mosaic Numenc 3 1 mosaic, patter (-4, Low) None 6 Right Scale
13| wsual Numanc I 2 visuahization le [-4.0, low) None & Right Scale
14 wsual? Numenc 4 2 visualization re {00, Lowest)... None 1] Right Scale
15 salm MNumenc 3 n} scholastic apti| (200, minmum MNone 5 ngm Scale
16} ethnic Mumanc 2 0o elhnucﬁy {V, Euro-Amer) 98, 99 B Right Nominal
17 {religion Numeric 2 0 religion (1, protestant) 98, 99 B Right Nominal

Fig. 1.2 Part of the hsbdata.sav variable view in the SPSS data editor.

Variables in the Modified HSB Data Set

The 38 variables shown in Table 1.2 (with the values/levels or range of their values in
parentheses) are found in the hsbdata.sav file. Also included, for completeness, are seven
variables (numbers 39-45) that are not in the Asbdata.sav data set because you will compute them

5 In SPSS 7-11 the variable name had to be 8 characters or less. In SPSS 12, it can be longer, but we
recommend that you keep it short. If a longer name is used with SPSS 7-11, the name will be truncated.
SPSS names must start with a letter and must not contain blank spaces or certain special characters (e.g., !,
2., ar¥).
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in Chapter 5. Note that variables 33-38 have been computed already from the math attitude
variables (19-32) so that you would have fewer new variables to compute in Chapter 5.

The variables of ethnic and religion were added to the data set to provide true nominal
(unordered) variables with a few (4 and 3) levels or values. In addition, for ethnic and religion,
we have made two missing value codes to illustrate this possibility. All other variables use
blanks, the SPSS system missing value, for missing data. For etAnicity, 98 indicates multi-ethnic
and other. For religion, all the high school students who were not protestant or catholic or said
they had no religion were coded 98 and considered to be missing because none of the other
religions had enough members to make a reasonable size group. Those who left the ethnicity or
religion questions blank were coded as 99, also missing.

Table 1.2 HSB Variable Descriptions

Name Label (and Values)

Demographic School and Test Variables

1.  gender gender (0 = male, 1 = female).

2 faed father’s education (2 = less than h.s. to 10 = PhD/MD).

3 maed mother’s education (2 = less than h.s. grad to 10 = PhD/MD).

4. algl algebra 1 in h.s. (1 = taken, 0 = not taken)

5. alg2. algebra 2 in h.s. (1 = taken, 0 = not taken)

6. geo geometry in h.s. (1 = taken, 0 = not taken)

T trig trigonometry in h.s. (1 = taken, 0 = not taken)

8. calc calculus in h.s. (1 = taken, 0 = not taken)

9. mathgr math grades (0 = low, 1 = high)

10.  grades grades in h.s. (1 = less than a D average to 8 = mostly an A average)

11. mathach  math achievement score (-8.33 to 25)®. This is a test something like the ACT
math.

12. mosaic mosaic, pattern test score (-4 to 56). This is a test of pattern recognition ability
involving the detection of relationships in patterns of tiles.

13.  visual visualization score (-4 to 16). This is a 16-item test that assesses visualization in
three dimensions (i.e., how a three-dimensional object would look if its spatial
position were changed).

14.  visual2 visualization retest — the visualization test score students obtained when they
retook the test a month or so later.

15. satm scholastic aptitude test — math (200 = lowest, 800 = highest possible)

16.  ethnic ethnicity (1 = Euro-American, 2 = African-American, 3 = Latino-American, 4 =
Asian-American, 98 = other or multi ethnic, chose 2 or more, 99 = missing, left
blank)

17.  religion  religion (1 = protestant, 2 = catholic, 3 = no religion, 98=chose one of several
other religions, 99=left blank

18.  ethnic2 ethnicity reported by student (same as values for ethnic)

Math Attitude Questions 1 — 14 (Rated from 1 = very atypical to 4 = very typical)

19.  item01 motivation - “I practice math skills until I can do them well.”
20. item02 pleasure - “I feel happy after solving a hard problem.”
21,  item03 competence - “l solve math problems quickly.”

6Negaﬁve test scores result from a penalty for guessing,

10
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22.  item04 (low) motiv - “I give up easily instead of persisting if a math problem is
difficult.”

23,  item0S (low)comp - “I am a little slow catching on to new topics in math.”

24.  item06 (low)pleas - “I do not get much pleasure out of math problems.”

25.  item07 motivation - “1 prefer to figure out how to solve problems without asking for
help.”

26.  itemO8 (low)motiv - “I do not keep at it very long when a math problem is
challenging.”

27.  item09 competence - “1 am very competent at math.”

28.  iteml0 (low)pleas - “I smile only a little (or not at all) when I solve a math problem.”

29. itemll (low)comp - “I have some difficulties doing math as well as other kids my
age.”

30. iteml2 motivation - “I try to complete my math problems even if it takes a long time
to finish.”

31. iteml3 motivation - “I explore all possible solutions of a complex problem before
going on to another one.”

32. iteml4 pleasure — “I really enjoy doing math problems”.
New Variables Computed From the Above Variables

33.  itemO4r item04 reversed (4 now = high motivation)

34.  itemOS5r item05 reversed (4 now = high competence)

35.  itemOS8r item08 reversed (4 now = high motivation)

36. itemllr iteml1 reversed (4 now = high competence)

37. competence competence scale. An average computed as follows: (item03 + itemO5r +
item09 + item1 1r)/4

38. motivation  motivation scale (item01 + item04r + item07 + itemO8r + item12 + item13)/6

Variables to be Computed in Chapter 5
39. mathers math courses taken (0 = none, 5 = all five)
40. faedRevis father’s educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)
41. maedRevis mother's educ revised (1 = HS grad or less, 2 = some college, 3 = BS or more)

42.  itemQ6r item06 reversed (4 now = high pleasure)
43,  itemlOr iteml10 reversed (4 now = high pleasure)
44.  pleasure pleasure scale (item02 + item06r + item 10r + item14)/4

45. parEduc parents education (average of the unrevised mother’s and father’s educations)

The Raw HSB Data and Data Editor

Figure 1.3 is a piece of the Asbdata.sav file showing the first 11 student participants for variables
1 through 17 (gender through religion). Notice the short variable names (e.g., gend, faed, etc.) at
the top of the hsbdata file. Be aware that the participants are listed down the left side of the page,

and the variables are always listed across the top. You will always enter data this way. If a
variable is measured more than once, such as visual and visual 2 (see Fig 1.3) it will be entered

as two variables with slightly different names.

11
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Fig. 1.3. Part of the hsbdata data view in the SPSS data editor.

Note that in Fig. 1.3 most of the values are single digits, but mathach, mosaic, and visual include
some decimals and even negative numbers. Notice also that some cells, like father s education
for participant 5, are blank because a datum is missing. Perhaps participant 5 did not know her
father’s education. Blank is the system missing value that can be used for any missing data in an
SPSS data file. We suggest that you leave missing data blank; however, you may run across “user
defined” missing data codes like -1, 9, 98, or 99 in other researchers’ data (sec refigion, subjects
9and 11).

Research Questions for the Modified HSB Smdy7

In this book, we will generate a large number of research questions from the modified HSB data
set. In this section, we will list some research questions to be answered with the HSB data in
order to give you an idea of the range of types of questions that one might have in a typical
research project like a thesis or dissertation. In addition to the difference and associational
questions that are commonly seen in a research report, we have asked descriptive questions and
questions about assumptions in the early assignments, Templates for writing the research
problem and research questions or hypotheses are given in Appendix B, which should help you
write questions for your own research.

1) Often, we start with basic descriptive questions about the demographics of the sample.
Thus, we could answer, with the results in Chapter 4, the following basic descriptive
question: “What is the average educational level of the fathers of the students in this
sample?” “What percentage of the students are male and what percentage are female?”

2) In the assignment for Chapter 4, we also will examine whether the continuous variables
(those that might be used to answer associational questions) are distributed normally, an
assumption of many statistics. One question is, “Are the frequency distributions of the
math achievement scores markedly skewed; i.e., different from the normal curve
distribution?”

” The High School and Beyond (HSB) study was conducted by the National Opinion Research Center
(1980). The example discussed here and throughout the book is based on 13 variables obtained from a
random sample of 75 out of 28,240 high school seniors. These variables include achievement scores,
grades, and demographics. The raw data for the 13 variables were slightly modified from data in an
appendix in Hinkle, Wiersma, and Jurs (1994). That file had no missing data, which is unusual in behavioral
science research so we made some.

12
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Tables crosstabulating two categorical variables (ones with a few values or categories) will
be computed in Chapter 7. Crosstabulation and the chi-square statistic can answer research
questions such as “Is there a relationship between gender and math grades (high or low)?

In Chapter 8, we will answer basic associational research questions (using Pearson
product-moment correlation coefficients) such as, “Is there a positive association/
relationship between grades in high school and math achievement?” This assignment also
will produce a correlation matrix of all the correlations among several key variables
including math achievement. Similar matrixes will provide the basis for computing
multiple regression. In Chapter 8, correlation is also be used to assess reliability.

Chapter 8 also poses a complex associational question such as “Is there a combination of
variables that predicts math achievement?” in order to introduce you to multiple
regression.

Several basic difference questions answered with an independent samples ¢ test will be
asked in Chapter 9. For example, “Do males and females differ on math achievement?”
Basic difference questions in which the independent variable has three or more values will
be asked in Chapter 10. For example, “Are there differences among the three father’s
education groups in regard to average scores on math achievement?” This question will be
answered with a one-way or single factor analysis of variance (ANOVA).

Complex difference questions will also be asked in Chapter 10. One set of three questions
is as follows: (1) “Is there a difference between students who have fathers with no college,
some college, and a BS or more with respect to the student’s math achievement?” (2) “Is
there a difference between students who had a B or better math grade average and those
with less than a B average on a math achievement test at the end of high school?” and (3)
“Is there an interaction between a father’s education and math grades with respect to math
achievement?” This set of three questions will be answered with a factorial ANOVA,
introduced briefly here.

This introduction to the research problem and questions raised by the HSB data set should help
make the assignments meaningful, and it should provide a guide and examples for your own

research.

Interpretation Questions

1.1 Compare the terms active independent variable and attribute independent variable. What
are the similarities and differences?

1.2 What kind of independent variable (active or attribute) is necessary to infer cause? Can
one always infer cause from this type of independent variable? If so, why? If not, when
can one infer cause and when might causal inferences be more questionable?

1.3 What is the difference between the independent variable and the dependent variable?

13
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Compare and contrast associational, difference, and descriptive types of research
questions.

Write a research question and a corresponding hypothesis regarding variables of interest
to you but not in the HSBdata set. Is it an associational, difference, or descriptive

question?

Using one or more of the following HSB variables, religion, mosaic pattern test, and
visualization score:

a) Write an associational question.

b) Write a difference question.

¢) Write a descriptive question.

14



CHAPTER 2
Data Coding, Entry, and Checking

This chapter begins with a very brief overview of the initial steps in a research project. After this
introduction, the chapter will focus on: 1) getting your data ready to enter into SPSS or a
spreadsheet, 2) defining and labeling variables, 3) entering the data appropriately, and 4)
checking to be sure that data entry was done correctly without errors.

Plan the Study, Pilot Test, and Collect Data

Plan the study. As discussed in Chapter 1, the research starts with identification of a research
problem and research questions or hypotheses. It is also necessary to plan the research design
before you select the data collection instrument(s) and begin to collect data. Most research
methods books discuss this part of the research process extensively (e.g., see Gliner and Morgan,
2000).

Select or develop the instrument(s). If there is an appropriate instrument available and it has been
used with a population similar to yours, it is usually desirable to use it. However, sometimes it is
necessary to modify an existing instrument or develop your own. For this chapter we have
developed a short questionnaire to be given to students at the end of a course. Remember that
questionnaires or surveys are only one way to collect quantitative data. You could also use
structured interviews, observations, tests, standardized inventories, or some other type of data
collection method. Research methods and measurement books have one or more chapters devoted
to the selection and development of data collection instruments. A useful book on the
development of questionnaires is Salant and Dillman (1994).

Pilot test and refine instruments. It is always desirable to try out your instrument and directions
with, at the very least, a few colleagues or friends. When possible, you also should conduct a
pilot study with a sample similar to the one you plan to use later. This is especially important if
you developed the instrument or it is going to be used with a population different from the one(s)
that it was developed for and has been used with in the past.

Pilot participants should be asked about the clarity of the items and whether they think any items
should be added or deleted. Then, use the feedback to make modifications in the instrument
before beginning data collection. Content validity can also be checked by asking experts to
judge whether your items cover all aspects of the domain you intended to measure and whether
they are in appropriate proportions relative to that domain.

Collect the data. The next step in the research process is to collect the data. There are several
ways to collect questionnaire or survey data (such as telephone, mail, or e-mail). We will not
discuss them here because that is not the purpose of this book. The Salant and Dillman (1994)
book, How to Conduct Your Own Survey, provides considerable detail on the various methods for
collecting survey data.

You should check your raw data after you collect it even before it is entered into the computer.
Make sure that the participants marked their score sheets or questionnaires appropriately; check
to see if there are double answers to a question (when only one is expected) or answers that are
marked between two rating points. If this happens, you need to have a rule (e.g., “use the
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average”) that you can apply consistently. Thus, you should “clean up” your data, making sure
they are clear, consistent, and readable, before entering them into a data file.

Let’s assume that the completed questionnaires shown in Fig. 2.1 and 2.2 were given to a small
class of 12 students and that they filled them out and turned them in at the end of the class. The
researcher numbered the forms from 1 to 12 as shown opposite ID.

ID__}
Please circle or suppl r wer SO .. SA
1. | would recommend this course to other students 1 2 .34 5 D_Z
2, | worked very hard in this course 12343 ™3 Qg D X
3. My college Is: Arts and sciences A Business___ Engineering____ 1234 ?ln 2 3 @ 5'5’:‘
4. My gender is @_) F A B?-(- E_ 12340
5.My GPA is 22 @ F ALB_E_
6. For this ciass, | did: (check all that apply) 2. al M
The reading O _E35
The homework 0 m
Extra credit
r s [ 0
O =
iD_%
Please circle or ly your answer S0 A
1. | would recommend this course to other students 1 2 3 4 % n_S
2. | worked very hard in this course 123 4 sD SA
* 123@s5. D_&
3. My college is: Arts and sciancas'x‘ Business___ Engineering__ 1234 @/ 3” 2 3 4 (M
4, My gender is M ® A_BXE 123 4(5;
5. My GPA is R AL M @ A_8_EX
P AN
8. For this class, | did: (check all that apply) -ﬁ-—s-i t‘ n\‘f*'
The reading 5= ’(_’ 9 (9;
The homework 7| 0O
Extra credit R O Q
>4 O
]

|

Fig. 2.1. Completed questionnaires for participant 1 through 6.
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1D Z
Ple i or supply your answe
1.  would recommend this course to other students 1 z23 )\ 5 b_R¥
2, I worked very hard in this course 123 4 ,‘(\ :"@ 3 4 é D_9
3. My college is: Arts and sciences____ Buslnessx_ Engineering___ 1 3.4 10 2
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Fig. 2.2. Completed questionnaires for participants 7 through 12.

After the questionnaires were turned in and numbered, the researcher was ready to begin the
coding process, which we will describe in the next section.

Code Data for Data Entry

Rules for Data Coding

Coding is the process of assigning numbers to the values or levels of each variable. Before
starting the coding process we want to present some broad suggestions or rules to keep in mind as
you proceed. These suggestions are adapted from rules proposed in Newton and Rudestam’s
(1999) useful book entitled Your Statistical Consultant. We believe that our suggestions are
appropriate, but some researchers might propose alternatives, especially for “rules” 1, 2, 4, 5, and
7.
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1. All data should be numeric. Even though it is possible to use letters or words (string variables)
as data, it is not desirable to do so with SPSS. For example, we could code gender as M for male
and F for female, but in order to do most statistics with SPSS you would have to convert the
letters or words to numbers. It is easier to do this conversion before entering the data into the
computer. As you will see in Fig. 2.3, we decided to code females as 1 and males as 0. This is
called dummy coding. In essence, the 0 means “not female.” We could, of course, code males as
1 and females as 0, or we could code one gender as 1 and the other as 2. However, it is crucial
that you be consistent in your coding (e.g., for this study all males are coded 0 and females 1) and
have a way to remind yourself and others of how you did the coding. Later in this chapter we will
show how you can provide such a record called a codebook.

2. Each variable for each case or participant must occupy the same column in the SPSS Data
Editor. With SPSS it is important that data from each participant occupies only one line (row),
and each column must contain data on the same variable for all the participants. The SPSS data
editor, into which you will enter data, facilitates this by putting the short variable names that you
choose at the top of each column, as you saw in Chapter 1, Fig. 1.3. If a variable is measured
more than once (e.g., pretest and posttest), it will be entered in two columns with somewhat
different names like mathpre and mathpost.

3. All values (codes) for a variable must be mutually exclusive. That is, only one value or
number can be recorded for each variable. Some items, like our item 6 in Fig. 2.3, allow for
participants to check more than one response. In that case the item should be divided into a
separate variable for each possible response choice, with one value of each variable
corresponding to yes (checked) and the other to no (not checked). For example, item 6 becomes
variables 6, 7, and 8 (see Fig. 2.3). Usually, items should be phrased so that persons would
logically choose only one of the provided options, and all possible options are provided. A final
category labeled “other” may be provided in cases where all possible options cannot be listed but
these “other” responses are usually quite diverse and, thus, usually not very useful for statistical

purposes.

4, Each variable should be coded to obtain maximum information. Do not collapse categories
or values when you set up the codes for them. If needed, let the computer do it later. In general, it
is desirable to code and enter data in as detailed a form as available. Thus, enter actual test scores,
ages, GPAs, etc. if you know them. It is good to practice to ask participants to provide
information that is quite specific. However, you should be careful not to ask questions that are so
specific that the respondent may not know the answer or may not feel comfortable providing it.
For example, you will obtain more information by asking participants to state their GPA to two
decimals (as in Fig. 2.1 and 2.2), than if you asked them to select from a few broad categories
(e.g., less than 2.0, 2.0-2.49, 2.50-2.99, etc). However, if students don’t know their GPA or don’t
want to reveal it precisely, they may leave the question blank or write in a difficult to interpret
answer.

These issues might lead you to provide a number of categories, each with a relatively narrow
range of values, for variables such as age, weight, and income. Never collapse such categories
before you enter the data into SPSS. For example, if you had age categories for university
undergraduates 16-18, 18-20, 21-23, etc. and you realize that there are only a few students in the
below 18 group, keep the codes as is for now. Later you can make a new category of 20 or under
by using an SPSS function, Transform => Recode. If you collapse categories before you enter
the data, the information is gone.
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5. For each participant, there must be a code or value for each variable. These codes should be
numbers, except for variables for which the data are missing. We recommend using blanks when
data are missing or unusable, because SPSS is designed to handle blanks as missing values.
However, sometimes you may have more than one type of missing data, such as items left blank
and those that had an answer that was not appropriate or usable. In this case you may assign

numeric codes such as 98 and 99 to them, but you must tell SPSS that these codes are for missing
values, or SPSS will treat them as actual data.

6. Apply any coding rules consistently for all participants. This means that if you decide to treat
a certain type of response as, say, missing for one person, you must do the same for all other
participants.

7. Use high numbers (value or codes) for the “agree,” “good,” or “positive” end of a variable
that is ordered. Sometimes you will see questionnaires that use 1 for “strongly agree,” and 5 for
“strongly disagree.” This is not wrong as long as you are clear and consistent. However, you are
less likely to get confused when interpreting your results if high values have positive meaning.

Make a Coding Form

Now you need to make some decisions about how to code the data provided in Fig. 2.1 and 2.2,
especially data that are not already in numerical form. When the responses provided by
participants are numbers, the variable is said to be “self coding”. You can just enter the number
that was circled or checked. On the other hand, variables such as gender or college have no
intrinsic value associated with them. See Fig. 2.3 for the decisions we made about how to number
the variables, code the values, and name the eight variables. Don’t forget to number each of the
questionnaires so that you can later check the entered data against the questionnaires.

Vo -
No,| Please circlo or supply vour answer o ederd o
L | 1.1 would recommend this course to other students 1 2 3 4 5 I Recommen
21 2. 1worked very hard in this course 12345 Warkhard
3| 3. My college is: Aits and sciences= | Business2 2 Engineering=3 Collene
4 4 ty gender is M=o F=lI Geendeyr
S| 5. My GPAis eter il | Gpp

2 Recamals

6. For this class, | did: (check all that apply) olosk ked

& ; .

q The reading =0 = 'Rtadirﬁ

g The homework =6 ] Hometsork,
Extra credit =0 =] Extragyad

Fig. 2.3. A blank survey showing how to code the data.
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Problem 2.1: Check the Completed Questionnaires

Now examine Fig. 2.1 and 2.2 for incomplete, unclear, or double answers. Stop and do this now,
before proceeding. What issues did you see? The researcher needs to make rules about how to
handle these problems and note them on the questionnaires or on a master “coding instructions”
sheet so that the same rules are used for all cases.

We have identified at least 11 responses on 6 of the 12 questionnaires that need to be clarified.
Can you find them all? How would you resolve them? Write on Fig. 2.1 and 2.2 how you would
handle each issue that you see.

Make Rules About How to Handle These Problems

For each type of incomplete, blank, unclear, or double answer, you need to make a rule for what
to do. As much as possible, you should make these rules before data collection, but there may
well be some unanticipated issues. It is important that you apply the rules consistently for all
similar problems so as not to bias your results.

Interpretation of Problem 2.1 and Fig. 2.4.

Now, we will discuss each of the issues and how we decided to handle them. Of course, some
reasonable choices could have been different from ours. We think that the data for participants
1 — 6 are quite clear and ready to enter into SPSS with the help of Fig. 2.3. However, the
questionnaires for participants 7 — 12 pose a number of minor and more serious problems for
the person entering the data. We have written our decision in numbered callout boxes on Fig.
2.4, which are the surveys and responses for subjects 7 — 12.

1. For participant 7, the GPA appears to be written as 250. It seems reasonable to assume that
he meant to include a decimal after the 2, and so we would enter 2.50. We could instead have
said that this was an invalid response and coded it as missing. However, missing data create
problems in later data analysis, especially for complex statistics. Thus, we want to use as much
of the data provided as is reasonable. The important thing here is that you must treat all other
similar problems the same way.

2. For subject 8, two colleges were checked. We could have developed a new legitimate
response value (4 = other). Because this fictitious university requires that students be identified
with one and only one of its three colleges, we have developed two missing value codes (as we
did for ethnic group and religion in the HSB data set). Thus, for this variable only, we have
used 98, for multiple checked colleges or other written-in responses that do not fit clearly into
one of the colleges (e.g., business engineering or history and business). We treat such
responses as missing because they seem to be invalid and /or because we would not have
enough of any given response to form a reasonable size group for analysis. We used 99 as the
code for cases where nothing was checked or written on the form. Having two codes enables us
to distinguish between these two types of missing data, if we ever wanted to later. Other
researchers (e.g., Newton and Rudestam, 1999) recommend using 8 and 9 in this case, but we
think that it is best to use a code that is very different form the “valid” codes so that they stand
out if you forget to tell SPSS that they are missing values.

3. Also, subject 8 wrote 2.2. for his GPA. It seems reasonable to enter 2.20 as the GPA.
Actually, in this case if we enter 2.2, SPSS will treat it as 2.20 because we will tell SPSS to use

two decimal places.
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4. We decided to enter 3.00 for participant 9°s GPA. Of course, the actual GPA4 could be higher
or, more likely, lower, but 3.00 seems to be the best choice given the information provided by
the student.

5. Participant number 10 only answered the first two questions, so there are lots of missing
data. It appears that he or she decided not to complete the questionnaire. We made a rule that if
3 out of the first 5 items were blank or invalid; we would throw out that whole questionnaire as
invalid. In your research report, you should state how many questionnaires were thrown out
and for what reason(s). Usually you would not enter any data from that questionnaire, so you
would only have 11 subjects or cases to enter. To show you how you would code someone’s
college if they left it blank, we have not deleted this subject.

6. For subject 11, there are several problems. First, she circled both 3 and 4 for the first item; a
reasonable decision is to enter the average or midpoint, 3.50.

7. Participant 11 has written in “biology” for college. Although there is no biology college at
this university; it seems reasonable to enter 1 = arts and sciences in this case and in other cases
(e.g., history = 1, marketing = 2, civil = 3) where the actual college is clear. See the discussion
of issue 2, above, for how to handle unclear examples.

8. Participant 11 also entered 9.67 for the GPA, which is an invalid response because this
university has a 4-point grading system (4.00 is the maximum possible GP4). To show you one
method of checking the entered data for errors, we will go ahead and enter 9.67. If you examine
the completed questionnaires carefully, you should be able to spot errors like this in the data
and not enter them.

9. Enter 1 (checked) for reading and homework for participant 11. Also enter 0 for extra credit
(not checked) as you would for all the boxes left unchecked by other participants (except
number 10). Even though this person circled the boxes rather than putting X’s or checks in
them, her intent is clear.

10. As in point 6 above, we decided to enter 2.5 for participant 12’s X between 2 and 3.

11. Participant 12 also left GPA blank so, using the SPSS general (system) missing value code,
we left it blank.
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2. Enter 98.
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Fig. 2.4. Completed survey with callout boxes showing we handled problem responses.
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Clean Up Completed Questionnaires

Now that you have made your rules and decided how to handle each problem, you need to make
these rules clear to whoever will enter the data. As mentioned above, we put our decisions in
callout boxes on Fig. 2.4; a common procedure would be to write your decisions on the
questionnaires, perhaps in a different color.

Problem 2.2: Define and Label the Variables

The next step is to create an SPSS data file into which you will enter the data. If you do not have
SPSS open, you need to logon. When you see the SPSS startup window, click the Type in data
button; then you should see a blank SPSS Data Editor that will look something like Fig. 2.5.
Also be sure that Display Commands in the Log is checked (see Appendix C). See Appendix C
if you need more help

This section will help you name and label the variables. Next, we will show you how to enter
data. First, let’s define and label the first two variables, which are two five-point Likert ratings.
To do this we need to use the Variable View screen. Look at the bottom left comer of the SPSS
Data Editor to see whether you are in the Data View or Variable View screen by noting which
tab is white. If you are in Data View, to get to Variable View do the following:

e Click on the Variable View tab at the bottom left of your screen. This will bring up a screen
similar to Fig. 2.5. (Or, double click on var above the blank column to the far left side of the
Data View.)

[1Untitled - SPSS Data Editor

flo Edt View Data Iransiom Anshze Graphs LUtibes Window Help A : A

EIL-LI:JEI 2| B k|| A Al BIGIE sl

Type [ Width I[}aclmaltl Label ]le Mwﬂl Columns] A.Iugn ] Measure =

zie ‘_ £

Fig. 2.5. Blank variable view screen in the data editor.

In this window, you will see 10 columns that will allow you to input the variable name, type,
width, decimals, label, values, missing (data values), columns, align (data left or right), and
measurement type.

Important: This was new to SPSS 10. If you have SPSS 7-9, you will not have the Variable

View screen option and will have to enter the variable information differently. Please refer to
your SPSS Help menu.

Define and Label Two Likert-Type Variables
We will now begin to enter information to name, label, and define the characteristics of the

variables used in this chapter.
e Click in the blank box directly under Name in Fig. 2.5.
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e Type recommen in this box. Notice the number 1 to the left of this box. This indicates that
you are entering your first variable'.

e Press enter. This will move your cursor to the next box, under Type, and pop up some
information for Type, Width, etc.

Note that the Type is numeric, Width = 8, Decimals = 2, Labels = (blank), Values = None,

Missing = None, Columns = 8, Align = right, Measure = scale. These are the default values that

show up automatically when you enter a variable Name, but they can be changed.

For this assignment we will keep the default values for Type, Width, Columns, and Align. On
the Variable View screen, you will notice that the default for Type is Numeric. This refers to the
type of variable you are entering. Usually, you will only use the Numeric option. Numeric means
the data are numbers. String would be used if you input words or letters such as “M” for males
and “F” for females. However, it is best not to enter words or letters because you wouldn’t be
able to do many statistics without recoding them as numbers. In this book, we will always keep

the Type as Numeric.

We recommend keeping the Width at eight. This means you can have an 8-digit number.
Keeping the Columns at eight allows our variable names to be included at the top of each column
of data. We will always Align the numbers to the right. Sometimes, we will change the settings
for the other columns.

Now, let’s define and label the recommen variable.

e For this variable leave the decimals at 2.

e Type I recommend course in the Label box. This longer label will show in appropriate SPSS
windows and on your printouts. The labels can be up to 40 characters but it is best to keep
them about 20 or less or your outputs may be difficult to read.

In the Values column do the following:

e Double click on Values. You will see the word “None” and a small gray box with three dots.

e Click on the three dots. You will then see a screen like Fig. 2.6. (We will add value labels for
the ends of the Likert scale to help us interpret the data.).

e Type 1 in the Value box in Fig. 2.6.

e Type strongly disagree in the Value Label box. Press Add.

e Type 5 and strongly agree in the Values and Value Labels boxes. Your window should look
like Fig. 2.6 just before you click on Add for the second time.

e (Click on Add.

.- Value Labels

rv“m SRR 1 OK
(Va5 ey | Fig. 2.6 Value labels window.
" | Valua Labet [sirm@y agred 4

i Add I 1.00 = “dongly disagres” Ll

[iewove |

"It is no longer necessary in SPSS to keep variable names at 8 characters or less, but we have in this
chapter, Other rules about variable names still apply (see footnote 4 in Chapter 1). Note also that bullets are
used to indicate that instructions about SPSS actions (e.g., click, highlight) will follow, and key terms
shown in SPSS windows (e.g., Name) are shown in bold.
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Leave the cells for the Missing to Measure Columns as they currently appear.

Now let’s define and label the next variable.

Click on the next blank box under Name (opposite 2) to enter the name of the next variable.
Type workhard in the Name column.

Type I worked hard in the Label column.

Insert the highest and lowest Values for this variable the same way you did for recommen (1
= strongly disagree and 5 = strongly agree).

Keep all the other columns as they are.

Define and Label College and Gender

Now, select the cell under Name and opposite the 3.

Call this third variable college by typing that in the box.

Click on the 3rd box under Decimals. For this variable, there is no reason to have any
decimal places because people were asked to choose only one of the three colleges. You will
notice that when you select the box under Decimals, up and down arrows appear on the right
side of the box. You can either click the arrows to raise or lower the number of decimals, or
you can double click on the box and manually type in the desired number.

For the purposes of this variable, select or type 0 as the number of decimals.

Next, click the box under Label to type in the variable label college.

Under Values, click on the small gray box with three dots.

In the Value Labels window, type 1 in the Value box, type arts and sciences in the Value
Label box.

Then click Add. Do the same for 2=business, 3=engineering, 98 = other, multiple ans, 99 =
blank.

The Value Labels window should resemble Fig. 2.7 just before you click Add for the last time.

Value Labels |71 x|

i Yalue Labels = e = 0K

(Va3 | -

| Cancel & .

|Value Labet [biank] | - Fig. 2.7. Value labels window.
H

l Add 1 = "ars & scrence” _LJ

| S=====12 = “business”

| = er, e ans

| GEZA

Under Measure, click the box that reads Scale.
Click the down arrow and choose Nominal because for this variable the categories are
unordered.

Your screen should look like Fig. 2.8 just after you click on nominal.
el | Fig. 2.8. Measurement selection.

& Scale

&l Ordinal

&
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Under Missing, click on Discrete Missing Values and enter 98 and 99 in the first two boxes.
(See Fig. 2.9.) This step is essential if you have more than one missing value code. If you
leave the Missing cell at None, SPSS will not know that 98 and 99s should be considered
missing. None in this column is somewhat misleading. None means no special missing values
(i.e., only blanks are considered missing).

Missing V-!!ln.-s . 3 m'
» mmm o]
o . B .
' ' Do | Fig. 2.9. Missing values.

I;_ 199_1 oo |

UneMEe Ve e I—_

ety

Your SPSS Data Editor should now look like Fig. 2.10.

_-ﬂ_fsu_m_l_lﬂmlﬁrw @

f

{Jrecommen Numeric 8 r | recommend c;(1.00, stongly |None 8 Fight |Scale
| workhard Numenc 3] 2 !mrkad hard {I 00, strongly |None 8 “'Right Scale
cnllega Numem: B _U cn!leqe {l ans & scie |98, 99 8 _Rh;hl _Nnmmal

Fig. 2.10. Completed variable view for first three variables.

Now define and label gender similarly to how you did this for college.

First, type the variable Name gender in the next blank row.

Click on Decimals to change the decimal places to 0 (zero).

Now click on Labels and label the variable gender.

Next you will label the values or levels of the gender variable. You need to be sure your
coding matches your labels. We arbitrarily decided to code male as zero and female as 1.
Click on the Values cell.

Then, click on the gray three-dot box to get a window like Fig. 2.7 again. Remember, this is
the same process you conducted when entering the labels for the values of the first three
variables.

Now, type 0 to the right of Value.

To the right of Value Label type male. Click on Add.

Repeat this process for 1 = female. Click on Add.

Click OK.

Finally, click on Scale under Measure to change the level of measurement to Nominal
because this is an unordered, dichotomous variable.

Once again, realize that the researcher has made a series of decisions that another researcher
could have done differently. For example, you could have used 1 and 2 as the values for gender,
and you might have given males the higher number. We have chosen, in this case, to do what is
called dummy coding. In essence, 1 is female and 0 is not female. This type of coding is useful
for interpreting gender when used in statistical analysis. Let’s continue further.
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Define and Label Grade Point Average

You should now have enough practice to define and label the gpa variable. After naming the

variable gpa, do the following:

e For Decimals leave the decimals at 2.

e Now click on Label and label it grade point average.

e Click on Values. Type 0 = A/l F’s and 4 = All A’s. (Note that for this variable, we have used
actual GPA to 2 decimals, rather than dividing it into ordered groups such as a C average, B
average, A average.)

e Under Measure, leave it as Scale because this variable has many ordered values and is likely
to be normally distributed in the population.

Define and Label the Last Three Variables

Now you should define the three variables related to the parts of the class that a student
completed. Remember we said the Names of these variables would be: reading, homework, and
extracrd. The variable Labels will be I did the reading, I did the homework, I did extra credit.
The Value labels are: 0 = not checked/blank and 1 = checked. These variables should have no
decimals, and the Measure should be changed to Nominal. Your complete Variable View
should look like Fig. 2.11.

: [ vakes | Mssing [ Cohuns I Mg | Messure |
{ Jrecommen Nurnanc a8 2 Iracommlnd cj{1.00, stongly Ha-ne ] Rnghl Scale |
2lworkhard | Numenc ] 2 || worked hard {1, EB strongly INone ] Right [Scale
3|college  |Numenc |8 a “lcollege (1, ans & scie 38,59 8 “'Right | Nominal
4lgender  |Numanc 8 b |gender {D ‘male) |None ] iRight ~ |Nominal
5|gpa "Numenc B 2 |arade point avel(.00, All F's} _ [None B Right  |Scale
B{reading Numenc 8 0 |1 did the readin|(0, nnl checke |None 8 [Right MNominal
7| homework Nume;c 8 0 I did the home ([0, not chock.lfb None @ ~ [Rigt | Nominal
Blextracrd  Numenc 8 0 || did the extra {0, not checke |None 8 [Right_Nominal

Fig. 2.11. Completed variable view.

Problem 2.3: Display Your Dictionary or Codebook
Now that you have defined and labeled your variables, you can print a codebook or dictionary of
your variables. It is a very useful record of what you have done. Notice that the information in the

codebook is essentially the same as that in the variable view (Fig. 2.11) so you do not really haye
to have both, but the codebook makes a more complete printed record of your labels and values.

e Select File => Display Data File Information => Working File. Ycur Codebook should
look like Output 2.1, without the callout boxes.

Output 2.1: Codebook

DISPLAY DICTIONARY.

File Information

List of variables on the working file
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Name (Position) Label )
Y Variable number
recommen (1) I recommend course —
Measurement Level: Scale \\\“\\\k ;
Column Width: 8 Alignment: Right Variable label

Print Format: F8.2

Write Format: FB8.2
This mean the data for this variable can be up

Value Label Pl - : :
I.00 Strsayly lnsgres to 8 digits including 2 decimal places.

5.00 strongly agree

_"F— -
workhard (2) I worked hard Short variable name

Measurement Level: Scale

Column Width: 8 Alignment: Right
Print Format: FB8.2

Write Format: F8.2

Yeiue  Gegel This variable has three
1.00 t 1v di unordered values so it is
’ strongly disagree h
5.00 strongly agree called nominal.

college (3) college
Measurement Level: Nominal

g"%"z‘“FWi“t‘; : ;{8 Alignment: Right These are missing values for this
£in ormac: . .
Weite FoLhats ¥8 variable. Most variables use
Missing Values: 98, 99 blaﬂks, which are the SPSS System
) missing value. However, here we
Value Label need two missing value codes.
1 arts and sciences
§ e The M after 98 and 99 shows that SPSS
98 M other, multiple ans — | considers these numbers to be missing data.
99 M blank
gender (4) gender We call dichotomous (2 level)

Measurement Level: Nominal

Column Width: 8 Alignment: Right variables nominal, but they are a

Print Format: F8 special case as discussed in
Write Format: F8 Chapter 3.
Value Label
4 " These are the values or
male
1 i Iew_als of the gen}der
variable and their labels.
gpa (5) grade point average
Measurement Level: Scale
Column Width: 8 Alignment: Right
Print Format: F8.2 : s
Write Formits ¥8.9 This variable ha‘s many ordered
values; the possible valus are
Value  Label equally spaced and probably
n ly distri 0
g 35 e _ormal y distributed so we called
4.00  All A's it scale.

reading (6) I did the reading
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label

0 not checked/blank
1 checked
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homework (7) I did the homework
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label

0 not checked, balnk
1 checked

extracrd (8) I did the extra credit
Measurement Level: Nominal
Column Width: 8 Alignment: Right
Print Format: F8
Write Format: F8

Value Label

0 not checked, blank
L checked

You may not be able to see all of the file information/codebook on your computer screen.
However, you will be able to print the entire codebook.

Problem 2.4: Enter Data

Close the codebook, and then click on Untitled - SPSS Data Editor or on the Data View tab on
the bottom of the screen to return you to the data editor. Note that the SPSS spreadsheet has
numbers down the left-hand side (see Fig. 2.13). These numbers represent each subject in the
study. The data for each participant’s questionnaire go on one and only one line across the page
with each column representing a variable from our questionnaire. Therefore, the first column will
be recommen, the second will be workhard, the third will be college, etc.

After defining and labeling the variables, your next task is to enter the data directly from the
questionnaires or from a data entry form.

Sometimes researchers transfer the data from the questionnaires to a data entry form (like Table
2.1) by hand before entering the data into SPSS. This is helpful if the questionnaires or answer
sheet are not easily readable, if the responses are to be entered in a different order than on the
questionnaire, or if additional coding or recoding is required before data entry. In these situations,
you could make mistakes entering the data directly from the questionnaires. On the other hand, if
you use a data entry form, you could make copying mistakes, and it takes time to transfer the data
from questionnaires to the data entry form. Thus, there are advantages and disadvantages of using
a data entry form as an intermediate step between the questionnaire and the SPSS data editor. Our
cleaned up questionnaires should be easy enough to use so that you could enter the data directly
from Fig. 2.1 and Fig. 2.4 into the SPSS data editor. Try to do that using the directions below. If
you have difficulty, you may use Table 2.1, but remember that it took an extra step to produce.

In Table 2.1 the data are shown as they would look if we copied the cleaned up data from the

questionnaires to a data entry sheet, except that the data entry form would probably be hand
written on ruled paper.
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Table 2.1 A Data Entry Form:
Responses Copied from the Questionnaires

recommen | workhard | college | gender | gpa reading | homework | extracrd

1 3 5 1 0 312 10 1
2 4 5 2 0 291 1 1 0
3 4 5 1 1 333 |0 1 1
4 5 5 1 1 360 |1 1 1
5 4 5 2 1 252 10 0 1
6 5 5 3 1 298 |1 0 0
7 4 5 2 0 250 |1 0 0
8 2 5 98 0 220 10 0 0
9 5 5 3 0 300 |10 1 0
10 99

11 3.5 5 1 9.67 1 0
12 25 5 2 1 1 1

To enter the data, ensure that your SPSS Data Editor is showing.

e Ifit is not already highlighted, click on the far left column, which should say recommen

e To enter the data into this highlighted column, simply type the number and press the right
arrow. For example, first type 3 (the number will show up in the blank space above of the
row of variable names) and then press the right arrow; the number will be entered into the
highlighted box.

In Fig. 2.12, all the data for the first two participants have been entered.

£ data lor chp3n._say - SPSS Data Editor

Fle Edt View Dala Transfum Anshze Graphs Utities Window Heb

ﬁmnu_mwmmmw

‘racommen | workherd | college | gender | gpa | reading | homework | extracrd | o oay 7|12
1 300  5.00] N o 312 i] 0 1 |
2| 400 500 2| 0] 291 1 z| 0 :

Fig. 2.12. SPSS Data Editor with two participants entered.

e Now enter from your cleaned up questionnaires the data in Fig. 2.1 and Fig. 2.4. If you make
a mistake when entering data, correct it by clicking on the cell (the cell will be highlighted),
type the correct score, and press enter or the arrow key.

Before you do any analysis, compare the data on your questionnaires with the data in the SPSS

Data Editor. If you have lots of data, a sample can be checked, but it is preferable to check all of

the data. If you find errors in your sample, you should check all the entries.

Problem 2.5: Run Descriptives and Check the Data
In order to get a better “feel” for the data and to check for other types of errors or problems on the

questionnaires, we recommend that you run the SPSS program called Descriptives. To compute
basic descriptive statistics for all your subjects you will need to do these steps:
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e Select Analyze => Descriptive Statistics => Descriptives (see Fig. 2.13)2

Note: If you are using SPSS 9 or lower, you will find the statistics selections under Statistics on
your toolbar instead of Analyze.

| Anakize Graphs Utlies Window Help

i Repont > it = Fig. 2.13 Analyze menu.
| Descrpte Statite: '

Compare Means
Genesal Linea Model
Mixed Models

Scale:
Nonpasametric Tests
Multile Rlesponso

T W " W W .V VvV WV Vv ww

After selecting Descriptives, you will be ready to compute the mean, minimum, and maximum

values for all participants or cases on all variables in order to examine the data.

e Now highlight all of the variables. To highlight, begin at the top of the left box and hold the
left mouse button down while you scroll downward until al/ of the variables listed turn blue
(see Fig. 2.14a).

e Click on the arrow button pointing right. When you finish, the Descriptives dialog box
should look like Fig. 2.14b.

:Descnplives E3

Fig. 2.14a. Descriptives-
before moving variables.

(L[

™ Save standardized values as varisbles

i

% This is how we indicate, in this and the following chapters, that you first pull down the Analyze menu,
then select Descriptive Statistics from the first flyout menu, and finally select Descriptives from the last
flyout menu.
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« Descriplives

Fig. 2.14b. Descriptives-
after moving variables.

KR

l'; Save standardized values a3 variables Options... I

¢ Be sure that a// of the variables have moved out of the left window. If your screen looks
like Fig. 2.14b, then click on Options. You will get Fig. 2.15.

W Mean I~ Sum _

I‘—DW_'-_“J'—
A
M Vobwos 7 Madoum : . .
R e } Fig. 2.15. Descriptives: Options
‘Distibuion——————————
i YR e
= Vaiable st
" Alphabelic .
€ Ascending means
€ Descending means {
Follow these steps:

® Notice that the Mean, Std. deviation, Minimum and Maximum were already checked.
Click off Std. deviation. At this time, we will not request more descriptive statistics. We will
do them in Chapter 4.

o Ensure that the Variable list bubble is checked in the Display Order section. Note: You can
also click on Ascending or Descending means if you want your variables listed in order of
the means. If you wanted the variables listed alphabetically, you would check Alphabetic.

e Click on Continue, which will bring you back to the main Descriptives dialog box (Fig.
2.14b).

o Then click on OK to run the program.

You should get an output like Fig. 2.16. If it looks similar, you have done the steps correctly.
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== 2l
= gm DESCRIPTIVES
+i) The VARIABLES=recomman workhard college gender gpa reading homewvork extcaccd
Notes /STATISTICSHNEAN NIN NAX .
(i Descriptive Statistcs
+De » This is called the SPSS syntax or log. It is useful for checking what you
scriptives requested SPSS to do and for running or rerunning advanced statistics.
If the syntax does not appear in your Qutput, consult Appendix A.
Descriptive Statistics
N Minimum | Maximum |  Mean
| recommend course 1" 200 | 500 | 38182 |
| worked hard 1 500 5.00 5.0000
college 10 1 3 1.80
gender 1 0 1 55
grade point average 10 0 967 | 35830
I did the reading 11 0 1 56
| did the homework 1" 0 1 55
| did the exira credit 1" 0 1 45
Valid N (istwise) (]
i« : . | |
[} SPES Procersar mready R i fo ] PP Ao Y

Fig. 2.16. SPSS output viewer for Descriptives.

The left side of Fig. 2.16 lists the various parts of your output. You can click on any item on the
left (e.g., Title, Notes, or Descriptive Statistics) to activate the output for that item, and then you
can edit it. For example you can click on Title and then expand the title or add information such
as your name and the date. (See also Appendix A for more on editing outputs.)

e Double click on the large, bold word Descriptives in Fig. 2.16. Type your name in the box
that appears so it will appear on your output when you print it later. Also type “Output 2.2” at
the top so you and /or your instructor will know what it is later.

If you haven’t yet checked to see if the data in the SPSS Data Editor match those on the
questionnaires, compare entered data with completed surveys.

Then, for each variable, compare the minimum and maximum scores in Fig. 2.16 with the highest
and lowest appropriate values in the codebook (Output 2.1) This checking of data before doing
any more statistics is highly recommended.

Note that after each output we have provided a brief interpretation in a box. On the output itself,
we have pointed out some of the key things by circling them and making some comments in
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boxes, which are known as callout boxes. Of course, these circles and information boxes will not
show up on your printout.

Output 2.2 Descriptives

DESCRIPTIVES
VARIABLES=recommen workhard college gender gpa reading homework extracrd

/STATISTICS=MEAN MIN MAX.

Descriptive Statistics /—- Highest and lowest
N Minimum__| Maximum [ Mean
| recommend course 11 2.00 5.0 3.8182
| worked hard 11 5.00 5.00 5.0000
college 10 1 3 @ —— | Average college is
gender 11 0 1 55 not meaningful.
grade point average 10 220 9.67)
| did the reading 11 0 1 05 \7
| did the homework 11 0 1 .55 ayerage GEA.
| did the extra credit 1 0 1 45
Valid N (listwise) CaD [
\ The number of people with
no missing data.

Interpretation of Output 2.2

This output shows, for each of the eight variables, the number (V) of participants with no
missing data on that variable. The Valid N, (listwise) is the number (9) who have no missing
data on any variable. The table also shows the Minimum and Maximum score that any
participants had on that variable. For example, no one circled a 1, but one or more persons
circled a 2 for the I recommend course variable, and at least one person circled 5. Notice that
for I worked hard, 5 is both the minimum and maximum. This item is, therefore, really a
constant and not a variable; it will not be useful in statistical analyses.

The table also provides the Mean or average score for each variable. Notice the mean for /
worked hard is 5 because everyone circled 5. The mean of 1.80 for college, a nominal
(unordered) variable, is nonsense, so ignore it. However, the means of .55 for the dichotomous
variables gender, I did the reading, and I did the homework indicate that in each case 55%
chose the answers that corresponded to 1 (female gender and “yes” for doing the reading and
homework). The mean grade point average was 3.58, which is probably an error because it is
too high for the overall GPA for most groups of undergrads. Note also that there has to be an
error in GPA because the maximum GPA of 9.67 is not possible at this university, which has a
4.00 maximum (see codebook). Thus the 9.67 for participant 11 is an invalid response. The
questionnaires should be checked again to be sure there wasn’t a data entry error. If as in this
case, the survey says 9.48, it should be changed to blank, the missing value code.
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Interpretation Questions
What steps or actions should be taken after you collect data and before you run any
analyses?

Are there any other rules of data coding that you think should be added? Are there any of
our “rules” that you think should be modified? Which ones? How?

Why would you print a codebook?

If you identified other problems with the completed questionnaires, what were they? How
did your decisions about how to handle the problems differ from ours?

Why and why not would you use a data entry form?
a) Why is it important to check your raw (questionnaire) data before entering it into SPSS?

b) What are ways to check it?

Extra SPSS Problems

Using your College Student data file, do the following problems. Print your outputs and circle the
key parts that you discuss.

1.

Compute the , minimum, maximum, and mean, for all the variables in the college student
data file. How many students have complete data? Identify any statistics on the output that
are not meaningful. Explain.

What is the mean height of the students? What about the average height of the same sex
parent? What percentage of students are males? What percentage have children?
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CHAPTER 3

Measurement and Descriptive Statistics

Frequency Distributions

Frequency distributions are critical to understanding our use of measurement terms. We begin
this chapter with a discussion of frequency distributions and two examples. Frequency tables and
distributions can be used whether the variable involved has ordered or unordered levels (SPSS
calls them values). In this section, we will only consider variables with many ordered values.

A frequency distribution is a tally or count of the number of times each score on a single
variable occurs. For example, the frequency distribution of final grades in a class of 50 students
might be 7 A’s, 20 B’s, 18 C’s, and 5 D’s. Note that in this frequency distribution most students
have B’s or C’s (grades in the middle) and similar smaller numbers have A’s and D’s (high and
low grades). When there are a small number of scores for the low and high values and most
scores are for the middle values, the distribution is said to be approximately normally
distributed. We will discuss the normal curve in more detail later in this chapter.

When the variable is continuous or has many ordered levels (or values), the frequency
distribution usually is based on ranges of values for the variable. For example, the frequencies
(number of students), shown by the bars in Fig 3.1, are for a range of points (in this case SPSS
selected a range of 50: 250-299, 300-349, 350-399, etc). Notice that the largest number of
students (about 20) has scores in the middle two bars of the range (between 450-550). Similar
small numbers of students have very low and very high scores. The bars in the histogram form a
distribution (pattern or curve) that is quite similar to the normal, bell shaped curve shown by the
line that is superimposed on the histogram. Thus the frequency distribution of the SAT math
scores is said to be approximately normal.

20

Std. Dev. = 94.55
300 400 500 600 700 Mean= 490533
scholastic aptitude test - math N=75

Fig. 3.1. A grouped frequency distribution for SAT Math scores.
Figure 3.2 shows the frequency distribution for the competence scale. Notice that the bars form a

pattern very different from the normal curve line. This distribution can be said to be not
normally distributed. As we will see later in the chapter, the distribution is negatively skewed.
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That is, the tail of the curve or the extreme scores are on the low end or left side. Note how much
this differs from the SAT math score frequency distribution. As you will see in the Levels of
Measurement section (below), we call the competence scale variable ordinal.

You can create these figures yourself using the hsbdata.sav file.! Select:

¢ Graphs => Histogram

e Then move scholastic aptitude test — math (or competence scale) into the Variable box.
e Then check Display normal curve.

e Click OK.

20

154

0 Std. Dev. = 0.66¢
1.00 150 200 250 300 350 400 Mean = 3.2945:
Competence scale N=73

Fig 3.2. A grouped frequency distribution for the competence scale.

Levels of Measurement

Measurement is the assignment of numbers or symbols to the different characteristics (values)
of variables according to rules. In order to understand your variables, it is important to know
their level of measurement. Depending on the level of measurement of a variable, the data can
mean different things. For example, the number 2 might indicate a score of two; it might indicate
that the subject was a male; or it might indicate that the subject was ranked second in the class.
To help understand these differences, types or levels of variables have been identified. It is
common and traditional to discuss four levels or scales of measurement: nominal, ordinal,
interval, and ratio, which vary from the unordered (nominal) to the highest level (ratio).” These
four traditional terms are not the same as those used in SPSS, and we think that they are not
always the most useful for determining what statistics to use.

SPSS uses three terms (nominal, ordinal, and scale) for the levels of types of measurement.
How these correspond to the traditional terms is shown in Table 3.1. When you name and label

! In this chapter we will not phrase the creation of the SPSS outputs as “problems” for you to answer.
However, we will describe with bullets and arrows (as we did in Chapter 2) how to create the figures shown
in this chapter. You may want to use SPSS to see how to create these figures and tables.

? Unfortunately, the terms “level” and “scale” are used several ways in research. Levels refer to the
categories or values of a variable (e.g., male or female or 1, 2, or 3); level, can also refer to the three or four
different types of measurement (nominal, ordinal, etc). These several types of measurement have also been
called “scales of measurement,” but SPSS uses scale specifically for the highest type or level of
measurement. Scale is also used to describe questionnaire items that are rated from strongly disagree to
strongly agree (Likert scale) and for the sum of such items (summated scale). We wish there weren’t so
many uses of these terms; the best we can do is try to be clear about our usage.
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variables in SPSS, you have the opportunity to select one of these three types of measurement as
was demonstrated in Chapter 2 (see Fig 2.10). Although what you choose does not affect what
SPSS does in most cases, an appropriate choice indicates that you understand your data and may
help guide your selection of statistics.

We believe that the terms nominal, dichotomous, ordinal, and approximately normal (for
normally distributed) are usually more useful than the traditional or SPSS measurement terms for
the selection and interpretation of statistics. In part this is because statisticians disagree about the
usefulness of the traditional levels of measurement in determining appropriate selection of
statistics. Furthermore, our experience is that the traditional terms are frequently misunderstood
and applied inappropriately by students. Hopefully, our terms, as discussed below, are clear and
useful.

Table 3.1 compares the three sets of terms and provides a summary description of our definitions
of them. Professors differ in the terminology they prefer and on how much importance to place
on levels or scales of measurement so you will see all of these terms and the others mentioned
below in textbooks and articles.

Table 3.1. Similar Traditional, SPSS, and Our Measurement Terms

Traditional Traditional SPSS Our Our
Term Definition Term Term Definitions

Nominal Two or more Nominal Nominal Three or more unordered
unordered categories categories.

NA NA NA Dichotomous Two categories, either

ordered or unordered.

Ordinal Ordered levels, in Ordinal  Ordinal Three or more ordered
which the difference levels, but the frequency
in magnitude distribution of the scores
between levels is not is not normally
equal distributed.

Interval & Interval: ordered Scale Approximately Many (at least 5) ordered

Ratio levels, in which the Normal levels or scores, with the
difference between frequency distribution of
levels is equal, but no the scores being
true zero. approximately normal.
Ratio: ordered

levels; the difference
between levels is
equal, and a true
Zero.

Nominal Variables
This is the most basic or lowest level of measurement, in which the numerals assigned to each

category stand for the name of the category, but they have no implied order or value. For
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example, in the HSB study, the values for the religion variable are 1= protestant, 2 =catholic, 3 =
no religion. This does not mean that that two protestants equal one catholic or any of the typical
mathematical uses of the numerals. The same reasoning applies to many other true nominal
variables, such as ethnic group, type of disability, or section number in a class schedule. In each
of these cases, the categories are distinct and non-overlapping, but not ordered. Each category or
group in the modified HSB variable ethnicity is different from each other but there is no order to
the categories. Thus, the categories could be numbered 1 for Asian American, 2 for Latino
American, 3 for African American, and 4 for European American or the reverse or any
combination of assigning one number to each category.

What this implies is that you must not treat the numbers used for identifying nominal categories
as if they were numbers that could be used in a formula, added together, subtracted from one
another, or used to compute an average. Average ethnic group makes no sense. However, if you
ask SPSS to compute the average ethnic group, it will do so and give you meaningless
information. The important aspect of nominal measurement is to have clearly defined, non-
overlapping or mutually exclusive categories that can be coded reliably by observers or by self-

report.

Using nominal measurement does dramatically reduce the statistics that can be used with your
data, but it does not altogether eliminate the possible use of statistics to summarize your data and
make inferences. Therefore, even when the data are unordered or nominal categories, your
research may benefit from the use of appropriate statistics. Later we will discuss the types of
statistics, both descriptive and inferential, that are appropriate for nominal data.

Other terms for nominal variables. Unfortunately, the literature is full of similar, but not
identical terms to describe the measurement aspects of variables. Categorical, qualitative, and
discrete are terms sometimes used interchangeably with nominal, but we think that nominal is
better because it is possible to have ordered, discrete categories (e.g., low, medium, and high IQ,
which we and other researchers would consider an ordinal variable). “Qualitative” is also used to
discuss a different approach to doing research, with important differences in philosophy,
assumptions, and approach to conducting research.

Dichotomous Variables

Dichotomous variables always have only two levels or categories. In some cases, they may have
an implied order (e.g., math grades in high school are coded O for less than an A or B average
and 1 for mostly A or B). Other dichotomous variables do not have any order to the categories
(e.g., male or female). For many purposes, it is best to use the same statistics for dichotomous
and nominal variables. However, a statistic such as the mean or average, which would be
meaningless for a three or more category nominal variable (e.g., ethnicity), does have meaning
when there are only two categories. For example, in the HSB data the average gender is .55 (with
males = 0 and females = 1). This means that 55% of the participants were females, the higher
code. Furthermore, we will see with multiple regression that dichotomous variables, called
dummy variables, can be used as independent variables along with other variables that are
normally distributed.

Other terms for dichotomous variables. In the SPSS Variable View (e.g., see Fig 2.11), we
label dichotomous variables “nominal,” and this is common in textbooks. However, please

remember that dichotomous variables are really a special case and for some purposes they can be
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treated as if they were scale or normal. Dichotomous data have two discrete categories and are
sometimes called discrete variables or categorical variables or dummy variables.

Ordinal Variables

In ordinal measurement, there are not only mutually exclusive categories as in nominal scales,
but the categories are ordered from low to high, such that ranks could be assigned (e.g., 1%, 2™,
3™). Thus in an ordinal scale one knows which participant is highest or most preferred on a
dimension but the intervals between the various categories are not equal. Our definition of
ordinal focuses on whether the frequency counts for each category or value are distributed like
the bell shaped, normal curve with more responses in the middle categories and fewer in the
lowest and highest categories. If not approximately normal, we would call the variable ordinal.
Ordered variables with only a few categories (say 2-4) would also be called ordinal. As indicated
in Table 3.1, however, the traditional definition of ordinal focuses on whether the differences
between pairs of levels are equal.

Other terms for ordinal variables. Some authors use the term ranks interchangeably with
ordinal. However, most analyses that are designed for use with ordinal data (nonparametric tests)
rank the data as a part of the procedure, assuming that the data you are entering are not already
ranked. Moreover, the process of ranking changes the distribution of data such that it can be used
in many analyses usually requiring normally distributed data. Ordinal data is often be categorical
(e.g., good, better, best are three ordered categories) so that term is sometimes used to include
both nominal and ordinal data.

Approximately Normal (or Scale) Variables

Approximately normally distributed variables not only have levels or scores that are ordered
from low to high, but also, as stated in Table 3.1, the frequencies of the scores are approximately
normally distributed. That is, most scores are somewhere in the middle with similar smaller
numbers of low and high scores. Thus a Likert scale, such as strongly agree to strongly disagree,
would be considered normal if the frequency distribution was approximately normal. We think
normality, because it is an assumption of many statistics, should be the focus of this highest level
of measurement. Many normal variables are continuous; (i.e., they have an infinite number of
possible values within some range). If not continuous, we suggest that there be at least five
ordered values or levels and that they have an implicit, underlying continuous nature. For
example, a five-point Likert scale has only five response categories but, in theory, a person’s
rating could fall anywhere between 1 and 5 (e.g., half way between 3 and 4).

Other terms for approximately normal variables. Continuous, dimensional, and quantitative
are some terms that you will see in the literature for variables that vary from low to high, and are
assumed to be normally distributed. SPSS uses scale, as previously noted. Traditional
measurement terminology uses the terms interval and ratio. SPSS does not use these terms, but
because they are common in the literature and overlapping with the term scale, we will describe
them briefly. Interval variables have ordered categories that are equally spaced (i.e., have equal
intervals between them). Most physical measurements (length, weight, temperature, etc.) have
equal intervals between them. Many physical measurements (/ength and weight), in fact, not only
have equal intervals between the levels or scores, but also a true zero, which means in the above
examples, zero length or weight. Such variables are called ratio variables. Our Fahrenheit
temperature scale and almost all psychological scales do not have a true zero and thus even if
they are very well constructed equal interval scales, it is not possible to say that zero degrees
Fahrenheit involves the absence of something or that one has no intelligence or no extroversion
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or no attitude of a certain type. The differences between interval and ratio scales are not
important for us because we can do all of the types of statistics that we have available with
interval data. SPSS terminology supports this non-distinction by using the term scale for both
interval and ratio data. In fact, the more important thing, because it is an assumption of most

parametric statistics, is that the variables be approximately normally distributed, not whether
they have equal intervals.

How to Distinguish Between the Types of Measurement

Distinguishing between nominal and ordered variables. When you label variables in SPSS, the
Measure column (see Fig. 2.12) provides only three choices: nominal, ordinal, or scale. How do
you decide? We suggest that if the variable has only two levels, you call it nominal even though
it is often hard to tell whether such a dichotomous variable, (e.g., Yes or No, Pass or Fail), is
unordered or ordered. Although some such dichotomous variables are clearly nominal (e.g.,
gender) and others are clearly ordered (e.g., math grades--high and low), all dichotomous
variables form a special case, as previously discussed.

If there are three or more categories, it is usually fairly easy to tell whether the categories are
ordered or not, so students and researchers should be able to distinguish between nominal and
ordinal data. That is good because this distinction makes a lot of difference in choosing
appropriate statistics.

Distinguishing between ordinal and normal variables. Is a 5-point Likert scale ordinal or
approximately normal? Using our definitions, there is a way to test variables to see whether it is
more reasonable to treat them as normal variables or ordinal variables. Unfortunately, you will
not know for sure until after the data have been collected and preliminary analyses are done. One
of the assumptions of most of the statistics (e.g., 7 test) that you will compute with SPSS is that
the dependent variable must be at least approximately normally distributed.

Table 3.2. provides a summary of the characteristics and examples of our four types of
measurement. It should provide a good review of the concept of type of measurement of a

variable.

Table 3.2. Characteristics and Examples of the Four Types of Measurement

Nominal Dichotomous Ordinal Normal
Characteristics 3+ levels 2 levels 3+ levels 5+ levels
Not ordered Ordered or not Ordered levels Ordered levels
True categories Unequal intervals  Approximately
Names, labels between levels normally
Not normally distributed
distributed Equal intervals
between levels
Examples Ethnicity Gender Competence SAT math
Religion Math grades Scale Math
Curriculum type (high vs. Mother’s achievement
Hair color low) education Height
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Remember that in SPSS, there are only three measurement types or levels, and the researcher is
the one who determines if the variable is called as nominal, ordinal, or scale (see Fig. 2.9 again).
We have called dichotomous variables nominal in our hsbdata file.

Descriptive Statistics and Plots

Frequency Tables

Now, we will expand our discussion of frequency distributions to include frequency tables,
which are constructed in very similar ways for all four types of measurement. A difference is that
with nominal data the order in which the categories are listed is arbitrary. In Fig. 3.3, we have
listed protestant, catholic, and then no religion. However, protestant could be put after or
between catholic and no religion because the categories are not ordered. In ordinal and
approximately normal data, the order can not vary (e.g., medium is always between low and

high).

religion
Cumulative
Freqguency | Percent | Valid Percent Parcent
Valid protestant 30 40.0 44.8 44.8
catholic 23 30.7 343 79.1
no religion 14 18.7 20.9 100.0
Total 67 89.3 100.0
Missing  other religion 4 53
blank 4 5.3
Total 8 10.7
Total 75 100.0

Fig 3.3. A frequency table for religion.

Fig. 3.3. is a table that shows religious affiliation from the hsbdata that we are using in this book.
In this example, there is a Frequency column that shows the numbers of students who checked
each type of religion (e.g., 30 said protestant and 4 left it blank). Notice that there is a total (67)
for the three responses considered Valid and a total (8) for the two types of response considered
to be Missing as well as an overall total (75). The Percent column indicates that 40.0% are
protestant, 30.7% are catholic, 18.7% said they had no religion, 5.3% had one of several other
religions, and 5.3% left the question blank. The Valid Percentage column excludes the eight
missing cases and is often the column that you would use. Given this dataset it would be accurate
to say that of those not coded as missing, 44.8% were protestant and 34.3 % catholic, and 20.9%
had no religion.

To get Fig. 3.3, select:
e Analyze => Descriptive Statistics => Frequencies => religion => OK (make sure that the
Display frequency tables box is checked

When the variable has ordered levels (i.e., is ordinal or approximately normal), the procedure
is the same and the frequency table has the same structure. However, when the variable is ordinal
or approximately normal, the Cumulative Percent column is useful. With a nominal variable, it
is not useful. From Fig. 3.4, we can say that 22.7% of the students had grades that were mostly
C'’s or less and that 64% had mostly B's or less.
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To create Fig. 3.4, select:
e Analyze => Descriptive Statistics => Frequencies => grades in h.s. => OK.

grades in h.s.
Cumulative
__J Frequency | Percent | Valid Percent | Percent |
Valid mostly D 1 13 1.3 13
half CD 8 10.7 10.7 12.0
mostly C 8 10.7 10.7 227
half BC 16 21.3 21.3 44.0
mostly B 15 20.0 20.0 64.0
half AB 18 240 240 88.0
mostly A 9 12.0 12.0 100.0
Total 75 100.0 100.0

Fig. 3.4 A frequency table for an ordered variable: grades in h.s.

As mentioned above, frequency distributions indicate how many participants are in each
category, and whether they are ordered or unordered categories. If one wants to make a diagram
of a frequency distribution there are several choices, four of which are bar charts, frequency
polygons, histograms, and box and whisker plots.

Bar Charts
With nominal data, you should not use a graphic that connects adjacent categories because with

nominal data there is no necessary ordering of the categories or levels. Thus, it is better to make a
bar graph or chart of the frequency distribution of variables like religion, ethnic group, or other
nominal variables; the points that happen to be adjacent in your frequency distribution are not by
necessity adjacent.

Fig. 3.5 is a bar chart created by selecting:
e Analyze => Descriptive Statistics => Frequencies => religion => Charts => Bar charts

=> Continue => QK.
raligion

Frequency

profastont cothale no resigion
religion

Fig. 3.5. Sample frequency distribution bar chart for the nominal variable of religion.
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Histograms

As we can see if we compare Fig. 3.1 and 3.2 to Fig. 3.5, histograms look much like bar charts
except in histograms there is no space between the boxes, indicating that there is a continuous
variable theoretically underlying the scores (i.e., scores could theoretically be any point on a
continuum from the lowest to highest score). Histograms can be used even if data, as measured,
are not continuous, if the underlying variable is conceptualized as continuous. For example, the
competence scale items were rated on a 4-point scale, but one could, theoretically, have any
amount of competence.

Frequency Polygons
Figure 3.6, is a frequency polygon; it connects the points between the categories, and is best used
with approximately normal data, but it can be used with ordinal data.

To create Fig. 3.6, select:
e Graphs => Line (be sure that Simple and Summaries for groups of cases are checked) =>
Define =>motivation scale to Category Axis box => OK,

12
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Fig. 3.6. Sample frequency polygon showing approximately normal data.

Box and Whiskers Plot

For ordinal and normal data, the box and whiskers plot is useful; it should not be used with
nominal data because then there is no necessary ordering of the response categories. The box and
whisker plot is a graphical representation of the distribution of scores and is helpful in
distinguishing between ordinal and normally distributed data, as we will see.

Using our hsbdata set, you can see how useful this graphic analysis technique is for examining
frequency distributions. Fig. 3.7 compares genders on scores from the math section of the SAT.

This box and whiskers plot was created by selecting:
e Analyze => Descriptive Statistics => Explore => SATM to Dependent List box => gender
to Factor List => Display Plots => OK.

Fig. 3.7 shows two box plots, one for males and one for females. The box represents the middle
50% of the cases (i.e., those between the 25" and 75" percentiles). The whiskers indicate the
expected range of scores. Scores outside of this range are considered unusually high or low. Such
scores, called outliers, are shown above and/or below the whiskers with circles or asterisks (for
very extreme scores) and the SPSS Data View line number for that participant. Note there are no
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outliers for the 34 males, but there is one low (#63) and one high (#54) female outlier. (Note, this
number will not be the participant’s ID unless you specify that SPSS should report this by ID
number or the ID numbers correspond exactly to the line number).

We will come back to Fig. 3.7 in several later sections of this chapter.

/ Qutlier

Whisker

scholastic aptitude test - math
g & 8
L 1

g8 8

| 75th percentile

___ —— Median

25th percentile

“ﬁ\\

,
:

|

i3 Whisker

|

make femaie female = 41 Olll] ier
gender male = 34

Fig. 3.7. A box and whisker plot for ordinal or normal data.
Measures of Central Tendency

Three measures of the center of a distribution are commonly used: mean, median, and mode.
Any of them can be used with normally distributed data; however, with ordinal data, the mean of
the raw scores is usually not appropriate. Although, if one is computing certain statistics, the
mean of the ranked scores provides useful information. With nominal data the mode is the only
appropriate measure.

Mean. The arithmetic average or mean takes into account all of the available information in
computing the central tendency of a frequency distribution. Thus, it is usually the statistic of
choice, assuming that the data are normally distributed data. The mean is computed by adding up
all the raw scores and dividing by the number of scores (M=ZX/N).

Median. The middle score or median is the appropriate measure of central tendency for ordinal
level raw data. The median is a better measure of central tendency than the mean when the
frequency distribution is skewed. For example, the median income of 100 mid-level workers and
one millionaire reflects the central tendency of the group better (and is substantially lower) than
the mean income. The average or mean would be inflated in this example by the income of the
one millionaire. For normally distributed data, the median is in the center of the box and
whisker plot. Notice that in Fig. 3.7 the median for males is not in the center of the box.

Mode. The most common category, or mode can be used with any kind of data but generally
provides the least precise information about central tendency. Moreover, if one’s data are
continuous, there often are multiple modes, none of which truly represents the “typical” score. In
fact if there are multiple modes, SPSS provides only the lowest one. One would use the mode as
the measure of central tendency if the variable is nominal or you want a quick non-calculated
measure. The mode is the tallest bar in a bar graph or histogram (e.g., in Fig. 3.5, protestant,
category 1, is the mode).
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You also can compute the Mean, Median, and Mode, plus other descriptive statistics with SPSS
by using the Frequencies command.

To get Fig 3.8, select:
e Analyze => Descriptives => Frequencies => scholastic aptitude test — math => Statistics
=> Mean, Median, and Mode => Continue => OK.

Note in Fig. 3.8 that the mean and median are very similar, which is in agreement with our
conclusion from Fig. 3.1 that S4TM is approximately normally distributed. Note that the mode is
500, as shown in Fig. 3.1 by the highest bars.

Statistics
scholastic aptitude test - math
N Valid 75
Missing 0
Mean 490.53
Median 490.00
Mode 500

Fig. 3.8. Central Tendency Measures using the SPSS Frequencies command.

Measures of Variability

Variability tells us about the spread or dispersion of the scores. At one extreme, if all of the
scores in a distribution are the same, there is no variability. If the scores are all different and
widely spaced apart, the variability will be high. The range (highest minus lowest score) is the
crudest measure of variability but does give an indication of the spread in scores if they are
ordered.

Standard Deviation. This common measure of variability, is most appropriate when one has
normally distributed data, although the mean of ranked ordinal data may be useful in some cases.
The standard deviation is based on the deviation (x) of each score from the mean of all the
scores. Those deviation scores are squared and then summed (£x°). This sum is divided by N-1,
and, finally, the square root is taken (SD = YEx?/N-1).

We can use the SPSS Descriptives command to get measures of central tendency and variability.
Figure 3.9 is a printout from the hsbdata set for the scholastic aptitude test - math scores. We can
easily see that of the 75 people in the data set, the Minimum (low) score was 250, the
Maximum high score was 730. The Range is 480 (730-250). (Remember the two female outliers
in Fig. 3.7, the box and whisker plot.) The mean score was 490.53 and std (standard deviation)
94.55. A rough estimate of the standard deviation is the range divided by 5 (e.g., 480/5=96).

To get Fig. 3.9, select:
¢ Analyze => Descriptives Statistics => Descriptive => SAT math => Options => Mean, Std

Deviation, Range, Minimum, Maximum, and Skewness => Continue => OK.

We will discuss Skewness later in the chapter.
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Descriptive Statistics
N Range Minimum | Maximum Mean Std. Skewness
Statistic Statistic Statistic | Statistic Statistic | Statistic | Statistic | Std. Error
scholastic aptitude
tost - math 75 480 250 730 490.53 94.553 128 277
Valid N (listwise) 75

Fig. 3.9. Descriptive statistics for the scholastic aptitude test — math (SATM).

Interquartile range. For ordinal data, the interquartile range, seen in the box plot (Fig. 3.7) as
the distance between the top and bottom of the box, is an useful measure of variability. Note that
the whiskers indicate the expected range, and scores outside that range are shown as outliers.

With nominal data none of the above variability measures (range, standard deviation, or
interquartile range are appropriate). Instead, for nominal data, one would need to ask how many

different categories there are and what are the percentages or frequency counts are in each

category to get some idea of variability. Minimum and maximum frequency may provide some
indication of distribution as well.

Measurement and Descriptive Statistics
Table 3.3 summarizes much of the above information about the appropriate use of various kinds
of descriptive statistics given nominal, dichotomous, ordinal, or normal data.

Table 3.3. Selection of Appropriate Descriptive Statistics and Plots

Nominal Dichotomous Ordinal Normal

Frequency Distribution Yes® Yes Yes OK®

Bar Chart Yes Yes Yes OK

Histogram No° No OK Yes

Frequency Polygon No No OK Yes

Box and Whiskers Plot No No Yes Yes

Central Tendency

Mean No OK Ofranks, OK  Yes

Median No OK=Mode Yes OK

Mode Yes Yes OK OK

Variability

Range No Always 1 Yes Yes

Standard Deviation No No Of ranks, OK Yes

Interquartile range No No OK OK

How many categories Yes Always 2 OK Not if truly
continuous

Shape

Skewness No No Yes Yes

*Yes means a good choice with this level of measurement.
0K means OK to use, but not the best choice at this level of measurement.
“No means not appropriate at this level of measurement.
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Conclusions About Measurement and the Use of Statistics

Statistics based on means and standard deviation are valid for normally distributed or normal
data. Typically, these data are used in the most powerful tests called parametric statistics.
However, if the data are ordered but grossly non-normal (i.e., ordinal), means and standard
deviations may not give meaningful answers. Then the median and a nonparametric test would
be preferred. Nonparametric tests typically have somewhat less power than parametric tests
(they are less able to demonstrate truly significant effects), but they sacrifice in power for
nonparametric tests based on ranks usually is relatively minor. If the data are nominal, one
would have to use the mode or counts. In this case, there would be a major sacrifice in power.

The Normal Curve

Figure 3.10 is an example of a normal curve. The frequency distributions of many of the
variables used in the behavioral sciences are distributed approximately as a normal curve.
Examples of such variables that approximately fit a normal curve are height, weight, intelligence
and many personality variables. Notice that for each of these examples, most people would fall
toward the middle of the curve, with fewer people at the extremes. If the average height of men
in the United States were 5'10", then this height would be in the middle of the curve. The heights
of men who are taller than 5'10" would be to the right of the middle on the curve, and those of
men who are shorter than 5'10" would be to the left of the middle on the curve, with only a few

men 7’ or 5’ tall.
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Fig. 3.10. Frequency distribution and probability distribution for the normal curve.

The normal curve can be thought of as derived from a frequency distribution. It is theoretically
formed from counting an “infinite” number of occurrences of a variable. Usually when the
normal curve is depicted, only the X axis (horizontal) is shown. To determine how a frequency
distribution is obtained, you could take a fair coin, and flip it 10 times, and record the number of
heads on this first set or trial. Then flip it another 10 times and record the number of heads. If
you had nothing better to do, you could do 100 trials. After performing this task, you could plot
the number of times that the coin turned up heads out of each trial of 10. What would you
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expect? Of course, the largest number of trials probably would show 5 heads out of 10. There
would be very few, if any trials, where 0, 1, 9, or 10 heads occur. It could happen, but the
probability is quite low, which brings us to a probability distribution. If we performed this
experiment 100 times, or 1,000 times, or 1,000,000 times, the frequency distribution would “fill
in” and look more and more like a normal curve.

Properties of the Normal Curve

The normal curve has five properties that are always present.

1. The normal curve is unimodal. It has one "hump", and this hump is in the middle of the
distribution. The most frequent value is in the middle.

2. The mean, median, and mode are equal.

3. The curve is symmetric. If you fold the normal curve in half, the right side would fit perfectly
with the left side; that is, it is not skewed.

4. The range is infinite. This means that the extremes approach but never touch the X axis.

5. The curve is neither too peaked nor too flat and its tails are neither too short nor too long; it
has no kurtesis. Its proportions are like those in Fig 3.10.

Non-Normally Shaped Distributions

Skewness. If one tail of a frequency distribution is longer than the other, and if the mean and
median are different, the curve is skewed. Because most common inferential statistics (e.g., ¢
test) assume that the dependent variable is normally distributed (the data are normal) it is
important that we know if our variables are highly skewed.

Figure 3.2 showed a frequency distribution that is skewed to the left. This is called a negative
skew. A perfectly normal curve has a skewness of zero (0.0). The curve in Fig. 3.2, for the
competence scale, has a skewness statistic of -1.63, which indicates that the curve is quite
different from a normal curve. We will use a somewhat arbitrary guideline that if the skewness is
more than +1.0 or less than — 1.0, the distribution is markedly skewed and it would be prudent to
use a nonparametric (ordinal type) statistic. However, some parametric statistics, such as the two-
tailed t test and ANOVA, are quite robust so even a skewness of more than +/-1 may not change
the results much. We will provide more examples and discuss this more in Chapter 4.

Kurtosis. If a frequency distribution is more peaked than the normal curve shown in Fig. 3.10, it
is said to have positive kurtosis and is called leptokurtic. Note in Fig 3.1 that the S47T-math
histogram is peaked (i.e., the bar for 500 extends above the normal curve line), and thus there is
some positive kurtosis. If a frequency distribution is relatively flat with heavy tails, it has
negative kurtosis and is called platykurtic. Although SPSS can easily compute a kurtosis value
for any variable using an option in the Frequencies command, usually we will not do so because
kurtosis does not seem to affect the results of most statistical analyses very much.

Areas Under the Normal Curve

The normal curve is also a probability distribution. Visualize that the area under the normal
curve is equal to 1.0. Therefore, portions of this curve could be expressed as fractions of 1.0. For
example, if we assume that 5'10" is the average height of men in the United States, then the
probability of a man being 5'10" or taller is .5. The probability of a man being over 6'3" or less
than 5°5” is considerably smaller. It is important to be able to conceptualize the normal curve as
a probability distribution because statistical convention sets acceptable probability levels for
rejecting the null hypothesis at .05 or .01. As we shall see, when events or outcomes happen very
infrequently, that is, only 5 times in 100 or 1 time in 100 (way out in the left or right tail of the
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curve), we wonder if they belong to that distribution or perhaps to a different distribution. We
will come back to this point later in the book.

All normal curves, regardless of whether they are narrow or spread out, can be divided into areas
or units in terms of the standard deviation. Approximately 34% of the area under the normal
curve is between the mean and one standard deviation above or below the mean (see Fig 3.10
again), If we include both the area to the right and to the left of the mean, 68% of the area under
the normal curve is within one standard deviation from the mean. Another approximately 13.5%
of the area under the normal curve is accounted for by adding a second standard deviation to the
first standard deviation. In other words, two standard deviations to the right of the mean accounts
for an area of approximately 47.5%, and two standard deviations to the left and right of the mean
make up an area of approximately 95% of the normal curve. If we were to subtract 95% from
100% the remaining 5% relates to that ever present probability or p value of 0.05 needed for
statistical significance. Values not falling within two standard deviations of the mean are seen as
relatively rare events.

The Standard Normal Curve

All normal curves can be converted into standard normal curves by setting the mean equal to zero
and the standard deviation equal to one. Since all normal curves have the same proportion of the
curve within one standard deviation, two standard deviations, etc. of the mean, this conversion
allows comparisons among normal curves with different means and standard deviations. Figure
3.10, the normal distribution, has the standard normal distribution units underneath. These units
are referred to as z scores. If you examine the normal curve table in any statistics book, you can
find the areas under the curve for one standard deviation (z=1), two standard deviations (z=2),
etc. As described in Appendix A, the Quick Reference Guide, it is easy for SPSS to convert raw
scores into standard scores. This is often done when one wants to aggregate or add together
several scores that have quite different means and standard deviations.

Interpretation Questions

3.1 If you have categorical, ordered data (such as low income, middle income, high income)
what type of measurement would you have? Why?

32 a) What are the differences between nominal, dichotomous, ordinal, and normal
variables? b) In social science research, why isn’t it important to distinguish between
interval and ratio variables?

33 What percent of the area under the standard normal curve is between the mean and one
standard deviation above the mean?

34 a) How do z scores relate to the normal curve? b) How would you interpret a z score of
—3.0? ¢) What percentage is between a z of -2 and a z of +2?

35 Why should you not use a frequency polygon if you have nominal data? What would be
better to use to display nominal data?
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CHAPTER 4
Understanding Your Data and Checking Assumptions

Before computing any inferential statistics, it is important to do exploratory data analysis (EDA)
as outlined below. This chapter will help you understand your data, help you to see if there are
any errors, and help you to know if your data meet basic assumptions for statistics that you will

compute.

In the process of understanding your data, different types of analyses and plots will be generated
depending on what level of measurement you have. Therefore, it is important to identify whether
each of your variables is nominal, dichotomous, ordinal, or normal (SPSS uses the term scale).
Keep in mind that there are times when whether you call a variable ordinal or scale might change
based on your EDA. For example, a variable that you considered to be ordinal may be normally
distributed, and, thus, better to be labeled as scale. Recall from Chapters 2 and 3 that making the
appropriate choice indicates that you understand your data and should help guide your selection
of a statistic.

Exploratory Data Analysis (EDA)

What is EDA?

After the data are entered into SPSS, the first step to complete (before running any inferential
statistics) is EDA, which involves computing various descriptive statistics and graphs.
Exploratory Data Analysis is used to examine and get to know your data. Chapters 2, 3, and
especially this chapter, focus on ways to do exploratory data analysis with SPSS. EDA is
important to do for several reasons:

1. To see if there are problems in the data such as outliers, non-normal distributions, problems
with coding, missing values, and/or errors inputting the data.

2. To examine the extent to which the assumptions of the statistics that you plan to use are met.

In addition to these two reasons, which are discussed in this chapter, one could also do EDA for
other purposes such as:

3. To get basic information regarding the demographics of subjects to report in the Method or
Results section.

4. To examine relationships between variables to determine how to conduct the hypothesis-
testing analyses. For example, correlations can be used to see if two or more variables are so
highly related that they should be combined for further analyses and/or if only one of them
should be included in the central analyses. We create parents’ education, in Chapter 5, by
combining father's and mother’s education, because they are quite highly correlated.

How to Do EDA

There are two general methods used for EDA: generating plots of the data and generating
numbers from your data. Both are important and can be very helpful methods of investigating the
data. Descriptives Statistics (including the minimum, maximum, mean, standard deviation, and
skewness), frequency distribution tables, boxplots, histograms, and stem and leaf plots are a few
procedures used in EDA.
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After collecting data and inputting them into SPSS, many students jump immediately to doing
inferential statistics (e.g., ¢ tests and ANOVA’s). Don’t do this! Many times there are errors or
problems with the data that need to be located and either fixed or at least noted before doing any
inferential statistics.

At this point, you are probably asking “Why?” or “I'll do that boring descriptive stuff later while
I am writing the methods section.” Wait! Being patient can alleviate many problems down the
road.

In the next two sections we discuss checking for errors and checking assumptions. Some of this
discussion reviews material presented in Chapters 2 and 3, but it is so important that it is worth
repeating.

Check for Errors

There are many ways to check for errors; for example:

1. Look over the raw data (questionnaires, interviews, or observation forms) to see if there are
inconsistencies, double coding, obvious errors, etc. Do this before entering the data into the
computer.

2.  Check some, or preferably, all of the raw data (e.g., questionnaires) against the data in your
SPSS Data Editor file to be sure that errors were not made in the data entry.

3. Compare the minimum and maximum values for each variable in your Descriptives output
with the allowable range of values in your codebook.

4, Examine the means and standard deviations to see if they look reasonable, given what you
know about the variables.

5. Examine the N column to see if any variables have a lot of missing data, which can be a
problem when you do statistics with two or more variables. Missing data could also indicate
that there was a problem in data entry.

6. Look for outliers in the data.

Statistical Assumptions
Every statistical test has assumptions. Statistical assumptions are much like the directions for

appropriate use of a product found in an owner’s manual. Assumptions explain when it is and
isn’t reasonable to perform a specific statistical test. When the ¢ test was developed, for example,

the person who developed it needed to make certain assumptions about the distribution of scores,
etc., in order to be able to calculate the statistic accurately. If these assumptions are not met, the
value that SPSS calculates, which tells the researcher whether or not the results are statistically
significant, will not be completely accurate and may even lead the researcher to draw the wrong
conclusion about the results. In each chapter, the appropriate inferential statistics and their
assumptions are described.

Parametric tests. These include most of the familiar ones (e.g., £ test, analysis of variance,
correlation). They usually have more assumptions than nonparametric tests. Parametric tests were
designed for data that have certain characteristics, including approximately normal distributions.

Some parametric statistics have been found to be “robust” to one or more of their assumptions.
Robust means that the assumptions can be violated quite a lot without damaging the validity of
the statistic. For example, one assumption of the ¢ test and ANOVA is that the dependent variable
is normally distributed for each group. Statisticians who have studied these statistics have found
that even when data are not normally distributed (e.g., skewed a lot), they still can be used under
many circumstances.
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Nonparametric tests. These tests (e.g., chi-square, Mann-Whitney U, Spearman rho) have fewer
assumptions and often can be used when the assumptions of a parametric test are violated. For
example, they do not require normal distributions of variables or homogeneity of variances.

Check Assumptions

Homogeneity of variances. Both the 7 test and ANOVA may be affected quite a lot if the
variances (standard deviation squared) of the groups to be compared are substantially different.
Thus, this is a critical assumption to meet or correct for. Fortunately, SPSS provides the Levene
test to check this assumption and ways to adjust the results if the variances are significantly
different.

Normality. As mentioned above, many parametric statistics assume that certain variables are
distributed approximately normally. That is, the frequency distribution would look like a
symmetrical bell-shaped or normal curve, with most subjects having values in the mid range and
with similar small numbers of participants with both high and low scores. A distribution that is
asymmetrical with more high than low scores (or vice versa) is skewed. Thus, it is important to
check skewness. There are also several other ways to check for normality, some of which were
presented in Chapter 3. In this chapter we will look in detail at one graphical method, boxplots.
However, remember that ¢ (if 2-tailed) and ANOV A are quite robust to violations of normality.

Check other assumptions of the specific statistic. In later chapters, we will discuss other
assumptions as they are relevant to the problem posed.

The type of variable you are exploring (whether it is nominal, ordinal, dichotomous, or normal/
scale) influences the type of exploratory data analysis (EDA) you will want to do. Thus, we have
divided the problems in this chapter by the measurement levels of the variable because, for some
types of variables, certain descriptive statistics will not make sense (e.g., a mean for a nominal
variable, or a boxplot for a dichotomous variable). Remember that the researcher has labeled the
type of measurement as either nominal, ordinal or scale when completing the SPSS Data Editor
Variable View. Remember also that we decided to label dichotomous variables nominal, and

variables that we assumed were normally distributed were labeled scale.
For all the problems in Chapter 4 you will be using the HSB data file.

e Retrieve hsbhdata.sav from the CD in the back of the book. It is desirable to make a working
copy of this file. See Appendix C for instructions if you need help with this or getting started
with SPSS. Appendix C also shows how to set your computer to print the SPSS syntax.

Problem 4.1: Descriptive Statistics for the Ordinal and Scale Variables

In this problem we will use all of the HSB Variables that were labeled as ordinal or scale in the
SPSS Variable View. With those types of variables, it is important to see¢ if the means make
sense (are they close to what you expected?), to examine the range of the data, and to check the
shape of the distribution (i.e., skewness value).

4.1 Examine the data to get a good understanding of the central tendency, variability, range of
scores and the shape of the distribution for each of the ordinal and scale variables. Are the
variables normally distributed?

53



SPSS for Introductory Statistics

This problem includes descriptive statistics and ways to examine your data to see if the variables
are approximately normally distributed, an assumption of most of the parametric inferential
statistics that we will use. Remember that skewness is an important statistic for understanding if a
variable is normally distributed; it is an index that helps determine how much a variable’s
distribution deviates from the distribution of the normal curve. Skewness refers to the lack of
symmetry in a frequency distribution. Distributions with a long “tail” to the right have a positive
skew and those with a long tail on the left have a negative skew. If a frequency distribution of a
variable has a large (plus or minus) skewness, that variable is said to deviate from normality. In
this assignment, we examine this assumption for several key variables. However, some of the
parametric inferential statistics that we will use later in the book are robust or quite insensitive to
violations of normality. Thus, we will assume that it is okay to use parametric statistics to answer
most of our research questions as long as the variables are not extremely skewed.

We will answer Problem 4.1 by using the Descriptives command, which will make a compact,
space efficient output. You could instead run the Frequencies program because you can get the
same statistics with that command. We will use the Frequencies command later in the chapter.
When using the Descriptives command to compute the basic descriptive statistics for all of the
ordinal and scale variables, you should use these steps:

e Select Analyze = Descriptive Statistics = Descriptives

After selecting Descriptives, you will be ready to compute the mean, standard deviation,
skewness, minimum, and maximum for all participants or cases on all the variables that were
called ordinal or scale under measure in the SPSS Data Editor Variable View. We will not
include the nominal variables (ethnicity and religion) and do not include gender, algebral,
algebra2, geometry, trigonometry, calculus, and math grades, which are dichotomous variables.
We will use them in a later problem.

Highlight (in the left box) all of the variables that were called ordinal. These include: father’s
education, mother’s education, grades in h.s., and all the item variables (item 0/ through item 11
reversed).

e Click on the arrow button pointing right to produce Fig. 4.1.
e Be sure that all of the requested variables have moved out of the left window.

Fig. 4.1. Descriptives.

7 Sere sandardied values a¢ varables Optiom. . I

Click on Options. The Options window (Fig. 4.2) will open.

Select Mean.

Under Dispersion, select Std. Deviation, Variance, Range, Minimum, and Maximum.
Under Distribution, check Skewness.

54



Chapter 4 —Understanding Your Data and Checking Assumptions

"’ Minimum
" F Maximum

A

e Click on Continue to get back to Fig. 4.1.
e Click on OK to produce Output 4.1a.

e e

Help

- Cancel

e —

Fig. 4.2. Descriptives: Options.

Next, we will repeat these steps for the variables that were labeled scale in the SPSS Data

Editor.

e Click on Reset in Fig 4.1 to move the ordinal variable back to the left.
o Highlight math achievement, mosaic, visualization, visualization retest, scholastic aptitude

test-math, competence, and motivation,

e Repeat the steps used above to create Descriptive Statistics for the scale variables.

Compare your syntax output to Outputs 4.1a and 4.1b. If they look the same you have done the
steps correctly. If the syntax is not showing in your output, consult the Appendix C to see how to
set your computer so that the syntax is displayed.

Output 4.1a: Descriptives for the Ordinal Variables

DESCRIPTIVES

VARIABLES=faed maed grades item0l item02 item03 item04 item0S5 itemO6 item07
item08 item09 iteml0 itemll iteml2 iteml3 iteml4 item0O4r item0O5r itemO8r

itemllr

/STATISTICS=MEAN STDDEV VARIANCE RANGE MIN MAX . ————— | Syntax or log file
shows the variables
and statistics that
you requested.
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Descriptives
Descriptive Statistics
N Range | Minimum | Maximum Mean Std. Variance Skewness |
Statstic | Statistic | Statstic | Statistic | Statistic | Statistic | Statistc | tatistic | sta. Emor |

father's education 73 8 2 10 4.73 2.830 8.007 684 .281
mother's education 75 B 2 10 4.11 2.240 5.015 1.124 2717
grades in h.s. 75 6 2 8 5.68 1.570 2.464 -332 277
ikem01 motivation 74 3 1 4 296 028 .861 -763 279
item02 pleasure 75 3 1 4 3.52 906 821 -1.910 277
item03 competence 74 3 1 4 2.82 .897 .804 -579 279
ftem04 low motiv 74 3 1 4 2.16 822 850 422 278
item05 low comp 75 3 1 4 1.61 an 943 1.581 .277
item06 low pleas 75 3 1 4 243 975 951 -058 217
item07 motivation 75 3 1 4 276 1.051 1.104 -433 277
item08 low motiv 75 3 1 4 1.95 914 835 653 2m
item09 competence 74 3 1 4 3.32 760 578 -1.204 279
item10 low pleas 75 3 1 4 1.41 37 543 1.869 21
kem11 low comp 75 3 1 4 1.36 T47 558 2.497 277
item12 motivation 75 3 1 4 3.00 822 676 -.600 217
item13 motivation 75 3 1 4 267 794 631 -320 277
item14 pleasure 75 3 1 4 284 T17 515 -429 277
item04 reversed 74 3 1 4 2.84 922 850 -422 279
item05 reversed 75 3 1 4 3.39 a7 943 -1.581 277
tam08 reversad 75 3 1 4 305 914 .835 -653 277
item11 raversed 75 3 1 4 3.64 747 558 -2.497 2m
Valid N (listwise) 69

Output 4.1b Descriptives for Variables Labeled as Scale

DESCRIPTIVES
VARIABLES=mathach mosaic visual visual2 satm competence motivation
/STATISTICS=MEAN STDDEV VARIANCE RANGE MIN MAX .

Descriptives
Descriptive Statistics
N Range |Minimum |Maximum| Mean Std. | Variance Skewness

Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic | Statistic |Std. Error
math achievement t 75 25.33 -1.67 23.67 | 12.5645 | 6.67031 | 44.493 .044 277
mosaic, pattern test 75 60.0 -4.0 56.0 | 27.413 | 9.5738 | 91.658 529 277
visualization test 75 15.00 =25 14.75 | 5.2433 | 3.91203 | 15.304 536 277
visualization retest 75 9.50 .00 9.50 | 4.5467 | 3.01816 9.109 235 277
scholastic aptitude
test - math 75 480 250 730 | 49053 | 94.553 B940.252 128 277
Competence scale 73 3.00 1.00 4,00 | 3.2945 | .66450 442 -1.634 281
Motivation scale 73 2.83 117 400 | 2.8744 | .63815 407 -570 .281
Valid N (listwise) 71

Interpretation of Output 4.1a and 4.1b.

These Outputs provide descriptive statistics for all of the variables labeled as ordinal (4.1a) and
scale (4.1b). Notice that the variables are listed down the left column of the outputs and the
requested descriptive statistics are listed across the top row. The descriptive statistics included in
the output are the number of subjects (N), the Range, Minimum (lowest), and Maximum
(highest) scores, and the Mean (or average) for each variable. In addition, the std (the standard
deviation), the Variance, the Skewness statistic and the std error of the skewness. Note, from
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the bottom line of the Outputs, that the Valid N (listwise) is 69 for Output 4.1a and 71 for 4.1b
rather than 75, which is the number of participants in the data file. This is because the listwise

N only includes the persons with no missing data on any variable requested in the output.
Notice that several variables (e.g., father’s education, item01, motivation, and competence)

each have a few participants missing.

Using your output to check your data for errors. For both the ordinal and scale variables,
check to make sure that all Means seem reasonable. That is, you should check your means to
see if they are within the ranges you expected (given the information in your codebook) and if
the means are close to what you might expect (given your understanding of the variable). Next,
check the output to see that the Minimum and Maximum are within the appropriate
(codebook) range for each variable. If the minimum is smaller or the maximum is bigger than
you expected (e.g., 100 for a variable that has 1 — 50 for possible values), then you should
suspect that there was an error somewhere. Finally, you should check the NV column to see if the
Ns are what you were expecting. If it happens that you have more participants missing than you
expected, check the original data to see if some were entered incorrectly. Notice that
competence scale and motivation scale each have a few participants missing.

Using the output to check assumptions. The main assumption that we can check from this
output is normality. We won’t pay much attention to the skewness for item 01 to item 11
reversed that have only four levels (1-4). These ordinal variables have fewer than five levels, so
they will not be considered to be scale even though some of the “item” variables are not very
skewed. We will not use them as individual variables because we will be combining them to
create summated variables (the motivation and competence and pleasure scales) before using
inferential statistics. From Output 4.1a, we can see that two of the variables that we called
ordinal (father’s education and grades in h.s.) are approximately normally distributed. These
ordinal variables, with five or more levels, have skewness values between —1 and 1. Thus, we
can assume that they are more like scale variables, and we can use inferential statistics that
have the assumption of normality. To better understand these variables, it may be helpful to
change the Measure column in the Variable View so that these two variables will be labeled
as scale.

For the variables that were labeled as scale, we hope that they are normally distributed. Look at
the Skewness Statistic in Output 4.1b to see if it is between —1 and 1. From the output we see
that most of these variables have skewness values between —1 and 1, but two (mother’s
education and competence) do not. Most statistics books do not provide advice about how to
decide whether a variable is at least approximately normal. SPSS recommends that you divide
the skewness by its standard error. If the result is less than 2.5 (which is approximately the p ="
.01 level) then skewness is not significantly different from normal. A problem with this
method, aside from having to use a calculator, is that the standard error depends on the sample
size, so with large samples most variables would be found to be non normal. A simpler
guideline is that if the skewness is less than plus or minus one (< +/- 1.0) the variable is at least
approximately normal.

There are several ways to check this assumption in addition to checking the skewness value. If
the mean, median, and mode, which can be obtained with the Frequencies command, are
approximately equal, then you can assume that the distribution is approximately normally
distributed. For example, remember from Chapter 3 (Fig. 3.8) that the mean (490.53), median
(490.00), and mode (500) for scholastic aptitude test- math were very similar values, and the
skewness value is .128 (see Output 4.1). Thus, we can assume that S4T-math is approximately
normally distributed.
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Problem 4.2: Box Plots for One Variable and Multiple Variables

In addition to numerical methods for understanding your data there are several graphical methods.
In Chapter 3, we demonstrated the use of histograms with the normal curve superimposed and
also frequency polygons (line graphs) to roughly assess normality. The trouble is that visual
inspection of histograms can be deceiving because some approximately normal distributions
don’t look very much like a normal curve.

In this problem we will use Boxplots to examine some HSB variables. Boxplots are a method of
graphically representing ordinal and scale data. They can be made with many different
combinations of variables and groups. Using boxplots for one, two, or more variables or groups in
the same plot can be useful in helping you understand your data.

4.2a. Create a boxplot for math achievement test.

There are several commands in SPSS that will compute boxplots; we will show one way here. To
create a boxplot follow these steps:

e Select Graphs = Boxplots... The Boxplot window should appear.

e Select Simple and Summaries of separate variables. Your window should look like Fig.
4.3,

e Click on Define. The Define Simple Boxplot: Summaries of Separate Variables window
will appear.

x

gl; S

Corcel | Fig. 4.3. Boxplot.
Quslaved Help I
- Datain Chast Ase

" Summanes kot groups of cates
% Summanes of 1eperste vanables

e Highlight the variable that you are interested in (in this case it is math achievement test).
Click on the arrow to move it into the Boxes Represent box. When you finish, the dialog box
should look like Fig. 4.4.

e Click on OK.

Deline Smple Doxplol: Summane: ol Sepaste Vanasbles
|| oenderfgend] AL LA
 tathers ecucation [t ' rath achievement lewd
#> mother's sducation |
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# tigorometty nh 1. |
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bmu.mmhu.ﬂ D e

Fig. 4.4. Define Simple Boxplot:
Summaries of separate variables.

Boelglelef)
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Output 4.2a: Boxplot of Math Achievement Test

EXAMINE
VARIABLES=mathach /COMPARE VARIABLE/PLOT=BOXPLOT/STATISTICS=NONE/NOTOTAL
/MISSING=LISTWISE.

Explore
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
math achievement test 75 100.0% 0 0% 75 100.0%
500
10.00= |
= |
0.00 |
|
EXAMINE
VARIABLES=competence motivation /COMPARE VARIABLE/PLOT=BOXPLOT/STATISTICS=NONE
/NOTOTAL
/MISSING=LISTWISE.

To create a boxplot with more than one variable in the same plot, follow these commands.

4.2b. Compare the boxplots of competence and motivation to each other.

To create more than one boxplot on the same graph follow these commands:

e Select Graphs = Boxplots... The Boxplot window should appear.

e Select Simple and Summaries of separate variables. Your window should again look like
Fig. 4.3.

e Click on Define. The Define Simple Boxplot: Summaries of Separate Variables window
will appear.

e Highlight both of the variables that you are interested in (in this case they would be

competence and motivation). Click on the arrow to move them into the Boxes Represent box.

e Click on OK.

Output 4.2b: Boxplots of Competence and Motivation Scales

Explore
Case Processing Summary
Cases
Valid Missing Total
— N Percent N Percent N Percent
Competence scale 71 94.7% 4 5.3% 75 100.0%
Motivation scale 71 94.7% 4 5.3% 75 100.0%
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Interpretation of Outputs 4.2a and 4.2b

Outputs 4.2a and 4.2b include a Case Processing Summary table and boxplots. The Valid NV,
Missing cases and Total cases are shown in the case processing summary table. In Output 4.2a,
for math achievement, the valid N is 75, and there are no missing cases. The plot in Output 4.2a
includes only one boxplot for our requested variable of math achievement. Each “box”
represents the middle 50% of the cases and the “whiskers™ at the top and bottom of the box
indicate the “expected” top and bottom 25%. If there were outliers there would be “O”s and if
there were really extreme scores they would be shown with asterisks, above or below the end of
the whiskers. Notice that there are not any Os or *s in the boxplot in Output 4.2a.

The Case Processing table for Output 4.2b indicates that there are 71 valid cases, with 4 cases
having missing data on one or both variables. Each of the requested variables is listed
separately in the case processing summary table. For the boxplot, you can see there are two
separate boxplots. As indicated by the Os at the bottom of the whiskers, the boxplot for
competence shows there are three outliers, and the boxplot for motivation indicates there is one
outlier.

Using your output to check your data for errors. If there are “O”s or asterisks, then you need
to check the raw data or score sheet to be sure there was not an error. The numbers next to the
“QOs” indicate which participants these scores belong to. This can be helpful when you want to
check to see if these are errors or if they are the actual scores of the subject. We decided not to
make a variable called something like subject number because SPSS automatically numbers
each case in the left hand column of the data editor. You can, however, make a variable that
numbers each subject in some that you find useful. If you wish to label outliers using such an
ID number, which you have entered as a variable, you must indicate that variable in the dialog
box in Fig. 4.4 where it says Label Cases by.

Using the output to check your data for assumptions. Boxplots can be useful for identifying
variables with extreme scores, which can make the distribution skewed (i.e., non normal). Also
if there are few outliers, if the whiskers are approximately the same length, and if the line in the
box is approximately in the middle of the box, then you can assume that the variable is
approximately normally distributed. Thus, math achievement (output 4.2a) is near normal,
motivation (4.2b) is approximately normal, but competence (4.2b) is quite skewed and not
normal.

Problem 4.3: Boxplots Split by A Dichotomous Variable

Now let’s make a boxplot comparing males and females on math achievement. This is similar to
what we did in Chapter 3, but here we will request statistics and stem-and-leaf plots.

60




Chapter 4 —Understanding Your Data and Checking Assumptions

4.3, Create a boxplot for math achievement split by gender.

Use these commands:

e Analyze => Descriptive Statistics => Explore.

The Explore window (Fig. 4.5) will appear.

Click on math achievement and move it to the Dependent List.

Next, click on gender and move it to the Factor (or independent variable) List.

Click on Both under Display. This will produce both a table of descriptive statistics and two
kinds of plots: stem-and-leaf and Box-and-whiskers.

__j it
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& geomery i .t [ge |
# igonomeliy in h EEJ
# calculus n h [cal
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Elilrlf i

Fig. 4.5. Explore.

e Click on OK.

You will get an output file complete with syntax, statistics, stem-and-leaf plots, and boxplots. See
Output 4.3 and compare it to your own output and syntax. As with most SPSS subprograms, we
could have requested a wide variety of other statistics, if we had clicked on Statistics and/or Plots
in Fig 4.5.

Output 4.3: Boxplots Split by Gender with Statistics and Stem-and-Leaf Plots

EXAMINE
VARIABLES=mathach BY gend
/PLOT BOXPLOT STEMLEAF
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE

/NOTOTAL.
Explore
gender
Case Processing Summary
Cases
Valid Missing Total
gender N Percent N Percent N Percent
math achievementtest male 34 100.0% 0 0% 34 100.0%
female 41 100.0% 0 .0% 41 100.0%
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Descriptives
gendar Statistic | Std. Error
math achievement test male Mean C 147550 ) 1.03440
95% Confidence Lower Bound 2
Interval for Mean
Upper Bound 16.8595
5% Trimmed Mean 14.8454
Median 14.3330
Variance < 38.379 )
Std. Deviation ;
Note that we have circled, Minimum 367
for males and for females, l':'a“"““"‘ iﬁ-g
thrf';c key statistics: mean, P — 10.0005
variance, and skewness. Skewness -.156 403
Kurtosis = .788
female Mean Qg%;;? 1.04576
95% Confidence Lower Bound 3
Interval for Mean
Lnei: Bourd 12.8615
5% Trimmed Mean 10.6454
Median 0 0
Variance 44,838
Std. Deviation 5.506
Minimum -1.7
Maximum 23.7
Range 253
Interquartile Range 10.5000
Skewness .369
Kurtosis -.698 724
Stem-and-Leaf Plots
math achievement test Stem=-and-Leaf Plot for
GEND= male
1.00 0. 3
7.00 0 . 5557799
11.00 1 . 01123444444 11 persons (Frequency) had stems
;'gg ; C ii:ggg; of 1 (scores between 10 and14).
) ) One had 10, 2 had 11, etc.
Stem width: 10.0
Each leaf: 1 case(s)
math achievement test Stem-and-Leaf Plot for
GEND= female
Frequency Stem & Leaf
1.00 -0. 1 1 person had a negative
T7.00 0 . 1123344
12.00 0 . 555666778999 score (stem - 0) of -1.
11.00 1 00002334444
5.00 1, 77719
5.00 2 . 02233

Stem width: 10.0
Each leaf: 1 case(s)
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Median

math achievement test
& o
3 8
1 1

0.00 4

by - . Count
mele femade female = 41
gender male = 34
Interpretation of Output 4.3

The first table under Explore provides descriptive statistics about the number of males and
females with Valid and Missing data. Note that we have 34 males and 41 females with valid

math achievement test scores.

The Descriptives table contains many different statistics for males and females separately.
Several of them are beyond what we will cover in this book. Note that the average math
achievement test score is 14.76 for the males and 10.75 for females. We will discuss the
variances and skewness below under assumptions.

The Stem-and-Leaf Plot for each gender separately are next. These plots are sort of like a
histogram or frequency distributions turned on the side. They give a visual impression of the
distribution, and they show each person’s score on the dependent variable (math
achievement). Note that the legend indicates that Stem width equals 10 and Each leaf equals
one case. This means that entries that have 0 for the stem are less than 10, those with 1 as the
stem range from 10 to 19, etc. Each number in the Leaf column represents the last digit of
one person’s math achievement score. The numbers in the Frequency column indicate how
many participants had scores in the range represented by that stem. Thus, in the male plot,
one student had a Stem of 0 and a Leaf of 3; i.e. a score of 03. The Frequency of students
with Leafs between 05 and 09 is 7, and there were three scores of 05, two of 07, and two of
09. Eleven had a Stem of 1 and Leaf of 0 (a score of 10); two had scores of 11, etc.

Boxplots are the last part of the output. This boxplot has two boxes (one for males and one
for females). By inspecting the plots, we can see that the median score for males is quite a bit
higher than that for females, although there is some overlap of the boxes. We need to be
careful in concluding that males score higher than females, especially based on a small
sample of students. In Chapter 10, we will show how an inferential statistic (the ¢ test) can
help us know how likely it is that this apparent difference could have occurred by chance.

Using the output to check your data for errors. Checking the box and stem-and-leaf plots
plots can help identify outliers that might be data entry errors. In this case there aren’t any.

Using the output to check your data for assumptions. As noted in the interpretation of
Outputs 4.2a and 4.2b, you can tell if a variable is grossly non normal by looking at the
boxplots. The stem-and-leaf plots provide similar information. You can also examine the
skewness values for each gender separately in the table of Descriptives (sce the circled
skewness values). Note that for both males and females the skewness values are less than

one, which indicates that math achievement is approximately normal for both genders. This is
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an assumption of the  test.

The Descriptives table also provides the variances for males and females. A key assumption
of the  test is that the variances are approximately equal (i.€., the assumption of homogeneity
of variances). Note that the variance is 36.38 for males and 44.84 for females. These do not
seem grossly different, and we find out in Chapter 10 that they are, in fact, not significantly

different. Thus, the assumption of homogenous variances is not violated.

Problem 4.4: Descriptives for Dichotomous Variables

Now, let’s explore the dichotomous variables. To do this, we will do the Descriptives command
for each of the dichotomous variables. Once again, we could have done Frequencies, with or
without frequency tables, but we chose Descriptives. This time we will select fewer statistics
because the standard deviation, variance, and skewness values are not very meaningful with
dichotomous variables.

44. Examine the data to get a good understanding of each of the dichotomous variables.

When using the Descriptives command to compute the basic descriptive statistics for the
dichotomous variables you will need to do these steps:

e Select Analyze = Descriptive Statistics = Descriptives .

After selecting Descriptives, you will be ready to compute the N, minimum, maximum, and mean
for all participants or cases on all selected variables in order to examine the data.

Before starting this problem, press Reset (see Fig. 4.1) to clear the Variable box.
e Now highlight all of the dichotomous variables in the left box. These variables have only
two levels. They are: gender, algebra 1, algebra 2, geometry, trigonometry, calculus, and
math grades.
Click on the arrow button pointing right.
Be sure that all of these variables have moved out of the left window.
Click on Options. The Options window will open.
Select Mean, Minimum, and Maximum.
Unclick Std. Deviation.
Click on Continue.
Click on OK.

Compare your output to Output 4.4. If it looks the same you have done the steps correctly.

Output 4.4 Descriptives for Dichotomous Variables

DESCRIPTIVES
VARIABLES=gender algl alg2 geo trig calc mathgr
/STATISTICS= MERN MIN MAX .
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Descriptives
Descriptive Statistics
N Minimum | Maximum Mean

gender 75 0 1 .55
algebra 1 in h.s. 75 0 1 C 18D
algebra 2 in h.s. 75 0 1 A7
geometry in h.s. 75 0 1 A48
trigonometry in h.s. 75 0 1 27
calculus in h.s. 75 0 1 A1
math grades 75 0 1 M
Valid N (listwise) 75

Interpretation of Output 4.4

Output 4.4 includes only one table of Descriptive Statistics. Across the top row are the
requested statistics of N, Minimum, Maximum, and Mean. We could have requested other
statistics, but they would not be very meaningful for dichotomous variables. Down the left
column are the variable labels. The N column indicates that all the variables have complete
data. The Valid NV (listwise) is 75, which also indicates that all the participants had data for
each of our requested variables.

The most helpful column is the Mean column. You can use the mean to understand what
percentage of participants fall into each of the two groups. For example, the mean of gender is
.55, which indicates that that 55% of the participants were coded as 1 (female), thus 45% were
coded 0 (male). Because the mean is greater than .50, there are more females than males. If the
mean is close to 1 or 0 (e.g., algebra 1 and calculus), then splitting the data on that dichotomous
variable might not be useful because there will be many participants in one group and very few
participants in the other.

Checking for errors. The Minimum column shows that all the dichotomous variables had “0”
for a minimum and the Maximum column indicates that all the variables have “1” for a
maximum. This is good because it agrees with the codebook.

Problem 4.5: Frequency Tables for a Few Variables

Displaying Frequency tables for variables can help you understand how many participants are in
each level of a variable and how much missing data of various types you have. For nominal
variables, most descriptive statistics are meaningless. Thus, having a frequency table is usually
the best way to understand your nominal variables. We created a frequency table for the nominal
variable, religion, in Chapter 3 so we will not redo it here.

4.5. Examine the data to get a good understanding of the frequencies of scores for one nominal
variable plus one scale/normal, one ordinal, and one dichotomous variable.
Use the following commands:

Select Analyze — Descriptive Statistics = Frequencies.
Click on Reset if any variables are in the Variables box.
Now highlight a nominal variable, ethnicity, in the left box.
Click on the arrow button pointing right.
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¢ Highlight and move over one scale variable (we chose visualization retest), one ordinal
variable (we chose father’s education), and one dichotomous variable (we used gender).

Be sure Display frequency table is checked.
Do not click on Statistics because we do not want to select any this time.

Click on OK.

Compare your output to Qutput 4.5. If it looks the same you have done the steps correctly.

Output 4.5 Frequency Tables for Four Variables

FREQUENCIES
VARIABLES=ethnic visual2 faed gend
/ORDER= ANALYSIS

Frequencies
Statistics
visualization father's
ethnicity retest education gender
N Valid 73 75 73 %
Missing 2 0 2 0

Frequency Table
See the Interpretation section for
how to discuss these numbers.

ethnicity / \

m/ ] :;1 Cumulative
Frequency | Percel Valid Percent Percent
Valid  Eurc-Amer 41 G4.D G6.2) 56.2
African-Amer 15 20.0 20.5 76.7
Latino-Amer 10 13.3 13.7 90.4
Asian-Amer 7 9.3 9.6 100.0
Total 73 a97.3 100.0
Missing  multi ethnic 1 1.3
blank 1 1.3
Total 2 2.7
Total 75 100.0

66



Chapter 4 -Understanding Your Data and Checking Assumptions

visualization retest

Cumulative
Freguency | Percent | Valid Percent Percent
Valid Lowest 7 9.3 9.3 9.3
1.00 7 9.3 9.3 18.7
2.00 7 9.3 9.3 28.0
3.00 10 133 133 | - 413
4.00 10 13.3 13.3 54.7
5.00 8 10.7 10.7 65.3
6.00 4 5.3 5.3 70.7
7.00 5 6.7 6.7 77.3
8.00 7 9.3 9.3 86.7
highest 10 13.3 13.3 100.0
Total 75 100.0 100.0
father's education
Cumulative
Frequency | Percent | Valid Percent Percent
Valid < h.s. grad 22 29.3 30.1 30.1
h.s. grad 16 21.3 219 52.1
<2 yrs voc 3 4.0 4.1 56.2
2 yrs voc 8 10.7 11.0 67.1
< 2 yrs coll 4 53 5.5
> 2 yrs coll 1 13 1.4
coll grad 7 9.3 9.6
master's 6 8.0 8.2
MD/PhD 6 8.0 8.2
Total 73 97.3 100.0 74% of fathers
Missing  System 2 27 have 2 years or
Total 75 100.0 less of college.
gender
Cumulative
Frequency | Percent | Valid Percent Percent
Valid male 34 45.3 45.3 45.3
female 41 54.7 54.7 100.0
Total 75 100.0 100.0

Interpretation of Output 4.5.

The first table, titled Statistics, provides, in this case, only the number of participants for whom
we have Valid data and the number with Missing data. We did not request any other statistics
because almost all of them (e.g., skewness, standard deviation) are not appropriate to use with
the nominal and dichotomous data, and we have such statistics for the ordinal and normal/scale
variables.

The other four tables are labeled Frequency Table; there is one for ethnicity, one for
visualization test, one for father’s education, and one for gender. The left-hand column shows
the Valid categories (or levels or values), Missing values, and Total number of participants.
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The Frequency column gives the number of participants who had each value. The Percent
column is the percent who had each value, including missing values. For example, in the
ethnicity table, 54.7% of all participants were Euro-American, 20.0% were African-American,
13.3% were Latino-American, and 9.3% were Asian-American, There also were a total of 2.7%
missing: 1.3% were multiethnic, and 1.3 were left blank. The valid percent shows the percent
of those with nonmissing data at each value; e.g., 56.2% of the 73 students with a single listed
ethnic group were Euro-Americans. Finally, Cuamulative Percent is the percent of subjects in a
category plus the categories listed above it.

As mentioned in Chapter 3, this last column is not very useful with nominal data, but can be
quite informative for frequency distributions with several ordered categories. For example, in
the distribution of father’s education, 74% of the fathers had less than a bachelor’s degree (i.e.,
they had not graduated from college).

Interpretation Questions

4.1. Using Output 4.1a and 4.1b: a) What is the mean visualization test score? b) What range for
grades in h.s.? c) What is the minimum score for mosaic pattern test? How can that be?

4.2. Using Output 4.1b: a) For which variables that we called scale, is the skewness statistic
more than +/- 1.00? b) Why is the answer important? ¢) Does this agree with the boxplots
in Problem 2?

4.3. Using Output 4.2b: a) How many participants have missing data? b) What percent of
students have a valid (non-missing) motivation or competence score? Can you tell from
Output 4.1 and 4.2b how many are missing both motivation and competence scores?

4.4. Using Output 4.4: a) Can you interpret the means? Explain. b) How many participants are
there all together? c) How many have complete data (nothing missing)? d) What percent
are male? e) What percent took algebra 1?

4.5. Using Output 4.5: a) 9.6% of what group are Asian Americans? b) What percent of students
have visualization retest scores of 67 ¢) What percent had such scores of 6 or less?

Extra SPSS Problems

Using the College Student data file, do the following problems. Print your outputs and circle the
key parts of the output that you use discuss.

4.1 For the variables with five or more ordered levels, compute the skewness. Describe the
results. Which variables in the data set are approximately normally distributed/scale? Which
ones are ordered but not normal?

4.2 Do a stem-and-leaf plot for same sex parent’s height split by gender. Discuss the plots.

4.3 Which variables are nominal? Run Frequencies for the nominal variables and other variables
with fewer than five levels. Comment on the results.

4.4. Do boxplots for student height and for hours of study. Compare the two plots.
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CHAPTER 5

Data File Management

In this assignment, you will do several data transformations to get your data in the form needed to
answer the research questions. This aspect of data analysis is sometimes called file management
and can be quite time consuming. That is especially true if you have a lot of questions/items that
combined to compute the summated or composite variables that you want to use in later analyses.
For example, in this chapter you will revise two of the math pleasure items and then compute the
average of the four pleasure items to make the pleasure scale score. This is a somewhat mundane
and tedious aspect of research, but it is important to do it carefully so you do not introduce errors
into your data.

In this chapter, you will learn four useful data transformation techniques: Count, Recode, and
two ways to Compute a new variable, that is the sum or average of several initial variables. From
these operations we will produce seven new variables. In the last problem you will produce, for
the five of the new variables, several of the descriptive statistics that we produced in the last
chapter, and we will use them to check for errors and assumptions.

e Get/retrieve hsbdata from your disk. (See the Get Data step in Appendix A for reference).

Problem 5.1: Count Math Courses Taken

Sometimes you want to know how many items the subjects have taken, bought, done, etc. One
time this happens is when the question was “check all that apply.” In Chapter 2, we could have
counted how many aspects of the class assignments (reading, homework, and extra credit) the
students checked by asking the computer to count the number of items checked. In this problem,
we will count the number of math courses coded as.1, which means “taken.”

5.1 How many math courses (algebra 1, algebra 2, geometry, trigonometry, and calculus)
did each of the 75 participants take in high school? Label your new variable.

If the hsbdata file is not showing, click on the hsbdata bar at the bottom of your screen until you
see your data showing. Now, let’s count the number of math courses (mathcrs) that each of the 75
participants took in high school.
e Select Transform => Count. You will see a window like Fig. 5.1 below.
e Now, type mathcrs in the Target Variable box. This is the SPSS name for your new
variable.
Next, type math courses taken in the Target Label box.
Then, highlight algebra 1, algebra 2, geometry, trigonometry, and calculus and click on the
arrow button to move them over to the Numeric Variables box. Your Count window should
look like Fig. 5.1.
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Click on Define Values.

e Type 1 in the Value box and click on Add. This sets up the computer to count how many 1°s
(or courses taken) each participant had. The window will now look like Fig. 5.2.
Now click on Continue to return to the dialog box in Fig. 5.1.
Click on OK. The first 10 numbers of your new variable, under mathcrs, should look like
Fig. 5.3. It is the last variable way over to the right side or your Data Editor.

mathcrs |

Count Values within Cases: Values lo Counl

F ‘....,_.-.._--.‘-_._&__. PRIV by i I I m__
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|t 1.00/
| O Reanoe _ o
} ) I § LLrgr Ay I - Dﬂ_h

" Range: 30@_
: l._i_uz"-‘.:u“'_-'-‘: 171 I . | Tm
. £ Range: ;. 1.00|

[0 oty | Contiwe | Concel | Hep | 00
Fig. 5.2. Count values within cases. Fig. 5.3. Data column.

Your output should look like the syntax in Output 5.1.

If you want to delete the decimal places for your new data:
e (o to the Variable View.

e Place the cursor on the last (new) variable, mathcrs.
e (Click on Type.

o Enter 0 in the Decimal Places box.

e Then click on OK.

Output 5.1: Counting Math Courses Taken

COUNT

mathcrs = algl alg2 calc geo trig (1)
VARIABLE LABELS mathcrs 'math courses taken'.
EXECUTE .
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Interpretation of Output 5.1

Check your syntax and counts. Is the syntax exactly like the syntax above? Another way to
check your count statement is by examining your data file. Look at the first participant (top now)
and notice that there are zeroes in the algl, alg2, geo, trig, and calc columns. The same is true for
participants 2 and 3. Thus, they have taken no (0) math courses. They should and do have zeros in
the new mathcrs column, which is now the last column on right. Also, it would be good to check
a few participants who took several math courses just to be sure the count worked correctly.

Notice that there are no tables or figures for this output, just syntax. Remember to set your
computer to obtain a listing of the syntax (see Appendix A, Print Syntax).

Problem 5.2: Recode and Relabel Mother’s and Father’s Education

Now, we will Recode mother’s education and father’s education so that those with no
postsecondary education (2s and 3s) have a value of 1, those with some postsecondary will have 2
and those with a bachelor’s degree or more will have a value of 3.

It is usually not desirable to dichotomize (divide into two categories) or trichotomize (divide into
three categories) a good, ordered variable. However, we need an independent variable with a few
levels or categories to demonstrate certain analyses later, and these variables seem to have a
logical problem with the ordering of the categories/values. The problem can be seen in the
codebook. A value of 5 is given for students who had a parent with 2 years of vocational college
(and presumably an A.S. or A.A. degree), but a 6 is given to a parent with less than 2 years of (a
4-year) college. Thus, we could have a case where a parent who went to a 4-year college for a
short time would be rated as having more education than a parent with an associate’s degree. This
would make the variable not fully ordered.

Recodes also are used to combine two or more small groups or categories of a variable so that
group size will be large enough to perform statistical analyses. For example, we have only a few
fathers or mothers who have a masters or doctorate so we will combined them with bachelor
degrees and call them “B.S. or more.”

5.2.  Recode mother’s and father’s education so that those with no postsecondary education
have a value of 1, those with some postsecondary have a value of 2, and those with a
bachelor’s degree or more have a value of 3. Label the new variables and values.

Follow these steps:

e Click on Transform => Recode => Into Different Variables and you should get Fig. 5.4.
e Now click on mother’s education and then the arrow button.

e Click on father’s education and the arrow to move them to the Numeric Variables =>
Output box.

Now highlight faed in the Numeric Variable box so that it turns blue.

Click on the QOutput Variable Name box and type faedRevis.

Click on the Label box and type father’s educ revised.

Click on Change. Did you get faed =>faedRevis in the Numeric Variable -> OQutput
Variable box as in Fig. 5.4?

Now repeat these procedures with maed in the Numeric Variable => Qutput box.
e Highlight maed.
e Click on Output Variable Name, type maedRevis.
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e Click Label, type mother’s educ revised.
Click Change.
Then click on Old and New Values to get Fig. 5.5.
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Click on Range and type 2 in the first box and 3 in the second box.
Click on Value (part of New Value on the right) and type 1.

Then click on Add.

Repeat these steps to change old values 4 through 7 to a new Value of 2.
Then Range: 8 through 10 to Value: 3. Does it look like Fig. 5.5?

If it does, click on Continue.

Finally, click on OK.

Check your Data View to see if faedRevis and maedRevis, with numbers ranging from 1 to 3,
have been added on the far right side. To be extra careful, check the data file for a few
participants to be sure the recodes were done correctly. For example, the first participant had 10
for faed which should be 3 for faedRevis. Is it? Check a few more to be sure; or compare your
syntax file with the one in Output 5.2 below.

Now, we will label the new (1, 2, 3) values.

Go to your hsbdata file and click on Variable View (it is in the bottom left corner).

In the faedRevis variable row, click on the Values cell and then the gray three-dot box.
Click on the Value box and type 1.

Type HS grad or less where it says Value Label.

Click on Add.

Then click on the Value box again and type 2.

Click on the Value Label box and type Some College.
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Click on Add.

Click once more on the Value box and type 3.

Click on the Value Label box and type BS or More.

Again, click on Add. Does your window look like Fig. 5.6? If so,
Click on OK.

Important: You have only labeled faedRevis (father’s educ revised). You need to repeat these
steps for maedRevis. Do Value Labels for maedRevis on your own.

2.00 = "Some College™
3.00 = "BS or more™

Value Labels 5 nm
~ Veduo Lablp ———————— e (e
i:::uw Il ‘ Cance Fig. 5.6. Value labels.
otk | [100="H5 grad of less” 1 --H—E—I
A |
|

Your output should be only the syntax in Output 5.2

Output 5.2: Recoding Mother's and Father's Education

RECODE

faed maed

(2 thru 3=1) (4 thru 7=2) (8 thru 10=3) INTO faedRevis maedRevis.
VARIABLE LABELS faedRevis "father's educ revised" /maedRevis "mother's educ revised".
EXECUTE

Interpretation of Output 5.2

This syntax shows that you have recoded father’s and mother’s education so that 2s and 3s
become 1, 4s through 7s become 2 and 8 through 10 become 3. The new variable names are
faedRevis and maedRevis, and the labels are father's educ revised and mother’s educ revised.
Again, there is no output other than syntax. Remember it is crucial to check some of your
recoded data to be sure that it worked the way you intended.

Problem 5.3: Recode and Compute Pleasure Scale Score

Now let’s Compute the average “pleasure from math” scale score (pleasure scale) from item02,
item06 , item10, and item 14 after reversing (Recoding) item06 and item!0 which are negatively
worded or low pleasure items (see the codebook in chapter 1). We will keep both the new item06r
and item 10r and old (item06 and item10) variables to check the recodes and to play it safe. Then,
we will Label the new computed variable as pleasure scale.

5.3. Compute the average pleasure scale from item(2, item06, item10 and item 14 after
reversing (use the Recode command) item06 and item0. Name the new computed variable
pleasure and label its highest and lowest values.

e Click on Transform => Recode => Into Different Variables.
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Click on Reset to clear the window of old information as a precaution.
Click on item06.

Click on the arrow button.

Click on Output Variable Name and type item06r.

Click on Label and type item06 reversed.

Finally click on Change.

Now repeat these steps for item10. Does it look like Fig. 5.7?
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C‘llck on Old and New Values to get Fxg 5.8.
e Now click on the Value box (under Old Value) and type 4.
e Click on the Value box for the New Value and type 1.

e Click on Add.

This is the first step in recoding. You have told the computer to change values of 4 to 1. Now do
these steps over to recode the values 3 to 2, 2 to 3, and 1 to 4. If you did it right, the screen will

look like Fig, 5.8 in the Old => New box. Check your box carefully to be sure the recodes are
exactly like Fig. 5.8.
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e Click on Continue and then OK.
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Now check your Data file to see if there is an item06r and an item!0r in the last two columns
with numbers ranging from 1 to 4. To double check the recodes, compare the item06 and item10
columns in your data file with the item06r and item!0r columns for a few subjects. Also, you
should check your syntax file with Output 5.3a.

Output 5.3a: Recoding Mother’s and Father’s Education

RECODE

item06 itemlO

(4=1) (3=2) (2=3) {(1=4) INTO itemO6r itemlOr .
VARIABLE LABELS item0O6ér 'item0O6é reversed' / itemlOr 'itemlO reversed'.
EXECUTE .

Now let’s compute the average pleasure scale.

e Click on Transform => Compute.
e In the Target Variable box of Fig. 5. 9, type pleasure.

e Vanable
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Click on Type & Label and give it the name pleasure scale (see Fig. 5.10).
Click on Continue to return to Fig. 5.9.
In the Numeric Expression box type (item02+item06r+itemOr+itemi4)/4. Be sure that
what you typed is exactly like this!
e Finally, click on OK.

| Compute Variable: Type and Label

i ~ Fig.5.10. Compute variable:
SaEEplesse oo | ' Type and label.

| Use expression a4 label | Cancel I
T
R Lt |

L aus o

e Now provide Value Labels for the pleasure scale using commands similar to those you did
for father’s educ revised.
e Type 1, then very low, and click Add.
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e Type 4, then very high, and click Add. See Fig. 5.6 if you need help.

In the Compute method we just used, the computer added items 02, 06r, 10r, and 14 and then
divided the sum by four, giving the result a new name, pleasure. Be sure your formula is exactly

like the one shown. For example, you must have the parentheses, and you must have zero (not the

letter O) in front of item02 and item06r.

Because you are less likely to make a mistake than if you type the formula in the Numeric
Expression box, in Fig. 5.9 it is safer (but slower) to use the key pad. To use the key pad, click
on item 02 and the arrow to move it to the right, then click on +, click item06r and move it, click
+, etc.

Check your data file to see if pleasure has been added. It is also prudent to calculate the pleasure
score by hand for a few participants to be sure it was done correctly. The computer will not make
calculation mistakes but sometimes you may not tell it exactly what you intended. Check your
syntax with the one in Output 5.3b.

Output 5.3b: Computation of Pleasure Scale

COMPUTE pleasure = (item02 + item06r + itemlOr + itemld )/ 4 .
EXECUTE .

Interpretation of Output 5.3

The method we used to compute summated or composite scales will not compute an average
score for a particular participant if he or she is missing data for any of the questions. The
computed score will be missing. This can result in a sizable decrease in subjects who have
composite scores if several participants did not answer even one or a few questions. In this
circumstance one might choose to use the MEAN function, shown Problem 4 and in the callout
box beside Fig. 5.11, because it utilizes all of the available data.

Problem 5.4: Compute Parents Revised Education with the Mean Command

We have decided to combine father’s and mother’s education scores because, as we will find out
later, they are highly correlated. Thus, for some purposes, it is better to treat them as one variable.
We also wanted to demonstrate the use of the Mean function, which is an alternative to the
Compute commands that we used to create the pleasure scale. Note that in this problem we will
use the original father’s and mother’s education variables (not the revised ones). This provides us
with a variable that has more range and will be used later on.

5.4. Compute parents education using the Mean function, an alternative method.

Click on Transform => Compute to get Fig 5.11.

In the Target Variable bex, type parEduc.

Click on Type & Label and give it the name parent’s education.

In the Function Box highlight MEAN click the up arrow to move it into the Numeric
Expression Box.

e Enter faed and maed in the brackets. Either type them or click them over. Note the comma
between the variables.
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e Also, you should label, at least, the highest and lowest Values by clicking on the None in the
Values column of the parent’s education row of the Variable View.
Type 2, and less than h.s. grad, click Add.
Type 10 and Ph.D./M.D., Add. (Note you can get values of 2.5 and 3.5 etc. so leave the
decimals at 2,)

e Click on OK.

Output 5.4: Computation of Parent’s Education

COMPUTE ParEduc = MEAN(faed,maed) .
VARIABLE LABELS parEduc "parent's education”
EXECUTE .

The Mean function
computes an average
score for each participant
who has a score for any

of the variables used.
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Fig. 5.11. Compute
Variable

Interpretation of Output 5.4
Note that you have created another new variable (parEduc), which is the seventh and last one you
will create for the hsbdata set. It can be found as the 45™ variable in the Variable View and in the

far right column of the Data View.

You will see when we print the Descriptives in Problem 5, that all 75 participants have a parent's
education value because none of them are missing both father’s and mother’s education. It seems
reasonable to use only mother’s education if father’s education is unknown. This would be even
more helpful if we were to compute parent’s education when there were a lot of cases in which
father’s education was unknown, as is sometimes the case. Because almost all students know
mother’s education, by using the Mean function, almost all would have a parent’s education
score.

On the other hand, the Mean function should be used cautiously. For example, using the MEAN
function if a student answered only one of the four pleasure scale items they would still get an
average pleasure score based on that one item. If the item was not representative (i.e., usually
rated higher or lower than the others), then the pleasure score would be misleading.

Problem 5.5: Check for Errors and Normality for the New Variables

5.5. Run Descriptives in order to understand the new variables, check for errors and see if
they are distributed normally.
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Using chapter 4 (Problem 4.1) as a guide, compute the descriptive statistics (Minimum,
Maximum, Mean, Standard Deviation, Variance, and Skewness) for the new variables: math
courses taken, father’s educ revised, mother’s educ revised, pleasure, and parent’s education..

Output 5.5: Descriptive Statistics

DESCRIPTIVES
VARIABLES=mathcrs faedRevis maedRevis pleasure parEduc
/STATISTICS=MEAN STDDEV VARIANCE MIN MAX SKEWNESS .

Descriptives
Descriptive Statistics
N Minimum | Maximum | Mean Std. Variance Skewness
Statistic Statistic Statistic Statistic Statistic Statistic Statistic | Std. Error
math courses taken 75 0 5 211 1673 2.799 .325 277
father's educ revised 73 1.00 3.00 1.7397 .85028 723 533 .281
mother's educ revised 75 1.00 3.00 1.4667 68445 .468 1.162 277
pleasure scale 75 1.50 4.00 3.1300 60454 365 -.682 277
parent's education 75 2.00 10.00 4.3933 | 2.31665 5.367 923 277
Valid N (listwise) 73
Interpretation of Output 5.5

The Descriptives table provides, as did Output 4.1, the requested statistics and the Vs for each
variable, as well as the listwise V.

Check for Errors. 1t is especially important to check new computed variables for errors. Note that
father’s education revised has an N of 73 (2 missing). That is what we would expect given that
the original father’s education variable had N=73. However, parent’s education has no missing
data because we used the Mean function. Check also the minimum and maximum scores for each
variable to see if they lie within the acceptable range of values. For example, because there are
five math courses, the number of math courses taken has to be between 0 and 5, and it is. Note
that although the codebook and Variable View say the pleasure score can vary between 1.00 and
4.00 actually the lowest score in this group was 1.50. That is okay, but it would be a problem if
the lowest score was 3.5 out of 4 or if the highest score was only 1.5. Some variability is
necessary for statistical analyses.

Check assumptions. Note that math courses taken and the pleasure scale have skewness scores
less than 1.0 so we can consider them to be approximately normally distributed. The skewness for
mother’s education revised is 1.16 so it is moderately skewed, as was mother’s education.
However, we will usually use it as an independent variable in an ANOVA so normality is not
required. Note that the skewness for parent’s education is within our acceptable limits at .92 so
that is another reason to use it rather than mother's or father's education.

Saving the Updated HSB Data file

You should always save your data file if you entered new data or made any changes. If you
forget to Save, you will have to do these Recodes etc. over again! To save, follow these steps:
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Click on the SPSS Data Editor button at the bottom of your screen.

Then click File => Save As.

Give your data file a new name; i.e., hsbdataB.sav.

Select Drive A: to save on your floppy disk (or use C: or a network drive if you have the
capability).

Interpretation Questions
Using your initial HSB data file (or the file in chapter 1), compare the original data to
your new variables: a) How many math courses did participant number 11 take? b) What
should faedr be for participants 2, 5, and 8? ¢) What should the pleasure scale score be
for participant 1?7 d) Why is comparing a few initial scores to transformed scores
important?
Why did you recode father’s and mother’s education?
Why did you reverse questions 6 and 10?7
Why did you compute parent’s education?

When would you use the Mean function to compute an average? And when would the
Mean function not be appropriate?

In Output 5.5, do the pleasure scale scores differ markedly from the normal distribution?
How do you know? Is math courses taken normally distributed?

Extra SPSS Problems

Using the college student data, solve the following problems:

5:1.

a2

53

54

Compute a new variable labeled average overall evaluation (aveEval) by computing the
average score (evalinst + evalprog + evalphys + evalsoci/4).

Compute a similar variable (meanEval), using the Mean command. Compare the two
(5.1 and 5.2) scores. Why do they differ?

Count the number of types of TV shows that each student watches.

Recode the student’s current gpa into three categories 1 =2.00-2.99; 2=2.00-2.99; 3 =
3.00 — 4.00. Produce a frequency table for the recorded values.
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CHAPTER 6
Selecting and Interpreting Inferential Statistics

To understand the information in this chapter, it is necessary to remember or to review the
sections in Chapter 1 about variables and levels of measurement (nominal, dichotomous,
ordinal, and normal/scale). It is also necessary to remember the distinction we made between
difference and associational research questions and between descriptive and inferential
statistic. This chapter focuses on inferential statistics, which as the name implies, refers to
statistics that make inferences about population values based on the sample data that you have
collected and analyzed. What we call difference inferential statistics lead to inferences about
the differences (usually mean differences) between groups in the populations from which the
samples were drawn. Associational inferential statistics lead to inferences about the association
or relationship between variables in the population. Thus, the purpose of inferential statistics is
to enable the researcher to make generalizations beyond the specific sample data. Before we
describe how to select statistics, we will introduce design classifications.

General Design Classifications for Difference Questions

Many research questions focus on whether there is a significant difference between two or more
groups or conditions. When a group comparison or difference question is asked, the independent
variable and design can be classified as between groups or within subjects. Understanding this
distinction is one essential aspect of determining the proper statistical analysis for this type of
question.

Labeling difference question designs. 1t is helpful to have a brief descriptive label that identifies
the design for other researchers and also guides us toward the proper statistics to use. We do not
have design classifications for the descriptive or associational research questions, so this section

only applies to difference questions. Designs are usually labeled in terms of (a) the overall type
of design (between groups or within subjects). (b) the number of independent variables, and (¢)

the number of levels within each independent variable.

Between-groups designs. These are designs where each participant in the research is in one and
only one condition or group. For example, in a study investigating the “effects” of fathers’
education on math achievement, there may be three groups (or levels or values) of the
independent variable, father’s education. These levels are: (a) high school or less, (b) some
college, and (c) BS or more. In a between groups design, each participant is in only one of the
three conditions or levels. If the investigator wished to have 20 participants in each group, then
60 participants would be needed to carry out the research.

Within subjects or repeated measures designs. These designs are conceptually the opposite of
between groups designs. In within subjects designs, each participant in the research receives or
experiences all of the conditions or levels of the independent variable. These designs also include
examples where the participants are matched by the experimenter or in some natural way (e.g.,
twins, husband and wife, or mother and child). When each participant is assessed more than
once, these designs are also referred to as repeated measures designs. Repeated measures
designs are common in longitudinal research and intervention research. Comparing performance
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on the same dependent variable assessed before and after intervention (pretest and posttest) is a
common example of a repeated measures design. We might call the independent variable in such
a study “time of measurement,” or “change over time.” The HSB study did not really have a
within-subjects aspect to the design. However, one of the variables is repeated (visualization
score with two levels: visualization and visualization retest) and one is within subjects
(education, each student has both a mother'’s education and father’s education). We will use a
paired or matched statistic to see if mother’s education is on the average higher or lower than
father’s education.

Single factor designs. If the design has only one independent variable (either a between groups
design or a within subjects design), then it should be described as a basic or single factor or one-
way design. Factor and way are other names for group difference independent variables. For
example, a between groups design with one independent variable that has four levels is a single
factor or “one-way” between groups design with four levels. If the design was a within subjects
design with four levels, then it would be described as a single factor repeated measures design
with four levels (e.g., the same test being given four times).

Between groups factorial designs. When there is more than one group difference independent
variable, and each level of each factor (independent variable) is possible in combination with
each level of the design is called factorial. For example, a factorial design could have two
independent variables (i.e., factors) gender and ethnicity, allowing for male and female members
of each ethnic group. In these cases, the number of levels of each factor (independent variable)
becomes important in the description of the design. For example, if gender had two levels (male
and female) and ethnicity had three levels (Euro-American, African-American, and Latino-
American), then this design is a 2 x 3 between groups factorial design. It could also be called a
two-way or two factor design because there are two independent variables..

Mixed factorial designs. If the design has a between groups variable and a within subjects
independent variable, it is called a mixed design. For example, let’s say that the two independent
variables are gender (a between-groups variable) and “time of measurement” (with pretest and
posttest as the two, within-subjects levels); this is a 2 x 2 mixed factorial design with repeated
measures on the second factor. The mixed design is common in experimental studies with a
pretest and posttest, but the analysis can be complex.

Remember, when describing a design, that each independent variable is described using one
number, which is the number of levels for that variable. Thus a design description with two
numbers (e.g., 3 x 4) has two independent variables or factors, which have 3 and 4 levels. The-

dependent variable is not part of the design description, so it was not considered in this section.

Selection of Inferential Statistics

How do you decide which of the many possible inferential statistics to use? Although this section
may seem overwhelming at first because many statistical tests are introduced, don’t be concerned
if you don’t now know much about the tests mentioned. You should come back to this chapter
later, from time to time, when you have to make a decision about which statistic to use, and by
then, the tests will be more familiar. We present eight steps shown in Fig 6.1 to help guide you in
the selection of an appropriate statistical test. The steps and tables are our recommendations, but
as you will see these are often other appropriate choices.
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Remember that difference questions compare groups and utilize the statistics, which we call
difference inferential statistics. These statistics (e.g., ¢ test and analysis of variance) are shown in

Tables 6.1 and 6.3,

Associational questions utilize what we call associational inferential statistics. The statistics in
this group examine the association or relationship between two or more variables and are shown

in Table 6.2 and 6.4.

1. How many variables are there in
your research question or

¥

Two. Use a basic statistic.

o

Y

h 4

a complex statistic.

\ Three or more. Use

2. Use Table 6.1 if the

IV is nominal or has 2 — 4

levels. Then determine:
a.) No. of levels of IV
b.) Design — between or
within ,

c.) Measurement of DV

3. Use Table
6.2 (or 6.1)

bottom rows if
both variables

are nominal.

\> 4. Use Table 6.2
(top rows) if both
variables have 5 or

more ordered levels.

Y

l

How many dependent
variables are there?

One DV considered at a time. Two or more moderately
related DVs considered
together.

Is the DV

normal/scale?

Yes No
[ \ 4

5. Use Table 6. Use Table 6.4 7. Use Table 6.4 8. Use the
6.3 top row if top row if IVs (or 6.3) bottom general linear
the {VS are (predictors) are row if DV is model to do
nominal or have normal/scale or nominal or MANOVA.
;‘ few ordered dichotomous. dichotomous.
evel.

Fig. 6.1. A decision tree to help you select the appropriate inferential statistic from Tables

6.1 to 6.4.

Using Tables 6.1 to 6.4 to Select Inferential Statistics
As with research questions and hypotheses discussed in Chapter 1, we divide inferential statistics

into basic and complex. For basic (or bivariate) statistics there is one independent and one
dependent variable and you will use Table 6.1 or 6.2. For complex statistics there are three or

82




Chapter 6 - Selecting and Interpreting Inferential Statistics

more variables. We decided to call them complex rather than multivariate, which is more
common in the literature, because there is not unanimity about the definition of multivariate, and
several such complex statistics (e.g., factorial ANOVA) are not usually classified as multivariate.
For complex statistics, you will use Tables 6.3 or 6.4. Most of the statistics shown in these four
tables are discussed in the remaining chapters in this book, and text is provided demonstrating
how to compute and interpret them using SPSS 12.

Two of the complex statistics in Tables 6.3 and 6.4 (Factorial ANOVA and multiple
regression) are introduced in this book, but they and other such statistics are discussed in more
detail in our SPSS for Intermediate Statistics book Leech, Barrett, and Morgan (2004). The
statistics are identified with L.B. (intermediate book) in the tables. These four tables include most
of the inferential statistics that you will encounter in reading research articles. Note that the
boxes in the decision tree are numbered to correspond to the numbers in the text below, which
expands somewhat on the decision tree.

1. Decide how many variables there are in your research question or hypothesis. If there are only
two variables, use Tables 6.1 or 6.2. If there is more than one independent and/or one dependent
variable (i.c., three or more variables) to be used in this analysis, use Tables 6.3, 6.4, or 6.5.

Basic (2 Variable) Statistics

2. If the independent variable is nominal (i.e., has unordered levels) or has a few (2-4) ordered
levels, use Table 6.1. Then, your question is a basic two variable difference question to
compare groups. You must then determine: (a) whether there are two or more than two levels
(also called categories or groups or samples) of your independent variable, (b) whether the
design is between groups or within subjects, and (c) whether the measurement level of the
dependent variable is (i) normal/scale and parametric assumptions are not markedly violated or
(ii) ordinal or (iii) nominal or dichotomous (see Chapter 3 if you need help). The answers to
these questions lead to a specific box and statistic in Table 6.1.

3. If both variables are nominal or dichotomous, you could ask either a difference question (use
the bottom row of Table 6.1; e.g., chi-square) or an associational question and use the bottom
row of Table 6.2 to select phi or Cramer’s V. Note, in the second to bottom row of Table 6.2,
we have included eta, an associational statistic used with one nominal and one normal or scale
variable. We will later see it used as an effect size measure with ANOV As. There are many other
nonparametric associational measures, some of which we will see in the next chapter.

4. If both variables have many (we suggest 5 or more) ordered levels, use Table 6.2 (top two

rows). Your research question would be a basic two variable (bivariate) associational question.
Which row you use depends on both variables. If both are normal/scale then you would probably
select the Pearson product moment correlation or bivariate regression (top row). Regression
should be used if one has a clearly directional hypothesis, with an independent and dependent
variable. Correlation is chosen if one is simply interested in how the two variables are related. If
one or both variables are ordinal (ranks or grossly skewed) or other assumptions are markedly
violated, the second row (Kendalls’ tau or Spearman rho) is a better choice.
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Table 6.1. Selection of an Appropriate Inferential Statistic for Basic, Two Variable, Difference

Questions or Hypotheses®
One Factor or Independent One Independent Variable
Variable 3 or more Levels
with 2 Levels or or Groups
Categories/Groups/Samples
Scale
of Measurement Independent Repeated Independent Repeated
of Dependent COMPARE Samples or Measures Samples or Measures
Variable v Groups or Related Groups or Related
b (Between) Samples (Between) Samples
(Within) (Within)
Dependent INDEPENDENT PAIRED ONE-WAY GLM
Variable SAMPLES SAMPLES ANOVA REPEATED
Approximates MEANS t TEST t TEST MEASURES
Normal /Scale Data ch. 10 or ANOVA
and ONE-WAY
Assumptions Not ANOVA
Markedly Violated Ch.9 Ch.9 Ch. 10 IB.°
Dependent
Variables MEAN MANN- WILCOXON | KRUSKAL- | FRIEDMAN
Clearly Ordinal RANKS WHITNEY WALLIS
or Parametric
Assumptions Ch.9 Ch.9 Ch. 10 B®
Markedly Violated
Dependent CHI-SQUARE MCNEMAR CHI- COCHRAN
Variable COUNTS SQUARE Q TEST
Nominal or Ch.7
Dichotomous Ch. 7

* It is acceptable to use statistics that are in the box(es) below the appropriate statistic, but there is usually some loss of power. It is
not acceptable to use statistics in boxes above the appropriate statistic or ones in another column.

® IB=Our intermediate book. Leech et al. (2004) SPSS for Intermediate Statistics: Use and Interpretation.

Complex (3 or more variable) Questions and Statistics
It is possible to break down a complex research problem or question into a series of basic

(bivariate) questions and analyses. However, there are advantages to combining them into one
complex analysis: additional information is provided and a more accurate overall picture of the

relationships is obtained.

5. If you have one normally distributed (scale) dependent variable and two (or perhaps three or
four) independent variables, each of which is nominal or has a few (2-4) ordered levels, you will
use the top row of Table 6.3 and one of three types of factorial ANOVA. These analysis of

variance (ANOVA) statistics answer complex difference questions.
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Table 6.2. Selection of an Appropriate Inferential Statistic for Basic, Two Variable,
Associational Questions or Hypotheses

Level (scale) of Measurement Two Variables or Scores
of Both Variables RELATE for the Same or Related
v Subjects
Variables are Both Normal /Scale and PEARSON (r) or BIVARIATE
Assumptions not Markedly Violated SCORES REGRESSION Ch. 8
Both Variables at Least Ordinal Data or KENDALL TAU or
Assumptions Markedly Violated RANKS SPEARMAN (Rho) Ch. 8
One Variable is Normal /Scale ETA
and One is Nominal Ch.7
Both Variables COUNTS PHI or CRAMER’S V
are Nominal or Dichotomous Ch. 7

Note, in Table 6.3, that there are no complex difference statistics available in SPSS if the
dependent variable is ordinal. Loglinear analysis is a nonparametric statistic somewhat similar to
the between group factorial ANOVA for the case where all the variables are nominal or
dichotomous (see Table 6.3).

Table 6.3. Selection of the Appropriate Complex (Two or More Independent Variables)
Statistic to Answer Difference Questions or Hypotheses

Two or More Independent Variables
Dependent All Between Mixed
Variable(s) Groups All Within Subjects (Between & Within)
One Normal/ Scale | GLM, Factorial GLM GLM with Repeated
Dependent Variable ANOVA or with Repeated Measures on some
ANCOVA Measures on Factors
all Factors
ch. 10 and I.B.* LB. LB.
Ordinal None None None
Dependent Variable Common Common Common
Dichotomous LOG-LINEAR None None
Dependent Variable Common Common

*LB. = Leech et al. (2004) SPSS for Intermediate Statistics: Use and Interpretation.
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6. The statistics in Table 6.4 are used to answer complex associational questions. If you have

two or more independent or predictor variables and one normal (scale) dependent variable, the

top row of Table 6.4 and multiple regression are appropriate.

7. If the dependent variable is dichotomous or nominal, consult the bottom row of Table 6.4, and
use Discriminant Analysis or Logistic Regression, both discussed in Leech et al. (2003).

8. Use a MANOVA if you have two or more normal (scale) dependent variables treated
simultaneously.

Occasionally you will see a research article in which a dichotomous dependent variable was used
with a ¢ test, or ANOVA, or as either variable in a Pearson correlation. Because of the special
nature of dichotomous variables, this is not necessarily wrong, as would be the use of a nominal
(three or more unordered levels) dependent variable with these parametric statistics. However,
we think that it is usually a better practice to use the same statistics with dichotomous variables
that you would use with nominal variables. The exception is that it is appropriate to use
dichotomous (dummy) independent variables in multiple and logistic regression (see Table 6.4

again).

Table 6.4. Selection of the Appropriate Complex Associational Statistic for Predicting a Single
Dependent/Outcome Variable from Several Independent Variables

Several Independent or Predictor Variables
One Dependent or Some Normal All
Outcome Normal or Scale Some Dichotomous Dichotomous
Variable (2 category)
¥
MULTIPLE MULTIPLE MULTIPLE
Normal/Scale REGRESSION REGRESSION REGRESSION
(Continuous) ch.8and 1LB.* ch. 8 and LB. ch. 8 and LB.
DISCRIMINANT LOGISTIC LOGISTIC
Dichotomous ANALYSIS REGRESSION REGRESSION
LB. LB. LB.

? LB. = Our intermediate book. Leech et al. (2004) SPSS for Intermediate Statistics: Use and Interpretation

The General Linear Model

Whether or not there is a relationship between variables can be answered in two ways. For

example, if each of two variables provide approximately normally distributed data with five or
more levels, based on Fig. 6.1 and Table 6.2, the statistic to use is either the Pearson correlation
or bivariate (simple) regression, and that would be our recommendation. Instead, some
researchers choose to divide the independent variable into two or several categories or groups
such as low, medium, and high and then do a one-way ANOVA.

Conversely, in a second example, others who start with an independent variable that has only a
few (say two through four ordered categories) may choose to do a correlation instead of a one-
way ANOVA. Although these choices are not necessarily wrong, we do not think they are
usually the best practice. In the first example, information is lost by dividing a continuous
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independent variable into a few categories. In the second example, there would be a restricted
range, which tends to decrease the size of the correlation coefficient.

In the above examples we recommended one of the choices, but the fact that there are two
choices raises a bigger and more complex issue. Statisticians point out, and can prove
mathematically, that the distinction between difference and associational statistics is an artificial
one and that one-way ANOV A and Pearson correlation are mathematically the same, as are

factorial ANOVA and multiple regression. Figure 6.2 shows the equivalencies and that although
we have made a distinction between difference and associational inferential statistics, they both

serve the se xplori d describi top box) relationships and both ubsumed b
the eral linear model (middle box).

Statisticians state that all common parametric statistics are relational. Thus, the full range of
methods used to analyze one continuous dependent variable and one or more independent
variables, either continuous or categorical, are mathematically similar. The model on which this
is based is called the general linear model. The idea is that the relationship between the
independent and dependent variables can be expressed by an equation with weights for each of
the independent/predictor variables plus an error term.

The bottom part of Fig. 6.2 indicates that a ¢ test or one-way ANOV A with a nominal or
dichotomous independent variable is analogous to eta, a correlation coefficient for a nominal
independent variable and a continuous dependent variable. Likewise, a one-way ANOVA with an
ordered independent variable is analogous to bivariate regression. Finally, as shown in the lowest
boxes in Fig. 6.2, factorial ANOVA (with dichotomous or ordered factors) and multiple
regression are analogous mathematically. Note in Fig. 6.1 and Table 6.3 that SPSS uses the GLM
program to perform a variety of statistics including factorial ANOVA and MANOVA.

Explore Relationships
&~ AL
Compare Groups Find Strength of Associations

:

Difference Questions

.

Associational Questions

Difference Inferential Statistics Associational Inferential Statistics
(t and ANOVA) (correlation and regression)
General Linear Model (GLM)
r v
t or one-way ANOVA with ~ | eta
5 % o 4

dichotomous or nominal IV

One-way ANOVA with ~ | Bivariate regression

ordered IV

Factorial ANOVA N | Multiple regression

Fig. 6.2 A general linear model diagram of the selection of inferential statistics.
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Although we recognize that our distinction between difference and associational parametric
statistics is a simplification, we still think it is useful. We hope that this glimpse of an advanced
topic is clear and helpful.

Interpreting the Results of a Statistical Test

In the following chapters, we present information about how to check assumptions, do the SPSS
commands, interpret the above statistics, and write about them. For each statistic (F, etc.) the
SPSS computations produce a number or calculated value based on the specific data in your
study. SPSS labels them ¢, F, etc. or sometimes just value.

Statistical Significance

The calculated value is compared to a critical value (found in a statistics table or stored in the
computer’s memory) that takes into account the degrees of freedom, which are usually based on
the number of participants. Figure 6.3 shows how to interpret any inferential test once you know
the probability level (p or sig.) from the computer or statistics table. In general, if the calculated
value of the statistic (¢, F, etc.) is relatively large, the probability or p is small, (e.g., .05, .01,
.001). If the probability is less than the preset alpha level (usually .05), we can say that the
results are statistically significant or that they are significant at the .05 level or that p <.05. We
can also reject the null hypothesis of no difference or no relationship. Note that, using SPSS
computer printouts, it is quite easy to determine statistical significance because the actual
significance or probability level (p) is printed so you do not have to look up a critical value in a
table. SPSS labels this p value Sig. so all of the common inferential statistics have a common
metric, the significance level or Sig. This level is also the probability of a Type I error or the
probability of rejecting the null hypothesis when it is actually true. Thus, regardless of what
specific statistic you use, if the sig. or p is small (usually less than .05) the finding is statistically
significant, and you can reject the null hypothesis of no difference or no relationship.

Sig.’ Meaning Null Hypothesis Interpretation
1.00 p=1.00 Don’t Reject Not Statistically Significant
(could be due to chance)
S50 p=.50 l
.06 p=.06
05 p<.05 Reject * Statistically Significant®

(not likely due to chance)

.01 p=.01 l l

.000 p<.001

1. SPSS uses Sig. to indicate the significance or probability level (p) of all inferential statistics. These are just a sample of Sig. values,

which would be any value from 0 to 1.

2. p < .05 is the typical alpha level that researchers use to assess whether the null hypothesis should be rejected or not. However,
sometimes researchers use more liberal levels. (e.g., .10 in exploratory studies) or more conservative levels (e.g., .01).

3. Statistically significant does not mean that the results have practical significance or importance.

Fig. 6.3 Interpreting Inferential Statistics using the SPSS Sig.
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Practical Significance versus Statistical Significance

Students, and sometimes researchers, misinterpret statistically significant results as being
practically or clinically important. But statistical significance is not the same as practical
significance or importance. With large samples you can find statistical significance even when
the differences or associations are very small/weak. Thus, in addition to statistical significance,
we will examine effect size. We will see that it is guite possible, with a large sample, to have a
statistically significant result that is weak (i.e., has a small effect size.) Remember that the null
hypothesis states that there is no difference or no association. A statistically significant result
with a small effect size means that we can be very confident that there is at least a little
difference or association, but it may not be of any practical importance.

Confidence Intervals

One alternative to null hypothesis significance testing (NHST) is to create confidence intervals.
These intervals provide more information than NHST and may provide more practical
information. For example, suppose one knew that an increase in reading scores of 5 points,
obtained on a particular instrument, would lead to a functional increase in reading performance.
Two different methods of instruction were compared. The result showed that students who used
the new method scored statistically significantly higher than those who used the other method.
According to NHST, we would reject the null hypothesis of no difference between methods and
conclude that our new method is better. If we apply confidence intervals to this same study, we
can determine an interval that contains the population mean difference 95% of the time. If the
lower bound of that interval is greater than 5 points, we can conclude that using this method of
instruction would lead to a practical or functional increase in reading levels. If however, the
confidence interval ranged from say 1 to 11, the result would be statistically significant, but the
mean difference in the population could be as little as 1 point, or as big as 11 points. Given these
results we could not be confident that there would be a practical increase in reading using the
new method.

Effect Size
A statistically significant outcome does not give information about the strength or size of the
outcome. Therefore, it is important to know, in addition to information on statistical significance,

the size of the effect. Effect size is defined as the strength of the relationship between the
independent variable and the dependent variable, and/or the magnitude of the difference between

levels of the independent variable with respect to the dependent variable. Statisticians have
proposed many effect size measures that fall mainly into two types or families, the » family and
the d family.

The r family of effect size measures. One method of expressing effect sizes is in terms of
strength of association. The most well-known variant of this approach is the Pearson correlation
coefficient, r. Using Pearson r, effect sizes always have an absolute value less than 1.0, varying
between —1.0 and +1.0 with 0 representing no effect and +1 or -1 the maximum effect. This
Jfamily of effect sizes includes many other associational statistics such as rho (r;), phi (¢), eta (1),
and the multiple correlation (R).

The d family of effect size measures. The d family focuses on magnitude of difference rather
than strength of association. If one compares two groups, the effect size (d) can be computed by
subtracting the mean of the second group (B) from the mean of the first group (A) and dividing
by the pooled standard deviation of both groups. The general formula is on the left. If the two
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groups have equal ns, the pooled SD is the average of the SDs for the two groups. When »s are
unequal, the formula on the right is the appropriate one.

Ms-Ms Ma-Ms
di=r—" d= 2 2
SD posied J(m-l)suﬁ(na-f)sm
n,r"n_g-z

Issues about effect size measures. Unfortunately, as just indicated, there are many different
effect size measures and little agreement about which to use. Although d is the most commonly
discussed effect size measure, it is not available on SPSS outputs. However, d can be calculated
by hand from information in the SPSS printout, using the appropriate formula from above. The
correlation coefficient, », and other measures of the strength of association such as phi (), eta’

('qz), and R’ are available in SPSS.

There are many other formulas for 4 family effect sizes, but they all express effect size in
standard deviation units. Thus, a d of .5 means that the groups differ by one half of a pooled
standard deviation. Using d, effect sizes usually vary from 0 to + or - 1 but d can be more than 1.

There is disagreement among researchers about whether it is best to express effect size as the
unsquared or squared » family statistic (e.g.,  or #*). The squared versions have been used
because they indicate the percentage of variance in the dependent variable that can be predicted
from the independent variable(s). However, some statisticians argue that these usually small
percentages give you an underestimated impression of the strength or importance of the effect.
Thus, we (like Cohen, 1988) decided to use the unsquared statistics (7, ¢, 1, and R) as our r
family indexes.

Although the 4™ edition of the Publication Manual of the American Psychological Association
(APA, 1994) recommended that researchers report effect sizes, relatively few researchers did so
before 1999 when the APA Task Force on Statistical Inference stated that effect sizes should
always be reported for your primary results (Wilkinson & The Task Force, 1999). The 5™ edition
(APA, 2001) adopted this recommendation of the Task Force so in the future, most journal
articles will discuss the size of the effect as well as whether or not the result was statistically

significant.

Interpreting Effect Sizes
Assuming that you have computed an effect size measure, how should it be interpreted? Based
on Cohen (1988), Table 6.5 provides guidelines for interpreting the size of the “effect” for five

common effect size measures: d, 7, ¢, R and 11;

Note that these guidelines are based on the effect sizes usually found in studies in the behavioral
sciences and education. Thus, they do not have absolute meaning; large, medium, and small are
only relative to typical findings in these areas. For that reason, we suggest using “larger than
typical” instead of large, “typical” instead of medium, and “smaller than typical” instead of
small. The guidelines will not apply to all subfields in the behavioral sciences, and they
definitely will not apply to fields, designs, or contexts where the usually expected effects are
either larger or smaller. It is advisable to examine the research literature to see if there is
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information about typical effect sizes on the topic and adjust the values that are considered
typical accordingly.

Table 6.5 Interpretation of the Strength of a Relationship (Effect Sizes)

The d Family* The r Family®
General Interpretation of the d rand ¢ R n (eta)’
Strength
of a Relationship

Much larger than typical > 1.00° >.70 J0+ A5+
Large or larger than typical .80 .50 Sl 37
Medium or typical 50 30 36 24
Small or smaller than typical .20 10 14 .10

* d values can vary from 0.0 to + or -1.0 infinity, but ds greater than one is uncommon.

® » family values can vary from 0.0 to + or— 1.0, but except for reliability (i.¢., same concept measured twice), 7 is rarely above .70. In
fact, some of these statistics (e.g., phi) have a restricted range in certain cases; that is, the maximum phi is less then 1.0.

© We interpret the numbers in this table as a range of values. For example a 4 greater than .90 (or less than -.90) would be described as
“much larger than typical” a d between say .70 and .90 would be called “larger than typical,” and d between say .60 and .70 would
be “typical to larger than typical.” We interpret the other three columns similarly.

9 Partial etas from SPSS multivariate tests are equivalent to R, Use R column.

Cohen (1988) provided research examples of what he labeled small, medium, and large effects to
support the suggested d and r family values. Most researchers would not consider a correlation
(r) of .5 to be very strong because only 25% of the variance in the dependent variable is
predicted. However, Cohen argued that a d of .8 (and an r of .5, which he shows are
mathematically similar) are “grossly perceptible and therefore large differences, as (for example
is) the mean difference in height between 13- and 18-year-old girls” (p. 27). Cohen stated that a
small effect may be difficult to detect, perhaps because it is in a less well controlled area of
research. Cohen's medium size effect is "...visible to the naked eye. That is, in the course of
normal experiences, one would become aware of an average difference in IQ between clerical
and semi-skilled workers..." (p. 26).

Effect size and practical significance. The effect size indicates the strength of the relationship
and, thus, are relevant for practical significance. Although some researchers consider effect size
measures to be an index of practical significance, we think that effect size measures are not direct
indexes of the importance of a finding. As implied above, what constitutes a large or important
effect depends on the specific area studied, the context, and the methods used. Furthermore,
practical significance always involves a judgment by the researcher and/or the consumers (e.g.,
clinicians, clients, teachers, school boards) of research that takes into account such factors as cost
and political considerations. A common example is that the effect size of taking daily aspirin its
effect on heart attacks is quite small but the practical importance is high because preventing heart
attacks is a life or death matter, the cost of aspirin is low, and side effects are uncommon. On the
other hand, a curriculum change could have a large effect size but be judged to not be practical
because of high costs and/or extensive opposition to its implementation.
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Steps in Interpreting Inferential Statistics
When you interpret inferential statistics, we recommend:

First decide whether to reject the null h esis. However, that is not enough for a full
interpretation. If you find that the outcome is statistically significant, you need to answer at least
two more questions. Figure 6.4 summarizes the steps described below about how to more fully
interpret the results of an inferential statistic.

Second, what is the direction of the effect? Difference inferential statistics compare groups so it
is necessary to state which group performed better. We discuss how to do this in Chapters 9 and
10. For associational inferential statistics (e.g., correlation), the sign is very important, so you
must indicate whether the association or relationship is positive or negative. We discuss how to
interpret correlations in Chapters 7 and 8.

Third, what is the size of the effect? You should include the effect size, confidence intervals, or
both in the description of your results. Unfortunately, SPSS does not always provide effect sizes
and confidence intervals, so for some statistics we will have to compute or estimate the effect
size by hand.

Non Technical Question Statistical Answer
1. Can we be confident that the result is not i If p is <05, then reject the null
due to chance? hypothesis.

‘ Yes i No —-l-l Stop, buf’

2. What is the direction of the “effect””?

Difference Question”
|——» | Note which group has the higher mean

Associational Question

Note whether r is + or -

Differen estion®
, | Use d family
3. How large is the effect? ] (see Table 6.5)
Associational Question®
*If you have a small sample (N), it is possible to have a non User fam‘lly
significant result (it may be due to chance) and yet a large effect (see Table 6.5)
size. If so, an attempt to replicate the study with a larger sample
may be justified.

B If there are three or more means or a significant interaction a post hoc test (e.g., Tukey) will be necessary for complete interpretation.

¢ Interpretation of effect size is based on Cohen (1988) and Table 6.6. A “large” effect is one that Cohen states is “grossly perceptible.” It is
larger than typically found but does not necessarily explain a large amount of variance. You might use confidence intervals in addition or
instead of effect sizes.

Fig. 6.4. Steps in the interpretation of an inferential statistic.

Fourth, but not shown in the Fig. 6.3, the researcher or the consumer of the research should make

a judgment about whether the result has practical or clinical significance or importance. To do so
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they need to take into account the effect size, the costs of implementing change, and the
probability and severity of any side effects or unintended consequences.

An Example of How to Select and Interpret Inferential Statistics

As a review of what you have read in Chapter 1 and this chapter, we now provide an extended
example based on the HSB data. We will walk you through the process of identifying the
variables, research questions, and approach, and then show how we selected appropriate statistics
and interpreted the results.

Research problem. Suppose your research problem was to investigate gender and math courses
taken and their relationship to math achievement.

Identification of the variables and their measurement. The research problem specifies three
variables: gender, math courses taken, and math achievement. The latter appears to be the
outcome or dependent variable, and gender and math courses taken are the independent or
predictor variables because they occurred before the math exam. As such, they are presumed to
have an effect on math achievement scores.

What is the level of measurement for these three variables? Gender is clearly dichotomous (male
or female). Math courses taken has six ordered values, from 0 to 5 courses. These are scale data
because there should be an approximately normal distribution of scores: most students took some
but not all of the math courses. Likewise, the math achievement test has many levels, with more
scores somewhere in the middle than at the high and low ends. It is necessary to confirm that
math courses taken and math achievement are at least approximately normally distributed by
requesting that SPSS compute the skewness of each.

Research questions. There are a number of possible research questions that could be asked and
statistics that could be used with these three variables, including all of the types of questions in
Appendix B, the descriptive statistics discussed in Chapter 6, and several of the inferential
statistics presented in this chapter. However, we will focus on three research questions and three
inferential statistics because they answer this research problem and fit our earlier
recommendations for good choices. First, we will discuss two basic research questions, given the
above specification of the variables and their measurement. Then, we will discuss a complex
research question that could be asked instead of research questions 1 and 2.

1. Is there a difference between male and female genders on their average math achievement

scores?

Type of research question. Using the text, Fig. 6.1 and Table 6.2, you should see that the first
question is phrased as a basic difference question because there are only two variables and the
focus is a group difference (the difference between the male group and the female group).

Selection of an appropriate statistic. If you examine Table 6.1, you will see that the first
question should be answered with an independent samples t test because (a) the independent
variable has only two values (male and female), (b) the design is between groups (males and
females form two independent groups), and (c) the dependent variable (math achievement) is
normal or scale data. We also would check other assumptions of the ¢ test to be sure that they are
not markedly violated.
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Interpretation of the results for question 1. Let’s assume that about 50 students participated in
the study and that ¢ = 2.05. SPSS will give you the exact Sig. In this case, p< .05 and, thus. ¢ is
statistically significant. However. if you had 25 participants this # would not have been
significant (because the ¢ value necessary for statistical significance is influenced strongly by
sample size. Small samples require a larger ¢ to be significant),

Deciding whether the statistic is significant only means the result is unlikely to be due to chance.
You still have to state the direction of the result and the effect size and/or the confidence interval
(see Fig. 6.3). To determine the direction, we need to know the mean (average) math
achievement scores for males and females. Let’s assume, as is true for the HSB data, that males
have the higher mean. If so, you can be quite confident that males in the population are at least a
little better at math achievement, on average, than females. So, you should state that males scored
higher than females. If the difference was not statistically significant, it is best not to make any
comment about which mean was higher because the difference could be due to chance. Likewise,
if the difference was not significant, we recommend that you do not discuss or interpret the effect
size. But you should provide the means and standard deviations so that effect sizes could be
computed if a researcher wanted to use this study in a meta analysis

Because the ¢ was statistically significant, we would calculate 4 and discuss the effect size as
shown earlier. First, compute the pooled (weighted average) standard deviation for male and
female math achievement scores. Let’s say that the difference between the means was 2.0 and the
pooled standard deviation was 6.0, then d would be .33, a small to medium size effect. This
means that the difference is less than typical of the statistically significant findings in the
behavioral sciences. A 4 of .33 may or may not be a large enough difference to use for
recommending programmatic changes (i.e., be practically significant).

Confidence intervals might help you decide if the difference in math achievement scores was
large enough to have practical significance. For example, say you found (from the lower bound
of the confidence interval) that you could only be confident that there was a 1/2 point difference
between males and females. Then you could decide whether that was a big enough difference to
justify, for example, a programmatic change.

2. Is there an association between math courses taken and math achievement?

Type of research question. This second question is phrased as a basic associational question
because there are only two variables and both have many ordered levels. Thus, use Table 6.2 for
the second question.

Selection of an appropriate statistic. As you can see from Table 6.2, the second research
question should be answered with a Pearson correlation because both math courses taken and
math achievement are normally distributed data.

Interpretation of the results for research question 2. The interpretation of r is based on
decisions similar to those made above for ¢. If » = .30 (with 50 subjects), it would be statistically
significant at the p< .05 level. If the r is statistically significant, you still need to discuss the
direction of the correlation and effect size. Because the correlation is positive, we would say that
students with a relative high number of math courses taken tend to perform at the high end on
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math achievement and those with few math courses taken tend to perform poorly on math
achievement. The effect size of » = .30, is medium or typical.

Note that if N were 25, the r of .30 would not be significant. On the other hand, if N were 500
and r = .30, p would be < .0001. With N = 500, even r = .10 would be statistically significant,
indicating that you could be quite sure the association was not zero, but the effect size would be
small, or less than typical.

Complex research question and statistics. As you will see in later chapters, there are advantages
of considering the two independent variables (gender and math courses taken) together rather
than separately as in questions 1 and 2. There are at least two statistics, that you will compute,
that could be used to consider gender and math courses taken together. A research question,
which subsumes both questions 1 and 2 above could be:

3. Is there a combination of gender and math courses that predicts math achievement?

Selection of an appropriate statistic. As just indicated, multiple regression could be used to
answer this question. As you can see in Table 6.4, multiple regression is appropriate because we
are trying to predict a normally distributed/scale variable (math achievement) from two
independent variables. The independent or predictor variables are math courses taken (normal or
scale) and gender (a dichotomous or dummy variable).

Based on our discussion of the general linear model (GLM), a two-way factorial ANOVA
would be another statistic that could be used to consider both gender and test anxiety
simultaneously. However, to use ANOV A, the many levels of math courses taken would have to
be recoded into two or three (perhaps high, medium, and low). Because information is lost when
you do such a recode, we would not recommend factorial ANOVA for this example. Another
possible statistic to use for this example is analysis of covariance (ANCOV A) using gender as
the independent variable and math courses taken as the covariate; ANOVA is discussed in Leech
et al. (2003).

Interpretation of the results for research question 3. We will provide an introduction to
multiple regression in Chapter 8 and to factorial ANOVA in Chapter 10, but extended treatment
is beyond the scope of this book (see Leech et al., 2003). For now, let’s just say that we would
obtain more information about the relationships among these three variables by doing these
complex statistics than by doing only the # test and correlation described above and in the next
section.

Writing About Your Qutputs

One of the goals of this book is to help you write a research report or thesis using the SPSS
outputs. To help you, we have provided this section, which could be paragraphs from a research
paper based on the expanded HSB data used in the assignments in this book.

Before demonstrating how you might write about the results of research questions 1 and 2 above,
we would like to make several important points. There are several books listed in the
bibliography that will help you write a research paper and make appropriate tables. Note
especially the APA manual (2001), Nicol and Pexman (1999), and Morgan, Reichart, and
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Harrison (2002). The example below and the samples provided in each output interpretation
section give only one way to write about SPSS outputs. There are other good ways.

Based on your SPSS outputs, you should update the Methods chapter that you wrote as a
proposal to include descriptive statistics about the demographics (e.g., gender, age, ethnicity) of
the participants. You should add to any literature-based evidence about the reliability and
validity of your measures/instruments your sample. You also should include in your report
whether statistical assumptions of the inferential statistics were met or how adjustments were

made.

The Results chapter includes a description (but not a discussion) of the findings in words and
tables. Your Results section should include the following numbers about each statistically
significant finding (in a table or the text):
1. The value of the statistic (e.g., &= 2.05 or = .30)
2. The degrees of freedom (often in parenthesis) and for chi-square the N (e.g., df=2, N
=49).
3. The p or Sig. Value (e.g., p = .048).
4. The direction of the finding (e.g., by showing which mean is larger or the sign of the
correlation, if the statistic is significant).
5. An index of effect size from either the d family or the r family.

When not shown in a table, the above information should be provided in the text as shown
below. In addition to the above numerical information, describe your significant results in words,

including the variables related, the direction of the finding, and an interpretive statement about
the size/strength of the effect based on Table 6.5 or, better still based on the effect sizes found in

the literature on your topic. Realize that these effect size terms are only rough estimates of the
magnitude of the “effect” based on what is typical in the behavioral sciences, but not necessarily
applicable to your topic.

If your paper includes a table, it is usually not necessary or advisable to include all the details
about the value of the statistic, degrees of freedom, and p in the text because they are in the table.
If you have a table, you must refer to it by number (e.g., Table 1) in the text and describe the
main points, but don’t repeat all of it or the table is not necessary. You can mention relationships
that are not significant, but do not discuss, in the text, the direction of the finding or interpret the
effect size of nonsignificant findings because the results could well be due to chance. Do provide
the information (e.g., #s, means, and standard deviation) necessary for other researchers to
compute the effect size if your study is included in a meta-analysis.

The Discussion chapter puts the findings in context in regard to the research literature, theory,
and the purposes of the study. You may also attempt to explain why the results turned out the
way they did.

An Example of How to Write Results

Based on what we reported above about the results of research questions 1 and 2 we might make
the following statements in our Results section:
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Results
For research question 1, there was a statistically significant difference between male and female
students on math achievement, #(48)=2.05. p=.04, d=.33. Males (M=14.70) scored higher than
females (M=12.70), and the effect size was small to medium according to Cohen’s (1988)
guidelines. The confidence interval for the difference between the means was .50 to 6.50
indicating that the difference could be as little as half a point, which is probably not a practically
important difference, but could be as large as six and half points.

For research question 2, there was a statistically significant positive correlation between math
courses taken and math achievement r (48) =.30, p=.03. The positive correlation means that in
general students who took more math courses tended to score high on the math achievement test
and students who did not take many math courses scored low on math achievement. The effect
size of r=.30 is considered medium or typical.

We will present examples of how to write about the results of each statistic that you compute in
the appropriate chapter.

Conclusion

Now you should be ready to study each of the statistics in Tables 6.1 to 6.4 and learn more about
their computation and interpretation. It may be tough going at times, but hopefully this overview
has given you a good foundation. It would be wise for you to review this chapter, especially the
tables and figures from time to time. If you do, you will have a good grasp of how the various
statistics fit together, when to use them, and how to interpret the results. You will need this
information to understand the chapters that follow.

Interpretation Questions

6.1. Compare and contrast a between groups design and a within groups design.

6.2. What information about variables, levels, and design should you keep in mind in order to
choose an appropriate statistic?

6.3. Provide an example of a design which a researcher could appropriately choose two
different statistics. Explain your answer.

6.4. When p < .05, what does this signify?
6.5. Interpret the following related to effect size:

a)d=.25¢)R=.53 e)d=1.15
b)r=.35d)r=.13 f) 7 =.38

6.6. What statistic would you use if you wanted to see if there was a difference between males
and females on math achievement? Why?

6.7. What statistic would you use if you had two independent variables, income group

(<$10,000, $10,000-$30,000, >$30,000) and ethnic group (Hispanic, Caucasian, African-
American), and one normally distributed dependent variable (self-efficacy at work).
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What statistic would you use if you had one independent variable, geographic location
(North, South, East, West), and one dependent variable (satisfaction with living
environment, Yes or No)?

What statistic would you use if you had three normally distributed (scale) independent
variables (weight of participants, age of participants, and height of participants) and one
dichotomous independent variable (gender) and one dependent variable (positive self-
image), which is normally distributed.

A teacher ranked the students in her Algebra I class from 1=highest to 25=lowest in terms
of their grades on several tests. After the next semester, she checked the school records to
see what the students received from their Algebra II teacher. The research question is ‘Is
there a relationship between rank in Algebra I and grades in Algebra [1?° What statistic
should she use?
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CHAPTER 7

Cross-Tabulation, Chi-Square, and Non Parametric Measures
of Association

In this chapter, you will learn how to make cross-tabulation tables from two variables, both of
which have a few levels or values. You will learn how to decide if there is a statistically
significant relationship between two nominal variables using chi-square and you will learn how
to assess the strength of this relationship (i.e., the effect size) using phi (or Cramer’s V). You
will also compute and interpret Kendall’s tau-b for ordinal, categorical variables and eta for one
nominal and one normal/scale variable. We will see eta again in Chapter 10 as an effect size
measure for ANOVA’s. Finally, you will compute Cohen’s kappa, which is used to assess
interobserver reliability for two nominal variables.

e First logon and get hsbdataB (you saved it after computing new variables in Chapter 5).

Problem 7.1: Chi-Square and Phi (or Cramer’s V)

The statistics discussed in this first problem are designed to analyze two nominal or dichotomous
variables. Remember, nominal variables are variables that have distinct unordered levels; each
subject is in only one level (you can only be male or female). Chi-square (°) or phi/Cramer’s ¥
are good choices for statistics when analyzing two nominal variables. They are less appropriate if
either variable has three or more ordered levels because these statistics do not take in account the
order and, thus, sacrifice power if used with ordinal or scale variables.

Chi-square requires a relatively large sample size and/or a relatively even split of the subjects
among the levels because the expected counts in 80% of the cells should be greater than 5.
Fisher’s exact test for 2x2 crosstabs should be reported instead of chi-square for small samples.
Chi-square and the Fisher’s exact test provide similar information about relationships among
variables; however, they only tell us whether the relationship is statistically significant (i.e., not
likely to be due to chance). They do not tell the effect size (i.e., the strength of the relationship).
Another way to interpret chi-square is as a test of whether there are differences between the
groups formed from one variable, (gender in this problem) on the incidence or counts of each
category of the other variable (see the Table 6.1).

Phi and Cramer’s V provide a test of statistical significance and also provide information about
the strength of the association between two categorical variables and can be used as a measure of
the effect size similar to 7 (see Table 6.5). If one has a 2x2 cross tabulation, phi is the appropriate
statistic. For larger crosstabs, Cramer’s ¥ is used. The numbers in the crosstabs description refer
to the number of levels in each of the variables. Thus, for gender and religion in the HSB data set,
the crosstab would be 2x3 because gender has two levels and religion has three levels.

For phi and Cramer’s ¥ the strength of association measures are similar to the correlations you
will compute in the next chapter. Like correlation, a strong phi or Cramer’s ¥ could be close to
1.00 while one close to zero would indicate no relationship. A problem with Phi and Cramer’s V
is that under some conditions, the maximum possible value of these statistics will be considerably
less than 1.00. This makes them hard to interpret.
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Assumptions and Conditions for the Use of Chi-square, Phi and Cramer’s V

® The data for the variables must be independent. Each subject is assessed only once.

¢ Data are treated as nominal, even if ordered.

® For chi-square, if the expected frequencies, are less than 5, the test of significance is too liberal.
At least 80% of the expected frequencies should be 5 or larger. All should be at least 5 if you
have a 2x2 chi-square.

7.1. Do males and females differ on whether they take geometry or not? If so, how strong is the
relationship?

Let’s see if males and females differ in terms of whether they took geometry. Remember, both
variables are dichotomous; they have two values.

e Click on Analyze => Descriptive Statistics => Crosstabs.
» Put geometry in the Rows box using the arrow key and put gender in the Columns box (see
Fig. 7.1).

# geomeliy nh.s. [geo] |

# algebra 1 inhs [ak

—
® slgebra2inhs. [ |1 T I
#> tigonometiy in h.s : - ﬂ-lld- :
# caloulus in h.s. [cal i%_‘ Cance |
# math grades [mathg m | -_H*

® grades inh.s. [grad L I Fig. 7.1. Crosstabs.

# math achievement
# mosaic, pattem te!
# visualization test [vi

#> visualization retest | m |

# scholastic aptitude w |
™ Display chustered bar charts
™ Suppvess lables

® fathers educaton (4]
# mother's education | [B

e Next, click on Statistics.
® Check Chi-square and Phi and Cramer’s V. The window should look like Figure 7.2.
e Click on Continue.

-~ Nominal - Ol - T ; -
|~ Contnomney et T Gomma 1 Fig. 7.2. Crosstabs statistics.
& Phi and Ciaméés V. [~ Sometd L.
I Lambda ™ Kendafs tau
™ Uncedainty coefficient ™ Kendal's lauc
Hominal by Interval I Keppa
I Ew ™ Risk
o T McNemar
[T Cochvan's and MantelHsenszel statistics -
I f lepbdf 1lpd o pial s I'-_—
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e Once you return to the Crosstabs menu, click on Cells.
e Now, click on Expected and Total; ensure that Observed is also checked (See Fig. 7.3).

Crenstabs: Cell Display

Cortaws

W Observed Carcdl
W Especied b
Fravcart ages Resmdusi:
[ Row I Unstendasded
[ Column [ Standasdred
W Tosd i Aduated wandydsed
Horwd g W et

* Aourd cel courty 7 Roud came weghis
" Tarcascelcourts  ©  Truncabe case meghls
¢ No sdyatmerts

Fig. 7.3. Crosstabs: Cell display.

e Click on Continue then OK. Compare your output to OQutput 7.1.

Output 7.1: Crosstabs With Chi-Square and Phi

CROSSTABS
/TABLES=geo BY gender
/FORMAT= AVALUE TABLES
/STATISTIC=CHISQ PHI

/CELLS= COUNT EXFECTED TOTAL

/COUNT ROUND CELL .

Case Processing Summary

Cases
Valid Missing Total
N Percent N Percent N Percent
geometry in h.s. * gender 75 100.0% 0 .0% 75 100.0%
geometry in h.s. * gender Crosstabulation
gender

_ malg female- | _Totat—] = gﬂgj ;::3
geometry nottaken Count @_@ 39 observed
in h.s. Expected Count 7. % 39.0 ———

% of Total 13.3% 38.7% 52.0%

taken Count 2 12\ 36

Expected Count 16. 19.7 36.0

% of Total 32.0% 16.0% 48.0%
Total Count 34 41 75

Expected Count 34.0 41.0 75.0

% of Total 45.3% 54.7% 100.0%

101




SPSS for Introductory Statistics

Chi-Square Tests

Asymp. Sig. | Exact Sig. | Exact Sig.
Value df ' (2-sided) (2-sided) (1-sided)
Pearson Chi-Square 12.714(b) 1 .000
Continuity
Comection(a) 11.112 1 .001
Likelihood Ratio 13.086 1 .000
Fisher's Exact Test .000 .000
Linear-by-Linear
Assoclation 12.544 1 .000
N of Valid Cases 75

a Computed only for a 2x2 table
b O cells (.0%) have expected count less than 5. The minimum expected count is 16.32. -

This is good.

Symmetric Measures

Value | Approx Sig—t+— For 2x2 tables

e e——
Nominalby ~ (_Phi_ )—— -412 .000
Nominal Cramer's V 412 .000
N of Valid Cases 75

4. Not assuming the null hypothesis.

b. Using the asymptotic standard error assuming the null
hypothesis.

Interpretation of Output 7.1

The case processing summary table indicates that there are no participants with missing data. The
Crosstabulation table includes the Counts and Expected Counts, and each cell also has a % of
Total. For example, there are 10 males who had not taken geometry, this is 13.3% of the 75
students. The bottom row and the right hand column provide total percentages for the two levels
of each variable. For example, 34 or 45% of the 75 students were males, and 36 or 48% of both

genders had taken geometry.

Note, in the Crosstabulation table, that the Expected Count of the number of male students who
didn’t take geometry is 17.7 and the observed or actual Count is 10. Thus, there are 7.7 fewer
males who didn’t take geometry than would be expected by chance, given the Totals shown in
the table, There are also the same discrepancies between observed and expected counts in the
other three cells of the table. A question answered by the chi-square test is whether these
discrepancies between observed and expected counts are bigger than one might expect by chance.

The Chi-Square Tests table is used to determine if there is a statistically significant relationship
between two dichotomous or nominal variables. It tells you whether the relationship is
statistically significant but does not indicate the strength of the relationship, like phi or a
correlation does. In Output 7.1, we use the Pearson Chi-Square or (for small samples) the
Fisher’s Exact Test to interpret the results of the test. They are statistically significant (p <.001),
which indicates that we can be quite certain that males and females are different on whether they
take geometry. Note that footnote b states that no cells have expected counts less than 5. That is
good because otherwise a condition for using of chi-square would be violated. (If so, we could
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then use the Fisher exact test.) A good guideline is that no more than 20% of the cells should have
expected frequencies less than 5. For chi-square with 1 df (i.e., 2 x 2 cross-tabulation as in this
case) none of the cells should have expected frequencies less than 5, some say 10.

The Symmetric Measures table provides measures of the strength of the relationships or effect
size. If the association between variables is weak, the Value of the statistic will be close to zero.
If the relationship or effect size is strong, the value should be +/- .50 or more. However,
remember that the maximum value for phi and Cramer’s V may be less than 1.00, the maximum
for most measures of association. If both variables have two levels (i.e., 2 x 2 crosstabs) phi is the
appropriate statistic.

In Output 7.1, phi is -.412, and like the chi-square it is statistically significant. Phi is also a
measure of effect size for an associational statistic and, in this case, is a somewhat larger effect
than typical in the behavioral sciences (see Table 6.5) or medium to large according to Cohen
(1998).

Example of How to Write About the Results of Problem 7.1

Results
To investigate whether males and females differ on whether they take geometry or not, a chi-
square statistic was used. Table 7.1 shows the Pearson chi-square results and indicates that males
and females are significantly different on whether they are have taken or have not taken geometry
(¢ =12.71,df=1,N="15, p < .001). Males are more likely than expected under the null
hypothesis to take geometry than females. Phi, which indicates the strength of the association
between the two variables, is -.412 and, thus, the effect size is considered to be medium to large
according to Cohen (1988).

Table 7.1

Chi-square Analysis of Prevalence of Taking Geometry Among Males and Females

Geometry
Variable n Taken Not taken xz D
Gender 12.71 <.001
Males 34 24 10
Females 41 12 29
Totals 75 36 39

Problem 7.2: Other Nonparametric Associational Statistics

In addition to phi and Cramer’s V, there are several other nonparametric measures of association
that we could have chosen in Fig. 7.2. They attempt, in different ways, to measure the strength of
the association between two variables. If both variables are nominal and you have a 2x2 cross
tabulation, like the one in Output 7.1, phi is the appropriate statistic to use from the symmetric
measures table. For larger cross tabulations (like a 3 x 3) with nominal data, Cramer’s V is the
appropriate statistic. Note that with a 2 x 3 or a 3 x 2 cross tabulation Phi and Cramer’s V are the
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same. If the variables are ordered (i.¢., ordinal) you have several other choices. We will use
Kendall’s tau-b in this problem.

7.2. What is the relationship or association between father s education and mother’s education?

e Analyze => Descriptive Statistics = Crosstabs.
Put mother’s education revised in the Rows box and father’s education revised in the
Columns box.

e Click on Cells and ask that the Observed and Expected cell counts and Total percentages be
printed in the table. Click on Continue and then Statistics.

e Request the following Statistics: Phi and Cramer’s ¥ and Kendall’s tau-b coefficient for
ordinal data. Do not check chi-square.

e Click on Continue then OK. Compare your syntax and output to Qutput 7.2.

Output 7.2: Crosstabs and Nonparametric Associational Statistics

CROSSTABS

/TABLES=maedRevis

/FORMAT= AVALUE TABLES
/STATISTIC=PHI BTAU

/CELLS= COUNT EXPECTED TOTAL
/COUNT ROUND CELL .

BY faedRevis

Crosstabs
Case Processing Summary
Cases
Valid Missing Total
N Percent N Percent N Percent
mother's educ revised *
father's educ revised 73 97.3% 2 2.7% 75 100.0%
mother’s education revised * father's education revised Crosstabulation
father's education revised
HS grad Some
or less College BS or More Total
mother's HSgradorless Count 33 9 4 46
education Expected Count 23.9 10.1 12.0 46.0
revised % of Total 45.2% 12.3% 5.5% 63.0%
Some College Count 5 7 7 19
Expected Count a9 4.2 49 19.0
% of Total 6.8% 9.6% 9.6% 26.0%
BS or More Count 0 0 8 8
Expected Count 42 1.8 2.1 8.0
% of Total 0% 0% 11.0% 11.0%
Total Count 38 16 19 73
Expected Count 38.0 16.0 19.0 73.0
% of Total 52.1% 21.9% 26.0% 100.0%
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Cramer’s ¥
measures the
Symmetric Measures strength of a
=} eelationshinof
Asymp. | — | two nominal
Value Approx. T rox. Sig. || variables
Nominal by | _—710 Tl | ET————
Nominal ‘ 502 .000 both have
Ordinal by Ordinak_Kendall's tau- 572 084 | 5835 000 || three or more
N of Valid Cases T~ levels/values.
a. Not assuming the\null hypothesis. e
b. Using the asympi&c standard error assuming the null hypothesis sencd S g
’ measures the
strength of the
Phi is not appropriate for a association if
3 x 3 table. both variables
are ordinal.

Interpretation of Output 7.2

There are several nonparametric measures of association that we could have chosen from Fig. 7.2.
All of them except chi-square attempt, in different ways, to measure the strength of the
association between two variables roughly on the -1 to +1 scale used by the Pearson correlation
(see Chapter 8). However, several of them, including phi and Cramer’s ¥ have maximum values
considerably less than 1 under some conditions.

For tables with nominal data (like a 3 x 3 crosstabulation of religion and ethnicity), Cramer’s V'

would be the appropriate statistic. In Problem 2, we also requested Kendall’s tau-b because both
mother’s education and father's education are to be ordered variables and ordinal data. Cramer’s
V (and phi) treat the cross tabulated variables as if they were nominal, even if they are ordered so
they would not be good choices for this problem. We requested them so you could compare them
to Kendall’s tau-b.

If the association between variables is weak, the value of the statistic will be close to zero and the
significance level (Sig.) will be greater than .05, the usual cutoff to say that an association is
statistically significant. However, if the association is statistically significant, the p will be small
(<.05). In this case p is < .001 for Kendall’s tau-b, which is clearly significant, and the effect size
(tau-b = .572) is large (see Table 6.5).

Example of How to Write About Problem 7.2

Results
To investigate the relationship between father’s education and mother’s education, Kendall’s tau-
b was used. Kendall’s tau-b analysis indicated a significant positive association between father’s
education and mother’s education, tau (71) = .572, p <.001. This means that fathers with
relatively high educations were married to mothers with relatively high educations and vice versa.
This tau is considered to be a large effect (Cohen, 1988).
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Problem 7.3: Cross-Tabulation and Eta

There is an important associational statistic, eta, that is used when one variable is nominal and the
other is approximately normal or scale. We will use this statistic to describe the association
between gender and math courses taken (an approximately normal variable with six values). Eta
squared will be an important statistic in later chapters when we interpret the effect size of various
ANOVA:s.

7.3. What is the association between gender and number of math courses taken? How strong is

it?

Follow these steps:

Click on Analyze => Descriptive Statistics => Crosstabs.

Put math courses taken in the Rows box using the arrow key and put gender in the Columns
box (similar to Fig. 7.1).

Next, click on Statistics and select Eta.

Click on Continue.

Now, click on Cells and select Expected and Observed.

Click on Continue.

Click on OK. Compare your syntax and output to Output 7.3.

Output for Problem 7.3: Eta for Gender and Math Courses Taken

CROSSTABS

/TABLES=mathcrs BY gender
/FORMAT= AVALUE TABLES
/STATISTIC=ETA

/CELLS= COUNT EXPECTED
/COUNT ROUND CELL .,

Crosstabs
Case Processing Summary
Cases
Vgpd Missing Total
N Percent N Percent N Percent
Math courses
taken * gender 75 100.0% 0 0% 75 100.0%
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Math coursas taken * gender Crosstabulation

ender
e male female Total
Math None taken Count 4 12 16
courses Expected Count 7.3 8.7 16.0
taken 3 Count 3 13 16
Expected Count 7.3 8.7 16.0
2 Count 9 6 15
Expected Count 6.8 8.2 15.0
3 Count 6 2 8
Expected Count 3.6 4.4 8.0
4 Count 7 5 12
Expected Count 54 6.6 12.0
All math courses Count 5 3 8
Expected Count 3.6 4.4 8.0
Total Count 34 M 75
Expected Count 34.0 41.0 75.0
Directional Measures
_ — Value
Nominal by Interval Eta Math courses 108 This is the appropriate eta
taken Dependent ; for this problem.
___gender Dependent 419

Interpretation of Output 7.3

The second table shows the actual Counts and the Expected Counts of the number of persons in
each cell. If there are positive discrepancies between the actual and expected counts in the upper
left (male) columns and negative discrepancies in the lower left columns or vice versa, that would
indicate that there is an association between the two variables. Like most measures of association,
eta can vary from about -1.0 through zero to +1.0. High positive or negative values of eta indicate
a strong association. In this case the appropriate eta is .328 because math courses taken is the
dependent variable. It is a medium to large effect size (see Table 6.5). With 75 subjects, an eta of
.33 probably would be statistically significant, but SPSS does not test it. Eta squared would be
.11, indicating that the two variables share 11% common variance. We will see eta squared when
interpreting the size of the “effect” in analysis of variance.

Example of How to Write About Problem 7.3

Results
Eta was used to investigate the strength of the association between gender and number of math
courses taken (eta = .33). This is a medium to large effect size (Cohen, 1988). Males were more
likely to take several or all the math courses than females.
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Problem 7.4: Cohen’s Kappa for Reliability With Nominal Data

When we have two nominal variables with the same values (usually two raters’ observations or
scores using the same codes), you can compute Cohen’s kappa to check the reliability or
agreement between the measures. Imagine that the ethnicity variables were based on school
records. Then, a new variable was obtained by asking students to self-report the ethnicity. The
question is, how reliable is the interobserver classification of ethnicity?

7.4. What is the reliability coefficient for the ethnicity codes (based on school records) and
ethnicity reported by the student?

To compute the kappa:

Click on Analyze => Descriptive Statistics => Crosstabs.

Move ethnic to the Rows box and ethnic 2 to the Columns box.

Click on Kappa in the Statistics dialog box.

Click on Continue to go back to the Crosstabs dialog window.

Then click on Cells and request the Observed cell counts and Total under percentages.
Click on Continue and then OK. Compare your syntax and output to Qutput 3.5.

Output 3.5: Cohen’s Kappa with Nominal Data

CROSSTABS
/TABLES=ethnic BY ethnic2
/FORMAT= AVALUE TABLES
/STATISTIC=KAPPA
/CELLS= COUNT TOTAL
/COUNT ROUND CELL .

ethnicity * Ethnicity reported by student Crosstabulation

Ethnicity reported by student Total
Euo | At |, us | Asien
= =A
Amer m‘er_' =Amer =Amer
ethnicity Euro-Amer Count i 40 L 1] 0 0 41
: % of Total | 256.3% \ﬁ 0% 0% | 57.7%
African-Amer Count ]_2_] 1) 1 | 0 14
% of Total 28% | 15.5% \.4% 0% 19.7%
Latino-Amer  Count 0 [ 1] (8) 0 9
% of Total 0% | 4% | 11.3% | N_0%| 12.7%
Asian-Amer  Count 0 1 0 (H? 7
% of Total 0% 1.4% 0% 8.5% 9.9%
Total Count 42 V 14 9 8 71
% of Total 59.2%/ 19.7% 12.7% | 8.5% 100.0%
One of six disagreements. Agreements between
They are in “squares” off school records and
the diagonal. student’s memory.
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Case Processing Summary

Cases
Valid Missing Total
N T Percent N Percent N Percent
ethnicity * Ethnicity N
Symmetric Measures
Asymp.
Std. Approx.
—————————\Value Ermror(a) T(b) Approx. Sig.

Measure of Kappa =D

Agreement g l_:_sz@’\ .054 11.163 000
N of Valid Cases 71 \

a Not assuming the null hypothesis.

b Using the asymptotic standard error assuming the null hypothesis. As a measure of reliability,
kappa should be high (usually
> .70) not just statistically
significant.

Interpretation of Output 7.4

The Crosstabulation table of etanicity and ethnicity reported by student shows the cases where
the school records and the student self-reports are in agreement; they are on the diagonal and
circled. There are 65 (40 + 11 + 8 + 6) students with such agreement or consistency. The Case
Processing Summary table shows that 71 students have data on both variables. Thus, in 65 out
of 71 cases with complete data, the student listed the same ethnicity as in the school records, but
there were discrepancies for 6 students shown in boxes off the diagonal.

The Symmetric Measures table shows that Kappa is .86. This is good because for reliability
measures; they should be high (>.70) and positive. Statistical significance is not relevant for
reliability measures.

Interpretation Questions

7.1.  In Output 7.1: a) what do the terms “count” and “expected count” mean? b) What does
the difference between them tell you?

T2, In Output 7.1: a) Is the (Pearson) chi-square statistically significant? Explain what it
means. b) Are the expected values in at least 80% of the cells > 5?7 How do you know?

73. Because father’s and mother’s education revised are at least ordinal data, which of the
statistics used in 7.2 is the most appropriate to measure the strength of the relationship:
phi, Cramer’s ¥, or Kendall’s tau-b? Interpret the results, Why are tau-b and Cramer’s ¥
different?

109




7.4.

7.5.
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In Output 7.3: a) How do you know what is the appropriate valued eta? b) Do you think
it is high or low? Why? c¢) How would you describe the results?

Write a sentence or two describing the results of Output 7.4 that you might include in a
research report.

Extra SPSS Problems

Using college student data from file, do the following problems. Print your outputs after typing
your interpretations on them. Please circle the key parts of the output that you discuss.

7.1.

72.

7.3.

7.4.

T2y,

Run crosstabs and interpret the results (as discussed in Chapter 6 and in the interpretation
of Output 7.1) of chi-square, and phi (or Cramer’s V) for: a) gender and marital status and
b) age group and marital status.

Select two other appropriate variables, run and interpret the output as we did in Output
7.1.

Is there an association between having children or not and watching TV sitcoms?

Is there a difference between students who have children and those who do not in regard
to their age group?

Compute an appropriate statistic and effect size measure for the relationship between
gender and evaluation of social life.
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CHAPTER 8

Correlation and Regression

In this chapter, you will learn how to compute several associational statistics. First, you will
learn how to make scatterplots and how to interpret them. An assumption of the Pearson
product moment correlation is that the variables are related in a linear (straight line) way so we
will examine the scatterplots to see if that assumption is reasonable. Second, the Pearson
correlation, and the Spearman rho will be computed. The Pearson correlation is used when you
have two variables that are normal/scale, and the Spearman is used when the two variables are
ordinal. Second, you will compute a correlation matrix indicating the associations among all
the pairs of three or more variables. Fourth, we will show you how to compute Cronbach’s alpha,
the most common measure of reliability, which is based on a correlation matrix. Fifth, you will
compute simple or bivariate regression, which is used when one wants to predict scores on a
normal/scale dependent variable from one normal or scale dependent variable. Last, we will
provide an introduction to a complex associational statistic, multiple regression, which is used
to predict a scale/normal dependent variable from two or more independent variables.

The correlations in this chapter can vary from —1.0 (a perfect negative relationship or
association) through 0.0 (no correlation) to +1.0 (a perfect positive correlation). Note that +1
and -1 are equally high or strong, but they lead to different interpretations. A high positive
correlation between anxiety and grades would mean that students with higher anxiety tended to
have higher grades, those with lower anxiety had lower grades, and those in between had grades
that were neither especially high or especially low. A high negative correlation would mean that
students with high anxiety tended to have low grades; also, high grades would be associated with
low anxiety. With a zero correlation there are no consistent associations. A student with high
anxiety might have low, medium, or high grades.

Assumptions and Conditions for the Pearson Correlation (r)

1. The two variables have a linear relationship. We will show how to check this assumption
with a scatterplot in Problem 8.1. (Pearson » will not detect a curvilinear relationship
unless you transform the variables, which is beyond the scope of this book.)

2. Scores on one variable are normally distributed for each value of the other variable and
vice versa. (If degrees of freedom are greater than 25, failure to meet this assumption has
little consequence.)

3. Outliers can have a big effect on the correlation.

Assumptions and Conditions for Spearman Rho (r,)

1. Data on both variables are at least ordinal.

2. Scores on one variable are monotonically related to the other variable. This means that as
the values of one variable increase, the other should also increase but not necessarily in a
linear (straight line) fashion. The curve can flatten but cannot go both up and down as in
alord

3. Rho is computed by ranking the data for each variable and then computing a Pearson
product moment correlation. (SPSS will do this for you automatically when you request a

Spearman correlation.)

e Retrieve hsbdataB.sav.
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Problem 8.1: Scatterplots to Check Assumptions

A scatterplot is a plot or graph of two variables that shows how the score for an individual on
one variable associates with his or her score on the other variable. If the correlation is Aigh
positive, the plotted points will be close to a straight line (the linear regression line) from the
lower left corner of the plot to the upper right. The linear regression line will slope downward
from the upper left to the lower right if the correlation is high negative. For correlations near
zero the regression line will be flat with many points far from the line.

Doing a scatterplot with SPSS is somewhat cumbersome, as you will see, but it provides a visual
picture of the correlation. The plot also allows you to see if there are extreme outliers (far from
the regression line), and it may show that a better fitting line would be a curve rather than a
straight line. In this case the assumption of a linear relationship is violated and a Pearson
correlation would not be the best choice.

8.1. What are the Scatterplots, and linear regression line, a) for grades and math achievement
and for b) mosaic and math achievement?

To develop a scatterplot of math achievement with grades, follow these commands:

e Graphs => Scatter. This will give you Fig. 8.1,
e Click on Simple.

Scatterplot

Fig. 8.1. Scatterplot.

Click on Define which will bring you to Fig. 8.2.
Now, move math achievement to the Y Axis and grades to the X Axis. Note: the presumed
outcome or dependent variable goes on the Y axis. However, in the correlation itself there is

no distinction between independent and dependent variable.
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& tnoncmety ih s i o Fig. 8.2. Simple scatterplot.
@ caioks inha fcd St Maskocs Hep ‘

# math grades mairy | vy

B visuskzsion lest [vi # m Label Cases by: |

Tenglste

|1 Uts chit spseications hoe

5. u-..[o-i-.|

112



Chapter 8 — Correlation and Regression

e Next, click on Titles (in Fig. 8.2). Type Correlation of math achievement with high
school grades (see Fig. 8.3). Note, we put the title on two lines so it will all fit.

e Click on Continue then on OK. You will get Output 8.1a, the scatterplot. You will not print
this now because we want to add the regression line first.

. -
e

U2 e e guied i Fig. 8.3. Titles.
Sublite [
3 - Focknote - —
Linet: |
Ure2 |

Output 8.1a. Scatterplot without Regression Line

GRAPH
/SCATTERPLOT (BIVAR)=grades WITH mathach
/MISSING=LISTWISE
/TITLE= 'Correlation of math achievement with' 'high school grades'.

Graph
Correlation of math achlevement with
high school grades
25.00 ~ o s
g 20.00 8 8 =] g
§ a . g .
-
: 10.00- o 8 g g o]
T o
g 5.00— g a E 8
[\ -]
E 0.00 - 5
_— 1 1 ] ] ] ] L)
2 3 4 5 ] 7 8
grades in h.s.

Now let’s put the regression lines on the scatterplot so we can get a better sense of the correlation
and how much scatter or deviation from the line there is.

e Double click on the scatterplot in Output 8.1a. The Chart Editor window will appear (see
Fig. 8.4).
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Correlation of math achievement with
high school grades
500 o 8
g 2000+ i 8 8 o g .
. o o Flg. 8.4. SPSS
£ 8 2 g g chart editor.
e I 8 g g 3 & Q
i 500 : a it £}
g 0004 ° o
o
500 -
: ) ‘ s H ’ 5
gradesin h.s.

¢ Click on the one of the circles in the scatterplot in the Chart Editor. The circles (points)
will turn blue.

e Click on Chart => Add Chart Element => Fit Line at Total. The Properties window
(see Fig. 8.5) will appear as well as a blue fit line in the Chart Editor.

Be sure that Linear is checked (see Fig. 8.5).
Close the Chart Editor window to return to the Output window (Output 8.1b).

Fig. 8.5. Properties.

| g | uee |

Now add a new scatterplot to Output 8.1b by doing the same steps as Problem 1 for a new pair
of variables: math achievement (Y-Axis) with mosaic (X-Axis). Don’t forget to click on Titles
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and change the second line before you run the scatterplot so that the title reads: correlation of
math achievement with(1* line) mosaic pattern score (2™ line). Then, add the regression line as
you did above. Now, once more do the scatterplot for math achievement and mosaic, but this
time click on Quadratic instead of Linear in the Properties window (Fig. 8.5). You will see
that a curved line was added to the second scatterplot in Qutput 8.1b below.

Do the these scatterplots look like the ones in Output 8.1b?

Output 8.1b: Three Scatterplots

Scatterplots result from plotting points on a

Cor of math achi nt with graph. Each circle represents a participant’s
score on the two variables. The pattern
high school grades indicates the strength and direction of the
2800 association between the two variables.
= 8 s
20.00 — 3 8 Q g
3 . -] S o
£ ® 3 3 — | Linear regression line.
s 1000 & e
i 5.00— L] 8 = ]
6.00-] o o
e R 84 Linesr = 0.254
=3.00 =
I : T3 % s
grades In h.=s.

Graph
Correlation of math achievemant with
mosaic pattern score
25.00 ~
Oy oce | | The linear regression line. Note that
20,00 o‘%“’ o / in contrast to the above plot, more
g S ° points are not near the line. This plot
sead S shows a poor fit and low correlation.
10.00—
= . T
5 5% The quadratic regression line seems to
] be a somewhat better fit to the points.
i o R Sq Quadratic =D.006
R 8q Linaar = 0.045
5.00 =
L] 1) L) L) ¥
10.0 0.0 10.0 200 300 400 50.0 60.0
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Interpretation of Output 8.1b

Both scatterplots shown in Output 8.1b show the best fit for a straight linear regression line
(i.e., it minimizes the squared differences between the points and the line). Note that for the
first scatterplot (grades in h.s.) the points fit the line pretty well; 7 = .25 and, thus, » is .50.
The second scatterplot shows that mosaic and math achievement are not well correlated; the
points do not fit the line very well, # = .05, and r is .21, which is not statistically significant.
Note that in the second scatterplot we asked SPSS to fit a quadratic (one bend) curve as well as
a linear line. It seems to fit the points better; 7> = .10. If so, the linear assumption would be
violated and a Pearson correlation may not be the most appropriate statistic.

Problem 8.2: Bivariate Pearson and Spearman Correlations

The Pearson product moment correlation is a bivariate parametric statistic used when both
variables are approximately normally distributed (i.e., scale data). When you have ordinal data
or when assumptions are markedly violated, one should use a nonparametric equivalent of the
Pearson correlation coefficient. One such nonparametric, ordinal statistic is the Spearman rho
(another is Kendall’s tau, which we computed in the last chapter). Here you will compute both
parametric and nonparametric correlations and then compare them. The variables of interest for
Problem 8.2 are mother’s education and math achievement. We found in Chapter 4 that mother’s
education was somewhat skewed, but that math achievement was normally distributed.

8.2. What is the association between mother’s education and math achievement?

To compute Pearson and Spearman correlations follow these commands:

Analyze => Correlate => Bivariate.

Move math achievement and mother’s education to the Variables box.

Next, ensure that the Spearman and Pearson boxes are checked.

Make sure that the Two-tailed (under Test of Significance) and Flag significant
correlations are checked (see Fig. 8.6). Unless one has a clear directional hypothesis, two-
tailed tests are used. Flagging the significant correlations (with an asterisk) is optional but
helps you quickly identify the statistically significant correlations.

+ Bivaniate Conelations

& gender lgond] 4 Vaisbles:
# father's education (fadd - “® math achievement test
® algebra 1 in h.s. [alg @ mother's education [ma

#® geometry in h.s. [ge
‘#> trigonometry in hs. [
# calculus in h.s. [calc
& math nrades ImathnZ

Fig. 8.6. Bivariate
correlations.

Paste

# algebra 2in h.s. [ak Reset
<l e
Cancel |
Help |

!FPuwn ™ Kendalstaub ¥ Spearman
| F Twotaled C Dretaled
' Flag signdicant conelations _Optons.. |
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Now click on Options to get Fig. 8.7.
Click on Means and standard deviations and click on Exclude cases listwise. When
requesting only one correlation listwise and pairwise exclusion are the same, but, as
described below, which one you select may make a difference in a correlation matrix.

Bivariate Conrelations: Options

Fig. 8.7. Bivariate
correlations: Options.

e Click on Continue then on OK. Compare Output 8.2 to your output and syntax.

Output 8.2: Pearson and Spearman Correlations

CORRELATIONS

/VARIABLES=mathach maed
/PRINT=TWOTAIL NOSIG

/STATISTICS DESCRIPTIVES

/MISSING=LISTWISE .
Correlations
Descriptive Statistics /
— Mean Std. Deviation N/
math achievement test 12.5645 6.67031 75
mother's education 4.11 2.240 75

There are 75 persons
with data on both of
these variables.
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Correlations®
math
achievement mother's

_ — test educati
math achievement test Pearson Correlation 1 .338

Sig. (2-tailed) . .003 )
mother's education Pearson Correlation .333") 1

Sig. (2-tailed) (003 ¥

The Pearson
Correlation:
r=34; p=.003.

**. Correlation is significant at the 0.01 level (2-tailed). L

a. Listwise N=75

Nonparametric Correlations

NONPAR CORR

/VARIABLES=mathach maed
/PRINT=SPEARMAN TWOTAIL NOSIG
/MISSING=LISTWISE .

Ignore these numbers;
they are duplicates of

the ones above.

Correlations®
math
achievement mother's
— test education
Spearman'srho  math achievement test Cormrelation Coefficient 1.000 315

Sig. (2-tailed) o .006
mother's education Correlation Coefficient .315“) 1.000

Sig. (2-tailed) .006

**. Correlation is significant at the .01 level (2-tailed).
a. Listwise N = 75
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Interpretation of Output 8.2

The first table provides descriptive statistics (mean, standard deviation, and N) for the variables
to be correlated, in this case math achievement and mother’s education. The two tables labeled
Correlations are our primary focus. The information is displayed in matrix form, which
unfortunately means that every number is presented twice. We have provided a call out box to
help you.

The Pearson Correlation coefficient is .34; the significance level (sig.) or p is .003 and the
number of participants with both variables (math achievement and mother’s education) is 75. In a
report, this would usually be written as: r (73) =.34, p = .003. Note that the degrees of freedom
(N-2 for correlations) is put in parentheses after the statistic (» for Pearson correlation), which is
usually rounded to two decimal places. The significance, or p value, follows and is stated as .003.

The correlation value for Spearman’s rho (.32) is somewhat different from r, but usually, as in
this case, it has a similar significance level (p=.006 ). The nonparametric Spearman correlation is
based on ranking the scores (1%, 2™, etc.) rather than using the actual raw scores. It should be
used when the scores are ordinal data or when assumptions of the Pearson correlation (such as
normality of the scores) are markedly violated. Note, vou should not report both the Pearson and
Spearman correlations; they provide similar information. Pick the one whose assumptions best fit
the data. In this case, because mother’s education was somewhat skewed, Spearman would be the
more appropriate choice, although either would yield significant results. Problem 1 showed you a
way to check the Pearson assumption that there is a linear relationship between the variables
(i.e., that it is reasonable to use a straight line to describe the relationship).

It is usually best to choose two-tailed tests as we did in Fig. 8.6. We also chose to flag (put
asterisks beside) the correlation coefficients that are statistically significant so that they can be
identified quickly. The output also prints the exact significance level (p), which is redundant with
the asterisk. It is best in a thesis or paper table to report the exact p, but if space is tight you can
use asterisks with a footnote, as SPSS did in Output 8.2.

As indicated earlier, the correlation between mother’s education and math achievement is
statistically significant because the “sig” is less than .05. Thus we can reject the null hypothesis
of no association and state that there is an association between mother’s education and math
achievement. In nontechnical language, students who have mothers with high (a lot of) education
generally have high math achievement scores and vice versa. Because the correlation is positive
this means that high mother’s education is generally associated with high achievement, medium
education with medium achievement, and low with low. If the correlation were significant and
negative (e.g., -.50), high mother’s education would be associated with low achievement and vice
versa. If the correlation were not significant, there would be no systematic association between a
mother’s education and her child's achievement. In that case you could not predict anything
about math achievement from knowing someone’s mother s education. In addition to statistical
significance and the sign of the Pearson correlation, you should note and comment on the effect
size for a full interpretation of the correlation. In this case, the correlation is .34, so, using
Cohen's (1988) guideline, the effect size is medium (see Table 6.5).
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Example of How to Write About Problem 8.2

Results
To investigate if there was a statistically significant association between mother’s education and
math achievement, a correlation was computed. Mother’s education was skewed (skewness =
1.13) which violated the assumption of normality. Thus, the Spearman rho statistic was
calculated, r, (73) = .32, p = .006. The direction of the correlation was positive, which means
that students who have highly educated mothers tend to have higher math achievement test
scores and vice versa. Using Cohen’s (1988) guidelines, the effect size is medium or typical for
studies in this area. The r squared indicates that approximately 10% of the variance in math
achievement test scores can be predicted from mother’s education,

Problem 8.3: Correlation Matrix for Several Variables

If you have more than two ordinal or normally distributed variables that you want to correlate,
SPSS will produce a matrix showing the correlation of each selected variable with each of the
others. With SPSS you can print a matrix scatterplot to check the linear relationship for each pair
of variables (see Fig. 8.3).

8.3. What are the associations among the four variables: visualization, mosaic pattern test,
grades in h.s., and math achievement?

Now, compute Pearson correlations among all pairs of the following scale/normal variables:
visualization, mosaic, grades in h.s., and math achievement. Move all four into the Variable box.
Follow procedures outlined previously except:

e Do not check Spearman (under Correlation Coefficients) but do use Pearson.
¢ For Options, click Means and standard deviations, and Exclude cases listwise. The latter
will only use participants who have no missing data on any of these four variables.

This will produce Output 8.3. To see if you are doing the work right, compare your syntax and
output to Output 8.3.

Output 8.3: Pearson Correlation Matrix

CORRELATIONS
/VARIABLES=visual mosaic grades mathach
/PRINT=TWOTAIL NOSIG
/STATISTICS DESCRIPTIVES

Correlations
Descriptive Statistics
Mean Std. Deviation N
visualization test 5.2433 3.91203 75
mosaic, pattem test 27.416 95738 75
grades in h.s. 5.68 1.570 75
math achievement test 12.5645 6.67031 75
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Correlations of other variables
with math achievement /

Correlations®
math
visualization mosaic, achievement
_ test pattem test | gradesinhs. | test
visualization test Pearson Correlation 1 .030 127 .423*
Sig. (2-tailed) : .798 279 .000
mosaic, pattern test Pearson Correlation .030 1 -.012 213
Sig. (2-tailed) .798 3 .920
grades in h.s. Pearson Correlation 27 -.012 1 504
Sig. (2-tailed) 279 920 i .000
math achievement test Pearson Correlation 423" 213 504*9 \T/
Sig. (2-tailed) .000 067 .000
**. Correlation is significant at the 0.01 level (2-tailed),
a. Listwise N=75
Interpretation of Output 8.3

Notice that after the descriptive statistics table, there is a larger Correlations table that shows
the Pearson Correlation coefficients, and two-tailed significance (Sig.) levels. These numbers
are, as in Output 8.2, each given twice so you have to be careful in reading matrix. It is a good
idea to look only at the numbers above or below the diagonal (the 1s). There are 6 different
correlations in the table. In the last column, we have circled the correlation of each of the other
variables with math achievement. In the second to last column, each of the other three variables
is correlated with grades in h.s., but note that the .504 below the diagonal for grades in h.s. and
math achievement is the same as the correlation of math achievement and grades in h.s. in the
last column, so ignore it the second time.

The Pearson correlations on this table are interpreted similarly to the one in Output 8.2.
However, because there are 6 correlations, the odds are increased that one could be statistically
significant by chance. Thus, it would be prudent to require a smaller value of p. The Bonferroni
correction is a conservative approach designed to keep the significance level at .05 for the
whole study. Using Bonferroni, you would divide the usual significance level (.05) by the
number of tests. In this case a p <.008 (.05/6) would be required for statistical significance.
Another approach is simply to set alpha (the p value required for statistical significance) at a
more conservative .01 instead of .05.

Note that if we had checked Excluded cases pairwise in Fig. 8.6, the correlations would be the
same because there were no missing data (N = 75) on any of the four variables. However, if
some variables had missing data, the correlations would be at least somewhat different. Each
correlation would be based on the cases that have no missing data on those two variables. One
might use pairwise exclusion to include as many cases as possible in each correlation; however,
the problem with this approach is that different correlations will include data from somewhat
different pairs of individuals. Multivariate statistics, such as multiple regression, use listwise
data and correlations.

If you checked One-Tailed Test of Significance in Fig. 8.6, the Pearson Correlation values
would be the same as in Output 8.3, but the Sig. values would be half what they are here. For
example the Sig. for the correlation between math achievement and mosaic would be .0335
instead of .067. One-tailed tests are only used if you have a clear directional hypothesis (e.g.,
there is a positive correlation between the variables), and if the output has an apparently

| significant correlation in the direction opposite from that predicted, it must be ignored.
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Example of How to Write About Problem 8.3

Results
Table 8.1 shows that two of the six pairs of variables were significantly correlated. The strongest
positive correlation, which would be considered a large effect size, was between grades in high
school and math achievement test scores, r (73) = -.504, p <.001. This means that students who
had relatively high grades in high school were likely to have high math achievement test scores.
Math achievement was also positively correlated with visualization test scores (r = .42); thisis a
medium to large size according to Cohen (1988).

Table 8.1

Intercorrelations, Means, and Standard Deviations for Four Variables (N = 75)

Variable 1 2 3 4 M SD
1. Visualization - .03 13 A2* 5.24 3.91
2. Mosaic - - -.01 21 27.41 9.57
3. Grades - - -- .50* 5.68 1.57
4. Math ach. -- - - - 12.56 6.67
*p <.001

Problem 8.4. Internal Consistency Reliability with Cronbach’s Alpha

A very common measure of reliability in the research literature is Cronbach’s alpha. It is used
to assess the internal consistency reliability of several items or scores that the researcher wants
to add together to get a summary or summated scale score. Alpha is based on a correlation
matrix and is interpreted similarly to other measures of reliability; alpha should be positive and
usually greater than .70 in order to provide good support for internal consistency reliability.
Remember that in Chapter 7 we computed Cohen’s Kappa to assess interobserver reliability for
nominal data. In Chapter 9, we will compute test-retest or parallel forms reliability.

8.4. What is the internal consistency reliability for the four items in the pleasure with math
scale?

To compute Cronbach’s alpha:
e Seclect Analyze => Scale => Reliability Analysis.
e Move item02, item06 reversed, item 10 reversed, and item 14 to the right into the Items
box. Be sure you use the reversed versions of items 2 and 10.
Check to be sure that the Model is Alpha.
Click in statistics to get the Reliability Analysis: Statistics window.,
Under Inter Item check Correlation.
Click on Continue and OK.
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Compare your output to Output 8.4.

Output 8.4 Cronbach’s Alpha for the Pleasure Scale

Reliability

Warnings

| The covariance matrix is calculated and used in the analysis.

Case Processing Summary

N %
Cases Valid 75 100.0
Excluded 0
(a) '
Total 75 100.0

a Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's
Alpha

Cronbach's
Alpha Based
on
Standardized
ltems

N of ltems

.688

.704

4

Inter-item Correlation Matrix

item02 itemQ6 item10 item14
pleasure reversed reversed pleasure
item02 pleasure 1.000 .285 347 .504
item06 reversed .285 1.000 203 461
item10 reversed .347 203 1.000 436
item14 pleasure 504 | 461 436 1.000

The covariance matrix is calculated and used in the analysis.
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Interpretation of Output 8.4

The Inter-Item Correlation Matrix is read similarly to the correlation matrix in Output 8.3.
Remember that each correlation (r) is given twice, both above and below the diagonal
(1.000). Use only one. Note that the six correlations are all positive and range from .20 to .50.

The Reliability Statistics table provide the Cronbach’s Alpha (.69) and an alpha based on
standardizing the items (.70). Unless the items have very different means and SDs, you would
use the unstandardized alpha (.69). This alpha is marginal in terms of acceptability as a
measure of reliability because it is (slightly) less than .70. However, alpha is highly dependent
on the number of items in the proposed summated scale so .69 is probably acceptable to most
researchers for a four item scale.

Problem 8.5: Bivariate or Simple Linear Regression

As stated above in relation to the Pearson, correlation is the best choice for a statistic when you
are interested in associating two variables that have normal or scale level measurement for the
two variables. Correlations do not indicate prediction of one variable from another; however,
there are times when researchers wish to make such predictions. To do this one needs to use
bivariate regression (which is also called simple regression or simple linear regression). For
simple regression, the variables should be approximately normally distributed.

8.5. Can we predict math achievement from grades in high school?

To answer this question, a bivariate regression is the best choice. Follow these commands:

Analyze => Regression => Linear...
Highlight math achievement. Click the arrow to move it into the Dependent box.
Highlight grades in high school and click on the arrow to move it into the Independent(s)
box. The window should look like Figure 8.8.

e Click on OK.
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¢ Compare your output with Output 8.5
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Output 8.5 Bivariate regression

REGRESSION
/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT mathach
/METHOD=ENTER grades

Regression
Varlables Entered/Removed

Variables Variables
Model Entered Removed Method

1 grades in
his Enter

a. All requested variables entered.
b. Dependent Variable: math achievement test

Model Summary

Notice that with bivariate
regression the R is the same
as the r in Output 8.3.

Adjusted | Std. Eror of

Model RlL__| RSquare | R Square | the Estimate
1 (__.5{)4a 254 244 5.80018

a. Predictors: (Constant), grades in h.s.

ANOVA’
Sum of
Model Squares df Mean Square F Sig.
1 Regression 836.606 1 836.606 24.868 .000°
Residual 2455.875 73 33.642
Total 3292.481 74

a. Predictors: (Constant), grades in h.s.
b. Dependent Variable: math achievement test

This is the regression coefficient, which is the slope of the
best-fit line or regression line. Note that it is not equal to
the correlation coefficient. The standardized regression
coefficient (.504) for simple regression is the correlation.

Coefficients /

Model

Unstandardized )lamﬁrdized
Coefficients 1~ Coefficients

B Std, Effor Beta t Sig.

1 (Constant) 397 L— 2530 157 .876
grades in h.s. (2143 | 430 504 4,987 000

a. Dependent Variable: math achievement test
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Interpretation of Output 8.5

In the fourth table, labeled Coefficients, the Unstandardized regression Coefficient in
bivariate regression is simply the slope of the “best fit” regression line for the scatterplot
showing the association between two variables. The Standardized regression Coefficient is
equal to the correlation between those same two variables. (In problem 8.6, multiple regression,
we will see that when there is more than one predictor, the relation between correlation and
regression becomes more complex, and there is more than one standardized regression
coefficient.) The primary distinction between bivariate regression and bivariate correlation
(e.g., Pearson) is that in regression, one wants to predict one variable from another variable;
whereas, in correlation, you simply want to know how those variables are related.

The Unstandardized Coefficients give you a formula that one can use to predict the y scores
(dependent variable) from the x scores (independent variable). Thus, if one did not have access
to the real y score, this formula would tell one the best way of estimating an individual’s y score
based on that individual’s x score. For example, if we want to predict math achievement for a
similar group knowing only grades in h.s., we could use the regression equation to estimate an
individual’s achievement scores: predicated math achievement = .397 + 2.14x (the person’s
grades score). Thus, if a student has mostly Bs (6) for their grades, their predicted math
achievement would be 13.24: math achievement = .40 + 2.14%6.

One should be cautious in doing this, however; we know that grades in h.s. only explains 25%
of the variance in math achievement, so this would not yield a very accurate prediction. A
better use of simple regression is to test a directional hypothesis: grades in h.s predicts math
achievement. If one really thinks that this is the direction of the relationship (and not that math
achievement predicts grades in h.s.), then regression is more appropriate than correlation.

An Example of How to Write About Output 8.5

Results
Simple regression was conducted to investigate how well grades in high school predict math
achievement scores. The results were statistically significant F(1,73) = 24.87, p <.001. The
identified equation to understand this relationship was math achievement = .40 + 2.14*(grades
in high school). The adjusted R squared value was .244. This indicates that 24% of the variance
in math achievement was explained by the grades in high school. According to Cohen (1988)
this is a large effect.

Problem 8.6: Multiple Regression

The purpose of multiple regression is similar to bivariate regression, but with more predictor
variables. Multiple regression attempts to predict a normal (or scale) dependent variable from a
combination of several scale and/or dichotomous independent/predictor variables. In this
problem, we will see if math achievement can be predicted better from a combination of several
of our other variables, gender, grades in high school, and mother’s and father'’s education. There
are many different methods provided in SPSS to analyze data with multiple regression. We will
use one where we assume that all four of the predictor variables are important and that we want
to see what is the highest possible multiple correlation of these variables with the dependent
variable. For this purpose, we will use the method that SPSS calls Enter (often called
simultaneous regression), which tells the computer to consider all the variables at the same
time. Our SPSS for Intermediate Statistics book (Leech et al., 2004) provides more examples and
discussion of multiple regression assumptions, methods, and interpretation.
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Assumptions and Conditions of Multiple Regression

There are many assumptions to consider, but we will only focus on the major ones that are easily
tested with SPSS. These include the following: the relationship between each of the predictor
variables and the dependent variable is linear, the errors are normally distributed, and the
variance of the residuals (difference between actual and predicted scores) is constant. A
condition that can be problematic is multicollinearity; it occurs when there are high
intercorrelations among some set of the predictor variables. In other words, multicollinearity
happens when two or more predictors contain the same information.

8.6.  How well can you predict math achievement from a combination of four variables:
grades in high school, father’s and mother’s education, and gender?

In this problem, the computer will enter/consider all the variables at the same time. We will ask
which of these four predictors contribute significantly to the multiple correlation/regression.

Let's compute the regression for these variables. To do this, follow these steps:

e Click on the following: Analyze => Regression => Linear. The Linear Regression window
(Fig. 8.9) should appear.
Select mathach and click it over to the Dependent box (Dependent variable).
Next select the variables grades in h.s., father's education, mother’s education, and gender
and click them over to the Independent(s) box (Independent variables).
Under Method, be sure that Enter is selected.
Click on Statistics, at the bottom of Fig 8.9 to get Fig. 8.10.
Click on Estimates (under Regression coefficients), click on Model fit, and Descriptives.
(See Fig. 8.10.)

1
kIl Linear Regression

+ | & gendes [gend) e
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| | ®atazinna (b ardtrde = ;I Fig. 8.9. Linear regression.
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& ingonometry nha ® mother's educalon & Help
S (@[S |
+ | & math grades [mathy
= | # gadesinh.s. [grad Method [ rter -
. | # mosaic, pattemn test ;
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Fig. 8.10. Linear
regression: Statistics.
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Click on OK.

SPSS for Introductory Statistics

Click on Continue.

Compare your output and syntax to Output 8.6.

Output 8.6: Multiple Regression

REGRESSION

/DESCRIPTIVES MEAN STDDEV CORR SIG N
/MISSING LISTWISE

/STATISTICS COEFF QUTS R ANCVA
/CRITERIA=PIN(.05) POUT{.10)

/NOORIGIN

/DEPENDENT mathach
/METHOD=ENTER grades faed maed gender

Nis 73 because 2
participants have

some missing data.

Regression
Descriptive Statistics
Mean Std. Deviation N __
math achievement test | 12.6621 6.49659 ?3\
gradesin h.s. 5.70 1.552 73
father's education 4.73 2.830 73
mother's education 4.14 2.263 73
gender 55 501 73/]
Regression — :
This is a high correlation among

achievement, the

Correlations with math

these independent variables. It
indicates there might be a problem
with multicollinearity
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dependent variable. \
Correlations
\ math
achievement father's mother's
\ gradesin h.s. | aduecation | | education gender
Pearson Comelation math achievement test 472 345 -274
grades in h.s. 1.000 180 144
father's education 269 681 -.265
mother's education 190 1.000 -.202
gender 144 -.202 1.000
Sig. (1-tailed) math achievement test : .000 001 .010
grades in h.s. .000 . 054 112
father's education .000 01 P .000 .012
mother's education .001 .054 .000 = .043
gender \ .010 / 112 012 .043 :
N math achievement test \ﬂ\ 73 73 73 73
grades in h.s. 73 73 73 73 73
father's education 73 73 73 73 73
mother's education 73 \ 73 73 73 73
gender 73 73 73 73 73
\— Significance level of
correlations with math
achievement.
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Variables Entered/Removed

Model

Variables
Entered

Variables
Removed

Method

This indicates that we used the Enter

1 gender,
grades in
h.s.,
mother's
education,
father's
education

e

Enter

method in the calculation. If we chose a
different method, this box and the outputs
would be different.

]

a. All requested variables entered.
b. Dependent Variable: math achievement test

This indicates that 34% of the variance can be
predicted from the independent variables.

Multiple
correlation
coefficient.
\ Model Summary /
}r-\ Adjusted | Std. Error of
Model RSquare | RS the Estimate
1 (.6169) 379 ! 343 5.26585

a. Pmdictors?_(r()onstant). gender, gradé‘;irn h.s.,

mother's education, father's education

This indicates that the combination of these variables

significantly predicts the dependent variable.

ANOVAD \

Sum of N
Model Squares df Mean Square F m g. )
1 Regression 1183.222 4 288.305 10.397 .0002
Residual 1885.583 68 27.729
Total 3038.804 72

a. Predictors: (Constant), gender, grades in h.s., mother's education, father's
education

b. Dependent Variable: math achievement test
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Coefficients’
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 1047 | 2.526 415 ﬁ N
grades in h.s. 1.946 427 465 4.560 .000
father's education 191 313 .083 .610 544
mother's education 406 375 : 1.084 L7 »
gender -3.759 1.321 -.290 -Z2.84% .006

a. Dependent Variable: math achievement test

Only grades and gender are significantly contributing to
the equation. However, all of the variables need to be
included to obtain this result, since the overall F value
was computed with all the variables in the equation. )

Interpretation of Output 8.6

This output begins with the usual Descriptive Statistics for all five variables in the first table.
Note that the V is 73 because two participants are missing a score on one or more variables.
Multiple regression uses only the participants who have complete data (listwise exclusion) for
all the variables. The next table is a Correlation matrix. The first column shows the
correlations of the other variables with math achievement. Note that all of the
independent/predictor variables are significantly correlated with math achievement. Also
notice that two of the predictor/ independent variables are highly correlated with each other;
i.e., mother’s and father’s education (.681).

The Model Summary table shows that the multiple correlation coefficient (R), using all the
predictors simultaneously, is .62 and the Adjusted R’ is .34, meaning that 34% of the variance
in math achievement can be predicted from the combination of father’s education, mother’s
education, grades in h.s., and gender. Note that the adjusted R’ is lower than the unadjusted R’
(.38). This is, in part, related to the number of variables in the equation. As you will see from
the coefficients table, only grades in h.s. and gender are significant, but the other variables
will always add a little to the prediction of math achievement. Because several independent
variables were used, a reduction of the number of variables might help us find an equation that
explains more of the variance in the dependent variable, once the correction is made. It is
helpful to use the concept of parsimony with multiple regression, and use the smallest number
of predictors needed. The ANOVA table shows that F = 10.40 and is statistically significant.
This indicates that the combination of the predictors significantly combine together to predict
math achievement.

One of the most important tables is the Coefficients table. It shows the standardized beta
coefficients, which are interpreted much like correlation coefficients. The t value and the Sig
opposite each independent variable indicates whether that variable is significantly contributing
to the equation for predicting math achievement. Thus, grades and gender, in this example,
are the only variables that are significantly adding anything to the prediction when the other
three variables are already considered. It is important to note that all the variables are being
considered together when these values are computed. Therefore, if you delete one of the
predictors, even if it is not significant, it can affect the levels of significance for other
predictors. For example, if we deleted father’s education, it is quite possible that mother’s
education would be a significant predictor.
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How to Write About Output 8.6

Results
Simultaneous multiple regression was conducted to investigate the best predictors of math
achievement test scores. The means, standard deviations, and intercorrelations can be found in
Table 8.2a. When the combination of variables to predict math achievement test included
grades in h.s., father’s education, mother’s education, and gender, F(4, 68) = 10.40, p < .001.

The beta coefficients are presented in Table 8.2b. Note that high grades and male gender
significantly predict math achievement when all four variables are included. The adjusted R
squared value was .343. This indicates that 34% of the variance in math achievement was
explained by the model. According to Cohen (1988) this is a large effect.

Table 8.2a

Means, Standard Deviations, and Intercorrelations for Math Achievement and Predictors
Variables (N=73)

Variable M SD Grades in Father’s Mother’s Gender
h.s. education  education

Math 12.66 6.50 N Wi 38%* J35* -27*
Achievement

Predictor
variable

1. Grades in 5.70 1.55 -- 27 .19 .14
h.s.

2. Father’s 4.73 2.83 -- 68** -27%
education

3. Mother’s 4.14 2.26 -- - 20%
education

4. Gender 55 .50 -—
*p <.05; **p < .01.
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Table 8.2b

Simultaneous Multiple Regression Analysis Summary for Grades in High School, Father’s
and Mother’s Education, and Gender Predicting Math Achievement (N = 73)

Variable B SEB B
Grades in h.s. 1.95 43 AT**
Father’s education 19 31 .08
Mother’s education 41 38 14
Gender -.38 1.32 -.29*
Constant 1.05 2.53

Note. R’ = .38; F(4,68) = 10.40, p < .001.

*p < 01; **p < 001.

8.1.

8.2.

8.3.

8.4.

8.3.

8.6.

Interpretation Questions

Why would we graph scatterplots and regression lines?

In Output 8.2: a) What do the correlation coefficients tell us? b) What is »? for the Pearson
correlation? What does it mean? ¢) Compare the Pearson and Spearman correlations on
both correlation size and significance level. d) When should you use which type in this
case?

In Output 8.3, how many of the Pearson correlation coefficients are significant? Write an
interpretation of a) one of the significant and b) one of the nonsignificant correlations in
Output 8.3. Include whether or not the correlation is significant, your decision about the
null hypothesis, and a sentence or two describing the correlations in nontechnical terms.
Include comments related to the sign and to the effect size.

Interpret the Cronbach alpha in OQutput 8.4? What is the internal consistency reliability?

Using Output 8.5, find the regression (B) coefficient or weight and the standardized
regression (Beta) coefficient. a) How do these compare to the correlation between the
same variables in Output 8.37 ) What does the regression (B) weight tell you? c) Give an
example of a research problem in which the Pearson correlation would be more
appropriate than bivariate regression, and one in which bivariate regression would be
more appropriate than Pearson correlation.

In Output 8.6, what do the Beta weights (standardized regression weights or coefficients)
tell you about the ability of the predictors to predict the dependent variable?
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Extra SPSS Problems

Using your College Student data do the following problems. Print your outputs after typing your
interpretations on them. Please circle the key parts of the output that you discuss.

8.1.

8.2.

8.3.

8.4,

8.5.

What is the correlation between students’ height and parent’s height? Also produce a
scatterplot. Interpret the results, including statistical significance, direction, and effect
size.

Write a question that can be answered via correlational analysis with two approximately
normal or scale variables. Run the appropriate statistics to answer the question.
Interpret the results.

Make a correlation matrix using at least four appropriate variables. Identify, using the
variable names, the two strongest and two weakest correlations. What were the r and p
values for each correlation?

Is there a combination of gender and same sex parent’s height that predicts student’s
height better than either one of these variables alone?

Is there a combination of hours of TV watching, hours of studying, and hours of work
that predicts current GPA?
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CHAPTER 9

Comparing Groups with ¢ Tests
and Similar Nonparametric Tests

In this chapter, we will use a number of statistics to compare groups. In Problem 1, we will use a
one-sample 7 test to compare one group or sample to a hypothesized population mean. Then we
will examine two parametric and two nonparametric/ordinal statistics that compare two groups of
participants. Problem 2 compares two independent groups (between groups design), males and
females, using the independent samples ¢ test. Problem 3 uses the Mann-Whitney
nonparametric test, which is similar to the independent ¢ test. Problem 4 is a within subjects
design that uses a paired samples # to compare the average levels of education of students’
mothers and fathers. Problem 5 will also use the paired ¢ but, in this case, to check the reliability
of a repeated measure, namely the visualization test and visualization retest. Problem 6 shows
how to use the nonparametric Wilcoxon test for a within subjects design.

The top right side of Table 9.1 distinguishes between between groups and within subjects
designs. This helps determine the specific statistic to use. The other determinant of which statistic
to use has do with statistical assumptions. If the assumptions are not markedly violated, you can
use a parametric test. If the assumptions are markedly violated, one can use a nonparametric test,
as indicated by the left side of Table 9.1. Another alternative is to transform the variable so that it
meets the assumptions, but this is beyond the scope of this book. Note that chi-square has been
demonstrated in Chapter 7 so we will not use it here. The McNemar test, which is rarely used,
will not be demonstrated.

Table 9.1. Selection of an Appropriate Inferential Statistic for Basic, Two Variable Difference
Questions or Hypotheses

Level of One Factor or Independent Variable With 2
Measurement Compare Categories or Levels/Groups/Samples
of Dependent Independent Repeated Measures
Variable Samples or Groups or Related Samples
(Between) (Within)
Parametric Dependent Variable Means INDEPENDENT PAIRED SAMPLES
Statistics Approximates SAMPLES ¢ TEST ¢t TEST
Normal (Scale) (or ONE - WAY
Data and ANOVA)
Assumptions Not
Markedly Violated
Nonparametric Dependent Variable Mean MANN-WHITNEY WILCOXON
Statistics Clearly Ordinal Ranks
Data or the ANOVA
Assumptions Are
Markedly Violated
Dependent Counts CHI-SQUARE MC NEMAR
Variable is
Nominal or
(dichotomous)
Data
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You might ask, why would you compute a ¢ test when one-way ANOVA (F) can be used to
compare two groups as well as three or more groups? Because F = £, both statistics provide the
same information. Thus, the choice is mostly a matter of personal preference. However, ¢ tests
can be either one tailed or two-tailed, while ANOV As are always two tailed. Thus, if you have a
clear directional hypothesis that predicts which group will have the higher mean, you may want to
use a ¢ test rather than one-way ANOV A when comparing two groups. In addition, the ¢ test
output provides an adjustment to deal with the problem of unequal variances; whereas, the
remedy for such problems in ANOV A may be less satisfactory. Finally, it is just more customary
to use ¢ test if one is comparing only two groups. You must use ANOVA if you want to compare
three or more groups.

e Retrieve hsbdataB from your data file.

Problem 9.1. One-Sample ¢ Test

Sometimes you want to compare the mean of a sample with a hypothesized population mean to
see if your sample is significantly different. For example, the scholastic aptitude test was
originally standardized so that the mean was 500 and the standard deviation was 100. In our
modified HSB data set, we made up mock SAT-Math data for each student. You may remember
from chapter 3 that the mean SAT-Math score for our sample was 490.53.

Assumptions of the One-Sample t Test:
1. The dependent variable is normally distributed within the population.
2. The data are independent (scores of one participant are not dependent on scores of
the others).

9.1. Is the mean SAT-Math score in the modified HSB data set significantly different from the
presumed population mean of 500?

To compute the one-sample ¢ test, use the following commands:

e Analyze => Compare Means => One-Sample T test

e Move scholastic aptitude test-math to the Test Variables box.

e Type 500 in the Test Value box (the test value is the hypothesized population mean).
e Click OK.

T-TEST
/TESTVAL = 500
/MISSING = ANALYSIS
/VARIABLES = satm
/CRITERIA = CI(.95) .

One-Sample Statistics
Std. Error
N Mean | Std. Deviation Mean
scholastic aptitude
test - math 75 49053 94.553 10.918
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This ¢ test compares the
sample mean of 490.53
with the test value.

One-Sample Test

Test Value {Iéa

a—

95% Confidence Interval

of the Difference
Mean
t df Sig. (2-tailed) | Difference Lower Upper

scholastic aptitude

test - math -.867 74 -9.47 -31.22 12.29

Interpretation of Output 9.1
The One-Sample Statistics table provides basic descriptive statistics for the variable under

consideration. The Mean SAT-Math for the students in the sample will be compared to the
hypothesized population mean, displayed as the Test Value in the One-Sample Test table. On
the bottom line of this table, are the 7 value, df, and the two tailed sig. (p) value, which is circled.
Note the p = .389 so we can say that the sample mean (491) is not significantly different from the
population mean. The table also provides the difference (-9.47) between the sample and
population means and the 95% Confidence Interval. The difference between the sample and the
population mean is likely to be between 12.29 and -31.72 points. Notice that this range includes
the value of zero, so it is possible that there is no difference. Thus, the difference is not
statistically significant.

Problem 9.2: Independent Samples ¢ Test

When investigating the difference between two unrelated or independent groups (in this case
males and females) on an approximately normal dependent variable it is appropriate to choose an
independent samples ¢ test if the following assumptions are not markedly violated.

Assumptions of the Independent Samples t Test:
1. The variances of the dependent variable in the two populations are equal.
2. The dependent variable is normally distributed within each population.
3. The data are independent (scores of one participant are not related systematically to
scores of the others).

SPSS will automatically test assumption 1 with the Levene test for equal variances. Assumption
2 could be tested, as we did in Chapter 4, Problem 4.3, with the Explore command, to see that the
dependent variables are at least appropriately normally distributed for each gender. Because the ¢
test is quite robust to violations of this assumption, we won’t test it here. Assumption 3 probably
is met because the genders are not matched or related pairs and there is no reason to believe that
one person’s score might have influenced another person’s. This assumption is best addressed
during design and data collection. In addition to ensuring that the data meet these assumptions,
the researcher should try to ensure that groups or samples are of similar size, as the assumption of
homogeneity of variance is most important and more likely to be violated if samples differ

markedly in size.
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9.2. Do male and female students differ significantly in regard to their average math
achievement scores, grades in high school, and visualization test scores?

One feature of SPSS is that it can do several ¢ tests in a single output, if they have the same
independent or grouping variable (e.g., gender). In this problem, we have asked SPSS to compute
three separate ¢ tests, one each for math achievement, grades in high school, and visualization test
scores.

With more than one dependent variable, one could have chosen to use MANOVA (see Fig. 6.1),
especially if these variables were conceptually related and correlated with each other. MANOVA
would enable us to see how a linear combination of these three variables was different for boys
than for girls. We will not demonstrate MANOV A in this book, but see Leech et al. (2004) SPSS
for Intermediate Statistics for how to compute and interpret MANOVA.

For the ¢ tests, follow these commands:

e Click on Analyze => Compare means => Independent Samples T Test.

o Move math achievement, grades in high school, and visualization to the Test (dependent)
Variable(s) box and move gender to the Grouping (independent) Variable(s) box (see Fig.
9.1).

[

15[ tohor's sducation [ 4]
! gm':mm'm‘"

' dgetya 1 nhe |

i | B adgebia2inha [&
1| ® peometry n hut. [ge

|

1Y [PNIE f 3
=1 ! Fig. 9.1. Independent-samples ¢ test.
- Canced

ey

Next click on Define Groups in Fig. 9.1 to get Fig. 9.2.
Type 0 (for males) in the Group 1 box and 1 (for females) in the Group 2 box (see Fig. 9.2).
This will enable us to compare males and females on each of the three dependent variables.

@ Use spociied yakios [ Continue |

Growp 1: [0 i Fig. 9.2. Define groups.
Gow2 [T —“:_l
C Cpont [

¢ Click on Continue then on OK. Compare your output to Output 9.2.

Output 9.2: Independent Samples t Test

T-TEST
GROUPS=gender (0 1)
/MISSING=ANALYSIS
/VARIABLES=mathach grades visual
/CRITERIA=CIN(.95) .
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Each circle contains the
/ means to be compared.

Group Statistics

Std. Error

_gender N Std. Deviation Mean
math achievement test male 34 6.03154 1.03440
female 41 6.69612 1.04576
grades in h.s. male 34 1.638 .281
female 41 1.515 237
visualization test male 34 4.47067 .76671
female 41 3.10592 .48506

Independent Samples Test
Lavana's Test for
95% Confidence

Mean Std. Error

E Sig ! o | Sig @usled) | Difrence | Difrence |
e ] E:‘”ml 537 697 73 1009 P 148548 | (04848 | ©6.98
g —
E:"‘m, 2724 | 72472 ['_’7;; 40070 | 147002 | 107515 | 6.93804
grades in h.s. w 574 @ 73 _—565"> .33 365 -1.056 a7
Equal variances |
it .g97 | 68145 an .33 367 | 1082 403
visuakzation test Fﬁw 6510 /@| 2.466 73 018 21643 8rrma | 41486 | 291389
Equal varignces
o 25 | s1as0 .020 21643 | 90727 | 34761 | 398004
assumed % _J_
This is not the £ test. Itis a Circled numbers are discussed
test of the' assumption in the Interpretation box.
equal variances.

Interpretation of Output 9.2

The first table, (Group Statistics) shows descriptive statistics for the two groups (males and
females) separately. Note that the means within each of the three pairs look somewhat different.
This might be due to chance, so we will check the ¢ tests in the next table.

The second table, Independent Samples Test, provides two statistical tests. In the left two
columns of numbers, is the Levene test for the assumption that the variances of the two groups
are equal. This is not the ¢ test; it only assesses an assumption! If this F test is not significant (as
in the case of math achievement and grades in high school), the assumption is not violated, and
one uses the Equal variances assumed line for the 7 test and related statistics. However, if
Levene’s F is statistically significant (sig < .05), as is true for visualization, then variances are
significantly different and the assumption of equal variances is violated. In that case, the Equal
variances not assumed line is used; and SPSS adjusts the ¢, df and Sig. The appropriate lines are
circled.

Thus, for visualization, the appropriate ¢ = 2.39, degrees of freedom (df) = 57.185, and p = .020.
This ¢ is statistically significant so, based on the means, we can say that boys have higher
visualization scores than girls. We used visualization to provide an example where the
assumption of equal variances was violated (Levene’s test was significant). Note that for grades
in high school the t is not statistically significant (p = .369) so we conclude that there is no
difference between boy and girls on grades. On the other hand, math achievement is statistically
significant because p < .05.
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The 95% Confidence Interval of the Difference is shown in the two right hand columns of the
Output. The confidence interval tells us that if we repeated the study 100 times, 95 of the times
the true (population) difference would fall within the confidence interval, which for math
achievement is between 1.05 points and 6.97 points. Note that if the Upper and Lower bounds
have the same sign (either + and + or - and -), we know that the difference is statistically
significant because this means that the null finding of zero difference lies outside of the
confidence interval. On the other hand, if zero lies between the upper and lower limits, there
could be no difference, as is the case for grades in h.s.. The lower limit of the confidence interval
on math achievement tells us that the difference between males and females could be as small as
1.05 points out of 25.

Effect size measures for ¢ tests are not provided in the printout but can be estimated relatively
casily. See Chapter 6 for the formula and interpretation of d. For math achievement, the
difference between the means (4.01) would be divided by about 6.4, an estimate of the pooled
(weighted average) standard deviation. Thus, 4 would be approximately .60, which is, according
to Cohen (1988), a medium to large sized “effect.” Because you need means and standard
deviations to compute the effect size, you should include a table with means and standard
deviations in your results section for a full interpretation of ¢ tests.

How to Write About OQutput 9.2.

Results
Table 9.1 shows that males were significantly different from females on math achievement,
(p=.009). Inspection of the two group means indicates that the average math achievement score
for female students (10.75) is significantly lower than the score (14.76) for males. The difference
between the means is 4.01 points on a 25-point test. The effect size d is approximately .6, which
is typical in this discipline. Males did not differ significantly from females on grades in high
school (7=.369), but males did score higher on the visualization test (p=.020). The effect size, d,
is again approximately .6.

Table 9.1

Comparison of Male and Female High School Students on a Math Achievement Test,
Grades, and a Visualization Test (n = 34 males and 41 females)

Variable M SD ¢ df p
Math achievement 2.70 73 .009
Males 14.76 6.03
Females 10.75 6.70
Grades -.90 73 369
Males 5.50 1.64
Females 5.83 1.52
Visualization 2.39° 57.2¢ 020
Males 6.43 447
Females 4.26 3.11

*The ¢ and df were adjusted because variances were not equal.
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Problem 9.3: The Nonparametric Mann-Whitney U Test

What should you do if the ¢ test assumptions are markedly violated (e.g., what if the dependent
variable data are grossly nonnormally distributed or are ordinal)? One answer is to run the
appropriate nonparametric statistic, which in this case is called the Mann-Whitney (M-W) U test.
The M-W is used with a between groups design with two levels of the independent variable.

Assumptions of the Mann-Whitney test:

1. The dependent variable is assumed to be continuous before it is ranked. It is assumed
there is an underlying continuity in the dependent variable even if the actual data are
discrete numbers such as 1, 2, 3, 4, 5, on a Likert rating.

2. The data are independent (scores of one participant are not dependent on scores of the
others).

9.3. Do boys and girls differ significantly on visualization, math achievement, and grades?
Assume that the scores for the three dependent variables are ordinal level data or violate
other assumptions of the ¢ tests.

Click on Analyze => Nonparametric Tests => 2 Independent Samples.

Move visualization, math achievement, grades in h.s. to the Test (dependent) Variable List.
Next, click on gender and move it over to the Grouping (independent) Variable box.

Click on Define Groups and enter 0 and 1 for groups because males are 0 and females are 1.
Ensure that Mann-Whitney U is checked. Your window should look like Fig. 9.3.

Click on OK.

Compare your syntax and output to Output 9.3 to check your work.

« Two-lndependent-Samples Tests
I

Test Variable List

# lather's education [ & : : 0K

 mother's education - visualzation test [vi & -';;-

® algebra 1inhs. [ab ?} mﬂ“h‘f"s‘ e Fig. 9.3. Nonparametric tests for
,g i A two independent samples.

#> tigonometry in h.s Grouping Variable: —W_

® calculus nh s [cal i ; Help

D e N [ v [

PT“ Tm, el i
| I Moses exieme teactions [~ WaldWolowkz J
Options:... I

Output 9.3 Non Parametric Test : Mann-Whitney U

NPAR TESTS
/M-W= visual mathach grades BY gender(0 1)
/MISSING ANALYSIS.

140



Chapter 9 — Comparing Groups

Mean ranks to be compared.
— / The group witi_l the higher
rank had the higher grades
__gender N Mean Ragk | Sur of Rank{ and test scores.

visualization test male 34 1484,

female 41 1366.00

Total 75
math achievement test male 34 45.1 1533.50

female 41 32.11 1316.50

Total 75
grades in h.s. male 34 .78 1216.50

female 41 39.84 1633.50

Total 75

Test Statistics®
math
visualization achievement
test test grades in h.s.

Mann-Whitney U 505.000 455.500 621.500
Wilcoxon W 1366.000 1316.500 1216.500
P -2.052 -2.575 -.818
Asymp. Sig. (2-tailed) __0_4_‘9__ .010 AT

a. Grouping Variable: gender

Interpretation of Output 9.3

The Ranks table shows the mean or average ranks for males and females on each of the three
dependent variables. SPSS ranks the 75 students from 75 (highest) to 1 (lowest) so that, in
contrast to the typical ranking procedure, a high mean rank indicates the group scored higher.

The second table provides the Mann-Whitney U, z score, and the Sig. (significance) level or p,
which are circled. Note that the mean ranks of the genders differ significantly on visualization
and math achievement but not on grades in high school, as was the case for the similar ¢ tests in
Problem 2. The Mann-Whitney test is only slightly less powerful than the ¢ test, so it is a good
alternative if the assumptions of the ¢ test are violated, as was the case with visualization.

Problem 9.4: Paired Samples 7 Test

In this problem, you will compare the average scores of each HSB student’s father’s and mother’s
scores on the same measure, namely their educational level. Since father’s and mother’s
education are not independent of each other, the paired ¢ test is the appropriate test to perform.
The paired samples ¢ test is also used when the two scores are repeated measures, such as the
visualization test score and the visualization retest score (see Problem 9.5). Another example
would be in a single group quasi-experimental study in which the same assessment is used as the
pretest, before the intervention, and as the posttest, after the intervention.

Assumptions and Conditions for Use of the Paired Samples t test:
1. The independent variable is dichotomous and its levels (or groups) are paired, or
matched, in some way (e.g., husband-wife, pre-post, etc.).
2. The dependent variable is normally distributed in the two conditions.
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94, Do students’ fathers or mothers have more education?

We will determine if the fathers of these students have more education than their mothers.
Remember that the fathers and mothers are paired; that is, each child has a pair of parents. (Note
that SPSS allows you to do more than one paired ¢ test at a time, so we could have compared the

visualization test and retest scores in the same run as we compared father’s and mother’s
education, but we decided to do them separately.)

Select on Analyze => Compare Means => Paired Samples T Test.

Click on both of the variables, father’s education and mother’s education, and move them
simultaneously to the Paired Variable(s) box (sce Fig. 9.4).
e Click on OK.

Compare your syntax and output to Output 9.4.

# gender [gender] e DK

B lalher's scucation Jf. =5 Pl
# mother's sducation | « & Phidriadd
® slgebra 1 inha s« 5 m Rest
® agebsa Zinhoe ag <0 ;

?mﬂuwnmlr-'” v Cancel |

# igonomety in he | Heb

; ﬁr}i’linnhnlj—’/ b L g
ﬁu-l!ﬂullr-=m--—-"—

Iv-uinr {

"""'ﬂ '. Oplions. |

Fig. 9.4. Paired-samples 7 test.

Output 9.4: Paired Samples t Tests

T-TEST

PAIRS= faed WITH maed (PAIRED)
/CRITERIA=CIN(.95)

/MISSING=ANALYSIS.
T-Test The circled
means are to
Paired Samples Statisti be compared.
/ Std. Error
”~ Mean N Std. Deviation Mean
Pair  father's education 4. 73“5 73 2.830 .331
1 mother's education 414 73 2.263 265
Paired Samples Correlations yam This is information
y about the correlations
N Correlation Sig. of mother’s education
Pair _ fathers education & = B;n_ %ooo ' with father’s
1 mother's education : . education. Not the
result of the paired ¢.
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The ¢ test and its Paired Samples Test

statistical significance.

Paired Samples Test

| —

Differences
95% Confidence
terval of the
Std. Error hﬁii
Mean Std. Deviation Mean Lower Upper 1 t df Sig. (2-tailed

Pair  father's education - S
A e aleepipeeei @ 2.101 246 10 1.08 @64 72 019 ]

Interpretation of Output 9.4

The first table shows the descriptive statistics used to compare mother's and father’s education
levels. The second table Paired Samples Correlations, provides correlations between the two
paired scores. The correlation (r = .68) between mother’s and father’s education indicates that
highly educated men tend to marry highly educated women and vice versa. It doesn’t tell you
whether men or women have more education. That is what # in the third table tells you.

The last table shows the Paired Samples ¢ Test. The Sig. for the comparison of the average
education level of the students’ mothers and fathers was, p = .019. Thus, the difference in
educational level is statistically significant, and we can tell from the means in the first table that
fathers have more education; however, the effect size is small (d= .59/2.1 = .28). We can tell from
the confidence interval that the difference in the means could be as small as .10 of a point or as
large as 1.08 points on the 2 to 10 scale.

It is important that you understand that the correlations in the second table provide you with
different information than the paired ¢. If not, read this interpretation again.

How to Write About Output 9.4
Results

A paired or correlated samples ¢ test indicated that the students’ fathers had on average
significantly more education than their mothers, ¢ (72)=2.40, p=.019, d=.28. The difference,
although statistically significant, is small using Cohen’s (1988) guidelines.

Problem 9.5: Using the Paired ¢ Test to Check Reliability

In addition to comparing the means for two paired or matched samples, the paired ¢ can be used to
check reliability, especially test-retest or parallel (equivalent) forms reliability. These
reliability measures are often done using a correlation coefficient so we could have demonstrated
tesi-retest reliability for the visualization scores in the last chapter. However, the paired ¢ test may
be a better way to go because it produces not only the correlation but also comparison of the test
and retest means. Thus we can see not only whether the test scores were strongly associated
(relatively high test scores have high retests and vice versa) but also whether, on the average,
scores on the retest were the same (versus higher or lower) as the test scores.

9.5.  What is the test-retest reliability of the visualization test scores?

To compute reliability with the paired ¢ test program:
e Select Analyze => Compare Means => Paired Samples T Test.
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e Click on both visualization test and visualization retest and move them simultaneously to the
Paired Variables box (see Fig 9.4 if you need help).

e (I

ick on OK.

Compare your output to Output 9.5.

Output 9.5: Test-Retest Reliability for Visualization Scores

T-TEST

PAIRS = visual

/CRI
/MIS

TERIA = CI(.95)
SING = ANALYSIS.

WITH wvisual2 (PATRED)

Note the means seem

different.
Paired Samples Statistics/ Heren
Std. Error
Mean Std. Deviation Mean
Pair  visualization test .2433‘">/ 75 3.91203 45172
1 visualization retest 4.5467 75 3.01816 .34851
Paired Samples Correlations Focus on the size of the
correlation, not the Sig.
N Correlation Sig. L+ when checking reliability.
Pair visualization test & /j
1 visualization retest 75 .BBSJ) .000
Paired Samples Test
Paired Differences
95% Confidence
Interval of the
Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Pair visualization test -
A \diaion ket 6967 187637 | 216686 2650 |  1.1284 3.215 74
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Interpretation of Output 9.5
The first table, Paired Samples Statistic, shows the Mean for the visualization test (5.24) and
the visualization retest (4.55). These means will be compared in the third table. In addition, the

ns, SDs, and standard errors are shown.

The second table shows the Paired Samples Correlations, which will be used to assess the test-
retest reliability of the visualization scores. Note that the » = .89, which is a high positive
correlation and seems to provide good support for test-retest reliability. This correlation indicates
that students who scored highly on the test were very likely to score high on the retest, and
students who scored low were very likely to score poorly on the retest.

The Paired Samples Test table shows that the means of the test and the retest are significantly
different (p=.002). Although the correlation is very high, a significant ¢ test is usually not
desirable for a reliability measure. It indicates that, although the same students tended to score
high (or low) on the test and the retest, the group average was lower on the retest. For some
reason the retest seemed to be harder. Perhaps the retest was actually an alternate form or version
of the test that was supposed to be equivalent but turned out to be more difficult.

Problem 9.6: Nonparametric Wilcoxon Test for Two Related Samples

Let’s assume that education levels and visualization scores are not normally distributed and/or
other assumptions of the paired ¢ are violated. In fact, mother’s education was quite skewed (see
Chapter 4). Let’s run the Wilcoxon signed-ranks test nonparametric test to see if fathers have
significantly higher educational levels than mothers and to see if the visualization test is
significantly different from visualization retest. The assumptions of the Wilcoxon tests are similar
to those for the Mann-Whitney test.

9.6.  a) Are mother’s and father’s education levels significant different? b) Are the
visualization and visualization retest scores different?

To do this, select Analyze => Nonparametric => 2 Related Samples.

Highlight both father’s education and mother'’s education and move them together into the
Test Pair(s) List box. Then, highlight visualization and visualization retest and move them
into the box.

Ensure that Wilcoxon is checked in the Test Type dialog box.

Compare your syntax and output to Output 9.6.

Output 9.6

NPAR TEST
/WILCOXON=faed visual WITH maed visual2 (PAIRED)
/MISSING ANALYSIS.
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Ranks
S N Mean Rank Sum of Ranks
mother's education Negative Ranks 27N 29.20 788.50
- father’s education Positive Ranks 21b 18.45 387.50
Ties 25¢
Total
visualization retest Negative Ranks 34.02 -1871.00
- visualization test Positive Ranks 14¢ 38.86 544.00
Ties 6f
Total
a. mother's education < father's education
b. mother's education > father's education
C. father's education = mother's education
d. visualization retest < visualization test
8. visualization retest > visualization test
f. visualization test = visualization retest
Test Statistics P
mother's visualization
education - retest -
father's visualization
education test
Z -2.085° -3.975°
Asymp. Sig. (2-tailed) 037 C.000 P

a. Based on positive ranks.
b. Wilcoxon Signed Ranks Test

Interpretation of Output 9.6

Output 9.6 shows the nonparametric (Wilcoxon) analyses that are similar to the paired # tests.
Note that the first table shows not only the mean ranks, but also the number of students who, for
example, had mothers with less education than the fathers (27). Note that there were lots of ties
(25) and almost as many women (21) that have more education than their spouse. The second
table shows the significance level for the two tests. Note that the p or sig. values are quite similar

to those for the paired s.

9.1,

9.2,

Interpretation Questions

example of its use from the HSB data.
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a) Under what conditions would you use a one-sample ¢ test? b) Provide another possible

In Output 9.2: a) Are the variances equal or significantly different for the three dependent
variables? b) List the appropriate ¢, df, and p (significance level) for each ¢ test as you
would in an article. ¢) Which ¢ tests are statistically significant? d) Write sentences
interpreting the gender difference between the means of grades in high school and also
visualization. ) Interpret the 95% confidence interval for these two variables. f)
Comment on the effect sizes.




93.

9.4.

9.5.

9.6.

Chapter 9 — Comparing Groups

a) Compare the results of Output 9.2 and 9.3. b) When would you use the Mann-
Whitney U test?

In Qutput 9.4: a) What does the paired samples correlation for mother’s and father’s
education mean? b) Interpret/explain the results for the # test. ¢) Explain how the
correlation and the ¢ test differ in what information they provide. d) Describe the results if
the » was .90 and the ¢ was zero. e) What if r was zero and ¢ was 5.0?7

Interpret the reliability for the visualization test and retest scores using Output 9.5.

a) Compare the results of Outputs 9.4 and 9.5 with Output 9.6. b) When would you use
the Wilcoxon test?

Extra SPSS Problems

Using the College Student data file, do the following problems. Print your outputs after typing
your interpretations on them. Please circle the key parts of the output that you use for your

interpretation.

9.1.  Isthere a significant difference between the genders on average student height? Explain.
Provide a full interpretation of the results.

9.2 Is there a difference between the number of hours students study and the hours they
work? Also, is there an association between the two?

9.3.  Write another question that can be answered from the data using a paired sample ¢ test.
Run the ¢ test and provide a full interpretation.

9.4.  Are there differences between males and females in regard to the average number of

hours they a) study, b) work, and c) watch TV? Hours of study is quite skewed so
compute an appropriate nonparametric statistic.
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CHAPTER 10
Analysis of Variance (ANOVA)

In this chapter, you will learn how to compute two types of analysis of variance (ANOVA) and an
appropriate nonparametric statistic. In Problem 1, we will use the one-way or single factor
ANOVA to compare three levels of father’s education on several dependent variables (e.g., math
achievement). If the ANOVA is statistically significant, you will know that there is a difference
somewhere, but you will not know which pairs of means were significantly different. In Problem
2, we show you when and how to do appropriate post hoc tests to see which pairs of means were
different. In Problem 3, you will compute the Kruskal-Wallis (K-W) test, a nonparametric test
similar to one-way ANOVA. In Problem 4, we will introduce you to two-way or factorial
ANOVA. This complex statistic is discussed in more detail in our companion book, Leech et al.
(2004), SPSS for Intermediate Statistics.

¢ Retrieve your hsbdataB.sav file.
Problem 10.1: One-Way (or Single Factor) ANOVA

In this problem, you will examine a statistical technique for comparing two or more independent
groups on the dependent variable. The appropriate statistic, called One-Way ANOVA in SPSS,
compares the means of the samples or groups in order to make inferences about the population
means. One-way ANOVA is also called single factor analysis of variance because there is only
one independent variable or factor. The independent variable has nominal levels or a few ordered
levels.

Remember that, in Chapter 9, we used the independent samples 7 to compare two groups (males
and females). The one-way ANOV A may be used to compare two groups, but ANOVA is
necessary if you want to compare three or more groups (e.g., three levels of father’s education).
Review Fig. 6.1 and Table 6.1 to see how these statistics fit into the overall selection of an
appropriate statistic.

Assumptions of ANOVA
1. Observations are independent (the value of one observation is not related to any other

observation. In other words, one person’s score should not provide any clue as to how
any of the other people should score).

2. Variances on the dependent variable are equal across groups.

3. The dependent variable is normally distributed for each group.

Because ANOVA is robust, it can be used when variances are only approximately equal if the
number of subjects in each group is equal. ANOVA also is robust if the dependent variable data
are even approximately normally distributed. Thus, if assumption #2, or, even more so, #3 is not
fully met, you may still be able to use ANOVA. There are also several choices of post hoc tests to
use depending on whether the assumption of equal variances has been violated. Dunnett’s C and
Games Howell are appropriate post hoc tests if the assumption of equal variances is violated.

10.1. Are there differences among the three father’s education revised groups on grades in high
school, visualization test scores, and math achievement?
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We will use the One-Way ANOVA procedure because we have one independent variable with
three ordered levels. SPSS allows us to do several one-way ANOV As at a time so we will do
three ANOV As in this problem, one for each of the three dependent variables. Note that you
could do MANOVA (see Fig. 6.1) instead of three ANOV As, especially if the dependent
variables are correlated and conceptually related, but that is beyond the scope of this book. See
our companion book (Leech et al., 2004).

To do the three one-way ANOV As, use the following commands:

Analyze => Compare Means => One-Way ANOVA.

Move grades in h.s., visualization test, and math achievement into the Dependent List box in
Fig. 10.1.

Click on father’s educ revised and move it to the Factor (independent variable)box.

Finally, click on Options and choose Descriptives and Homogeneity of variance. See Fig.
10.2.

® soses | mhs. I.{“;'—-f' Oupars Fig. 10.1. One-way ANOVA.
& sigetxa 2inha [ | —
@uuunnhH‘J

mnm :
’::‘;‘:‘m g Note: Instead of doing post hoc
® mosac.stiented | (after the fact) tests, you could
> o | do planned contrasts if you
g:::M| . bk have a prediction about
T P T MR s A expected differences or trends.

Fig. 10.2. One-way ANOVA: Options.

To check the assumption that the
variances were equal, we click on
this.

® Click on Continue then OK. Compare your output to OQutput 10.1.

Output 10.1. One-Way ANOVA

ONEWAY
grades visual mathach BY faedRevis
/STATISTICS DESCRIPTIVES HOMOGENEITY
/MISSING ANALYSIS .
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Means to be compared.
Descriptives
95% Confidence Interval for
Mean
. N Mean . Deviation | Std. Emor_| Lower Bound | Upper Bound | Minimum | Maximum
grades in N.s, HS grad or less 38 30 1.475 239 4.86 5.83 3 8
Some College 16 5.56 1.788 447 4.61 6.52 2 8
BS or More 19 6. 1.219 280 5.94 7.41 4 8
Total 73 5.70 1.552 182 5.34 6.06 2 8
visualization test HS grad or less 38 | /2671 3.06058 | 64249 3.3692 5.9729 -25 14.8
Some College 16 || 6.0156 456022 | 1.14005 3.5857 8.4456 -25 14.8
BS or More 19 .46 2.79044 | 64017 4.1156. 6.8055 -25 a.75
Total 73| 514742 3.82787 | 44802 4.2781 6.0843 -25 14.8
math achievement test HS grad or lass 38 ona?ﬁ 561297 | 91054 8.2428 11.9326 1.00 227
Some College 16 || 14.3958 ) 466544 | 1.16636 11.9098 16.8819 5.00 237
BS or More 19 35 7.40918 | 1.69978 12.7798 19.9221 1.00 237
Total 73 | 12.6621 6.49659 | 76037 11.1463 14.1779 1.00 23.7
The Levene Test is
significant for math
Test of Homogeneity of Variances achievement so the
variances are
Levene significantly different.
Statistic df1 df2 Note: This tests an
grades in h.s. 1.546 2 70 assumption of
visualization test 1.926 2 70 ' ANS‘X:, ﬂoélﬂle
; cen ypotheses.
math achievement test 3.157 2 70 .049 /

a Groups with only one case are ignored in computing the test of homogeneity of variance for grades in h.s.
b Groups with only one case are ignored in computing the test of homogeneity of variance for visualization test.
¢ Groups with only one case are ignored in computing the test of homogeneity of variance for math achievement test.

(p<.05) while those for visualization are not.

ANOVA
Sum of
_ _ Squares df Mean Square /(’— S
grades in h.s. Between Groups 18.143 2 9.071 / 4.091 .02
Within Groups 155.227 70 > 2.218
Total 173.370 /4 72
visualization test Between Groups 22 505 2 11.252 .763 470
Within Groups 2.480 70 14.750
Total _~1 1054.985 72
math achievement test Between Grelps | 558.481 2 279.240 7.881 .001
Within ups 2480.324 70 35.433
To 3038.804 72
£ Zz
These are the degrees The between group differences for grades in high
of freedom: 2, 70. school and math achievement are significant
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Interpretation of Output 10.1

The first table, Descriptives, provides familiar descriptive statistics for the three father’s
education groups on each of the three dependent variables that we requested (grades,
visualization test, and math achievement,) for this analysis. Remember that although these three
dependent variables appear together in each of the tables, we have really computed

one-way ANOVAs.

The second table (Test of Homogeneity of Variances) provides the Levene test to check the
assumption that the variances of the three father’s education groups are equal; i.e., not
significantly different. Notice that for grades (p=.220) and visualization (p=.153) the Levene tests
are not significant. Thus, the assumption is not violated. However, for math achievement, p=.049;
therefore, the Levene test is significant and, thus, the assumption of equal variances is violated. In
this latter case, we could use the similar nonparametric test (Kruskal-Wallis). Or, if the overall F
is significant (as you can see it was in the ANOVA table), you could use a post hoc test designed
for situations in which the variances are unequal. We will do the latter in Problem 2 and the
former in Problem 3 for math achievement.

The ANOVA table in Output 10.1 is the key table because it shows whether the overall Fs for
these three ANOV As were significant. Note that the three father’s education groups differ
significantly on grades and math achievement but not visualization. When reporting these
findings one should write, for example, F(2, 70)=4.09, p=.021, for grades. The 2, 70 (circled for
grades in the ANOV A table) are the degrees of freedom (df) for the between groups “effect” and
within-groups “error,” respectively. F tables also usually include the mean squares, which
indicates the amount of variance (sums of squares) for that “effect” divided by the degrees of
freedom for that “effect.” You also should report the means (and SDs) so that one can see which
groups were high and low. Remember, however, that if you have three or more groups you will
not know which specific pairs of means are significantly different, unless you do a post hoc or a
priori comparison test, as shown in Problem 10.2. We provide an example of appropriate APA-
format tables and how to write about these ANOV As after Problem 10.2.

Problem 10.2: Post Hoc Multiple Comparison Tests

Now, we will introduce the concept of post hoc multiple comparisons, sometimes called follow-
up tests. When you compare three or more group means, you will know that there will be a
statistically significant difference somewhere if the ANOVA F (sometimes called the overall F
or omnibus F) is significant.

However, we would usually like to know which specific means are different from which other
ones. In order to know this, you can use one of several post hoc tests that are built into the SPSS
one-way ANOVA program. The LSD post hoc test is quite liberal and the Scheffe test is quite
conservative so many statisticians recommend a more middle of the road test such as the Tukey
HSD (honestly significant differences) test, if the Levene test was not significant, or the Games-
Howell test, if the Levene test was significant. Ordinarily, you do post hoc tests only if the overall
Fis significant. For this reason, we have separated Problems 1 and 2, which could have been
done in one step. Fig. 10.3 shows the steps one should use in deciding whether to use post hoc
multiple comparison tests.
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One factor or
independent variable
v
Is the overall/omnibus
F significant?
|
Vv Vv
I yes | no ]
v v
Are there more than Stop. Post hoc comparisons not
two groups (or two appropriate.
repeated measures)?
v Vs
yes | | no |
Vv v
Do post hoc comparisons (e.g., Stop. The two groups
Tukey or Games-Howell) to have significantly
determine the source of the different means.
differences. Examine the means.

Fig. 10.3. Schematic representation of when to use post hoc multiple comparisons with a
one-way ANOVA.

10.2. If the overall F is significant, which pairs of means are significantly different?

After you have examined Output 10.1 to see if the overall F (ANOVA) for each variable was
significant, you will do appropriate post hoc multiple comparisons for the statistically significant
variables. We will use the Tukey HSD if variances can be assumed to be equal (i.e., the Levene’s
Test is not significant) and the Games-Howell if the assumption of equal variances can not be
justified (i.e., the Levene’s Test is significant).

First we will do the Tukey HSD for grades. Get the One-Way ANOVA dialog box again by

doing the following:

e Select Analyze => Compare Means => One-Way ANOVA to see Fig. 10.1 again.

e Move visualization out of the Dependent List by highlighting it and clicking on the arrow
pointing left because the overall F for visualization was not significant. (See interpretation for
Output 10.1.)

e Also move math achievement to the left because the Levene test for it was significant. (We
will use it below.)

e Keep grades in the Dependent List because it had a significant ANOV A, and the Levene test
was not significant.

e Insure that father’s educ revised is in the Factor box.

e Next, click on Options and remove the check for Descriptive and Homogeneity of
Variances (in Fig. 10.2) because we do not need to do them again; they would be the same.

e Then click on Continue.

¢ In the main dialogue box (Fig. 10.1), click on Post Hoc to get Fig. 10.4.

o Check Tukey because, for grades, the Levene test was not significant so we assume that the
variances are approximately equal.
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One-Way ANOVA: Post Hoc Multiple C llli'lll AIS0ONs

! ngmw : . -..,_.:-__i*.._'_._-. o

{[I" LSD I~ SNK - Hmm' e }

| I= Bonlomoni 7 [Tikey Tedlivee 1 Env ez JIgR] |

(it - i L OO IT_I Fig. 10.4. One-way ANOVA:

| T BEGWFE I HochbergsGT2 oy = — Post hoc multiple comparisons.
I" REGWQ ™ Gabriel R PRiE <_u—,-d (AT i

| Ededun;tNdMn‘d e

|I‘Tw']2 I_Dl.mtl.'ﬂa F”G”Homl F'Wll: J

Significance levet I—

g |

¢ Click on Continue and then OK to run this post hoc test.

Compare your output to Output 10.2a

Output 10.2a

ONEWAY
grades BY faedRevis
/MISSING ANALYSIS
/POSTHOC = TUKEY ALPHA(.05).

ANOVA
des in h.s.
Sum of
Squares df Mean Square F Sig.
Between Groups 18.143 2 9.071 4.091 .021
Within Groups 155.227 70 2.218
Total 173.370 72
The Tukey HSD is a common post
Post Hoc Tests hoc test to use wl:gen variances are
equal. This table is most appropriate
Nullipls Comparisons when the group ns are similar. Here
: grades in h.s. they are quite different.
ukey HSD
Mean

() father's (J) father's Difference 95% Confidance Intarval
education revised education revised (-}~ | Std. Error Sig Lower Bound | Upper Bound
HS grad or less Some College -22 ) .444 873 ) -1.28 .84

BS or More -1.18° 418 017 -2.19 -18
Some College HS grad or less 22 .444 873 -84 1.28

BS or More C-98 .505 Ca44 -2.17 25
BS or More HS grad or less 1.18° \ 418 / 017 18 219

Some College .96 505 144 -.26 217

e L

*. The mean difference is significant at the .05 level.

1

These are the differences between the means
and the significance levels you would use if the
group sizes were similar. Ignore duplicates,
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grades in h.s.

Tukey HSD*®

father's education revised

N

Subset for alpha = .05

1 2

HS grad or less

38 5.4
16 5.56

Some College @
BS or More 19
Sig. .880 .096

Means for groups in homogeneous subsets are displayed.
2. Uses Harmonic Mean Sample Size = 21.209.

b. The group sizes are unequal. The harmonic mean of the
group sizes is used. Type | error levels are not

guaranteed.

This way of computing and
displaying the post hoc tests is
more appropriate when group
sizes are quite different. Groups
listed in the same subset are not
significantly different. Thus, the
grades of students whose father’s
were HS grads or less are not
different from those whose
father’s had some college.
Likewise, those with some college
are not different from those with a
BS or more, but HS grads or less
are different from those with a BS

or more.

After you do the Tukey test, let’s go back and do Games-Howell. Follow these steps:

* Seclect Analyze => Compare Means => One-Way ANOVA.

e Move grades out of the Dependent List by highlighting it and clicking on the arrow pointing

left.
e Move math achievement into the Dependent List box.
e Insure that father’s educ revised is still in the Factor box.
e In the main dialogue box (Fig. 10.1), press Post Hoc to get Fig. 10.4.
e Check Games-Howell because equal variances cannot be assumed for math achievement.
e Remove the check mark from Tukey.
e Click on Continue and then OK to run this post hoc test.
e Compare your syntax and output to Output 10.2b.
Output 10.2b
ONEWAY
mathach BY faedRevis
/MISSING ANALYSIS
/POSTHOC = GH ALPHA(.05).
ANOVA
math achievement test
Sum of
A . Squares df Mean Square Sig.
Between Groups 558.481 2 279.240 7.881 .001
Within Groups 2480.324 70 35.433
Total 3038.804 72

154




Chapter 10 — Analysis of Variance

Use Games-Howell

Post Hoc Tests when the Levene test

Multiple Comparisons indicates that the
Dependent Variable: math achievement test variances are unequal.
CGames-Howell >
Mean

(1) father's (J) father's Difference 95% Confidence Interval
education revised _education revised I-J Std. Ermor Sii Lower Bound | U Bound
HS grad or less _ Some College 24.3081T% 1.47969 fm;?‘) ~7.9351 6811

BS or More -6.2632" |/ 1.92830 .008 J -11.0284 -1.4980
Some College HS grad or less 33081*| 1.47969 O17 6811 7.9351

BS or More C -1.9551 ) 2.06147 614 D -7.0308 3.1205
BS or More HS grad or less o ¥ 1.92830 008 1.4980 11.0284

Some Collgge 1.9551 2.06147 .614 -3.1205 7.0308

*. The mean difference is significant at the .05 level.

Interpretation of Output 10.2

The first table in both 10.2a and 10.2b repeats appropriate parts of the ANOVA table from Output
10.1. The second table in 10.2a shows the Tukey HSD test for grades that you would use if the
three group sizes (#=38, 16, 19 from the first table in Output 10.1) had been similar. For grades,
this Tukey table indicates that there is only a small mean difference (.22) between the mean
grades of students whose fathers were high school grads or less (M = 5.34 from Output 10.1) and
those fathers who had some college (M=5.56). The Homogenous Subsets table shows an
adjusted Tukey that is appropriate when group sizes are not similar, as in this case. Note that
there is not a statistically significant difference (p=.880) between the grades of students whose
fathers were high school grads or less (low education) and those with some college (medium
education) because their means are both shown in Subset 1. In Subset 2, the medium and high
education group means are shown, indicating that they are not significantly different (p=.096). By
examining the two subset boxes, we can see that the low education group (M=5.34) is different
from the high education group (AM=6.53) because these two means do not appear in the same
subset.

Output 10.2b shows, for math achievement, the Games-Howell test, which we use for variables
that have unequal variances. Note that each comparison is presented twice. The Mean Difference
between students whose fathers were high school grads or less and those with fathers who had
some college was -4.31. The Sig. (p =.017) indicates that this is a significant difference. We can
also tell that this difference is significant because the confidence interval’s lower and upper
bounds both have minus signs. Similarly, students whose fathers had a B.S. degree were
significantly different on math achievement from those whose fathers had a high school degree or
less (p=.008).

An Example of how to Write About Output 10.1 and 10.2.

Results
A statistically significant difference was found among the three levels of father’s education on
grades in high school, F (2, 70) = 4.09, p = .021, and on math achievement, F (2, 70) = 7.88, p=
.001. Table 10.2a shows that the mean grades in high school is 5.34 for students whose father’s
had low education, 5.56 for students whose father’s attended some college (medium), and 6.53
for students whose father’s received a BS or more (high). Post hoc Tukey HSD Tests indicate that
the low education group and high education group differed significantly in their grades (p<.05,
d=.85). Likewise, there were also significant mean differences on math achievement between the
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low education and both the medium education group (p<.017, d=.80) and the high education
group (p=.008, d=1.0) using the Games-Howell post hoc test.

Table 10.2a

Means and Standard Deviations Comparing Three Father's Education Groups

Grades in H.S. Math Achievement Visualization

Father’s n M SD M SD M SD
Education

HS grad or less 38 5.34 1.48 10.09 5.61 4.67 3.96
(low)

Some college 16 5.56 1.79 14.40 4.67 6.02 4.56
(medium)

BS or more (high) 19 6.53 1.22 16.35 7.41 5.46 2.79
Total 73 5.70 1.55 12.66 6.50 5.17 3.83
Table 10.2b

One-Way Analysis of Variance Summary Table Comparing Father’s Education Groups on
Grades in High School, Math Achievement, and Visualization Test

Source df SS MS F p
Grades in High School
Between groups 2 18.14 9.07 4.09 021
Within groups 70 155.23 222
Total 72 173.37
Math Achievement
Between groups 2 558.48 279.24 7.88 .001
Within groups 70  2480.32 35.43
Total 72 3038.80
Visualization Test
Between groups 2 2251 11.25 .76 470
Within groups 70  1032.48 14.75
Total 72 1054.99

Problem 10.3: Nonparametric Kruskal-Wallis Test

What else can you do if the homogeneity of variance assumption is violated (or if your data are
ordinal)? The answer is a nonparametric statistic. Let’s make comparisons similar to Problem 1,
assumning that the data are ordinal or the assumption of equality of group variances is violated.
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Remember that the variances for the three fathers’ education groups were significantly different
on math achievement, and the competence scale was not normally distributed (see Chapter 4).

10.3. Are there statistically significant differences among the three father’s education groups on
math achievement and the competence scale?

Follow these commands:

e Analyze => Nonparametric Test => K Independent Samples.

e Move the dependent variables of math achievement and competence to the Test Variable
List (see Fig. 10.5).
Move the independent variable father’s educ revised to the Grouping Variable box.
Click on Define Range and insert 1 and 3 into the minimum and maximum boxes (Fig.
10.6) because faedRevis has values of 1, 2, and 3.
Click on Continue.
Ensure that Kruskal-Wallis H (under Test Type) in the main dialogue box is checked.
Then, click on OK. Do your results look like Output 10.3?

Fig. 10.5. Tests for several
independent samples.

SIRTIRA T Comnee ]
) e S

Fig. 10.6. Define.

Output 10.3: Kruskal-Wallis Nonparametric Tests

NPAR TESTS High mean ranks indicate high math

/K-W=mathach competence BY faedRevis(1l 3) . d
/MISSING ANALYSIS. achievement and competence scores.

Ranks
father's education revised N Mean Rank
math achievement test HS grad or less 38 28.43
Some College 16 43.78
BS or More 19 48.42
Total 73
Competence scale HS grad or less a7 36.04
Some College 16 35.78
BS or More 18 36.11
Total 71
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Kruskal-Wallis Test

Test Statistics 2P

math
achievement Competence
test scale
Chi-Square 13.384 .003
df 2 2
Asymp. Sig. oo €D

a. Kruskal Wallis Test
b. Grouping Variable: father's education revised

Interpretation of Output 10.3

As in the case of the Mann-Whitney test (Chapter 9), the Ranks table provides Mean Ranks for
the two dependent variables, math achievement and competence. In this case, the Kruskal-Wallis
test will compare the mean ranks for the three father's education groups.

The Test Statistics table shows whether there is an overall difference among the three groups.
Notice that the p (sig.) value for math achievement is .001, which is the same as it was in Output
10.1 using the One-Way ANOVA. This is because K-W and ANOVA have similar power to
detect a difference. Note also that there is not a significant difference among the father’s
education groups on the competence scale (p=.999).

Unfortunately, there are not post hoc tests built into the K-W test, as there are for the one-way
ANOVA. Thus, you cannot tell which of the pairs of father’s education means are different on
math achievement. One method to check this would be to run three Mann-Whitney (M-W) tests
comparing each pair of father s education mean ranks. Note, you would only do the post hoc M-
W tests if the K-W test was statistically significant; thus, so you would not do the M-W for
competence. It also would be prudent to adjust the significance level by dividing .05 by 3 (the
Bonferonni correction) so that you would require that the M-W Sig.<.017 to be statistically

| significant.

Problem 10.4: Two-Way (or Factorial) ANOVA

In the previous problems, we compared two or more groups based on the levels of only one
independent variable or factor using ¢ tests and one-way ANOVA. These were called single factor
designs. In this problem, we will compare groups based on two independent variables. The
appropriate statistic for this is called a two-way or factorial ANOVA. This statistic is used when
there are two different independent variables with a between groups design.

10.4. Do math grades (not grades in h.s.) and gender each seem to have an effect on math
achievement, and do math grades and gender interact?

Follow these commands:

Analyze => General Linear Model => Univariate.

Move math achievement to the Dependent (variable) box.

Move the first independent variable, math grades, to the Fixed Factor(s) box.

Then, also move the second independent variable, gender, to the Fixed Factor(s) box (see
Fig. 10.7).
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Fig. 10.7. GLM -Univariate.

Now that we know the variables we will be dealing with, let’s determine our options.

e Click on Plots and move mathgr to the horizontal axis and gender to Separate Lines box.
e Then press Add. Your window should now look like Fig. 10.8.

e Click on Continue to get back to Fig. 10.7.

Faer _ Heltdhk  Coin |
N ——

T S
e (o] o | 1

Fig. 10.8. Univariate: Profile plots.

e Select Options and click Descriptive statistics and Estimates of effect size. See Fig. 10.9.
e Click on Continue.
e Click on OK. Compare your syntax and output to Output 10.4.

Fachosis) and F actor lntesactions Display Means for.
IOVERALL)
pand [Il
mathgr"gend
I tose hig
I!.-:i.,._ -]
F Descriptive safisics ™ Homogeredy lesty
F Estimates ol efiect rize ™ Spread v level piot
I~ Obsarved powst ™ Residual plot
I Pasmeler sstimasies I Lack of it
I Conlsast coslciant matie ™ Genaial sstimabie lnchion
Sgrificarce levet {tﬁ Cordierce rievvsh me 35X

(Ema] o | _ o |

Fig. 10.9. General factorial:
Options.
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Qutput 10.4: Two-Way ANOVA

UNIANOVA
mathach BY mathgr gender
/METHOD = SSTYPE(3)
/INTERCEPT = INCLUDE

/PLOT = PROFILE( mathgr*gender )

/PRINT = DESCRIPTIVE ETASQ
/CRITERIA = ALPHA(.05)

/DESIGN = mathgr gender mathgr*gender.

Between-Subjects Factors
Value Label N
math grades 0 less A-B 44
1 most A-B 3
gender 0 male 34
1 female 41
The cell means are
important for interpretin
Rescriptine Staistics factorial ANOVAS and
Dependent Variable: math ?a_@vament test describing the results.
math grades Mean \ viation N
less A-B 12.8751 5.73136 24
8.3333 | 5.32563 20
10.8106 5.94438 44
most A-B 19.2667 4.17182 10
13.0476 7.16577 21
15.0 6.94168 31
Total 14.7550 6.03154 34
10.7479 6.69612 41
12.5645 6.67031 75 These Fs and significance
levels tell you important
information about

Tests of Between-Subjects Effects

Dependent Variable: math achievement test

differences between means
and the interaction.

Type lll Sum / Partial Eta
|_Source of Squares df Mean Square F Sig. Squared

Corrected Model 814.4812 3 271.494 7.779 .000 247
Intercept 11971.773 1 11971.773 343.017 .000 .829
MATHGR 515.463 1 515.463 4,769 :
GEND 483.929 1 483.929 13.866 .000 ) .163
MATHGR * GEND 11.756 1 11.756 337 ; .005
Error 2478.000 71 34.901 _Jjg/
Total 15132.393 75
Corrected Total 3292.481 74

Percent of variance in math
achievement predictable from
both independent variables.

a. R Squared = .247 (Adjusted R Squar@

-

FEta squared is an index of the effect
size. Thus, about 17% of the variance in
math achievement can be predicted from
math erades.
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Estimated Marginal Means of math achievement tast

20+ gender
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Interpretation of Output 10.4

The GLM Univariate program allows you to print the means for each sub group (cell). It also
provides measures of effect size (eta®), and plots the interaction, which is helpful in interpreting
it. The first table in Output 10.4 shows that 75 participants (44 with less than A-B math grades
and 31 mostly A-B math grades) are included in the analysis because they had data on all of the
variables. The Descriptive Statistics table shows the cell and marginal (total) means; both are
very important for interpreting the ANOVA table and explaining the results of the test for the
interaction.

The ANOVA table, called Tests of Between Subjects Effects, is the key table. Note that the
word “effect” in the title of the table can be misleading because this study was not a randomized
experiment. Thus, you cannot say in your report that the differences in the dependent variable
were caused by or the effect of the independent variable. Usually you will ignore the corrected
model and intercept lines and skip down to the interaction F (mathgr * gend) that, in this case, is
not statistically significant, F' (1,71)=.337, p=.563. If the interaction was significant, we would
need to be cautious about the interpretation of the main effects because they could be misleading.

Next we examine the main effects of math grades and of gender. Note that both are statistically
significant. The significant F for math grades means that students with less than an A-B math
average scored lower (M = 10.81 vs. 15.05) on math achievement than those with high math
grades; and this difference is statistically significant (p<.001). Gender is also significant (p <
.001). Because the interaction (mathgr*gend) is not significant, the “effect” of math grades on
math achievement is about the same for both genders. If the interaction were significant, we
would say that the “effect” of math grades depended on which gender you were considering. For
example, it might be large for boys and small for girls. If you find a significant interaction you
should examine the profile plots of cell means to visualize the differential effects. When the lines
on the profile plot are parallel there is not a significant interaction. If the interaction is significant,
you should also analyze the differences between cell means (the simple effects).

Note also the callout boxes about the adjusted R squared and eta squared. Eta, the correlation
ratio, is used when the independent variable is nominal and the dependent variable (math
achievement in this problem) is normal. Eta is an indicator of the proportion of variance that is
due to between groups differences. Adjusted R’ refers to the multiple correlation coefficient
squared, Like 7, these statistics indicate how much variance or variability in the dependent
variable can be predicted if you know the independent variable scores. In this problem, the eta’
percentages for these key Fis vary from .5% to 17.2%. Because eta and R, like r, are indexes of
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association, they can be used to interpret the effect size. However, the rules for small, medium,
and large are somewhat different (for eta, small= .10, medium=.24, and large=.37: for R.

small=.14, medium= .36, and large=.51).

In this example, eta (not squared) for math grades is about .42 and, thus, a large effect. Eta for
gender is about .40, a large effect. The overall adjusted R is about .46, almost a large effect.
Notice that the adjusted R’ is lower than the unadjusted (.22 versus .25). The reason for this is
that the adjusted R’ takes into account (and adjusts for) the fact that not just one but three factors
(math grades, gender, and the interaction) were used to predict math achievement.

An important point to remember is that statistical significance depends heavily on the sample size
so that with 1000 subjects a much lower F or r will be significant than if the sample is 10 or even
100. Statistical significance just tells you that you can be quite sure that there is at least a little
relationship between the independent and dependent variables. Effect size measures, which are
more independent of sample size, tell you how strong the relationship is and, thus, give you some
indication of its importance.

An Example of How to Write About Output 10.4

Results
Table 10.4a shows the means and standard deviations for math achievement separately for the
two genders and math grades groups. Table 10.4b shows that there was not a significant
interaction between gender and math grades on math achievement (p = .563). There was,
however, a significant main effect of gender on math achievement, 7 (1,71) = 13.87, p < .001. Eta
for gender was about .42, which, according to Cohen (1988), is a large effect. Furthermore, there
was a significant main effect of math grades on math achievement, F (1,71) = 14.77, p < .001. Eta
for math grades was about .40, a large effect.

Table 10.4a

Means, Standard Deviations, and n for Math Achievement as a Function of Gender and Math
Grades

Males Females = ___Total
Math Grade ~n M SD n M SD M SD
Less A-B 24 12.88 5.73 20 8.33 5.33 10.81 5.94
Most A-B 10 1927 417 21 13.05 717 15.05 6.94
Total 34 14.76 6.03 41 10.75 6.70 12.56 6.67

162




Chapter 10 — Analysis of Variance

Table 10.4b

Analysis of Variance for Math Achievement as a Function of Gender and Math Grades

Variable and source df MS F n
Math Achievement
Math Grades 1 515.46 14.77%* 172
Gender 1 483.93 13.87%* 163
Math Grades*Gender 1 11.76 34 005
Error 71 34.90
** p <.001

Interpretation Questions

10.1. In Output 10.1: a) Describe the F, df, and p values for each dependent variable as you
would in an article. b) Describe the results in nontechnical terms for visualization and
grades. Use the group means in your description.

10.2. In Outputs 10.2 a and b what pairs of means were significantly different?

10.3. In Output 10.3, interpret the meaning of the sig. values for math achievement and
competence. What would you conclude, based on this information, about differences
between groups on each of these variables?

10.4. Compare Outputs 10.1 and 10.3 in regards to math achievement. What are the most
important differences and similarities?

10.5. In Output 10.4: a) Is the interaction significant? b) Examine the profile plot of the cell
means that illustrates the interaction. Describe it in words. c) Is the main effect of gender
significant? Interpret the eta squared. d) How about the “effect” of math grades? e) Why
did we put the word effect in quotes? f) Under what conditions would focusing on the
main effects be misleading?

Extra SPSS Problems

Using your College Student data file, do the following problems. Print your outputs after typing
your interpretations on them. Please circle the key parts of the output that you use for your
interpretation.

10.1.  Identify an example of a variable measured at the scale/normally distributed level for
which there is a statistically significant overall difference (F) between the three marital
status groups. Complete the analysis and interpret the results. Do appropriate post hoc
tests.
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10.3.

10.4.

10.5.
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Use the Kruskal-Wallis test, with Mann-Whitney post hoc follow-up tests if needed, to
run the same problem as 10.1. Compare the results.

Do gender and marital status seem to have an effect on student’s height and do gender
and marital status interact? Run the appropriate SPSS analysis and interpret the results.

Do gender and having children interact and do either seem to affect current GPA?

Are there differences between the age groups in regard to the average number of hours
they a) study, b) work, and ¢) watch TV?
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APPENDIX A

Quick Reference Guide

Joan Naden Clay and Laura Jensen

Introduction

The Quick Reference Guide is intended as a supplemental resource to use while the SPSS
program is open. It provides a brief overview of many of the most basic and commonly utilized
procedures in SPSS. This guide presents one basic method for accomplishing each command,
however, there are often multiple ways to accomplish any given task in SPSS. The intent of this
guide is to provide a brief description of each subject area in addition to giving step-by-step
directions for performing specific actions for each subject.

Throughout the Quick Reference Guide, each subject area (e.g., variable, cell, file) is organized
alphabetically and written in ALL CAPITAL, BOLD ITALICS. Common actions (e.g., cut,
paste, insert) are itemized for each subject and are indicated with an arrow. Stepwise directions
for functions are designated with a round bullet. Items within the stepwise directions that are
bolded indicate either that the user should select the item with the click of the mouse or represent
window items that require you to make a selection. Each step of a function is sequentially
represented with arrows. For example, the instructions to Open a File would be: File (select the
word “file” in the header) => Open (select the word “open” in the drop down window) => Data
(select the word data in the subsequent drop down menu) =>using the Files of Type pull down
menu (click the arrow on the “Files of Type” window to get the drop down men), choose the type
of data file to bring into SPSS=>]ocate the file=>double click on the file name.

SPSS Commands

BAR CHARTS Bar charts are useful for displaying frequency information for categorical data
and SPSS allows several options for creating them. Types of bar charts available include: simple
(presents a single bar for each category, case or variable); clustered (presents a group of bars on
the category axis and bars within a cluster can represent groups of cases, separate variables or
individual cases); and stacked (there is one bar stack for each category, case, or variable on the
category axis and segments of each stack can represent groups of cases, separate variables, or
individual cases).

e Graphs => Bar => select type of chart (simple, clustered, or stacked) => choose if the Data
in Chart Are either summaries for groups of cases, summaries of separate variables, or
values of individual cases => Define => at this point, the dialog box varies based on the type
of chart and type of data to be displayed. Highlight variables and move them to the
appropriate boxes (bars represent, category axis, define clusters by, define stacks by, etc.)
by clicking the arrows. For summaries of groups of cases, choose if each Bar Represents
the number of cases, cumulative cases, percent of cases, cumulative percent of cases, or other
summary function => Titles => type in title, subtitles, and footnotes => Continue => OK.

BOX PLOTS This type of graphic provides a visual display of the distribution of data by presenting
the median, quartiles, and extreme values for the category or variable. Box plots can be simple
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(with a single box plot for each category or variable) or clustered (has a cluster of plots for each
category or variable on the category axis and the plots within each cluster are defined by a separate
definition variable). Box plots are automatically generated by the Explore command or can be
custom generated with the Graphs command.

Graphs => Boxplot => select type of plot (simple or clustered) => choose if the Data in Chart
Are either summaries for groups of cases or summaries of separate variables => Define => at
this point, the dialog box varies based on the type of chart and type of data to be presented.
Highlight variables and move them to the appropriate boxes (variable, category axis, define
clusters by, label cases by, or boxes represent) => OK.

CASES are the individual records for each subject and are organized by rows for each record/case.
SPSS numbers each case down the left side of the Data View window.

» Insert Cases This command allows data to be added for new subjects or cases anywhere in the

dataset.

e Click on the case number below where the case is to be inserted => Data => Insert Cases
=> enter data for the new case.

List Cases (Case Summaries) This command allows the user to list either an entire dataset or a
subset of the data. Case summaries are especially helpful for ensuring that data are computed or
entered correctly. Various options allow the user to select one or all variables, create an order
for listing the cases using a grouping variable, limit the number of cases shown, and conduct
basic descriptive statistics on the cases selected.

¢ Analyze => Reports => Case Summaries => select variables to be summarized with a left
click => click the top arrow in the middle of the dialog box to move the selected variable to
the Variables box => if desired, select categorical variables with a left click => click the
bottom arrow in the middle of the dialog box to move the selected variable to the Grouping
Variables box => utilize check boxes in lower left comer to display individual cases, limit
number of cases show, show valid cases or show case numbers => Statistics => highlight
desired statistic with a left click => click the arrow in the middle of the dialog to move the
selected statistic to the Cell Statistics box => Continue => OK.

Select Cases The select cases command permits the analysis of a specific subset of the data.
Once a subset is selected the user can either revert back to the entire dataset or delete the
unselected cases to create a subset data file. Users can Select data in a variety of ways
including: If condition is satisfied (a conditional expression is used to select cases); Random
sample of cases (cases are selected randomly based on a percent or number of cases); Based on
time or case range (case selection is based on a range of case numbers or a range of
dates/time); or, Use filter variable (a numeric variable can be used as the filter — any cases with
a value other than 0 or missing are selected). Unselected cases may be Filtered (remain in data
file, but excluded in the analysis) or Deleted (removed from the working data file and cannot be
recovered if the data file is saved after the deletion).

e Data=> Select Cases => Select (choose method: all cases, if condition is satisfied, random

sample of cases, range, filter variable) => Unselected cases are (choose either filtered or
deleted) => OK. (Save your work before deleting cases, just in case you change your mind!)
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» Sort Cases This procedure allows the user to rearrange the order in which data are displayed
using one or more variables of interest. Data can be sorted in ascending (small to large
numbers or alphabetical) or descending (large to small numbers or reverse alphabetical) order.

e Data => Sort Cases => select a variable with a left click => click the arrow in the middle of
the dialog box to move the variable to the Sort By list => choose either the Ascending or
Descending display => OK.

CELLS A cell is a single data point where a row and column intersect within the dataset. Cells can
be manipulated individually or in blocks. Data can be edited using Copy (puts a duplicate of the
cell value(s) on the clipboard, but leaves original cells in place), Cut (puts the cell value(s) on the
clipboard and deletes the original cell values), or Paste (inserts cell value(s) from the clipboard into

cell(s) at a new location).

» Copy and Paste Cells This command makes a copy of data in a cell while leaving the
original cell in place. The copy can be inserted in another location.

e Highlight the data (cell, row, column, etc.) to copy => Edit => Copy => click on the
individual cell or the upper left cell of the group of cells to paste to (Note: if data are
sted over existing cells, the data in those cells will be erased! It be

necessary to create space by inserting variables or cases. Pay close attention to cell

alignment.) => Edit => Paste. (Save your work or experiment on a copy of your data,
just in case the unexpected happens!).

» Cut and Paste Cells This command removes the data from a cell so you can insert it in a
different location.

e Highlight data (cell, row, column, etc.) that you want to cut => Edit => Cut => click on
the individual cell or the upper left cell of the group of cells you want to paste to (If you

paste data over already existing cells, the data in those cells will be erased! You may

n o create space by i ing variabl . Pay close attention to your

alignment.) => Edit => Paste.

CHART EDITOR Existing charts may be edited using the SPSS chart editor. Common actions
include adding titles, changing labels, altering color and fill patterns, and adjusting axis intervals.

e Double click on a chart in the output (chart appears in the Chart Editor window) => double
click on the element of the chart to edit (Palettes window opens) => select appropriate tab of
the palettes window => utilize various dialog boxes, check boxes, etc. to edit the element of
interest => Apply (repeat process on all the various elements of the chart to edit).

CODEBOOK This feature allows information for all of the variables in the dataset to be printed
including: variable names, measurement level, column width, number of decimal places, values
and value labels.

e Utilities => File Info (the codebook is printed into the output).

DATA The values entered into the cells that are created by the intersection of the rows (cases)
and columns (variables).
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» Copy Data (see Cells - copy and paste or cut and paste).
> Enter (Edit) Data Values can be entered into blank cells or existing values may be changed.
e Left click the cell of interest => type (or edit) value => Enter.

» Export Data Datasets can be saved in other file formats for use in other applications (e.g.,
other versions of SPSS, Excel, dBASE, SAS).

e File => Save As => click the drop down arrow in the Save as type dialog box => select
the file type => type the file name in the File name dialog box => click the drop down
arrow in the Save in dialog box => select a drive or folder for the file => Save.

» Import Data This command copies data from a word document and pastes it into SPSS.

e In the word document, highlight the data to be pasted into SPSS => in the Data View of
SPSS, set the mouse on the first cell to receive the incoming data => Edit => Paste.

e Alternatively, in the word document, highlight the data to be pasted into SPSS => in the
Data View of SPSS, set the mouse on the first cell to receive the incoming data => right
click to Paste.

» Open Data See Files (Open Data File).
» Print Data This command allows some or all of the data to be printed.

e Print All Data With the database open go to Data View => File => Print => in the Print
Range dialog box use the radio button to select All => OK.

e Print Selected Data With the database open go to Data View => highlight the cells to
print => File => Print => in the Print Range dialog box use the radio button to select
Selection => OK.

» Save Data This command should be used often to avoid losing work!

o Initially saving a new dataset File => Save => (Save Data As dialog box appears)
select the appropriate drive and folder using the Save in drop down menu => type the file
name in the File Name dialog box => select SPSS (*.sav) in the Save as type dialog box
=> Save.

e Resaving an existing dataset under the same filename File => Save, (SPSS
automatically resaves the data using the existing filename).

e Saving existing dataset under a different filename File => Save As => select the
appropriate drive and folder using the Save in drop down menu => type the file name in
the File Name dialog box => select SPSS (*.sav) in the Save as type dialog box =>
Save.

EXPLORE DATA This command produces summary statistics and graphical displays for entire

datasets or selected subsets. This command is useful for screening data, generating descriptive
information, checking assumptions and looking for differences among groups of cases.
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e Analyze => Descriptive Statistics => Explore => highlight one or more dependent variables
to explore and move them to the Dependent List box by clicking the arrow => if desired,
move one or more categorical variables to the Factor List box in order to obtain separate
analyses for groups of cases based upon the factor => Statistics => check desired statistics
=> Continue => Plots => select types of plots desired using (box plots, stem-and-leaf,
histogram, normality plots) => Continue => OK.

FILES There are three different common file types in SPSS (data, output, and syntax) that are
differentiated with unique file extensions (data = .sav; output = .spo; syntax = .sps). Scriptisa
fourth type of SPSS file and is designated with a .sbs extension, however, discussion of script
files is beyond the scope of this chapter. Each of the different file types will open in its own type
of window. Data files are presented in the SPSS Data Editor window, output files are displayed
in the SPSS Viewer, and syntax is viewed in the SPSS Syntax Editor. (Only one data file can be
open in any one session.)

» Create a New File This command will open a blank file. Remember to save files frequently
as you generate data, output and syntax!

New Data File (.sav) File =>New => Data => see chapter 2 for information about
entering data (Remember to save your work frequently!).

New Output File (.spo) File => New => Output => this provides a blank SPSS Viewer
(SPSS will automatically open the SPSS Viewer when the first analysis is run, however,
more than one SPSS viewer/output file can be open at any given time).

New Syntax File (.sps) File => New => Syntax => this provides a blank syntax editor —
syntax can be typed directly into the editor or pasted in from a word processing program
(e.g., Word). Information about writing syntax can be found in the SPSS Syntax
Reference Guide in the Help Menu — Help => Syntax Guide => Base => this opens an
Adobe portable document format (PDF) file that can be printed or viewed online (Adobe
Reader software is required to open this file and is available free online at
www.adobe.com).

» Open File This command helps locate and open existing files (data, output, syntax). The
dialog box provides a pull down menu that allows for the selection of the type of data file to
import/open.

Open Data File File => Open => Data => use the Look In drop down menu to select
the appropriate directory/folder => using the Files of Type pull down menu, choose the
type of data file to bring into SPSS. Common file types and file name extensions include
SPSS (.sav), Excel (.xls), and dBase Files (.dbf). In searching for the data file to open,
only those files of the specified type will be shown in the dialog box => locate the desired
file, select the file name with a left click => Open. (Only one data file can be open in any
given session.)

Open Output File File => Open => Output => use the Look In drop down menu to
select the appropriate directory/folder => using the Files of Type pull down menu,
choose .spo => when you locate the file you want, select the file name with a left click
=> Open.

Open Syntax File File => Open => Syntax => use the Look In drop down menu to
select the appropriate directory/folder => using the Files of Type pull down menu,
choose .sps => locate the desired file, select the file name with a left click => Open.
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» Save File This command should be performed frequently to prevent unwanted loss of work!
The first time a file is saved, the Save As dialog box will appear to allow the selection of a
directory/folder and allow the user to name the file. If a file is saved that is already named,
the program copies over the existing file. The directions presented below represent saving a
file for the first time.

Save Data File In the SPSS Data Editor => File => Save => use the Save in drop down
menu to select the appropriate directory/folder => using the Save as type drop down
menu, choose SPSS (*.sav) (unless another file format is desired, then simply choose the
appropriate file type) => type in a name in the File name dialog box => Save.

Save Output File In the Output - SPSS Viewer => File => Save => use the Save in
drop down menu to select the appropriate directory/folder => using the Save as type drop
down menu, choose Viewer Files (*.spo) => type in a name in the File name dialog box
=> Save,

Save Syntax File In the Syntax — SPSS Syntax Editor => File => Save => use the Save
in drop down menu to select the appropriate directory/folder => using the Save as type
drop down menu, choose SPSS Syntax Files (*.sps) => type in a name in the File name
dialog box => Save.

HELP SPSS provides online help in a variety of ways including the help menu, dialog box help,
and tutorials. Every window has a Help menu on the menu bar.

>

Help Menu This command is accessed from the menu bar in any window.

[ ]

Help => Topics => click the Index tab => type in a keyword or simply scroll down
through the topic list => double click on the topic of interest => information and links to
related topics will be displayed.

Help => Topics => click the Search tab => type in a word or phrase to search for =>
click List Topics => browse results using the scroll bar => double click on the topic of
interest => information and links to related topics will be displayed.

Dialog Box Help Button Dialog boxes offer a context sensitive help button that brings up a
standard help window that contains information on the current dialog box.

Dialog Box Quick Help Right click on any control in a dialog box and a brief description of
the item will appear.

MISSING VALUES SPSS defines missing values as “system-missing” versus “user-missing”.
System missing values are omissions in the dataset and are designated with a period in the cell. A
user-missing value is an actual value that the user defines to indicate that a value is known to be
missing. Up to three different discrete values or a range of values can be coded to define reasons
for missing data.

» Define User-Missing Values This procedure allows the user to specify data values that
indicate why information is missing.

Select the Data Editor as the active window => click the Variable View tab => click on
the cell in the Missing column that corresponds to the variable of interest => click on the
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shaded box that appears in the right of the cell to get the Missing Values dialog box =>
select either discrete missing values or range plus one optional discrete missing value
=> type in the values to be assigned in the appropriate boxes => OK.

Replace Missing Values Missing values may make datasets difficult to work with and may
hinder certain types of analyses. For these reasons, it may be appropriate to replace missing
values using techniques such as interpolation, inserting a mean or median of nearby values,
etc.

¢ Transform => Replace Missing Values => highlight the variable(s) of interest and
move them to the New Variable(s) box by clicking the arrow in the center of the dialog
box => highlight one of the variables in the New Variable(s) box => the variable name
will appear in the Name box => click on the down arrow for the Method box to display
the techniques for replacing the missing value => if either mean of nearby points or
median of nearby points are chosen, the span of points to be used must be designated
=>0OK.

OUTPUT This term refers to the display of commands and analyses. Output is generated into
its own window and can be saved as a separate file that has a .spo filename extension.

>

Copy and Paste Output This allows the user to move output to another place while leaving
the original where it is.

e Left click on the output item of interest (or highlight the item in the outline view) to
select the item => right click to get the drop down menu => Copy => left click to place
the cursor over the area to copy to => right click => Paste.

Delete Output

e Left click on the output to select => right click to Delete.

Display Syntax (Command Log) in the Output This procedure will write the syntax for
everything a user does in SPSS and will post the syntax in the output window. The user can
then paste that syntax into a new syntax file enabling the user to repeat procedures without
having to use a point-and-click approach. This can help to ensure consistency across analyses
and eliminate errors. It is also useful because it shows which file is used for each analysis so
that results in the output can be easily identified.

e Edit => Options => Viewer => check the box to Display Commands in the Log =>
Apply => OK,

Edit Output Charts, tables, and text can all be edited in a variety of ways. Double clicking
on any item will activate chart editors, pivot tables, and text boxes to allow editing.

Export Output to Word

e Left click to highlight table or graphic to copy => right click to Copy (NOT copy object)
=> proceed to the word document => Edit => Paste => OK.
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» Format Output SPSS users may adjust the size, shape, color, or other features of any
displayed output.

e Double click on the portion of the output to format => double click on the specific output
cell to format => right click and select the appropriate formatting option. To edit the text
of an output cell, instead of right clicking just double click again to begin typing.

» Hide Results Within an Output File Results in the output can be hidden if the user does not
want them displayed or printed but still wants them in the file. Conversely, results previously
hidden can be shown again.

e Inthe SPSS Viewer, go to the outline view on the left side of the screen => scroll down
to the output item to hide => click on the minus sign (-) to the left of the output name to
hide the item (a plus sign will appear to indicate the item has been collapsed and is
hidden) => click on the plus sign (+) to unhide the output.

» Insert Text/Title to Output This command allows the user to insert descriptive titles or
detailed notes directly into the output.

e In the output or in the output outline, click where the text will be inserted => Insert =>
NewText (or NewTitle) => type desired text => right click.

» Open Output See FILES (Open Output File).
» Print Output

e File => Print => choose to print All Visible Output or just a Selection (when printing a
selection, one or more output items in the outline must be highlighted before accessing
the print command).

» Resize/Rescale Output This allows larger tables to be fit onto a single printed page.

e Double click on the table to be resized to enter editing mode => right click => Table
Properties => select the Printing tab=> check to Rescale Wide Table to Fit Page
and/or Rescale Long Table to Fit Page => OK.

» Save Output See FILES (Save Output File).

PIVOT TABLES When using the SPSS viewer, this feature can be used to quickly rearrange
rows, columns, and layers in output tables in order to present results more clearly.

e Double click on the table to be formatted to enter editing mode=> right click => Pivoting
Trays => left click on the icon of the row, column, or layer to be moved => drag the icon to
the desired row, column, or layer and release.

PRINT PREVIEW This feature allows the user to see what will print on each page of output.

Items that may not be visible in the viewer, but can be seen in print preview include: page breaks,
hidden layers of pivot tables, breaks in wide tables, headers, and footers.

172



Appendix A — Quick Reference Guide

e Highlight all or some of the output in the output outline => File => Print Preview => use
buttons at the top of the print preview window to navigate the document, print, close, etc.

RESULTS COACH Explains how to interpret specific output.

e Double click on the output table or graphic => right click and select Results Coach => use
arrows at the bottom right of the screen to page through the explanation of the output.

STATISTICS COACH This feature prompts the novice user with questions and examples to
help in the selection of basic statistical and charting features that are most appropriate for the
data. The Statistics Coach only covers the basic, most commonly used statistical procedures.

e Help => Statistics Coach => complete the wizard to step through the coaching process.
SYNTAX SPSS provides a command language that can be used instead of the point-and-click
(windows) method to run SPSS. A syntax file is simply a text file that contains commands that
can be used to repeat an analysis at a later time. Use of syntax files can help to ensure consistency
across analyses and eliminate errors.

» Create syntax See FILES (Create a New File — New Syntax File).

» Run syntax The user can choose to run some or all of the commands in the syntax file.

o All Syntax With the appropriate syntax file as the active window => Run => All
e Selected Syntax With the appropriate syntax file as the active window => highlight the
portion of syntax to be run => Run => Selection.

»  Print Syntax With the appropriate syntax file as the active window => File => Print => select

printing options => OK.
» Save Syntax See FILES (Save File — Save Syntax File).

TABLES SPSS allows the user to build a variety of tables using the custom, basic, and general
tables command. Only the basic tables command will be presented.

e Analyze => Tables => Basic Tables => select one or more variables to be summarized
within the cells and move to the Summaries dialog box using the arrow => select categorical
variables to create row subgroups and move to the Subgroups — Down dialog box using the
arrow => select categorical variables to create column subgroups and move to the Subgroups
- Across dialog box using the arrow => select categorical variables whose values create
separate tables and move to the Subgroups — Separate Tables dialog box using the arrow
=> Statistics => choose options for presentation of statistics => Continue => Layout =>
select layout options => Totals => select totals options => Continue => Titles => type in
titles as desired => Continue => QK.

VARIABLES These are characteristics of the cases (e.g., participants) in the study that are able
to vary or have different values.
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» Compute Variable This procedure allows the user to create new variables from existing
variables by either using numeric expressions to mathematically generate the new values or
by using an “If” statement to conditionally select values to compute into a new variable.

o  Numeric Expression Procedure: Transform => Compute => type name of the new
variable in the Target Variable box => click on Type & Label => type in label to
describe the new variable in the Label box => choose whether the variable is numeric or
string in the Type section => Continue => create a numeric expression by highlighting
variables and moving them to the Numeric Expression box with the arrow in
conjunction with the calculator pad to create mathematical expressions (or alternatively
highlight a preset mathematical function from the Functions box and move it up to the
Numeric Expression box with the arrow) => OK.

o  “IF” Procedure: Transform => Compute => type name of the new variable in the
Target Variable box => click on Type & Label => type in label to describe the new
variable in the Label box => choose whether the variable is numeric or string in the Type
section => Continue => click If... => select whether the condition should “include all
cases” vs. “include if case satisfies condition:” => create a numeric expression by
highlighting variables and moving them to the computation box with the arrow in
conjunction with the calculator pad to create mathematical expressions (or alternatively
highlight a preset mathematical function from the Functions box and move it up to the
Numeric Expression box with the arrow) => Continue => enter a value or computation
in the Numeric Expression box that creates the value of the new variable when the
conditional statement is met => OK.

» Copy/Paste Variable

e To avoid pasting over an already defined variable, a new variable must be created to hold
the spot. This is accomplished by in Variable View, set the mouse where the new
variable will be => Data => Insert Variable. Then, highlight with a left click the
variable to copy => right click to Copy Variable => highlight with a left click to paste
the variable => right click to Paste Variable.

» Cut/Paste Variable

e Highlight with a left click the variable to cut => right click to Cut Variable => highlight
with a left click to paste the variable => right click to Paste Variable. To avoid pasting
over an already defined variable, a new variable must be created to hold the spot (see
Insert Variable).

» Information on Variables This function presents a dialog box that displays a variety of
information about the selected variable including: data format, variable label, user-missing
values, and value labels.

e Utilities => Variables => highlight the variable of interest in the Variables dialog box
=> Variable Information is listed on the right side of the dialog box.

> Insert Variable A new variable can be added to the dataset either in Data View or Variable
View.
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e Select any cell in the variable to the right of (Data View) or below (Variable View) the
position where the new variable will be inserted => Data => Insert Variable.

» Move Variable This process allows you to relocate a variable.

e (Click the variable name in Data View once and release (this highlights the variable
column) => click and drag the variable or case to a new location => drop the variable in
the new location (to place the variable between two existing variables, drop the variable
on the variable column to the right of where the variable will be placed).

» Recode Into Different Variable This process reassigns the values of an existing variable into
a new set of values for a new variable.

e Transform => Recode => Into Different Variables => select the variable to recode and
move it to the Numeric Variable — Output Variable dialog box using the arrow => type
in the new variable name and label in the Output Variable dialog box => Change =>
Old and New Values => select and define the Old Value to change => define the New
Value it will become => Add => Continue => OK.

» Recode Into Same Variables This process assigns new values in place of the old values of an
existing variable (be very cautious when using this procedure to collapse data because the
original data will be lost unless an original copy of the dataset is saved).

¢ Transform => Recode => Into Same Variables => select the variable to recode and
move it to the Variables dialog box using the arrow => Old and New Values => select
and define the Old Value to change => define the New Value it will become => Add =>
Continue => OK.

Z SCORES This procedure standardizes data to a standard score that has a mean of zero and a
standard deviation of one.

e Analyze => Descriptive Statistics => Descriptives => select a variable with a left click =>

click the arrow in the middle of the dialog box to move the variable to the Variables box =>
check the box to Save Standardized Values as Variables => OK.
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WRITING RESEARCH PROBLEMS AND QUESTIONS

Frameworks for Stating Research Problems

Although a common definition of a research problem is that it is a statement that asks what
relationship exists between two or more variables, most research problems are more complex
than this definition implies. The research problem should be a broad statement that covers the
several more specific research questions to be investigated, perhaps by using summary terms that
stand for several variables. Several ways to state the research problem are provided below.
Underlines indicate that you fill in the appropriate name for the variable or group of variables.

Format

One way that you could phrase the problem as follows: The research problem is to investigate
whether (put independen iable 1 or group of variables here) (and independent variable 2. if
any, here) (and independent variable 3, if any) are related to (dependent variable 1, here) (and
dependent variable 2, if any) in ulation here).

Except in a totally descriptive study, there always must be at least two variables (one is usually
called the independent variable and one the dependent variable). However, there can be two or
more of each, and there often are. In the statement of the problem, in contrast to the research
questions/hypotheses, it is desirable to use broad descriptors for groups of similar variables. For
example, demographics might cover four variables: gender, mother’s and father’s education, and
ethnicity. Spatial performance might include a mosaic pattern test score and a visualization score.
Likewise, grades and mathematics attitudes could refer to more than one variable. Concepts such
as self-esteem or teaching style have several aspects that usually result in more than one variable.
The first example below is in the above format. The second and third are suggested variations
when the approach is quasi-experimental, comparative, or associational.

Examples
If your study uses the randomized experimental approach, you could phrase the problem as:

1. The research problem is to investigate the effect of a new curriculum on grades, math
attitudes, and quantitative/spatial achievement in high school students.

For other studies that compare groups or associate/relate variables, you could phrase the problem
as follows:

2. The problem is to investigate whether gender and grades are related to mathematics attitudes
and achievement in high school students.

If you have several independent variables and want to predict some outcome, you could say:

3. The problem is to investigate the variables that predict or seem to influence mathematics
achievement.
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This latter format is especially useful when the approach is a complex (several independent
variables) associational one that will use multiple regression.

Framework for Stating Research Questions/Hypotheses

Although it is okay to phrase a randomized experimental research problem (in the format of the
first example above) as a “study of the effect of...,” we think it is best to phrase your research
questions or hypotheses so that they do not appear to imply cause and effect (i.e., as difference or
associational questions/hypotheses and/or as descriptive questions). The former are answered
with inferential statistics, and descriptive questions are answered with descriptive statistics.
There are several reasonable ways to state research questions. Below, we show one way to state
each type of question, which we have found useful and, hopefully, clear for our students.

Descriptive Questions

Basic descriptive questions. These questions are about some aspect of one variable. Descriptive
questions ask about the central tendency, frequency distribution, percentage in each category,
variability, or shape of the distribution. Some descriptive questions are intended to test
assumptions. Some questions simply describe the sample demographics; others describe a
dependent variable. A few examples are as follows:

1. Is mathematics achievement distributed approximately normally?
2. What percentage of participants is of each gender?
3. What are the mean, mode, and median of the mathematics achievement scores?

Complex descriptive questions. These questions deal with two or more variables at a time, but do
not involve inferential statistics. Cross-tabulations of two categorical variables, factor analysis,
and measures of reliability (e.g., Cronbach’s alpha) are examples.

An example is:
1. What is the internal consistency reliability of the pleasure scale items?

Difference Questions/Hypotheses
Basic difference questions. The format is as follows:

Are there differences between the (insert number) levels of (put the independent variable name
here) (you could name the levels here in parentheses) in regard to the average (put the dependent
variable name here) scores?

An example is as follows:
1. Are there differences between the three levels (high, medium, and low) of father’s education
in regard to the average mathematics achievement scores of the students?

Appropriate analyses: One-way ANOVA (see Chapter 10). A ¢ test could be used if there were
only two levels of the independent variable (see Chapter 9).
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Complex difference and interaction questions. When you have two categorical independent
variables considered together, you will have three research questions or hypotheses. There are
advantages of considering two or three independent variables at a time. See Chapter 10 for an
introduction about how to interpret the interaction question. Sample formats for a set of three
questions answered by one 2-way ANOV A are as follows:

1. Is there a difference between (insert the levels of independent variable 1) in regard to the

average (put dependent variable 1 here) scores?
2. Is there a difference between (insert the levels of independent variable 2) in regard to the

average (dependent variable 1) scores?
3. Is there an interaction of (independent variable 1) and (independent variable 2) in regard to

the (dependent variable 1)?

(Repeat these three questions, for the second dependent variable, if there is more than one.) An
example is as follows:

1. Is there a difference between students who have high versus low math grades in regard to
their average mathematics achievement scores?

2. Is there a difference between male and female students in regard to their average math
achievement scores?

3. Is there an interaction between mathematics grades and gender in regard to math
achievement?

Note that the first question states the levels or categories of the first independent variable; that is;
it states the groups that are to be compared (high vs. low math grade students). The second
question does the same for the second independent variable; that is, states the levels (male and
female) to be compared. However, the third (interaction) question, asks whether the first variable
itself (mathematics grades) interacts with the second variable (gender). No mention is made, at
this point, of the values/levels/groups.

An appropriate analysis. Factorial ANOVA (see Chapter 10).
Associational/Relationship Questions/Hypotheses
Basic associational questions. When both variables are ordered and essentially continuous (i.e.,

have five or more ordered categories) we consider the approach and research question to be
associational. There are two main types of basic associational statistics: corrlelation and

regression.
The format for a correlation is as follows:

Is there an association between (variable 1) and (variable 2)?

In this case it is arbitrary which variable is independent or antecedent and which is dependent or
outcome. An example for a single association or relationship is as follows:

1. Is there an association between grades in high school and mathematics achievement?
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If there are more than two variables, which is common, and each pair of variables is associated
separately, you can have a series of questions asking whether there is an association between
each variable and every other variable. This would produce a correlation matrix.

An example that would produce a correlation matrix is as follows:
2. Are there associations among the three mathematics attitude scale scores?

Note that what is said to be associated in these questions is the variable itself; no mention is
made of the levels or values here.

If one variable is clearly the independent or predictor, you would phrase the question as follows
and use bivariate regression analyses:

3. Can we predict math achievement test scores (the dependent variable) from grades in high
school (the independent variable)?

Appropriate analyses: Bivariate regression, if there is a clear independent or antecedent variable
and you want to make a prediction; correlation if no clear independent variable (see Chapter 8).

Complex associational questions. In the associational approach, when two or more independent
variables are considered together, rather than separately, as in the basic format above, you get a
new kind of question. The format can be phrased something like:

How well does the combination of (list the several specific independent variables here) predict

(put dependent variable here)?

An example is as follows:
1. How well does the combination of number of mathematics courses taken, gender, and
father’s education predict mathematics achievement?

An appropriate analysis: Multiple regression (see Chapter 8).

This complex question can also be expanded into a set of questions. This set first asks about the
association of each of the predictors (or independent) variables and the dependent (or outcome)
variable and then states the complex or combination question as above.

For example:

1. Is there an association between the number of mathematics courses taken and mathematics
achievement test scores?

2. Is there an association between gender and mathematics achievement?

3. Is there an association between father's education and mathematics achievement?

4. How well does the combination of the number of mathematics courses taken, gender, and
father’s education predict mathematics achievement test scores?

Appropriate analysis: The multiple regression output will provide you with the three bivariate,

Pearson correlations in a matrix as well as the multiple regression statistics (see, for example,
Output 8.6).
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Getting Started With SPSS and Printing the Syntax

This section includes step-by-step instructions for three procedures related to getting started with
SPSS: a) making a working file from the CD in the back of the book, b) opening and starting
SPSS and getting familiar with the SPSS data editor, and c) setting your computer so that SPSS

will print the syntax or log along with each output.
Copy the Data Files From the Compact Disk

It is wise to make a working copy of the files from the compact disk (CD) provided with this

book. The files are:

hsbdata.sav (11KB)

college student data.sav (4KB)

alternative hsbdataB.sav (13 KB) (Use if you skip Chapter 5 or messed it up.)
Note: you may not see the file extension (.sav) depending on your computer setup.

There are several ways to copy the files. Also our letters for the computer drives may not be the
same on your computer. The method described below assumes that your CD drive is E: (some
systems use D: or F:) and that you will be copying to the A: drive. Insert the compact disk found

with this book in your CD drive.

e Point at the Start button in the lower left corner of your screen and click the right button (not

the left) on your mouse.
Click Explore with the left button.
On the left side of the Window click the CD icon, SPSS Data (E:).

The display should look something like Fig C.1.
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e Click and drag each of the two files in the right column of Fig.C.1 to the (A:) icon on the left
or to wherever you want to have you working file (hard drive, SD, diskette, etc.).

e Close the Explore window.
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Open and Start the SPSS Application

e Begin at the Start button (bottom left of the Windows Desktop). Click Start => Programs
=> SPSS for Windows (see Fig. C.2). Alternatively, if an SPSS icon is available on the
desktop, double click on it (see Fig. C.2). If SPSS for Windows is not listed in the Programs

menu, it will need to be installed on your computer. It is not part of the Microsoft Windows
package or the CD that accompanies this book and must be loaded separately.

This is the icon
_—"_ | (picture) that might
be on your
desktop.

Fig. C.2. Start menu and
SPSS icon.
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After you start SPSS, you will see the SPSS Startup screen shown in Fig. C.3. Notice that in the

Startup screen there is a list of all SPSS files available on your computer or diskette.

e Click on the SPSS file you wish to use or click the Cancel button shown in Figs. C.3, which
will bring up a new SPSS desktop screen, called the SPSS Data Editor as shown in Fig C.5
and C.6. If no files are listed, click OK to bring up the Open File dialogue box to search for
the file you want to open. In any one session, onl ta fi open at time.
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Existing files as well as new data files are opened in the SPSS Data Editor screen. In this
screen, there are two tabs at the bottom left side of the screen; the Data View tab and the
Variable View tab (see Fig. C.4).

When you first open SPSS o] |r I
you might have the Variable ai| I ) _
View highlighted. i i ' Fig. C.4. View tabs.

If you have SPSS 9.0 or a lower version, you will not have the Variable View screen option and
will have to define and label variables differently. Please refer to your SPSS Help menu for
further information on how to do this in earlier versions.

Although the toolbar at the top of the data editor screen is the same for both the Variable and
Data View screens, it is important to notice the subtle differences in desktop features
between these two screens found within the data editor (compare Fig. C.5 and Fig. C.6).

e Click on the Variable View tab in the data editor screen to produce Fig. C.5.

Notice the column names are like those in Fig. C.5. You create (define and label) new variables
using the Variable View (see Chapter 2).
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Fig. C.5. SPSS data editor: Variable view.

e Click on the Data View tab in the data editor to produce Fig. C.6.

Notice the columns change to var or to the names of your variables if you have already entered
them (see Fig. C.6). You enter (input) data using the Data View.
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Fig. C.6. SPSS data editor: Data view.
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Set Your Computer to Print the SPSS Syntax (Log)

In order to have your computer print the SPSS commands on your output, as shown throughout
the book, you will need to set your computer using the following:
e Click on Edit => Options.
e Click on the Viewer tab under Data near the top left of the Options window to get Fig.
C.7.

Fig. C.7. Edit: Options.

Check display commands in log near the lower left of the window.

Leave the other defaults as is.

Click on OK. Doing this will always print the syntax on your output unless someone
unclicks this check on this computer.
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Making Tables and Figures

Don Quick

Tables and figures are used in most fields of study to provide a visual presentation of important
information to the reader. They are used to organize the statistical results of a study, to list
important tabulated information, and to allow the reader a visual method of comparing related
items. Tables offer a way to detail information that would be difficult to describe in the text.

A figure may be just about anything that is not a table, such as a chart, graph, photograph, or line
drawing. These figures may include pie charts, line charts, bar charts, organizational charts, flow
charts, diagrams, blueprints, or maps. Unless the figure can dramatically illustrate a comparison
that a table cannot, use a table. A good rule is to use a table for numbers and text and to use
figures for visual presentations.

The meaning and major focus of the table or figure should be evident to the readers without them
having to make a thorough study of it. A glance should be all it takes for the idea of what the
table or figure represents to be conveyed to the reader. By reading only the text itself, the reader
may have difficulty understanding the data; by constructing tables and figures that are well
presented, the readers will be able to understand the study results more easily.

The purpose of this appendix is to provide guidelines that will enhance the presentation of
research findings and other information by using tables and figures. It will highlight the
important aspects of constructing tables and figures using the Publication Manual of the
American Psychological Association, Fifth Edition (2001) as the guide for formatting.

General Considerations Concerning Tables

Be selective as to how many tables are included in the total document. Determine how much data
the reader needs to comprehend the material, and then decide if the information would be better
presented in the text or as a table. A table containing only a few numbers is unnecessary; whereas
a table containing too much information may not be understandable. Tables should be easy to
read and interpret. If at all possible, combine tables that repeat data.

Keep a consistency to all of your tables throughout your document. All tables and figures in your
document should use a similar format, with the results organized in a comparable fashion. Use
the same designation measure or scale in all tables, figures, and the text.

In a final manuscript such as a thesis or dissertation, adjust the column headings or spacing
between columns so the width of the table fits appropriately between the margins. Fit all of one
table on one page. Reduce the data, change the type size, or decrease line spacing to make it fit.
A short table may be on a page with text, as long as it follows the first mention of it. Each long
table is on a separate page immediately after it is mentioned in the text. If the fit and appearance
would be improved, turn the table sideways (landscape orientation, with the top of table toward
the spine) on the page.
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Each table and figure must be discussed in the text. An informative table will supplement but not
duplicate the text. In the text, discuss only the most important parts of the table. Make sure the
table can be understood by itself without the accompanying text; however, it is never
independent of the text. There must be a reference in the text to the table.

Construction of the Table

Table D.1 is an example of an APA table for displaying simple descriptive data collected ina
study. It also appears in correct relation to the text of the document. (Fig. D.1 shows the same
table with the table parts identified.) The major parts of a table are: the number, the title, the
headings, the body, and the notes.

Table D.1. An Example of a Table in APA Format for Displaying Simple Descriptive Data

Table 1

Means and Standard Deviations on the Measure of Self-Direction in Learning as a Function of
Age in Adult Students

Self-directed learning inventory score

Age group n M SD
20-34 15 65 35
35-40 22 88 6.3
50-64 14 79 5.6
65-79 7 56 71
80+ - - -

Note. The maximum score is 100.
? No participants were found for the over 80 group.

Table Numbering

Arabic numerals are used to number tables in the order in which they appear in the text. Do NOT
write in the text “the table on page 17” or “the table above or below.” The correct method would
be to refer to the table number like this: (see Table 1) or “Table 1 shows...” Left-justify the table
number (see Table D.1). In an article, each table should be numbered sequentially in the order of
appearance. Do not use suffix letters with the table numbers in articles. However, in a book table
numbers may be numbered within chapters; e.g. Table 7.1. If the table appears in an appendix,
identify it with the letter of the appendix capitalized, followed by the table number; for instance
Table C.3 is the third table in Appendix C.
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Table Titles

Include the variables, the groups on whom the data were collected, the subgroups, and the nature
of the statistic reported. The table title and headings should concisely describe what is contained
in the table. Abbreviations that appear in the body of the table can sometimes be explained in the
title, however, it may be more appropriate to use a general note (see also comments below on
Table Headings). The title must be italicized. Standard APA format for journal submission
requires double spacing throughout. However, tables in student papers may be partially single
spaced for better presentation.

—

Table 1

Means and Standard Deviations on the Measure of Self-Direction in Learning as a IEOI Sp G I

Function of Age in Adult Students ~
P
Stub Column . Inventory score

Age group n M SD -s—— |Headings

Use horizontal | 20-34 15 65 3.5
lines under the
title, headings | 3540 22 88 e
and the body;
but no vertical | 50-64 14 79 5.6
fines. -—

6559 7 56 7.1

80+ = - -

Note. The maximum score is 100.

-

* No participants were found for the over 80 group.

Fig. D.1. The major parts of an APA table.

Table Headings

Headings are used to explain the organization of the table. You may.use abbreviations in the
headings; however, include a note as to their meaning if you use mnemonics, variable names, and
scale acronyms. Standard abbreviations and symbols for non technical terms can be used without
explanation (e.g., no. for number or % for percent). Have precise title, column headings, and row
labels that are accurate and brief. Each column must have a heading, including the stub column,
or leftmost column. Its heading is referred to as the stubhead. The stub column usually lists the
significant independent variables or the levels of the variable, as in Table D.1.

The column heads cover one column, and the column spanners cover two or more columns --

each with its own column head (see Table D.1 and Fig. D.1). Headings stacked in this manner are
called decked heads. This is a good way to eliminate repetition in column headings but try to
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avoid using more than two levels of decked heads. Column heads, column spanners, and
stubheads should all be singular, unless referring to a group (e.g., children). Table spanners,
which cover the entire table, may be plural. Use sentence capitalization in all headings.

Notice that there are no vertical lines in an APA style table. The horizontal lines can be added by
using a “draw” feature or a “borders” feature for tables in the computer word processor, or they
could be drawn in by hand if typed. If translating from an SPSS Table or box, the vertical lines
must be removed.

The Body of the Table

The body contains the actual data being displayed. Round numbers improve the readability and
clarity more than precise numbers with several decimal places. A good guideline is to report two
digits more than the raw data. A reader can compare numbers down a column more easily than
across a row. Column and row averages can provide a visual focus that allows the reader to
inspect the data easily without cluttering the table. If a cell cannot be filled because the
information is not applicable, then leave it blank. If it cannot be filled because the information
could not be obtained, or was not reported, then insert a dash and explain the dash with a note to
the table.

Notes to a Table

Notes are often used with tables. There are three different forms of notes used with tables: a) to
eliminate repetition in the body of the table, b) to elaborate on the information contained in a
particular cell, or c) to indicate statistical significance:

o A general note provides information relating to the table as a whole, including
explanations of abbreviations used:

Note. This could be used to indicate if the table came from another source.

® A specific note makes a reference to a specific row or column or cell of the table and is
given superscript lowercase letters, beginning with the letter “a”:

*n = 50. Specific notes are identified in the body with superscript.

o A probability note is to be included when one or more inferential statistic has been
computed and there isn’t a column showing the probability, p. Asterisk(s) indicate the
statistical significance of findings presented within the table. Try to be consistent across
all tables in a paper. The important thing is to use the fewest asterisks for the largest p
value. It is common to use one asterisk for .05 and two for .01. For example:

*»<.05. *¥p<0l.
Notes should be listed with general notes first, then specific notes, and concluded with
probability notes, without indentation. They may be single spaced for better presentation.

Explain all uses of dashes and parentheses. Abbreviations for technical terms, group names, and
those of a similar nature must be explained in a note to the table.
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Constructing a Table in Microsoft Word XP or 2000

For this step-by-step example the ANOV A was chosen from previous examples in the book. See
Fig. D.2. The data are transferred from the standard SPSS output to an APA table.

ANOVA
esin h.s.
Sum of
Squares df Mean Square F Sig.
Between Groups 18.143. 2 9.071 4.091 021
Within Groups 165.227 70 2.218
Total 173.370 72

Fig. D.2. An example of the type of default table generated from a SPSS ANOVA output.

The finished table should look like Table D.2. This explanation is accomplished using MS Word
XP but using MS Word 2000 will be similar. Any earlier version will have some problems with
line spacing. You will also need to adjust the number of columns and rows for the type and
amount of data that you need to present.

Table D.2. An Example of an ANOVA Table in APA Format

= The Table Number is double spaced but
Table2 <— the Table Title is single spaced. The Title
is in italics but the Table Number is not.

One-Way Analysis of Variance of Grades in High School by Father's Education

Source df SS MS F P
Between groups 2 18.14 9.07 4.09 .02
Within groups 70 155.23 222
Total 72 173.37

The Headings and Body of the table are actually built using Word’s table function. Type your
Table Number and Title. Then on the next line after the title, insert a 6x4 table:

e Table => Insert => Table... (See Fig. D.3).

e For our example of the ANOVA set it to 6 columns and 4 rows. Leave everything else as

is. See Fig. D 4.
e Click OK.
Word A T
Tooks | Table | Window Help Acrobat
J Oraw Table E O # (B DW[T]  Fig. D.3. Using MS Word to make a table.
mes Nowl Insert 'Im Table... i
D Select » | % -
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Fig. D.4. Inserting a 6x4 table.

This is for the single ANOVA table. You will need to adjust
the number of columns and rows for the type and amount of
data that you need to present.

Compare your table to Table D.3.

Table D.3.

APA uses no vertical and just a few horizontal lines so it is best to remove them all and then put

back the ones that are needed:
e Select the table by clicking anywhere inside the table, then: Table => Select => Table.

e Format=> Borders and Shading... to get Fig. D.5.
e Select the Borders tab, if it’s not already selected.
¢ Under Settings click the box to the left of None to remove them.

e (Click OK.
Selting:
s
o ) _:I_I __;_:___ Fig. D.5. Clearing the borders.
o | cd;"“'.m" =l & ==
E " ' o 7 [ b 1 1] N |
’ﬁ i, f gt - :F:;m -
et |
Sowloobs | poreortalnm... | [ ] comca |

To add the correct lines in for an APA table:
e Clicking anywhere in the top row and Table => Select => Row.
e Format => Borders and Shading... to get Fig. D.6.
e Make sure the solid line Style is selected and the Width is 1/2 pt.
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e In the Preview picture click the Upper and Lower bar buttons. This inserts the top two
lines in the table.

e Click OK.

e Select the last row in your table.

e Click the Lower bar button only. This inserts the bottom line in the table.

e Click OK.

tordrs | e torder | Shade |

7,7 Upper and Lower bar buttons

Fig. D.6. Setting the horizontal lines.

L—"| Note: the Apply to is set to Cell
but since you have selected the
entire row it will look like a solid
line across the table.

Note: If you can’t see the gridlines, turn them on
Compare your table to Table D.4. to better see where the rows and cells are. They
won’t show when printed. Click Table => Show
Gridlines
Table D 4.

Pl

//

N

The text in the body of an APA table is equal distance between the top and bottom of the cell:
Select the table by clicking anywhere inside the table, then: Table => Select => Table.
Click Format => Paragraph...

Set Line spacing to Single (see note on Fig. D.7).

Set Spacing to Before and After to 6pt (see Fig. D.7).

Click OK.

Enter the headings and data into each cell; the SPSS printout will have all of the information to
accomplish this. Don’t worry about wrapping and aligning at this time. That is easier to do after
the data are entered.

Compare your table to Table D.5.
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Parsgrach 21|

dents and Spachg | Lne and Page treaks | Adin Typooracty | _
Generdl A T e | Note: With normal SPSS tables with numerical
Mgwert: [t ¥]  uinlevet  [oodytet 7] || data and short heads, Single and the 6pt before
: and after sets the text equal distant in the cell.
Lot Fo e % ! ‘_Wrappcd text wﬂl. come out single spaced which
Biohts [ 2 frew o[ Bl / is better Prescntahon for.smdcm papers and
R Automaticaly adyst right Indent shen document grid s defned ‘ dissertations. However, if you have text that
" , wraps and the journal requires that all text be
:“ — e double spaced then you will need to Double
o m Sangle -
1 oo idd s Eibaen se oD o T R space only those cells that wrap.
¥ srp to grid when document ond s defired
Preview
A : Fig. D.7. Setting line spacing within the cell.
|
... | [ ] cma ||
Table D.5.
Source daf SS MS F p
Between 2 18.14 9.07 4.09 02
groups
Within groups | 70 155.23 2.22
Total 72 173.37

In an APA table the Heads should be center aligned in the cell and the Stubs are left aligned.
The numbers in the Cell are decimal aligned and centered under the Heads. Notice also that
“Between groups” wrapped. Let’s first align the Heads and Stubs, then fix that wrap and finally
align the data off of the Heads. To center align the Heads:
e Select the Header Row of your table by clicking anywhere in the top row and Table =>
Select => Row.
e Click the Center align button in the Formatting Toolbar, see Fig. D.8.
The stub column should already be left aligned; if not, then select the cells and click the

Align Left button.

R | Note: If the Align Buttons aren’t showing on the
Hep  Acchat Formatting Toolbar then you can select the proper
< 4BOE 100% - alignment from the menu: Format => Paragraph...
B/ U EaEms iz =i

R Cmn]

Fig. D.8. Center aligning the Heads.

L N T TR S

When MS Word creates a table it will generally make all of the columns the same width. To fix
the wrap on the “Between groups” cell, that column will need to be widened slightly and then to
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keep the table within the margins the data columns will need to be decreased slightly. This may
be a trail and error process to get the right spacing for your text.
e Click anywhere on the Stubs column.

Table => Table Properties... to get Fig. D.9.

L

. Note: This can also be accomplished
e Click the Column Tab. ) Wydngsing the vestical colkiin
. Se.t the Preferred width to 1.4”. separator lines until the “Between
® Click the Next Column button and set it to 1.0”. | oroups” is not wrapped and then
e Repeat for all of the columns, setting them to 1.0”.| dragging the other column separator
e Click OK. lines so that they are within the

margins. However this produces

Lable Properties s 20x uneven column spaces. We
recommend the method outlined.

e | gow o | ca |

Sre i
?:#‘mmﬁ.r_;ﬂ eare v it 3] || Fig. D.9. Adjusting the column widths,

Wpevows o | et Cohmrr |

Compare your table to Table D.6.

Table D.6.

Source af SS MS F 4
Between groups 2 18.14 9.07 4.09 02
Within groups 70 155.23 2.22
Total 72 173.37

To set the Cell columns so that they are all centered under its Head, you will need to set the
Tabs for each column of data cells to a Decimal Tab. We recommend this method of setting all
columns the same and then adjusting them separately so they look right, because it requires less
individual column adjustment:

e Select just the data cells by clicking in the upper left one, hold the shift key down, and
then click in the lower right cell.
Format => Tabs... to get Fig. D.10.
Clear all of the Tabs in the selected cells first by clicking the Clear All button.
Click Alignment Decimal.
Type .35” in the Tab stop position box.
Click the Set button.
Click OK.

® ¢ o @ @ @
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Ib stop poskion: Defauk tab stops: |

= fo 3

35 =] Tabtopstobe cemed: |

‘ |

- | Fig. D.10. Setting the decimal tabs.

AP - |

 aft " Conter  pight |

©Decmal g 5

Loader ——————— - !
& | Nors £ Birnsi r3—

45 [ § e |

# | _ow | cws ||

B o7 - o then eromn |

oK ||

Compare your table to Table D.7.

Table D.7.

Source df SS MS F p
Between groups 2 18.14 9.07 4.09 02
Within groups 70 155.23 2.22
Total 72 173.37

The df column looks like it could be adjusted slightly to the right and the p column slightly to the
left. We show you this so that you will know how to get a perfect decimal alignment of the data
under the column head text. This may be trail and error depending on your data.

e Select the cells of the df column by clicking first on the top data cell, “2,” hold the Shift
key down, and the click on the bottom data cell, “72.”
Format => Tabs...
Clear all of the Tabs in the selected cells first by clicking the Clear All button.
Click Alignment Decimal.
Type .45” in the Tab stop position box, to set decimal tap .45 from the left edge of the
cell.
Click the Set button.
Click OK.
Repeat for the p column but set it to .25” to set decimal tap .25” from the left edge of the
cell.

Compare your finished table to Table D.8.
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Table D.8.
Table 2

One-Way Analysis of Variance of Grades in High School by Father's Education

Source df SS MS F P
Between groups 2 18.14 9.07 4.09 .02
Within groups 70 155.23 2.22
Total 12 173.37

Adjusting the SPSS Output to Approximate the APA Format

The preceding example shows how the standard SPSS output can be used to create a table in
APA format. However, this does require some knowledge of your word processing program's
table creation capabilities in order to accomplish this task. It also requires retyping the data into
the table. You can adjust SPSS so that the output will approximate the APA format. We would
not recommend submitting this to an APA journal, but it may be acceptable for student papers
and some graduate program committees.

In SPSS follow these commands BEFORE running your SPSS analysis of your data:
¢ Click Edit => Options.
e Under the Pivot Tables tab select Academic 2.tlo (see Fig. D.11).

e Press OK.
x
Prvot Tables
Fig. D.11. Setting SPSS for an
approximate APA format output.
- Adst Colarn Wik fox - Delauk Edting Mode
@ Labslsorly  ( Labelsanddata | | [Edt llables nViewer =l
[ ok ] come | Ak | Ho |

¢ Run the SPSS statistical analysis.
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Your outputs will look similar to Table D.9, which approximates an APA table. In order to
transfer it to MS Word:

e  On the SPSS output, right click on the table that you want to transfer.

e  Select Copy objects from the short menu presented, see Fig. D.12.

ANOVA
e
- Sum of Squares df Mean Squame F Sig

Betwreen Groups 1810 2 907 4091 021 ) .

Within Groups 15521 ] 2219 Fig. D.12. Copying tables from SPSS.

Total 173370 n WNRNT .
o,  —
Copy

ONEWAY o e

grades visual mathach BY faedRevia i
/STATISTICS DESCRIPTIVES HONOGENEITY  CramefEde Autbscipt

/HISSING ANALYSIS . Expat...
Renis Conch
SET TLook None TFit Labels. Case Sudies

ONEWAY
arades visual mathach BY fasdRevis

PSS Fivot Tabls Objsct

e  Place the curser in the MS Word file where you want to put the table.
e  Select Paste in MS Word.

You can then move it and format it like any other image in MS Word, but it can not be edited.
Table D.9. An Example of the SPSS "Academic' Output
Table 2

One-Way Analysis of Variance of Grades in High School by Father's Education

ANOVA
grades in h.s. — . N
Sum of Squares df Mean Square F Sig.
Between Groups 18.143 2 9.071 4.091 .021
Within Groups 155.227 70 2.218
Total 173.370 72
Using Figures

Generally, the same concepts apply to figures as have been previously stated concerning tables:
they should be easy to read and interpret, be consistent throughout the document when presenting
the same type of figure, kept on one page if possible, and it should supplement the accompanying
text or table. Considering the numerous types of figures, I will not attempt to detail their
construction in this document. However, one thing is consistent with all figures. The figure
number and caption description are located below the figure and the description is detailed,
similar to that of the title of a table. See Fig. D.12.

195



Appendix D - Making Tables and Figures

Some cautions in using figures:
1) Make it simple. Complex diagrams that require lengthy explanation should be avoided
unless it is an integral part of the research.
2) Use a minimum number of figures for just your important points. If too many figures are
used, your important points may be lost.
3) Integrate text and figure. Make sure your figure compliments and enhances the
accompanying text.

Correlation of math achievement with

mosaic pattern test

2500
FELE Fig. D.12. An example of using a
E — figure in APA with caption.
$ o00-
. - Note: The figure number is italicized
£ but the caption itself is not. Also, the
g 0 caption text is sentence case (only

5004 the first word is capitalized).

¥ I 1 I 1

[ 1 L
400 00 108 200 00 400 500 600
mosaic, pattern test

Fig. 1. Correlation of math achievement with mosaic pattern test.
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Answers to Odd Numbered Interpretation Questions

Chapter 1

1.1 Compare the terms active independent variable and attribute independent variable. What
are the similarities and differences?

An attribute independent variable is a characteristic or a “part” of you. Some common attribute
variables such as ethnicity, gender, and IQ are not easily changed. Other attributes such as age,
income, job title, personality traits, and attitudes can change over time. An active independent
variable is manipulated or varied by the experimenter or some collaborating group (school, clinic,
etc.). The researcher or collaborating group actively gives different groups different treatments
during the study. The most common active variable is when a control and experimental group
receive different treatments. The participants might be randomly assigned to groups or be in
intact groups such as school classes.

1.3.  What is the difference between the independent variable and the dependent variable?

The concept of independent and dependent variable confuses many students. The independent
variable is the presumed cause; it should precede the dependent variable. The scores or values for
the dependent variable “depend on™ the independent variable. For example, you might have a new
weight reduction plan, say reduced carbohydrates. One group follows a low carbohydrate diet
while the other group eats their normal diet (the independent variable). Then to determine if the
low carb system works the researcher might make weight measurements before the study and at
the end. Thus, the researcher is hoping that the treatment (the independent variable), causes a
change in weight (the dependent variable).

1.5 Write a research question and a corresponding hypothesis regarding variables of interest
to you but not in the HSBdata set. Is it an associational, difference, or descriptive
question?

Of course the answers to this question will vary greatly. An associational question will most
likely involve two normally distributed variables. For example, “Is there an association between
IQ scores and SAT scores for high school seniors?” Difference questions usually compare the
results of two to four groups. For example, “Are there differences between three different weight
loss programs in regard to the average weight loss?” Although it should be the easiest, often
students misunderstand descriptive questions. Descriptive questions do NOT compare groups or
associate variables. You might ask, “What is the average weight loss of all participants in the
study?” Or, “what is the average age of all participants in the study?”” Descriptive questions are
not answered with inferential statistics such as a ¢ test.
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Chapter 2

2.1.  What steps or actions should be taken after you collect data and before you run any
analyses?

a) Decide how to code each variable (i.e., what numbers/values to use with each type of
response).

b) Check the completed questionnaires to see if participant responses are clear and consistent with
your coding rules; clean up problems.

c¢) Define and label variables with SPSS.

d) Enter the data; the data can be coded directly from the original questionnaires or from a coding
sheet.

¢) Compare the data that you entered with that on the questionnaires.

f) Finally, check again, running some simple statistics to look for errors in the data. For example,
if you have a field where the scores range from 1 to 5, the maximum value in any field should
not be greater than 5.

2.3. Why would you print a codebook?

Codebooks serve as a dictionary for your data. It provides you a way to check what was entered
for each variable as value codes and labels, the variable name and label, special missing value
codes, and the level of measurement.

2.5. Why and why not would you use a data entry form?

Why: sometimes the data being entered is from a long or messy questionnaire or instrument. In
these cases a data entry form helps you not make data entry errors. Sometimes the instrument or
survey itself is laid out in such a manner that it is difficult to enter the data directly into SPSS.
Why not: If the instrument is clearly laid out it is often simpler and more accurate to enter the data
directly into SPSS from the instrument because an intermediate step is not used.

Chapter 3

3.1.  If you have categorical, ordered data (such as low income, middle income, high income)
what type of measurement would you have? Why?

Ordinal. The key here is that the data are ordered. Low income is clearly lower than middle
income, but the data are not interval or normal because the distances between the low, middle,
and high income categories are probably not equal, and our definition of approximately normal
specifies that there be five or more ordered categories. This is a little tricky because the term
categorical is often associated with nominal; however, if the categories are ordered, the variable
can not be nominal.

3.3. What percent of the area under the standard normal curve is between the mean and one
standard deviation above the mean?
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Approximately 34%. The exact percent is 34.13.

3.5.  Why should you not use a frequency polygon if you have nominal data? What would be
better to use to display nominal data?

Frequency polygons and histograms are designed for use with normally distributed or scale data.
The correct ways to display nominal data are the frequency distribution or the bar chart.

Chapter 4

4,1.  Using Output 4.1: a) What is the mean visualization score? b) What is the range for
grades in h.s.? ¢) What is the minimum score for mosaic pattern test? How can that be?

a) 5.24

b) The range equals 6, the high score minus the low score, 8 -2 =6.

c) -4.0. At first this may seem like an error. However, if you check the codebook, you will see
that visualization scores go from 4 to 16. The -4 score also verifies that at least one person
scored the lowest possible score, which is probably negative due to a penalty for guessing
wrong.

4.3.  Using Output 4.2b: a) How many participants have missing data? b) What percentage of
students have a valid (non-missing) scores for both motivation and competence? c¢) Can
you tell from Output 4.1 and 4.2b how many are missing both motivation and
competence scores? How?

a) 4

b) 94.7%

c) InOQutput 4.1b, you can see that there were 73 competence scale scores and 73 motivation
scale scores. In Output 4.2b you can see that only 71 had both of the scores. Therefore, no
one is missing both motivation and competence scores.

4.5.  Using Output 4.5: a) 9.6% of what group are Asian Americans? b) What percentage of
students have visualization retest scores of 6? c) What percent had scores of 6 or less?

a) This is the percentage of subjects in the study who made a valid answer to this question and
listed themselves as Asian Americans. It does not include those who left the question blank or

checked more than one ethnic group.
b) There is no missing data in this category, so the valid percent and the percent are both the

same, and the answer is 5.3%.
c) 70.7%. This is read from the cumulative percent column.

Chapter 5

5.1.  Using your initial HSB data file, compare the original data to your new variables: a)
How many math courses did participants number 1 take? b) What should faedrRevis be
for participants 2, 5, and 8? ¢) What should the pleasure scale score be for participant 1?
d) Why is comparing a few initial scores to transformed scores important?
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a) None

b) 1, missing, and 2, respectively.

c) 3.25.

d) It is easy to make an error in the calculation process, thus, giving you wrong data after
transformation. A few data point checks is reassuring and gives you confidence in your data.
The computer will not make computation errors, but you might give it the wrong recoding or
computing instructions.

5.3.  Why did you reverse questions 6 and 10?

These two questions are negatively worded. Thus, for items 02 and 14, a 4 is high pleasure and 1
is low pleasure, but for these two (item 06 and 10) it is the opposite. Therefore we cannot add
these four items together unless we reverse the coding on items 06 and 10 so thata 4 = 1, 3=2,
2=3 and 1=4. Then all four items will have high pleasure equal to 4.

5.5. When would you use the Mean function to compute an average? And when would the
Mean function not be appropriate?

If participants have completed most items on a construct or scale composed of several questions,
the SPSS “Mean” function allows you to compute the average score on that variable for all the
participants by using the average of their responses for the items that they did answer.

When computing a multiple item scale it is important not to use the Mean function if respondents
only answered one or a few items. For example, if the construct of math anxiety was being
measured and math anxiety was composed of responses to 7 items, but some respondents only
completed 2 or 3 of the seven items, the Mean function would give a biased answer.

Chapter 6

6.1. Compare and contrast a between groups design and a within groups design.

This is a fairly simple concept but is often confused by beginners. In a between subjects design,
different people get different treatments or have different levels of the independent variable. In
other words, there are treatments between the levels of the independent variable. For example,
you might want to see if one 8th grade math curriculum is more effective than another. Each set
of students would receive a different curriculum.

In a within subjects design the same people get multiple treatments. This design is sometimes
referred to as a repeated measures design. The most common example of this design is a pre-test
posttest design. All students take the pretest and the same students take the posttest. Another
example is when a group of people are being monitored over time. Twenty people might enter an
exercise program and their blood pressure and cholesterol levels might be measured each week
for 10 weeks. The dependent variable in a within subjects design is sometimes referred to as
change over time. In other words, “was there a significant change in the cholesterol levels and
blood pressure levels over the 10 week period?” is a within subjects design question. It is also a
within subjects design if pairs of subjects are matched and then compared.
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6.3.  Provide an example of a situation in which a researcher could appropriately choose two
different statistics. Explain your answer.

There are many possible answers to this question. As demonstrated by the discussion of the
general linear model, there are usually at least two choices of an inferential statistic for analyzing
any set of variables (e.g., 7 or eta; see Fig. 6.2). Another example of choices has to do with basic
assumptions related to the statistics. There are a series of judgments that researchers make in the
selection of statistics. For example, a judgment is made about whether a variable is approximately
normally distributed or not. You might have a data set where the skewness of the data is 1.0.
Would you use a nonparametric or parametric statistic? In this case you could justify the use of
either type of statistic. Another common answer to this question relates to choosing ANOVA or
correlation. If the independent variable has 2-4 ordered levels, you could run a correlation,
although we recommend that you run an ANOVA. Remember the five or more ordered levels in
Fig 6.1 is a guideline not a rule.

6.5. Interpret the following related to effect size:

a) d=.25 Small or smaller than typical
b) r=.35 Medium or typical

c) R=.53 Large or larger than typical
d r=.13 Small or smaller than typical
e) d=1.15 Much larger than typical

f) eta=.38 Large or larger than typical

6.7.  What statistic would you use if you had two independent variables, income group (<
$10,000, $10,000-$30,000, > $30,000) and ethnic group (Hispanic, Caucasian, African-
American), and one normally distributed dependent variable (self-efficacy at work).

Factorial ANOVA (This would be a 3 X 3 factorial ANOVA).

6.9.  What statistic would you use if you had three normally distributed independent variables,
one dichotomous independent variable and one normally distributed dependent variable?

Multiple regression
Chapter 7

7.1.  InOutput 7.1: a) What do the terms “count” and” expected count” mean ? b) What does
the difference between them tell you?

a) The count is the actual number of subjects in that cell. For example, in this data set 10 males
did not take geometry and 29 females did not take geometry. The expected count is what you
would expect to find in the cell given the marginal totals if there were no relationship
between the variables.
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b) If the expected count and the actual count are fairly close together there is probably not a
significant difference for the chi-square. If, however, there is a large difference, as in this
case, you would expect to find a significant chi-square.

7.3. Because father’s and mother’s education revised are at least ordinal data, which of the
statistics used in 7.2 is the most appropriate to measure the strength of the relationship:
phi, Cramer’s V, or Kendall’s tau-b? Interpret the results. Why are tau-b and V
different?

The key here is “at least ordinal.” Because both variables are at least ordinal, Kendall’s tau-b is
the appropriate measure. The tau-b of .572 is a large effect size (see Table 6.5). The formula for
Kendall’s tau-b assumes ordinal data whereas the formula for Cramer’s V assumes nominal data
and ignores the order of the levels.

7.5.  Write a sentence or two describing the results of Output 7.4 that you might include in a
research report.

In this case, ethnicity and reported ethnicity had a high level of reliability using Cohen’s Kappa.
(Kappa = .86). There were only few cases where there was not agreement between ethnicity and
reported ethnicity. .

Chapter 8

8.1.  Why would we graph Scatterplots and regression lines?

The most important reason is to check for violations in the assumptions of correlation and
regression. Both the Pearson correlation and regression assume a linear relationship. Viewing the
scatterplot lines allows the researcher to check to see if there are marketed violations of linearity
{e.g., the data may be curvilinear). In regression, there may be better fitting lines such as a
quadratic (one bend) or cubic (two bends) that would explain the data more accurately. Graphing
the data also allows you to easily see outliers.

8.3.  InOutput 8.3, how many of the Pearson correlation coefficients are significant? Write an
interpretation of a) one of the significant and b) one of the nonsignificant correlations in
Output 8.3. Include whether or not the correlation is significant, your decision about the
null hypothesis, and a sentence or two describing the correlations in nontechnical terms.
Include comments related to the sign (direction) and to the effect size.

There are two significant correlations: 1) visualization with math achievement test and 2) grades
in high school with math achievement. There are several possible answers to the rest of this

question.
a) There was a significant positive association between scores on a math achievement test and

grades in high school (#73) = .504, p< .001). In general those who scored high on the math
achievement test also had higher grades in high school. Likewise, those that did not score
well on the math achievement test did not do as well on their high school grades. The effect
(r = .50) was larger than typical. The null hypothesis stating that there was no relationship
can be rejected.
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b) There was not a significant relationship between the visualization test scores and the mosaic

8.5.

a)

b)

9.1.

a)

b)

9.3.

pattern test scores (773 = .03, p = .798). There is little evidence from this data set to support
a relationship between these two variables. The null hypothesis is not rejected.

Using Output 8.5 find the regression weight (B) and the standardized regression (beta)
weight. a) How do these compare to the correlation between the same variables in
Output 8.2? b) What does the regression weight tell you? ¢) Give an example of a
research problem in which Pearson correlation would be more appropriate than bivariate
regression, and one in which bivariate regression would be more appropriate than
Pearson Correlation.

The term regression weight refers to the unstandardized (B) coefficient for grades, which is
2.142. The bivariate regression (R) and the standardized (beta) coefficient are the same; in
this case .504. This is also the same as the Pearson correlation in Ouput 8.2. So with two
variables the correlation (r = .504) and the bivariate regression (R = .504) are the same.

The unstandardized coefficient (B) allows you to build a formula to predict math achievement
based upon grades. B is the slope of the best fit regression line.

The key here is that bivariate regression gives you the ability to predict from one variable to
another, where correlation shows the strength of the relationship, but does not involve
prediction. Correlation is more appropriate than bivariate regression is when there is no clear
independent or antecedent variable (perhaps both variables were assessed at the same time)
and there was no intention to predict.

Chapter 9

a) Under what conditions would you use a one-sample ¢ test?
b) Provide another possible example of its use from the HSB data.

It is not uncommon to want to compare the mean of a variable in your data set to the mean of
a variable in another data set for which you do not have the individual’s scores. One example
of this is comparing a sample with the national norm. You could also compare the mean of
your sample to that from a different study. For example, you might want to replicate a study
involving GPA, and ask how the GPA in your study this year compares to the GPA in the
replicated study of 10 years ago, but you only have the mean GPA (not the raw data) from
that study.

We could, possibly compare the means for other variables in the HSB data set with national
norms for the visualization test, the mosaic pattern test, or the math achievement test.
Comparing our data with national norms could help us justify that the HSB data set is similar
to all students or tell us that there is a significant difference between our HSB data and
national norms.

a) Compare the results of Output 9.2 and 9.3.
b) When would you use the Mann-Whitney U test?
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a) Note that although the two tests are based on different assumptions, the ps were similar for
the ¢ and M-W that used the same variables, and the results that were significant did not
change. Males and females were significantly different on math achievement (p=.009 and
.010, respectively) and on visualization scores (p=.020 and .040), but there was not a
significant difference between males and females on grades in high school (7=.369 and .413).

b) The Mann-Whitney U is used to compare two groups, as is a ¢ test, but you should use M-W
when you have ordinal (not normally distributed) dependent variable data. The M-W can also
be used when the assumption of equal group variances is violated.

9.5.  Interpret the reliability of visualization test and retest scores using Output 9.5.

There is pretty good support for the reliability of visualization and retest scores with this sample.
The visualization scores were higher than the retest scores, but there was a very high correlation
between the two sets of scores (r = .88), a typical measure of reliability. The paired t test,
however, shows that there is a significant difference between the average visualization scores and
the average retest scores (f = 3.22; p = .002). In general, the same people scored significantly
higher on the visualization test than on the visualization retest. Unless there is some reason (a
negative event, less time, etc.) that the average retest score should be lower, this ¢ test result
would make one question the similarity between the two tests. However, if there had been a
positive intervention between pretest and posttest, one would expect posttest scores to be higher.

Chapter 10

10.1. In Output 10.1: a) Describe the F, df, and p values for each dependent variable as you
would in an article. b) Describe the results in nontechnical terms for visualization and
grades. Use the group means in your discussion.

a) There is a significant difference between father’s education groups on grades in high school
(2,70) =4.09, p = .021 and on math achievement scores F (2,70) = 7.88, p = .001. There is
not a significant difference on visualization scores. In order to fully interpret these results,
you need to use post hoc tests (see Output 10.2 and the interpretation section). Note that
between groups degrees of freedom is 2 because there are 3 groups 3-1 =2. The degrees of
freedom within is the total minus the number of groups or 73-3 = 70.

b) There is not a significant difference in average student visualization scores among the groups
of students who have fathers with a high school or less education, with some college
education, or with a B.S. or more. There is one or more significant difference among the
father’s educational level groups in regard to their child’s grades in high school. Students
who had parents with a B.S. or better received average grades of 6.53 which using the
codebook is approximately a 3.25 GPA, half way between mostly Bs and half As and half Bs.
Students who had parents with some college had mean grades of 5.56, about a 2.75 GPA.
Students whose parents had high school degree or less (mean = 5.34) had an average about
2.65.

In Output 10.1 we did not run post hoc tests. To see if these group differences are statistically
significant, we would need to use a post hoc test as we did in Output 10.2.
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10.3. In Output 10.3, interpret the meaning of the sig. values for math achievement and
competence. What would you conclude, based upon this information, about differences
between groups on each of these variables?

Using the Kruskal-Wallis test, there is a significant difference somewhere among the three
parental educational levels on math achievement (chi-square = 13.384, df= 2, N=73, p=.001).
There are no differences on the competence scores among the parental education groups.

If you review the Mean Rank table it is fairly clear to see that the mean ranks for competence
scales are similar (36.04, 35.78, and 36.11). It is also appears that the mean ranks on math
achievement are quite different (28.43, 43.78, and 48.42). Students who had parents with BS or
more seemed to score higher on math achievement than did those who had parents with a high
school degree or less. However, it is less clear if there are significant differences between the
group in the middle (some college) and the one above or below it. To test these comparisons
statistically would require post hoc analysis, probably with Mann-Whitney tests.

10.5. InOutput 10.4; a) Is the interaction significant? b) Examine the profile plot of the cell
means that illustrates the interaction. Describe it in words. c) Is the main effect of gender
significant? Interpret the eta squared. d) How about the “effect” of math grades? ) Why
did we put the word effect in quotes? f) Under what conditions would focusing on the
main effects be misleading?

a) No. F=.34, p=.563. That is convenient because it means that we can interpret the main
effects without concern that they might be misleading.

b) Males did better than females regardless of whether they had high or low high school math
grades. Note that the lines are nearly parallel, indicating that the difference is about the same
for the less than A-B grades group and the mostly A-B math grades group.

c) Gender is significant (p < .001). Eta squared is .163. This indicates that about 16% of the
variance in math achievement can be predicted by gender. Taking the square root of eta
squared you get an eta = 415, which is a larger than typical effect.

d) The math grades “effect” is also statistically significant (p < .001). By looking at the total
means or the plot, we can see that students with high (most A-B) math grades scores had

higher average math achievement scores.

e) We put “effect” in quotes because this is not a randomized experiment so we can not know if
male gender or high math grades is the cause of higher math achievement.

f) Ifthere is an interaction you must interpret the interaction first. Under that condition the
interaction can make the results of the main effects misleading.
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Active Independent Variable, 1, 8
Adjusted R®, 129
Analysis of covariance, 95
ANOVA, 83-87, 148-156, 158-163
Approximately normally distributed, 36, 38, 40, 42, 57
Associational inferential statistics, 5-6, 80, 85-88, 94-97
research questions, 5, 12, 82-83, 94, 178-179
Assumptions, 12, 51-53, 57, 60, 63-64, 78, 100, 111, 127, 135-136, 140-141
Attribute Independent Variable, 1, 8
Bar charts, 43, 165
Basic (or bivariate) statistics, 82
associational research questions, 13, 94, 178-179
difference research questions, 93, 177
Between groups designs, 80-81, 83-85, 93-94, 134
Bivariate regression, 83, 85, 87, 111, 124-126
Box and whiskers plots, 44-45, 47, 57-63,165
Calculated value, 88
Callout boxes, 34
Categorical variables, 38-40
Chart editor, 113-114, 167
Checking data, 20-23, 30-34
Chi-square, 83, 99-103
Cochran Q test, 84
Codebook, 18, 27, 167
Coding, 17-20
Cohen’s kappa, 99, 108-109
Cohen on effect sizes, 90-96
Complex associational questions, 13, 86-87, 179
difference questions, 13, 84-87, 178
(multivariate) statistics, 6, 82-87, 95
Compute variable, 73-77, 173
Confidence intervals, 89, 94-97, 136, 138-139, 156
Content validity, 15
Continuous variables, 40
Copy and paste cells, 167
output, 171
variable, 174
Copy data, 168
Correlation matrix, 111, 120-122
Correlation, 111-132, 144-145
Count, 69-71
Cramer’s V, 83, 85, 99-105
Create a new file, 169
syntax, 173
Critical value, 88

! Commands or output terms used by SPSS but not common in statistics or research methods books are in
bold.
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Cronbach’s alpha, 122
Crosstabs, 97-109
Crosstabulation, 97-109
Cut and paste cells, 167
variable, 174
Cumulative percent, 42, 68
d, 81-97
Data Editor, 9-12, 70, 181-182
entry form, 23-30
file management, 69-78
View, 11-12, 23, 29, 44, 182
Decimals, 24-27, 70
Define user-missing values, 170
Define and label variables, 23-29
Delete output, 171
Dependent variables, 1, 4
Descriptive research questions, 6, 12
statistics, 5, 12, 33, 42-50, 53-68, 119
Descriptives, 5, 30-34, 46, 54, 63-65, 77-78
Dialog box help button, 170
quick help, 170
Dichotomous variables, 38-39, 51, 60-65, 84-86
Difference inferential statistics, 6, 80, 82-87, 93-97
research questions, 5-6,12-13, 80-87, 93, 177-178
Discrete missing values, 25
variables, 39
Discriminant analysis, 86
Dispersion, (see standard deviation and variance)
Display syntax (Command Log) in the output, 23, 171
Dummy coding, 18
Edit output, 171
Effect size, 3, 89-97, 103, 105-107, 119-120, 139, 143, 160, 162
Enter (simultaneous regression), 126
Enter (edit) data, 168
Equal variances assumed, 138
not assumed, 138
Eta, 82, 85, 87, 89-91, 99, 105-107
Expected count, 101-102
Exploratory data analysis, 51-68
Explore, 59, 61-68, 133, 168
Export data, 168
Export output to word, 171
Extraneous variables, 1, 4, 8
Factor, 3, 81
Factorial design, 80-81
Factorial ANOVA, 82-85, 87, 148, 158-163
Figures, 184, 195-196
File info, (see codebook)
Fisher’s exact test, 99-103
Format output, 171
Frequencies, 36, 54, 65-68
Frequency distribution, 36, 42-43, 63, 65-68
polygons, 44
Friedman test, 84
Games-Howell test, 148, 152, 155-156
General linear model, 82, 84-87, 158
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Grouping variable, 3, 157
Help menu, 170
Histogram, 37, 43-44
Hide Results within an output file, 172
Homogeneity of variance, 53, 149
Homogenous subsets, 154-155
HSB variables, 8
Import data, 168
Independent samples ¢ test, 84, 87, 93-94, 97, 134, 136-139
Independent variable, 1, 8
Inferential statistics, 80-97, 99-164
Information on variables, 174
Insert cases, 166
text/title to output, 172
variable, 174
Interaction F, 156-163
Internal consistency reliability, 122-124
Interquartile range, 47
Interval-measurement, 36, 37, 39
Kappa, (see Cohen’s kappa)
Kendall’s tau-b, 83, 85, 99, 103-105
Kruskal-Wallis test, 84, 148, 156-158
Kurtosis, 49
Liabel-of variable or value, 9, 24-27, 69
Leaf, 62-63
Levene test, 136-138, 150-151
Likert scale, 23, 37, 41
Linear regression line, 111-116
List Cases (Case Summaries), 166
Listwise N, 57, 117, 120-121
Log file, (see syntax)
Logistic regression, 86
Loglinear analysis, 85
Main effect, 3
Mann-Whitney U, 84, 134, 140-141
MANOVA, 82, 85, 134
Maximum, 31, 33, 45, 53, 57, 65
McNemar test, 84
Mean, 34, 45, 54, 57, 65, 76-79, 117
difference, 152
function, 76-77
ranks, 155
Measurement, 36-42, 47-48, 82-86, 92
Measures of central tendency, 45
of variability, 46
Median, 45
Minimum, 32, 34, 46, 54, 57, 65
Missing values, 9, 24-25, 42, 66-68
Mixed factorial designs, 80-81, 84-85
Mode, 45
Move variable, 174
Multicollinearity, 127-128, 130
Multiple regression, 83, 86-87, 89-91, 111, 126-132
Multivariate, 6, 83 (see complex statistics)
Nominal scale of measurement, 4, 26, 37-38, 41-42, 84-86
Non experimental design, 2
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Nonparametric tests, 48, 53, 83-85, 99-109, 111, 116-120, 140-142, 145-146, 156-158
Nommal curve, 36-37, 48-50
Normally distributed, 38, 48-50, 53, 84-86
Null hypothesis, 88-89
Old and New Values, 72
Omnibus F, 151
One-sample ¢ test, 134, 136
One-tailed test, 121
One-Way ANOVA, 135, 148-156
* Open data, 168
file, 169
output, 172
Ordinal measurement, 37-38, 41, 50, 53-57, 84-86
QOutliers, 44, 60
Paired samples correlations, 142-143
Paired samples ¢, 134, 141-145
Pairwise N, 120-121
Parallel forms reliability, 143
Parametric tests, 46, 52
Pearson chi-square (see chi-square)
Pearson product moment correlations, 83-85, 89-91, 94-97, 111, 116-122
Percent, 41, 68, 100
Phi, 83, 85, 89-91, 97, 99-105
Pilot study, 15
Pivot tables, 172
Post hoc multiple comparisons, 148, 151-156
Power, 48
Practical significance, 91-93
Print data, 168
output, 172
preview, 172
syntax, 70, 173
Profile plots, 161
Properties Window, 114
Quadratic regression line, 115-116
Quantitative variables, 39
Randomized experimental designs, 2
Range, 46, 54,71
Ratio-measurement, 37-38
Recode, into different variables, 17, 71-75, 175
Recode into same variables, 175
Regression coefficients, 125-126, 128-131
Reliability, 99, 108-109, 122-124, 143-145
Repeated measures design, 80-81
Replace missing values, 171
Research hypothesis, 5
problem, 1, 7-8, 93-94, 176-177
questions, 5-7, 12-13, 93-94
Resize/rescale output, 172
Results coach, 173
Robust, 52
Run syntax, 173
Save data, 168
file, 78-79, 170
syntax, 173
output, 172
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Scale, measurement, 25-26, 40, 51, 53, 55, 57
Scatterplots, 111-116
Scheffe test, 151
Select Cases, 166
Selection of Inferential Statistics, 80-97
Sig, 88
Single factor designs, 80, 134-146, 148-158
Skewness, 36, 46-47, 49, 53-54, 57
Sort Cases, 167
Spearman rho, 83, 85, 111, 116-120
SPSS Data Editor, 9, 23, 29-30, 33, 52-53, 70, 181-182
SPSS Variable view, 9, 53
SPSS Variable name, 9-11
Standard deviation, 32, 46, 54
Standardized beta coefficients, 125-126, 130-132
Statistical assumptions, (see assumptions)
Statistically significant, 88-98
Statistics coach, 173
Stem-and-leaf plot, 57, 59, 60-63
Summated scale, 122
Syntax, 23, 33, 183
System missing, 9
! test, 84, 87, 93-97, 130, 134-139
Tables, 173, 184-195
Test-retest reliability, 143
Transform vanables, 18, 69
Tukey HSD, 148, 152-155
Two-tailed test, 116-119, 121
Unstandardized regression coefficients, 125-126, 130
Valid N, 34, 42, 57
Valid percentage, 42, 66-68
Value labels, 4, 9, 2-25, 72-75
Values, 9, 24-26
Values - Categories, levels, groups, or samples, 2, 3
Variables, 14, 7-11, 38, 93
Variable label, 4
name, 9, 23, 25
view, 9, 23, 39, 53,57, 70
Variance, 53, 62, 64, 138
Wilcoxon signed-ranks test, 84, 134, 145-146
Within subjects or repeated measures designs, 80-81, 83-85, 134, 141-145
z scores, 50, 175
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