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PREFACE

THIS text, plus the accompanying Study Manual* may be con-

sidered as constituting a method of teaching a first course in statistics

for students of education and psycjuololy. The distinguishing

features of these materials are as follows:

i. They rely primarily upon the Socratic method to develop in the

student a reasoned understanding of statistical techniques.

Students in first courses in statistics in education and psychology

have been prone to take a passive attitude in the learning process.

Upon meeting concepts which they have not readily understood,

they have often resorted to memorization of stereotyped inter-

pretations and have not made an insistent and aggressive effort

to discover underlying meanings. They have been required to

spend so much time on the mechanics of the solution of computa-

tional problems that they have had little time left to think about

the meaning of results obtained in practical situations. ,They have

learned how to apply statistical techniques only in the very limited

sense of knowing how to compute numerical results, but have not

learned when and why these techniques should be applied in

actual practice or how the results obtained should be interpreted.

They have often completed the first course in statistics with little

more than a stock of arbitrary rule-of-thumb procedures and stere-

otyped generalizations. Because of lack of understanding of

basic principles, they have been helpless in the many situations

to which these procedures and generalizations do not apply, or have

tried, with false confidence and with unfortunate consequences,

to apply them to situations for which they are not intended.

In this text and study manual, through extensive use of the

Socratic method, an attempt is made to require the student to

take a more active role in learning. Much of what has formerly

been presented to him (for memorization) is here drawn out of him

through leading questions and suggestive illustrations. The prob-

1

Study Manual for a First Course in Statistics. Revised Edition*
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lems and questions for discussion contained in the manual suggest

an unusually large number and variety of concrete illustrative

situations which may be employed by the student to demonstrate

the uses and limitations of each statistical technique considered.

These exercises are also intended to help him appreciate what are

the most important mathematical properties and essential char-

acteristics of each technique and what is the significance of these

characteristics in the interpretation of results. It is left to the

student himself, however, to develop these illustrations and to

formulate in his own words the generalizations which they support.

2. These materials stress as much as possible the uses and inter-

pretation of statistics, and minimize as much as possible the mathe-

matical theory of statistics and the mechanics of computation.

Students in introductory courses in statistics in education and

psychology seldom have the mathematical training essential to a

ready understanding of the mathematical theory of statistics.

The prominence given to mathematical derivations in many
courses has, therefore, only contributed to the student's bewilder-

ment and has kept him from devoting his time more profitably to

those interpretative aspects of statistics which he can more readily

understand. The frequent practice of requiring the student to

solve a large number of computational problems has similarly de-

tracted from the time available for consideration of interpretative

aspects, and has neither contributed significantly to his under-

standing nor developed in him any skill in computation as such.

In this text and manual, therefore, the mathematical and computa-

tional aspects of statistics will be given only the minimum con-

sideration essential to an adequate treatment of the interpretative

aspect.

The need for the greatest possible emphasis upon the inter-

pretative aspects of statistics in introductory courses has been ad-

mirably stated by Professor Helen Walker, of Teachers College,

Columbia University, as follows: r

1
Walker, Helen M., "Problems in the Training of Research Workers." Journal

of Educational Research, February, 1933.
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It is relatively easy to conduct a course in either research methods
or statistical methods in such a way that students emerge from it

with a confident faith in their ability to discover truth by routine

processes, a zeal for applying their new techniques to the first

data they can secure, and complete lack of any comprehension of

the great variety of ways in which it is possible to reach results

that delude rather than enlighten. In the long run, such courses

probably do more harm than good. Personally, the author does

not believe in teaching, even in elementary classes, the application
of a technique whose limitations cannot also be suggested.
An increase in the extent to which educators think in terms of

mass data, a growth in the ability to reason statistically, is of

enormous value. An increase in the number of persons who com-

pute partial coefficients of correlation with but little idea of their

meaning, may be considered of no value at all. It may be a

relatively easy task to induct an intelligent student into certain of

the computational processes employed in research, to show him
certain routines useful in experimentation and in the organization
of mass data, but it is a much more difficult task to teach him to

think straight, to know what assumptions are implicit in the for-

mulas he employs, to know when those assumptions are inconsistent

with the practical situation in which he is working, to draw only
such conclusions as are logical, and to rvke only such generaliza-

tions as are justifiable. This difficulty is by no means lessened when
such teaching must be conducted en masse and given to students

who have carried over from their high-school days a dislike of

numbers and an unpleasant emotional reaction to the use of alge-

braic symbolism.
The longer the writer teaches statistics and the more disserta-

tions she attempts to direct, the more profoundly does she believe

that the chief challenge to teachers of research methods is not to

produce good computers and not to produce people who can

juggle algebraic formulas or who can invent new terminology and

new procedures, but to improve the quality of logic which goes
into research.

3. These materials are relatively restricted in number of techniques

considered.

In the belief that it is better for the student to acquire a thorough

understanding of a few basic concepts and techniques than a

superficial acquaintance with many, only the most fundamental

and frequently used statistical techniques are considered in this
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text. It has been the author's experience that to develop in the

student a satisfactory generalized understanding of any statistical

technique requires much more explanatory and illustrative material

than has been included in most textbooks. The restriction in

the scope of this text and manual permit s, without undue demands

upon the student's time, the presentation of an adequate amount

of such material in relation to each technique considered. The

author believes that, if the student develops a thorough under-

standing of the basic techniques included in this course, he will

have little difficulty in interpreting for himself other more special-

ized and less frequently used techniques if and when the occasion

to use them arises.

4. These materials are designed particularly to develop in the

student a critical attitude toward the use of statistical methods in

education and psychology.

Sound statistical judgment involves a keen appreciation of the

inherent limitations of statistical techniques and of the original

data to which they are applied. In the derivation of these tech-

niques, assumptions ar^ frequently made which cannot be satisfied

completely in practical applications. The failure to satisfy these

conditions necessitates many qualifications in the interpretation

of the results obtained. These qualifications have frequently been

ignored in the condensed treatments made necessary in many texts

by the large number of techniques included. In this text and

manual, major emphasis will be placed upon the limitations of

statistical methods, upon the many prevalent misconceptions and

fallacies in statistical thinking, and upon the many sources of

error involved in the use of statistical techniques. By these

means, these materials are intended to develop in the student a

critical attitude and an appreciation of the fact that statistical

methods are an aid to, not a substitute for, common sense.

These and other features of this first course in statistics are

explained in greater detail and more definitely from the student's

point of view in the introductory chapter. It is highly important
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that the student be advised to consider these features carefully

at the beginning of the course in order that he may appreciate

fully the requirements made of him and may use the materials to

the greatest advantage.

These materials have been gradually developed by the author

through the use in his own classes of a series of mimeographed

preliminary editions which have been successively revised and im-

proved through experience. It is the author's opinion, based

upon this experience, that materials of this type may be most

effectively used if the course is conducted on a laboratory or

work-period basis, in which the instructor dispenses almost en-

tirely with formal lectures and allows the student to spend the

major part of each class period in supervised work on the exercises

in the study manual. It is, of course, essential that the student

be given opportunity at frequent intervals to verify the results

of his own reasoning. This may be most readily done through

periodic class discussion in whicn the instructor presents and ex-

plains the correct solutions to the exercises after they have been

independently attempted by all students. When thus used, these

materials should prove adequate for a one-semester undergraduate

or graduate course meeting three or four times per week.

The author is deeply indebted to many of his graduate students

who, during the course of the successive revisions of experimental

editions, offered valuable suggestions for the improvement of the

material. He is indebted also to Professor P. J. Rulon, of Harvard

University, who read the manuscript and whose criticisms were

of great assistance in the final revision.

Grateful acknowledgment is made to Oliver & Boyd, Limited,

Edinburgh, and to Professor R. A. Fisher, for permission to re-

print the table on page 240.

E. F. LlNDQUIST
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CHAPTER I

INTRODUCTION

The Purposes of Statistical Methods in Education and Psychology

STATISTICAL methods are the mathematical techniques used to

facilitate the interpretation of numerical data secured from groups

of individuals (or groups of observations of a single individual).

In education and psychology, the individuals constituting these

groups may be human beings variously classified (such as school

pupils and teachers or subjects in the psychology laboratory), or

they may be administrative units (school classes, school systems,

school boards), political divisions (school districts, cities, counties,

states), social or religious groups, homes, school buildings in

fact, any entities for which numerical data may be collected. The

data gathered may be scores on educational or psychological tests,

direct measures of physical traits, enrollment and attendance fig-

ures, fiscal data (salaries, incomes, expenditures), census enumer-

ations, school marks, ratings, ages or any other descriptive facts

which may be expressed in numbers.

It is manifest that the student and research-worker in education

or psychology, the school administrator, and the classroom teacher

all have frequent occasion to interpret masses of data of the

types just suggested. It should also be readily apparent that

very little meaning can be derived from such data in the unordered

form in which they are originally collected. Until they have been

compactly and systematically arranged, and until their description

has been condensed into a few derived measures which can be

conveniently handled, such data cannot be adequately interpreted

for any large group or meaningfully compared for different groups.

The statistical methods which will be considered in this intro-

ductory course may be classified into three sets of techniques, ac-

cording to the major purposes that they are intended to serve.
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One set of techniques will enable the student to organize group

data, to describe and interpret these data in terms of derived

measures of central tendency (averages), of variability, and of other

characteristics of the group, and to portray these data in graphical

form for more convenient interpretation or more ready assimila-

tion.

A second set of techniques will enable the student to describe

quantitatively the limits within which he may safely generalize

about large groups or populations on the basis of facts derived

from relatively small groups or samples selected at random from

these populations. Nearly all research studies in education or

psychology are of the type known as sampling studies. In these,

relatively small groups of individuals are observed, investigated,

or experimented with for what may be learned in general about

all individuals of the same type or from the same population. In

any such study, there is always the possibility that the sample of

individuals used may not be truly representative of the whole

population, since chance or factors beyond the investigator's con-

trol will always determine to some extent which individuals will

constitute the sample employed. Hence, any fact derived from a

sample must always be considered as only an approximation to

the corresponding "true" fact, that is, to the fact which would

have been obtained had the entire population been studied. Under

certain conditions of sampling, statistical techniques (sampling

error formulas) may be applied to determine quantitatively how

nearly these obtained facts are likely to approximate the true

facts. Proper use of these techniques will help guard against the

dangerous tendency to jump to conclusions based on too few ob-

servations and will enable the investigator to qualify his generaliza-

tions in accordance with the reliability of the facts obtained.

A third set of techniques will enable the student to describe

quantitatively the degree of relationship existing between measures

of different traits for any group of individuals or between any other

types of paired measures. It is a matter of common observation

that there is some relationship between, for example, intelligence
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and school achievement: pupils of superior intelligence tend also

to be superior in achievement and pupils of low intelligence tend

to be low in achievement. One cannot, however, obtain any
accurate quantitative idea of the closeness of this relationship on

the basis of direct observation alone, or make any quantitative

comparisons of the relationship for different school subjects.

Mathematical techniques are required for these purposes. These

techniques are useful in the study of cause-and-effect relationships

between mental traits or abilities, in the evaluation of test materials

(to describe test validity and reliability), and in estimating or

predicting certain unknown measures from known values of related

measures.

The Major Aspects of Instruction in Statistics

Entirely apart from these major purposes of statistical methods,

there are three aspects of statistics which have been variously

stressed in introductory courses in the subject. The first of these

has to do with the mathematical theory underlying the derivation

of the techniques, the second with the computational procedures

involved in practical applications, and the third with the uses of

the techniques and the interpretation of results in actual practice.

In this course, the first two of these aspects will receive no more

consideration than is essential to an adequate treatment of the

third. Mathematical derivations will be considered only in as

far as is necessary to demonstrate the reasonableness of the

techniques and to draw attention to the important assumptions

made in their applications. The specific mathematical skills in-

volved in the derivations presented will in no case go beyond those

which are considered as minimum essentials in elementary arith-

metic and ninth year algebra. No student, therefore, need feel

that he will be seriously handicapped by lack of training in ad-

vanced mathematics. No attempt, furthermore, will be made to

develop in the student any degree of skill or facility in the com-

putation of statistical measures. A great variety of computational

procedures have been developed for the techniques considered in
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this course, including many which involve the use of computing

machines and electric tabulating equipment. These procedures

are so various and complex that any early consideration of them

would only confuse the beginning student and would interfere

with his attainment of a real understanding of the essential

nature of the techniques themselves. In this course, therefore,

only the most straightforward and most readily understandable

computational procedures will be considered at all. The student

will be expected to apply even these procedures in only a very

few problems, and then only to contribute to the better under-

standing of the techniques rather than to develop in him any skill

in computation as such.

The maximum amount of the student's time will thus be made

available for the consideration of the interpretative aspects of the

course. In relation to each of the techniques considered, major

emphasis in instruction will be placed upon questions such as the

following:

What are the most significant mathematical properties and

major characteristics of this technique? What assumptions

are involved in its application?

What specific uses may be made of it? In what types of

situations may it be validly applied?

What are its major advantages and limitations in relation

to other techniques intended for roughly the same purposes?

How may the results of its application be interpreted?

How must this interpretation be qualified in terms of the

unique conditions under which it may be applied?

What common misinterpretations are to be avoided? What
common fallacies in statistical thinking are related to the use

of this technique?

Importance of the Interpretative Aspect

This course, then, will be essentially a course in the interpretation

of statistical techniques as they are applied in education and

psychology. The mathematical theory of statistics and the me-
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chanics of computation will be minimized as much as possible.

There are a number of reasons for this distribution of emphasis
in instruction. One of these is that the typical student in this

course is preparing for college or public school teaching, or plans

to enter the field of public school administration, and will not

engage in any significant amount of research, perhaps in little

more than is involved in meeting the requirements for an ad

vanced degree. If he is to attain any real insight into professional

problems, however, he must be prepared to read professional

literature with understanding, and must continually keep himself

intelligently informed about the current research investigations

and experiments reported in professional periodicals. If only as a

preparation for such reading, some training in statistics is an

essential part of every student's professional equipment. Without

such training, most of what he reads professionally will be rendered

unintelligible by the frequent recurrence of statistical terms, such

as correlation coefficient, probable error, standard deviation, and

significant difference. To read these materials with comprehen-

sion, the student obviously need have no skill in computational

procedure, but he must be prepared to evaluate critically the uses

that have been made of statistical technique by others, and must

be able to check their conclusions against his own interpretations

of the results obtained. On the few occasions in which he may
need to apply statistical techniques himself, the student can

readily look up the preferred computational procedure in available

references and handbooks, and will have no difficulty in under-

standing the directions given if the essential nature of the tech-

nique involved is well understood by him. The small proportion

of students in this course who will later engage in extensive re-

search on their own account will in any event go on to advanced

courses in statistics, in which adequate consideration of the more

economical computational procedures involved in large-scale re-

search may be more properly given.

The lack of emphasis upon the mathematical theory of statistics

is as much a matter of necessity as of choice. The majority of



6 INTRODUCTION

students taking this course will not have had the mathematical

training essential to an understanding of the derivation of most

statistical techniques. Furthermore, a very satisfactory under-

standing of the uses and interpretations of these techniques can

be acquired without tracing step by step the mathematics of their

derivation. The typical student can well afford to accept the

mathematical derivations on faith and to devote his time more

profitably to questions of use and interpretation.

The Organization of Instructional Materials in This Course

The instructional materials employed in this course comprise

two volumes: this text and an accompanying study manual. The

content of these two volumes has been organized into a number of

natural study units, each of which deals with a relatively homo-

geneous set of techniques that are intended to serve the same

general purpose. In one unit, for example, all of the more widely

used methods of graphical portrayal of group data are considered

together; in another, all of the more important measures of central

tendency (averages) are described and compared; another unit

treats measures of variability; etc. Each of these units consists

of one of the chapters in this text plus the corresponding questions

and problems for study and discussion in the manual. In each

case the chapter in this text consists of a brief explanation of the

mathematical properties and essential characteristics of, and the

basic assumptions underlying, each of the techniques considered.

The accompanying problems and questions in the study manual

are intended to assist the student to discoverfor himself the practical

significance of these properties, characteristics and assumptions.

The questions in the manual will suggest a very large number and

variety of concrete situations which may be employed to illustrate

the uses and limitations of each technique, and will draw attention

to the implications of the basic assumptions underlying the deriva-

tion of the techniques in the interpretation of the results obtained

from them. It is left to the student himself to develop these illus-

trations and to formulate and state in his own words the generaliza-
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tions which they support. In order that they may not be inor-

dinately difficult to the student, most of the questions will be

presented in a highly leading form, and each step in the necessary

reasoning will be so clearly indicated that the student will not be

likely to go far astray in his thinking.

This text alone, then, is not intended to constitute a complete

discussion of the techniques considered. On the contrary, many
of the interpretative statements which ordinarily would be pre-

sented in a pat form in the textual discussion will be deliberately

omitted in order that the student may be required to reach the

same conclusions by his own reasoning. This procedure is based

on the sound pedagogical principle that knowledge which the

student acquires through his own independent thinking is much
more likely to be understood and permanently retained by him

than that which he has memorized in the words of another. Es-

sentially, then, the student will be expected to write for himself an

important part of what will eventually constitute a complete

text, namely, that part which is concerned primarily with the use

and interpretation of statistical techniques. Each chapter in this

text will contain some interpretative materials and explanations,

but only to present those concepts which the student cannot rea-

sonably be expected to discover or develop for himself.

A special effort has been made through these materials to de-

velop in the student a critical attitude toward the use of statistical

method in education and psychology. Special stress has been

placed upon the limitations of each technique, upon the frequent

and unavoidable failure to satisfy in practice all the basic assump-

tions or requirements of each technique, upon the manner in

which the conclusions based upon obtained results must be quali-

fied because of such failures, and upon prevalent misconceptions

and fallacies in statistical reasoning. In a misguided effort to

simplify statistics, many of these necessary qualifications have

often been ignored in instruction, and the student has been pro-

vided with a number of rule-of-thumb procedures and stereo-

typed interpretations which, because of the numerous exceptions
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to them, in the long run get him into as many difficulties as they

help him to avoid. Statistical methods are an aid to, not a sub-

stitute for, common sense. Each technique is designed for a cer-

tain purpose and for use under certain conditions only. When
these conditions are not satisfied, the application of the technique

may and often does lead to conclusions that are obviously con-

tradictory to common sense. It is because of just such abuses of

statistical techniques that people have developed a distrust of

statistics and statisticians. In using these instructional materials,

then, the student is strongly advised to strive consciously to de-

velop in himself a highly critical attitude and to be on guard

against the easy tendency to over-generalize or to depend unduly

upon stereotyped interpretations.

This course will cover only those techniques that are generally

considered essential in nearly all types of statistical work in educa-

tion and psychology. Many techniques ordinarily included in a

first course in statistics, such as the harmonic and geometric

means, the coefficient of variability, the correlation ratio, partial

and multiple correlation, and other special but rarely used statisti-

cal tools, will be given no consideration whatsoever in this course.

This restriction in scope is based on the principle that it is better

for the student to acquire a thorough understanding of a few

fundamental methods and principles than only a superficial ac-

quaintance with many. If these few techniques are well under-

stood, the student should have little difficulty later in interpret-

ing other techniques for himself if and when the occasion to use

them arises.

In addition to the restrictions just noted, as has been previously

mentioned, this course will devote the minimum of time to mathe-

matical theory and to computational procedures. These, in-

cidentally, are the aspects of instruction which primarily account

for the reputation of being difficult that courses in statistics have

so frequently acquired. Everything considered, then, the ap-

proach employed in instruction in this course should not present

any inordinate difficulties to the student, but, on the contrary,
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should constitute one of the easiest and most effective procedures

by which he may derive from his studies something of real func-

tional value and may acquire a sound statistical judgment.

How to Use These Materials in Study

The content of this course, then, has been presented in a form

which is specially designed to encourage the student to think things

out for himself and thus arrive at a reasoned understanding of

statistical techniques. Consequently, as has already been ex-

plained, none of the chapter's in this text is intended to be complete

in itself. The full significance of some of the statements made in

these chapters may not be wholly appreciated by the student

until he has also considered the problems and the questions for

discussion in the study manual. To use these materials most

effectively, the student is advised to employ a procedure somewhat

as follows with reference to each unit :

1. Read carefully the complete chapter in this text once or

twice before considering any of the problems or questions in the

study manual.

2. Begin writing out your own answers to the questions in the

manual in the order in which they are presented, referring to the

chapter in this text wherever necessary. If a question at first

seems beyond your comprehension, leave it temporarily and go on

to the others. Some of the later questions may give you a hint

to how to answer the earlier question.

3. Do not ask for help from your instructor or fellow students on

any question until you have first done your best to answer all

of the questions corresponding to the chapter on which you are

working. Your final objective, of course, is to arrive at a thorough

and reasoned understanding of the techniques considered. Letting

the other fellow do your thinking will only interfere with your

realization of this objective, even though it may seem the easiest

immediate solution.

4. After you have done your best to answer the questions your-

self, take every opportunity to discuss them with other students
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and to compare answers. You will, of course, wish finally to make

certain that your answers are correct. If your instructor follows

the recommended procedure, he will in due time check your work

for you or will consider all of the questions in his lectures or class

discussions and will indicate the correct responses to you.

5. When all of your answers have been checked, read the

chapter in this text again very carefully and attempt in this

final reading to integrate your reasoning and conclusions about the

techniques considered.



CHAPTER IT

THE FREQUENCY DISTRIBUTION

ANYONE who has worked with test scores collected from a large

group of individuals knows that it is extremely difficult to derive

any adequate idea of the performance of the group as a whole

from the individual measures in the unordered form in which they
were originally collected. Consider, for example, the following

scores (Table i) obtained from a group of 100 high-school pupils,

each score representing the number of words spelled correctly in

a 200-word spelling test.

TABLE i

SCORES OF 100 HIGH-SCHOOL PUPILS ON A 200-WORD SPELLING TEST

To hold so many scores in mind at once is obviously impossible;

to derive any generalized concepts of group performance from a

brief inspection of these scores is extremely difficult. Certain

characteristics of the group can, of course, be noted at once. It

is not difficult to see that no pupil made a perfect score, that most

pupils spelled more than 100 words correctly, that every pupil

spelled some words correctly, that a "good many" of the pupils

scored between no and 150, etc., but such statements hardly

constitute a meaningful, accurate, or useful description of the

group as a whole, nor do they provide an adequate basis for the

evaluation of the relative performance of any individual within
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the group. To add very much to the precision and meaningful-

ness of this description would require a most painstaking "hunt

and count" process. Through such a process it is possible, for

example, to find the lowest and the highest scores in Table i, or

to determine exactly how many pupils scored above 100 or any
other given value, or to determine the exact number of scores

between no and 150 or between any other pair of values, etc.

The student has only to try to do these things for himself, however,

to discover how time-consuming is the process, how inaccurate it

is likely to be, and how inadequate it is, after all, for the purpose

of providing him with a composite mental picture of the group

performance.

What is needed, then, is some way of classifying or arranging the

scores so as to make more convenient the task of interpreting them

as a group. One obvious possibility would be to rearrange the

scores in order of their size, from the highest to the lowest. With

such a rearrangement it would be very much easier to note the

highest and lowest scores, or to count the number of scores be-

tween any two given values, or to evaluate roughly any given

score by noting how far down in the list it occurs, etc. Rearrange-

ment of the scores in this manner, however, would also require a

considerable amount of time, and would still not enable one to

note quickly and easily the performance of the pupils as a group.

A better procedure would be to list, in order of their size, all

possible score values within the range of all the scores obtained,

and then to indicate after each score value the number of times it

occurred, as has been done in Table 2.

It is immediately evident that this form of arrangement markedly

facilitates interpretation. The more frequently occurring scores

now stand out clearly, the points of concentration are quite

readily noted, the total number of scores may be quickly secured

by simply adding the numbers in the frequency column, the num-

ber of scores between any given values can likewise be readily

obtained through simple addition, etc. Most important is the

fact that this form of table shows in a graphic way how the scores
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TABLE 2

SIMPLE FREQUENCY DISTRIBUTION OF THE SPELLING SCORES IN TABLE )

(Intervals of one unit)

are distributed along a linear scale of values. This latter advantage

would be more evident were the scores arranged in a single vertical

column (which is the usual practice) instead of in five separate

columns as the limitations of space here necessitated.

Table 2 has the serious disadvantage of bulkiness. With the

scores distributed over so wide a range, too much space is necessary

to list all possible values. This fact suggests that the interpre-

tation of the data would be further facilitated if Table 2 were

condensed by indicating the number of scores falling within equal

intervals along the linear scale, instead of indicating the number of

times each integral value occurred. This has been done in Table

3. In this table, illustrating what is known as a grouped frequency

distribution, each interval is identified in the "S" column (S rep-
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resents scores or measures) by the highest and lowest integral

scores in the interval, and each
"
frequency" value indicates the

total number of scores contained in the corresponding interval.

In this case, each interval includes three units along the scale

any other size of interval could, of course, have been employed.

TABLE 3

GROUPED FREQUENCY DISTRIBUTION OF THE SPELLING SCORES IN TABLE i

(Intervals of three units)

Obviously, the degree of compactness in a table of this kind

will depend upon the size of the interval into which we decide to

classify the scores. We can secure successive degrees of compact-

ness, for example, by using an interval of 5 units, as in Table 4;

or of 10 units, as in Table 5; or of 20 units, as in Table 6; or of

50 units, as in Table 7.

It should be noted that Tables 3-7 differ in one fundamental

respect from Table 2. In Table 2 each original score is retained

intact, that is, the exact value of each score is indicated. In the

later tables, however, we lose in varying degrees the identity of

the original scores. For example, we may read in Table 4 that
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there were 6 scores in the interval 93-97, but we have no way of

telling how these 6 scores were distributed within the interval

itself. We are therefore unable to determine from Table 4 the

frequency of occurrence of any single score value. However, we

can now more conveniently derive an adequate idea of how the

scores were distributed, in general, over the entire range. The

coarser the interval, the more serious this loss of identity of in-

dividual scores becomes. In Table 7 it causes most of the scores

to fall in a single interval, and thus hides most of the characteristics

of the original distribution.
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The size of the interval to be used is thus a matter of arbitrary

choice dependent upon the nature of the data, upon the uses

to which the grouped frequency distribution is to be put, or upon the

kind of interpretations that one desires to draw from it. If high

precision in description is desired, if fluctuations in frequency ovei

small parts of the range are to be studied, and if the number of

scores tabulated is large enough to permit such detailed study, then

the interval used should be small, as is illustrated in Tables 2, 3,

and 4. If, however, only a very rough picture of the distribution

of scores is needed, a very broad interval, as in Table 6 or even in

Table 7, may prove quite satisfactory.

It is therefore dangerous to set up any general rule concerning

the number of intervals into which a series of measures should be

classified. Experience has shown, however, that for most types

of data there is usually no real need for more than 20 intervals,

and that the use of less than 12 intervals usually obliterates too

many important characteristics of the distribution.

The purpose of the preceding discussion has been to point out

as simply as possible the major purposes, advantages, and limita-

tions of the frequency distribution as a means of presenting group
data. It now becomes necessary to consider more specifically the

detailed questions that arise in the construction of frequency dis-

tributions of data of various types.

Frequency Distributions of Integral Test Scores

Different types of data require different methods of handling

factors important in one situation are not important in others.

It is therefore impossible to provide any single set of rules that

the student can apply in any and all situations and to all types of

data. The data for which the majority of students in this course

will have to construct frequency distributions, however, will most

often consist of integral scores on educational and psychological

tests. The construction of frequency distributions for such data

is a relatively simple matter, and will therefore be considered first.

The procedure required for other types of data can then be more

easily explained as variations of this simpler procedure.
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STEPS IN THE CONSTRUCTION OF A GROUPED FREQUENCY
DISTRIBUTION OF INTEGRAL TEST SCORES

1. Arrange a data sheet with the three headings Score, Tabula-

tion
,
and Frequency. The abbreviated notations S, Tab.,

and /, respectively, may be used if desired. (See illustra-

tion in Table 8.)

2. Determine the range of the scores: Find the highest score and

the lowest score in the series. Find the difference between

these scores. This difference is called the range of the

scores.

3. Divide the range by 15. (Carry the result to only one deci-

mal place.)

4. Select from the following preferred list the number nearest

the quotient obtained in Step 3. The number thus selected

will represent the size of the interval to be used.

Preferred intervals: i, 2, 3, 5, 7, 10, 15, or any higher

multiple of 5.

5. Write the integral limits of each interval, in descending

order, in the first (5) column of the table. Begin at the top

with the interval which contains the highest score and con-

tinue until the interval containing the lowest score is reached.

The "
integral limits" of an interval are the highest and lowest

scores in the interval. Determine these limits as follows:

a) When the number of units in the interval (as selected in

Step 4) is an odd number, find the multiple of this number

which is nearest to the highest score in the series. Select

the integral limits of the upper interval so that this

multiple is the middle score in the interval. The limits

of the other intervals will, of course, be automatically

determined when those of the top interval are fixed.

b) When the number of units in the interval is an even

number, let the lower integral limit of each interval be a

multiple of this number.

6. Tabulation: Begin with the first score in the original un-
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ordered list of scores. Determine in which interval this score

is included. Place a tally mark, in the Tabulation column,

opposite the appropriate interval. Proceed in the same way
for the remaining scores in the original list. The subsequent

counting is facilitated if every fifth mark in a row is made

slanting across the preceding four marks.

7. Count the number of tally marks opposite each interval and

write the result in the frequency column. Add the numbers

in the frequency column as a partial check on the accuracy

of tabulation. The result should agree with the total number

of scores in the original list.

ILLUSTRATIVE PROBLEM

These steps may be made clearer by considering their applica-

tion to the data in Table i. These scores have been properly

arranged in a frequency distribution in Table 8 following. The

steps in the construction (numbered to correspond to those used

in the preceding general description) were as follows:

1. A data sheet was first prepared. The form of this data sheet

is shown in Table 8.

2. The highest score in Table i is 191. The lowest is 56. The

range is therefore 135.

3. 135 divided by 15 is 9.0.

4. The number in the list of preferred intervals nearest to 9

is 10. The scores were therefore grouped into intervals of

10 units each.

5. In accord with Step 5 b in the preceding rules, the lower

integral limit of the interval containing the highest score

(191) is 190. The upper limit of this interval is then 199.

The values 190-199 were therefore written at the top of the

Score column, and the rest of the interval limits were de-

termined by building down from this interval.

6. The first score in the original list is 132. The first tally

mark was therefore placed in the Tabulation column opposite
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the interval 130-139. The second score is 171. The second

tally mark was therefore placed opposite 170-179. The pro-

cedure was the same for the remaining scores.

7. The tally marks in each row were counted and these numbers

placed in the corresponding positions in the frequency column.

The sum of these frequencies was found to be 100, the same

as the number of scores in Table i.

TABLE 8

FREQUENCY DISTRIBUTION or SCORES IN TABLE i : SCORES or 100 HIGH-

SCHOOL PUPILS ON A 200-WORD SPELLING TEST

Comments on Procedure Suggested for Test Scores

As has already been noted, different situations may call for

different procedures, even for the same type of data. The steps

suggested on pages 17 and 18 only describe the procedure that may
usually be followed. There are many situations, however, in

which exceptions must be made to these rules. It is therefore

essential that the reason for each step be clearly understood, in

order that the student may recognize the situations in which varia-

tions are desirable.

Step 3: Dividing the range by 15 obviously results in a number

which is contained in the whole range 15 times. The procedure

suggested in Steps 3 and 4, then, will result in about 15 intervals

for the whole distribution. Experience has shown that approxi-
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mately this number of intervals is adequate for most purposes.

If for any reason it is desired to group the scores into finer or

coarser intervals, the number of intervals desired should be sub-

stituted for 15 in this step.

Step 4: The suggestion in Step 4 is made for reasons of conven-

ience only, and has no bearing on the accuracy of any results ob-

tained from the frequency distribution. We could, of course^

dispense with this step and use as the size of the interval the
" rounded" integral value of the quotient obtained in Step 3.

For example, in the illustrative problem, we could have used an

interval of 9. There are certain objections, however, to this pro-

cedure. One is that people in general are multiple-of-five or

multiple-of-ten "minded." It is easier for them to think in

terms of multiples of 5 or 10 than in terms of numbers such as 6,

9, 13, 1 6, 19, etc., which are representative of the numbers that

we would frequently get as the size of the interval if we used the

rounded quotient of Step 3 directly. In general, the use of an

interval containing an odd number of units results in a more con-

venient midpoint for each interval. Because of the loss of identity

of the original scores, it will be necessary in later computations to

use the midpoint of each interval to represent the value of all the

scores contained in the interval. If the interval contains an even

number of units, the midpoint will be a decimal value and there-

fore inconvenient to use. In any interval containing an odd num-

ber of units, however, the midpoint will be an integral number.

One more advantage of the limitation in choice suggested in

Step 4 is that it results in uniformity in the solutions of problem

work handed in by the class. This is administratively quite im-

portant from the point of view of the instructor or the reader who

has to correct these problems. This step should therefore be

rigidly observed by the student in all problems in this course that

are not affected by any of the qualifications made elsewhere in

this chapter.

Step 5: After the size of the interval has been selected, where to

"
start" each interval must still be decided. For example, if an
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interval of three units is to be used, and if the highest score in the

series is 113, we could write the limits of the top interval as m-
113, or 112-114, or 113-115. A definite basis for settling this

type of question has been provided in Step 5. The provision in

a under Step 5 results in a midpoint that is easy to
"
read,"

especially where the interval is one of 5 units or an odd multiple

of 5 units. As suggested in b under Step 5, it is self-evident

that a grouping of 10-19, 20-29, 30-39, etc., is more natural and

convenient than, say, 13-22, 23-32, 33-42, etc. For even intervals,

other than intervals of 10, Step 5 is important only to secure

uniformity in the solutions of problems assigned in this course.

A specific illustration of Step 5 a might be helpful. Consider

a series of scores in which the highest score is 151 and the lowest

is 54. The range is then 97, which divided by 15 yields 6.5.

We therefore select the interval of 7 from the preferred list. The

multiple of 7 nearest 151 is 154, which will be the midpoint of the

top interval. The limits of the interval may then be determined

by counting out three in either direction from 154, and are 151

and 157 respectively. Beginning with the interval 151-157, we

then build down in the score column to obtain the limits of the

remaining intervals. It will be noted that each interval will have

as a midpoint a multiple of 7.

An exception to Steps 4 and 5:
" Natural" Grouping: Sometimes

the measures in a series will lend themselves more naturally to

another grouping than that determined by the
"
rule-of-thumb

"

suggestions in Steps 4 and 5. For various reasons, the measures

may tend to concentrate at or about points on the scale which are

equal distances apart. For example, salaries of high school

teachers are usually multiples of $50 or $100. Salaries such as

$913.00, $879.00, $1192.0x5 will be found much less frequently than

salaries of $900, $950, $1050, etc. In such instances, the interval

"imposed" on these data should be equal to or a multiple of this

uniform distance between successive points of concentration, and

the midpoint of each interval should coincide with one of these

points (or should be such that within each interval these points
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are placed as symmetrically as possible with reference to the mid-

point). If the intervals are not so chosen, the measures within

each interval will show an unbalanced distribution, and a system-

atic error will be introduced into any computation in which the

midpoint of each interval is used to represent the average value

of the measures in the interval.

Variations in Procedure for Other Than Test Score Data

The problem of constructing frequency distributions of test

scores is simplified by the fact that such scores are almost invaria-

bly expressed only in integral values; that is, fractional test

scores are of very rare occurrence. There are many situations,

however, in which continuous variables are measured to the near-

est given fraction of a whole unit. Heights of individuals, for

example, may be measured to the nearest eighth or tenth of an

inch. It may also happen, in such cases, that the range of measures

is so narrow that in order to get sufficient discrimination between

the measures in the frequency distribution an interval of a fraction

of a whole unit must be used. For example, heights of individuals

might be classified into intervals of one-half or one-quarter

inch.

In cases where the measures to be tabulated have been deter-

mined to the nearest multiple of a given fraction of a unit (for

example, to the nearest multiple of a sixteenth of an inch, tenth

of a pound, or fifth of a second) the following rules may usually

be applied.

1. Divide the range by the number of intervals desired (usually

15). Choose as the size of the interval that convenient

multiple of the given fraction which is nearest this quotient.

2. Let the interval
"
limits" (corresponding to the integral

limits in distributions of test scores) be multiples of the given

fraction. If the interval is an odd multiple of the given frac-

tion, let the midpoint of each interval be a multiple of the

size of the interval. If the interval is an even multiple of

the given fraction, let the lower
"
limit" be a multiple of the
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size of the interval.
'
(As will be noted^ter, these

"
limits

"

are not the rea/ limits of the interval)

3. Proceed as in Steps 6 and 7 on pages 17 and 18.

The following illustration may help to make these rules clear.

Suppose a measure of height of each of a number of individuals has

been determined to the nearest tenth of an inch. Suppose the

tallest individual is 72.8 inches and the shortest 64.3 inches in

height. The range of the distribution would then be 8.5 inches.

One fifteenth of this range would be .566 inches. Since it would

be futile to express the size of the interval in units finer than

those used to express the measures themselves, we round this

result to the nearest tenth of an inch, or to .6 inch. This value

could be used as the size of interval, but in this case a half-inch

interval would be more convenient to use and would result in a

number of intervals sufficiently close to that desired (15).

In accord with the second rule, the midpoint of each interval

would be a multiple of .5. The midpoints would therefore run

as follows: 64.5, 65.0, 65.5, 66.0, and so on up to 73.0, which would

be the midpoint of the interval containing the highest measure.

In accord with the third rule, we would express the
"
limits

"

of the intervals in the S column in tenths of an inch, as follows:

64.3-64.7, 64.8-65.2, 65.3-65.7, and so on up to 72.8-73.2, the

limits of the top interval. (As will be explained later, these are

not the real limits of the intervals.)

It is very important to note that these rules for "other than test

score" data again only constitute a rule-of-thumb procedure that

is usually satisfactory, and to remember that there are many
situations where exceptions may and should be made to these

rules.
1 The exceptions may be of the same nature as those described

1 The moral,
" Beware of rule-of-thumb procedures," should be continually preached

throughout a first course in statistics. Such rules of convenience are very valuable

devices for simplifying and facilitating routine statistical work when applied by
persons who understand their limitations, but they are also extremely dangerous
in the hands of beginners in that they tend to foster an uncritical attitude. Through-
out this course the student should strive consciously to develop the habit of examin-

ing critically each new technique, of remaining keenly aware of the assumptions
that are made in its development and that are necessary in its application, and of
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in the case of integral test scores. If a very large number of

measures are to be distributed, and if changes in frequency within

a small part of the whole range are to be studied, then more than

15 intervals may be desirable. Similarly, there may be situations

where a small number of intervals will yield all the information

that is desired. Again, if the measures tend to group about equally

spaced points into
"
natural" intervals, the student should not

hesitate to depart from the rule-of-thumb to let the imposed

interval conform to this natural interval.

Real Limits and the Meaning of Integral Measures

For the sake of simplicity in presentation, certain important

considerations have been omitted from or only very briefly men-

tioned in the preceding discussions. These have to do with the

real limits of intervals, with the distinction between real and inte-

gral limits, with interval midpoints (sometimes called class-values) ,

and with the meaning of an integral score or measure.

The numerical data collected in statistical work in education

and psychology may be classified as either continuous or discrete.

Discrete data are always expressed in whole numbers or integers,

and ordinarily represent counts of indivisible entities or units.

The linear scales employed with discrete data are always char-

acterized by gaps at which no real measures may ever be found.

School enrollments, sizes of families, and census enumerations are

examples of discrete data. Continuous measures are those which

may conceivably be found at any point along a continuous linear

scale. Weights of school children, for example, may be measured

in as fine units as we please, and (between certain limits)

there is no point along the scale of weights at which we may not

conceivably find the weight of some pupil, no matter how finely

noting the characteristics of situations in which exceptions must be made to any

arbitrary rules of convenience. It is the failure of statisticians to develop this

attitude, and the consequent careless application of techniques to situations for

which they are not intended, that lead so often to conclusions which are obviously

absurd and contrary to common sense, and that hence have weakened the confidence

of people in general in "statistics."
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ive subdivide the scale. Any trait or characteristic in which

individuals may differ by amounts which would approach zero if

sufficiently refined measuring instruments were employed may be

:onsidered as a continuous variable. Intelligence, school achieve-

ment, arithmetic ability, height, and strength are examples of

continuous variables.

While continuous variables may theoretically be measured in as

fine units as we please, the measuring instruments which we em-

ploy in actual practice are usually relatively crude, and the meas-

ures obtained are only approximations to absolutely accurate de-

terminations. We seldom measure weights of persons, for ex-

ample, in smaller units than pounds, or ages in smaller units

than months or years.

Ordinarily, measures of continuous variables are taken to the

nearest multiple of some convenient unit. Weights, for example,

are usually read to the nearest pound. If, when one weighs him-

self, he finds that the pointer on the scale is closer to 146 than to

145, he reads his weight as 146 pounds. When a person gives

his weight as 181 pounds, we interpret this to mean that his real

weight is nearer 181 than either 180 or 182 that is, that it is

somewhere between 180.5 and 181.5. Similarly, height is usually

read to the nearest inch, or sometimes to the nearest half or quarter

of an inch, and performance in the hundred-yard dash is timed to

the nearest tenth or fifth of a second.

In a frequency distribution of weights, then, an interval identi-

fied by the integral limits 163-167 must be considered as really

extending from 162.5 UP to 167.5 pounds, since 163 represents any
real weight of from 162.5 to 163.5 and 167 any weight from 166.5

to 167.5.

Since most measurements expressed as integers may be considered

as having been taken to the nearest integral values, the real limits

of an interval in a frequency distribution should usually be con-

sidered as extending .5 of a unit on either side of the integral

limits. The so-called integral limits are then not limits at all,

but only the highest and lowest whole numbers within the interval.
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This observation, as the student will later discover, is of consider-

able significance in the computation of certain statistical measures

derived from frequency distributions.

Scores on all kinds of educational and psychological tests should,

in the opinion of the writer, be interpreted in the manner just

suggested. Some writers on statistical procedures, including

writers of elementary statistical textbooks, have maintained that

for certain types of tests an integral test score should be considered

as representing an interval which extends from the given integral

value up to the next integer above. They would contend, for

example, that a score of 7 on an arithmetic problems test should

be interpreted as representing a unit interval of 7.00-7.99, on the

grounds that a pupil may have begun work on but not have had

time to complete an eighth problem. As will be pointed out later,

however, scores on educational or psychological tests never have

any absolute significance, but only indicate the relative status of

an individual in a group. The addition (or subtraction) of any
constant amount to (or from) all measures alike clearly cannot

influence the relative status of any measure. This being the case,

no advantage can possibly be gained by making, in the case of

test scores, any exception to the general rule given in the preceding

paragraph, while to make such an exception will only unnecessarily

complicate the procedures and confuse the student. Furthermore,

to consider an integral test score as the lower limit of a unit interval

is inconsistent with the known fact that errors of measurement

due to test unreliability are equally likely to occur in either direc-

tion. For these reasons, it is suggested that integral scores on all

educational and psychological tests and scales be considered as

midpoints of unit intervals, and that the real limits of any interval

in a grouped frequency distribution of such scores be considered

as extending .5 of a unit on either side of the integral limits.

It is important to note that there are certain types of data

(other than test scores) which require a different treatment from

that suggested in the preceding paragraphs. In the collection

of chronological age data, for example, it is the usual practice to
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express an individual's age in years on his last birthday. Ordin-

arily, we think of a "i3-year-old boy" as one who is anywhere
between 13 and 14 years of age. A boy whose age is 13 years

7 months would usually be tabulated as a i3-year-old. Similarly,

"five years of teaching experience" would, as such data are often

collected, mean more than five but less than six years of experience.

For data collected in this manner, we must, in order to avoid

important systematic errors, consider an integral measure as the

lower limit of a unit interval. The real limits of any interval in a

grouped frequency distribution of such data would have to be

considered as extending from its lower integral limit up to the

lower integral limit of the next interval above. The real limits

of the interval 16-18 would in this case be 16.00-18.999. It

should be noted, however, that age data may be and often are

otherwise collected. Many questionnaires, for instance, include

the item "Give your age in years to your nearest birthday." In

this case, of course, no exception should be made to the usual

interpretation of integral measures and real limits. How an

interval in a grouped frequency distribution should be interpreted,

then, depends upon the manner in which the data were collected,

or in which the measurements were made.

The midpoint of any interval is always midway between the real

limits, however these real limits may be placed with reference to

the integral limits. The midpoint of the interval 16-17 would, in

the case of a distribution of integral test scores, be halfway be-

tween 15.5 and 17.5, or 16.5. The interval 16-17 *n a distribu-

tion of ages "to last birthday" would have a midpoint of 17.00,

halfway between 16.00 and 17.999. The midpoint is significant

because it is so frequently used in statistical computations to rep-

resent the average value of the measures within the interval

(the identity of the original measures having been lost).

It might appear, because of the discontinuous character of

discrete data, that the preceding suggestions concerning the de-

termination of real limits and midpoints may not be applied when

the data are discrete. Some textbook writers, in fact, have given
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special consideration to the construction and interpretation of

frequency distributions of discrete data, and have described

slightly modified procedures for their treatment. In the writer's

opinion, this has only served to confuse the student with quali-

fications which are of no practical consequence so far as the major-

ity of students are concerned. In this course, therefore, no dis-

tinctions in the statistical treatment of continuous and discrete

data will be made, either with reference to the frequency dis-

tribution or to techniques later considered.



CHAPTER III

PERCENTILES

The Nature of the Measuring Scales on Educational and Psychologi-

cal Tests

THE linear scales along which the scores on educational and

psychological tests are expressed differ in several fundamental

respects from those employed in physical measurement. In

physical measurement each scale is based upon a constant unit
y

and measurements are made from a reference point which either

represents an absolute zero or has a known relation to the absolute

zero. The units employed in physical measurement are also

usually capable of description in more fundamental terms, which

permit us to transform measures from one system of measurement

into another for example, to transform inches into centimeters,

ounces into grams, or degrees Centigrade into degrees Fahrenheit.

Scores on educational or psychological tests have none of these

characteristics. A test score usually represents the number of

test items to which the person tested has made the correct re-

sponse. For example, if a pupil makes a score of 80 on a 150-

word spelling test, this score indicates that he has spelled 80 of the

words correctly. The meaningfulness of this score depends, of

course, upon the range and distribution of difficulty of the words

constituting the test. If the test contains 100 very easy words,

this score does not necessarily mean that the individual making
it is a very good speller. On the other hand, if the test consists

exclusively of very difficult words, a score of 80 may represent a

remarkable performance.

The meaning of a difference between two scores on the same test

likewise depends upon the range and distribution of difficulty of

the items. Suppose, for example, that one 150-word spelling test

consists of words which are evenly distributed over a very wide

range of difficulty and that a second isoword test consists of
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words all of which are very nearly of the same difficulty as the

average word in the first list. A pupil scoring 120 on the first

test is, then, probably a very much better speller than one scoring

20, since the hardest words spelled by the first pupil would be

very much more difficult than the hardest words spelled by the

second. On the second test, however, two pupils making the

scores of 20 and 120 respectively may not differ in ability by

nearly so much, since the words spelled by the first pupil would

be only slightly easier than the most difficult of those spelled by
the second. For similar reasons, a given difference between two

scores on the same test might have a different significance at differ-

ent points along the scale. Suppose that on a certain test pupil

A spelled 30 words, B spelled 60, and C spelled 90 words correctly.

Suppose, further, that the test contains 70 very easy words and

70 very difficult words, with only 10 words of intermediate diffi-

culty. In this case the difference in ability between C and B
would probably be very much greater than that between B and A,

since A and B might both have been able to spell only very easy

words while C was able to spell some of the very difficult. On the

scale of scores for this test, then, the "unit" employed would be

much larger at some points than at others. Similarly, a score of

zero on a test of this kind would have no absolute significance.

If a pupil fails to spell any word in a spelling test that is, if he

makes a score of zero obviously it does not follow that he has

no spelling ability, since other easier tests might contain some

words that he can spell.

In general, then, the magnitude of the "unit" employed on the

scales for any educational or psychological test depends upon the

number of test items and upon the distribution of their difficulty

for the test as a whole. Since the number of items making up the

test is arbitrarily determined by the test author, and since the

difficulty of the individual items and the form of the distribution

of difficulty for all items cannot be accurately anticipated or

controlled by him but usually is more or less accidentally deter-

mined, the magnitude of the "unit" employed is indeterminate
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and usually fluctuates in value even within the same scale. The

meaning of a given score on any test is unique to that test; that is,

it is not exactly the same as on any other test. The meaning of

the arbitrary zero point on any scale of test scores is also unique to

the test and never corresponds to an absolute zero. Furthermore,

scores on such tests can never be described in more fundamental

terms by means of which direct comparisons of scores may be

made from test to test or readings on one scale transposed into

those on another.

For these reasons, a single score obtained on most educational

or psychological tests has little if any absolute significance that

is, it is not capable of meaningful interpretation when considered

alone. Neither can it be meaningfully compared directly with a

score obtained on another test. Scores on such tests usually have

relative meaning only; that is, they are ordinarily useful only to

determine an individual's relative status in a given group. The fact

that a given pupil has made a score of 70 on a test in United States

history, for example, in itself tells us nothing about the quality

or magnitude of his achievement. In order to interpret this per-

formance, we must not only be intimately acquainted with the

test itself but must also know what scores have been made on the

same test by other pupils in a group to which the given individual

belongs, and must know something about the nature of that group,

that is, whether it is made up of college or high school or elemen-

tary school pupils, what kind or amount of instruction they have

had, what is the level and range of their intelligence, etc.

Ranks, Percentiles, Deciles, and Quartiles

Because of the characteristics of test scores that have just been

considered, it is essential in the analysis of test data that we have

some means of deriving from the original or raw scores other

measures which are directly indicative of the relative status of

each of these scores in a distribution of such scores. Such meas-

ures of relative status will enable us to interpret more adequately a

single test performance and to make comparisons of performances
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on different tests. One of the devices commonly used for this

purpose is that of determining the rank of each score in the series

of scores in which it is found. The rank of the score indicates

its position in a series when all scores have been arranged in order

of magnitude. A rank of 30 for a given score would indicate that

the score is the 3oth from the top (or from the bottom) when all

scores have been arranged in order of size. The meaningfulness

of any given rank obviously depends upon the number of scores

in the series. To rank 3oth in a group of 50, of course, does not

mean the same thing as to rank 3oth in a group of 100. For this

reason, ranks are ordinarily expressed in relative terms as per-

centile ranks. The percentile rank of a given score in a distribu-

tion is the per cent of measures in the whole distribution which are

lower than the given score. If, for example, an individual makes

a score higher than that which is made by 89 per cent of the individ-

uals in a given group, we would say that he is at the Spth percentile.

In general, then, the ^>th percentile in a distribution of scores or

measures may be defined as that point on the scale below which

p per cent of the cases fall. Thus the goth percentile is the point

below which 90 per cent and above which 10 per cent of the meas-

ures lie. The 75th, 5oth, and 25th percentiles are known as

the quartile points in the distribution, or simply as the quartiles.

The 75th percentile is the Upper Quartile, and is usually denoted

by Q3
. The 25th is the Lower Quartile or Q,, while the 5oth

is the Middle Quartile or median. The even icth percentiles

are often referred to as the deciles. Hence, the 2oth percentile

is the second decile, the 3oth the third, etc. According to the

definition given above, the looth percentile would be a point

above the highest score earned, and the zero percentile below the

lowest, and hence could not correspond to any actual scores. In

practice, however, the highest and lowest scores are frequently

arbitrarily considered as corresponding to the looth and zero

percentiles respectively.

The student should distinguish carefully between the termc

percentile and percentile rank. The percentile rank of a given
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score is the number representing the per cent of the cases in the

total group lying below the given score value, while the percentile

is the score or measure below which a given per cent of the cases

lie. The 28th percentile in a distribution of weights may be 112

pounds, but the percentile rank of an individual of this weight in

this distribution is 28.

The Computation of Percentile Ranks in Grouped Frequency Dis-

tributions

In any given frequency distribution of scores, we may wish (a)

to determine the percentile rank of a given score, or (b) to deter-

mine the score with a given percentile rank, that is, to determine

a given percentile. We shall consider first the procedure involved

in determining the percentile rank of a given score.

If all of the original scores were arranged in order of magnitude

(and if there were no ties in rank), we could determine the per-

centile ranks by dividing the percentile scale (of from o to 100)

into as many equal divisions as there are individuals in the group,

and by assigning as the percentile rank of each individual the

midpoint of the division in which he belongs. For example, if

there were 40 individuals in the group, we would divide the scale

of from o to 100 into 40 equal divisions. The first division would

extend from o to 2.5; the second, from 2.5 to 5.0; etc. The in-

dividual ranked third from the bottom would then belong in the

division 5.0-7.5, and his percentile rank would be the midpoint of

this division, or 6.25. Similarly, the individual scoring at the

bottom of the list would belong in the division 0.0-2.5, and would

have a percentile rank of 1.25.

If we are to work directly from a grouped frequency distribu-

tion of the scores, the fact that we have lost the identity of the

original scores requires that we follow a somewhat more complicated

procedure. Suppose, for example, that we wish to find the per-

centile rank of the score 95 in the distribution presented in Table

9. To do this we must first determine how many scores in the dis-

tribution lie below the score 95. The number of scores lying
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below 95 is equal to the number of scores in all of the intervals

below that which contains this score, plus the number of scores

within the interval 90-99 which are below 95. The number of

scores below the interval 90-99 can be readily determined by add-

ing the class frequencies below this interval. In this case, the

sum of these frequencies would be 3 + 1 + 2 + 5 + 8 + 8 + 8

=
35. To determine how many of the scores within the interval

90-99 lie below 95, we must make an assumption concerning the

way in which these scores are distributed throughout the interval.

The most convenient and reasonable assumption that we can

make is that these scores are evenly distributed within the interval.

The point 95 is 5.5 units above the lower real limit (89.5) of this

interval. Since the interval consists of 10 units, 5.5 units rep-

resents of the distance from the bottom to the top of the
10

interval. Since we have assumed that the scores are evenly dis-

tributed within the interval, it follows that of the n scores in
10

the interval or 6.05 of these scores will lie below 95. Hence, the

total number of scores below 95 will be 35 + 6.05
=

41.05. This

number is 51 per cent of the total number of cases in the distribu-

tion
( -^

X 100 1. Hence, the score of 95 has a percentile rank
\ 80 ]

of 51.

If the percentile ranks of many score values in the distribution

are to be computed by this method, it is best to begin by preparing

a cumulative frequency (cf) column to the right of the frequency

column in the distribution, as has been done in Table 9. The

cumulative frequency column is prepared by
"
adding in" succes-

sive class frequencies from bottom to top. The entry opposite

the lowest interval is the frequency in that interval; the entry

opposite the second interval is the sum of the frequencies in the

first and second intervals; the entry opposite the third interval

is the sum of the frequencies in the first, second, and third intervals,

etc. The entry opposite the top interval must, of course, be
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equal to N, the total number of cases in the distribution. The

following rules may then be applied in general to compute the

percentile corresponding to any given score.

1. Subtract from the given score value the lower real limit of

the interval in which it is contained.

2. Divide thi* difference by the size of the interval.

3. Multiply this quotient by the frequency in the given interval.

4. Add this product to the cumulative frequency below the given

interval.

5. Divide the result by the total number of cases (N) and mul-

tiply by 100. This last result should rarely be carried to

more than one decimal place, and ordinarily should be rounded

to the nearest whole value.

TABLE 9

ILLUSTRATION OF COMPUTATION OF A PERCENTILE RANK AND OF A
PERCENTILE FROM A GROUPED FREQUENCY DISTRIBUTION

Compilation of a Given Percentile

The procedures to be followed in determining a given percentile

is suggested by the preceding discussion. If we had a list of the



36 PERCENTILES

original scores arranged in order of size and wished to determine,

for example, the soth percentile, we would first determine how

many scores constituted 50 per cent of the total number in the

series, and would then count up from the bottom of the list until

we had reached this number. If there were an even number of

scores, the score halfway between the score last counted and the

next above would then be the 5oth percentile. If the number of

scores were an odd number, the score corresponding to the 5oth

percentile would be the middle score in the series. Again, how-

ever, if we are working directly from a grouped frequency dis-

tribution, we must follow a more complicated procedure. Suppose,

for example, that we wish to determine the soth percentile in the

distribution given in Table 9. To do this, we must first determine

how many scores constitute 50 per cent of the total number of

scores in the distribution. Fifty per cent of 80 is 40.

We wish to determine, then, below what point along the scale

40 scores will lie. By examining the cumulative frequency column,

we note that this point must lie in the interval 90-99, since 35

of the scores lie below this interval and 46 below the one above.

This means that we must find the point within the interval 90-99

below which 40 35
=

5 of the frequencies in that interval lie. Five

frequencies represent of the total number of scores within the

interval. Since the interval contains 10 units, the point desired is

X 10 = 4.54 score units above the lower real limit (89.5) of the

interval. Thus the 5oth percentile is 89.5 + 4.54 or 94.04.

Expressed in more general terms, the procedure for computing

any given percentile (that is, the point below which a given per

cent of the measures lie), is as follows:

1. Find the given per cent of N.

2. Subtract from this number the number in the cumulative

frequency column which is next below it.

3. The desired percentile will lie in the interval corresponding to

the cumulative frequency which just exceeds the result of



THE USES AND INTERPRETATION OF PERCENTILES 37

Step i. Divide the difference obtained in Step 2 by the fre-

quency in this interval.

4. Multiply the quotient by the size of the interval.

5. Add this product to the lower limit of the interval. The

result is the desired percentile.

Note: The procedures that have just been described for com-

puting percentiles and percentile ranks are by no means the most

convenient that can be followed, particularly if a large number of

percentiles or percentile ranks are to be computed. The preceding

methods have been presented primarily in order to acquaint the

student with the essential rature of the percentile. A more con-

venient graphic method of transposition will be presented in the

following chapter.

The Uses and Interpretation of Percentiles

The preceding discussions have been concerned primarily only

with the definition of percentiles and with their computation.

The more important questions of "In what situations and for what

specific purposes may percentiles be employed?" and "How may
percentiles be interpreted?

" have yet to be considered. Described

in general terms, the major uses of percentiles in education and

psychology are:

1. To facilitate the interpretation of a single measure in a dis-

tribution of such measures;

2. To make possible comparisons between and combinations of

measures originally expressed in different units particularly

to permit comparisons and combinations of scores on differ-

ent tests (for individuals in the same group or in groups of

comparable ability); and

3. To provide a condensed description of a frequency distribu-

tion particularly to describe its variability and form.

A number of illustrations of the first two of these uses are sug-

gested in the manual in the study exercises corresponding to this

chapter. These questions will also draw attention to some of the

more important limitations of percentiles in practical work. It



38 PERCENTILES

will be left to the student to develop these illustrations and to

discover these limitations for himself. It is believed that this

procedure will result in the acquisition of a more thorough under-

standing than if the answers to these questions were provided in

the textual discussion. An attempt has been made, however, to

make these questions sufficiently leading so that most students

should have little difficulty in supplying the answers required.

The questions in the manual, then, and the answers to them which

are supplied by the student, should be considered as an integral

and essential part of this whole discussion of percentiles.



CHAPTER IV

GRAPHICAL REPRESENTATION OF
FREQUENCY DISTRIBUTIONS

IN ORDER to describe or interpret a given frequency distribu-

tion, we may often wish to have answers to questions such as the

following: Which measures occur most frequently? How are the

measures distributed? Are they evenly distributed over the whole

range, or do they tend to concentrate or pile up at certain points

more than at others? How much do they tend to pile up at these

points? What is the general form of the distribution for ex-

ample, is it symmetrical in shape?

These and similar questions can, of course, be answered through

a detailed examination and comparison of the individual class

frequencies. Most of these characteristics of the frequency dis-

tribution, however, can be readily determined at a glance if the

distribution is portrayed in graphic form. Graphical representa-

tions can be much more easily read than statistical tables, and are

particularly desirable if the data are to be presented in a report

intended for readers untrained in the use of statistical methods.

Such representations, furthermore, are essential even to the trained

statistician in any study concerned primarily with the shape of

the distribution.

The Histogram

The simplest form of graphical representation of a frequency

distribution is the histogram. This type of representation is

illustrated in Figure i. The histogram in Figure i is based on

the frequency distribution given beside it. From this figure we

may note several general characteristics of the histogram. The

vertical and horizontal lines at the left and at the bottom of the

figure are known as the axes. The scale along the vertical axis

is that along which the frequencies in the individual intervals, or
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the class frequencies, are represented, and is referred to as the fre-

quency scale. The horizontal scale is that along which the scores or

measures are represented. The horizontal scale is divided into a

number of equal units, each of which usually corresponds to one

of the intervals in the distribution. The numbers given below the
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Weight in pounds

95 100

FlG. I.

Frequency distribution and histogram of weights of a group of 65 boys (closed rectangle

type of histogram).

horizontal scale sometimes represent the midpoints of the intervals

and sometimes the limits of the intervals. In Figure i the numbers

below the horizontal scale correspond to the class measures or

interval midpoints. The base of each of the rectangles or columns

of the histogram corresponds to one of the intervals in the distri-

bution. The height of each column is proportional to the frequency
in the corresponding interval in the distribution. Sometimes the

lines between the adjacent rectangles are omitted.

The manner in which the histogram is constructed is too ob-

vious to warrant any very detailed explanation. The scale along

the vertical axis is laid off so as to provide for the largest class

frequency in the distribution and so as to result in the desired

proportions (height to width) in the completed histogram. The
vertical scale always begins with zero at the intersection of the two

axes. The horizontal scale is divided into a number of equal
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intervals. The number of these intervals usually is two or three

more than the number of intervals in the frequency distribution

to be portrayed, so that a space may be left between the histogram

and the vertical axis and between the histogram and the right-hand

margin of the total space used. The use of arithmetically ruled

paper will make it much easier to lay off these scales and to draw the

rectangles.

The Frequency Polygon

Another type of graphical representation quite commonly em-

ployed is the frequency polygon. The frequency polygon in

Figure 2 is based on the same distribution as the histogram in

Figure i. Figure 3 presents both these figures on the same chart.

60 65 70 75 80 85 90 95 100

Weight in pounds

FlG. 2.

Frequency polygon of distribution of weights of a group of 65 boys.

The frequency polygon may be considered as having been de-

rived from the histogram by drawing straight lines joining the

midpoints of the upper bases of adjacent rectangles (or columns).

The polygon is closed at each end by drawing a line to the base

line from the midpoint of the upper base of each of the end columns

to the midpoint (on the base line) of the next outlying interval

(of zero frequency). It is, of course, not necessary to construct
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FIG. 3.

Frequency polygon and histogram (superimposed) of distribution of weights of a group
of 65 boys.

the histogram first in order to construct the polygon. The polygon

may be constructed directly by marking points directly above the

midpoint of each interval at a distance from the base line propor-

tional to the frequency in the interval. These points are then

joined by straight lines, and the polygon is closed as before.

The Cumulative Frequency Curve or the Ogive

Another method of representing distributions graphically

much less frequently used than the histogram or polygon but

superior to them for certain purposes is the cumulative fre-

quency curve or ogive, sometimes known as the percentile curve.

It is constructed in very much the same fashion as the polygon ex-

cept that the cumulative frequency is plotted for each interval rather

than the frequency within the interval, and that the points joined

by the straight lines are directly above the upper limit of each

interval instead of above its midpoint. Figure 4 presents a cumu-

lative frequency curve based on the same data as Figures i and 2 .

In order to construct this curve, a cumulative frequency column was

first prepared for the distribution in the manner explained on

page 34. The distribution and the cumulative frequency column
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are given in the table beside the ogive. In the construction of

this ogive, the axes were prepared in the same fashion as for a

polygon, except that the vertical scale was laid off so as to include

the highest cumulative frequency. With reference to these axes,

then, a point was located which was directly above the upper limit

of the first interval (58-62) and 2 units from the base line along

the vertical scale. A second point was located which was directly

above the upper limit of the second interval and 8 units from the

base line. Other points were similarly located for each of the

remaining intervals, and these points were joined by straight

lines. The curve was then closed at the bottom in the same fashion

as in the construction of a polygon. If now the vertical scale is

divided into 10 or 100 equal parts, as has been done at the right

of Figure 4, decile or percentile values corresponding to any given

FREQUENCY DISTRIBUTION
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FIG. 4.

Cumulative frequency curve or ogive of weights of a group of 65 boys.

weight can be read directly from it. For example, if we erect a

perpendicular from the base line at the point 85 until it meets

the ogive, and then draw a horizontal line from this point until

it meets the scale at the right, we find that 73 per cent of the meas-

ures in the distribution are below 85 pounds. Similarly, 20 per
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cent of the cases lie below the point 71 on the weight scale; in

other words, the weight measure 71 is at the soth percentile. If

arithmetically ruled paper had been used, we would not have

needed actually to draw these vertical and horizontal lines, but

could have followed along the ruled lines on the chart to reach

the points desired, or could have used a ruler as a guide to deter-

mine them more conveniently. To determine the percentile rank

of a weight of 83 pounds, for example, we could lay a ruler on

the chart in a vertical position such that its edge fell at the point

83 on the base line, and would then mark the point on the ogive

at which the same edge cut it. We would then hold the ruler in

a horizontal position such that its edge coincided with the point

just determined, and would read the desired percentile rank from

the right-hand scale at the point at which it was cut by the ruler's

edge.

The procedure just described can be reversed in order to find

any given percentile. For example, if we wished to find the 47th

percentile, we would lay our ruler horizontally across the chart so

that its upper edge corresponded to the point 47 on the percentile

scale, then mark the point at which that edge of the ruler cut the

ogive, and then adjust the ruler in a vertical position so that its

edge passed through the point just determined. The desired

weight would then be that at which the edge of the ruler cut the

base line in this case, about 77 pounds.

This graphic method of transforming scores into percentile ranks

or percentile ranks into scores is much more convenient to apply

(if a large number of scores or percentile ranks are to be trans-

formed) than the computational procedure explained on pages 33

to 35. This method may not be quite so accurate, because of

possible errors made in plotting the ogive or in reading values from

it, but considering the inherent unreliability of the percentile, it

is sufficiently accurate for all practical purposes.

Sometimes, when the absolute values of the cumulative fre-

quencies are of no interest in themselves, it is more convenient to

plot the percentile rank of the upper limit of each interval directly,
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instead of plotting the cumulative frequencies. To do this, we

first express each cumulative frequency as a per cent of the total

frequency ;
that is, we prepare a column of relative cumulative fre-

quencies. (Such a column has been prepared for each of the dis-

tributions in Table 2 on page 22 of the manual. The quickest way
to compute these numbers, particularly if a computing machine of

the multiplying type is available, is first to compute ,
and then

to multiply each cumulative frequency by this number. For the

IOO IOO
distribution of ninth grade scores in Table 2,

- = = .0260.N 3845

Each cumulative frequency was multiplied by this number to

obtain the numbers in the column headed " Cumulative frequency

in per cents.") Each of these relative cumulative frequencies, of

course, represents the percentile rank of the upper real limit of

the corresponding interval. We can then lay off the vertical per-

centile scale directly, using the ruled lines on our coordinate paper,

instead of later subdividing a scale into 10 or 100 equal parts.

There is no very real distinction between a cumulative fre-

quency curve and a percentile curve. A distinction sometimes

made, however, is that the curve is called a cumulative frequency

curve if the vertical scale shows only cumulative frequencies, and

is called a percentile curve if the vertical scale shows only the per-

centiles. Figure 4 is then both a cumulative frequency curve and

a percentile curve, since both types of scales are provided. The

term ogive refers to the shape of the curve, and may be applied

either to the cumulative frequency or the percentile curve.

Ogives are sometimes drawn with the percentile or cumulative

frequency scale on the horizontal axis and the score scale on the

vertical axis.

Supplementary Suggestions for the Construction of Histograms,

Polygons, and Ogives

i . Note that the sides of the rectangles in the histogram and the

turning points in the ogive always come above the real limits of
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the intervals. Since most of the integral measures will be con-

sidered as having been taken to the nearest whole value, these

real limits will ordinarily lie .5 of a unit beyond the integral limits

of each interval. This fact must be taken into consideration in

indicating numerical values along the base line and in plotting

the figure.

2. Any of these figures should always carry a complete, clear,

and concise title. This title should always completely identify

the data represented, independently of any accompanying textual

description. In other words, the title should be such that if the

chart is removed from context for example, for the purpose of

preparing a lantern slide it will contain all the information

needed for its interpretation.

3. The vertical and horizontal scales should always be definitely

labeled so that it is perfectly clear what each scale represents and

what units are employed on each.

4. If more than one figure is drawn on the same chart, each

should be drawn with a different kind of line (solid, broken, dotted,

etc.), and the meaning of each line indicated by a neat legend

in an upper corner of the chart or in some other convenient space

on the chart. In general, if there is any possibility that the chart

may be later reproduced in printing, do not use colored inks for

distinguishing between superimposed figures, because of the ex-

pense involved in color reproduction in printing.

"Smoothing" Frequency Polygons and Ogives

It will be noted that because of the erratic manner in which

frequencies change from one interval to the next in many dis-

tributions, the straight lines joining the points determined in

plotting the polygon or ogive will form a very irregular line.

Irregularities in the form of the figure will be much more prominent
in the polygon than in the ogive. Many of these irregularities

may be considered as only accidental or of little or no significance,

since they may be peculiar to the particular grouping (or choice

of interval) employed in the construction of the frequency dis-
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tribution, or may be characteristic only of the one sample of in-

dividuals considered and not generally characteristic of other

similar groups. In order to obtain a more highly generalized

picture, therefore, the practice of
"
smoothing

"
the original figure

is sometimes followed. This may be done by drawing free-hand

a smooth curved line which comes as close as possible to passing

through all of the points used in plotting the original figure or,

in other words, which most nearly coincides with the irregular

straight line outline. Such a line has been drawn free-hand for

the polygon and ogive in Figures 5 and 6 respectively.

16 r

55 60 65 70 75 80 85 90 95 100 105

Weight in pounds

FlG. 5.

Smoothed frequency curve of weights of a group of 65 boys.

Smoothing should be resorted to only when the group of individ-

uals involved is not being studied for its own sake but is only

being considered as a sample which is presumably representative

of some still larger group or population. The purpose of smooth-

ing, then, would be to remove from the polygon or ogive for the

sample those irregularities which would not be characteristic of

the distribution for the entire population. The principal danger

in this smoothing procedure is that it sometimes removes irregu-

larities which are not accidental, but which are real and sometimes

significant characteristics of the distribution for the whole popula-
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60 65 70 75 80 85 90 95 100

Weight in pounds

FIG. 6.

Smoothed ogive of distribution of weights of

a group of 65 boys.

tion. There is, of course, no way of telling by inspection whether

or not a given irregularity is

accidental.

There are other aud more

objective ways of smoothing

figures than the free-hand

method just described. In gen-

eral they are not sufficiently

better than the free-hand

method to warrant their con-

sideration here. Any smoothed

figure, no matter how derived,

represents at best only a guess

as to how the more highly

generalized figure would look,

and no method of smoothing

is highly reliable for this

purpose. The only highly de-

pendable method of eliminating these accidental irregularities is

to collect data from larger numbers of cases, that is, to plot the

results for larger samples.

The Form of a Frequency Distribution

There are a number of terms used to describe the form of a

frequency distribution with which the student should become

familiar in order that he may more readily comprehend the sub-

sequent discussions.

A distribution is said to be bilaterally symmetrical if the polygon

or frequency curve can be folded along a vertical line so that the

two halves of the figure coincide. C, D, E, F, G, and H in Figure 7

(on next page) are illustrations of symmetrical curves.

A distribution is said to be skewed if it is lacking in symmetry,

that is, if the measures tend to pile up at one end or the other of

the range of measures. A distribution is said to be negatively

skewed or skewed to the left if the measures pile up at the upper
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end of the scale, and positively skewed or skewed to the right if

the measures pile up at the lower end of the scale. Curve B in

Figure 7 is very markedly skewed to the right, while curve A is

moderately skewed to the left.

A curve is said to be bell-shaped if, as its name implies, it is

symmetrical, has one broad smooth hump in the middle, and
"
tails off

' '

gradually at either end. Curves C, D and E in Figure 7

are bell-shaped, but exhibit various degrees of flatness or peaked-

ness.

The normal curve is a peculiar bell-shaped curve which can be

exactly defined only in terms of the equation used to plot it.

This type of curve will be discussed in Chapter VII. Curve F

B

D

H

FIG. 7.

Typical forms of frequency distributions.
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in Figure 7 is a normal curve, as is also curve D. The apparent

difference in peakedness between D and F is due only to the differ-

ence in the choice of units used in plotting the same curve.

A frequency distribution is said to be rectangular to the degree

that all class frequencies have the same value. Curve G in

Figure 7 approaches rectangularity. Curve H is representative

of
"
U-shaped

"
curves. Curves A-G inclusive are said to be "uni-

modal," since they have only one pronounced peak. (See dis-

cussion of the Mode in Chapter V.) A curve with two pronounced

peaks, even though both are not of the same height, would be

described as "bi-modal."

The Uses and Interpretation of Histograms, Polygons and Ogives

As in the preceding chapter, the student will be left to discover

for himself, with the aid of the questions in the study manual,

the various uses and limitations of the histogram, polygon and

ogive. Again, these study exercises and the answers supplied by
the student must be considered as an integral part of this chapter.

It is essential that each of these questions be very carefully con-

sidered.



CHAPTER V

MEASURES OF CENTRAL TENDENCY

THE term "
average" already familiar to the student before

beginning this course is one whose popular meanings are ex-

tremely loose and ambiguous. We use the same term indiscrimi-

nately in speaking of, for example, the
"
average American," the

"
average personality," the

"
average yield of corn per acre," the

"
average high school," the

"
average length of life," etc. Syno-

nyms for the term in its popular usages are such expressions as
"
typical,"

"
usual,"

"
representative," "normal," and "expected."

If asked to define the term more accurately, the "average" man

might respond that it is the single measure or individual that best

represents a group of measures or of individuals, but if asked how

to select the most representative measure in a group of measures

he is likely to become less specific. He may say that in order to

find the average of a series of figures you simply add them all up
and divide by the number of them, but such a concept becomes

meaningless when applied to data that cannot be numerically rep-

resented, as in the case of "the average personality" or "the

average school teacher," and even for data which may be numeri-

cally represented this process does not in all cases yield the most

"typical" or "representative" result.

Whatever may be the specific meanings of the term "average,"

it is reasonably clear to anyone, from a knowledge of the general

meaning of the term, that the use of an "average" adds greatly to

the convenience with which we can reason about groups or make

comparisons between groups. No person can bear in mind simul-

taneously the characteristics of all members of a large group of

individuals, but he has little difficulty in handling such groups in

his thinking when he can let a single quantitative measure rep-

tesent the whole group, that is, when he can use an "average"
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as a concise and simple picture of the large group from which it is

derived. Nothing further need be said about the general utility

of averages, although the distinction between different kinds of

"averages" will require the careful attention of the student.

To the statistician,
"
average" is a general term applying to all

kinds of measures of central tendency derived from group data.

There are at least five such measures in common use, but only three

of them the arithmetic mean, the median, and the mode I

are used with sufficient frequency in practical applications in edu-

cation and psychology to warrant their inclusion in a first course in

statistics for students in those fields.

THE ARITHMETIC MEAN

The arithmetic mean of a series of measures is equal to the sum

of the measures divided by their number. It is the
"
average"

most often referred to in popular usage. Using the algebraic nota-

tion in which

M represents arithmetic mean,

2 means "the sum of,"
2

X represents an individual score or measure,

N represents the number of measures,

it may be defined by the formula,

M =
N

The arithmetic mean is usually referred to simply as the mean.

The letter M is most frequently used to represent it, but the

notation A.M. is also often used. While the mean may, of course,

be computed directly from the original measures, its computation
is made more convenient when the measures have first been ar-

ranged into a frequency distribution. Consider the following fre-

quency distribution of test scores:

1 The other cwo are the harmonic mean and the geometric mean. Descriptions of

these averages may be found in any good reference book in statistics.

a S is the upper case Greek letter "Sigma."
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TABLE 10

COMPUTATION OF THE MEAN BY THE "LONG METHOD"
(Applied to a Distribution with a Unit Interval)

The mean could have been computed by the method indicated

in the original definition by simply summing all the individual

scores and dividing by N. The score 17 would then have entered

into the addition column 3 times, the score 16 would have entered

8 times, etc. The process is simplified by adding the products

3X17 =
51, 8 X 16 = 1 28, etc., and exactly the same result is

secured. To facilitate the computation, a third column (headed

/ X X) is added to the frequency distribution, in which is written

the product of each score and the frequency with which it occurred,

and these products are added to secure the sum of all the measures.

In the case of the illustration, therefore, it was necessary to add

only 10 numbers to obtain the sum of all the measures, instead

of adding 60 separate measures. The notation used in the problem

is self-explanatory.

The mean of a grouped frequency distribution can be computed
in a similar fashion by letting the midpoint of each interval rep-

resent all the scores in the interval, but in this case the accuracy

of the result is affected by the loss of identity of the original

measures. Consider the following grouped frequency distribution.

The uppermost interval contains one score. That score may
have had an original value anywhere within the limits 93-97 in-
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TABLE n
COMPUTATION OF THE MEAN OF A GROUPED FREQUENCY DISTRIBUTION

BY THE "LONG" METHOD

elusive, but nothing more concerning its original identity can be

determined from the table itself. We therefore assume that the

best guess of its original value is the midpoint of the interval

(95), and we then use this value in the subsequent computations.

In the same way, for the interval whose midpoint is 90, we assume

that the mean value of the three original scores is 90, or that their

sum is 270, and so on for the rest of the intervals.

Now in the case of this specific illustration, it happens that the

actual value of the single score tabulated in the uppermost inter-

val was 94. Hence, the number (95) entered in the third column

was i too large, and an error (due to grouping) was therefore in-

troduced into the computation.

In the interval whose midpoint is 90, the actual values of the

three scores were 92, 89, and 91. The actual value of their sum

was therefore 272, and the number entered in the third column

(270) was 2 too small. In a similar fashion, an error due to grouping

will be present in the number written in the third column for most

of the intervals, the only exceptions being those rare intervals

where by chance the mean value of the scores in the interval is

exactly equal to the midpoint. When all intervals are considered

together, however, the errors in one direction are just about
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balanced by those in another, so that the final value obtained for

the mean is usually a very close approximation to the actual

value, that is, the value of the mean that would have resulted by

summing all of the original scores and dividing by their number.

It is left as an exercise for the student to show more specifically

why the errors in the mean that are due to grouping tend to cancel

out to zero when all intervals are considered.

The "Short" Method of Computing the Mean
Consider the following numbers :

217,011

217,009

217,006

217,012

217,005

What is the quickest way of finding the mean of these numbers?

We note at once that each number is equal to 217,000 plus a

small number. We can compute the mean of the original numbers

by simply finding the mean of these small numbers and adding
this value to 217,000, as in the following illustration.

Original Numbers Difference between

Number and 217,000

217.011 ii

217,009 9

217,006 6

217.012 12

217,005 _s

43 (Sum of differences)

= 8.6 (Mean of small numbers or differences)
o

217,000 + 8.6 =
217,008.6 (Mean of large numbers)

Compare the operations in the preceding illustration with those in
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the following application of the long, or direct, method to the same

numbers.

217,011

217,009

.7,006

217,005

i ,085 ,043 (Sum of numbers)

The advantages of the first or
"
short'

7 method are in this case

quite obvious. By eliminating the necessity of dealing with any

large numbers in arithmetic computation (except for the last step)

we not only reach the final result more easily and quickly, but

also with less likelihood of making arithmetical errors.

The process involved in the preceding illustration represented a

specific application of the following generalized rules for computing

the mean of a series of numbers by the so-called "short" method.

The language used in these rules differs from that used in the

preceding illustration, but the student should have no difficulty in

recognizing that the process is essentially the same.

SHORT METHOD OF COMPUTING THE MEAN

1. Select any convenient value as an "arbitrary reference

point.
"

(It is usually best to select a value likely to be close

to the actual mean.)

2. Express each measure as a "deviation" from this arbitrary

reference point. (Each "deviation" is equal to the dif-

ference between the measure and the arbitrary reference

point. If a measure is below the arbitrary reference point,

its deviation will have a negative sign.)

3. Find the mean of these deviations by the usual method.

(Add algebraically, and divide the sum by the number of

measures.) Call this mean of the deviations the
"
correction

"

to the arbitrary reference point. (If the sum of the negative
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deviations exceeds the sum of the positive deviations, this

correction will be negative.)

4. Add (algebraically) this correction to the arbitrary reference

point. The result is the mean of the original measures.

The student may demonstrate for himself that this process will

always yield the same result as that obtained by the usual method

of adding the original measures and dividing by their number,

regardless of the value chosen as the arbitrary reference point.

The Short Method Applied to the Frequency Distribution

The occasion will very rarely if ever arise in which the student

will compute a mean in exactly the manner illustrated in the pre-

ceding discussion. The purpose of the preceding discussion was

simply to explain the fundamental nature of the short method,
in order that the student might better understand its more practical

application to data arranged in frequency distributions.

Let us first consider the application of the short method to a

frequency distribution with a unit interval.

TABLE 12

SHORT METHOD OF COMPUTING MEAN APPLIED TO A FREQUENCY
DISTRIBUTION WITH A UNIT INTERVAL

To facilitate computation, the deviation of each score value

from the A.R. (abbreviation for arbitrary reference point) is

written in a third column called the "deviation" or d column.
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The product of each frequency and the corresponding d value is

then written in the fd (frequency X deviation) column. The

purpose of this step is clear. The score 17 occurs 3 times. The

deviation of a single score of 17 from 14 is 3; the sum of the devia-

tions of 3 such scores is 3 X 3 or 9. The sum of the deviations of

all scores is then obtained by adding the numbers in the/d column.

This sum is most conveniently secured by adding the positive and

negative deviations separately, and then obtaining the algebraic

sum of these partial sums.

The application of the short method to the grouped frequency

distribution is essentially the same as in the foregoing illustration,

the only difference being the way in which the deviations are

expressed. Consider the following illustration.

TABLE 13

SHORT METHOD OP COMPUTING MEAN APPLIED TO A GROUPED
FREQUENCY DISTRIBUTION

In this case each deviation is expressed in units of intervals,

rather than in score units. The midpoint 80, for example, deviates

i interval from the A.R., the midpoint 95 deviates 4 intervals, etc.

The sum of the deviations divided by N, therefore, tells how many
intervals the A.R. deviates from the mean. In other words,

2fd
-j:r gives the correction to the A.R. in interval, rather than in

score units. Since in this case the interval is 5 times as large as

a score unit, one must multiply the correction by 5, transforming
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it into score units, before applying it to the A.R. in the final step.

The process of computing the mean of a grouped frequency

distribution may now be recapitulated in the following general

rules:

STEPS IN THE COMPUTATION OF THE MEAN OF A
GROUPED FREQUENCY DISTRIBUTION BY THE SHORT

METHOD

1. Select as the arbitrary reference point (A.R.) the midpoint of

the interval which you think is most likely to contain the

actual mean. 1

(The midpoint of any other interval will do,

but the fd products will in general be smaller and therefore

more convenient to handle if the A.R. is selected as sug-

gested here.)

2. Indicate, in a column headed "d" the number of intervals

between each interval-midpoint and the A.R. (Simply

count away from the A.R. one unit at a time in either direc-

tion. All deviations below the A.R. must be preceded by a

negative sign.)

3. Multiply the frequency ifi each interval by the corresponding

d value, and write the products in a column headed "/<i."

(Mlfd products below t) e A.R. will have a negative sign.)

4. Find the sum of the pos ;ive products in ihefd column, then

the sum of the negative products. Then add these sums

algebraically.

5. Divide this result by N, the total number of cases. (This

quotient may be denoted by c
f

,
and represents the

"
correc-

tion
"

in interval units to the A.R.)

6. Multiply the quotient by the size of the interval. (This

product, which may be denoted by c, represents the
"
cor-

rection
"

to the A.R. in score units.)

1 Because of this manner of selecting it, the arbitrary reference point is sometimes

called the
" Guessed Mean" or the "Assumed Mean" and is often denoted by the

abbreviation "G.M." This notation has sometimes misled beginning students

because it seems to imply that the short method will not be accurate if a "good"
guess is not made of the value of the actual mean.
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7. Add this product algebraically to the A.R. (Subtract if

negative, add if positive.)

The reasons for calling this method the "short" method may
not be too apparent. Since the number of intervals in a grouped

frequency distribution seldom exceeds 20, and since the A.R. is

usually taken near the middle of the distribution, it follows that

the numbers in the deviation column are usually only one-digit

numbers. All multiplications required in filling the fd column

may, therefore, be done mentally. For this reason, and because

all long column addition is eliminated, the computation of the

mean by this method is extremely simple arithmetically, and also

provides fewer opportunities for error than does the long method.

It is, nevertheless, true that, as far as the computation of the

mean is concerned, this method is
"
short

"
in name only. When

the mean of a series of measures is the only measure desired

(when no measures of variability are to be computed later) and

when an adding or calculating machine is available, time is saved

by simply adding the original measures and dividing by their

number, without taking time to construct the frequency distribu-

tion and to fill in the d and fd cui imns called for by the short

method. Usually, however, it is desirable to construct the fre-

quency distribution for other reasons than for calculating the

mean. Usually, also, some measure of variability, such as the

standard deviation, is required in addition to the mean. As will

be explained later, the short method is highly essential in the com-

putation of the standard deviation. From the point of view of

the time consumed in the entire process of constructing a fre-

quency distribution and computing the mean and the standard

deviation, the
"
short

" method undoubtedly is a significant time-

saver.

THE MEDIAN

The median may be most simply defined as the middle measure

in a series in which all measures have been arranged in the order

of their size. Since the median is usually computed from a fre-
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quency distribution, the best definition in general is that the median

is that point on the scale above and below which half of the scores

or frequencies lie. The median is thus the same as the 5oth per-

centile. The method of computing the 5oth percentile or median

has been explained (see page 36) and need not be repeated here.

The usual abbreviation for the median is Mdn.

THE MODE
r

The mode of a frequency curve may be defined as that value along

the horizontal scale at whicR the height of the curve is greatest.

It is sometimes*also defined as the most frequently recurring score

in the distribution. For example, in the distribution in Table 2,

page 13 of the text, the modal score would be 112, since it occurs

five times and no other occurs more than three times. The modal

score is obviously a very unstable measure. In Table 2, for in-

stance, if the individual scoring 145 had scored 146 instead, and

if two of those scoring 112 had each scored 113, the mode would

have been changed from 112 to 146. A, more meaningful measure,

usually called the
" crude" mode, is the midpoint of the interval

containing the highest frequency in a relatively coarsely grouped

frequency distribution^ For example, the crude mode of the dis-

tribution in Table 5, page 15, is 104.5. Even the crude mode is

highly unstable for distributions of small numbers of cases.

When there is more than one outstanding frequency in a dis-

tribution (and these frequencies are not in adjacent intervals)

we describe the distribution as multi-modal.

In all subsequent discussions and questions, the "mode" re-

ferred to may be taken to mean the "crude" mode as here defined.

THE NUMBER OF SIGNIFICANT DIGITS IN THE MEAN

It is reasonably apparent that the accuracy of the result of an

arithmetic computation depends upon the accuracy of the original

data. If each of the measures in a series represents only a rough

estimate of or coarse approximation to an accurate measure of

the same thing, then the mean of these approximate measures
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must itself be considered as only an approximation. In this case,

it would not be consistent with the nature of the original data to

compute the mean to a large number of decimal places; on the

contrary, to do so would give the computed mean the appearance
of an accuracy which it does not possess. It is, therefore, important
that the student know to how many decimal places a mean may
be computed.

Suppose that we have a measure of the weight of each of seven

similar objects, but that these weights have been determined with

various degrees of accuracy. These measures (in pounds) are as

follows: 12.34, 10.15, 9.2, 14., 7.363, 8., 10. The first measure

has been taken to the nearest hundredth of a pound, and the real

weight of the thing measured may therefore be anywhere be-

tween 12.335 and 12.345 pounds. The third measure has been

taken to the nearest tenth of a pound, and the fourth only to the

nearest pound. We know, then, that if the weight of the fourth

object had been more accurately determined, the digits following

the decimal point might have had any value.

We can then write these numbers in column order as follows:

12.34

10.15

9.2

14-

7-363

8.

10.

7 I -53
Most persons would write the sum of these numbers as 71.053,

and would then compute the mean to be '- = 10.1504 ,

7

the number of decimal places to which the result was carried

depending only upon the whim of the computer.

The fallacy in this procedure becomes apparent if we substitute

for each measure the highest actual weight that each object

might have had. The first object, for example, might really have

weighed almost 12.345 pounds, the fourth almost 14.5 pounds,
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etc. The sum of these maximum weights is 72.6135, as shown below.

Maximum Values

I -3733

72.6135

Minimum Values

I2 -335

10.145

9-*S

13.5 69.4925

7.3625
M ~

7
-9.9275...

7-5

9-5

69.4925
The minimum value of the actual sum, as shown above, is

69.4925. The actual mean, therefore, may lie anywhere between

10.3733 anci 9-9 2 75 The only digits in the mean first com-

puted, then, that we know to be correct are the two digits to the

left of the decimal point. This mean should, therefore, have been

rounded to 10, in order to avoid giving a misleading impression

of high accuracy.

In any number, the digits known to be correct are called the

significant digits. The mean (10.1504), originally obtained in the

preceding illustration, contains only two significant digits, as

does the sum 71.053.

It is possible to set up a general rule for determining the number

of significant digits in any sum. This rule is as follows: The last

significant digit in a sum cannot lie any farther to the right of the

decimal point than the last significant digit in the least accurate of the

measures added. The least accurate of the weight measures just

considered are the fourth, sixth, and seventh (14, 8, and 10),
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which contain no significant digit to the right of the decimal

point. Hence, the sum of these measures can contain no signifi-

cant digit to the right of the decimal point.

This rule may be made clearer by the following illustration.

Given the following measures, to find their mean: 11.17343, 10.2,

14.49. We can write these as follows:

II - I 7343

10.2????

14.49???

35-7????

The question marks indicate that the digit in that place is un-

known and may have any value from o to 9. The sum of the

digits in the hundredths column is 7 + ? + 9
=

?, since 16 plus

an indeterminate number is still unknown. Hence, we can be

sure of only the first three digits (35.7) in the sum. 1

The mean of these measures is then 35.7???? -*- 3
=

11.9????

3)35.7????

Similarly, if the sum of a series of 117 numbers is 246.532

(assuming that all of these digits are significant), their mean may
be written 2.10711, as shown below.

2.10711

117)246.532????

234

125

117

832

819

13?

117

i??

Ill

r The last of the digits (7) is not absolutely correct its actual value might be

8 or 9, depending upon the value of the fourth digit in the second number but it

is sufficiently accurate to be worth retaining, which is not true of the remaining

digits in the sum.
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We may be sure 117 is contained just once in 13?, regardless of the

value of ?, and that it is also contained once (or very nearly once)

in i??, but we cannot carry the division farther.

The preceding examples illustrate the general rule that the

number of significant digits in the mean of any series is the same as

the number of significant digits in its sum.

We now have the two rules that will enable us to determine to

how many decimal places any mean may be carried. Fortunately,

the application of these rules is simplified in the case of integral

test scores. Since such scores are never expressed in decimals,

and since all of their digits are significant, the sum of any set of

test scores always consists only of significant digits. Hence we can

immediately establish the following simpler rule: The number of

significant digits in the mean of any distribution of test scores is

equal to the number of digits in the sum of the scores (or measures}.

Thus, the mean of the distribution in Table 10 contains only

three significant digits, since the sum of the scores (862) contains
t

only three digits. This mean should, therefore, have been rounded

to 14.4. Similarly, the mean of the distribution in Table n
contains four significant digits (the sum is 3845) and hence cannot

be meaningfully carried any farther than to 71.20.

When the mean of a distribution has been computed by the

short method, we do not determine the sum of the original scores

directly. However, we can readily determine how many digits

there are in the sum by dropping the decimal places in the mean

(as first computed) and multiplying by N. For example, in

Table 12 the value of the mean as first computed is 14.37. Drop-

ping the decimal places, we get 14, which when multiplied by 60

is 840. This is a close approximation to the sum of the original

scores and tells us that that sum would contain three digits.

Hence, this mean should be rounded to three digits, or to 14.4.

Similarly, in Table 13 the sum of the original scores would

contain four digits (71 X 54
=

3834), and hence the mean should

contain only four digits (as does the mean given, 71.20).

The rule for determining the maximum number of digits
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in which the mean of any distribution of integral measures

may be expressed may then be stated as follows: Drop the

decimal places in the mean first computed, multiply by N, and

round the mean to the number of digits in this product.

It should be noted that the preceding rule applies, not only in

the case of test scores, but also to any continuous data originally

expressed in whole numbers.

These rules should be rigidly observed in all statistical work

that the student may do with measures of continuous variables.

They do not apply to discrete data. The mean of a distribution of

sizes of families, for example, may, as far as the accuracy of the

individual measures is concerned, be carried to any number of

decimal places. In such cases, other considerations will determine

the manner in which the result is expressed.

The injunction in the first sentence of the preceding paragraph

does not mean that the student must always retain all significant

digits in the mean, but only that he should retain none that are

not significant. There will be many instances in which the char-

acter of the original data will permit a higher degree of accuracy

in the mean than is actually needed for its interpretation. Other

sources of error, in addition to the approximate character of the

individual measures, also determine the accuracy or reliability of

the mean. Certain of these other sources of error will be considered

later. In general, then, the student should carry a mean only

as far as is demanded by the uses to which it is to be put, even

though these rules and other considerations will permit him to

carry it farther.

It should be noted that the median and mode are not arithmetic

in character being counting or observational measures only

and hence are not subject to the rules here given. The student

may safely follow the practice, however, of never carrying a

median to any more decimal places than the mean of the same

distribution.
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The Importance of "Errors" in Statistical Work

This discussion of significant digits may at first appear to the

student as pedantic and much ado about little. It may be ob-

served that so much attention has been given to this issue, not

only because of .its intrinsic significance, but because it is one of

the first concrete instances met in this course of the many sources

of error which must be considered in the interpretation of statisti-

cal data. Another source of error one which will be considered

in the study exercises for this chapter is the loss of identity of

the individual measures which results when measures are grouped

in a frequency distribution. Other more important types of error

which will be considered later are errors in random sampling and

errors due to lack of validity and reliability in the measuring in-

struments used. These other sources of error are far more serious

than the one just discussed. Hence the rules here considered only

indicate the maximum accuracy which a mean may have; the num-

ber of significant digits which it actually contains is nearly always

less, and often much less, than these rules would indicate.

One of the worst mistakes that can be made in statistical work

is that of uncritically accepting all statistical facts at their face

value, or of presenting approximate or unreliable data without

drawing attention to the errors which the data probably contain.

Statistics as a body of knowledge and a system of techniques is in

spirit exact and accurate. Precision and accuracy of statement

are highly desirable for their own sake. There is enough of loose

and careless thinking in education and psychology without statistics

itself making any contributions of this sort. Among the most

important elements in statistical judgment, then, are keen aware-

ness of probable errors, and a disposition to qualify accordingly

any conclusions based upon statistical analyses. Statistical

" smoke screens
"
should never be permitted to hide or obscure the

unreliable and ambiguous character of the original data with

which we so often have to deal.
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The Uses and Interpretation of the Measures of Central Tendency

As in previous instances, the student will be left to write for

himself the most important section of this discussion of measures

of central tendency. The foregoing descriptions and explanations

should be adequate to enable him to identify the essential char-

acteristics and the mathematical properties of each of the
"
aver-

ages" considered. With the aid of the study exercises, he should

be able to appreciate readily how much it may matter which type

of average is used in any given situation and for any given purpose

to discover that in many instances the choice of the wrong
measure of central tendency may be as serious in its consequences

as a deliberate falsification. Again, the fact that he has, in part

at least, reasoned these things out for himself should result in

their more permanent retention and more complete assimilation.



CHAPTER VI

MEASURES OF VARIABILITY

IT SHOULD be readily apparent that a measure of central tend-

ency alone can describe only one of the important characteristics

of a distribution, and that it is equally essential to know how

compactly the measures are distributed about this point of central

tendency, or, conversely, how far they are scattered away from it.

In describing the distribution of intelligence for a given class of

pupils, for example, it would not be sufficient to know only the

average I.Q. of the class. For instructional purposes it is equally

if not more important to know how large are the individual

differences in intelligence within the class, or how heterogeneous

the group is in intelligence. In other words, we should like to

know whether the class is made up exclusively of students of

average and near-average intelligence or contains a large propor-

tion of very bright and very dull pupils.

This condition in a frequency distribution is variously referred

to as dispersion, spread, scatter, deviation, and variability. There

are several ways of describing this characteristic quantitatively.

One of the simplest but least adequate of these methods is to

state the values of the highest and lowest measures, or the range of

the distribution. To describe the variability in intelligence in a

given school class, for example, we might say that the highest

I.Q. is 140 and the lowest is 73, or that the range of intelligence is

67 I.Q. points. This type of description is not very meaningful,

since it is dependent only upon the two extreme individuals in

the group, and since almost anything may be true of the form ot

the distribution between these extremes.

Another way of describing the variability of a distribution is to

state the values of the loth and goth, or of the 25th and 75th, per-

centiles. For example, the knowledge that 10 per cent of the
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pupils in a given group are below 80 pounds in weight while the

upper 10 per cent are above 140 pounds in weight gives us a fairly

accurate quantitative notion of the variability in weight of the

individuals in the group. The Semi-Interquartile Range (Q),

which is half of the distance between the upper and lower quartiles,

or half of the difference between the 75th and 25th percentile

scores, is one of the most frequently used measures of variability.

These and other measures based upon percentiles, however, do not

take into consideration the value of each individual score within

the distribution, and are therefore unreliable and lacking in de-

scriptive value. Two distributions may show the same semi-

interquartile range, and yet the outlying scores in one distribution

may be far more extreme than in the other.

The variability of the scores in a distribution clearly depends

upon the amounts by which the individual scores deviate from the

measure of central tendency. To describe the variability of a

frequency distribution, therefore, we could determine the amount

by which the score for each individual differs from the mean

score, considering all of these differences (deviations) as positive,

and could then compute either the median or the mean of these

deviations. The first of these measures would be known as the

Median Deviation from the mean, and is sometimes called the

Probable Deviation or, in distributions of sampling errors, the

Probable Error (P.E.). The mean of the deviations from the

mean is sometimes called the Mean Deviation (or M.D.) but more

frequently theA vcrage Deviation (or A.D.).
1 Each of these measures

is relatively easy to interpret. The median deviation is the ab-

solute amount of deviation from the mean that is exceeded by
half of the measures in the distribution. Thus, to say that the

median deviation in height for a given group of individuals is two

inches is to say that half of the individuals in the group differ in

height from the average individual in the group by two inches or

1 Mean Deviation is a better name, since it recognizes the distinction between

average as a general term and mean as a specific term. The name Mean Deviation

will therefore be used in this course, in spite of the prevalence of the name Average

Deviation in educational and psychological literature.



COMPUTATION OF THE M.D. Jl

more. The mean deviation is only a little more difficult to inter-

pret. The mean deviation (M.D.) is ordinarily larger than the

median deviation, for reasons that the student should be able to

deduce for himself. (See Question 8, page 47 of the manual.)

The Standard Deviation is by far the most widely used measure

of variability. It is similar to the average deviation except for

the fact that each deviation is squared before averaging and the

result then reduced to a magnitude comparable to the original

deviations by extracting its square root. To compute directly

the standard deviation of weights for a group of individuals, we

would first find the amount by which the weight of each individual

differed from the mean weight. We would then square this de-

viation for each individual, add these squared values together and

divide by their number, and then extract the square root of the

result. No attempt will be made here to explain the advantage

of thus squaring each deviation and later extracting the square

root of the average. The student will have to take it on faith that

this procedure results in a more reliable measure of variability

than the simpler M.D., and one that is better adapted for use in

more complicated statistical theory, as in sampling error and cor-

relation theory. It is this fact that the standard deviation is

essential in the calculation of other statistical constants that

results in its being used so much more widely than the M.D. or

Q. If we were concerned only with the description of variability

and had no occasion to use more complicated statistical techniques,

we would probably use the M.D. in preference to the S.D. in

most cases. Since, however, in most statistical analyses we must in

any event compute the standard deviation in order to calculate

other statistical measures, we use the S.D. instead of the M.D.

for the simpler descriptive purposes.

Computation of the M.D.

As has already been suggested, the M.D. of a series of measures

can be computed by finding the difference between each individual

measure and the mean of the series, and then finding the mean of
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these differences, all differences being considered as positive. The

basic formula for the M.D. may be written as follows:

M.D. =~
(2)

in which x represents the deviation of any measure from the mean

(not from the A.R.). 2 means "the sum of." Only the absolute

magnitudes of the deviations are taken, that is, all deviations are

considered as positive.

To compute the M.D. by the direct method just suggested

would ordinarily be very time-consuming, particularly if the mean

had been carried to several decimal places and if the number ol

cases were large. A much more practicable procedure is to com-

pute the M.D. from the grouped frequency distribution by a
"
short

" method similar to* that used for computing the mean.

The steps in this short method are described below. The state-

ments in brackets following each step show how it is applied in

the illustrative problem in Table 14 on page 74.

STEPS IN COMPUTATION OF THE M.D. BY THE SHORT
METHOD

i. Prepare a grouped frequency distribution, and compute the

mean by the short method. If it is then found that the mean

is not contained in the same interval with the arbitrary

reference point, it will be necessary to construct a new pair

of d and fd columns with the A.R. taken as the midpoint of

the interval which contains the mean. The following steps

assume that the d and fd columns used will satisfy this

essential condition.

[In the illustrative problem, the arbitrary reference point

used in the original computation of the mean was the

midpoint of the interval 73-77. Later it was found that

the mean (71.20) did not lie in this interval. The original

d and fd columns were therefore discarded, and another

pair constructed with 70 (the midpoint of the interva

which contains 71.20) as the A.R.]



STEPS IN COMPUTATION OF THE M.D. 73

2. Fiud the sum of the frequencies for the intervals whose mid-

points are above the mean. Call this/a .

[The interval 73-77 is the first whose midpoint is above

71.20. The sum of the frequencies in this and higher

intervals is 25. Hence, fa =25.]

3. Find the sum of the frequencies for the intervals whose

midpoints are below the mean. Call this/6 .

[The interval 68-72 is the highest whose midpoint is be-

low 71.20. The sum of the/'s in this and all lower intervals

is 29. Hence, fb
=

29.]

4. Find the difference between fa and/6 . That is, find (/*/&).

[25
-

29
= -

4.]

5. Find the difference between the mean and the arbitrary

reference point, that is, find A.R. M. Call this result c
f

.

[A.R. M. = 70 71.20
= i. 20. Hence, c

r = 1.20. If

the mean had been originally computed from an A.R. of

70, the value of c
r would already have been found in com-

puting the mean.]

6. Find the product of the results of Steps 4 and 5. That is,

[(- 4) X (- i. 20)
= 4-80. Hence, c' (fa

-
fb)

=
4.80.]

7. Add the numbers in the fd column without regard to sign.

Denote the result by 2 \fd\.

[The absolute sum of the/d's is 85. Hence, 2 \fd\
=

85.]

8. Multiply this result by the size (i} of the interval. That is,

findi (2 ifd\).

[The interval used is one of five units. Hence, i (2 \fd\)
=

5 X 85 =
425^]

9. Add to this result the result of Step 6. That is, find

[425 + 4.80 =
429.80.]

10. Divide this result by N to get the M.D. That is, find

Mp _i(Z\fd\)+c'(fa -fb)

N

[M.D. =
7.959 ... or M.D. =

7.96.]
54
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ii. Round the result to the desired degree of accuracy, not to

exceed the number of digits in the mean (which itself should

contain no more digits than indicated by the rules, pages 65-66) .

[The result is rounded to 7.96. The M.D. of a distribu-

tion of integral test scores should very rarely be carried to

more than two decimal places.]

TABLE 14

ILLUSTRATION OF COMPUTATION OF M.D. BY THE SHORT METHOD

If the student is curious about the reasons for the various steps

in this procedure, he may find them explained in any good refer-

ence book on statistics.
1

Since the computational procedure used has no bearing on the

interpretation of the M.D., no explanation of these steps will be

attempted here. The student is asked to take this computational

procedure on faith, and to do all of his thinking about the M.D.

in terms of the fundamental formula (2) ,
or in terms of the defini-

1 See Holzinger, Karl J. Statistical Methods for Students in Education, pp. 102-107.

Ginn and Company, 1928.
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tion: The M.D. is the mean of the deviations taken from the mean of

the distribution.

Computation of the S.D.

The standard deviation of a distribution may be defined as the

square root of the mean of the squared deviations from the mean
of the distribution. It may be found by finding the difference

(x
= X M) between each individual measure and the mean

of the distribution, squaring these differences individually, adding

the squared deviations and dividing the sum by N, and then

extracting the square root of the result. The fundamental formula

for the S.D. is

Again, because the direct method of computation just described

is too time-consuming to be practicable, the short method de-

scribed below should generally be used. As before, the statements

in brackets following each step show how it is applied in an actual

problem that presented in Table 15.

STEPS IN COMPUTATION OF THE S.D. BY THE SHORT METHOD

1. Prepare a grouped frequency distribution of the measures

and complete the d and fd columns as in the computation of

the mean. Unlike the computation of the M.D., the mid-

point of any interval may be used as the A.R.

2. Multiply each number in the/d column by the corresponding

number in the d column, and write the result in a third

column headed fd
2

.

[In the illustrative problem, the product of the d and fd

values for the top interval is 4 X 4 = 16. The remaining

numbers in the fd
2 column are similarly obtained.]

3. Find the algebraic sum of the numbers in the/d column and

2 fd
divide by N. That is, find -~

24 6541 , , ,\ i= "
-759 (rounded) -]
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4. Square this result. That is, find f -~r-
)

[(-7S9)
2 =

-576 (rounded).]

5, Add the numbers in the/d
2 column and divide by N. That

is, find * Note that all numbers in this column are

positive.

[The sum of this column in Table 15 is 247. Hence

247

N
6. Subtract from this quotient the result of Step 4. That is,

N \ N
[4.574

-
.576

=
3.998.]

7. Extract the square root of this difference. That is, find

_
N ~\N

This is the standard deviation in interval units.

[The square root of 3.998 is 1.99.]

8. Multiply this square root by the size of the interval to get

the S.D. That is, find

SD -i l*& - (*1*\ (0b 'D '
~ *

V N ( N )
(5)

[The S.D. of the distribution in Table 15 is 1.99 X 5
=

9.95.]

9. Round the result to the desired accuracy. (In general, the

S.D. of a distribution of integral test scores should not be

carried to more than two decimal places.)

As in the case of the M.D., the student is advised to accept

on faith the statement that this computational procedure will

yield very nearly the same result as that obtained when the direct

method, described at the beginning of this section, is applied to

the original measures. The standard deviation computed from a

grouped frequency distribution will be slightly inaccurate because

of the loss of indentity of the original measures (that is, because
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TAALE 15

ILLUSTRATION OF COMPUTATION or S.D. BY THE SnoR-rf METHOD

of grouping errors) ,
but this inaccuracy is nearly always too slight

to be of any practical significance if the frequency distribution

has been properly constructed. The short method of computa-

tion does not in itself result in any error.

The student should make no attempt, then, to interpret thel

S.D. in terms of Formula (5), but should do all of his thinking

about this measure in terms of its definition or of Formula (4) .

Important Characteristics of the Various Measures of Variability

Measures of variability are in general much more difficult to

interpret than measures of central tendency. The observations in

the following paragraphs, however, may help to make their mean-

ing more clear.

We may note first that the several measures of variability may
in one sense be considered as special types of

"
averages.

"
In-

stead of representing "average
7 '

position on a scale, they represent
"
aver.age

' ' amounts of deviation from such a position . Q represents

the mean amount by which the upper and lower quartiles deviate

from the median, the median deviation represents the median

amount by which the individual measures deviate from the mean of

the distribution, the M.D. represents the mean amount by which

the various individuals in a group differ from the mean individual,
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while the square of the S.D. represents the mean value of the

squared deviations from the mean.

It may be helpful, also, to observe that in any bell-shaped

distribution, the S.D. will always be larger than the M.D., and

the M.D. larger than the median deviation and Q. If the dis-

tribution approximates the form of the normal curve, the M.D.

will be about five-sixths as large as the S.D., and the Mdn. Dev.

(median deviation) and Q will each be about two-thirds as large

as the S.D.

Each of the measures of variability may be thought of as a

unit of distance along the scale in terms of which the position of

any measure may be described with reference to the mean. If

the distribution closely approximates the form of the normal curve,

roughly two-thirds of the measures will lie within one S.D. of

the mean, about 95 per cent of the measures will lie within two

S.D.'s of the mean, and only a negligible proportion (usually

less than i per cent) will deviate from the mean by more than three

S.D.'s. Similarly, again for distributions closely approximating

the form of a normal distribution, about 57 per cent of the measures

will lie within one M.D. of the mean. In any symmetrical dis-

tribution, of course, 50 per cent of the measures will lie within one

median deviation or within one Q of the mean. The trouble with

the preceding generalizations is that they apply only to distribu-

tions that are very nearly normal or symmetrical, and that the

majority of distributions with which we actually deal are neither

approximately normal nor approximately symmetrical. Distribu-

tions may be found in which the S.D., when measured off on both

sides of the mean, subtends more than 90 per cent of the cases,

and others in which it subtends only slightly more than 50 per cent.

In some distributions the M.D. is smaller than Q, and in some

very much larger. Any generalizations such as those given in

this .and the preceding paragraph must therefore be used with

extreme caution.

The complexity of the mathematical character of the S.D.

makes it the most difficult to interpret of the various measures
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of dispersion. This difficulty is further increased by the fact that

the S.D. is so often expressed in units which are not in them-

selves meaningful. Little meaning, for example, can be derived

from the statement that the distribution of scores on the Iowa

Every-Pupil Test in Algebra for the pupils in the ninth grade of

the Jonestown High School shows a standard deviation of 6.5.

We cannot conclude from this statement that these pupils are

either highly variable or very much alike in achievement, primarily

because we do not know what amount of difference in achievement

6.5 units on this test represents, but also because of the complexity

of the S.D. If, however, we know that the S.D. of scores on the

same test is 8.2 for the ninth graders in the Smithville High School,

we can say that the latter group is more variable than the first in

whatever the test is measuring. In spite of the complexity of the

S.D., it is apparent that the group with the larger S.D. must be

that in which the individual differences (or individual deviations

from the mean) are more extreme.

The interpretation of the other measures of variability is simi-

larly affected by the ambiguity of the measuring scale used. In

general, therefore, these measures are most useful in education

and psychology for comparisons of variability in two or more groups.

Their usefulness in the description of a single group is largely

limited to those instances in which they may be referred to a

meaningful standard, but such descriptions, of course, also involve

comparison. For example, if we knew that in the typical Iowa

high school the S.D. of scores on the aforementioned algebra test

was 4.8, and that the largest S.D. reported in any Iowa high school

was 8.5, then we could say that the pupils in the Smithville High
School constitute "an unusually heterogeneous group."

The Uses and Interpretation of Measures of Variability

Certain of the uses most frequently made of measures of vari-

ability will be suggested in the study exercises. In addition to

these uses the S.D. finds important applications in sampling error

theory, in correlation theory, in transforming test scores into
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comparable derived measures, in
"
scaling" the difficulty ot

test items, and in the description of test reliability. Most of

these latter uses depend upon the relationship of the standard

deviation to the normal curve, and will be discussed in later

chapters, subsequent to a consideration of the properties of the

normal curve.

As was true of the measures of central tendency, each measure

of variability has unique characteristics which make it superior

to the other measures for certain purposes and inferior for others.

The study exercises will assist the student to recognize the signifi-

cance of these characteristics.
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THE NORMAL CURVE OF DISTRIBUTION

The Characteristics of the Normal Curve

THE normal curve of distribution, more commonly known simply
as the normal curve, is a mathematical concept of great significance

in statistical theory. Why it is so significant will be explained

later in this chapter and in those to follow, but before considering

its applications it may be well to consider first just what the normal

curve is what are its mathematical properties and general

characteristics.

The normal curve of distribution may be most rigidly defined as

the frequency curve whose height at any point is inversely pro-

portional to the antilogarithm of half of the square of the distance

(measured in units of the standard deviation) of that point from

the mean, or as a curve in which the ordinate (y) at any given

number of sigma-units from the mean is given by the expression :

_

in which y is the ordinate at the mean, e is the base (2.7183) of

the Naperian system of logarithms, and z is the distance of the

given ordinate from the mean, measured in units of the standard

deviation of the distribution.

This definition, of course, will not be very meaningful to any
student in this course who has not had advanced training in

mathematics, nor is he advised to attempt to derive much meaning

from it. It is presented here primarily in order to emphasize

early in this discussion that the normal curve is essentially a

mathematical ideal an ideal, not in the sense of a standard of

perfection or excellence, but in the sense of a product of the imagina-

tion. Many similar ideal curves have no counterpart in reality;

the normal curve, however, happens to describe quite accurately
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the form of distribution of certain types of actual data, and thus is

of practical significance in statistical work.

A description which will be more meaningful to most students

than the preceding definition is that the normal curve is a sym-

metrical bell-shaped frequency curve which exhibits a certain

unique set of relationships between the ordinate at the mean of

the distribution and the ordinates at various sigma-distances from

the mean. This unique set of relationships is presented in part in

Figure 8. Since the curve is bilaterally symmetrical, only half of

the curve is shown.

Point of inflection

FIG. 8.

Ordinates under the normal curve.

As is indicated in Figure 8, in any normal curve the ordinate

i S.D. from the mean is 60.7 per cent of the ordinate at the mean.

The ordinate at 20- from the mean is 13.5 per cent of the mean

ordinate, and that at 30- from the mean is i.i per cent of the mean

ordinate. A similar statement can be made about the ordinate

at any given sigma-distance from the mean. Table 16 presents

these relationships more accurately for ordinates at one-hundredths
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of a standard deviation intervals.
1 Table 16, then, may be con-

sidered as an alternate definition of the normal curve.

FIG. 9.

Normal curves of varying ratios of height to "width."

Any size of linear unit, of course, can be used to represent i

sigma in plotting the curve, and the curve may be drawn with

any desired height of the mean orclinate. The appearance of the

curve will differ markedly, depending upon the choice of scale

units in plotting it. Each of the curves in Figure 9,* for example,

is a true normal curve. In each of them the ratio between the

mean ordinate and the ordinate at any given sigma-distance from

the mean is the same as in Figure 9, or as given in Table 16. Each

of these curves is equally "flat" or
"
peaked,

"
as these terms are

used in statistics, although their apparent flatness or peakedness

may differ considerably. The effect of these variations in plotting

is to make it very difficult to recognize by inspection whether or

1 Table 16 may be read as follows: Suppose we wish to find the ratio between the

mean ordinate and the ordinate at 2.17 sigma-units from the mean. We look for

2.1 in the column under - at the left of the table, and then follow along the row
o"

thus identified until we get to the column headed .07. The ratio desired is that

which is in both the 2.1 row and the .07 column, and is .0950. The height of the

curve at 2.17 S.D.'s from the mean is then .0950 or 9.5 per cent of its height at the

mean. Similarly, the ordinate at .62 sigma-units from the mean is .8251 or 82.5

per cent of the mean ordinate.

2 The ideal normal curve has no definite width, since it is asymptotic to the base

line. In picturing such curves, however, usually we arbitrarily cut off the curve

at about 3 S.D.'s from the mean at either end, since only a negligible proportion of

the area under the curve is beyond these limits.
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TABLE 16

ORDINATES UNDER THE NORMAL CURVE AT VARIOUS SIGMA-DISTANCES
FROM THE MEAN (ORDINATES EXPRESSED AS PROPORTIONS OF THE

MEAN ORDINATE)
l

1 The data in this table were taken from Tables for Statistician* and Biometricians. Edited by Karl

Pearson. Cambridge University Press.

not a given curve is normal, or to distinguish between one that

is normal and one that is not. The polygon in Figure 10, for

example, looks very much like a normal curve, and, if seen alone,

would pass unchallenged as such by most persons, but it is actually

too "flat" to be normal, as is shown by the superimposed normal

curve.

The normal curve has the additional properties that it is asymp-

totic to the base line (when extended to greater distances beyonc

the mean, it continues to approach but never reaches the bas<

line) and that its points of inflection (the points where the curvatur<

changes in direction) are each i S.D. from the mean ordinate
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Another characteristic most important of all is considered in

the next section (" Area Relationships under the Normal Curve ").

3(7 2(7 1(7 M. 1(7 2(7 3(7

FIG. 10.

Normal curve
"
fitted" to a frequency polygon.

It should be noted that the term normal as here used is simply

a name for this particular curve, and does not have any of the

usual connotations as, for example, in speaking of "a normal

child." Normal, as a technical term in statistics, does not mean

"the ordinary or usual condition" or "free from abnormalities." 1

In the subsequent discussion, a "normal distribution" means

any frequency distribution whose form corresponds to that of the

normal curve.

Area Relationships under the Normal Curve

Since the ordinate at a given sigma-distance from the mean of

the normal curve always has the same relationship to the mean

ordinate, it follows that the area under the curve included between

the mean ordinate and an ordinate a given sigma-distance from

1 "There is nothing arbitrary or mysterious about variability which makes the

so-called normal type of distribution a necessity, or any more rational than any
other sort, or even more to be expected on a priori grounds. Nature does not abhor

irregular distributions." Thorndike, E. L., Mental and Social Measurements, pp.

88-89.
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the mean is always the same proportion of the total area under the

curve. If under a normal curve we erect perpendiculars from the

base line at the mean and at a point i S.D. from the mean, the

part of the area under the curve included between these perpen-

diculars will always be 34.13 per cent (rounded) of the total area.

The shaded area in Figure n corresponds to that just described.

"V v
47.72% 49.87%

FIG. ii.

Area relationships under the normal curve.

Similarly, 47.72 per cent of the total area will be included be-

tween the mean ordinate and an ordinate 2 S.D.'s from the mean,

and 49.87 per cent of the total area will be subtended between the

mean and a point 3 S.D.'s from the mean. These statements and

similar statements for ordinates at other distances from the mean

apply alike to any normal curve (regardless of the choice of units in

which it is plotted). These relationships for ordinates at one-

hundredths of sigma intervals are given in Table 17. (In this table,

x
x represents the distance from the mean, and hence -

represents

x
These - ratios are

or
that distance in standard deviation units.)

expressed in tenths along the vertical margins and in hundredths

along the horizontal margins of the table. The numbers within

the body of the table represent the per cents of the total area which

are included between the mean ordinate and the ordinates at

these various sigma-distances from the mean. Since in any

frequency curve the number of units in its area is proportional to

the number of cases in the distribution that is, since the area
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represents the frequency the numbers in Table 17 also represent

per cents of the total frequency, as the title of the table indicates.

Table 17 may be read as follows: Suppose we wish to find what

per cent of the total area under the normal curve is between the

mean and a point 1.36 S.D.'s from the mean. To find this per-

oc

centage, we run down the column under until we get to 1.3. We

then follow along the row thus determined until we get to the col-

umn headed .06. The number which is both in the 1.3 row and

in the .06 column is then seen to be 41.31, which is the per cent

desired.

TABLE 17

PER CENT or TOTAL AREA UNDER THE NORMAL CURVE BETWEEN MEAN
ORDINATE AND ORDINATE AT ANY GIVEN SIGMA-DISTANCE FROM

THE MEAN l

' The data in this table were taken from Tables for Statisticians and Biometricians. Edited by Karl

Pearson. Cambridge University Press.
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This table may be employed to derive a number of important

types of information about any normal distribution of measures.

These types of information, and ways in which Table 17 is used

to derive them, are explained in the numbered paragraphs below.

1. To find the number, proportion, or per cent of the cases in a

normal distribution which lie above (or below) any point

along the scale.

Illustration: Given a normal distribution with M =
90,

S.D. =
15, and N =

150. To find the per cent of the cases

in the distribution which lie above no. This measure is

110-90 = 20 units above the mean, or (since the S.D. is 15)

20~ =
!-33 (rounded) sigma units above the mean. According

o

to Table 17, 40.82 per cent of the measures in the distribution

will lie between the mean and this point, that is, between

90 and no. Since the distribution is symmetrical, 50 per

cent of the cases will lie above the mean. Hence, 50 40.82

=
9.18 per cent of the cases will lie above no. This result

may also be expressed either as a proportion (.0918) of the

whole distribution, or as a number of cases (9.18 per cent of

150
=

13-77 cases).

As a further example, suppose we wish to find the per

cent of cases that are below 63. Since this measure is below

the mean, we would first find the per cent between this

score and the mean, and then subtract this percentage from

50 per cent, the total per cent below the mean. The result

will be 3.59 per cent, which could be expressed also as a

proportion or as the number of cases in the manner already

described.

2. To find the number, proportion, or per cent of the cases

which lie between any two given points along the scale.

Illustration: To find the per cent of the total number of

cases which lie between 85 and 100 in the distribution just

considered. This percentage may be considered as the sum

of two percentages: the percentage between 85 and the mean
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(90), and the percentage between the mean and 100. 85 is

.330- below the mean, and hence, according to Table 17,

12.93 Per cent f the cases would lie between it and the mean.

Similarly, 24.86 per cent would lie between the mean and

100, making a total of 37.79 per cent between 85 and 100.

If both of the given points lie on the same side of the mean,
the percentage of cases included between them must be con-

sidered as the difference between the percentages included

between each and the mean. For example, in this distribu-

tion, 28.81 per cent of the cases would lie between 78 and the

mean, and 7.93 per cent would lie between 87 and the mean.

Hence, 28.81 7.93
= 20.88 per cent would lie between 78

and 87.

To find the point on the scale above (or below) which a given

number, proportion, or per cent of the cases in a distribution

lie.

Illustration : To find the point above which 30 per cent of

the cases lie, in the distribution used in the preceding illustra-

tions. If 30 per cent of the cases lie above a desired point,

then 20 per cent must lie between that point and the mean.

We must first find, then, how many sigma units we must go

away from the mean in order to subtend 20 per cent of the

cases. To do this, we search within the body of Table 17 to

find the number nearest 20. This number is 19.85, which

corresponds to a deviation of .52 sigma units, since it lies

in the .5 row and in the .02 column. The desired point,

then, is .520- above the mean. Since a =
15, this point is

7.8 units above the mean, and is equal to 90 + 7.8
=

97.8.

Thirty per cent of the measures in the distribution, then, lie

above 97.8. Similarly, to find the point above which 75 per

cent of the measures lie, we would note that, since 50 per

cent of the measures are above the mean, 25 per cent of the

measures must be between the desired point and the mean.

We would then look within the body of the table to find the

number nearest 25 per cent, which is 24. 86. This corresponds
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to a sigma deviation of .67. Hence, the desired point is

.67 X 15
=

10.05 units below the mean, or is at the point

90 10.05
=

79-95- Seventy-five per cent of the cases, then,

lie above the point 79.95 in the given distribution.

4. To find the distance on either side of the mean which sub-

tends a given number, proportion, or per cent of the cases.

Illustration : To find the distance on either side of the mean

which subtends the middle one-third of the cases in the dis-

tribution already considered. We must first find two points

at equal distances from the mean in either direction between

which 33 >3 per cent of the cases lie. This means that

16.666 or 16.67 Per cent (rounded) of the cases will lie be-

tween the mean and either one of these points. We then look

in the body of the table for the number nearest 16.67.

This number is 16.64, which corresponds to a sigma deviation

of .43. The desired distance, then, is .43 of a standard

deviation, or 6.45 units. Hence, the middle one-third of the

cases in the distribution are within 6.45 units of the mean.

Accordingly, two-thirds of the cases in the distribution will

deviate from the mean by more than 6.45.

5. To find the probability that a single case selected at random

from a distribution will lie above (or below) a given point on

the scale.

Illustration: To determine the number of chances in 100

that a single score selected at random from the distribution

already considered will have a value above 120. We note,

following the procedure described under i above, that 2.28

per cent of the cases in the distribution will lie above 120.

Since each score in the distribution has an equal chance of

being the one drawn, and since 2.28 out of every 100 scores

in the distribution lie above 120, the chances are 2.28 in 100

that the single score selected will exceed 120 in value.

The probability, expressed in terms of
"
chances in 100,"

that a given score selected at random will satisfy any given

condition is the same as the per cent of the cases in the whole
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distribution that satisfy this condition. The reasonableness

of this statement may be more apparent if considered with re-

ference to other types of situations. Suppose, for example,

that we wish to state the probability that a single card selected

at random from a deck of playing cards will be a diamond.

We know that each card in the deck has an equal chance

of being drawn and that one-fourth of the cards in the entire

deck are diamonds. Hence, we say that the chances are

i in 4 or 25 in 100 that a single card drawn from the deck will

be a diamond. Similarly, the chances are i in 13 or 7.7 in

100 of drawing a card of any given denomination, as, for

example, a king. Similarly, if a bag contains a large number

of marbles. 27 per cent of which are black, 60 per cent white,

and 13 per cent red, the chances are 27 in 100 that a single

marble drawn at random from the bag will be black, 60 in

100 that it will be white, and 13 in 100 that it will be red.

In the majority of the applications which the student will

make of Table 17, the results will be expressed in terms of

probability, and hence it is particularly important that he

understand thoroughly this and the following uses of Table 17.

(Numbers 5 to 8 in this series.)

6. To find the point with reference to which the probability is

of a given value that a single case selected at random will lie

above (or below) that point.

This, a.s the student will recognize from the preceding dis-

cussion, is equivalent to 3 above, since the probability de-

sired is the same as per cent of the cases that lie above

(or below) a given point.

7. To find the probability that a single case selected at random

will lie between two given points.

This is equivalent to 2 above.

8. To find the amount of deviation from the mean for which the

probability is of a given value that a single case selected at

random will deviate from the mean by more or less than that

amount.
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This is equivalent to 4 above. For example, if we wish

to find a deviation from the mean such that the chances

are even, or 50 in 100, that any given score selected at

random will deviate from the mean by less than this amount,

we would find that sigma deviation from the mean which

subtends 25 per cent of the cases. To do this, we would

look in the table for the number nearest 25, which, as we
-v

have seen under 3 above, corresponds to - = .67. If we wished
or

to determine this value more accurately, we could inter-

polate between the values given in the table. For example,

the numbers in the body of the table nearest 25 per cent

are 24.86 and 25.17. The difference between these numbers is

25.17 24.86
=

.31. 25 24.86
=

.14. Hence, 25 lies of

the distance between 24.86 and 25.17. The sigma-distance

corresponding to 24.86 is .67, and that corresponding to

25.17 is .68. Hence, the sigma deviation desired correspond-

ing to 25 per cent is of the distance between .67 and .68,

or .67 H X .01 =
.67 + .0045

-
-6745. Thus, the middle

one-half of the cases in the distribution are within .67450-

of the mean. In other words, the chances are even that any
score selected at random from a normal distribution will

deviate from the mean by less than .67450- (or by more than

,67450-). For this reason, .67450- is known as the probable

deviation (from the mean) of any measure selected at random

from a normal distribution.

In general, it is not essential in most applications in education

and psychology to interpolate between the values given in Table 17

as was done in the illustration under 8 above. In other words,

the student may use as a sufficiently close approximation the

value given in the table which is nearest that desired. For the

relatively few situations in which higher accuracy is demanded in
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practice, there are other tables I
available in which the results are

carried to a larger number of decimal places and which may be

used instead of resorting to interpolation in coarser tables.

The Significance of the Normal Curve in Education and Psychology

If the student were to make a broad and representative collec-

tion of frequency distributions from the actual data which may be

found in the research literature of education, psychology, anthro-

pometry, and other related fields, and if he were to plot a smooth

frequency curve for each of these distributions (making them

comparable by plotting all to the same sigma scale and all with the

same total area), he would find that his collection contained a

wide variety of forms of distributions. Some curves would be

badly skewed to the right, some moderately skewed to the left,

some bimodal, some "U-shaped/' some "J-shaped," and some

almost rectangular. A large proportion of them could be roughly

described as bell-shaped and as approximately symmetrical in

form, with a single mode near the center of the range and with

gradually decreasing frequencies in each direction, but among
these bell-shaped curves some would have a high narrow peak

with long flat "tails," others would have broad flat "humps,"
and would tail off more sharply at the extremes, and still others

would show intermediate degrees of flatness or peakedness. (See

Figure 7, page 49, and Figure 10, page 85.) How great may be

the variation in forms of distributions, even of a single trait, is

strikingly illustrated by the age distributions presented in Figure

12 (page 94), which are taken from the Report of the Fifteenth

Census of the United States (1930).

Because of this extreme variation in form, the student would

find it impossible to phrase a single generalized description that

would apply accurately to more than a small proportion of the

distributions collected. He might be able to classify all distribu-

tions into a number of fairly distinct types, and to provide a

1 Tables for Statisticians and Biometricians. Edited by Karl Pearson. Cambridge

University Press.



10 20 30 40 50 60 70

Ages

Native white

of foreign parentage

10 20 30 40 50 60 70

Ages

10 20 30 40 50 60 70

Ages

Native white

of native parentage

10 20 30 40 50 60 70

Ages

Total urban

10 20 30 40 50 60 70

Ages

Urban negro

10 20 30 40 50 60 70

Ages

Foreign born white,

rural-farm

10 20 30 40 50 60 70 10 20 30 40 50 60 70

Ages Ages

FlG. 12.

Age distributions of male population of the United States (from fifteenth census of

United States, 1930).



THE SIGNIFICANCE OF THE NORMAL CURVE 95

generalized description of the form of the distributions in each

classification. For example, he might find that many of the curves

are of the general type represented by curve A in Figure 7, that

many others are of the type represented by curve B, while others

are roughly of the C type, etc. Yet he could find no single general-

ized curve which would provide a close fit to each of the distribu-

tions in this collection.

There is, then, no universal "law" concerning the form of fre-

quency distributions in general. Unfortunately, however, there

appears to have been built up in the literature of education and

psychology the false conception that there is a single generalized

frequency curve which does accurately describe the fundamental

form of nearly all distributions of educational and psychological

data. This misconception has been encouraged by the discus-

sions in many textbooks in elementary statistics in these fields.

Specifically, students have been led to believe erroneously that

the normal curve constitutes such a generalized description, and

that there is an underlying "law of normality
" which applies to

all or nearly all types of educational and psychological data. 1

Because of the very wide prevalence of this erroneous notion of a

universal law of normality, and because many students beginning

1 The following arc direct quotations from a number of statistics texts in education

and psychology
"Most mental and biological measures are distributed according to the normal

curve if a sufficiently large number of such measures are distributed."
" Measures of natural phenomena, as well as measures of mental and social traits,

tend to be distributed symmetrically about their central tendency in proportions which

are determined by the laws of chance."

"If a reasonably large number of measures of some trait or characteristic are

tabulated, they will in most cases approximate a normal distribution."

"This symmetrical or bell-shaped distribution is so nearly universal in statistics

that it has come to be called the normal curve. . . . Many scientists have come to

accept with some reservations the view that distributions of traits and abilities from

representative groups tend to be symmetrical or normal. . . . Therefore, any serious

departure from the normal curve ... is in general interpreted that the traits or

abilities measured do not represent a random sampling of such traits or abilities. . . .

Consequently, if we wish to be sure that our computations of central tendency or

variability are accurate, we must measure these traits or abilities in a sufficient

number ... to obtain a normal distribution."

In most instances, these statements have later been qualified in the same dis-

cussions, but not sufficiently to impress upon the student how numerous and impor-

tant are the exceptions to these broad and loose generalizations.
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this course may already have this misconception firmly established

in their minds, it is essential that we begin our consideration of the

true place of the normal curve in education and psychology by

demonstrating the falsity of this conception.

We may note, first of all, that it is impossible to talk meaning-

fully about the form of distribution of measures of any human

trait, simply because the measures of any given trait may show

different forms of distribution for different
"
populations" or classi-

fications of individuals. The statement, "The form of the dis-

tribution of height is normal," for example, is not meaningful

because we have not specified what particular classification or

type of individuals is involved. To illustrate, it is meaningful

to refer to the form of distribution of height for all seven-year-

old boys in Iowa, or for white adult men in the United States,

or for women between the ages of 20 and 30 in the United Kingdom,
but since the form of the distribution would undoubtedly differ

for each of these and other populations, and since no one of them

can be considered as the population, we may not consider any single

frequency curve as representing the form of the distribution of

height measurements in general. Since, then, we cannot talk

meaningfully about the form of the distribution of a single trait,

it obviously is even less fruitful to attempt to describe in genera)

the distribution of any and all traits.

Among all of the populations which might be considered, how-

ever, there are many for which measures of various human traits

are distributed in a form closely approximating that of the ideal

normal curve, just as there also are many for which measures of

the same or of other traits may show a skewed distribution or a

distribution of some other characteristic form. There are many

physical traits, for instance, which will show approximately normal

distributions if the population in question is highly homogeneous

with reference to certain related traits. For example, the distribu-

tion of height will closely approximate the form of the normal curve

if measures are plotted for a large sample of individuals who are all

of the same race, age, and sex. The distribution of height, however
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for a sample of mixed ages, races, and sexes might show any form

of distribution, depending upon the proportion of persons of vari-

ous ages, or various races, or of the two sexes in the whole sample.

Again, weight is fairly
I

normally distributed for individuals of the

same race, age, sex, and height.

Since measures of many physical traits do show approximately

normal distributions for many homogeneous populations, it seems

probable that the same would also be true for many mental traits.

It is dangerous, however, to argue thus by analogy from one type

of trait to another. No assumptions concerning the form of dis-

tribution of any trait should be made on this basis alone for any

population. The important consideration in this connection is

that we are not justified in talking loosely about any underlying

"law of normality
7 '

as if such a law applied to the distribution of

measures of any trait regardless of the character of the population

considered. This is particularly important since so many of the

populations in which we are interested in education and psychology

are only very vaguely or ambiguously defined, and are seldom

highly homogeneous with reference to other traits related to the

one under consideration.

Perhaps one of the principal reasons that we have exaggerated

or misrepresented the importance of the normal curve in educa-

tion and psychology is the fact that the scores obtained on educa-

tional and psychological tests, for almost any unselected group

of pupils, so frequently present what may be roughly described

as a bell-shaped form of distribution. This, however, is not of

any very fundamental significance, since most of these tests are

deliberately constructed so as to yield approximately symmetrical

distributions of scores. In nearly all objective achievement test

construction, for instance, it is the aim of the test author so to

adjust the difficulty of the items and the distribution of their

difficulty that the average score made by the group to be tested

will approximate half of the possible score and that the range
1
Actually, these distributions are slightly skewed positively. It is a matter of

common observation that excessive
"
over-weight*' is much more common and extreme

than excessive "under-weight,"
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of scores will extend from near zero to near the possible score.

If he desired to do so, the test author could as easily prepare a

test that would yield a distribution markedly skewed to the right

or one markedly skewed to the left, or of almost any other form.

Because the "units" employed in educational and psychological

test scales are arbitrarily established, because they fluctuate in

value even within the same scale, and because the amount of such

fluctuation cannot be accurately controlled by the test author,

we cannot conclude, simply because the obtained scores are sym-

metrically distributed, that if the same traits or abilities could be

measured along a "true" scale with a constant unit, these "per-

fect" measures would also be symmetrically distributed. Further-

more, the scores obtained on educational and psychological tests

are always characterized by accidental errors of measurement due

to the limited sampling of items constituting the test itself, that

is, due to the unreliability of the test. These accidental errors,

as is true of certain other types of chance data, do tend to be

normally distributed, and therefore tend to produce a normal

distribution of the scores which contain these errors. It may be

noted in this connection that the fact that a test shows a fairly

normal distribution is in itself not necessarily an indication that

the test is of high quality; in fact, the more completely worthless

or unreliable a test may be that is, the more the scores obtained

on it are due only to chance the more likely it is to present a

normal distribution of scores.

It is not implied, because of the foregoing considerations, that

the normal curve does not have a very important place in statisti-

cal methods as applied to educational and psychological data.

On the contrary, there is one general type of data, with which the

statistician must be very seriously concerned, which under cer-

tain conditions is almost invariably normally distributed. This

type of data may be described in general as consisting of the

various kinds of "errors" which characterize educational and

psychological measurements, including errors or chance fluctua-

tions in random samoUng, errors in measurement (due to unre-
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liability of the tests and measuring instruments used), errors of

observation and judgment, and errors in prediction based on re-

gression equations. These types of errors and the uses of the normal

curve in their statistical analysis will be considered in later chapters.

The so-called "law of normality," then, may be safely considered

as applying only to certain types of chance data, or, more specific-

ally, to certain types of
"
errors

"
in the quantitative analysis of

educational and psychological data. In the interests of sound

thinking, the student should guard carefully against any tendency

to over-generalize concerning the normal curve or to make too

many assumptions of normality, particularly with reference to

distributions of individual measures of mental or physical traits,

and, most especially, when the population involved is not highly

homogeneous with reference to other factors related to those

studied.

"Fitting" a Normal Curve to a Frequency Polygon or Histogram

It has already been noted that it is very difficult to tell by

inspection whether or not a given histogram or frequency polygon

approximates closely the form of the normal curve. The only

sure method of judging the "normality" of a distribution is that

of direct comparison, and involves superimposing on the histo-

gram or polygon a true normal curve of the same mean, standard

deviation, and total area. The procedure in "fitting" a normal

curve to an observed frequency distribution is described in the

following paragraphs. Since the student will have few occasions

to apply this method, he is advised to give this explanation only

a cursory examination.

The procedure will be explained in terms of a concrete problem

to fit a normal curve to the distribution in Table 18 on page 100.

The first step is to determine the height of the fitted normal

curve at the mean. This may be found by the formula

N
y ~

vV^r
in which y represents the mean ordinate, N the number of cases
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in the distribution, <r the standard deviation in interval units, and

IT = 3.1416.
0.05

The S.D. of the distribution in Table 18 is 9.95, or =
1.99

in interval units. Hence,

y.
=

7
54 = 54 _ I0 8l

I.9QV2 X 3.1416 1.99 X 2.51

Since in any normal curve the ordinate at any given sigma-

distance from the mean is always a definite proportion of the

mean ordinate, we can now determine the ordinate at the mid-

point of each interval (from Table 16). To do this, we first

determine how many sigma units (this time expressing sigma in

the original units) each interval midpoint deviates from the mean.

The midpoint of the interval 93-97 is 95 71.20
=

23.80 score

units from the mean, or -^ -
2.392 sigma units from the mean.

9-55

The distance between the midpoints of any pair of adjacent in-

tervals is 5 score units or =
.5025 sigma units. Hence the

9-95
deviations of the remaining midpoints can be quickly determined.

These deviations are given in the third column in Table 18.

The next step is to determine, for each interval, what is the

TABLE 18

COMPUTING FREQUENCIES IN THE NORMAL DISTRIBUTION CORRESPONDING
TO AN OBSERVED DISTRIBUTION
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ratio between the ordinate at its midpoint and the mean ordinate.

These ratios may be read directly from Table 16 (page 84) For

example, the number in the body of Table 16 corresponding to

- =
2.89 is .0154. This value, and others corresponding to the

deviations of the other interval midpoints, are presented in the

fourth column of Table 18.

The next step is to multiply each ratio in column 4 by the

height of the mean ordinate. The result in each case will be the

height of the fitted curve at the midpoints of the interval in

question. Since this height is expressed in terms of the frequency

scale, the numbers in the last column may also be considered as

the
"
theoretical frequencies

"
in a normal distribution with the same

M, S.D., and N as the one given. The sum of these frequencies

should always be just slightly less than the N of the original dis-

tribution. In the illustration, for example, the sum of the theoreti-

cal frequencies is 53.7 as compared to 54 for the original frequencies.

The final step is to plot both the observed and the
"
theoretical'

'

frequencies on the same scale. The observed frequencies may be

represented either by a histogram or a ploygon, but a smooth

curve should be drawn through the points determined by the

theoretical frequencies. Figure 13 presents the results of this

final step for the data in Table 18.

12 -
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FIG. 13.

Normal curve "fitted" to a histogram.
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CHAPTER VIII

SAMPLING ERROR THEORY

The General Nature of Sampling Studies

NEARLY all research studies in education and psychology are of

the type known as sampling studies, in which measurements or

observations are made of a limited number or
"
sample

"
of individ-

uals in order that generalizations may be established about the

still larger groups or
"
populations" of individuals that these

samples are supposed to represent. Because the individuals com-

prising any of these populations differ from one another, and be-

cause chance or uncontrolled influences always play some part in

determining which of these differing individuals are to constitute

the sample used, any single fact obtained from a sample (such as a

mean, median, percentile, standard deviation, etc.) is almost cer-

tain to differ by some amount from the corresponding fact for the

whole population. Such "
obtained" facts, therefore, may never

be accepted at their face value as exactly descriptive of the popu-

lation involved, but must always be considered as only approxima-

tions to, or as only estimates of, the corresponding "true" facts.

In order that any such obtained fact may be properly interpreted,

then, we need to know how "good" an estimate it is of the cor-

responding fact for the whole population; that is, we need to have

some description of the dependability or reliability of the estimate

and must qualify accordingly any generalization based upon it.

Such descriptions of reliability are extremely important, since

without them we might attribute real significance to facts that are

of only accidental origin or read important meanings into mere

coincidences.

Some of the more important statistical techniques used to secure

these descriptions of reliability will be presented and explained

later in this chapter. First of all, however, it might be well to con-

sider, in terms of a concrete illustration, what are the major issues
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and what is the general nature of the logic underlying sampling
error theory.

Suppose that for some reason we wish to know the mean intelli-

gence quotient (I.Q.), as measured by the Stanford Revision of the

Binet-Simon scale, of all eighth grade pupils in the one-room rural

schools in the state of Iowa. Since there are in Iowa about 9,000

one-room rural schools and a considerably larger number of rural

eighth grade pupils, it obviously is beyond the facilities of any

single research organization to administer an individual intelligence

test to every pupil in this very large
"
population.'

7

In this situa-

tion, then, we would select a sample of rural eighth graders, con-

sisting of a relatively small number of pupils, and would administer

our intelligence test only to these pupils. We would then compute
the mean I.Q. for these pupils and would consider this "obtained"

mean as an estimate of the mean I.Q. of the entire population (the

"true" mean).

The reliability of this obtained mean as descriptive of the entire

population of eighth grade one-room rural school pupils would

obviously depend upon the size and the representativeness of the

sample employed, that is, upon how it was selected. There are a

number of procedures that could be followed in the selection of the

sample in a situation of this kind. (See pages 139 to 143.) One

method would be to allow chance alone to determine which individ-

uals from the whole population are to be selected. This could be

done by securing the names of all eighth grade one-room rural

school pupils in the state, typing each name on a slip of paper, mix-

ing these slips very thoroughly in a container, and making a blind-

fold selection of the desired number of slips. An equivalent pro-

cedure would be to arrange all the names in alphabetical order and

to select every fortieth or fiftieth or seventy-fifth name from the

list until the desired number has been selected. A sample drawn

by either of these methods would be known asa mndoj$< Qarn
p^f+

since the method of selection would guarantee independently to

every individual in the whole population an equal chance of being

one of those selected IA the sample drawn. In actual practice, it is
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rarely practicable to follow a procedure of the type just described.

Other more practicable methods of sampling will be considered

later in the closing section of this chapter. For the purpose of this

illustration, however, we will assume that the sample involved has

been selected at random, and that it consists of 81 pupils.

Since the individuals constituting the sample were selected by

chance, we obviously could not expect the distribution of intelli-

gence quotients for these individuals to correspond exactly to that

for the whole population. By chance, our sample may contain a

larger proportion of eighth graders of superior intelligence than

would be found in all rural schools of the state, or it may contain

a relatively large proportion of pupils of inferior intelligence.

This would happen in exactly the same way and for exactly the

same reason that a bridge hand dealt from a well-shuffled deck may
contain more cards of one suit than of any other. In a sense, in

drawing this sample the names were "
shuffled

" and a sample

"dealt" in the same way that the deck is shuffled and hands dealt

in a bridge game. The mean I.Q. for the pupils in this sample,

then, could not be expected to agree exactly with the corresponding

true mean, that is, the mean which would have been obtained had

all pupils in the population been tested. Suppose, for instance,

that the mean I.Q. for the pupils in this sample is 98.5. This fact

would not enable us to infer at once that the mean I.Q. for all pu-

pils in this population is 98.5, but only that the true mean is
"
some-

where near" 98.5. The next important consideration, then, is

that of determining how "good" an estimate of the true mean is

our obtained mean of 98.5. In other words, we need to know

within what distance of the true mean we may be highly confident

our obtained mean lies, or we need to know how confident we may be

that the obtained mean is within any given distance of the true mean.

The Sampling Distribution of the Mean

Before attempting to describe thus the reliability of our ob-

tained mean, let us first note that if we selected independently a

second sample of the same size in the same fashion from this popu-
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lation, we could not expect the distribution of intelligence for the

individuals in this second sample to be exactly the same as for

those in the first. This, again, is for exactly the same reason that

we could not expect two successive bridge hands to show the same

distribution of cards in the various suits. Chance would practi-

cally guarantee that any two successive bridge hands would differ

in "value," and in the same way chance would practically guar-

antee that any two samples drawn from the same population would

show some differences in the distributions of measures of any trait.

The mean I.Q. obtained from our second sample would almost cer-

tainly differ from that obtained from the first sample. This em-

phasizes the fact that neither of these obtained means may be ac-

cepted as exactly descriptive of the whole population.

A third sample, similarly, would probably yield still another

value of the mean. If we continued to select, independently and

in the same fashion, a very large number of random samples of 81

cases each and recorded the mean I.Q. for each sample, we would

find that these means would distribute themselves over a consider-

able range of values. Some samples would by chance contain

unusually large proportions of pupils of superior intelligence and

would yield relatively high means. Others, by reason of the acci-

dents of sampling, would contain unusually large proportions of

dull pupils and would yield relatively low means. We would find,

however, that most of these means would cluster around some cen-

tral value, and that only a relatively small number of the obtained

means would deviate far from this value.

The distribution (like that just suggested) of the obtained means

of a very large number of random samples of the same size is known

as the sampling distribution of the mean of a sample of the given

size. The form of the sampling distribution of the mean of any

fairly large random sample will closely approximate that of the

normal distribution. This has been shown to be true even though
the individual measures in the population involved are not nor-

mally distributed (unless the sample is small and the departure

from normality is extreme).
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The Standard Error of the Mean of a Random Sample
The reliability of the mean of any single sample is dependent

upon the variability of the sampling distribution of such means.

If, in the long run, the means obtained from samples of the given

size are distributed over a very wide range of values, we obviously

cannot place very much dependence upon the mean obtained from

any one sample of that size, because of the possibility that the

particular sample considered may be one of those whose means

deviate markedly from the true mean. If, on the other hand, the

means obtained from a large number of similar samples are in close

agreement that is, if they show only a small variation then

any one of the means can be accepted as a close approximation to,

or as a dependable indication of, the true mean. If, then, we could

secure a measure of variability for a distribution of the means of a

large number of random samples of 81 cases each, we could use

this measure of variability to describe the reliability of the mean of

any one random sample of 81 cases. The measure of variability

used for this purpose is the standard deviation and, when so used,

is known as the standard error. The standard error of the mean of a

given random sample is the standard deviation of the distribution of

means of a very large number of random samples of the same size as the

given sample, and all, of course, drawn from the same population;

that is, the standard error of the mean is the standard deviation of

the sampling distribution of the mean. To say that the mean of a

given random sample is unreliable is equivalent to saying that the

means of other samples of the same size will fluctuate widely in

value, which again is equivalent to saying that a distribution of

such means would have a large standard deviation, or that the

given mean has a large standard error.

Levels of Confidence

In the subsequent discussions it will frequently be desirable to

indicate in quantitative terms what degree of confidence may be

placed in certain inferences drawn from the facts obtained from a

random sample. Before proceeding with the interpretation of the
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standard error of the mean, therefore, it may be well to introduce

and clarify the term level of confidence.

The degree or
"
level" of confidence with which a given assertion

may be made may most conveniently be defined in terms of proba-

bility. Suppose that 95 of the cards in a given deck of 100 cards

are marked in a certain fashion, the five remaining cards being un-

marked. Suppose that after this deck has been shuffled thor-

oughly, we draw from it a single card at random. Since only

5 per cent of the cards are unmarked, we can, before looking at the

card drawn, assert with obviously "high" confidence that we have

drawn a marked card. The degree or level of confidence with

which we can make this particular assertion we will call the

5 per cent level of confidence. This name is suggested by the fact

that if we continued drawing cards in this fashion/ each time as-

serting that a marked card has been drawn, we would in the long

run be wrong 5 per cent of the time. Whenever we make any asser-

tion whether or not it has anything to do with cards or chance

events with the same degree of confidence with which we as-

serted in this illustrative situation that a marked card was drawn,

we may say that we have made that assertion at the 5 per cent

level of confidence. The card illustration, of course, is of no sig-

nificance in itself, but only offers a convenient way of defining a

certain degree of confidence.

Other levels of confidence may be similarly defined. For exam-

ple, if only 2 per cent of the cards in the deck are unmarked, we can

say at the 2 per cent level of confidence that any single card drawn

at random from the deck will be marked. Again, if we have drawn

a single card from a well-shuffled deck of ordinary playing cards,

we may, before looking at the card, be confident at the 1.9 per cent

level that the card is something other than the ace of spades (the

probability of drawing the ace of spades is 1/52
=

.019). Similarly

we may be confident at the 16% per cent level of confidence that

something other than a deuce will be thrown in a single throw of a

die. Note that the
"
per cent

"
specified is negatively related to the

1 The card last drawn being replaced and the deck reshuffled before each draw.
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degree of confidence involved; that is, a small per cent denotes a

high degree of confidence or a low degree of uncertainty.

This expression,
"
level of confidence," can be readily related to

the normal distribution. For example, we know that in any nor-

mal distribution 99 per cent of the cases lie within 2.58 standard

deviations of the mean, or that i per cent deviate from the mean

by more than that amount. Accordingly, we can make the state-

ment at the i per cent level of confidence that any measure drawn

at random from a normal distribution will deviate from the mean

by less than 2.58 standard deviations. Similarly, if a single

measure has been selected at random from a normal distribution,

we may be confident at the 5 per cent level that it lies within

1.96 (7 of the mean, or that its absolute deviation from the mean

does not exceed 1.96 a (" absolute" meaning that we are concerned

only with the size of the deviation, no distinction being made be-

tween plus and minus deviations). Similarly, we may be confident

at the 2 per cent level that a measure drawn at random from a

normal distribution will lie within 2.33 <r of the mean.

It may be well to note again that, while the term,
"
level of con-

fidence," is most conveniently defined in terms of probability situ-

ations, it may be applied to assertions that cannot be directly re-

lated to statements of probability, as will be illustrated later in

statements about the true mean of a population.

Establishing a "Confidence Interval" for the True Mean

We are now ready to illustrate, in terms of the specific example

already employed, how the mean of a sample may be interpreted

in relation to its standard error. For the sake of this illustration

we will assume that the standard error of the mean of our sample

has already been found for us that someone else has actually

taken a very large number of random samples of 81 cases each

from our population of rural eighth graders
x and has found the

standard deviation of the distribution of the means of these sam-

1 This is obviously an impracticable method of finding the standard error. A more

practicable method will be suggested later.
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pies to be (TM 1.2. Our sample mean, then, is 98.5, and its

standard error is 1.2.

" We have already noted that the distribution of obtained means

for large random samples of any given size is approximately normal.

We know, then, that our obtained mean of 98.5 belongs somewhere

in a normal sampling distribution whose standard deviation is 1.2

and whose mean is the true mean of the population. Since we do

not know the true mean, we cannot say just where in this hypo-

thetical distribution our obtained mean lies. However, we can

consider our obtained mean as having been drawn at random from

this distribution. Accordingly, we may be "
confident at the

i per cent level" that our obtained mean is within 2.58 aM of the

true mean; that is, we may be confident at the i per cent level that

our obtained mean does not differ from the true mean by more

than 2.58 X 1.2 =
3.10, or that the absolute

"
sampling error" in

the obtained mean does not exceed 3.10. However, the sampling

error may be in either direction ; hence the true mean may, in the

limiting cases, be either 3.10 units higher (98.5 + 3.10
=

101.60)

or 3.10 units lower (98.5 3.10
=

95.40) than the obtained mean.

We may thus be confident at the i per cent level that the true mean

lies somewhere within the interval whose limits are 95.40 and

101.60. Similarly, we may be confident at the 2 per cent level that

the true mean lies between 95.70 and 101.30, and at the 5 per cent

level that it lies in the interval 96.15 to 100.85. In the same

fashion, we could, if desired, set the limits corresponding to any
other level of confidence, such as the 20 per cent level or the

o.i per cent level. Any interval thus defined is known as a confi-

dence interval. With reference to our sample mean of 98.5, for ex-

ample, the "2 per cent confidence interval" for the true mean is

95.7-101.3.

The student may well wonder why it is deemed necessary to in-

vent such strange expressions as "the 2 per cent level of confi-

dence" and "the 2 per cent confidence interval" to interpret ade-

quately the obtained mean and its standard error. It would ap-

pear much simpler merely to say, "The chances are 98 in 100 that
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the true mean lies between 95.7 and 101.3." The latter type of

statement is very frequently made; indeed, it is recommended in

many introductory statistical textbooks. However, it is illogical,

and should therefore be avoided. To say that the
" chances" are

98 in 100 that the true mean lies in a certain interval is to imply
that the true mean has many values, any of which may be " drawn "

in a single instance. Actually, of course, the true mean is a fixed

quantity; it does not fluctuate in value from time to time (or from

sample to sample) and is not distributed either normally or in any
other fashion. Statements of probability may properly be ap-

plied to randomly distributed measures or events, but not to fixed

quantities. It is quite proper to say that the probability is .02 (or

that the chances are 2 in 100) that the obtained mean of a random

sample will lie more than a given distance from the true mean; we

may not, however, invert the statement, that is, we may not prop-

erly say that the probability is .02 that the true mean deviates more

than a given distance from a particular obtained mean. However,
we may avoid any inconsistency by saying that we have a certain

"degree of confidence" that the true mean lies within a given in-

terval, and accordingly this is now the approved practice.

Testing an Exact Hypothesis about the True Mean

Very frequently, in situations like the one we have been consid-

ering, we may be especially interested in the possibility that the

true mean has some particular exact value. In this case, for in-

stance, we may be interested in the possibility that the mean I.Q.

for the population of rural eighth grade pupils is 100 (the "norm"

for the population at large). Indeed, the whole purpose of draw-

ing the sample may have been to see if there is any evidence that

rural pupils are not
"
up to the norm "

of intelligence. Accordingly,

in interpreting our results we might ask, "Is it reasonable, in view

of what is known of our sample, to suppose that the true mean is

100?" or "Is the hypothesis tenable that the true mean is 100?"

Again, recognizing that the tenability of any hypothesis is a matter

of degree rather than an all-or-none proposition, we may ask, "How
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reasonable is it to suppose that the true mean is 100?" or, in-

versely, "With what degree of confidence may we reject the hy-

pothesis that the true mean of the rural eighth grade population is

100?
"

To answer these questions, we observe that if the true mean

is 100, then our obtained mean contains a sampling error of

100 98.5
=

1.5. To ask, "How reasonable is it to suppose that

the true mean is 100?" is therefore equivalent to asking, "How
reasonable is it to suppose that the sampling error in this mean is

as large as 1.5?" Since the standard error of the mean is 1.2, this

hypothetical sampling error is 1.5/1.2
=

1.25 times as large as the

standard error. According to Table 17, sampling errors this large

would be exceeded (in absolute magnitude) 21.12 per cent of the

time. Hence, if we are to retain the hypothesis that the true mean

is 100, we must accept the notion that something has happened in

our one sample that (under this hypothesis) would happen in the

long run only about once in five times. Since this notion is hardly

to be considered as unreasonable, we conclude that the hypothesis

is tenable. In other words, the hypothesis that the true mean is 100

is reasonably consistent with the known facts that our sample mean

is 98.5 and its standard error is 1.2. While we have thus shown

that the hypothesis is tenable or reasonably consistent with what

was found in our sample, we have by no means proved that it is true.

There are many other tenable hypotheses. The hypothesis that

the true mean is 97, for instance, is equally tenable, while the

hypothesis that the true mean is, say, 99.3, is even more readily

accepted.

On the other hand, there are many hypotheses that we would be

forced to reject in view of what we know of our one sample. Sup-

pose, for instance, that someone suggests that the true mean of our

rural eighth grade population is 95.5. If this is the true mean, then

the sampling error in our obtained mean of 98.5 is 3.0, which is 2.5

times the standard error. According to Table 17, sampling errors

this large would be found only 1.2 per cent of the time in the means

of random samples of this size. Accordingly, to accept the hypoth-
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esis that the true mean is 95.5, we must also accept the notion that

something has happened in our one sample that happens only once

in 100 times by chance alone. If we are unwilling, as most people

would be, to believe that anything so highly improbable has actu-

ally occurred in this particular case, our only choice is to reject the

hypothesis. In this case we can do so with a confidence at the

1.2 per cent level that the hypothesis is false. 1

Similarly, the hy-

pothesis that the true mean is 96.0 may be rejected at the 3.76

per cent level of confidence.

In general, the principal steps in testing any exact hypothesis

about a population, given the appropriate facts for a sample drawn

from that population, are as follows:

(i) We note the discrepancy between fact and hypothesis, that

is, we determine the difference between the hypothetical true

1 Some statisticians would prefer to say that this hypothesis may be rejected at the

0.6 per cent level of confidence. They would reason that if the true mean were 95.5,

then means as high as or higher than 98.5 would be found in 0.6 per cent of all random

samples of this size. (This reasoning is perhaps more consistent with the hypothesis
that the true mean is below 95.5, which in certain respects is an indefinite or inexact

hypothesis, as compared to the exact hypothesis that the true mean is 95.5.) They
would thus take the direction as well as the magnitude of the hypothetical sampling
error into consideration. In situations like that here illustrated, it matters little

which interpretation is employed, so long as one understands clearly which definition

of level of confidence is implied. For instance, suppose we define the level of confidence

at which an exact hypothesis may be rejected in terms of the per cent of samples in

which the observed discrepancy from the hypothesis would be exceeded in absolute

magnitude (without regard to sign) if the hypothesis were true. It would then follow

that this particular hypothesis may be rejected at the 1.2 per cent level. On the other

hand, suppose that, with equal arbitrariness, we define the level of confidence with

which we may reject the hypothesis in terms of the per cent of the time that the ob-

served discrepancy from the hypothesis would be exceeded by other sampling errors

in the same direction if the hypothesis were true. It would then follow that this

particular hypothesis may be rejected at the 0.6 per cent level. Accordingly, when
we test any exact hypothesis about the true mean, the practical result will be exactly

the same under either definition, so long as we employ comparable standards. If we

employ the 5 per cent level of confidence as a standard under the first definition, we
should have to employ the 2.5 per cent standard under the second, the i per cent level

under the first would be comparable to the 0.5 per cent level under the second, etc.

While the second definition may appear more fitting in situations like that here

illustrated, the first definition has a decided advantage in certain tests of the "null"

hypothesis about a true difference. (This advantage is explained in the footnote on

page 138 following.) Because of this advantage, and because the practical result is the

same in any situation, it seems desirable to use the first definition consistently in test-

ing any exact hypothesis, and students in this course are accordingly advised to follovr

this procedure.
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measure and the measure obtained from the sample. This

difference is the hypothetical sampling error in the obtained

measure.

(2) We determine the relative frequency with which this hypo-
thetical sampling error would be exceeded in absolute magni-
tude in other similar samples if the hypothesis were true.

(This requires that we know the sampling distribution of the

obtained measure.)

(3) We may then either accept or reject the hypothesis, depend-

ing upon this relative frequency. If the relative frequency is

small, we have the alternatives:

(a) of rejecting the hypothesis, maintaining that it is unrea-

sonable to suppose that something has happened in our

one sample that would happen only very infrequently

if the hypothesis were true
;

(b) of accepting the hypothesis, maintaining that it is reason-

able to suppose that something has happened in our one

sample that only rarely does happen by chance.

If the relative frequency is very small (say less than 2 or

1 per cent), we would ordinarily prefer the first alternative,

being unwilling to accept the notion that a very rare event

has actually "come off" in our one sample. However, if the

relative frequency is large (say more than 5 per cent), we

might admit that the hypothesis is still tenable or has not

been disproved, since it is not unreasonable to suppose that

something has happened in our one sample that does happen

by chance at least once in twenty times.

The level of confidence at which we may reject the hypoth-

esis, then, depends (by definition) upon the relative fre-

quency with which the hypothetical sampling error would be

exceeded in absolute magnitude (without regard to direction)

if the hypothesis were true. If this relative frequency is

2 per cent, we may reject the hypothesis at the 2 per cent

level of confidence, etc. Ordinarily, before we would cate-

gorically
"
reject" the hypothesis at all, we would require
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that we be able to do so at least at the 5 per cent level, and

sometimes we would "retain" the hypothesis categorically

unless able to reject it at least at the i per cent level.

The student should have no trouble seeing how this generalized

procedure applies in the specific example used. We first deter-

mined the difference between our hypothetical true mean (100) and

our obtained mean (98.5). This hypothetical sampling error was

100 98.5
=

1.5. We then observed that, since such sampling

errors are normally distributed with a standard deviation of 1.2, it

follows that sampling errors of 1.5 would be exceeded 21 per cent of

the time in random samples of this size. Accordingly, we did not

feel that a categorical rejection of the hypothesis was justified.

In the preceding examples the levels of confidence involved were

described with greater accuracy than is needed for most practical

purposes. Ordinarily, instead of describing the level so accurately,

we would simply take the nearest lower I level in which the per cent

is some convenient integer. In the examples last considered, for

instance, we would ordinarily say that the hypothesis that the true

mean is 95.5 may be rejected at the 2 per cent level, or that the

hypothesis that the true mean is 96.0 may be rejected at the

5 per cent level. The 5 per cent, 2 per cent and i per cent levels

are most often used in this way. If any hypothesis may be re-

jected at or beyond the i per cent level, we often say that the hy-

pothesis is "practically certain" to be false, and we usually are not

interested in discriminating between various degrees of "practical

certainty." Similarly, if an hypothesis may not be rejected with

at least as much confidence as is implied in the
"
5 per cent level,"

we usually would not consider rejecting it at all and hence would

not be interested in discriminating between lower levels of confi-

dence. However, the o.i per cent and 20 per cent levels of confi-

dence are sometimes employed, and special provision is made for

them in some probability tables. Thus, all that one needs from

Table 17 for most practical purposes is the knowledge that 20

1 The degree of confidence is lower; the numerical value of the per cent used to

identify it is higher.
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per cent of the cases in a normal distribution deviate from the

mean by 1.28 <r or more, 5 per cent deviate by at least 1.96 cr,

2 per cent by 2.33 <r, i per cent by 2.58 cr, and o.i per cent by 3.3 cr.

It should now be apparent that one's decision to
"
reject

"
or

"
ac-

cept
" an hypothesis categorically depends somewhat upon his

temperament and upon the practical implications of his decision.

In some instances one might be unwilling to reject an hypothesis

finally and categorically even though confident at the i per cent

level that it is false. In other instances one might reject the hy-

pothesis though not confident even at the 5 per cent level that it is

false. In general, in educational and psychological research, one

does not reject an hypothesis unless he is confident at least at the

2 per cent level, or more often at the i per cent level, that it is a

false hypothesis.
1

However, it is dangerous to recommend any

single standard practice the selection of the critical level is a

matter which must be subjectively decided anew by the investi-

gator in each independent application in terms of the peculiar

nature of the situation involved.

It may be noted that the establishment of a confidence interval for

the true mean at any chosen level of confidence consists of select-

ing, in turn, the lowest and highest values of the mean which con-

stitute tenable hypotheses at that level. For instance, the hy-

pothesis that the true mean of our eighth grade population is 95.7

may barely be rejected at the 2 per cent level, as may the hypoth-

esis that it is 101.3. Accordingly, any hypothesis that it lies out-

side the interval 95.7-101.3 may be rejected at least at the 2

per cent level of confidence, that is, 95.7-101.3 is the 2 per cent

confidence interval.

The Formula for Estimating the Standard Error of the Mean

We have already noted that none of the uses of the standard error

of the mean that have just been considered would be practicable if

1 It has been very frequent practice in these fields, in the past, to demand that the

discrepancy between the hypothesis and the observed value be at least three times

the standard error. This is equivalent to employing the 0.26 per cent level of con-

fidence, which is considerably higher than should ordinarily be necessary.
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we had to determine the value of the standard error in the direct

manner suggested by the definition on page 106. Fortunately, how-

ever, we can derive a usefully accurate estimate of the standard

error of the mean of a certain sample even though we know only

the facts for that one sample. This is because it can be shown,

either empirically or by mathematical derivation, that the varia-

bility of the means of a large number of random samples of the

same size depends upon (i) the number of cases, N, in each sample,

and (2) the S.D. of the individual measures for the whole popula-

tion. This relationship is indicated by the formula:

This is a relationship which most students will have to accept on

faith,
1 but its reasonableness may become apparent upon consider-

ation of the following illustration.

Suppose that it is known that the S.D. of individual I.Q/s for

the whole population just considered is 10, and that these I.Q.'s are

normally distributed, as is indicated in the upper curve in Figure

14 on page 117. Now let us suppose that we select from this pop-

ulation a large number of samples, each consisting of only one pupil

selected at random from the whole population. The "mean" of

each of these samples would then be the same as the I.Q. of the one

pupil in the sample; hence, a distribution of the means of a very

large number of such samples would show the same variability as

the individual I.Q.'s for the whole population. The standard devi-

ation of the distribution of means for samples of one pupil each

would then be aM =
10.0, as is shown by the second curve in Fig-

ure 14. Next let us suppose that we have selected another large

number of samples, each sample this time consisting of only two

pupils drawn at random from the whole population. It should now

be apparent that the means of these samples would show less vari-

ability than the individual I.Q.'s for the whole population, or than

1 The derivation of this formula is relatively simple for anyone adept in algebra.

See Kelley, T. L., Statistical Method, pp. 82-83. The Macmillan Company, 1923.
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Distribution of individual
measures for whole popula-
tion.

Distribution of means for

samples of one case each.

Distribution of means for

samples of two cases each.

Distribution of means for

samples of three cases each.

Distribution of means for

samples of four cases each.

Distribution of means for

samples of 16 cases each.

Distribution of means for

samples of 25 cases each.

FIG. 14.

Relation of standard error of the mean to the size of a random sample
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the means of samples of one case each. This follows from the fact

that while any sample of two cases may contain one individual

drawn from either extreme of the distribution, it is most unlikely

that both individuals in the same sample will deviate equally far

and in the same direction from the general average. One of the two

individuals drawn will almost invariably have a higher I.Q. than

the other, and the mean of their two I.Q.'s will lie closer to the gen-

eral average than does the I.Q. of the more extreme individual in

the pair. Hence, it seems reasonable that the distribution of means

of samples of two cases each should be pictured with a narrower

spread than the distribution of individual I.Q.'s for the whole pop-

ulation, as has been done in Figure 14.

New suppose that we select a very large number of samples of

three cases each. The probability is now very much reduced that

all of the individuals in any one sample will deviate by a large

amount and in the same direction from the general average. The

probability of drawing three very bright or three very dull pupils

in a single sample of three cases is surely less than the probability

of drawing two very bright or two very dull pupils in a single sam-

ple of two cases. Again, therefore, it seems reasonable to picture

the distribution of means of samples of three cases each with a nar-

rower spread than the distribution of means of samples of two

cases each.

For similar reasons, the means of a large number of samples of

four cases each would show less variability than the distribution of

means of samples of three cases each. Similarly, the distribution of

means of samples of any given size would show less variability than

the means of samples of any smaller size.

Actual trials involving very large numbers of samples have shown

that the variability of the means for samples of any given size is

inversely proportional to the square root of the number of cases in

each sample. The means of samples of four cases each, for in-

stance, would show one half as much variability as the means of

samples of one case each. The means of samples of 16 cases each

would show one half as much variability as the means of samples
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of four cases each, or one fourth as much as the means of samples
of one case each. The means of samples of 25 cases each would be

one fifth as variable as the means of samples of one case each, etc.

This relationship is stated in a more general form by Formula (7).

We have now seen that, by means of Formula (7), we can state

immediately the reliability of the mean of any random sample if

we know the standard deviation of individual measures in the whole

population and the number of cases in the sample. It may never-

theless appear, upon first consideration, that this formula can have

very little practical value, since it would be just as impracticable

for us to determine the standard deviation of a whole population

as to select a very large number of random samples and determine

the standard error of the mean empirically in the manner suggested

on page 108. In actual practice we draw only one sample and must

reason as best we can from only the facts for that sample.

In the practical situation, then, we must substitute for the un-

known cT(p0p m )
in Formula (7) some estimate of it which may be

derived from our sample. The obtained standard deviation of the

sample is not a good estimate (particularly for small samples), since

it tends to be smaller than the standard deviation of the popula-

tion. However, it may be shown r that 2 d
2

/(N i), in which d

is a deviation from the sample mean and N is the number of cases

in the sample, is an unbiased estimate of the variance (a-
2
) of the

population.
2 This may be expressed in terms of the standard devi-

ation of the sample, as follows:

S?2 <v j2 TVTa Zi a JM 2
eSt'd CT

(p p t )

=
^

= -

^
= O"

(sample)

from which we secure

'~

N
a

(pop.)
-

^(sample)

1 The proof of this is well within the understanding of any student capable of follow-

ing relatively simple algebraic manipulations. See Lindquist, E. F., Statistical Anal-

ysis in Educational Research, pp. 48-50. Houghton Mifflin Company, 1940.

a The variance of any distribution is the square of its standard deviation.
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If we now substitute this estimate of cr^.) for the actual

in Formula (7), we secure

., i
CSt

?d
<r(p p.-) ^(sample) \ N I

est a (Tjjf
=- - -N

The working formula for the standard error of the mean of a

random sample is then

&
(sample) /Q N

<TM -
;

V N -
I

Since when the sample is large VAT i will not differ appreci-

ably from VlVVit has been rather general practice in the past to use

the somewhat simpler expression

crM VN

as the formula for the standard error of the mean of a large sample.

However, very little is gained by introducing this inaccuracy, and

the student is therefore advised to use the correct Formula (8), no

matter how large the sample may be.

The Use of the Standard Error of the Mean with Large Samples

We are now ready to consider in terms of a fresh illustration how

Formula (8) may be applied. Suppose we wish to know the mean

weight of all ten-year-old boys in the state of Iowa. Let us sup-

pose that we have selected a random sample of 50 boys from this

population, and that we have found their mean weight to be 77

pounds and the S.D. of their weights to be 9.8 pounds. We then

reason that if we were to continue drawing random samples of this

size from this population until we had a very large number of them

and were to construct a frequency distribution of the means of these

samples, we would find that these means would be normally dis-
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tributed and, according to Formula (8), that the S.D. of this dis-

tribution would be approximately

y 9.8

\/49

=
1.4 pounds.

Now we know that our obtained mean of 77 belongs somewhere in

this hypothetical normal distribution of means. If our sample hap-

pens to contain an unusually large proportion of boys who are

heavier than most boys of their age, our mean of 77 might be

near the upper extreme of the sampling distribution, as shown in

B

73-74

"Minimum"
value of

true mean

77

Obtained
mean

80.26

Maximum"
value of

true mean

2 per cent confidence interval

FIG. 15.

Illustrating the 2 per cent confidence interval for the true mean.

Figure 15, Curve A, above. On the other hand, our sample may
be one which is accidentally very heavily loaded with light-weight

boys of this age, in which case our obtained mean of 77 may be

near the lower extreme of the sampling distribution, as shown in

Curve B of Figure 15. Suppose, then, that we allow for the possi-

bility that the obtained mean deviates from the true mean by an

amount which would be exceeded by chance only twice in 100

times, that is, suppose we allow for the possibility that the ob-

tained mean deviates 2.33 cr from the true mean (in either direc-

tion). If the obtained mean is 2.33 cr above the true mean, then

the true mean is as low as 73.74 pounds. If the obtained mean is
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2.33 <r below the true mean, then the latter is 80.26 pounds. We

may thus be quite confident (2 per cent level) that the true mean

lies between 73.7 and 80.3 pounds. If we prefer an interval that

we may be even more highly confident contains the true mean, we

may employ the i per cent confidence interval (73.4-80.6), or

even the o.i per cent interval, which in this case is 77 3.3 VM

(or 72.4-81.6). On the other hand, if we are satisfied with a

lower degree of confidence, we may employ the 5 per cent interval

We may use this same situation to illustrate the testing of an

exact hypothesis. For the sake of this illustration, let us assume

now that no confidence interval for the true mean has yet been

established, but that the standard error of the mean has been

estimated at 1.4. Let us suppose also that it is known that the

mean weight for boys of this age in the country at large is 75

pounds, and that we are therefore particularly interested in the

hypothesis that this is also the true mean for Iowa boys of this age.

To test this hypothesis, we reason that if it is true then our ob-

tained mean of 77 pounds contains a sampling error of 2 pounds,

which is 2/1.4
= I 43 times the standard error of the mean. We

know, however, that sampling errors larger than this occur

15.2 per cent of the time by chance alone. While we may therefore

be confident at the 15 per cent level that the hypothesis is false,

this is hardly a sufficient degree of confidence to justify a cate-

gorical rejection of the hypothesis. In other words, we would

admit that the hypothesis is tenable, or that it is reasonably con-

sistent with what we know about our one sample. Had we al-

ready determined a confidence interval (conforming to whatever

level of confidence we had decided to employ), we would, of course,

not need to
"
test" the hypothesis (that the true mean is 75) in this

fashion, but would only have to note whether or not the interval

includes 75.

It is very important to note that the procedures just illustrated

in establishing a confidence interval for, or in testing an exact

hypothesis about, the true mean are not valid for small samples.
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/7 <**,;<,/
The appropriate corresponding procedures for snpall/samples will

be presented later (pages 136-13

The Probable Error of the Mean

We have already seen (page 92) that the probable deviation oJ a

randomly selected measure from the mean of a normal distribution

is .6745 times the standard deviation of the distribution. The

probable deviation of an obtained mean from the true mean is

called the Probable Error (P.E.) of the mean. It may be con-

veniently defined as the sampling error in the mean which is ex-

ceeded half of the time, or for which the chances are even that it

will be exceeded in any individual instance. Perhaps because it

may be so neatly defined and presumably may therefore be more

readily understood, the probable error has often been used in pref-

erence to the standard error to describe the reliability of the mean.

Its formula is

P.E,, = - =
.6745 <*. (9)- i

Tables of area relationships under the normal curve, based upon
deviations from the mean in P.E. rather than sigma units, may be

found in many statistics references. One such table is given on

page 229 of the Appendix. This table may be used in very much

the same way as Table 17. For example, if an obtained mean of

26.0 has a probable error of 4.0, we may be confident at the 2

per cent level z that the true mean lies within 3.45 X 4.0
=

13.80

units of the obtained mean, or in the interval 12.2-39.8.

When the P.E. is used to measure the reliability of the mean, it is

customarily written immediately following the obtained mean, with

a "plus or minus" sign between. For example, the statement that

an obtained mean is 77 2 would indicate that the probable error

1 In the table on page 229 we see that 98 percent of the cases lie within 3.45 P.E. of

the mean (40 per cent on either side).
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x

of the obtained mean is 2. The standard error is rarely indicated

in this fashion.

While the student must become familiar with the P.E.j/ in order

to read the research literature in which it is employed, he is advised

in his own work to avoid unnecessary arithmetic by using only the

standard error.

The Standard Errors of the Median, Q, and S.D.

The standard error of any statistical measure obtained from a ran-

dom sample is the standard deviation of its sampling distribution) that

is, it is the standard deviation of the distribution of such measures

obtained from a very large number of samples of the given size.

Accordingly, the standard error of the median is the standard devi-

ation of a distribution of medians for a very large number of ran-

dom samples of the same size as the given sample. The formula

for the standard error of the median is as follows:

est'd ermdn =
4 VN - i 4

As the formula indicates, medians are somewhat less reliable than

the means of the same samples.

A complete discussion of the logic underlying this formula and

of its use and interpretation would parallel exactly that already

given for the standard error of the mean and could be derived from

the preceding discussions by simply substituting "obtained me-

dian" for "obtained mean" and "true median" for "true mean"

wherever these terms are found. Formulas for computing approx-

imate values of the standard errors of the standard deviation and

the semi-interquartile range of a sample are given below:

D . (or ,.)
- =~ = -

.707VI(N
-

1) v
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If the samples involved are large and drawn at random from ap-

proximately normal populations, these formulas may for most

practical purposes be used and interpreted in essentially the same

fashion as Formulas (8) and (10).

It will be noted that, once the standard error of the mean has

been computed for the sample, the approximate standard errors of

any other of these measures may be readily determined by simply

multiplying by a constant.

The probable error of any measure may be found by multiplying

its standard error by .6745.

In using Table 17 with any of these formulas it is assumed, of

course, that the sampling errors are normally distributed, that is,

that similar measures from a large number of random samples of

the same size will form a normal distribution. If the samples are

large, this assumption is likely to be sufficiently well satisfied even

though the population involved is not normal. For small samples,

the assumption of normality of the sampling distribution of the

standard deviation or of the semi-interquartile range is definitely

not satisfied, even though the population is normal. None of these

formulas, particularly Formulas (n) and (12), should be employed
with small samples (N < 25).

An exact test for the significance of a difference between the

standard deviations of small samples is available,
1 but is beyond

the scope of this course.

The Standard Errors of Proportions and Percentages

Very frequently we are interested in obtaining only a simple

statement of the proportion (decimal fraction) or percentage of

individuals in a total population that belong to a specified cate-

gory. For example, we might wish to know the proportion or per

cent of left-handed children among all school children in the public

elementary schools of the country. To determine this proportion

or percentage, we might resort to random sampling. Because of

the part played by chance in determining which individuals are to

1 See Lindquist, Statistical Analysis in Educational Research, pp. 60-66.
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constitute the sample, we could not expect the proportion of left-

handed children in our one sample to correspond exactly to the true

proportion in the entire population. If we continued drawing
other random samples of the same size, each sample would perhaps

contain a slightly different proportion of left-handed pupils than

any other. If the samples were large, these proportions (unless the

"true" proportion were near zero or i) would fall into an approxi-

mately normal distribution, the standard deviation of which would

be approximately

in which p represents the proportion in the given category in the

entire population (the "true" proportion) and q
= i p (q is the

true proportion in the remaining categories).

In practical situations, of course, the true proportions are always

unknown. However, if we know the observed proportion for a

single random sample, we may test any exact hypothesis concern-

ing the true proportion by substituting the hypothetical true propor-

tion (not the observed proportion) for the p in the formula. The

result will be the true standard error of the observed proportion

under the hypothesis that is being tested. Suppose, for instance,

that we have found that 14 children in a sample of 100 (.14 of the

sample) are left-handed, and that we wish to test the hypothesis

that the true proportion is .10. Under this hypothesis, the stand-

ard error of the obtained proportion for a sample of 100 cases is

.io X .00 =
-03,

IOO

that is, .03 is the standard error of the obtained proportion if the

true proportion is .10. Our obtained proportion differs from the

hypothetical proportion by .04, which is only slightly more than

one standard error. This discrepancy could be readily attributed

to chance; hence, we are in no position to reject the hypothesis

with any high degree of confidence.
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The establishment of a confidence interval for the true per-

centage presents a more complex problem than the establishment

of a confidence interval for the true mean. Our estimate of the

standard error of the mean of a sample is based on the standard

deviation of the sample and is the same no matter what hypothesis

about the true mean we wish to test. The standard error of the

obtained proportion, however, depends upon the true proportion,

and hence, we must use different values of the standard error to test

different hypotheses about the true proportion. How this affects

the establishment of a confidence interval may best be clarified by
an example.

Suppose, in the illustrative situation just considered, we tried

incorrectly to establish the 2 per cent confidence interval for the

true proportion by following a procedure suggested by that

described on page 109. That is, suppose we estimated
"
the

"
stand-

ard error of the obtained proportion to be

.14 X .86 =
.034

IOO

(substituting the obtained proportion for the true proportion in the

formula), and then established .14 (2.33 X .034) or .061 and .219

as the limits of the 2 per cent confidence interval. That these lim-

its are incorrect may be readily demonstrated by testing each sep-

arately in the manner described in the last paragraph on the pre-

ceding page. When this is done, we find that the hypothesis that

the true proportion is .061 may be rejected at a level of confidence

far beyond the i per cent level, rather than only at the 2 per cent

level. (Under the hypothesis that the true proportion is .061, the

standard error of the obtained proportion is .024. The discrep-

ancy of .14 .061 =
.079 is thus over 3.2 times the standard error

a discrepancy which would occur much less than i per cent of

the time by chance alone.)

On the other hand, the hypothesis that the true proportion is

.219 may barely be rejected at the 10 per cent level, rather than at

the 2 per cent level of confidence. The limits .061 and .219 are
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thus incorrect because they were established by assuming that
"
the

"
standard error of the obtained proportion was .034 regardless

of the hypothesis being tested, instead of recognizing that the

standard error to use depends on the hypothesis to be tested.

The establishment of an exact confidence interval for the true

proportion is a relatively involved process, but one which should

not be beyond the typical student in this course. We have already

seen that to establish a certain confidence interval is the same as to

determine the
"
limiting" acceptable hypotheses corresponding to

the selected level of confidence. For instance, to establish the

2 per cent confidence interval for the true proportion, we must find

the highest and lowest hypothetical values of the true proportion

which are
"
acceptable

"
each at the 2 per cent level. Since a dis-

crepancy (between observation and hypothesis) of 2.33 standard

errors will occur 2 per cent of the time by chance, we wish (in the

illustrative situation already used) to know for what values (X) of

the hypothetical true proportion (X .i4)/<rp equals 2.33.

That is, we wish to know for what values of X the following

equality holds.

X-.n X -
.14

J-
-X)

2.33.

100

Accordingly, we must solve for X in the equation

-
.14

- X(i
'33 J 1-

\ *IOO

which reduces to

105.43 X
2 -

33.43 X + 1.96
= o.

This involves the solution of a quadratic equation, for which the

student may need to refer to an elementary algebra text. 1 In this

1 The roots of the equation ax1 + bx -f c are given by the formula:

2 a
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case the roots of the equation are .077 and .239. These values, ac-

cordingly, are the exact limits of the 2 per cent confidence interval

for the true proportion, rather than .061 and .219 as determined

by the inexact procedure earlier described. The procedure last

described, incidentally, is valid only for large samples.

It may be noted that when the obtained proportion is near .5, it

may be satisfactory for most practical purposes to follow the incor-

rect but much simpler procedure described at the middle of page

127, that is, to consider the standard error of the obtained pro-

portion (secured by substituting the obtained proportion in the

formula) as the same for any hypothesis to be tested. This pro-

cedure may not be used, however, when the obtained proportion

differs markedly from .5.

The formula for the standard error of an obtained percentage is

X(ioo - X)
<J O/

= '

in which X is the true percentage (or the hypothetical true per-

centage). The use of Formula (14) is similar to that of Formula

The Standard Error of a Difference

One of the most important and most frequently used of all sam-

pling error formulas is that for the standard error of a difference.

A considerable proportion of all sampling studies involve a compari-

son between measures obtained from random samples drawn from

each of two populations. For example, we might wish to compare
the mean intelligence of rural school children with that of city

school children, or might wish to determine whether or not there

is any difference in variability (S.D.) in intelligence between the two

sexes, or might wish to find if there is any difference in the per-

centages of left-handed boys and left-handed girls of the same age.

The standard error of any obtained difference is the S.D. of a

distribution of such differences for a large number of pairs of ran-

dom samples independently drawn from the same populations
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The general formula for the standard error of a difference (X F)

between uncorrelated measures is

(15)

in which X and F represent the two measures, and crx and crY

represent their standard errors. This formula, as applied to a dif-

ference between the means of two independent random samples,

becomes

The standard error of a difference between any other measures

derived from each of two independent random samples could be

similarly found by substituting the standard errors of each of the

measures in Formula (15).

The "Significance" of a Difference; Testing the Null Hypothesis

The use of the formula for the standard error of a difference in-

volves essentially the same logic as has already been explained in

connection with the standard error of the mean. However, in

interpreting differences we are less often concerned with establish-

ing confidence intervals and more often concerned with testing

certain exact hypotheses. In particular, we are very often uniquely

interested in testing the hypothesis that the two populations

sampled are alike in the trait measured, or that the true difference

is zero. This hypothesis (that the true difference is zero) is known

as the "null" hypothesis.

When the null hypothesis may be rejected at a high level of con-

fidence, we say that the difference is "statistically significant.
"

Frequently, we qualify such statements, saying, for example, that

a difference is "significant at the 5 per cent level" (meaning that

the null hypothesis may be rejected at the 5 per cent level) or that

it is "significant at the i per cent level" (meaning that we are con-

fident at the i per cent level that the null hypothesis is false).

When we say that a difference is significant, we mean that it is too

large to be reasonably attributed to chance (sampling error) alone,
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and that we are highly confident (or
"
practically certain") that the

two populations differ in the trait measured.

Suppose, for example, that we wish to determine by sampling
whether or not there is any difference in the mean weights of

lo-year-old boys and lo-year-old girls in the public schools of this

country. Suppose that we have selected a random sample of 226

cases from the population of boys and of 145 cases from the popu-
lation of girls,

1 that we have found the mean weight for the sample
of boys to be 77 pounds and that for the girls to be 75 pounds, and

that the standard deviation of weights is 12 pounds for the boys
and 13 pounds for the girls.

We now wish to know whether or not it is reasonable to suppose
that the difference of 2 pounds in the obtained means is clue en-

tirely to chance, and that the true difference in mean weights is

zero. We first compute the standard errors of the obtained means.

According to Formula (8), the standard error of the obtained

means for the boys is .8 pounds, while that for the girls is 1.08

pounds. Hence, according to Formula (16), the estimated stand-

ard error of the difference is

<T(MB-MO) =V <TM B + <r = V.82 + i.o8
2 =

1.3 (rounded).

We may interpret this standard error in the same way that we have

previously interpreted the other standard errors. In this case, our

reasoning would be that if we continued drawing other random

samples of 226 cases each from the population of boys and other

random samples of 145 cases each from the population of girls, and

that if we paired these samples at random and found the difference

in the means of each pair, these differences would fall into a normal

distribution, the S.D. of which would be 1.3 pounds.

Hence we know that if the true difference were zero, obtained

differences as large as that found (2 pounds) in this pair of samples

would be exceeded approximately 12.33 per cent of the time.
2

1
Ordinarily, we would select samples of the same size from each population, but

different numbers are employed here to make the illustration more general.
2
87.66 per cent of the cases in a normal distribution would lie within 2/1.3

= x -54 *

of the mean (43.83 per cent on either side) ; hence, 100 87.66 = 1 2.33 per cent would

differ from the mean by more than 1.54 a.
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Accordingly, it is quite reasonable to suppose that the true differ-

ence is zero, and that our one pair of samples is one of the 1 2 pairs

of samples in 100 that would then yield differences of at least 2

pounds. We would therefore say that our observed difference is

lacking in statistical significance, meaning that it does not signify

dependably that there is any difference in the means of the popu-

lations sampled.

The ratio between an obtained difference and its estimated

standard error is often referred to as the
"
significance ratio." In

the preceding example, for instance, the significance ratio was

1.54. To enable us to reject the null hypothesis at the 5 per cent

level, the significance ratio must exceed 1.96; at the 2 per cent level

it must exceed 2.33, etc. The "
critical value" which the signifi-

cance ratio must exceed in order that we may declare the difference

"significant" depends upon the level of confidence that we choose

to employ, and this in turn depends upon our temperament and

other considerations. Educational and psychological research

workers have in the past frequently followed the practice of requir-

ing that the significance ratio exceed 3 before declaring a difference

significant, that is, they have insisted on a very high degree of

confidence (0.26 per cent level) that the null hypothesis is false.

More recent practice is to utilize the i per cent or 2 per cent levels,

with 2.58 and 2.33 as the corresponding
"
critical" values of the

significance ratio.

It should be noted that a statistically significant difference is not

necessarily a reliable difference. An obtained difference is said to

be reliable to the degree that it is likely to approximate the cor-

responding true difference; that is, the reliability of an obtained

difference is dependent only upon its standard error and is inde-

pendent of the magnitude of the obtained difference or of the ratio

between the difference and its standard error. A difference is said

to be statistically significant if it may not reasonably be accounted

for entirely in terms of chance fluctuations in random sampling.

Since the significance of a difference depends upon its significance

ratio, whether or not it is significant depends both upon its magni-
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tude and upon its standard error. This means that a difference

may be relatively unreliable (that is, have a large standard error),

and yet be
"
significant/' if the difference itself is sufficiently large.

Again, if the obtained difference is small, it may fail to be signifi-

cant even though it is very highly reliable, that is, even though its

standard error is extremely small.

It is also very important to note that the fact that an obtained

difference is statistically significant indicates only that the obtained

difference is not entirely due to chance fluctuations in random

sampling, but docs not indicate what does account for the difference.

The failure to take this fact into consideration and the tendency to

provide only very superficial interpretations of obtained differ-

ences have been major sources of error in educational and psycho-

logical research. For example, in many
" methods" experiments

(in which the relative effectiveness of two methods of instruction is

determined by employing the methods simultaneously with two

similar samples of pupils and comparing their average achievements

at the close of the period of instruction) the investigator has made

the mistake of concluding, simply because the obtained difference

in achievement was "
significant," that he had therefore definitely

established the superiority of one method over the other. Even

though the samples used may have been strictly random and all

of the conditions for the application of the standard error formula

satisfied, the possibility remains that uncontrolled factors other

than the difference between the two methods may be the real reason

for the difference obtained, as, for example, differences in the ability

of the teachers employing the methods or differences in the con-

temporaneous incidental learning of the pupils in other subjects.

Similar difficulties arise in the interpretation of
"
significant differ-

ences" in many other situations. The student of statistics should

consciously strive to develop a highly critical attitude in the con-

sideration of -possible cause and effect relationships in such situa-

tions.
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The Standard Error of a Difference between the Means of Related

Variables

The derivation of Formula (16) involves the important assump-
tion that the samples between which the difference is found are

independent random samples. In some instances the samples which

we wish to compare may consist of individuals who may be paired

(between samples) on some basis, and the measures obtained may
be related for the individuals constituting these pairs. Suppose,
for example, that we wish to compare the mean intelligence of mar-

ried men with that of their wives. Suppose we select a random

sample from the population of married men, and that our sample
from the population of married women consists of the wives of

these same men. Then suppose that we administer an intelligence

test to these individuals, compute the mean score for each sample,

and find the difference in these means. In this type of situation

Formula (16) is not valid to describe the reliability of the difference

and if used would exaggerate its unreliability.

The reason for this is that there is a definite relationship between

the intelligence of husbands and wives. Men of superior intelli-

gence tend to be married to women of superior intelligence, and

men of low intelligence tend to marry women of low intelligence.

Hence, if our sample of married men happened by chance to have

a higher mean intelligence than most such samples, we would ex-

pect our related sample of women also to have a higher mean intel-

ligence than most such samples of women. Two samples selected

in this fashion would ordinarily be more nearly alike in mean intel-

ligence than if the samples were independently selected, that is, if

the women in the sample of women were not (except by chance in

a few cases) the wives of the particular men selected. In a pair of

independent samples, the obtained mean of the men might be above

the true mean of men at the same time that the obtained mean of

the women was below the true mean of the women, but in a pair of

related samples this would happen much less frequently. A dis-

tribution of differences in means of related samples would therefore

show less variability than a distribution of differences in means of
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independent samples. In other words, the standard error of the

difference for a pair of related samples would be smaller than for a

pair of independent samples how much smaller would depend

upon the strength of the relationship. The formula for the stand-

ard error of the difference between means of related variables is

as follows :

(17)

in which <rMl
and <rM2 are the standard errors of means MI and M-2, and

r\i is the coefficient of correlation between the related variables.

It will be noted that if r& is o, that is, if the variables are unre-

lated, Formula (17) becomes the same as Formula (16).

If rn is not known, and if the sample is not very large, it may be

more convenient to compute the difference for each pair of meas-

ures separately and to estimate the standard error of the mean of

these differences (which is the same as the difference in means) by

substituting the standard deviation of the individual differences in

Formula (8), the N in the formula representing the number of dif-

ferences (or pairs of measures). Suppose, for example, that each

individual in a sample of 30 is weighed before and after going on a

certain standard diet, and we wish to know whether the observed

gain (or loss) in mean weight is significant. Suppose the initial (/)

and final (F) weights, and the corresponding differences (Z?), are

as follows :
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The mean of these differences is 1.93, and their standard deviation

is 3.45. Hence, the estimated standard error of the mean differ-

ence is 3.45/V
/

29 =
.65, and the significance ratio is 1.937.65

=
2.96. Since this is considerably larger than the significance

ratio (2.58) required for significance at the i per cent level, we can

reject the null hypothesis in this case with a very high degree of

confidence.

In simple experiments intended to determine the relative effec-

tiveness of two methods of instruction, the usual practice is to

select two samples of pupils from the same population, to teach one

group by one method and the other by the other method for a given

period of time, and then to administer the same achievement test

to both groups and to find the difference in their mean scores on this

final test. If the samples are independently selected at random,

Formula (16) may be employed to determine the reliability or sig-

nificance of this difference. Very often, however, instead of select-

ing the samples independently, we
" match" or

"
equate" them on

some basis (for example, intelligence) at the beginning of the exper-

iment. In other words, each pupil in one group is paired with a

pupil of the same intelligence in the other group, so as to give to

neither method an accidental advantage in the final comparison.

In this case again Formula (16) is not strictly valid, since the sam-

ples used are not independent. The special techniques appropriate

for testing the significance of the results of experiments of the
" matched group" type and of other more complex types of

experiments are not within the scope of this introductory

course.
1

Small Sample Theory: Establishing a Confidence Interval for the

True Mean

It will be remembered that in establishing a confidence inter-

val for the true mean the procedure (for large samples) is to: (i) es-

timate the standard error of the obtained mean, using Formula (8) ;

(2) multiply the estimated standard error by the "critical value"

1 See Lindquist, Statistical Analysis in Educational Research, especially chap. IV.
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(for the selected level of confidence) of the significance ratio;
x and

(3) "lay off" this distance on either side of the obtained mean to

determine the limits of the confidence interval. The "critical

value" of the significance ratio, as determined from the normal

probability integral table, is 1.28 for the 20 per cent level of con-

fidence, and 1.96, 2.33, 2.58, and 3.33 for the 5 per cent, 2 per cent,

i per cent, and o. i per cent levels respectively.

This procedure is based on the assumption that the significance

ratios are normally distributed for a large number of samples of the

given size an assumption which is not valid if the sample is

small. For small samples the significance ratios form a distribu-

tion that has longer tails than the normal distribution, and the

form of distribution differs from one size of sample to another.

Hence the "critical values" derived from the normal table are not

applicable to significance ratios computed for small samples. How-

ever, the exact form of the distribution of significance ratios is

known for each size of sample, and the exact "critical values" for

each of the commonly used levels of confidence have been deter-

mined for each size of sample from 2 to 31. These critical values

are given in Table III in the Appendix. For reasons that need not

be considered here,
2 one less than the size of the sample (N i) is

referred to as the number of "degrees of freedom." The numbers

in the first column in Table III represent the degrees of freedom

for various size samples, that is, they are equal to N i.

To show how this table may be used, suppose that the mean and

S.D. of a sample of 10 cases are n.oo and 3.60 respectively. Ac-

cording to Formula (8), the estimated standard error of the mean

is 3.6o/\/io i = 1.20. According to Table III, the critical

value of the significance ratio (/) at the i per cent level for a sample

of 10 cases (degrees of freedom = N i =
9) is 3.250. Hence

1 We have heretofore used "significance ratio
"

to refer to an obtained difference

divided by its standard error; we here use the term to refer similarly to the ratio of the

difference between the hypothetical and obtained means to the estimated standard

error of the obtained mean.
2 Students desiring a more thorough explanation of small sample theory may refer

to Lindquist, Statistical Analysis in Educational Research, pp. 18-21 and 48-75.
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the limits of the i per cent confidence interval are (n.oo 3.250

X i. 20) and (n.oo + 3.250 X 1.20) or 7.1 and 14.9.

The manner in which any exact hypothesis concerning the true

mean may be tested (for small samples) by the aid of Table III

should be apparent from the foregoing and from the discussion on

pages 110-115.

Small Sample Theory: The Significance of a Difference in Means of

Independent Samples

The procedure for testing the significance of a difference in the

means of independent random samples is similar for large and small

samples, except that in the latter case the significance ratio is differ-

ently calculated, and the critical value of the significance ratio is

read from Table Til rather than from Table 17. The formula for

the significance ratio (/) for the difference in the means of two inde-

pendent small random samples is

in which MI and M% are the obtained means, cri and cr2 the cor-

responding standard deviations, and Ni and Ni the corresponding

numbers of cases.
1 The number of degrees of freedom for this t

is (Ni + N* -
2).

For example, if a random sample of 5 cases from population A

1 The denominator of this expression is the estimated standard error of the differ-

ence, under the hypothesis that both samples are drawn at random from the same

population. We may see now an advantage of defining the level of confidence with

which an exact hypothesis may be rejected in terms which do not consider the direc-

tion of the hypothetical sampling error. If the null hypothesis is true, then the two

populations are identical in the trait measured, that is, they constitute a single popula-
tion as far as that trait is concerned. Under the null hypothesis, therefore, the two

samples involved are really drawn at random from the same population. Now if two

samples drawn at random from the same population have different means, there is

obviously no basis for saying that the difference in means is either positive or negative.

We can say that the difference has a certain magnitude, but we cannot meaningfully
attribute a definite direction to it. Accordingly, the second of the definitions given
in the footnote on page 112 is inappropriate in testing the null hypothesis, since under

that hypothesis the direction of the sampling error is indeterminate.
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has a mean of 19.50 and a standard deviation of 2.65, and a sample
of ii cases from population B has a mean of 15.13 and a standard

deviation of 3.20, then the significance ratio is

19.50-15.1^ 4-37

The number of
"
degrees of freedom "

for this / is Ni + N% 2 = 14.

According to Table III, for this number of degrees of freedom a / of

2.624 is required for significance at the 2 per cent level, or of 2.145

at the 5 per cent level. Hence this difference would be described

as significant at the 5 per cent level.

It is important to note that the procedure just described is valid

only if the true standard deviations of the populations involved are

approximately equal. If the obtained results or other considera-

tions suggest that this assumption is not satisfied, this formula for

/ is not valid. It should be noted, however, that chance alone will

produce large differences in the obtained standard deviations. For

the samples in the illustration just used, for instance, one standard

deviation might easily be twice the other as the result of chance,

even though the true standard deviations were equal.

The significance of a difference in the means of paired or related

measures may be tested in the manner illustrated in the example
on page 135, except that for small samples the "critical" values of

the significance ratio should be read from Table III.

Limitations of Sampling Error Techniques Designed for Large

Random Samples

The sampling error techniques that have been presented in this

chapter are designed for use only with simple random samples (in

most cases only for samples of considerable size). However, most

samples actually employed in educational and psychological re-

search are not simple random samples, and to apply to them the

techniques here presented would often be more misleading than

helpful. It is therefore extremely important that the student un-
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derstand clearly what is meant by a random sample, and that he be

able to identify any consequential departure from randomness in

practical sampling situations.

A simple random sample of N cases is one so drawn that any set

of N particular individuals is just as likely to be selected as any
other set. For instance, if a sample of 100 cases from the popula-

tion of ninth grade pupils in Iowa public schools is to be truly ran-

dom, it must be drawn so that any combination of 100 particular

high-school freshmen has as good a chance to be selected as any
other particular combination. When we stress the fact that "any
combination" includes samples consisting of 100 pupils from as

many different schools which may be located in the most inacces-

sible sections of the state, we realize how impracticable is strictly

random sampling in situations of this kind.

In most sampling from populations of school children, the pupils

must be taken in intact groups, rather than independently as indi-

viduals, as would be required in simple random sampling. One of

these intact groups may consist of the pupils in a single classroom,

or in a single building, or in a single school system, or of the chil-

dren in a given community, etc. Sampling by such intact groups

is necessary in part to avoid the inconvenient geographical dis-

tribution of pupils that was suggested in the preceding illustration,

and also because the things to be investigated or experimented

with, such as methods of instruction or educational tests, must usu-

ally be administered simultaneously to groups of pupils rather than

to separate individuals. Thus, if an educational research worker

wanted to conduct an experiment involving 500 pupils, he would

probably arrange with a number of school administrators to permit

him to use whatever number of intact classes would total 500 pupils,

instead of attempting to select 500 pupils strictly at random from

the population in which he is interested. These classes would

differ from one another in ability and achievement much more than

would random samples of the same size, due to systematic differ-

ences in quality of instruction, previous educational experience,

nature of community, etc. It is readily apparent that a sample
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consisting of a small number of such intact groups (regardless of

the number of pupils) cannot yield as reliable results as a simple

random sample of the same size. It is very obvious, for instance,

that 1000 pupils taken 500 from each of two school systems is much
less likely to be representative of pupils in general than a simple

random sample of 1000 cases in which the pupils would be drawn

from hundreds of school systems. Consequently, it would be a

serious mistake to apply Formula (8) to the mean of the first of

these samples (letting N =
1000), since the standard error thus

estimated would suggest that the mean is much more reliable than

is actually the case.

There are available x

special sampling error techniques that are

valid for use with samples consisting of intact groups, if these in-

tact groups are selected at random, but these techniques are be-

yond the scope of this introductory course. However, it is impor-

tant that the student know that appropriate techniques are avail-

able, and that he recognize that the techniques here presented

should not be used with samples of this type.

It has already been suggested that in actual research the choice

of the method of sampling to be employed is often governed by
factors of expediency or of administrative convenience. In actual

practice we usually secure our sample from the relatively small

part of the whole population that is conveniently accessible to us,

and there is always the possibility that the more accessible individ-

uals might differ systematically from the less accessible. As a

result, the samples which we select, often without our being con-

scious of the fact, are frequently
" loaded" (to an extent greater

than would happen in random sampling) with individuals who are

superior or inferior to the typical individual in the population that

we are studying.

Whenever a sample is selected by a method that in the long run

would yield samples whose obtained measures differ systematically

from the corresponding true measures, we say that the sample

drawn is a biased sample. In other words, a sample is biased if

1 See Lindquist, Statistical Analysis in Educational Research, pp. 66 ff.



142 SAMPLING ERROR THEORY

other samples drawn in the same manner contain sampling errors

that are more often in one direction than in the other. Again, a

sample may be said to be biased if drawn by a process which gives

certain individuals (or individuals of a certain type) a better chance

of being drawn than certain other individuals. Unfortunately, the

sources of bias are frequently difficult to detect, and samples may
be seriously biased without our being conscious of the fact.

Obviously, errors in sampling that are due to bias, that is, that

are due to failure to obtain a random sample, are not taken into

consideration by the formulas that have here been considered.

Such errors, nevertheless, are among the most important of the

errors which characterize actual sampling studies.

Sometimes, in order to reduce the probability of securing a biased

sample, we select what may be described as a
"
controlled

"
sample.

For instance, if we were studying the achievement of high-school

freshmen in the state of Iowa in some school subject and recognized

that there are systematic differences in average achievement be-

tween large and small schools, we might insure by deliberate

selection that the proportion of pupils from schools in various

enrollment classifications is the same in our sample as in the whole

population. In other words, we might make our sample representa-

tive with respect to size of school, rather than allow chance to de-

termine what proportion of pupils will be selected from schools of

each enrollment classification.

It is the controlled type of sample, incidentally, that has made

possible dependable polls of public opinion of the type conducted

by Gallup, Roper, and others. Samples that have been properly
"
controlled

"
are considerably more reliable than random samples

of the same size, and hence the techniques that have been presented

in this chapter are not valid for use with such samples.

So much emphasis has here been placed upon the limitations of

sampling error techniques designed for simple random samples (due

either to the impracticability or the undesirability of random

sampling) that the student may wonder if the time he has taken to

become acquainted with these techniques was well spent. He
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need, however, have no doubts on this score. In the first place, he

will find some actual research situations in which these techniques

are directly applicable. In the second place, while it is true that in

practical research the methods of sampling and the experimental

designs employed are usually of a relatively complex type that de-

mand special sampling error techniques, these special techniques

cannot possibly be understood until the student has first mastered

thoroughly the simpler and more basic techniques designed for

simple random samples. Any student who intends to engage ex-

tensively in educational or psychological research must acquire a

more advanced statistical training than is provided in this course,

and one of the principal purposes of this chapter has been to pro-

vide him with the foundation essential to such advanced training.





CHAPTER IX

STANDARD MEASURES AND METHODS OF
COMBINING TEST SCORES

Standard Measures or z-Scores

ATTENTION has already been drawn (Chapter IV) to the fact

that raw scores on educational and psychological tests ordinarily

have little or no absolute significance and may not be directly

compared from test to test. To interpret or compare such scores,

we must first derive for each of them some measure of its relative

position in the distribution to which it belongs. One of the most

widely used of such derived measures is the percentile rank. The

percentile rank, however, has several distinct limitations. It is a
"
counting" measure only, that is, it is not arithmetic in character.

It may be unduly influenced by minor irregularities in the form

of the distribution, and is therefore relatively unstable or unreliable.

The inter-percentile distance fluctuates in magnitude throughout

the scale, and may therefore not be considered as a unit. While,

for administrative convenience, percentile ranks are frequently

added or averaged to secure composite measures, this practice

ignores the non-arithmetic character of the percentile rank and is

not strictly valid.

Another derived measure, which is relatively free from the

limitations just mentioned, is the standard measure or z-score.

The z-score is algebraically defined by the formula

X-M

in which z is the standard measure, X is a particular raw score in

a given distribution, and M and S.D. the mean and standard

deviation, respectively, of that distribution. The z-score corre-

sponding to any given raw score indicates how many standard

deviations that score deviates from the mean of the distribution.

If, for example, the mean score on a test is 75 and the standard
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deviation is 10 for a given group, then for that group the stand-

ard measure or z-score corresponding to a raw score of 100 is

100 75
z = = 2.5

10
*

Likewise, a raw score of 60 in this distribution would have a z-

score equivalent of 1.5. The z-score of 2.5 means that the

corresponding raw score is 2.5 S.D.'s above the mean; the z-

score of 1.5 means that the corresponding raw score lies 1.5

S.D.'s below the mean the minus sign indicating that the score

lies below, rather than above, the mean.

The use of the z-score does not involve any necessary assumption

concerning the form of the distribution, but because of the definite

relationship between the standard deviation and the normal

curve (Chapter VII), the z-score may be most readily and ade-

quately interpreted if the distribution concerned is approximately
normal. If, for instance, a certain raw score has a z-score equiva-

lent of + 2.0 in a normal distribution, we know (Table 17) that

it exceeds approximately 98 per cent of the scores in the distribu-

tion. Similarly, a z-score of i.o exceeds about 16 per cent of

oc

the measures. The value with which we enter Table 17,
-

? is of

course itself a z-score, since x represents X M, the deviation of

the raw score from the mean.

For distributions which do not approximate the form of the

normal curve, the z-score is somewhat more difficult to interpret.

In a distribution markedly skewed to the right, for instance, a

considerable proportion of the scores might lie above the point

which is 3 S.D.'s from the mean, while in a distribution markedly
skewed to the left a point 3 S.D.'s above the mean might be con-

siderably higher than the highest score in the distribution. For-

tunately, however, distributions of test scores are rarely very

markedly skewed, and hence z-scores above +2.0 may, in general,

safely be considered as "very high," those between +1.0 and

+ 2.0 as "high," those between i.o and 2.0 as "low," and

those below 2.0 as "very low" relative to the other scores in the

same distribution.
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Transforming Raw Scores into Their z-Score Equivalents

When we transform a set of obtained scores into their z-score

equivalents, we are in effect arbitrarily substituting another scale

for the original raw score scale, such that the zero point on the new

scale corresponds to the mean on the raw score scale, and such that

the unit along the new scale is equal to the standard deviation of

the original distribution. The arbitrary nature of this procedure

may be made clear by the following. Suppose that along the

raw score scale for a given frequency distribution we have marked

the positions of the mean and of a point i S.D. above the mean.

Suppose, also, that on a wide rubber band we have marked off

in white ink a number of equally spaced points, have written

zero opposite one of these points (near the middle of the band),

and have numbered the remaining points consecutively + i, + 2,

+ 3, etc., and i, 2 and 3, on either side of this zero point.

If we then placed this rubber band alongside the original raw

score scale and stretched and adjusted it until the zero point on

the band came opposite the mean on the raw score scale and the

point + i on the band came opposite the point i S.D. above the

mean on the raw score scale, the scale on the rubber band would

then represent the z-score scale for the distribution involved.

When all of the scores in a large distribution are to be trans-

formed into z-scores, it may be more economical to prepare an

equivalence table than to apply Formula (19) to each score indi-

vidually. The steps in preparing a table of z-score equivalents

for the raw scores in a given distribution are presented below, the

statements in parentheses referring to the illustration in Table 19.

1. Compute the M and S.D. of the distribution.

(The M and S.D. of the distribution in Table 19 are 40.10

and 5.136 respectively) .

2. List, in a column or columns, the values of all possible scores

in the distribution.

(This has been done in the columns headed X in Table 19.)

3. Find the integral score just above the mean, and compute
its z-score equivalent by Formula (19).
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(In Table 19, the score just above the mean is 41. Its z-

41 40.10
score equivalent is =

.176.)

4. Find the reciprocal of the standard deviation of the dis-

tribution. This is the difference between the z-scores corre-

sponding to two consecutive integral raw scores.

5. Add this reciprocal to the result of Step 3 to get the z-score

corresponding to the next highest integral score. By similar

consecutive additions of this reciprocal, compute the z-score

equivalents of the remaining raw scores above the mean,

entering each (in the z column) opposite the corresponding

raw score as it is obtained.

(.176 + .195
=

.371, the z-score corresponding to 42;

.371 + .195
=

.566, the z-score corresponding to 43; etc.)

6. Determine the z-score corresponding to the raw score just

below the mean, and compute the z-scores for the remaining

raw scores by consecutive additions of the reciprocal as ex-

plained above.

TABLE 19

ILLUSTRATING THE CONSTRUCTION OF A TABLE or Z-SCORE EQUIVALENTS
FOR THE SCORES IN A GlVEN DISTRIBUTION
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The z-score corresponding to any given raw score can now be

quickly read from the table; for example, the z-score equivalent

of a raw score of 30 is 1.970 or 2.0 (rounded), while that for

a raw score of 53 is +2.5. If an adding machine is available,

Steps 5 and 6 in the procedure just described can be very quickly

completed. The standard deviation and its reciprocal should be

carried to three decimal places to avoid a large cumulative error

at the extremes of the distribution, but in reading z-scores from the

table it is usually well to round to one decimal place.

T-Scores

It has been noted that the z-score scale is an arbitrary scale

adjusted to fit the raw score scale in a prescribed manner. If we

wished, we could select any other reference point and any fraction

or multiple of the S.D. as a unit in constructing this scale. To
return to the rubber band illustration, we could, for example,

divide the band into 10 equal intervals, numbering them 10, 20,

30, etc., up to 100, and then could adjust the rubber band to the

raw score scale such that the point 50 would come opposite the

mean of the distribution and the point 60 would come opposite

the point i S.D. above the mean of the original distribution. In

other words, we could arbitrarily set the mean of our new scale

equal to 50 and the standard deviation equal to 10. This par-

ticular type of scale is ordinarily known as a T-scale, and scores

expressed along this scale as T-scores. The algebraic formula for

a T-score, then, would be:

J.

where X, M, and S.D. have the same significance as in the z-

score formula. The name "T-scale
" was originally applied to this

scale by McCall. 1 The advantage of the T-scale lies in the fact

that it does away with the necessity of dealing with negative scores

and with scores expressed as decimal values. In all other respects,

however, the z-score and the T-score are essentially equivalent.

1 William McCall, How to Measure in Education.
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Raw scores may be transformed into T-scores by the same type

of procedure as has just been explained for z-scores.

Composite Measures

T scores and z-scores and other measures based upon the mean

and standard deviation are very frequently employed for the pur-

pose of deriving composite measures based upon a number of

scores originally expressed in different units. If we attempt to

secure composites of performance on different tests for the in-

dividuals of a given group by simply averaging directly the raw

scores of each individual, we automatically give to the score on

each test a weight which is proportional to the variability (sigma)

of the distribution of scores on that test. Suppose, for example,

that on two tests, A and B, administered to a given group, the

means and standard deviations are as given below.

Scores of

M. S.D. Pupil #i Pupil #2

Test A 120 15 135 105

Test B 85 25 60 no

Suppose that pupil number i makes a score i S.D. above the mean

on Test A and i S.D. below the mean on Test B, while pupil

number 2 makes a score i S.D. below the mean on Test A and

i S.D. above the mean on Test B. The sum of the scores on the

two tests would be 195 for pupil number i and 215 for pupil num-

ber 2. Pupil number 2 would then receive the higher composite

score simply because the test on which he happened to perform

the better was that with the larger standard deviation, whereas if

the tests were to be considered as equally important both composites

should be the same. Scores on Test B, then, are given greater

weight in the composite, even though their mean value (85) is

less than that of the scores on Test A. A long test, or one with a

large number of items, does not necessarily carry any greater

weight in a composite than a short test, or one with just a few

scoring units, since the shorter test may have the larger S.D. of

scores. Therefore, to insure that each test is given the same weight
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in the composite, the scores on all tests should be transformed so

that each distribution of transformed scores shows the same stand-

ard deviation. This, of course, is done when all scores are trans-

formed into z-scores or T-scores. Where z-scores from different

tests are added or averaged to secure a composite, each test is

given the same weight. If it is desired to weigh certain tests

more than others, this can be done by multiplying the z-scores

for those tests by any desired number before the scores are com-

bined.

Sometimes, when the scores from a number of tests are to be

combined for the individuals in a given group to obtain measures

of composite performance, and when it is desired to give each

test equal weight, it may be more convenient to multiply the raw

scores on each test by an integral number which is roughly pro-

portional to the reciprocal of the S.D. on that test, and then com-

bine the scores thus derived for each individual. Suppose, for

example, that for a given group the distributions of scores on three

tests, A, B, and C, show S.D.'s of 12, 21 and 9 respectively. The

reciprocals of these S.D.'s are =
.083,

=
.047, and - = .11

12 21 9

respectively. The smallest integral numbers closely proportional

to these values are 8, 5 and n. However, the integers 2, i, and

3 are roughly proportional to these reciprocals, and would be

sufficiently accurate for most practical purposes. If, then, all

scores on Test A were multiplied by 2, the S.D. of the scores

thus derived would be 2 X 12 or 24. Similarly, if each of the

scores on Test C were multiplied by 3, the S.D. of the derived

scores would be 27. These S.D.'s are so nearly equal to the

S.D. of the original raw scores on Test B (21) that a fairly satis-

factory composite could be secured by adding to the B scores the

derived scores for Tests A and C. (If a more equitable weighting

were desired, all of the scores on Test A should be multiplied by

8, all scores on Test B by 5, and all scores on Test C by n, which

would result in S.D.'s of 96, 105, and 99 respectively.)

The conditions under which, and the purposes for which, z-scorew
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and T-scores and other similar derived scores may be validly

applied are left to the student to discover for himself with the aid

of the suggestions offered in the study exercises. It is particularly

important that the student become thoroughly familiar with the

z-score technique, not only because of its frequent application in

practical work, but more especially because a thorough under-

standing of z-scores will lead to a better appreciation of other

statistical techniques. A thorough understanding of z-scores is

particularly essential in the study of simple correlation theory in

the following chapter.



CHAPTER X
CORRELATION THEORY

The Meaning of Correlation

WHEN measures of each of two traits are secured for each in-

dividual in a given group, it may frequently be noted that the

two measures for any individual tend to have roughly the same

relative position in their respective distributions; that is, individuals

far above average in one trait tend also to be well above average

in the other, those below average in one tend to be correspondingly

below average in the other, and those at or near the average in

one tend also to be at or near the average in the other. When this

is true, we say that the two traits (or measures) are
"
positively

related" for the group in question, or that they show a
"
positive

correlation." Height and weight, for example, are positively

related for almost any group; that is, the tall individuals tend

also to be the heavy and the short individuals to be the light.

Sometimes traits may be found such that measures of these

traits for the individuals in a given group are
"
negatively related."

By this we mean that individuals above average in one tend to

be below average in the other, while those below average in the

first tend to be above average in the second. For the children

in the seventh grade in almost any public elementary school,

for example, chronological age and scholastic ability are likely to

be negatively related; that is, the over-age children in the grade

are usually among the dullest, while the youngest children are

usually among the brightest. The reason is that the dull children

have been retarded and the bright children accelerated in their

school progress.

The nature of the relationship between two variables can be

most readily studied by one not technically trained in statistics

by preparing a
"
scatter-diagram

"
for the measures obtained.

Suppose, for example, that we wish to study the nature of the re-
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lationship between the scores on an arithmetic test and on a read-

ing test for a given group of seventh grade pupils. To do this

graphically, we could subdivide a square or rectangle into a large

number of
"
cells

"
by drawing equally spaced and parallel horizontal

and vertical lines through it as in Figure 16. Each horizontal row

of cells could then be made to correspond to a given interval along

the scale of arithmetic scores, and each vertical column to an

interval along the scale of reading scores. For example, in

Figure 16 the upper row represents the interval 43-47 along the

arithmetic scale, while the third column represents the interval

30-39 on the reading test scale. The scores of any pupil could

then be represented on this diagram by a single tally mark placed

so that its position with reference to the vertical scale represents

his arithmetic score and so that its position with reference to the

horizontal scale represents his reading score. For example, if a

pupil made a score of 36 on the arithmetic and 63 on the reading

test, we would place the tally mark for him in the cell which is

both in the 33-37 row and in the 60-69 column, that is, in the sixth

cell (from the left) in the third row (from the top) .

The tally marks in Figure 16 represent the reading and arith-

metic test scores for a group of 62 pupils. Each number along

the bottom of the figure represents the total frequency in the

column above it, while the numbers along the right-hand margin

represent the frequencies in the individual rows. For example,

14 pupils made scores of 40-49 on the reading test, while 12 pupils

made scores of 23-27 in arithmetic.

For the pupils tallied in any single column we could, if we wished,

compute the mean score made by them on the arithmetic test.

For example, the 5 pupils tallied in the first column (who made

scores of from 10 to 19 on the reading test) made a mean score of

19 on the arithmetic test (computed by using as the arithmetic

score of each pupil the midpoint of the arithmetic interval in which

he is tallied). The position of this mean along the vertical scale

is represented by the small circle in the first column. Similarly,

the circle in each of the other columns represents the value of the
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FIG. 16.

Scattcr-diagram of reading and arithmetic test scores for a group of 62 pupils.

mean score on the arithmetic test for the pupils tallied in that

column.

It is at once apparent that these means tend to fall along a

straight line running from the lower left-hand to the upper right-

hand corner of the diagram. It is probable that the only reason

that they do not lie exactly on a straight line is that each mean is

based upon such a very small number of cases and is therefore

unstable because of sampling error. Had enough pupils been

tested so that the frequency in each column had been large, it is

likely that the column means would much more closely approxi-

mate a straight line pattern than did the means represented in

Figure 16.
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In the fashion already described, we could calculate also the mean

reading score for the pupils tallied in each horizontal row and mark

the position of the mean in each row individually. If this were

done, we would find that these means also would tend to lie along

a straight line, although the position of this straight line would not

correspond to that which best fits the means of the columns.

Whenever the relationship between measures of two variables

is such that the means of the rows and the means of the columns

on the scatter-diagram each tend to lie along a straight line, we

say that these variables are
"
rectilinearly

"
related, or that they

represent an instance of rectilinear correlation. Not all varia-

bles, however, are related in this way. Sometimes we find that

the means of the rows or of the columns lie along a curved line.

For example, if we were to plot on a scatter-diagram the age and

some measure of bodily strength for each individual in a group

which includes all age levels from infancy to extreme old age, we

would find that the mean strength for individuals of a given age

increases during the periods of childhood and adolescence, that it

remains relatively stable from early adulthood until well past

middle age, and that it decreases at the higher age levels, dropping

quite rapidly when the age of senescence is reached. If ages were

plotted along the horizontal scale and strength measures along the

vertical scale, the smooth line which would best fit the means of

the columns would be a curve running upward from left to right,

gradually flattening out until the maximum was reached near the

middle of the age range, after which it would drop, at first slowly

and then rapidly, to the end. Variables which show a curved

pattern of tally marks in a scatter diagram are said to be
"
curvilin-

early" related. Such variables cannot always be described as

being positively or negatively related, since the relationship may
be positive along certain portions of the scale and negative along

other portions.

If the means of the rows on a scatter-diagram tended to lie along

a straight vertical line, while the means of the columns tended to

lie along a straight horizontal line, we would say that the two
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variables were entirely unrelated; that is, individuals high in one

measure would tend to be neither high nor low in the other.

For any adult group, for example, height and intelligence would

probably show zero relationship, since the mean intelligence of

persons of any given height would tend to be the same as for

persons of any other height.

Because of the variety of ways in which two variables may be

related, it is difficult to describe in a single statement what is

meant by a
"
relationship

"
between two variables. Perhaps the

best general definition of related variables would be as follows:

measures of two traits for a given group of individuals may be

said to be related if all individuals in the group who have the

same measure of one trait show less variability in the second trait

than do the individuals in the entire group. For example, ac-

cording to this definition, height and weight may be said to be

related because, if from any large group we select a number of

individuals all of whom are of the same height, these individuals

will be more alike with respect to weight than are all individuals

(of differing heights) in the entire group. This definition would

apply equally well whether the relationship were curvilinear or

rectilinear, positive or negative.

Measures of one pair of traits, of course, may show a different

degree of relationship for the individuals in a given group than do

the measures of a different pair of traits for the same group, or the

same pair of traits may show different degrees of relationship for

the individuals in different groups. Using the approach suggested

by the definition just given, we may say that measures of two traits

are highly related if individuals who are exactly alike in the measures

of the first trait tend also to be very much alike in the measures of

the second. Measures of two traits may be said to show low

relationship if individuals alike in the first trait show wide varia-

tions in the second. Height and weight, for example, are not

highly related, since we know that individuals of the same height

may show wide variations in weight. Arm span (distance from

fingertip to fingertip when both arms are outstretched horizontally)
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is highly related to height, since this span tends to be very nearly

the same for all individuals of the same height and to differ pro-

portionately for individuals of different heights. Height and intelli-

gence are unrelated for most adult groups, since individuals of the

same height are just as variable in intelligence as are individuals

of differing heights.

Employing the approach suggested by the scatter-diagram, two

variables may be said to be highly related if the measures in each

row (or column) cluster closely about the line (either curved or

straight) which most closely fits the means of the rows (or columns) .

On a scatter-diagram representing high positive rectilinear rela-

tionship, therefore, the more heavily concentrated tally marks

(or the larger cell frequencies) would tend to fall into a pattern

represented by a very narrow oval running from the lower left-

hand to the upper right-hand corner of the diagram. If the

relationship were medium and negative, the larger cell frequencies

would lie inside a relatively broad oval whose axis would run from

the upper left-hand to the lower right-hand corner of the chart.

If there were no relationship between the two variables, about the

same number of tally marks would be found in each quadrant
l

of the chart, and the larger cell frequencies would lie within a

circle whose center would lie at the intersection of the lines fitting

the means in the rows and in the columns. (See Figure 19.)

The Significance of Correlation

The nature of the relationship and the degree of relationship

between measures of two traits for the individuals in a given group

may be of significance in education and psychology for a number of

different purposes, among the most important of which are pre-

diction of future success, the description of the reliability and va-

lidity of measurement, and the study of cause and effect. These

and other ways in which correlation is important will be considered

1 The chart could be divided into four parts or "quadrants" by drawing a hori-

zontal line across it through the general mean along the vertical scale and a vertical

]ine through the mean on the horizontal scale.
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in greater detail later, and will therefore be only very briefly

illustrated here.

To illustrate the significance of correlation in prediction, sap-

pose that a special examination designed to measure "
scholastic

aptitude'' was administered last year to each member of the fresh-

man class upon entrance to a certain university, and that at the

end of the academic year a scatter-diagram was prepared showing
the relationship between the scores made on this examination and

the grade-point averages earned by the freshmen during that year.

Let* us suppose that this relationship is fairly high and positive.

Assuming that the freshman! class studied is fairly representative

of succeeding freshman classes, this examination could then be

used in subsequent years to predict, at the time of entrance,

which students would later succeed or fail in their freshman courses.

On the basis of these predictions, certain students could be ad-

vised to alter their plans, or could be placed in sections in which

instruction is specially adapted to the level of ability of the group

taught. If more than one examination designed for this purpose

had been administered to the freshmen at the beginning of the

year, and if it was later shown that the scores on one of these

examinations were more highly related to grade-point averages

than the scores on the other examinations, then this examination

would, of course, be the best to use later for purposes of prediction.

Through the study of correlations, then, a selection may be made

from a number of possible different bases for predicting success,

not only in scholastic work, but also in many other types of activity.

To illustrate the second of the purposes mentioned, let us suppose

that in an attempt to estimate the general spelling ability of per-

sons in a given group, two lists of 100 words each have been in-

dependently selected at random from the words in a certain

abbreviated dictionary. Suppose that each of these lists is ad-

ministered as a
"
list-dictation" test to the given group and that

the number of words spelled correctly in each list is obtained for

each student. The reliance which could be placed upon the score

obtained from either test as a measure of general spelling ability
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would be dependent upon the degree of relationship existing be-

tween the two sets of scores. If there were no relationship be-

tween these scores that is, if individuals making a high score

on one test were just as likely to make a low as a high score on the

other then no reliance could be placed upon either score as a

measure of the ability of the individual student. If, on the other

hand, there were close agreement between the two sets of scores,

this would indicate that both tests are measuring the same ability

with high dependability. The degree of correlation between

scores on equivalent tests, therefore, constitutes a measure of the

reliability of the measures provided by either test.

To illustrate the third of the purposes mentioned, let us assume

that for a given group of readers the mean number of "eye fixa-

tions" per line made in reading a given printed selection is deter-

mined for each individual. Suppose, also, that for each individual

there has been secured a measure of rate of reading. If, then, it

can be shown that a high negative relationship exists between

mean number of eye fixations per line and reading rate, this

fact would suggest, although it would not prove, that the character

of eye movements is an important factor in determining reading

ability. It would suggest further, although again it would not

prove, that an individual's reading rate might be improved by

specific training intended to increase his eye span or to decrease

his number of fixations per line. If, again, a higher relationship

could be shown to exist between number of fixations per line and

reading rate than exists between some other characteristic of the

person's reading habits and his reading rate, this would suggest

(but again not prove) that the first factor is more important than

the second in determining an individual's speed of reading.

The Need for a Quantitative Measure of Relationship

The preceding illustrations are only suggestive of the many

ways in which a study of correlation between obtained measures

may be of assistance in attacks upon many educational and psy-

chological problems. For most of these purposes, it is essential
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that the description of relationship be reduced to a single numerical

index which can be conveniently interpreted and readily compared
with other similar indices. While it is possible to secure a rough
notion of the degree of relationship between two sets of measures

by simply inspecting the scatter-diagram prepared for them, just

as it is possible to estimate the central tendency and the varia-

bility of a frequency distribution by inspection, the notions thus

secured are not sufficiently objective or quantitative for compara-

tive purposes. Our problem, then, given two sets of related

measures for a given group of individuals, is to derive from these

measures a single number or index which is proportional to the

degree of relationship, and which is comparable to other meas-

ures similarly obtained.

The Selection of an Index of Relationship

Suppose, then, that for each of the individuals in a given group
we have the scores made on each of two school examinations and

that we wish to obtain a quantitative measure of the degree of

relationship between these scores for that group. The arbitrary

character of the procedure which we shall finally adopt (the

Pearson product-moment coefficient of correlation) may best be

made clear by first considering and rejecting a number of other

equally arbitrary but less satisfactory solutions.

Since the scores on these tests are expressed in different units,

it should at once be apparent that we cannot readily derive from

them any measure of relationship until they have first been ex-

pressed in comparable terms. One way of doing this would be

to express each score in terms of its rank position when the scores

on each test are arranged in order of magnitude. If this were done

and if it were found that there was, in general, a close agreement

in the two ranks for each individual, then we could say that a

high relationship existed. If, on the other hand, large differences

between the two ranks characterized most individuals, then we

would say that a low or perhaps even a negative relationship

existed, depending upon the magnitude of the differences. This
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suggests that we could secure a quantitative index of the degree
of relationship by determining the difference in the two ranks for

each individual and then averaging these differences for the entire

group. If the mean value of these differences (all differences being
considered as positive) were very small, we would say that a high

relationship existed. If the mean difference in rank were large,

the relationship would be low or negative. The magnitude of

this mean difference in rank, however, obviously would depend

upon the number of individuals in the group. A difference be-

tween a rank of 3 and a rank of 7 would have quite a different

meaning in a group of 10 individuals than in a group of 100.

Hence, this type of index would not be comparable for groups of

different sizes.

This objection could be overcome by expressing each score as a

percentile rank, and finding the mean difference in percentile ranks

for the various individuals. This index would be comparable
for groups of different sizes, but it would be inversely proportional
to the degree of relationship (the smaller the mean difference, the

higher the degree of relationship), and would continue to increase

as the relationship changed from positive to negative. It would
therefore be difficult to determine any point along the scale of

possible values of the mean difference in percentile ranks that

would correspond to zero relationship. Furthermore, as we have

already learned, percentile ranks are not directly proportional to

the original raw scores, and the variations in inter-percentile dis-

tances from point to point throughout the scale would introduce

ambiguities into the measures obtained.

Another possibility which has some advantages over the preced-

ing suggestions would be to express the scores in each set as stand-

ard measures or z-scores, to find the difference between the two
z-scores for each individual and compute the mean of these differ-

ences (all differences being considered as positive). This measure

would provide a dependable basis for comparing the degrees of

relationship between two sets of variables, but again would be

difficult to interpret because it would be inversely proportional to
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the degree of relationship, and would remain positive in cases of

negative correlation.

The Mean z-score Product

There are many other ways in which z-scores (or other derived

measures) corresponding to two related sets of measures may be

combined arithmetically so as to produce a single number or index

that is indicative of the degree of relationship existing. One of the

most promising of these consists of determining the (algebraic)

product of the two z-scores for each individual and finding the

mean of these products for all individuals concerned. Let us

consider some characteristics of the index thus derived.

Suppose, first, that the relationship between the two sets of

measures for the group considered is high, positive, and rectilinear.

This is equivalent to saying that most individuals above average in

one trait are also above average in the other, or that only a relatively

small number of individuals are above average in one measure

and below average in the other. If this is the case, then the ma-

jority of individuals in the group will either have two positive

z-scores or two negative z-scores. In either case, the algebraic

product of the z-scores for such individuals will be positive in sign.

For the relatively small number of individuals with a positive

z-score in one distribution and a negative z-score in the other, the

z-score products will be negative. Many of the positive products,

furthermore, will be quite large, since high z-scores in one dis'

tribution will usually be paired with high z-scores in the other,

and low (large negative) z-scores in one distribution will be as-

sociated with low z-scores in the other. For the entire group, then,

the sum of the positive z-score products will greatly exceed the

sum of the negative z-score products, so that the mean of the z-

score products for all individuals will be positive.

Suppose, next, that the relationship considered is positive but

low. This would mean that, while again most individuals above

average in one measure would also be above average in the other,

and vice versa, there would be a larger number of instances than
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before in which individuals above average in one measure would

be below average in the other. There would also be fewer large

products than in the first instance, since individuals with extreme

z-scores (either high or low) in one distribution would seldom

also have extreme z-scores in the other. In this case, then, the

sum of the positive z-score products would not exceed the sum of

the negative products by as great an amount as in the first in-

stance, and, while the mean of the products for the entire group

would still be positive, we would not expect it to be as large as

before. In other words, we would expect the mean z-score product

to be larger for high than for low degrees of relationship.

Now let us consider the case of unrelated measures. To say that

two sets of measures are entirely unrelated for a given group is to

say that individuals above average in one measure are equally

likely to be above average or below average in the other. For

the whole group, then, the number of positive z-score products

(except for chance) would be equal to the number of negative

z-score products. The individual products would also tend to be

small, since two extreme z-scores would seldom be paired together.

The negative products, furthermore, would tend to be about the

same size as the positive products. The algebraic sum of these

products for the entire group would therefore approximate zero,

as would the mean of the products.

It should now be apparent that if the relationship were negative

that is, if most individuals above average in one measure were

below average in the other then the z-score product for most

individuals would be negative in sign. The algebraic sum, and

hence the mean of all z-score products, would therefore be nega-

tive, while the absolute magnitude of the mean product would

depend upon the degree of relationship.

Now let us consider finally the case of perfect rectilinear relation-

ship. To say that two sets of measures are perfectly related

(rectilinearly) for a given group is to say that each individual has

exactly the same relative status in both distributions of measures.

This again is equivalent to saying that every individual has
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exactly the same z-score in both distributions. This being the case,

the product of the two z-scores for any one individual must be the

same as the square of either of his z-scores taken alone. Hence, the

sum of the z-score products for all individuals is the same as the

sum of the squared z-scores for the first distribution alone (or for

the second distribution alone) . From this it follows that the mean

z-score product would be the same as the mean of the squared

z-scores in either distribution.

At this point, we may remind ourselves that the standard de-

viation of any distribution of measures is the
"
square root of the

mean of the squared deviations from the mean." Since each

z-score is itself a deviation from the mean, the standard deviation

of any distribution of z-scores is equal to the square root of the

mean of the squared z-scores, that is:

^ n*-L^-
(of t-scorcs)

~

But the standard deviation of any complete distribution of z-scores

is i.oo by definition. Hence,

Squaring both sides of this expression, we get

since the square of i.oo is still i.oo. The mean of the squared

z-scores, then, is always equal to unity for any complete distri-

bution of z-scores.

We have already pointed out, however, that when two sets of

measures are perfectly related rectilinearly the mean of the

z-score products will be the same as the mean of the squared

z-scores for either distribution. Since the mean of the squared

z-scores is always i.oo, it follows that the mean of the z-score

products is, in the case of perfect rectilinear relationship, always

equal to unity. If the relationship is perfect and positive, the

mean of the z-score products will be + i.oo. If the relationship

is perfect and negative, the mean z-score product will be - i.oo.
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If, then, we have two sets of measures that are rectilinearly

related for a given group, if we transform the measures in each

distribution into their z-score equivalents and obtain the product

of the two z-scores for each individual, the mean of these products

for all individuals will have the following characteristics:

Its value will be positive when the relationship is positive.

Its value will be zero when there is no relationship.

Its value will be negative when the relationship is negative.

Its value will be + i.oo when the relationship is perfect and pos-

itive.

Its value will be i.oo when the relationship is perfect and

negative.

Its value will lie between + i.oo and i.oo for intermediate

degrees of relationship, and will be larger for high than for low

degrees of relationship. (For reasons that will be given later, the

mean z-score product is not directly proportional to the degree of

relationship. For example, a mean product of .8 does not indicate

twice as close a relationship as a mean product of .4.)

Because of these characteristics, the mean z-score product is an

excellent index for the quantitative description of degrees of re-

lationship when the relationship is known to be rectilinear. The

use of the mean z-score product for this purpose was first proposed

by the English statistician Karl Pearson and is therefore called

the Pearson product-moment coefficieni of correlation. The uni-

versal notation for this coefficient is r. It may be algebraically

defined as follows:

in which rxy is the coefficient of correlation between the x and

y measures, in which ^ZJLV means "the sum of the products of

the z-scores for variables x and y," and in which N represents the

number of products or the number of individuals in the group
studied. Other subscripts may be used to identify the variables.

For example, r\* would be read "r sub one, two," and would

mean "the coefficient of correlation between variables i and 2,"
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while f48 would be read "r sub four, six," and would have a similar

significance.

The Computation of r

We have already seen that the coefficient of correlation between

two rectilinearly related sets of measures for any group of individ-

uals can be computed by (i) transforming each measure into its

z-score equivalent in its respective distribution, (2) multiplying

the two z-scores for each individual in the group, and (3) finding

the mean of these products.

While this computational procedure is easily explained and read-

ily understood, it is rendered impracticable by the amount of time

required for the first step, particularly where the number of

cases is large. In the practical situation, it is much more economi-

cal to work directly with the raw score values. A formula for this

purpose may be derived by substituting the following values of

zx and zy in Formula (21).

X - Mx Y-MV
Z'"~JT

_

z"~^~
(where X equals a raw score in the X distribution, Mx equals the

mean of the X's, crx equals the standard deviation of the X distri-

bution, and where F, My ,
and v

y have a similar meaning.)

The result of this substitution is

N * "
(22)

(While the mathematics required to understand the derivation of

this formula from the simpler z-score expression is not beyond the

average high-school graduate, in the interests of economy of time

the beginning student in statistics is advised to take Formula (22)

for granted and not to concern himself with the algebra of its

derivation.)

According to this formula, the coefficient of correlation between

two sets of scores or measures may be obtained from an unordered

list of paired scores, as follows:
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1. Compute the mean and standard deviation of each set of

measures. 1

2. Secure the product of the two raw scores for each individual,

add the products and divide the sum by N, the number of

cases.

3. Subtract from the mean of these products the product of

the means of the two distributions.

4. Divide the result by the product of the two standard deviations.

If a multiplying type of computing machine is available, if a

scatter-diagram of the measures is not desired, and if the number

of cases is small, this procedure is perhaps as good as any other.

When a computing machine is not available, and when a large

number of scores are to be correlated, a more economical procedure

is to compute r from a scatter-diagram by a "short" method

(analogous to that used in computing the mean and the standard

deviation of a frequency distribution) in which each score is ex-

pressed as a deviation from an arbitrary reference point (or

guessed mean) in its own distribution.

The formula employed for this purpose is:

1^1 _ fe*!Y l*y'
2

_ fe/Y
\ N \NJ\N \ N /

(

,

in which x
f

represents the deviation of an X score from the arbi-

trary reference point (A.R.J in the X distribution (that is,

x9 = X A.R.j), and y
f

represents the deviation of a Y score

1 The mean of each set of measures may in this case be computed by simply adding
the raw scores and dividing the sum by the number of cases. The standard devia-

tion of each series can similarly be computed without preparing a frequency distribu-

tion by (i) squaring each raw score; (2) securing the sum of the squared scores for

the whole series; (3) dividing this sum by N; (4) subtracting from this quotient the

square of the mean score; (5) extracting the square root of the result. The formula

for the standard deviation employed in the preceding steps is

S.D.

This method of computing the standard deviation is, of course, not restricted to the

present application.
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from the arbitrary reference point (A.R.y) in the Y distribution.

2*' means "the sum of the *"s," 2y' "the sum of the y"s," So;'/

"the sum of the x'y' products/' and 2#/2 and 2/ 2 "the sums of

the squared #"s and the squared y"s" respectively.
1

The application of this formula may be greatly facilitated by
employing a specially prepared

"
correlation chart." There aremany

such printed forms available. A copy of the one recommended for

use with this text is attached to the inside back cover of this

book (Figure 17). The directions for the use of this chart are

given on pages 169 to 174. The statements in brackets illustrate

the application of this procedure in computing the coefficient of cor-

relation between the scores given in Table 20, as shown in Figure 1 7 .

Directions for Using the Correlation Chart

1 . Let one of the sets of measures to be correlated be known as

the X series, the other as the Y series.

[In the illustrative problem, the E.T. scores are taken

as the X series, the M.A. scores as the Y series.]

2. Find the range of the measures in the Y series. Determine

the appropriate interval for grouping these measures, as ex-

plained in Chapter II. (Be sure not to let the number of

intervals exceed 21.) Write the integral limits of the intervals

in the extreme left-hand column on the chart just as you
would write them in the score column of a frequency distri-

bution. Try to arrange the intervals on the scale so that the

interval most likely to contain the mean of the Y measures

will fall between the heavy lines in the middle of the chart.

[An interval of 2 is used for the M.A. scores, and the

integral limits are written in the column at the extreme

left of the chart (see Figure 17, on the inside back cover),

leaving two blank rows at the bottom and one at the top

of the chart.]

1 While Formula (23) may be derived from Formula (21) without the use of com-

plicated mathematics, the student of elementary statistics is again advised to take

this formula for granted and to be content with the assurance that it is the exact

algebraic equivalent of Formula (21).

a
Copies of this chart may be obtained from Houghton Mifflin Company.



i yo CORRELATION THEORY

TABLE 20

SCORES MADE ON THE ENGLISH TRAINING (E.T.) AND MATHEMATICS
APTITUDE (M.A.) TESTS OF THE IOWA PLACEMENT EXAMINATIONS

BY 50 UNIVERSITY OF IOWA FRESHMEN

3. Now find the range of the X series. Determine the interval

and write the integral limits of the intervals (beginning with

the lowest) from left to right along the upper row on the

chart. Again arrange the intervals so that the one most

likely to contain the mean will fall at the center of the chart.

[The range of the X series is 163 25
=

138, and an

interval of 10 units is employed. The integral limits

20-29, 30-39, etc., are written in the row at the top of

the chart. The limits are so entered that the middle of

the range comes between the heavy vertical lines, leaving

three blank columns at each end of the chart.]

4. Now we are ready to tabulate the measures. Each tally

mark on the chart is to denote two things: Its vertical
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position on the chart will denote the Y measure of a pair;

its horizontal position, the X measure of the same pair.

There will be one tally mark for each pair of measures 01

for each individual. Begin with the first pair in the list.

Find the interval along the Y scale in which the Y measure

of the pair will fall. The tally mark for the first individual

will fall somewhere in the horizontal row determined by this

interval. Now go along this row to the right until you come

to the vertical column corresponding to the interval along

the X scale in which the X measure of the pair will fall.

Place a tally mark at this point. The tally mark for the

first individual will then fall in the horizontal row determined

by his Y measure and in the vertical column determined by
his X measure. In the same way locate the tally mark for

the second individual, for the third, etc., until you have

made a tally mark on the chart for each individual (or for

each pair of measures) in the group.

[The first pair of measures in Table 20 is 17 (F) and

71 (X). The tally mark for this individual will therefore

lie in the 16-17 row and in the 70-79 column, that is, in

the ninth cell from the left in the row labeled 16-17.

Similarly, the tally mark for the second individual is

placed in the ninth cell of the row labeled 32-33, and that

for the third individual in the fourteenth cell in the row

labeled io-ii.]

5. Now count the number of tally marks in each horizontal

row and place the result for each row in the / column at the

right of the chart. Next count the total number of tally

marks in each vertical column and place the result for each

column in the/ row at the bottom of the chart.

[The number of tally marks in the 42-43 row is 2, in

the 38-39 row is i
,
in the 34-35 row is i

,
etc. The numbers

are entered in the / column at the right of the chart.

Similarly, the number of tally marks in the 20-29 column

is 2, in the 40-49 column is 3, etc., as is shown in the /

row at the bottom of the chart .1
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6. Total the frequencies in the/ column and write the result in

the square at the bottom of the column. Also total the

frequencies in the / row at the bottom of the chart. The

two sums should agree and should be equal to AT, the total

number of cases.

[The sum of the frequencies in the / column is 50, which

checks with the sum of the frequencies in the / row]

7. Multiply each frequency in the/ column by its corresponding

deviation in the d column. Write the product in each case

in the adjoining y
9

column. The y
r

column here corresponds

to the/d column in an ordinary frequency distribution. Do
the same for the frequencies on the scale at the bottom of

the chart, writing the products in the x
f

row.

[In the y' column at the right of the chart the numbers

entered are 2 X 9
=

18, i X 7
=

7, i X 5
=

5, 3 X 4 =
12,

etc. Similarly, in the x
f

row at the bottom of the chart,

2 X -7 = -14, 3 X ~
5
= -15, etc.]

8. Multiply each product in the y' column by its corresponding

deviation in the d column. Write the resulting product
in the y'

2 column. The y'
2 column here corresponds to the

fd
2 column in an ordinary frequency distribution. Repeat

the process for the scale at the bottom of the chart, writing

the products in the x'
2 row.

[In the y'
2
column, 9 X 18 =

162, 7 X 7
=

49, etc. Sim-

ilarly, in the x'
2

row, 7 X -14 =
-98, 5 X -15 = -75, etc.]

9. Find the algebraic sum (taking account of signs) of the num-

bers in the / column, and write the sum in the cell at the

bottom of the column. The sum is denoted in the formulas

by 2y'. Also total the numbers in the y'
2 column and write

the result at the bottom of the column. The symbol for

this sum is 2y'
2

. In the same way find S#' and S#' 2

along

the bottom of the chart.

[The algebraic sum of the y' column is S/ =
89.

The algebraic sum of the x' row is S#' =
5. Similarly

2/2 = 1165 and S#' 2 =
659.]
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10. Now multiply the small number in the upper right-hand

corner of each cell by the number of tally marks in the cell,

and write the result in the upper left-hand corner of the

cell. This result is the
"
product-moment" for the frequen-

cies in the cell. Find this product for each cell that con-

tains a tally mark, taking account of signs.

[For example, there are two frequencies in the cell

common to the 14-15 row and the 50-59 column. The

small number in this cell is 20, hence the
"
product-

moment "
for this cell is 2 X 20 =

40.]

?i. Now find the sum of all positive product-moments in each

horizontal row and write the result in the (+) x'y
f

column.

Then find the sum of all negative product-moments in each

row and write the result in the ( ) x
f

y
r

column.

[For example, the sum of the positive moments in row

14-15 is 25 + 40 + 10 =
75, and the sum of the negative

moments is 15 + 30 =
45.]

12. Total the ( ) and (+) x'y' columns and find the algebraic

sum of the results. This final sum is denoted in the formulas

by Zo/y''.

[The sum of the numbers in the + x'y' column is 458,

and in the x'y' column is 190. The total of the x'y'

products is 458 190
= 268. Hence, Z#y =

268.]

13. Now you have found the values of Z#', Zy', 2#'2
, 2y'

2

,
and

of Z#y . Each of these values must be divided by N to give
V/v' V/t/ ^T^2 ^A/ 3 "VA^'A/^vV ^y +j<*' *~iy , ^wvv y

> -T7> -rr-> -fr> and rf-N N N N N
Spaces for the computation of these values are provided

along the right-hand margin of the chart.

x' 5 2#'2
650

^ __ ^ __ _ , _ _
^ '

- -r^y -r Q

'' -89 . _ Sy"_ 1165 _ _
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14. Now square the values of ( -TT-
J
and f -rr-

J
to give the values

/Z*'V /23/Y
of ( 1 and (

j
,
and write the results in the appro-

priate spaces in the right-hand margin also.

15. Now compute the values of the standard deviations, using

the formulas given in the middle of the right-hand margin
of the chart.

forx
= Vi3.i8- .01 = Vi3.i7 = 3-63

"j

Lcr1/

= ^23.30- 3.17 = A/20. 13
= 4-47J

Note: It is very important to note that these standard de-

viations are expressed in units of the interval and not in raw

score values. The S.D.'s should be expressed in interval

units in the formula for r given on the chart, but if the

S.D.'s in raw score units are needed for any other purpose,

the values here obtained must be multiplied by the size of

the interval in each case.

[The S.D. of the X measures is 3.63, expressed in interval

units. Since an interval of 10 was used along the X scale,

the S.D. of the English Training scores is 3.63 X 10 =
36.3 in

raw score units. The S.D. of the Mathematics Aptitude

scores is similarly 4.47 X 2 = 8.94.]

1 6. You will then have all the values needed for substitution in

the formula to give the value of r the coefficient of correla-

tion between the paired series. Substitute
r

these values in the

formula, reduce the expression to a simple decimal number,

and write the result as the value of r.

\r
5-36- (- .10) (- i.?8) = 5-36

-
.178

L 3.63X4-47 3- 63><4-47

5.182
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While the student of statistics must necessarily become ac-

quainted with economical procedures for computing r from raw

score data, he is strongly advised to make no attempt to base

his interpretation of r upon the relatively complicated formulas,

such as Formulas (22) and (23), which are used in such computa-
tion. These formulas are extremely difficult to interpret directly

and are likely to create the false impression that the correlation

coefficient is a much more complicated concept than it really is.

The Pearson product-moment coefficient of correlation is nothing
more than a simple average (mean) of a number of z-score pro-

ducts, and the student should do all of his thinking about the

correlation coefficient in terms of this relatively simple z-score

definition, or in terms of Formula (21).

The Phenomenon of Regression

An interesting characteristic of the frequency distributions of

measures of two rectilinearly related traits for any group of in-

dividuals is the fact that if, from the total group, a number of

individuals are selected all of whom are exactly alike with reference

to the first trait, these individuals will, on the average, lie closer to

the general average of the second trait than they do to the general

average of the first. Suppose, for example, we consider the rela-

tionship between height and weight for any large group of adults.

If, from the total group, we selected a number of persons all of

whom were 6 feet 3 inches tall, we would find these individuals,

on the average, less extreme in weight than in height. Similarly,

if we selected from the total group those individuals who were,

say, 275 pounds in weight, we would not expect the average in-

dividual in this group to be as extreme in height as in weight.

A few of these heavyweight individuals would also be unusually

tall, but many of them would be only moderately tall or even

below the general average in height. Again, if from the total

group we selected a number of individuals all of whom were

extremely short, we would find that on the average these indi-

viduals would be less extreme in weight than in height, since
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many of these short persons would be near or above the general

average in weight.

Again, suppose that a test in general mathematics and one in

world history were administered to all freshmen in a given uni-

versity. If from the total group we selected a number of individuals

who were outstanding in their performance on the mathematics

test, we would find that, while most of these individuals would

also be above average on the history test, only a few of them would

be as far above average in history as in mathematics. For these

selected individuals the mean score on the history test would be

lower (when expressed in comparable terms, such as z-scores)

than their scores on the mathematics test. Similarly, most in-

dividuals making very low scores on the history test would make

better scores on the mathematics test.

This phenomenon is one which we have all noticed, but which

we have seldom expressed in quantitative terms or referred to as

the
"
phenomenon of regression/' We have all observed, however,

that individuals selected because they show a certain degree of

superiority in one trait (whether the superiority is marked or

slight) are seldom equally superior in other related traits, and that

individuals inferior in one trait are seldom equally inferior in

others.

A graphic representation of this phenomenon will be helpful in

arriving at a more exact understanding of its character. The two

frequency curves in Figure 18 represent the distributions of meas-

ures of height and weight for the same group of adults. The

X distribution represents the distribution of height; the Y dis-

tribution, that of weight. Both distributions are plotted along

comparable (z-score) scales. In the height distribution there has

been marked off a shaded area including individuals who are be-

tween two high values on the height scale. Let us suppose that

there are 12 individuals in this interval. For each of these in-

dividuals there has been located the position of his weight in the

distribution of weights, and a line has been drawn from the mid-

point of the shaded interval to each of these positions. We note
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that three of these individuals are higher up along the weight
scale than along the height scale, but that the others are less

extreme in weight than in height. This is consistent with what

we have already observed about the nature of the relationship

between height and weight. The mean weight of these 12 indi-

viduals is indicated by the point M'v ,
and a heavy line has been

drawn from the shaded area to this point. We note that this

line points inward toward the middle of the weight distribution,

that is, that the mean weight of these 12 individuals is only about

half as far from the general mean, Myj
of the weight distribution

Height (X) Weight (Y)

FIG. 18.

Illustrating the phenomenon of regression in terms of the distributions of height and

weight for a given sample.
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as the shaded interval is from the general mean, Mx ,
of the height

distribution. In other words, zy is less than zx .

This picture suggests what would be found in the distributions

of any two positively related traits for any group. If the rela-

tionship between the two traits were perfect, then the lines from

any interval in the left-hand distribution would all run exactly

horizontally across to the other distribution, that is, every measure

in the one distribution would be paired with another with the

same relative status in the second distribution. If the relation-

ship were high but not perfect, these lines would spread apart,

but would form a relatively narrow "fan," and the heavy line

(to the mean value of the second variable for the selected group)
would be deflected only slightly toward the middle of the second

distribution. If the relationship were very low but positive, the

lines would spread to nearly all parts of the second distribution,

and the heavy line would point more sharply into the middle

of that distribution. If the traits were entirely unrelated, the

lines would spread throughout the whole of the second distribu-

tion, and the mean of the selected cases (M'y) would coincide

with the mean of the entire unselected group. For example, if

height and intelligence were the measures concerned, and if lines

were drawn from an interval near the lower end of the height

scale to the positions of the corresponding measures on the in-

telligence scale, these lines would spread throughout the entire

intelligence distribution around a mean which coincided with the

general mean in intelligence. This is the same as saying that

short persons are just as variable in intelligence and show the

same mean intelligence as tall persons, or as the persons in a group

of individuals of differing heights.

If the relationship were negative, the majority of the lines from

any one interval in the first distribution would go to the opposite

half of the second distribution, as would the heavy line (at the

mean of the selected cases).

In general, then, the higher the degree of correlation, the nar-

rower will be the fan-shaped pattern of lines drawn from scores in
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a certain interval of one distribution to the corresponding meas-

ures in the other, and the more nearly horizontal will be the heavy
line drawn to the mean of these selected cases. As long as the

relationship is not perfect, this heavy line will point inward, how-

ever slightly. The lower the correlation, the wider will be the

spread of these lines, and the more nearly will the heavy line

point to the middle or general mean of the second distribution.

In other words, for individuals selected from a given group be-

cause they are alike in one trait, the mean value of a second related

trait will regress toward the general mean of the second trait for

the entire group. The amount of this regression (equal to the

distance a in Figure 18) can be shown to be inversely related to

the coefficient of correlation between the two measures. With

perfect correlation, there is no regression. With zero correlation,

the regression is complete, that is, the mean of the selected cases

will coincide with the general mean of the second distribution

and zy will become zero.

A more complete understanding of the exact nature of the

phenomenon of regression may perhaps be acquired by consider-

ing further just what it means graphically in terms of the scatter-

diagram showing the relationship between two sets of measures.

The oval in Figure 19 represents the pattern of the distribution of

tally marks on a scatter-diagram showing the relationship be-

tween height and weight for a given group of individuals. For

the sake of simplicity in illustration, the tally marks themselves

have been omitted from the chart, but the student can visualize

them as being distributed over the area included inside this oval.

This, then, would represent a case of fairly high positive relation-

ship. The scales employed in plotting this figure are the z-score

scales corresponding to the original scales of height and weight.

These scales have been used so that the deviations from the mean

along either scale may be directly compared. Again, for the sake

of simplicity, only one column (C) and one row (K) are shown.

The point A represents the mean weight of the individuals tallied

in column C, that is, of a group of individuals all of the same height
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FIG. 19.

Illustrating the phenomenon of regression in terms of the scatter-diagram of height and

weight measures for a given sample.

and all of whom deviate from the general mean (Mx) of the height

distribution by an amount equal to zx (at top of chart). It will

now be noted that the point A lies closer to the horizontal line

My representing the general mean in weight than it does to the

vertical line Mx representing the general mean in height. (This

is apparent because the point A is above the diagonal DD, which

is equidistant from the two axes.) In other words, individuals

all of the same height are, on the average, nearer (zy) to the general

mean in weight than they are (z~) to the general mean in height,

that is, zv is less than zx . (Do not confuse zx with zx ,
or zv with

%,). Still another way of saying this is to say that the ratio
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zy/zx is less than i.oo, since the numerator in this expression is

smaller than the denominator. This ratio, furthermore, may be

shown to be proportional to the coefficient of correlation, that is:

- = r

If the relationship were perfect, then all of the tally marks would

lie along the diagonal DD, and the point A would therefore lie

on this diagonal and be equidistant from the two axes. In this

case, zy would be equal to zxy and the ratio z
y/zx would be equal

to i.oo, as would the coefficient of correlation. If the variables

were unrelated, then all of the tally marks would be considered as

lying within a circle with center at O. The point A would then

lie on the line Mv and zy would be equal to zero. The ratio zy/zx

would then be equal to zero, as would the coefficient of correlation.

Similarly, if we consider only the individuals in a single row R,

all of whom are of the same weight (zy), we find that their mean

height (represented by point J3) lies closer to Mx than to My ,

that is, we find that zx is less than zy . Again, the ratio between

zx and z
y would be proportional to the coefficient of correlation,

that is:

On any chart of this kind, representing a positive rectilinear

relationship between two variables, the mean, A, of any column

would lie closer to the horizontal than to the vertical axis. The

means of the other columns in Figure 19 (if they were shown)

would lie approximately along a straight line drawn through A
and O. Similarly, the means of the other rows would lie near the

line drawn through B and O. These two lines are known as the
"
regression lines." If the relationship were perfect, these two

lines would coincide along the diagonal DD. The amount by
which they would diverge would depend upon the degree of rela-

tionship. If the relationship were zero, they would coincide with

the veitical and horizontal axes, and would therefore be at right

angles to one another. (Note that these statements apply only
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when both measures are plotted along comparable z-score scales.)

We have already noted that

** = ?*=:,
Z Z

r
*v

x y

Hence
zx
= r^y (24)

in which zy is any given z-score in the F distribution, and zx is

the mean z-score in the X distribution for those individuals with

the given z-score in the Y distribution. Similarly,

2y
= rxyzx (25)

in which zx is any given z-score in the X distribution, and zy is

the mean of the corresponding z-scores in the F distribution.

These equations (24 and 25) are known as the
"
regression equa-

tions" (in z-score form). Their application may be illustrated as

follows: Suppose that the coefficient of correlation between height

and weight for a given group of adults is r = .6. If from the total

group we selected all individuals with a z-score of 1.4 in the height

distribution, we would find that their mean z-score in the weight

distribution would be 1.4 X .6 = .84. Again, if from the weight

distribution we selected all individuals with a z-score of 2.0, we

would find that their mean z-score in the height distribution would

be 1.2. If a correlation of .75 existed between two sets of

measures, the individuals who were 1.4 of a standard deviation

above average in one distribution would, on the average, be

1.4 X .75
=

( ) 1.05 of a standard deviation below (because of

negative sign) the general mean of the other distribution. These

regression equations, then, are simply a way of saying in algebraic

language that the amount of regression is dependent upon the

degree of relationship.

The Use of the Regression Equations in Prediction

The significance of the regression equations for practical work

in education and psychology lies in the fact that they constitute

an objective means of estimating the value of one variable for an

individual when the value of another related variable is known for
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that individual, and when the degree of correlation between the

two variables is known for the group to which he belongs. If,

for example, we know that an individual's height is 1.2 S.D.'s

above the mean of the group to which he belongs, and if we know

that the coefficient of correlation between height and weight for

that group is .5, and if the relationship is rectilinear, then the best

estimate that we can make of his z-score in weight is .5 X 1.2 =
.6,

because that is the mean z-score in weight of all individuals

(from the total group) who are of the same height as the given

individual.

Again, suppose that a test of scholastic aptitude was given a

year ago last fall to all entering freshmen in a certain university

and that at the end of the academic year it was discovered that a

correlation of .7 existed between the scores on this examination

and the grade-point averages earned by the students during their

freshman year. Suppose that in the fall of the present academic

year the same test was administered to the entering freshmen and

that on this test a certain freshman earned a z-score of + 1.8.

Let us now assume that the frequency distributions of test scores

and of grade-point averages for the present freshman class will

each show the same central tendency and variability as the corre-

sponding distribution for the preceding class, and that the coeffi-

cient of correlation between these test scores and grade-point

averages will be approximately the same this year as it was last

year. According to the principle of regression, the individuals

who make a z-score of + 1.8 on the scholastic aptitude test this

year will, on the average, earn a grade-point average that is 1.26

S.D.'s above the general mean of the distribution of grade-point

averages for the entire class (.7 X 1.8). Accordingly, the best

prediction that we can make for any one of these individuals is

that he will make a grade-point average with a z-score equivalent

of + 1.26.

One further illustration of this use of the regression equations

might be considered here, this time in the field of industrial psy-

chology. Suppose that the sales organization of a large corpora-
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tion had followed the practice of administering to each applicant

for a position as salesman a test of "salesmanship ability."

Suppose that on the basis of past experience it had been shown that

there was a coefficient of correlation of .8 between the scores on

this examination and the sales records later made by the appli-

cants. The sales manager could then use the regression equations

to predict, at the time that application is made, how well any

applicant will succeed on the job, and could select his new sales-

man from available applicants accordingly.

In general, then, whenever the coefficient of correlation between

two related traits is known for a sample selected for a given popula-

tion, if we know only the z-score equivalent of an individual in

one of these traits, we can predict (by means of the regression

equations) his probable status in the general distribution of the

other trait.

The Raw Score Form of the Regression Equations

In practical work, when predictions are to be made of one vari-

able from known values of a related variable, it is not convenient

first to transform each of the known measures into its z-score

equivalent, then to determine (by means of the regression equa-

tions) the expected value of the related z-score in the second trait,

and then in turn to transform this estimated z-score into its

equivalent raw score value. To save the time required for these

transformations of known raw scores into z-scores and the estimated

z-scores into raw scores, the predictions are usually computed

directly from and expressed in raw score values. The raw score

form of the regression equations may be derived by substitut-

ing in Formulas (23) and (24) the following equivalents of zx

and zy .

X-MX
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Upon substitution of these values and simplification and trans-

position of terms, Formulas (24) and (25) become:

X^rxv^(Y-My)+Ms (26)
**

Y = rxy^(X-Mx) + My (27)

The following examples will illustrate how these formulas are

applied. Suppose that to a given number or random sample of

individuals in a given school population a test of general intelli-

gence and a test of silent reading comprehension are administered.

Let us refer to the intelligence test as the X test, and to the read-

ing comprehension test as the Y test. Suppose that the following

measures are derived from the distributions of scores on these

two tests:

Mx
= 102; (rx

=
12] My

=
80; <r

v
=

9; r
xy
= .8.

Suppose then that some other individual from the population in

question made a score of 126 on the intelligence test, but that he

did not take the reading test, and that we wish to estimate as

accurately as possible what score he would be likely to make on

it. We could do this by substituting the given values in Form-

ula (27) as follows:

Y = .8 X (126 102) + 80 =
94.4, or 94 (rounded value)

12

If similar predictions were to be made for a large number of in-

dividuals, it would be more convenient to reduce the general ex-

pression

7= .8X (X- 102) + 80

to the simpler form

F = .6.Y+I8.8.

Using this expression, then, if an individual were known to have

made a score of 90 on the intelligence test, we would estimate

for him a score of .6 X 90 + 18.8 = 72.8 on the reading test.
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Estimates of probableX scores could similarly be made from known

F scores, using Formula (26).

The Reliability of Prediction; The Standard Error of Estimate

In the preceding sections we have seen that when the regression

equations for two related variables have been determined for a

given group we can, by means of these equations, estimate for any
individual the probable value of one variable from a known

value of the other. Predictions based upon these regression

equations, however, are never (except in the case of perfect correla-

tion) perfectly reliable. These equations only indicate, for in-

dividuals with a given measure of one trait, what is the mean of

their measures in a second trait. The actual measures of the

second trait for these individuals are scattered on either side of

this mean, so that the estimate of the second trait for any particular

individual would seldom coincide with his actual measure of that

trait. For example, if it is known that the mean weight of persons

6 feet tall is 150 pounds, then 150 pounds is the best estimate of

the weight of any particular six-footer, but we would know that his

actual weight would probably differ considerably from this esti-

mate. The reliability of this estimate, then, would depend upon
the variability in weight for six-footers in general. If the actual

weights of six-footers in general were known to cluster closely

around the mean of 150 pounds, then this mean would be a close

approximation to the weight of any six-footer. If, on the other

hand, the actual weights of six-footers in general were known to

show a wide spread on either side of 150 pounds, then we could not

consider this mean as a dependable or reliable estimate of the weight

of any single individual of this height; that is, the actual weight

of the particular six-footer involved would be likely to differ con-

siderably from this estimate. The reliability of any prediction of

this kind would, then, depend upon the variability in weight for

persons of the same height. More specifically, the reliability of

these estimates would depend upon, or would be measured by,

the standard deviation of weights for persons of the same height
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When thus used to describe the reliability of prediction, this S.D.

of the one variable for individuals with a given value of another

variable is known as the standard error of estimate. Accordingly,

the standard error of estimate in predicting reading test scores

from arithmetic test scores for a given group would be the S.D.

in reading test scores for individuals (selected from the given

group) all of whom have the same arithmetic score.

Let us now consider some of the more important characteristics

of this standard error of estimate. Suppose that we have measures

of two rectilinearly related traits, A and J5, for a given group of

individuals, that <?A and crB represent the S.D.'s of distributions

of the measures for the entire group, and that rAB represents the

coefficient of correlation between these measures for this group.

Suppose further that from the total group we select a group of

individuals all of whom have the same measure of trait A
,
that we

make up a frequency distribution of the B measures for these

selected individuals, and that we compute the S.D. of this distribu-

tion. Let this S.D. be represented by <TB .A . This expression may
be variously interpreted as "the S.D. of the B measures which

are paired with a given value of A" or "the S.D. of B when A
is held constant/' or "the standard error of estimating B from A.'

7

One interesting characteristic of <TB .A is that its value, in

most cases of rectilinear relationship, is independent of the given

value of A
y
that is, of the value at which A is held constant. For

example, the S.D. of weights for adult individuals of a given height

is about the same regardless of the value of the given height. A

group of six-footers will show about the same variability in weight

as a group of five-footers. This is again equivalent to saying

that in the scatter-diagram the variability of the measures in any
one column is about the same as the variability of the measures in

any other column on the chart. Or again, it is equivalent to saying,

with reference to Figure 18, that the "spread" of the lines drawn

from any point in the left-hand distribution is about the same

regardless of the position of the point in that distribution from

which the lines were drawn. In all of our subsequent discussions
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of the standard error of estimate, we will assume that the relation-

ship between the two variables is of this character. (This as-

sumption is frequently known as the assumption of homoscedacity.}

Another characteristic of VB ,A is that it is always less than

<rB unless, of course, the traits are entirely unrelated, in which

case <rB .A is equal to crB . This is only equivalent to saying that

individuals alike with reference to one trait will be more alike

with reference to a related trait than will individuals with differ-

ing measures of the first trait. Again, it is equivalent to saying,

with reference to Figure 18, that the fan-shaped pattern of lines

will not spread throughout the whole distribution, or, with refer-

ence to the scatter-diagram, that the S.D. of measures in any
one column is less than the S.D. of measures for all columns

combined.

Another significant characteristic of <TB .A is the fact that its

O" a

ratio to B ,
that is, the ratio -> will be large if the correlation

between A and B is low, and will be small if the correlation is

high. It can be shown that this ratio bears a definite relation-

ship to rAB ,
as follows:

Similarly:

We may note at once that these algebraic expressions are en-

tirely consistent with what has just been said. If rAB equals

zero, then the ratio -^ becomes equal to i.oo, that is, <rBA be-
<**

comes equal to <rB . If rAB equals i.oo, then ~ equals zero,

which means that &B .A equals zero, or that individuals alike in A
are also all exactly alike in B. Similarly, if rAB

=
.8, then

-4 = v'l .8
a =

.6, which means that <rB .A is .6 or 60 per

cent as large as o>.
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Multiplying both sides of Equation (28) by aB and canceling

aB in the left-hand term, we get the following formula for the

standard error of estimate (in estimating B from A).

*B.A
= *B Vi - r

2

AB (30)

Similarly, the standard error of estimating A from B is

VA-B
=

A Vi -
r\B (31)

The following illustrations will indicate how these formulas are

applied. Suppose that for a given group of adults the coefficient

of correlation between height and weight is rmv .6, that an = 3

inches, cr
]V
= 12 Ibs., that the means in height and weight for the en-

tire group are 69 inches and 145 Ibs., respectively. By means of the

raw score form of the regression equation (Equation 26 or 27), it

could then be shown that the best estimate of the weight of an

individual who is 72 inches tall would be 152.2 Ibs. The reliability

of this estimate, as we have already noted, would depend upon the

variability (standard deviation) in weight of all persons (in the

given group) who are 72 inches tall. This standard deviation

according to Formula (30) or (31) is

ffw-B
= ffw v i TWH = 12 vi .6

2 =
9.6 Ibs.

This standard error of estimate may be interpreted in much the

same fashion as we have previously interpreted the standard error

of the mean in sampling error theory. Assuming that the distribu-

tion of weights for a large number of persons 72 inches tall would

approximate the form of the normal curve, we may say that ap-

proximately 68 per cent of all persons of this height will be within

9.6 Ibs. of the mean weight (152.2 Ibs) of all persons of this height,

We may say, then, that the chances are about 68 out of 100 that

the actual weight of any one individual of this height is within

9.6 Ibs. of the best estimate (152.2 Ibs.) that we can make of his

weight. Again applying the known area relationships under the

normal curve, we may say that the chances are 95 out of 100 that

the actual weight of this individual is within two standard errors

of the estimate; that is, the chances are about 95 out of 100 that
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his actual weight is within 19.2 Ibs. of 152.2 Ibs., or that it is

between 171.4 Ibs. and 133.0 Ibs. Again we may say that we are
"
practically certain

"
that his actual weight is within three stand-

ard errors of his estimated weight, or that we are practically

certain that his actual weight lies somewhere between 180.8 and

123.2 Ibs. [152 + (3 X 9.6) and 152
-

(3 X 9.6)].

The Assumption of Rectilinearity

In the foregoing discussions, attention has been repeatedly

drawn to the fact that the Pearson product-moment correlation

coefficient, as well as the regression equations and standard errors

of estimate based upon it, is intended for use only with measures

that are rectilinearly related. This fact deserves greater emphasis

than it has yet been given. If the relationship between two sets

of measures departs markedly from rectilinearity, r not only be-

comes a poor measure of the degree of relationship, but its use

may even lead to serious misinterpretations. Instances may be

found, for example, in which r = o but in which the measures are

nevertheless very closely or even perfectly related. Fortunately

for the student of statistics, instances of data showing markedly

curvilinear relationship are relatively rare in educational and

psychological research, so rare that it is hardly worth while to

burden the beginning student with any consideration of the special

correlation methods that are available for the treatment of such

data. It is sufficient for him to know that such methods do exist

and may be referred to if the occasion demands. It is extremely

important, however, that in all instances in which he makes use

of r or of the regression equations based upon it, the student demon-

strate conclusively that the relationship involved is at least ap-

proximately rectilinear in form. Certain mathematical tests of

rectilinearity or curvilinearity are available, but the application

of such tests is rarely necessary in practical work and need not be

considered here. The most practicable test of rectilinearity is

that based simply upon an inspection of the scatter-diagram. If

the curvilinearity is not so marked that it is not immediately
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apparent upon inspection of the scatter-diagram, the student need

have no fear that the use of product-moment correlation tech-

niques will lead to any serious error. It is well, therefore, to con-

struct a scatter-diagram whenever a correlation coefficient is to

be computed, even though the scatter-diagram is not needed in

the computation, as when certain machine methods of computa-
tion are employed.

Sampling Errors in r

If two samples of the same size were selected strictly at random

from the same population and a scatter-diagram showing the

relationship between the measures of two given traits were pre-

pared for each sample, we would almost invariably find that the

distribution of the tally marks would not be exactly the same for

both samples. The operation of chance in selecting the individuals

constituting each sample would practically guarantee differences

in these scatter-diagrams. The sum of the z-score products, and

hence the value of r, would therefore differ somewhat for the two

samples. The r for either sample could therefore not be taken as

a perfectly reliable indication of the r that would be obtained if the

entire population were considered. If a large number of random

samples of the same size were selected from the population, very

few samples would show the same r as any other. These obtained

r's' would be distributed on either side of the true r, and (if the

true r were not too high) the form of this distribution would be

that of the normal curve. The standard deviation of this distribu-

tion may be shown to be

(32)

in which the r represents the true r for the population and N the

number of cases in each sample. If this standard deviation is

small, that is, if all obtained r's cluster closely around the true r,

then the r obtained from any single sample is, of course, unlikely

to deviate far from the true r
y
and may be accepted as a close

approximation to it. If this standard deviation is large, then
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the r for any one sample is likely to differ considerably from the true

r
,
that is, it is likely to contain a large sampling error and must be

considered as unreliable. This standard deviation is therefore a

measure of the reliability of the r for a single sample, and is known

as the
"
standard error of r." For a large sample drawn from a

population in which the true r does not closely approach i.oo, the

sampling distribution of r is approximately normal. When the

true r is high, the distribution of obtained r's is markedly skewed,

even though the samples are large. The reason for this is readily

apparent. Suppose, for example, that a large number of random

samples are drawn at random from a population for which the true

r is .96, and that the obtained r is independently computed for

each sample. Obviously, none of the sample r's could deviate

from the true r by more than .04 in one direction, while sampling

errors very much larger than this could readily occur in the other

direction. The result would be a sampling distribution markedly

skewed to the left the smaller the sample, the more extreme

the skew.

Accordingly, it is only for large random samples in which the

obtained r is low or only moderately high that one may interpret

the standard error of r with the aid of Table 17. With what maxi-

mum value of r the standard error may safely be thus interpreted

depends upon the size of the sample. A safe rule to follow is never

to use Formula (32) at all with small samples (say, N < 60), and to

use it with large samples only if the obtained r is less than .80.

(If the sample is very large, consisting of several hundred cases,

the formula and Table 17 may perhaps be safely used for r's as

large as .9.) Other techniques, beyond the scope of this course, for

dealing with small samples and high r's are elsewhere available. 1

For samples that satisfy the preceding conditions, the standard

error of r may be interpreted in much the same fashion as the

standard error of theinean (see pages 106-123). Suppose, for ex-

ample, that the correlation between x and y is rxy
~ .60 for a

1 See Lindquist, E. F., Statistical Analysis in Educational Research, pp. 210-218.

Houghton Mifflin Company, 1940.
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given random sample of 100 cases. To compute the standard

error of this r by means of Formula (32), we should know the

value of the true r for the population concerned. Not knowing

this, we substitute for the true r in the formula the obtained r

from our sample and thus secure a useful approximation
l to the

standard error desired, as follows:

i
- r

2
i
- .6

2

- /~\r\ A= .- .OU4

This means that if r's were similarly obtained from a large num-

ber of random samples of ioo cases each, these obtained r's would

fall into an approximately normal distribution with a standard de-

viation of approximately .064. About 95 per cent of these r's

would then lie within .064 X 1.96= .125 of the true r. Accord-

ingly,
2 we may be confident at the 5 per cent level that the true

r lies somewhere between .60 .125
=

.475 and .60 + .125
=

.725.

Similarly, the 2 per cent confidence interval for the true r is equal

to .60 rb (0.64 X 2.33) or .451 to .749, and the i per cent confidence

interval is .435 to .765.

Suppose, now, that for a certain population the true r between

x and y is zero. For any random sample drawn from this popula-

tion, we could, nevertheless, hardly expect (because of chance

fluctuations) that the sum of the positive z-score products would

exactly cancel the sum of the negative z-score products. In other

words, the r obtained from the sample would almost certainly

differ from zero. For example, while the true correlation between

height and intelligence for a given population of adults might be

zero, in any particular random sample from this population we

might by chance find that the tall individuals are, on the average,

slightly more intelligent than the short individuals. In another

1 Because of this substitution, this procedure will yield a close approximation to

the standard error of the obtained r only when that r is itself highly reliable. Hence,
this is an added reason for not using Formula (32) with small samples.

*
Strictly, for reasons similar to those explained on page 127, the procedure here

suggested is inexact and somewhat biased. An exact procedure for establishing con-

fidence intervals for r's of any size and for samples of any size is described in Lind-

quist's Statistical Analysis in Educational Research, pp. 211-214.
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sample, again by pure chance, the reverse might be found. The

fact that a correlation not equal to zero is obtained for a sample,

therefore, does not constitute conclusive evidence that a true r

other than zero exists for the whole population. Before accepting

an obtained r as evidence of a real relationship, we must show that

it cannot reasonably be accounted for by chance fluctuations in

random sampling.

If the true r for a given population is zero, then according to

Formula (32) the S.D. of obtained r's for a large number of random

samples of N cases each will be

i - o2
i

VN

If, then, a sample of N cases is drawn at random from a certain

population and the obtained r is found to exceed 2. 58/A/TV, we may
be confident at the i per cent level that the true r is greater than

zero, or that the obtained r does not represent a chance deviation

from a true r of o.oo. In other words, an obtained r greater than

2.$%/'\/~N is significant at the i per cent level. Similarly, an r is

significant at the 2 per cent level if it exceeds 2.33/VW or at the

5 per cent level if it exceeds i.g6/\/N.

Suppose, then, that we selected' a sample of 100 cases from a

population for which the true r between two variables is unknown

and find that for this sample the obtained r is .24. We could then

be confident at the 2 per cent level that the true r for this popula-

tion is not zero
;
in other words, we could be confident at the 2 per

cent level that there is some relationship between these variables

as far as the entire population is concerned. On the other hand, if

the obtained r had been .15, the hypothesis would be quite tenable

that the true r for the population is o.o, and that the obtained r

of .15 is entirely due to chance fluctuations in random sampling.

For the convenience of the student in determining whether or

not an obtained r is statistically significant and at what level,

Table 21 has been prepared. This table shows the maximum
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value of r that is required for significance at each of the three

commonly employed levels of significance. For example, an r

obtained from a sample of 125 cases must exceed .175 to be signifi-

cant at the 5 per cent level, .208 to be significant at the 2 per cent

level, and .230 to be significant at the i per cent level.

TABLE 21

MINIMUM VALUES OF CORRELATION COEFFICIENT REQUIRED FOR

SIGNIFICANCE AT VARIOUS LEVELS FOR VARIOUS SIZES OF SAMPLES

The significance of a difference between r's obtained from in-

dependent random samples may be tested in much the same

fashion as a difference in means. If the samples are large and

the r's are not high, a close approximation to the standard error

of the difference may be obtained by substituting the standard

errors of the separate r's in Formula (15). The ratio between the

difference and its standard error may then be interpreted by means

of Table 17. It is very important to note that this procedure
is not valid, in general, if the r's being compared are both obtained

from the same sample.

Influence of the Variability of Measures upon the Magnitude of r

If, in a study of the relationship between measures of two traits,

we selected two groups of individuals such that one group showed

greater variability in these measures than the other, we would

find that the coefficient of correlation r between the measures
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would be greater for the more variable than for the more homo-

geneous group. Suppose, for example, that we administered a

reading test and an arithmetic test to a group of sixth grade

pupils, and that the oval marked "VI" in Figure 20 represents

the pattern of the tally marks for these scores on a scatter-diagram.

That is, this oval might contain all of the larger cell frequencies,

although a few scattered tally marks might lie outside this oval.

This, then, would represent only a "moderately high" positive

correlation, since the oval is so broad in proportion to its length,

that is, since the variability of the measures in any single column

(or row) would be only slightly less than the variability of the

measures in all columns (or rows) combined for the entire sixth

grade group.
1 Now suppose that we administered the same tests

to a group of seventh grade pupils. These pupils would, in

general, earn higher scores than the sixth graders on both tests,

and the pattern of their tally marks, when plotted on the same

scatter-diagram, might be represented by the oval marked "VII."

Similarly, ovals IV, V and VIII might represent the patterns of

tally marks, plotted on the same scatter-diagram, for groups of

fourth, fifth and eighth graders, respectively. Again we may note,

so far as any one of these groups alone is concerned, that the rela-

tionship is only moderately high, since in each case the oval is

short and broad. However, when we consider all groups together,

we note that an oval including all of the larger cell frequencies

would be quite narrow in proportion to its length. We would

therefore expect the coefficient of correlation between these scores

to be considerably higher for the total group (all grades) than for

the sixth (or any other) grade group alone.
2 In one sense, how-

1 That is to say, <rc (the standard deviation of the measures in column C) would be

almost as large as^ (the standard deviation of reading scores for all sixth grades).
a The standard deviation of the measures in any column (such as column C)

would be quite small in proportion to the standard deviation (<rT) of the measures

GC
from all columns for the combined groups. It follows, then, that~ would be con-

siderably smaller than * From this it follows (see Formula (28)) that the correla-
Vr

tion, r*y, would be considerably larger for the heterogeneous total group than for the

more homogeneous sixth grade group.
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ever, the real degree of relationship is the same in either case,

since the reliability of estimate (which depends upon the standard

deviation of the measures in individual rows or columns) is the

same whether we consider the sixth grade alone or all grades com-

bined.

Arithmetic

FIG. 20.

Showing influence of range of talent upon r.

The magnitude of the coefficient of correlation between meas-

ures of two traits for a given group will then depend upon the

variability of these measures for the given group, or, as the same

idea is frequently expressed, it will depend upon the
"
range of

talent
"

of the group. The correlation between measures of the

same two traits may therefore have one magnitude for one group

of individuals, and quite a different magnitude for still another

group. It follows from this that it is not meaningful to speak of

the correlation between any two traits, apart from any description

of the group for which the correlation is determined. Statements
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such as, "The correlation between height and weight is .52," or
" There is only a low correlation between intelligence and spelling

ability,
"

are therefore indicative of loose thinking. Such state-

ments should always be accompanied by a description of the

particular group involved, including a description of its varia-

bility in the measures concerned. To say, for example, that the

correlation between achievement in two school subjects is .60 for

a group of fifth grade pupils is quite another thing than to say that

it is .60 for a group which includes pupils from all grades from the

first to the eighth. Comparisons of the closeness of relationship

should therefore not be based on comparisons of r's unless they

are established for groups that are at least approximately alike in

"range of talent.
"

The Meaning of a Given Value of r

We have already noted that while the coefficient of correlation

r (because of the characteristics noted on page 1 50) is a convenient

index of relationship, it may not be considered as directly propor-

tional to the degree of relationship. A coefficient of correlation of

.80, for example, may not be said to represent exactly twice as

close a relationship as one of .40, even though both are established

for the same range of talent. To be able to make such a statement,

we would have to be able to describe, independently of r, just

exactly what we mean by closeness of or degree of relationship,

and no such description or definition that is generally acceptable

has yet been proposed. Because of our inability to define "degree

of relationship," we are unable to state in general how r changes

in value for given changes in that degree.

It may be well to remind ourselves that f, after all, is simply

one of a number of equally arbitrary mathematical procedures

which, when applied to sets of related measures, will yield a single

number somehow indicative of the degree of relationship. The

coefficient of correlation r is based on z-score products; other in-

dices could be derived from differences in z-scores for the individuals

concerned, or from the ratios between their z-scores, or from the
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squared differences in z-scores, or from similar measures based on

percentiles and ranks, and so on almost without limit. Few of

these other indices would have the characteristics that would make
them as convenient to use and interpret as r, but which of them is

most nearly linearly
I
related to the degree of relationship we

cannot say, since this would depend upon how we defined degree

of relationship. For the same reason, we cannot say in general

that r is any better than many other available indices in this

regard.

Numerous schemes and devices have nevertheless been suggested

to assist the student of statistics to appreciate the significance of a

given value of r. Some of these devices are quite helpful in certain

restricted types of situations, but all of them may be seriously

misleading in other situations or in general, and must be used with

extreme caution.

One of the most common and most misleading of these practices

has been that of classifying r's of certain values as "high," "me-

dium," and "low." For example, an r of .30 or less has been said

to be "low," one of from .30 to .70 "medium," one of from .70 to

.90 "high," and one of above .90 "very high." The numerical

values of r corresponding to each of these categories has, of course,

differed for various classifiers. Such classifications are invariably

misleading, since what constitutes a "high" or a "low" correlation

is a relative matter, and differs markedly for different types of

situations. Coefficients of correlation of as high as .50 between

measures of a physical and a mental trait are extremely rare, and

a correlation of .60 between two such traits would be considered

as phenomenally high for almost any group. Correlations of this

magnitude between reliable measures of two mental traits, how-

ever, are quite common, and in this instance would be considered

as only medium for most populations in which we are interested.

Again, a correlation of .90 between two independent measures of

1 Two variables are linearly related if a given amount of change in the value of

one is always accompanied by a constant amount of change in the value of the

other.
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the same mental trait for example, between the scores on two

equivalent tests of spelling ability
I

might be considered as only

medium or low, particularly if the tests were very long and com-

prehensive. In this situation, an r of .60 would be considered as

extremely low. There is no single classification, then, that is

applicable in all situations, and because of the danger that they

will be applied in situations in which they are not valid, it is best

that any and all such classifications be disregarded entirely by the

beginning student.
2

Another device for the interpretation of r is that which is con-

cerned with the improvement over a "best guess
"

in predictions

based on the regression equations. Suppose, for example, that

an individual is selected at random from a given group whose

mean and standard deviation of a given measure (X) are Mx and

<rx respectively. The "best guess
7 '

that we could make of this

individual's x measure would then be MXJ and the "standard

error" of this guess or estimate would be ax . Suppose, however,

that we knew the measure of another trait (F) for this individual,

and that variables X and F were rectilinearly related for the

group in question. We could then, by means of the appropriate

regression equation, make a better estimate than before of this

individual's x measure. The standard error of this estimate

would be ffx .v
= vx v'l /%,. The difference between this latter

standard error and the first, that is, the reduction or improvement
in the standard error of estimate, would then be

1 In this case the correlation coefficient would also be the coefficient of reliability.

a The student will have noted that the adjectives "high," "low," and "medium "

have been applied several times in this chapter to correlation coefficients and de-

grees of correlation. This may appear inconsistent with what has just been said.

These adjectives, however, have been used to refer only to the absolute mathematical

magnitude of the correlation coefficient; that is, a high correlation in these discus-

sions means one high up along the scale of possible value (near i.oo), a low correla-

tion means one near zero, and a medium correlation means one near .50. Used in

this sense, "high" does not imply "important" or "consequential," nor does "low"
mean "of no importance" or "of no consequence." The student must distinguish

carefully between this use of these adjectives and their use in interpretation or evalu-

ation of correlation coefficients.



THE MEANING OF A GIVEN VALUE OF r 2OI

This expression could be expressed as a per cent of crx (the standard

error of a "best guess ") by dividing by <rx and multiplying by

100, as follows

x
-

<*x X/i - r*
100 = 100

If, then, the coefficient of correlation between X and Y were

rxy
=

.80, the standard error of an estimate based on the regression

equation would be less than the standard error of a best guess by
an amount equal to 40 per cent of the latter. An r of .60, similarly,

would represent a 20 per cent improvement over a best guess.

The nature of the relationship between r and this per cent im-

provement over a best guess is shown in Figure 21. From this

figure we note, for example, that an r of .50 represents an improve-

ment of about 14 per cent over a best guess, that an r of .86 rep-

resents a 50 per cent improvement, etc. We see, then, that the

reduction in the standard error of estimate remains small and in-

creases very slowly for low values of r and that marked improve-

ments come only with very high values of r. For the purposes of

prediction, then, an r of .40 is not much better than an r of o,

while the difference between an r of .80 and one of .90 is very

much greater than between an r of .50 and one of .60.

Figure 21 is quite helpful in the interpretation of r's used for

purposes of prediction, but, like all other devices of this type, may
be seriously misleading when applied in other situations. It

would be a grave mistake, for example, to reason that, because an

r of .40 is very little better than an r of o in prediction, it is there-

fore to be considered as
"
very low "

or as of no consequence in other

situations. An r of .40 between measures of two mental traits for

a given group might have very important implications to the educa-

tional psychologist with reference to a theory of learning, even

though it would be practically useless in estimating the measure

of one trait from that of another for any individual.

Many other devices for the interpretation of r have been sug-

gested in the literature of education and psychology. Except

when used by persons highly trained in statistics, however, all
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FIG. 21.

Improvement in accuracy of prediction for increasing values of r.

of these devices are more likely to be misleading or confusing

than helpful. It is therefore recommended that the beginning

student in statistics make no attempt to arrive at any absolute

interpretation of r. He should look upon it simply as an arbitrarily

selected index which happens to be indicative of (although not

linearly related to) the degree of relationship. When comparing

r's of different magnitude, he should avoid trying to estimate

"how much'
5

closer the relationship is in one case than in another,

but should be content with the knowledge that there is a differ-

ence of some indeterminate amount. He should be careful, also,

never to compare r's except when the relationships are known to

be rectilinear and when the groups involved are comparable in

"range of talent/' and should take sampling errors into considera-

tion in all such comparisons. If he wishes to secure a more

definite notion of what an r of a given magnitude really means,

he can do no better than to study the distribution of the tally

marks on the scatter-diagram from which it is computed.
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Causal vs. Casual Relationship

One other very important admonition remains to be made.

No more serious blunder in the interpretation of correlation

coefficients can be made than that of assuming that the correla-

tion between two traits is a measure of the extent to which an

individual's status in one trait is caused by or due to his status in

the other. It is indefensible, for example, to argue that, be-

cause a high correlation exists between measures of silent reading

comprehension and arithmetic-problem-solving ability for the in-

dividuals in a given group, problem solving is therefore dependent

upon reading comprehension or vice versa, or that a given student

does well in arithmetic because he is a good reader. All of this

may be true, but it does not necessarily follow from the statistical

evidence of correlation.

The observed correlation between measures of two traits is

sometimes due to a cause-and-effect relationship between them,

but there is nothing in the statistical evidence to indicate which

is the cause and which the effect. For example, there is a fairly

high correlation between age and grade status of elementary

school children. In this case we know, of course, that we cannot

increase a pupil's age simply by promoting him from one grade

to the next that age is not due to grade status but we know

this because of logical considerations which are quite independent

of the statistical correlation.

Again, correlations are sometimes observed between traits that

have no cause-and-effect connection whatever, the observed corre-

lation being due entirely to a third factor (or several factors)

which is (or are) related to each of the traits in question. For

example, there is a positive correlation for the general population

between ages of mothers at parturition and the intelligence of

their offspring, but this is because women of high intellectual

standards and ability tend, for economic and cultural reasons,

to be married later in life, and not because middle age is the best

time to bear intelligent children. Again, however, we arrive at

this interpretation on the basis of logic which is quite independ-

ent of the direction or magnitude of the observed correlation.



204 CORRELATION THEORY

Finally, the observed correlation between two traits may some-

times be in just the opposite direction from a cause-and-effect

relationship which really exists. For example, in almost any high

school or college course there is a negative correlation (of usually

about .30) between grades earned and number of hours spent in

study. The students who make the highest grades are in general

those who spend the least time studying, while those who make

low grades in general spend more than the average amount of time

in study. It would obviously be absurd, however, to contend on

the basis of this evidence that anyone can make higher grades by

studying less. The negative correlation is largely due to the fact

that intelligence is positively related to grades and negatively

related to time spent in studying that the less able students

must study more to even approach, though not equal, the achieve-

ments of their more able classmates. The causal connection be-

tween grades earned and time spent in study is positive, even

though the observed correlation is negative.

Whenever a significant correlation is found between two sets of

measures, there are always the possibilities: (a) that there is no

cause-and-effect connection
; (ft) that a cause-and-effect connection

is present in the same direction as the observed correlation; (c)

that there is a cause-and-effect connection, but in the opposite

direction from the observed correlation. Which of these possi-

bilities exists, and what is the strength of the cause-and-effect

connection (if any) cannot be determined from the observed correla-

tion. Any interpretations concerning cause and effect must be

based on logical considerations, not based on the observed corre

lation. The observed correlation may suggest a cause-and-effect

relationship, but can never prove that it exists, or show in what

degree it exists.



CHAPTER XI

CORRELATION TECHNIQUES APPLIED IN
THE EVALUATION OF TEST MATERIALS

A VERY large proportion of all educational and psychological

research takes as its basic data the measures or scores obtained

through educational and psychological tests, such as intelligence

tests, tests of educational achievement, tests of special aptitudes

and abilities, and scales for rating personality traits. The de-

pendability and meaningfulness of any conclusions drawn from

such research must, of course, depend upon the dependability and

meaningfulness of the original data upon which the conclusions

are based. Obvious as this statement may seem, it expresses a

truth which ha,5 been very frequently neglected in past research.

Investigators in education and psychology have tended to be

seriously uncritical of their original data. They have too often

taken it for granted that educational and psychological tests

really measure the things which the titles of the tests imply that

they measure. They frequently have allowed themselves to be-

come overly intrigued with statistical techniques for their own

sake, and to become so impressed by the method or technique of

analysis employed as to overlook the lack of meaning in the data

analyzed. The "
jingle fallacy

"
the mistake of failing to dis-

tinguish between the name of a thing and the true nature of the

thing named, of failing to differentiate between the name of a test

and that which it actually measures has characterized many

reports of educational and psychological research.

If, then, the student of statistics in education and psychology

is to develop a sound statistical judgment, it is essential that he

acquire a thorough appreciation of the limitations of the original

data with which he will have to work. It is extremely important

that he recognize how seriously measures of mental traits
l are

1 The term "trait," as used in this discussion, is broadly defined to include skills,

abilities, aptitudes, attitudes, and educational achievements.
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characterized by ambiguity and error, and how inadequately we

are able to control these errors or to describe their nature and mag-
nitude by means of available statistical and research techniques.

The purpose of the following discussion, accordingly, is to develop

in the student a better appreciation of the nature of measurement

in education and psychology.

THE NATURE OF MEASUREMENT IN EDUCATION AND
PSYCHOLOGY

Mental traits or abilities, unlike height and weight, are intangi-

ble in character and, in general, can be measured only indirectly

in terms of their manifestations in the overt behavior of individuals.

Let us consider, for example, the nature of a test of general intel-

ligence. The measurement of
"
general intelligence" consists

essentially of noting how many of a number of selected mental

tasks of varying difficulty an individual can complete successfully

under certain standard conditions. To construct such a test, the

test author would first make a collection of problems, puzzles,

questions, or other mental tasks each of which, in his opinion or

in the opinion of other competent observers, requires the exercise

of intelligence. He would try to include a variety of types of

tasks involving various aspects of general intelligence, and would

attempt to secure a wide range in difficulty, including some tasks

intended to test the very stupid and some to challenge the very

intelligent individuals. He might then administer these potential

test items experimentally to a group of individuals, some of whom
are generally considered to be

"
bright

" and some to be dull mentally.

He would then discard any item not successfully completed by a

larger proportion of bright than of dull individuals, since such

items would not contribute to the purpose of the whole test, which

is to reveal differences in intelligence. On the basis of the as-

sumption that mental ability increases with chronological age, he

might also discard any items which do not show an increasing pro-

portion of successes at succeeding age levels. He would then
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assemble the remaining tasks or items into a "test," in which the

person tested is to be given one point of credit for each task

completed. He would then devise a set of standard directions for

administering the test, and finally would administer it to a large

and representative group of individuals for the purpose of estab-

lishing "norms' 7

of performance in terms of which mental ages

could be computed.
The important thing to note about this whole procedure is that

at no stage in the process, either in making the original selection

of tasks or in their final assembly into a "test/' would the test

author be able to describe exactly what he means by general in-

telligence. Certainly, no test author has yet been able to provide

a meaningful definition which has proved entirely acceptable to

other equally competent psychologists. He can only claim for

his test that it does, on a more objective, reliable, and comparable

basis, what each of us does when we subjectively estimate the

intelligence of our acquaintances by noting what things they are

able to do. In the last analysis, the only unambiguous definition

of general intelligence is that it is what is measured by a general

intelligence test. Intelligence, like nearly all other mental traits,

is both defined and measured in terms of the concrete situations

in which it is overtly manifested. 1

It should be apparent from the foregoing discussion that the

number of behavior situations in which any given mental trait or

ability may manifest itself is almost unlimited. There is no

practical limit, for example, to the number of mental tasks which

might be employed in the construction of a general intelligence

test, or to the number of different problems which might be de-

vised for use in a test of arithmetic reasoning. These behavior

situations, furthermore, are in general quite complex; that is,

1 The description here given of the nature of a general intelligence test does not

do justice to the most recent work in mental testing, in which attempts have been

made to identify the basic
"
factors

"
in general intelligence through objective, mathe-

matical analyses of test data. This description, however, is in all essential respects

valid with reference to most existing tests of "general" intelligence, as well as to

available tests of other more specific mental abilities and aptitudes and to tests of

educational achievement.
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the individual's behavior in any one of them may depend upon

many other traits and abilities than the one in which we are in-

terested. The individual's score on an arithmetic reasoning test,

for example, might depend in part upon his understanding of the

vernacular in which the problems were stated, upon his rates of

reading and writing, upon his ability to follow the directions foi

taking the test, and upon many other factors, some of which ma>
be quite irrelevant to his ability in arithmetic reasoning. Situa-

tions representing a "pure" manifestation of any single trait in

isolation are virtually impossible to find. Most of the traits in

which we are interested, furthermore, are in themselves quite

complex in character; that is, they may consist of combinations or

hierarchies of still simpler skills and abilities. Ability in arith-

metic, for instance, consists, among other things, of ability in

addition, in subtraction, and in multiplication, while ability in

addition of whole numbers may not be identical with ability in

addition of fractions or of denominate numbers, and even ability

in addition of whole numbers may be further analyzed into other

simpler skills, resting finally upon the 100 basic addition facts

(the possible combinations of two one-digit numbers) . Npt only

are nearly all traits, abilities and achievements measured by educa-

tors or psychologists of this complex type, but for few if any of

them do authorities agree upon the nature and relative significance

of the elements constituting the complex total.

All Measurement Involves Sampling

The definition of any mental trait, then, involves the identi-

fication or description of situations or types of situations in which

an individual's behavior is partly or primarily dependent upon the

amount of the given trait which he possesses. Since the number

of such situations is practically unlimited, the measurement of the

trait involves the selection of a sample of these situations a sam-

ple small enough to make it practicable for us to observe the in-

dividual's behavior in each situation. Ideally, the sample of

situations used for the measurement of the individuals in any
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given group should, for fairly obvious reasons, satisfy each of the

following conditions.

1. The sample must be representative of all the various types of

situations in which the trait may be manifested, or of all

the various elements constituting the complex total trait, or

of all the various aspects of that trait.

For example, an adequate test of general ability or achieve-

ment in arithmetic must contain some problems in addition,

some in multiplication, some in subtraction, etc., and among
the problems in addition there must be some in addition of

whole numbers, some in addition of decimals, and some in

addition of denominate numbers, while among the problems

in addition of denominate numbers different types of de-

nominate numbers and different degrees of complexity must

be represented.

2. The sample must be large enough to yield a stable or depend-

able measure of the individual's general ability.

For example, in a test of spelling ability consisting of only

20 words, two individuals who differ in general spelling

ability might make the same score, since the small sample

of words used might by chance contain a relatively large

proportion of the few words which the one can spell and a

relatively small proportion of the many that the other can

spell. For similar reasons, two persons of the same general

ability might make markedly different scores. The longer

the test, that is, the more extensive the sampling, the less

serious will be these chance fluctuations in obtained scores.

3. The individual's behavior in each situation must be relatively

uninfluenced by traits or factors irrelevant to the trait being

measured.

For example, the usual self-administering type of general

intelligence test would not be satisfactory for measuring the

intelligence of a group of recent immigrants to this country,

because of the high premium placed in such tests upon know-

ledge of the English language. Again, the grade received by
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a pupil on an essay examination may depend in part upon the

legibility of his writing, or upon the speed with which he

writes, or upon his ability to infer the teacher's intended

meaning from ambiguously stated questions, or upon his

ability to reproduce the sterotyped phrasing of the textbook,

or upon other factors not closely related to his true achieve-

ment in the field tested.

... Each situation must in itself differentiate between individuals

possessing different amounts of the total trait or representing

different degrees of development of that trait.
1 The whole

sample of situations, furthermore, must show a sufficient

range of difficulty to discriminate between individuals above

and below all levels of ability found in the group being

measured.

The first element in this condition has been partially illustrated

in the description of the manner in which an intelligence test

author discards certain items. Some items in a test may not

differentiate because they are either too easy or too difficult, so

that all individuals tested may succeed or all may fail on the item.

If the response (whether right or wrong) to an item is identical for

all persons tested, then clearly that item cannot help to reveal

any differences between these individuals. Other items may be

answered differently by different individuals, but those who re-

spond correctly may, on the average, possess the same amount

of the total trait as those who respond incorrectly. Certain words,

for instance, may be misspelled as frequently by good spellers as

by poor spellers.

To illustrate this condition further, suppose we wished to rank

a number of 1 5-year-old boys in the order of their ability in the

high jump. To do this, we would need a number of hurdles of

varying heights. The range of heights required in the hurdles

used would depend upon the range of ability in the boys being

1 A more adequate discussion of the differentiating power of individual test items

may be found on pages 39 ff. in The Construction and Use of Achievement Examina-

tions, Hawkes, Lindquist, Mann and others. Houghton Miffiin Co.
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measured. A hurdle which none or which all of these boys could

jump would not help us in ranking them. Similarly, in the con-

struction of a vocabulary test for a seventh grade group, it would

be futile to include words known to all individuals in the group or

words known to none of them, since such words obviously could

not discriminate between pupils (in this group) whose vocabulary
is broad or limited. Furthermore, the test must contain some

very difficult words to discriminate between the superior and the

very superior pupils, some very easy words to discriminate be-

tween the very inferior and the inferior pupils, and some words of

intermediate difficulty to discriminate between pupils at other

levels of ability.

These ideal requirements, of course, can never be completely

satisfied in actual test construction. A major obstacle to satisfy-

ing the first requirement, for example, is the failure of authorities

to agree upon a specific and meaningful analysis and description

of the trait to be measured. Without any such analysis, it is

impossible to say when the content of a test assigns proper weight

to or duly represents each of the constituent elements of the complex

total trait being measured. A test frequently can be made long

enough to satisfy the second condition, but length avails little if

the content of the test is biased or if test performance is unduly

influenced by irrelevant factors, and as has already been noted,

it is rarely possible to discover or devise situations that are entirely

free from irrelevant factors.

All Mental Measures Are Uncertain as to Meaning
It should be apparent from a consideration of the preceding re

quirements that the selection of a sample of behavior-situations

(or test exercises) for the measurement of any mental trait de-

pends in large part upon arbitrary subjective opinion. For most

traits it would be virtually impossible to select a sample upon which

complete agreement in authoritative opinion could be secured.

For this reason, if for no other, the measures obtained are inevi-

tably ambiguous to some degree, and often very seriously so. This
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ambiguity is accentuated by the character of the process of
"
scoring

" an educational or psychological test, and by the nature

of the scale along which the scores are expressed. The common

practice in mental testing is to assign an arbitrary number of

points of credit for the desired response to each situation (or

test item), the individual's score being the sum of such points

earned. There is, however, no way of demonstrating conclusively

that these arbitrary weights are in proportion to the "true"

values of the items, or of determining with complete objectivity

what these weights should properly be. Hence, the linear scale

of values along which these scores are expressed is not comparable

to those employed in physical measurement. The "unit" em-

ployed is unique to each scale and cannot be described or defined

in more fundamental terms, while its value fluctuates from point

to point even within the same scale. Furthermore, the zero point

on each scale is merely an arbitrary reference point whose rela-

tion to the absolute zero is not known. (See pages 29-31

of this text and questions i and 2 on pages 8 and 9 of the

manual.)

Still further ambiguity in mental measurement results from the

facts that the traits which we wish to measure are themselves

dynamic and fluctuating within the same individual, and that the

measures obtained of them are partly dependent upon attending

(and often accidental) circumstances. An individual's perform-

ance on a mental test always depends to some degree upon the

manner in which and the circumstances under which the test is

administered. Even though these external factors are controlled

or held constant, variations in the individual's own physiological

or emotional status may influence his responses.

For these reasons, the scores obtained on educational and psy-

chological tests must always be very cautiously interpreted. Such

scores must never be accepted at their face value, but must always

be considered as only approximate indications of the true relative

status of the individuals tested, or as likely to contain "errors"

of various types, any of which may be of considerable magnitude.
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The sources of these
"
errors of measurement "

may be briefly

summarized as follows:

1) The indirect character of all mental measurement

2) The lack of generally accepted, objective and meaningful

definitions of the things to be measured

3) The limited sampling of behavior-situations upon which the

measures are based

4) The unintentional measurement of irrelevant factors

5) The nature of the measuring scales employed

6) The fluctuating character of the individual's mental, emo-

tional, or physiological state

THE MEASUREMENT OF ERRORS IN MEASUREMENT

Test Validity

The validity of a test may be defined as the accuracy with which

it measures that which it is intended to measure, or as the degree

to which it approaches infallibility in measuring what it purports

to measure. The degree of validity of a test, therefore, depends

upon the magnitude of the
"
errors'' (due to any and all of the

causes just considered) which are present in the measures obtained

from it. The actual magnitude of the errors in a set of fallible

measures of any trait could, of course, be determined directly

only if we had available the corresponding infallible or
"
perfect"

measures of the same trait for the same individuals. We could

then describe the validity of the fallible measures in terms of the

average or median difference between the fallible and infallible

measures (that is, in terms of the average or median error), or in

terms of the coefficient of correlation between the two sets of

measures, or in terms of the probable error of estimating the

infallible from the fallible measures. In this case, the coefficient

of correlation between the infallible and fallible measures would be

considered as the true coefficient of validity of the latter for the

group of individuals involved. For reasons already given, how-

ever, it is impossible to secure perfect or infallible measures of any
mental trait for any group of individuals, and hence it is impossible
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to provide exact descriptions of the true validity of any of the

fallible measures which we are able to obtain. The true validity

of an educational or psychological test must always remain a

hypothetical concept, since there is never available an infallible

"
criterion" measure against which the fallible obtained measures

may be evaluated.

In some situations, however, a partial indication of the validity

of a given test may be secured by a study of the correlations be-

tween the scores obtained on the given test and on other tests of

the same trait. If a number of different tests are available for

the measurement of the same trait, and if it is the consensus of

authorities that one of these tests is definitely better than any of

the others, then this test may be used as a
"
criterion

"
against

which the others may be evaluated. Suppose, for example, that

we wish to determine which of two given intelligence tests (Tests

A and B) is the more valid for use at the seventh grade level, and

that each of these tests is of the type which may be conveniently

administered to a large group of pupils in a short testing period

let us say, 30 minutes. Now it would be generally admitted

by test authorities that no 3O-minute test of the
"
self-administer-

ing" type can yield results as dependable as those which may be

secured from an "individual" intelligence test such as the New

Stanford Revision of the Binet-Simon Scale for the Measurement of

Intelligence, which can be administered only to one pupil at a

time and in a relatively long period. Suppose then that we ad-

minister all three of these tests under standard conditions to the

pupils in a random sample of seventh graders, and that we compute

the coefficient of correlation between the New Stanford I.Q.'s and

those obtained from each of tests A and B. If, then, we find that

this correlation is significantly higher for Test A than for Test B,

we might consider this fact as strong evidence that, for pupils

like those in the sample, Test A is the more valid in determining

individual I.Q.'s. How convincing this evidence would be to us

would depend, of course, upon our confidence in the New Stanford

Revision as a criterion test
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The principal limitation of this method of securing objective

evidence of test validity is that very often the tests which we wish

to evaluate are themselves the best instruments that we know how

to build for measuring the traits in question. With reference to

the preceding illustration, for example, it would be extremely

difficult to devise an intelligence test which would be generally

conceded to be definitely superior to the New Stanford Revision

and which could be used as a criterion to describe the validity

of that test. Only when we feel certain (on the basis of sub-

jective opinion) that one method of measurement is definitely

superior to another may we reasonably use the one as a criterion

in the evaluation of the other. Even in this case, the criterion

itself would still be fallible, and hence the correlation coefficient

obtained would not be a true coefficient of validity, but would

only be indicative of the amount of agreement between one fallible

measure and another which is perhaps somewhat less fallible.

The student is warned that in the literature of education and

psychology, he will find presented as "validity coefficients
"
many

correlation coefficients which, because of the questionable char-

acter of the criterion, should not be thus described.

Test Reliability

An important characteristic of any test, a characteristic which

is essential to but not a guarantee of validity, is ^//-consistency

or reliability in measurement. The individual items or behavior

situations constituting any mental test always represent only a

very limited sample selected from a very much larger number of

possible or available items. Any two such samples, even though

similarly selected, are almost certain to present differences in

difficulty as far as any given individual is concerned. Suppose,

for example, that two samples of 50 words each are selected in the

same way from the same " master list" of spelling words, and that

each list is administered as a list-dictation spelling test to the

same large group of high-school juniors. While the two distribu-

tions of scores may be practically identical as far as the groups
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are concerned, very few individuals will make exactly the same

score on both tests. As a result of chance differences in the sample,

any one pupil will almost certainly find more words that he can

spell in one list than in the other. If the differences in the two

scores are large for most pupils that is, if there is a low rela-

tionship between the two sets of scores for the entire group

then either of the scores made by a given pupil would have to be

considered as largely due to chance, and very little reliance could

be placed in it as a measure of his ability. Close agreement in

the scores, however, would not prove the test to be valid as a

measure of general spelling ability, since close agreement could

be found even though each list represented a very biased sample,

or even though irrelevant factors had seriously influenced pupil

performance. If, for instance, each list had been unduly weighted

with words of Latin origin, those pupils who had studied Latin

might have an unfair advantage, but this fact would not lead to

inconsistency of performance if both lists were of this character.

Again, if both lists were dictated too rapidly, each pupil's score

might depend in part upon how fast he could write, but since the

slow writers would be equally handicapped in both tests, higher

rather than lower agreement in the two sets of scores might re-

sult. Consistency in measurement is therefore an essential but

not a sufficient condition for test validity.

The Coefficient of Reliability

The coefficient of reliability of a test for a given group is defined

as the coefficient of correlation between the scores made by that

group on two equivalent forms of the test successively administered

under the same conditions. Two forms of a test are said to be
"
equivalent

"
if both contain similar content, that is, if the samples

of items constituting them were similarly selected from the same

materials, and if both forms show the same distribution of scores

(equal means and equal variability) for the same group. Since

strictly equivalent forms of a test are seldom available, a more

satisfactory practicable definition of the coefficient of reliability of
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a test is that it is the average intercorrelation between scores on a

number of forms that have been made closely equivalent. By
definition, then, all equivalent forms of the same test are equally

reliable.

The coefficient of reliability is then simply a special application

of the coefficient of correlation. Whatever was said in the preced-

ing chapters concerning the interpretation of correlation coef-

ficients in general is equally applicable to coefficients of reliability.

Particular consideration should be given to the influence of the

range of talent upon the coefficient of reliability. When computed
for a group that is widely variable in the trait measured, the

coefficient of reliability of a given test may be considerably higher

than when computed for a group that is relatively homogeneous
in the same trait. An achievement test, for example, might show

a reliability of .95 for a group of third to eighth grade pupils and

of only .80 for a group selected from grade five alone. We there-

fore cannot speak meaningfully of the coefficient of reliability of

any test. The same test will show different reliability coefficients

for different groups. Each reliability coefficient must be accom-

panied by a description of the group upon which it is based to be

meaningfully interpreted. For this reason, coefficients of relia-

bility of different tests may be directly compared only if computed
for the same group or for groups of comparable ranges of talent.

As is true of the coefficient of correlation in general, coefficients

of reliability are also subject to fluctuations in random sampling,

and little dependence can be placed in them unless they are based

upon reasonably large groups of individuals. Again, as is true

of correlation coefficients in general, it is dangerous to attempt

to set up any arbitrary standards for the evaluation of reliability

coefficients. What may be considered as a "high" or "satis-

factory" coefficient of reliability in one situation may be con-

sidered as "low" or "unsatisfactory" in another, depending upon
the nature of the thing measured, upon the length of the test, upon

the range of talent involved, and upon the purpose for which the

scores are used. A reliability as low as .40 may be adequate for



21 8 TECHNIQUES IN EVALUATING TEST MATERIALS

comparisons of average scores for large groups of individuals,

while a coefficient even as high as .95 may in some situations be

considered inadequate where very accurate descriptions of indi-

viduals are desired. The student is therefore advised to make no

attempt to set up any single classification of reliability coefficients

as "high," "medium," or "low," but to evaluate the reliability of

each test on a relative basis in comparisons with coefficients simi^

larly obtained for other available tests of the same trait.

Ways of Estimating Coefficients of Reliability

The coefficient of reliability of a test for a given group can, of

course, be computed in the manner implied in the definition only

if two or more equivalent forms of the test are available. The

majority of the tests whose reliability we wish to describe exist in

only one form, and the labor involved in constructing an equivalent

form makes it impracticable to do so simply for the sake of com-

puting a reliability coefficient. For such a test, we can sometimes

obtain a useful approximation to its true reliability for a given

group by splitting the single test by chance into halves, assuming

that these halves are "equivalent" to one another, and scoring

each half separately for the individuals in the given group. Such

"chance halves" are usually obtained by letting the odd-numbered

items constitute one half and the even-numbered items the other.

If the two halves are truly equivalent, the coefficient of correla-

tion between the scores on them would, by definition, be the

coefficient of reliability of either half alone. We can then estimate

the reliability of the whole test by means of the Spearman Brown

Prophecy Formula, which indicates the relationship between the

reliability of a test and its length. The general form of this for-

mula is as follows:

(33)

where rw represents the coefficient of reliability of a given test

(the correlation between scores on equivalent forms i and 2), and

rn represents the coefficient of reliability of a test n times as long
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as the given test but in all other respects comparable to it. (The

longer test may best be thought of as consisting of n equivalent
forms of the given test.) In the case in which we wish to estimate

the coefficient of reliability of a whole test from the coefficient of

reliability of one of its halves, n in this formula would be equal to

2, and the formula would become

r
2T

f*A>
12
~

i + rn
(34'

in which r\\ is the correlation between scores on the chance

halves, and r12 the estimated reliability of the whole test, or thtf

estimate of the correlation that would be found between scores on

equivalent forms i and 2 if such forms were available.

The principal shortcoming of this method of estimating test

reliability is that chance halves of a test are ra rely closely equiva-

lent, and hence the coefficient of correlation between scores on the

halves only roughly approximates the coefficient of reliability of

either half. Furthermore, the juxtaposition of the items con-

stituting the two halves and the fact that the individual's responses

to certain items may be influenced by the responses he has already

made to others, together with other factors, may result in a closer

agreement in the scores on the two chance halves of the same test

than would be found if these two halves were independently ad-

ministered as separate tests. Whatever the reason, it has been

well established that coefficients of reliability estimated by the

chance halves method are usually higher than those computed for

the same test by correlating scores on independently administered

equivalent forms. Coefficients of reliability estimated in this

manner, then, are not only less dependable than those computed

directly, but also are likely to be spuriously high, and must be

interpreted accordingly.

Another estimate of the coefficient of reliability of a test exist-

ing in only one form may be made by finding the coefficient of

correlation between the scores obtained by administering the same

test twice to the same group. This is in general a very unsatis-

factory method, since it almost invariably results in spuriously
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high coefficients. The correlation between scores on successive

administrations of the same test is essentially an index of the in-

dividual's consistency of performance on the same items, rather

than of the adequacy of these items as a sample of what he can

do in general. If, for example, an individual were given 50 words

to spell and sometime shortly thereafter were given the same 50
words to spell again, in the latter situation he probably would

simply reproduce without variation the same spellings previously

given. Certainly we would expect his score on the second test to

be much more like that on the first than if the second test had

consisted of an entirely different set of 50 words. The method

of repeated administration perhaps may be safely employed only
when the individual's responses in the second testing are not a

function of his memory of specific information or of his ability to

recall the responses made by him in the first testing. This means

that this method should never be employed to determine the

reliability of a test of educational achievement.

The Reliability of a Single Score

Suppose we had available a large number of equivalent forms of

the same test, and that we administered all of these forms to the

same individual under the same conditions. Because of the

differences in the samples of items constituting the various forms,

we would, of course, expect the individual to make higher scores

on some forms than on others. If the test were highly reliable,

we would expect most of his obtained scores to have very nearly

the same value, but if the test were low in reliability we would

expect wide variations in his obtained scores. The standard

deviation of the distribution of these obtained scores would then

describe the reliability of a single score obtained on one form of

the test and hence would also describe the reliability of the test.

If the number of obtained scores (or equivalent forms) were very

large, the mean score in this distribution would be known as the

individual's "true score" on the test, and the standard deviation

Df the distribution would be the standard error of a single obtained
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score. Assuming that the obtained scores would be distributed

in the form of the normal curve, we could then interpret this

standard error in the same fashion in which we previously inter-

preted the standard error of the mean of a random sample (as

is illustrated in the following paragraph).

Since we rarely have even as many as two equivalent forms

available for a test, and never a very large number, the standard

error of a single score can never be computed empirically by the

method just described. It may be shown, however, that

<rm = <r V i - r
ia

-

(35)

in which cr represents the standard deviation of obtained scores on

a single form of the test administered to a large group of individuals,

r
12 represents the coefficient of reliability of that test for that

group,
1 and crm represents the standard error of a single score or

the
"
standard error of measurement. " To illustrate the applica-

tion of this formula, suppose that on a given achievement test in

United States history administered to a large group of tenth

grade pupils the standard deviation of obtained scores was 24.

Suppose also that the correlation between scores on two equivalent

forms (that is, the coefficient of reliability) of this test is .84 for

the group in question. In this case, the standard error of a single

score would be <7 TO
= 24 Vi .84

=
9.6. The probable error of

a single score accordingly would be .6745 am =
6.5. If, then, a

very large number of equivalent forms of this test were actually

administered to one of these pupils, we would expect his obtained

1 The student will note that this formula is much like that of the standard error

of estimate (see page 189). In fact, <rm may be considered as a standard error of

estimating an obtained score on a test from the corresponding true score. If for

each of the individuals in a large group we knew both the
"
true score" on a test and

the obtained score for a single form of the test, the coefficient of correlation, r t,

between these obtained and true scores could be shown to be equal to VVi?, that is,

to the square root of the coefficient of reliability of the test. Hence the standard

error of estimating obtained scores from true scores is equal to

<r
.t
= <r Vi- r*ot

= <rVi- rn
since ra = r^. The standard error of measurement, <rm , may then be considered

as the standard deviation of obtained scores for a group of individuals all of whom have

the same true score. The student should guard carefully against any tendency to

confuse the standard error of measurement with the standard error of estimate.
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scores to fall into a distribution whose standard deviation would

be 9.6 score units. Assuming that this distribution would be

normal, we could then say that on approximately 68 out of every

100 forms of this test the pupil's obtained score would be within

9.6 units of his true score, or that the chances are 68 in 100 that

his score on any single form would be within 9.6 units of his true

score. Similarly, the chances are 50 in 100 that his obtained

score on any single form is within 6.5 units of his true score. Again,

since only a negligible proportion of the measures in a normal

distribution deviate from the mean by three standard deviations,

we can say that it is practically certain that any single obtained

score will be within 3 X 9.6
= 28.8 score units of the corresponding

true score.

The standard error of measurement, like the standard error of

estimate, has the advantage that it is presumably independent

of the range of talent in the group for which it was determined.

The standard error of measurement for an achievement test in

arithmetic, for example, would have nearly the same value if

computed for a group of third to eighth grade pupils or for a group
of fifth graders only. The standard error of measurement, how-

ever, has the disadvantage that it is expressed in terms of the

unique unit in which the scores are expressed. Unlike the coef-

ficient of reliability, which is an abstract index independent of the

size of unit employed in measurement, the standard error of

measurement may not be compared for different tests and is

difficult to interpret for a single test because of the uncertainty

as to the meaning or absolute magnitude of the "unit" employed.
The standard error of measurement is, nevertheless, an extremely

important statistical concept, and should be much more widely

employed in educational and psychological research than it has

been in the past. Even though the standard error of measure-

ment is difficult to interpret because of the nature of the measuring
scales employed, its use does serve to emphasize the very important
fact that test scores may never be accepted at their face value

but must always be considered as only approximate indications of
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the true relative status of the individuals measured. If those

concerned with the interpretation of test scores, whether in educa-

tional research or in the practical school situation, followed the

practice of writing after each score the value of its probable error,

the mistake would be less frequently made of attributing real

significance to what are often only accidental variations in test

performance. In the interpretation, for example, of educational

profiles of individual pupils based upon achievement test batteries

such as the Stanford Achievement Test, it should always be re-

membered that minor "peaks" and "sags" in the profile can

readily be explained in terms of the unreliability of the tests and

should not be taken too seriously.

The Significance of Measures of Reliability

It has already been noted that tests intended for the measure-

ment of certain abilities or achievements for a given group of

individuals often, in spite of the best efforts of the test author,

actually measure other abilities than those which they are intended

to measure. In other words, what a test is intended to measure

and what it actually does measure may be and often are quite

far apart. The reliability of a test, however, does not give any
indication of how far apart these two things may be. The relia-

bility of a test indicates only how consistently it measures that

which it actually does measure. As long as a test measures

anything consistently, it is reliable, no matter how much what it

does measure differs from what it is intended to measure. If a

test is unreliable, that is, if it is not measuring anything consist-

ently, it of course cannot be valid, that is, it cannot be measuring

accurately what it is intended to measure. The coefficient of

reliability theoretically sets an upper limit to the validity of a

test,
1 but it does not indicate how far below that limit the true

1 The coefficient of reliability of a test, as well as the standard error of measure-

ment, takes into consideration only those fluctuations of obtained scores that are

found between equivalent forms when administered under the same conditions. In

other words, it takes into consideration only those variations or "errors" that are

due to chance differences in the samples of items constituting the various forms,

and disregards any constant error in the scores that may be due to any systematic
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validity lies. The coefficient of reliability is, therefore, most

useful for identifying poor tests or for demonstrating that a test

cannot possibly be high in validity. The fact that a test has a

high reliability coefficient, however, never constitutes proof that

the test is highly valid. Reliability coefficients are, therefore, of

very little if any value in demonstrating which of a number of

tests is most valid.

If a test happens in part to be measuring some trait or ability

other than that which it is intended to measure, this undesirable

characteristic of the test may in itself contribute to high reliability,

even though, of course, it would tend to lower the validity of the

test. Suppose, for example, that the students in a freshman course

in college English are given forty-five minutes to write an exposi-

tion on a certain designated topic and that grades are subjectively

assigned to these expositions, to be used as a measure of what is

vaguely described as "the ability to organize ideas and to express

them effectively in writing." In rating these papers, the instructor

may be unconsciously influenced by such factors as the legibility

of the student's writing, the sheer length of his exposition, and

the number of mechanical errors that he has made in spelling,

capitalization, punctuation, and grammar. Because of the influence

of these irrelevant factors, the grades assigned may be more con-

sistent from one situation of this kind to another than if the in-

structor had succeeded in entirely disregarding them in rating the

papers. The reason is that such things as errors in the mechanics

of correct writing, legibility, and length are much more readily

and objectively recognized than are weaknesses in "organization

bias which characterizes all forms alike. If there is no such bias in the equivalent

forms, that is, if the only errors present are chance errors, then the "true score,"
which is theoretically a perfectly reliable measure of whatever the test is actually

measuring, becomes also a perfectly reliable measure of what the test is intended

to measure. In this case (which is hypothetical only, and would never be found in

actual practice) the "true score" would be a perfectly valid as well as a perfectly
reliable score. Hence, in this instance the coefficient of correlation between obtained

scores and true scores would be a true coefficient of validity of the test. We have

already seen that the correlation between obtained and true scores is equal to the

square root of the reliability coefficient of the test. Hence, V^i2, which is known
as the index of reliability, theoretically represents the upper limit of the coefficient

of validity for a test. For example, if a test has a reliability of ,81, theoretically it

cannot have a validity coefficient higher than .00.
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and expression." Whenever performance on a test is influenced

by irrelevant factors, then, and when these irrelevant factors are

highly consistent in their influence upon performance, their pres-

ence will frequently tend to raise rather than lower the reliability

of the scores obtained.

The coefficient of reliability is particularly restricted in useful-

ness in the evaluation of available standardized tests of educational

achievement. In most of the common school subjects, the avail-

able published tests nearly all have fairly high coefficients of

reliability for the groups for which they are intended; that is,

they are not characterized by any very large differences in relia-

bility. For the range of reliability coefficients which have been

reported for the standardized tests in a given school subject, it

is probably true that there is very little relationship between test

validity and test reliability, and it is even conceivable that in

some instances there may be a tendency toward a negative rela-

tionship. In other words, it may sometimes happen that for a

number of tests, all of which are fairly high in reliability, the most

reliable test is among the least valid and the least reliable is

among the most valid. This happens because within any field of

instruction certain outcomes of teaching are much more difficult

to measure objectively than certain others, and because there

appears to be some tendency to give undue prominence in tests

to those outcomes that may be most readily and most objectively

measured, regardless of their relative significance. For example,

in the field of United States history it is relatively easy to measure

with high reliability the amount of descriptive information the

pupil has acquired, but it is comparatively difficult to measure

the extent to which he has integrated this information, has ap-

preciated its significance, and can use it in the interpretation of

contemporary institutions and practices. Again, it is easier to

measure the ability to recall stereotyped textbook statements than

to measure true understanding of the ideas that they contain.

Tests which are primarily informational in character, therefore,

or which place an undue premium upon lesson learning of the
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verbal type, tend to be more reliable than those in which a sincere

effort is made to measure the less tangible objectives of teaching.

For these and similar reasons, it is conceivable that the efforts

of test constructors to obtain high reliability in their tests has in

some instances resulted in less valid measurement than if they

had not depended so much on the reliability coefficient as an index

of test quality.

The concept of test reliability has been given undue prominence

in the research literature of educational and psychological meas-

urement during the past ten or fifteen years, probably because

quantitative descriptions of validity are so difficult to secure and

coefficients of reliability so easy to secure for most educational

and psychological tests. For this reason, a special effort has been

made in the preceding discussion to draw to the student 's atten-

tion the limitations of the coefficient of reliability as a measure of

test quality. It is hoped, however, that the student will not

derive from this discussion the idea that the coefficient of relia-

bility is of no value in test evaluation or that a measure of a test's

reliability is necessarily misleading as to its quality. High relia-

bility is an essential characteristic of a good test, and reliability

data are extremely useful for the identification and elimination of

unpromising techniques of measurement. Tests that differ very

widely in reliability will usually differ in the same direction in

validity, but small differences in reliability, particularly at the

upper limits of the range of possible values, are probably seldom

indicative of either the direction or magnitude of the correspond-

ing differences in validity.

There are many other statistical procedures, in addition to those

considered here, that may be used in the evaluation of test material.

In general, however, the true quality of a test can rarely be ade-

quately described objectively in statistical terms. In most in-

stances, particularly in educational achievement testing, final

judgment as to the validity of a test must be based primarily on

a subjective appraisal of the detailed content of the test in relation

to an authoritative description and competent logical analysis oi
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the trait or objectives to be measured. Lacking the extensive

technical training and experience necessary to make an adequate

appraisal of this type himself, the ordinary test user must depend
almost entirely upon authoritative or expert opinion in the selec-

tion of test materials.

NE48





APPENDIX

TABLE I

PER CENT OF TOTAL AREA UNDER THE NORMAL CURVE BETWEEN MEAN
ORDINATE AND ORDINATE AT ANY GIVEN P.E. DISTANCE FROM THE MEAN '

Adapted from R. H. Krause and H. S. Conrad, "A Seven-Decimal Table of the Area (a) under the

Unit Normal Curve, etc." Psychometrika, 1937, 2:55-66.
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TABLE II

TABLE OF SQUARES AND SQUARE ROOTS OF THE NUMBERS FROM i TO 1000
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TABLE III

MINIMUM VALUES OF SIGNIFICANCE RATIO REQUIRED FOR

SIGNIFICANCE AT VARIOUS LEVELS '

1 This table is taken by consent from Statistical Tables for Biological, Agricultural and Medical Re-

search by Professor R. A. Fisher and F. Yates, published at 13/6 .by Oliver & Boyd Ltd., Edinburgh.
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Arithmetic mean, see Mean
Average deviation, see Mean deviation

Averages, 51-68; see Mean, Median, Mode

Bias in sampling, 141

Central tendency, measures of, 51-58; see

Mean, Median, Mode
Class interval, size of, 16-17, 19-21;

limits of, 17, 20-21, 24-27; midpoint of,

27
Coefficient of correlation, meaning of,

160-166, 198-204; computation of, 167-
174; as measure of regression, 175-182;
in regression equations, 164-167; as

measure of reliability of prediction,

186-190; assumption of rectilinearity,

190-191; reliability of, 191-195; influ-

ence of range of talent on, 195-198; as

measure of test validity, 213-215; as

measure of test reliability, 216-218
Coefficient of reliability, 216-218; ways of

estimating, 218-220; significance of in

test evaluation, 223-227
Column diagram, see Histogram
Comparable measures, see Percentile rank
and Standard scores

Composite measures, 150-152
Confidence, levels of, 104-106
Confidence interval, for true mean, 106-

108, 118-121, 134-136; for true propor-
tion, 123-127

Continuous series, 24

Correlation, meaning of, 153-160; linear,

156; non-linear, 156; see also Coefficient

of correlation

Crude mode, 61

Cumulative frequency, curve of, 42-48
Curves, types of, 48-50; normal probabil-

ity, 81-101
Curvilinear relationship, 156, 190

Data, continuous and discrete, 24

Deciles, 32
Deviation, see Variability

Differences, reliability of, 129-136, 138-
139; see Standard error

Discrete data, 24

Distribution, frequency, see Frequency
distribution

Errors, in rounding numbers, 61-66; im- Ogive, 42-46

portance of in statistical work, 67; of

sampling, 102-143; f estimate, 186-

190; of measurement, 205-213, 220-

223; see also Standard error

Fitting, method of, normal curve to ob-

served distributions, 99-101
Frequencies, reliability of percentage,

125-129
Frequency distribution, need for, 11-12;

construction of, 13-28; graphic repre-
sentation of, 39-50; cumulative, 42-46;
types of, 48-49

Graphs, see Histogram, Polygon, Cumu-
lative frequency curve

Grouping, in frequency distributions, 13

ff.; natural, 21

Histogram, 39-41, 45-46; uses of, 50
Hypotheses, testing, 110-115, 130-136,

138-139

Index of reliability, 223 (footnote)

Interval, see Class interval

Levels of confidence, 106-108

Mean, definition of, 52; computation of,

52-60; number of significant figures in,

61-66; uses of, 68; reliability of, 106-

123, 136-138
Mean deviation, definition of, 70; com-

putation of, 71-74; characteristics of,

77-80
Measurement, nature of in education and

psychology, 205-213
Median, definition of, 60-6 i; computa-

tion of, 27; uses of, 68; reliability of, 124
Median deviation, definition of, 70; char-

acteristics of, 77-80
Mode, 61; uses of, 68

Normal probability curve, definition of,

81; properties of, 81-85; ordinates

under, 82-84; area relationships, 85-87;
uses of in type problems, 88-92; sig-
nificance of, 93-99

Normality, law of, 95-99
Null hypothesis, 1*0-136, 138-139
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Ordinates, relations between, of normal

curve, 82-84

Percentages, reliability of, 125-129
Percentile curve, 42-46
Percentile ranks, 32-33; computation of,

33-35' use and interpretation of, 37-38
Percentiles, 32-33; computation of, 35-3?;

use and interpretation of, 37-38
Polygon, frequency, 41-42, 45~46;

smoothing, 46-48
Prediction, uses of r in, 158-160; use of

regression equations in, 184-192; re-

liability of, 186-190
Probable error, 123, 125; see Standard

error

Product-moment correlation coefficient,
see Coefficient of correlation

Proportion, reliability of, 125-129

Quartile deviation, see Semi-interquartile

range

Quartiles, 32

Range, of a frequency distribution, 17; as

a measure of variability, 69
Range of talent, effect on r, 197-200
Ranks, 32

Rectilinearity, 156; assumption of, 190
Regression, phenomenon of, 175-182;

equations in z-score form, 182; in raw
score form, 185; uses of in prediction,

182-190
Reliability, meaning of, in sampling, 100-

101; of the mean, 100-121, 134-136; of

the median, 124; of the quartile devia-

tion, 124; of the standard deviation,

124; of differences, uncorrelated, 129-
133; of correlated differences, 134-136,

138-139; of per cents and proportions,

125-129; of test scores, 215-227; co-

efficient of, 216-220; significance of in

test evaluation, 223-227

Sampling distribution of mean, 104-105
Sampling, investigation by, 102 ff.; ran-

dom, 103, 140; errors in, 102 ff.; biased,

141; controlled, 142; methods of, 139-
143; in test construction, 20^-211

Scatter-diagram, 154-155
Scores, standard, 145

Semi-interquartile range, 70; reliability of,

124

Series, continuous and discrete, 24
" Short "method, of computing mean, 55-

60; of computing mean deviation, 71-

74; standard deviation, 75-77; coeffi-

cient of correlation, 167-174

Significance, statistical, 130-133
Significance ratio, 132

Significant, differences, 130-133; correla-

tion, 191-195
Significant digits, 61-66

Skewness, 48-49
Small sample theory, 136-139
Smoothing frequency distributions, 46-
48

Spearman, product-moment correlation

coefficient, see Coefficient of correlation

Spearman-Brown prophecy formula, 218-
220

Standard deviation, definition of, 71 ; com-

putation of, 75-77; characteristics of,

77-80; reliability of, 124
Standard error, of mean, 106, 115-124;

of median, 124; of quartile deviation,

124; of standard deviation, 124; of per-

centages and proportions, 125-129; of

differences, 129-136; of correlation co-

efficient, 191-195 ;
of estimates based on

regression equations, 186-190; of meas-
urement (of test scores), 220-223

Standard or z-scores, 145-146; computa-
tion of, 147-150; used in securing com-

posites, 150-152
Statistics, purposes of, 1-3 ; major aspects

of instruction in, 3-6; organization of

instructional materials, 6-9; how to

study, 9-10

Tabulation, of measures in frequency dis-

tributions, ii ff.

Test scales, characteristics of, 29-31, 205-
213

Tests, uses of correlation in evaluating,

205-227
"True" scores, 220

T-scales, 149

Validity, meaning of, 213; measurement

of, 214-215; relation of, to reliability,

223-227
Variability, measures of, 69-80; see also

Quartile deviation, Mean deviation,
Median deviation, Standard deviation








