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Preface

Hypothesis testing in the life sciences often involves comparing samples
of observations, and analysis of variance is a core technique for analysing
such information. Parametric analysis of variance, abbreviated as
‘ANOVA’, encompasses a generic methodology for identifying sources of
variation in continuous data, from the simplest test of trend in a single
sample, or difference between two samples, to complex tests of multiple
interacting effects. Whilst simple one-factor models may suffice for
closely controlled experiments, the inherent complexities of the natural
world mean that rigorous tests of causality often require more sophisti-
cated multi-factor models. In many cases, the same hypothesis can be
tested using several different experimental designs, and alternative
designs must be evaluated to select a robust and efficient model. Text-
books on statistics are available to explain the principles of ANOVA and
statistics packages will compute the analyses. The purpose of this book
is to bridge between the texts and the packages by presenting a com-
prehensive selection of ANOVA models, emphasising the strengths
and weaknesses of each and allowing readers to compare between
alternatives.

Our motivation for writing the book comes from a desire for a more
systematic comparison than is available in textbooks, and a more con-
sidered framework for constructing tests than is possible with generic
software. The obvious utility of computer packages for automating
otherwise cumbersome analyses has a downside in their uncritical pro-
duction of results. Packages adopt default options until instructed
otherwise, which will not suit all types of data. Numerous problems can
arise from incautious use of any statistics package, be it of the simplest or

X
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the most sophisticated type. In this book we will anticipate all of the
following common issues:

e Wrong model or insufficient terms requested for the desired hypothesis
(page 2 onwards);

e Wrong error terms calculated by default or wrongly requested (page 2
onwards);

e Data unsuitable for analysis of variance (page 14);

e Unwise pooling of error terms by default or design (page 38);

e Default analysis of effects that have no logical test (e.g., several designs
in Chapter 7);

e In unbalanced designs, inappropriate default adjustment to variance
estimates (page 237);

e Inmixed models, undesired default use of an unrestricted model (page 242);

e Inappropriate application of analysis of variance (page 250).

Armed with precise knowledge of the structure of a desired analysis,
the user can evaluate outputs from a statistics package and correct
inconsistencies or finish the analysis by hand. The main chapters of this
book are designed to provide the relevant information in a clearly
accessible format. They are preceded by an introduction to analysis of
variance that provides the context of experimental design, and followed
by further topics that treat issues arising out of design choices.

Scope and approach

Whilst there is no computational limit to the complexity of ANOVA
models, in practice, designs with more than three treatment factors are
complicated to analyse and difficult to interpret. We therefore describe all
common models with up to three treatment factors for seven principal
classes of ANOVA design:

1 One-factor — replicate measures at each level of a single explanatory
factor;

2 Nested — one factor nested in one or more other factors;

Factorial — fully replicated measures on two or more crossed factors;

4 Randomised blocks — repeated measures on spatial or temporal
groups of sampling units;

5 Split plot — treatments applied at multiple spatial or temporal scales;

6 Repeated measures — subjects repeatedly measured or tested over time;

7 Unreplicated factorial — a single measure per combination of two or
more factors.

W



Preface xi

For cach class of ANOVA, we describe its particular applications,
highlight its strengths and weaknesses, and draw comparisons with other
classes. We then present a series of models covering all reasonable
combinations of fixed and random factors. For each model we provide
the following information:

The model equation and its associated test hypothesis;

A table illustrating the allocation of factor levels to sampling units;
Illustrative examples of applications;

Any special assumptions and guidance on analysis and interpretation;
Full analysis of variance tables.

A systematic approach, with consistent layout and notation, makes it
easy for readers to evaluate alternative models and to identify which type
of model best fits the themes they are investigating.

Examples bring statistics to life as they show how particular models
can be applied to answer real-life questions. Throughout the book we
develop a series of examples to illustrate the similarities and differences
between different ANOVA models. More detailed worked examples are
also given to illustrate how the choice of model follows logically from the
design of the experiment and determines the inferences that can be drawn
from the results.

A multitude of statistics packages are available on the market and it is
beyond the scope of this book to describe the analysis of ANOVA models
in each. Rather, we encourage readers to become familiar with the
approach taken by their favourite package, and to interpret its outputs with
the help of the tables in the book and the sample datasets on our website.

How to use this book

The book is a reference tool to help experimental and field biologists
define their hypotheses, design an appropriate experiment or mensurative
study, translate it into a statistical model, analyse the data and validate
the resulting output. As such, it is intended to be a companion
throughout the scientific process. At the planning stage, the documented
tables allow users to make informed choices about the design of experi-
ments or fieldwork, with particular regard to the need for replication and
the different scales of replication across space or over time. Different
designs are directly comparable, facilitating the task of balancing costs of
replication against benefits of predictive power and generality. At the
analysis stage, the book shows how to construct ANOVA models with
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the correct F-ratios for testing the hypotheses, gives options for post hoc
pooling of error terms, and highlights the assumptions underlying the
predictions. Finally, by appreciating the methods used by computer
packages to perform ANOVAs, users can check that their input model is
appropriately structured and correctly formatted for the desired
hypothesis, can verify that the output has tested the intended hypothesis
with the correct error degrees of freedom, and can draw appropriate
conclusions from the results.

Who should use this book?

The book is aimed at researchers of post-graduate level and above who
are planning experiments or fieldwork in the life sciences and preparing to
ask questions of their data. We assume that readers are familiar with the
basic concepts of statistics covered by introductory textbooks (e.g.,
Dytham 2003; Ruxton and Colegrave 2003; McKillup 2006, amongst
many). Numerous very readable texts already exist to explain the theory
and mechanics underpinning analysis of variance (e.g., Kirk 1994;
Underwood 1997; Crawley 2002; Grafen and Hails 2002; Quinn and
Keough 2002), and we recommend that readers consult such texts in
addition to this book. We expect the users of this book to analyse their
data with a statistics package suitable for analysis of variance, and we
assume that they will employ its tutorial and help routines sufficiently to
understand its input commands and output tables.

Companion website

The book is supported by a website at www.soton.ac.uk/~cpd/anovas,
which provides additional tools to help readers analyse and interpret the
ANOVA models presented here. The website includes:

e Analyses of example datasets. The analyses illustrate how the raw data
translate into tested hypotheses for each of the ANOVA models in this
book. Datasets can be freely downloaded to verify the output from the
reader’s own statistics package.

e Model selection and comparison tools. A dichotomous key to the main
classes of ANOVA model is provided to help readers select the right
kind of ANOVA design for their needs, and a hyperlinked summary of
all the ANOVA models in the book is presented to facilitate the
comparison of alternative models.


http://www.soton.ac.uk/~cpd/anovas
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Introduction to analysis of variance

What is analysis of variance?

Analysis of variance, often abbreviated to ANOVA, is a powerful statistic
and a core technique for testing causality in biological data. Researchers
use ANOVA to explain variation in the magnitude of a response variable
of interest. For example, an investigator might be interested in the sources
of variation in patients’ blood cholesterol level, measured in mg/dL.
Factors that are hypothesised to contribute to variation in the response
may be categorical or continuous. A categorical factor has levels — the
categories — that are each applied to a different group of sampling units.
For example, sampling units of hospital patients may be classified as male
or female, representing two levels of the factor ‘Gender’. By contrast, a
continuous factor has a continuous scale of values and is therefore
a covariate of the response. For example, age of patients may be quantified
by the covariate ‘Age’. ANOVA determines the influence of these effects
on the response by testing whether the response differs among levels of the
factor, or displays a trend across values of the covariate. Thus, blood
cholesterol level of patients may be deemed to differ among male and
female patients, or to increase or decrease with age of the patient.

A factor of interest can be experimental, with sampling units that are
manipulated to impose contrasting treatments. For example, patients
may be given a cholesterol-lowering drug or a placebo, which represent
two levels of the factor ‘Drug’. Alternatively, the factor can be men-
surative, with sampling units that are grouped according to some pre-
existing difference. For example, patients may be classified as vegetarians
or non-vegetarians, which represent two levels of the factor ‘Diet’.

Biologists use ANOVA for two main purposes: prediction and explana-
tion. In predictive studies, ANOVA functions as an exploratory tool to find



2 Introduction to analysis of variance

the best fitting set of response predictors. From a full model of all possible
sources of variation in the response, procedures of model simplification allow
the investigator to discard unimportant factors and so develop a model with
maximum predictive power. This application of ANOVA is just one of many
forms of exploratory analyses now available in standard statistics packages.
ANOVA really comes into its own when it is used for hypothesis testing. In
this case, the primary goal is to explain variation in a response by distin-
guishing a hypothesised effect, or combination of effects, from a null
hypothesis of no effect. Any such test of hypothesised effects on a response has
an analytical structure that is fixed by the design of data collection. Although
this book provides some guidance on model simplification, its principal focus
is on the hypothesis-testing applications of ANOVA in studies that have been
designed to explain sources of variation in a response. More exploratory
studies concerned with parameter estimation may be better suited to max-
imum likelihood techniques of generalised linear modelling (GLIM) and
Bayesian inference, which lie beyond the scope of the book.

The great strength of ANOVA lies in its capacity to distinguish effects
on a response from amongst many different sources of variation compared
simultaneously, or in certain cases through time. It can identify interacting
factors, and it can measure the scale of variation within a hierarchy of
effects. This versatility makes it a potentially powerful tool for answering
questions about causality. Of course tools can be dangerous if mishandled,
and ANOVA is no exception. Researchers will not go astray provided they
adhere to the principle of designing parsimonious models for hypothesis
testing. A parsimonious design is one that samples the minimum number
of factors necessary to answer the question of interest, and records suffi-
cient observations to estimate all potential sources of variance amongst
those chosen few factors. As you use this book, you will become aware that
the most appropriate models for answering questions of interest often
include nuisance variables. They need measuring too, even if only to factor
them out from the effects of interest. One of the biggest challenges of
experimental design, and best rewards when you get it right, is to identify
and fairly represent all sources of variation in the data. True to the playful
nature of scientific enquiry, this calls for building a model.

How to read and write statistical models

A statistical model describes the structure of an analysis of variance.
ANOVA is a very versatile technique that can have many different



How to read and write statistical models 3

structures, and each is described by a different model. Here we introduce
the concept of a statistical model, and some of the terminology used to
describe model components. The meanings of terms will be further
developed in later sections, and all of the most important terms are
defined in a Glossary on page 271.

Analysis of variance estimates the effect of a categorical factor by
testing for a difference between its category means in some continuous
response variable of interest. For example, it might be used to test the
response of crop yield to high and low sowing density. Data on yield will
provide useful evidence of an effect of density if each level of density is
sampled with a representative group of independent measures, and the
variation in yield between samples can be attributed solely to sowing
density. The test can then calibrate the between-sample variation against
the residual and unmeasured within-sample variation. A relatively high
between-sample variation provides evidence of the samples belonging to
different populations, and therefore of the factor explaining or predicting
variation in the response. The analysis has then tested a statistical model:

Y=A+¢

We read this one-factor model as: “Variation in the response variable [Y] is
explained by [=] variation between levels of a factor [A] in addition to [+]
residual variation [g]’. This is the test hypothesis, H;, which is evaluated
against a mutually exclusive null hypothesis, Hy: Y =¢.

The evidence for an effect of factor A on variation in Y is determined by
testing Hy with a statistic, which is a random variable described by a
probability distribution. Analysis of variance uses the F statistic to com-
pute the probability P of an effect at least as big as that observed arising by
chance from a true null hypothesis. The null hypothesis is rejected and the
factor deemed to have a significant effect if P is less than some pre-
determined threshold o, often set at 0.05. This is known as the Type I error
rate for the test, and o= 0.05 means that we sanction 5% of such tests
yielding false positive reports as a result of rejecting a true null hypothesis.
The analysis has a complementary probability B of accepting a false null
hypothesis, known as the Type II error rate. The value of B gives the rate of
false negative reports, and a lower rate signifies a test with more power to
distinguish true effects. We will expand on these important issues in later
sections (e.g., pages 13 and 248); for the purposes of model building, it
suffices to think of the factor A as having a significant effect if P < 0.05.

Analysis of variance can also estimate the effect of a continuous factor.
This is done by testing for a trend in the response across values of the



4 Introduction to analysis of variance

covariate factor. The analysis is now referred to as regression. For
example, one might wish to test the response of crop yield to sowing
density measured on a continuous scale of seeds/m”. A single sample of
independent measurements of yield over a range of sowing densities
allows the effect of sowing density to be tested with a statistical model
having the same structure as the one for the categorical factor:

Y=A+c¢

We read this simple linear regression model as: ‘Variation in the response
variable [Y] is explained by [=] variation in a covariate [A] in addition to
[+] residual variation [g]’. The process of distinguishing between the test
hypothesis and a null hypothesis of no effect is exactly the same for the
covariate as for the categorical factor. The null hypothesis is rejected and
the covariate deemed to cause a significant linear trend if P < a.

Users of statistics employ a variety of terminologies to describe the
same thing. One-factor designs may be referred to as one-way designs.
The response may be referred to as the data or dependent variable; each
hypothesised effect may be referred to as a factor, predictor or treatment,
or independent or explanatory variable; categories of a factor may be
referred to as levels, samples or treatments, and the observations or
measures within a sample as data points, variates or scores. Each obser-
vation is made on a different sampling unit which may take the form of an
individual subject or plot of land, or be one of several repeated measures
on the same subject or block of land. The residual variation may be
referred to as the unexplained or error variation. The precise meanings of
these terms will become apparent with use of different models, for some
of which residual and error variation are the same thing and others not,
and so on. A summary of the standard notation for this book can be
found on page 44, and further clarification of important distinctions is
provided by the Glossary on page 271.

The full versatility of ANOVA becomes apparent when we wish to
expand the model to accommodate two or more factors, either catego-
rical or continuous or both. For example, an irrigation treatment may be
applied to a sample of five maize fields and compared to a control sample
of five non-irrigated fields. Yield is measured from a sample of three
randomly distributed plots within each field. Thus, in addition to dif-
ferences between plots that are the result of the irrigation treatments,
plots may differ between fields within the same treatment (due to
uncontrolled variables). This design has an Irrigation factor A with two
levels: treatment and control, and a Field factor B with five levels per



How to read and write statistical models 5

level of A. Factor B is nested in A, because each field belongs to only one
level of A. This two-factor nested model is written as:

Y=A+B(A)+¢

The model equation is read as: ‘Variation in growth rate [Y] is explained
by [=] variation between treatment and control fields [A], and [+] var-
iation between fields nested within each treatment level [B'(A)], in addi-
tion to [+] residual variation between plots within each field [€]’. This
model has two test hypotheses: one for each factor. At the cost of greater
design complexity, we are now able to test the region-wide applicability of
irrigation, given by the A effect, even in the presence of natural variation
between fields, given by the B'(A) effect.

The site factor B’ is conventionally written as B-prime in order to
identify it as a random factor, meaning that each treatment level is
assigned to a random sample of fields. Factor A is without prime, thereby
identifying it as a fixed factor, with levels that are fixed by the investigator —
in this example, as the two levels of treatment and control. We will return
again to fixed and random factors in a later section (page 16), because
the distinction between them underpins the logic of ANOVA. A nested
model such as the one above may be presented in the abbreviated form:
‘Y =B/(A) + ¢’, which implies testing for the main effect A as well as B'(A).
Likewise, the abbreviated description: Y = C'(B'(A)) + € implies testing for
A and B'(A) as well as C'(B'(A)).

As an alternative or a supplement to nesting, we use designs with
crossed factors when we wish to test independent but simultaneous
sources of variation that may have additive or multiplicative effects. For
example, seedlings may be treated simultaneously with different levels of
both a watering regime (A) and a sowing density (B). This is a factorial
model if each level of each factor is tested in combination with each level
of the other. It is written as:

Y=A+B+B*A +¢

The model equation is read as: ‘Variation in growth rate [Y] is explained
by [=] variation in watering [A], and independently [+] by variation in
sowing density [B], and also [+] by an inter-dependent effect [B*A], in
addition to [+] residual within-sample variation [¢]’. This model has three
test hypotheses: one for each factor and one for the interaction between
them. We are now able to test whether A and B act on the response as
independent main effects A and B additively, or whether the effect of each
factor on Y depends on the other factor in an inferaction B¥*A. An
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interaction means that the effects of A are not the same at all levels of B,
and conversely the effects of B differ according to the level of A. This
factorial model can be written in abbreviated form: °Y = B|A +¢’, where
the vertical separator abbreviates for ‘all main effects and interactions of
the factors’. Likewise, the description of a three-factor model as: Y =
C|B|A + ¢ abbreviates for all three main effects and all three two-way
interactions and the three-way interaction:

Y=A+B+B*A+C+ C*A+ C*B+ C*B*A + ¢

For any ANOVA with more than one factor, the terms in the model must
be entered in a logical order of main effects preceding their nested effects
and interactions, and lower-order interactions preceding higher-order
interactions. This logical ordering permits the analysis to account for
independent components in hierarchical sequence.

This book will describe all the combinations of one, two and three
factors, whether nested in each other or crossed with each other. For
example, the above cross-factored and nested models may be combined
to give either model 3.3 on page 98: Y = C|B(A) + €, which is also described
with an example on page 51, or model 3.4 on page 109: Y=C(B|A)+=.
Throughout, we emphasise the need to identify the correct statistical
model at the stage of designing data collection. It is possible, and indeed
all too easy, to collect whatever data you can wherever you can get it, and
then to let a statistical package find the model for you at the analysis
stage. If you operate in this way, then you will have no need for this
book, but the analyses will certainly lead you to draw unconvincing or
wrong inferences. Effective science, whether experimental or mensurative,
depends on you thinking about the statistical model when designing
your study.

What is an ANOVA model?

Any statistical test of pattern requires a model against which to test
the null hypothesis of no pattern. Models for ANOVA take the form:
Response = Factor(s) + €, where the response refers to the data that
require explaining, the factor or factors are the putative explanatory
variables contributing to the observed pattern of variation in the
response, and ¢ is the residual variation in the response left
unexplained by the factor(s). For each of the ANOVA designs that
we describe in Chapters | to 7, we express its underlying model in
three ways to highlight different features of its structure. For
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example, the two-factor nested model introduced above is described
by its:

e Full model, packed up into a single expression: Y =B'(A) +¢;

e Hierarchical nesting of sampling units in factors: S'(B'(A));

e Testable terms for analysis, unpacked from the full model:
A +B(A).

A statistics package will require you to specify the ANOVA model
desired for a given dataset. You will need to declare which column
contains the response variable Y, which column(s) contain the
explanatory variable(s) to be tested, any nesting or cross factoring
of multiple factors (these are the ‘testable terms’ above), whether any
of the factors are random (further detailed on page 16) and whether
any are covariates of the response (page 29). On page 259, we
describe a typical dataset structure and associate it with various
models.

In the event that the analysis indicates a real effect, this outcome
can be described succinctly (detailed on page 260) and illustrated with
a graph. Figure 1(a) shows a typical illustration of differences
between group means for a model Y = A + ¢, with three levels of A.
The significance of the pattern is evident in the large differences
between the three means relative to the residual variation around the
means. A non-significant effect of factor A would result from larger
sample variances, or sample means all taking similar values.

General principles of ANOVA

Analysis of variance tests an effect of interest on a response variable of
interest by analysing how much of the total variation in the response can
be explained by the effect. Differences among sampling units may arise
from one or more measured factors making up the effect(s) of interest,
but it will certainly also arise from other sources of unmeasured varia-
tion. Estimating the significance of a hypothesised effect on the response
requires taking measurements from more than one sampling unit in each
level of a categorical factor, or across several values of a covariate. The
sampling units must each provide independent information from a ran-
dom sample of the factor level or covariate value, in order to quantify the
underlying unmeasured variation. This random variation can then be
used to calibrate the variation explained by the factor of interest.
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For example, we can use ANOVA to test whether gender contributes
significantly to explaining variation in birth weights of babies. To assess the
effect of gender as a factor in the birth-weight response, it makes sense to
weigh one sample of male babies and another of female babies, with each
baby picked at random from within the population of interest (perhaps a
geographical region or an ethnic group). These babies serve as the replicate
sampling units in each of the two levels (male and female) of the factor
gender. The babies must be chosen at random from the defined population
to avoid introducing any bias that might reinforce a preconceived notion,
for example by selecting heavier males and lighter females. They should also
contribute independent information to the analysis, so twins should be
avoided where the weight of one provides information about the weight of
the other. The ANOVA on these samples of independent and random
replicates will indicate a significant effect of gender if the average difference
in weight between the male and female samples is large compared to the
variation in weight within each sample.

ANOVA works on the simple and logical principle of partitioning
variation in a continuous response Y into explained and unexplained
components, and evaluating the effect of a particular factor as the ratio
between the two components. The method of partitioning explained from
unexplained variation differs slightly depending on whether the ANOVA
is used to compare the response among levels of a categorical factor or to
analyse a relationship between the response and a covariate. We will treat
these two methods in turn.

Analysis of variance on a categorical factor tests for a difference in
average response among factor levels. The total variation in the response is
given by the sum of all observations, measured as their squared deviations
from the response grand mean y. This quantity is called the total sum of
squares, SS;ya1 (Figure 1). The use of squared deviations then allows this
total variation to be partitioned into two sources. The variation explained
by the factor is given by the sum of squared deviations of each group mean
v; from the grand mean y, weighted by the n values per group (where
subscript i refers to the i-th level of the factor). This quantity is called the
explained sum of squares, SScplainea- The residual variation left unex-
plained by the model is given by the sum of squared deviations of each data
point y; from its own group mean y; (where subscript ij refers to the jth
observation in the i-th factor level). This quantity SS,siguar 1S variously
referred to as the residual, error, or unexplained sum of squares.

Each sum of squares (SS) has a certain number of degrees of freedom
(d.f.) associated with it. These are the number of independent pieces of
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Figure 1 Dataset of three samples (a) summarised as group means and
standard deviations, and (b) showing the j=8 observations in each of the
i=3 groups. Total variation in the dataset, measured by the sum of squared
deviations of each observation (y;) from the grand mean (), is partitioned
into an explained component that measures variation among the group
means (y;), and an unexplained or residual component that measures
variation among the data points within each group. The deviations indicated
for the mean of group i and its j-th data point are summed across all data to
obtain the model sums of squares.

information required to measure the component of variation, subtracted
from the total number of pieces contributing to that variation. The total
variation always has degrees of freedom that equal one less than the total
number of data points, because it uses just the grand mean to calculate
variation among all the data points. A one-factor model with n obser-
vations in each of a groups has a —1 d.f. for the explained component
of variation, because we require one grand mean to measure between-
group variation among the a means; it has na —a=(n — l)a d.f. for the
residual component, because we require a group means to measure
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Table 1 Generalised ANOVA table for testing a categorical factor, showing
explained and residual (unexplained) sums of squares (SS), degrees of
freedom (d.f.) and mean squares (MS), F-ratio and associated P-value.
Subscript 1 refers to the ith group, and j to the jth observation in that group.

Component

of variation  SS d.f. MS F-ratio P
Explained Y% n- (3 — ) a—1  SSeup/dfxpl MSexpi/MSres < 0.05?
Residual Y0, 57 (y;— %)  (1—Da SSie/dfire

Total SO (w—3) ma-1

within-group variation among all na data points. These explained and
residual degrees of freedom sum to the na — 1 total d.f.

Dividing each SS by its d.f. gives each component a mean square (MS)
which is a measure of the variation per degree of freedom explained by
that source. The explained component of variation is judged to contribute
significantly to total variation in the response if it has a high ratio of its MS
to the MS for the unexplained residual variance. This ratio is the estimated
F-value from the continuous probability distribution of the random vari-
able F. The F distribution for the given explained and residual d.f. is used
to determine the probability P of obtaining at least as large a value of the
observed ratio of sample variances, given a true ratio between variances
equal to unity. Researchers in the life sciences often consider a probability
of 2=0.05 to be an acceptably safe threshold for rejecting the null
hypothesis of insignificant explained variation. An effect is then considered
significant if its F-value has an associated P < 0.05 (Table 1), indicating a
less than 5% probability of making a mistake by rejecting a true null
hypothesis of no effect (the Type I error rate). This is reported by writing
Fout 1o =F#-##., P <0.05, where the subscript ‘a—1, (n—1)a’ are the
numbers of test and error d.f. respectively. Every F-value must always be
reported with these two sets of d.f. (further detailed on page 260) because
they provide information about the amount of replication, and therefore
the power of the test to detect patterns.

The validity of the ANOVA test depends on three assumptions about
the residual variance: that the random variation around sample means
has the same magnitude at all levels of the factor, that the residuals
contributing to this variation are free to vary independently of each
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other, and that the residual variation approximates to a normal dis-
tribution. These important requirements are explained on page 14.

Analysis of covariance tests for a linear trend in a continuous response
Y with a factor X that varies on a continuous scale. The continuous
factor X is said to be a ‘covariate’ of Y. The analysis is commonly
referred to as ‘regression analysis’ unless one or more categorical factors
are included in the model with the continuous factor(s). This book will
describe analyses of covariance with and without categorical factors, and
for the sake of consistency we will refer to them all as analyses of cov-
ariance, abbreviated ‘ANCOVA’.

In the simplest case there is only one sample, comprising coordinates x,
y of the covariate and response. The analysis estimates a line of best fit
through the data that intersects the sample mean coordinate (x, y). This
‘linear regression’ is defined by a mathematical equation: y=a-+ b-x,
where the parameter « is the ‘intercept’ value of yat x=0 and the para-
meter b is the ‘gradient’ of y with x. We will ignore the mechanics of
calculating the parameter values, other than to note that a standard
analysis of variance uses the method of ‘ordinary least squares’ which
minimises the sum of squared deviations of each response y; from the
regression line. This sum comprises the residual sum of squares, SS,cduals
and it partitions out the variation left unexplained by the linear model
(Figure 2). The corresponding explained sum of squares, SSexpiained. 1 the
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Figure 2 A sample of n=10 observations on a covariate and response, with
regression line fitted by analysis of covariance. Total variation, measured by
the sum of squared deviations of each observation from the sample mean, is
partitioned into an explained component that measures deviations of the line
from horizontal, and an unexplained or residual component that measures the
deviation of each data point from the line. The deviations indicated for one
data point are summed across all points to obtain the model sums of squares.



12 Introduction to analysis of variance

sum of squared deviations of the n linear estimates y (each given by
a+ b-x;) from the sample mean response y. This sum partitions out the
component of variation in the data due to the slope of the regression line
from horizontal. The explained and residual SS together add up to the
total sum of squares, SS;y1, given by the sum of squared deviations of
the response y; from the mean response y. The proportion of explained
variation: SSeypiained/SSiotal 1S known as the ‘coefficient of determination’,
and its square-root is the correlation coefficient, r, which is given a
sign corresponding to a positive covariance of y with x or a negative
covariance.

As with the analysis of variance between samples, each sum of squares
(SS) has a certain number of degrees of freedom (d.f.) associated with it.
Again, these are the number of independent pieces of information
required to measure the component of variation, subtracted from the
total number of pieces contributing to that variation. As before, the total
variation always has degrees of freedom that equal one less than the total
number of data points (n— 1), because it uses just the grand mean to
calculate variation among all the data points. For the analysis of
covariance on a sample of n coordinates, the explained component of
variation has one d.f. because it uses the grand mean to measure variation
from a line defined by two parameters (so 2 — 1 =1). The residual com-
ponent of variation has n — 2 d.f. because we require the two parameters
that define the line in order to measure the variation of the n responses
from it. These explained and residual degrees of freedom sum to the n — 1
total d.f.

Dividing each SS by its d.f. gives each component a mean square (MS).
These mean squares are used to construct the F-ratio in just the same way
as for the analysis of variance between samples (Table 2). The variation
explained by the covariate model is judged to contribute significantly to
total variation in the response if it has a high ratio of its MS to the MS
for the unexplained residual variance. More specifically, the regression
slope differs significantly from horizontal if the F-value has an associated
P < a, where « sets the Type I error rate (e.g., at a probability of 0.05 of
falsely rejecting a true null hypothesis). We can then reject the null
hypothesis of no change in Y with X in favour of the model hypothesis of
a linear trend in Y with X. This is reported by writing Fy ,_» = #.##,
P <0.05, where the subscript ‘1, n — 2’ refer to the d.f. of the test and
error d.f. respectively.

The validity of the ANOVA test depends on three assumptions about
the residual variance: that the random variation around fitted values has
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Table 2 Generalised ANOVA table for testing a covariate, showing explained
and residual (unexplained) sums of squares (SS), degrees of freedom (d.f.)

and mean squares (MS), F-ratio and associated P-value. Subscript | refers to
the jth response in a sample of size n.

Component of

variation SS d.f. MS F-ratio P
Explained S G-y 1 SSexpl/d-fiexpl  MSexp/MSpes < 0.05?
Residual S =) n=2  SSwe/d.fie

Total S =) n—1

the same magnitude across the range of the covariate, that the residuals
contributing to this variation are free to vary independently of each other,
and that the residual variation approximates to a normal distribution.

ANOVA as a tool for hypothesis testing

An explanatory hypothesis is a proposal that something interesting is
going on. The hypothesis will be testable if it can be compared to a
null hypothesis of nothing interesting. In analysis of variance, the
‘something’ of interest takes the form of a difference in the response
between levels of a categorical factor or a trend in the response across
values of a covariate. The null hypothesis is that the data contain no
such patterns. Analysis of variance subjects a dataset to one or more
test hypotheses, described by a model. The approach is always to
decide whether or not to reject the null hypothesis of no pattern in
favour of the test hypothesis of a proposed pattern, with some
acceptably small probability of making a wrong decision.

For example, a test of the model Y = B|A + € may reject or accept
the null hypothesis Hy: no effect of A on the response. Likewise, it
rejects or accepts the null hypotheses of no B effect and of no
interaction effect. A decision to reject each Hy is taken with some
predetermined probability o of making a Type I error by rejecting a
true null hypothesis. If o =0.05, for example, an effect of A with
P < 0.05 is judged significant. Factor A is then deemed to influence
the response. Conversely, a decision to accept Hy is taken with a
probability B of making a Type II error by accepting a false null
hypothesis. Regardless of the size of f — which depends very much on
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sample sizes — an effect with P > o is deemed to have a non-significant
influence on the response. In this case we have only an absence of
evidence, rather than positive evidence of no effect. In general 3
exceeds o, with the consequence that absence of evidence is less
certain than evidence of an effect. These issues are discussed more
fully in the sections later in the book on statistical power (page 248)
and evaluating alternative designs for data collection (page 250).

A hypothesis can be of no value in explaining data unless it has a
falsifiable Hy. Consider a test for the effect of blood-sucking mites on
fledgling survival in swifts. ANOVA will test the Hy: no difference in
survival between nests with and without mites. Only if the evidence
leads us to reject Hy with small probability of error do we accept H;:
mites affect survival. The persuasive evidence is in the form of a
difference that has been calibrated against unmeasured random
variation. Seeking confirmation of H; directly would not permit this
rigorous evaluation of the alternative, because H; is not falsifiable —
there are innumerable ways to not see a real effect.

In this book we focus on the explanatory applications of ANOVA,
using models to test evidence for the existence of hypothesised effects
on the response. ANOVA can also be used in a predictive capacity, to
identify parsimonious models and estimate parameter values, in
which case its merits should be judged in comparison to alternative
approaches of statistical inference by likelihood testing. For their
explanatory applications, ANOVA models are generally structured
according to the design of data collection, and magnitudes of effect
take secondary importance to statistical significance. The validity of
any inferences about significance then depends crucially on the
assumptions underpinning the model and the test statistic.

Assumptions of ANOVA

Four assumptions underlie all analysis of variance (ANOVA) using the F
statistic. These are:

(1) Random sampling from the source population;

(2) Independent measures within each sample, yielding uncorrelated
response residuals;

(3) Homogeneous variances across all the sampled populations;

(4) Normal distribution of the response residuals around the model.
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Two further assumptions apply to analysis of covariance (ANCOVA):

(5) Repeatable covariate values that are fixed by the investigator;
(6) Linear relation of the response to the covariate.

The first two assumptions are design considerations. Proper interpretation
of any statistical test requires that it be based on comparisons between
representative and unbiased samples, and that the measures within a sample
are free to vary independently of each other. For example, a comparison of
immature warthog body weights between younger females and older males
has an inherent bias that falsely inflates the contrast; the design should
compare like with like, or compare each level of sex with each level of age.
Similarly, the presence of siblings amongst subjects introduces an inherent
co-dependence within samples that falsely reduces their error variation; the
design should remove siblings, or randomly disperse them amongst treat-
ment allocations, or include ‘family group” as an extra factor representing
random variation from family to family. The assumption of independence
drives many of the most challenging issues in constructing appropriate
ANOVA models. Sub-sampling from the data, grouping observations, and
repeated measures on sampling units can all lead to loss of independence
unless recognised and accounted for in the analysis.

The third and fourth assumptions are features of the parametisation of
ANOVA. The analysis uses a single error mean square to represent the resi-
dual variation around each of the sample means, which is therefore assumed
to be symmetrical about the mean and to take a magnitude that does not
depend on the size of the mean. The calculated F-ratio of test to error MS is
tested against an F distribution which assumes that the two mean squares
come from normally distributed populations. This may be far from realistic
for residuals with distributions skewed from normal, or variances that
increase (or decrease) with the mean, which are therefore not homogeneous.

The assumption of normality can be tested statistically using a
Shapiro—Wilks test, or checked graphically using a normal probability
plot. ANOVA results are generally more sensitive to the assumption of
homogeneous variances. This is best checked in the first instance by
plotting the residuals at each level of the fitted effect(s) to find out
whether they have a similar spread at all levels. Formal statistical tests of
the null hypothesis that the variances are equal across all groups (for
example, Cochran’s test or the Fp,. test) may be useful for simple
ANOVA designs, but are sensitive to non-normality.

In the event of violation of these parametisation assumptions, it is
often possible to approximate the normal distribution and homogeneous
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variances by applying a systematic transformation to the data. General
textbooks of statistics provide recommendations on, for example, using
the square root of counts, or applying an ‘arcsine-root’ transformation to
proportions (e.g., Sokal and Rohlf 1995). However, many types of data
have inherently non-normal distributions and heterogeneous variances.
For example, a response measuring the frequency of occurrence of an
event has positive integer values with random variation that increases
with the mean. These attributes are described by the Poisson distribution,
which approximates the normal distribution only at large frequencies. A
response measuring proportions (or percentages) is strictly bounded
between zero and one (or 100), giving a random variation that increases
with distance from either boundary to peak at a proportion of 0.5. These
attributes are described by a binomial distribution. A more parsimonious
alternative to transformation is to use a GLIM which allows the inves-
tigator to declare error structures other than normal, including Poisson
and binomial (e.g., Crawley 2002).

The fifth and sixth assumptions are features of the parametisation of
ANCOVA, in which one or more factors vary on a continuous scale and thus
are covariates of the response rather than categorical factors. These are
assumed to be fixed factors (detailed in the next section) with values that are
measured without variance and so could be repeated in another study.
The analysis uses just two parameters to represent the response Y to a
covariate X: the Y intercept at X =0 and the slope of Y with X. It therefore
assumes a constant slope across all values of X, giving a linear relation of Y
to X. For a covariate with a curvilinear relation to the response, trans-
formations may be applied to Y or X, or both, to linearise the relation,
which will often simultaneously rectify problems of heterogeneity of var-
iances. These are discussed in the section on uses of covariates on page 29.

An additional assumption is introduced by having unreplicated re-
peated measurements on individual sampling units, blocks or subjects.
This is the assumption of ‘homogeneity of covariances’ which applies to
the randomised-block, split-plot and repeated-measures designs described
in Chapters 4 to 6. The assumption is detailed in those chapters, on page
118 for randomised blocks and page 183 for repeated measures.

How to distinguish between fixed and random factors

A categorical factor can take one of two forms: fixed or random. Dis-
tinguishing between these alternatives is one of the first hurdles to
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understanding analysis of variance, and getting it wrong can lead to
invalid conclusions. Here we describe how to identify and interpret fixed
and random factors. The consequences for analysis will be detailed with
model descriptions in Chapters 1 to 7.

A fixed factor has precisely defined levels, and inferences about its effect
apply only to those levels. For example, in a test of the impact of irri-
gation on maize yield, Irrigation will be a fixed factor if its levels have
been selected for specific comparison. Irrigation schedules of daily,
weekly and monthly application might be randomly assigned to replicate
plots. The null hypothesis is that there are no differences in the means of
the response among levels of the factor. If the test rejects Hy, post hoc tests
(page 245) may be used to investigate precisely how the levels differ from
each other. A subsequent experiment must therefore use the same levels
to re-test the same hypothesis.

In contrast, a random factor describes a randomly and independently
drawn set of levels that represent variation in a clearly defined wider
population. The precise identity and mean of each level holds no value in
itself, and a subsequent analysis could draw a different set at random from
the population to re-test the same hypothesis. Indeed it is assumed that the
levels chosen for analysis come from a large enough population to be
deemed infinite. For example, Genotype would be a random factor if a
random selection of all maize genotypes were tested on the levels of irri-
gation in the previous experiment. The null hypothesis is that there is zero
variance in the response among the genotypes. A subsequent study could
therefore select at random a different set of genotypes to re-test the same
hypothesis. The basic sampling unit in any study, in this case the plot, is a
random variable by definition. Any other nested factors are almost always
random too, in order to provide the residual variation against which to
calibrate the higher-level effects. These nested factors will be assumed to
have a normal distribution of sample means, and homogeneous variances.
We will expand on the applications of nesting on page 21 and in Chapter 2.
Random factors can also function to group together multiple sources of
nuisance variation. For example, the above experiment could be run on a
regional scale by repeating it across a number of replicate farms. The
random factor Farm is not an experimental treatment; rather, its levels
sample unmeasured spatial variation in soil characteristics, microclimate,
historical land use etc. Random factors of this sort are called ‘blocks’, and
we expand on their function on page 25 and in Chapter 4.

A factor is usually fixed if its levels are assigned randomly to sampling
units. For example, Irrigation treatments are applied randomly to
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experimental plots in order to measure their influence on growth. Inter-
pretation of such factors is straightforward since the manipulative nature
of the experiment means the factor measures just one source of variation.
Interpretation of a fixed factor is less straightforward when its levels
cannot be assigned randomly to sampling units. Male—female subjects,
north—south aspects, or upstream—downstream plots are all pre-assigned
to their levels. Consequently, the variation due to sex, aspect or location
is always confounded with unmeasured covariates of these factors,
and this must be acknowledged when interpreting significant effects.
Mensurative (non-experimental) studies have non-random assignment of
factor levels by definition. For example, in a study comparing the tol-
erance to ultraviolet radiation of Caucasians and Afro-Caribbeans,
Ethnicity cannot be randomly assigned to subjects with the result that it
cannot be isolated and tested as a cause of tolerance. With adequate
replication, however, any significant difference in tolerance among the
two groups can be attributed to the factor Ethnicity as defined by all the
unmeasured correlates intrinsically associated with each group, such as
melanin concentration, diet, exposure to sunshine and so on.

Particular care must be taken with the distinction between fixed and
random factors when factor levels cannot be randomly assigned to
sampling units because they represent different locations or times. For
example, a Location factor may have levels of elevation up a shore, or of
blocks of land across a field; a Time factor may have levels of days, or of
seasons. These factors always group together multiple sources of varia-
tion, and for this reason they must be treated as random unless each of
their levels are adequately replicated. Consider the specific example of a
field test in which the settlement of barnacle larvae onto inter-tidal rocks
is measured at three shore elevations: upper, middle and lower. Elevation
is a spatial factor that represents variation due not only to height up the
shore, but also to all the correlates of height, such as immersion time,
wind exposure, predation pressure and surface topography. Any effect of
elevation on settlement can be attributed to the multi-dimensional nat-
ural gradient made up of these variables, provided that their variation
with elevation is a consistent feature of rocky shores in general. It is the
investigator’s knowledge of this proviso that defines whether elevation
must be random or whether it can be fixed.

If barnacle settlement is measured in replicate quadrats at each of three
elevations on a single shore, then any effect of elevation will be com-
pletely confounded with random spatial variation. In other words, a
settlement gradient with elevation may be due to variables that have no
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intrinsic association with elevation. For example, low barnacle settlement
on the upper shore could be due to a band of granite there, which might
equally occur at other elevations on other shores. Elevation can be fixed if
one is specifically interested in testing for differences among those par-
ticular locations on that particular shore, but this sort of hypothesis is
rarely useful because the confounding of elevation with random, within-
shore spatial variation makes it impossible to determine the underlying
cause of any significant effect. With data from only a single shore, it
therefore makes sense to treat elevation as a random blocking factor.

Elevation can be fixed by distributing the quadrats at each of the three
elevations across two or more randomly selected shores within the region
of interest. The replication of shores removes the confounding of varia-
tion due to elevation with random spatial variation. The analysis is
therefore able to partition out the combined effect of elevation and all
variables that consistently co-vary with elevation across shores, from the
effect of all other sources of spatial variation that are not related to
elevation. A significant effect of elevation means that barnacle settlement
varies in response to elevation plus all that co-varies with elevation in the
region, such as immersion time and predation pressure. Without an
experimental assignment of treatments to quadrats, however, it is not
possible to identify which of the covariates causes variation in barnacle
settlement.

Some spatial factors are less clearly defined than elevation and must
always be random because they cannot be replicated in space. For
example, consider an experiment to compare the growth of a crop under
three fixed Irrigation treatments. To take account of suspected spatial
variation in soil conditions, a field is divided into three blocks of land and
each irrigation treatment is assigned randomly to four plots in each
block. Because the blocks are arranged arbitrarily, rather than in relation
to some known biological or physical feature or gradient, the natural
variation that they encompass cannot be defined; it simply encompasses
all random sources of spatial variation. It is therefore not possible to
replicate the exact levels of that factor in other fields, and Block must be
treated as a random factor.

The same logic applies to temporal factors. If the condition of black-
birds is measured in each of four Seasons in a single year, then unless one
specifically wishes to test for differences among seasons in that particular
year, Season will be random because any effect of time of year is com-
pletely confounded by short-term temporal variation. For example, low
condition of birds in summer could be due to natural environmental
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changes that occur every summer, or due to an unusually wet spring.
However, if condition is measured in each of four seasons in each of two
or more years, then Season will be fixed because any consistent effect can
be partitioned out and tested, over and above random within-year var-
iation. The only caveat is that the cause of any significant Season effect
cannot be identified from amongst the multiple sources of temporal
variation grouped together by Season, including variations in tempera-
ture, weather, competitor abundance and so on.

Similarly, if an experiment measures the concentration span of students
over the course of three, arbitrarily-selected weekdays, then Weekday will
be a random factor because it encompasses all possible sources of tem-
poral variation from day to day. Even when the investigator is specifically
interested in the Monday, Wednesday and Friday, if all data are obtained
from a single week, then Weekday must again be random because any
systematic variation in concentration span over the course of the week is
completely confounded by random temporal variation from day to day.
However, if the concentration span of students is measured on the
Monday, Wednesday and Friday of two or more weeks, then Weekday
can be treated as fixed. This is because the replicated levels of Weekday
over time now permit partitioning of variation in concentration span due
to these particular days, which might represent numerous intrinsically
linked variables such as prior alcohol consumption and prior sleep, from
random day to day variation such as that caused by the weather.
Although we still do not know the ultimate cause of any significant dif-
ferences in concentration span between different days of the week,
Weekday is now an interpretable effect because it has been demonstrated
from replicate trials.

In summary, a categorical factor is generally fixed if it is randomly
assigned to sampling units. It can be fixed even if it groups together
multiple unmeasured sources of variation, provided that its levels are
independently replicated in time or space. Interpretation of such group-
ing factors does not permit conclusions about causality, but useful
descriptive information can be forthcoming with which to guide the
design of future experimental manipulations. Random categorical factors
group together all unreplicated spatial or temporal variation, which
inherently confounds their interpretation. Although this is not a problem
for main effects, it can create difficulties when interpreting interactions
between fixed and random factors (further detailed in Chapters 3 and 4).

ANOVA models are classified according to the type of factors they
contain, over and above the random sampling unit(s). A model that
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contains only fixed factors is called a ‘model | ANOVA’, whereas a model
that contains only random factors is called a ‘model I ANOVA’. Models
containing both fixed and random factors are known as ‘mixed models’.
Covariates are always fixed, so ANCOVA models may be either ‘model I’
or ‘mixed’. The nature of the test hypothesis will determine what is the
appropriate assignment of fixed and random factors, and this must be
correctly judged because it crucially influences the nature of any infer-
ences. Fixed effects are allowed by the model to influence only the mean
of the response Y; they yield inferences about the specific levels of the
factor, but the results cannot be generalised to other possible levels.
Random effects are allowed to influence only the variance in Y; they yield
inferences only about the population from which the levels were drawn
(see discussions in Beck 1997; Newman et al. 1997). These differences
result from fixed and random factors differing in the components of
variation that they estimate, which in turn affect which denominator is
used to calculate a valid F-ratio (detailed in the section below on con-
structing F-ratios).

Nested and crossed factors, and the concept
of replication

One factor is nested in another when its levels are grouped within each
level of the nesting factor. All replicated analyses of variance have some
element of nesting; even a one-factor ANOVA has sampling units (S')
nested in each level of the treatment factor (A). For example,
an experiment to test the effect of irrigation on crop yield might use a
randomly chosen set of 16 fields, each allocated to either a watering or a
control treatment. Field is then a random factor S’ nested in Irrigation
factor A because no field receives both watering treatments and thus the
identity of the fields is different in each treatment group (Figure 3). In
terms of a statistical model, we represent this feature of the design as
S'(A). The effect of irrigation on crop yield can be tested with a
straightforward one-way ANOVA by requesting a model in the form
Y = A which will test the treatment effect with 1 and 14 d.f. Note that it is
not necessary to specify S’ in the model request because it is the lowest
level of nesting, which accounts for the residual variation.

Although nesting is involved in all ANOVA models with any form of
replication, the so-called ‘nested” models will have at least two scales of
nesting. As an example, suppose that the two irrigation treatments have
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Figure 3 (a) Allocation table illustrating samples of eight fields receiving either
watering or control treatments. Fields are nested in the factor Irrigation because
each field is measured at only one level of the factor. (b) Experimental layout
showing one possible spatial arrangement of fields randomly assigned to
treatment levels of watering (W, hatched) or control (C, clear).
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Figure 4 (a) Allocation table illustrating samples of two fields on each of
eight farms receiving either watering or control treatments. Fields are nested
in the factor Farm, and Farms are nested in the factor Irrigation.
(b) Experimental layout showing one possible spatial arrangement of
farms (columns) randomly assigned to treatment levels of watering
(W, hatched) or control (C, clear).

been allocated randomly to eight whole farms, and that crop yield has
been measured in two fields on each farm (Figure 4).

This design contains two levels of nesting: Fields S’ are nested in Farms
B’, and Farms are nested in levels of Irrigation (A), all of which is
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denoted S/(B/(A)). The analysis of crop yield will now require a model
requested in the form Y =A + B(A) where B is declared as a random
factor. The Irrigation effect A is tested against the random farm effect,
and therefore has one and six d.f. (where previously we had one and 14 d.f.).
Its reduced d.f. means that we have lost power to detect a treatment
effect, but this cost has been traded against the benefit of sampling from
across a wider region in order to obtain a more robust prediction. The
analysis also has the possibility of post hoc pooling in the event that the
farms within each treatment category differ little from each other, which
will reinstate the 14 error d.f. (detailed on page 38).

Nested factors are an unavoidable feature of any studies in which
treatments are applied across one organisational scale and responses are
measured at a finer scale. For example, consider a study aiming to test
whether the length of parasitic fungal hyphae depends on the genotype of a
host plant. The hyphae grow in colonies on leaves of the plant, and the
investigators have measured the hyphal length of ten colonies on each of
two leaves from each of two plants from each of five genotypes, giving a
total of 40 observations for each of the five genotypes. At the analysis
stage, the investigators ignore differences between leaves and plants, which
hold no inherent interest, and test for a genotype effect with the one-factor
ANOVA: Length = Genotype +¢. They obtain a significant effect with
four and 195 d.f. Such an analysis is flawed, because the one-factor model
has ignored the reality that the 200 data points are not truly independent,
but include replicate colonies from the same leaf and from the same plant.
In fact, the design has two nested factors: Plant B’ nested in Genotype and
Leaf C’ nested in Plant, in addition to the Colony sampling unit S’ nested
in Leaf nested in Plant, and the Genotype factor A of interest. The hier-
archical structure of the design should be recognised by requesting a model
in the form Y = A + B(A) + C(B A) where B and C are declared as random
factors, and the undeclared residual error € = S'(C'(B'(A))). The genotype
effect of interest is now correctly tested with five error d.f. (instead of 195)
because the only independent replicate information for testing an effect of
genotype is the average hyphal length per plant. Had the study been
planned with the correct analysis in mind, the distribution of sampling
effort could have been targeted to give a more powerful test. A better
design would have measured fewer colonies per leaf, because replication at
this lowest organisational level is informative only about the variation
among leaves, and instead would have measured more plants of each
genotype, because it is the replication at this highest organisational level
that determines the error d.f. for the genotype effect of interest.
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In contrast to nesting, two factors are crossed when every level of one
factor is measured in combination with every level of the other factor.
The resulting design is termed ‘factorial’. The simplest factorial design
has sampling units nested in each combination of levels of two factors.
For example, a test of crop yield uses a randomly chosen set of 16 fields,
each allocated to either a watering or a control irrigation treatment and
to either a high or a low sowing density (Figure 5). The two crossed
factors are Irrigation (A) and Density (B), each with two levels. The study
can test their simultaneous effects by allocating four fields to the watering-
high combination, four to watering-low, four to control-high and four to
control-low. In terms of a statistical model, we say that a random Field
factor S’ is nested in Treatment factors A and B, and we write this feature
of the design as S'(B|A). A two-factor ANOVA requested in the form
Y =B|A or Y=A+ B+ B*A will test the independent and combined
influences of irrigation and density on crop yield. The effect of irrigation
may depend on sowing density (the B*A interaction), for example if
better yields come from dry-high and wet—low fields (Figure 5c). Alter-
natively, one or both of irrigation and density may influence crop yield
independently of the other, for example if better yields generally come
from high sowing densities regardless of watering regime. In this design,
the three possible sources of explained variation, A + B+ B*A, are all
tested with one and 12 d.f. reflecting the two levels of each factor and the
total of 16 fields grouped into four samples. Note that the tests of main
effects A and B are not equivalent to two separate one-way ANOVAs,
each of which would have one and 14 d.f., because the factorial design
measures the effect of each factor whilst holding the other factor
constant.

All of the designs considered thus far have been fully replicated because
they take several independent and randomly selected measurements of
the response at each level of each factor, or at each combination of levels
of crossed factors. In terms of the statistical model, we can measure the
residual variation from replicate sampling units S’ nested in the factors A,
B, C, etc., which is written: S'(C B A), where the factors inside the par-
entheses may be variously nested or crossed with each other. Although
full replication can be expensive to realise, its great advantage is that it
allows testing of all sources of variation in the model. In the absence of
full replication, a nested model will lose one or more levels of nesting, and
a cross-factored model will lose the ability to test for all interactions. In
the next section, we consider the strengths and weaknesses of a number of
designs that usually lack full replication.
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Figure 5 (a) Allocation table, and (b) experimental layout of irrigation
(watering or control: hatched or clear) and sowing density (high or low: H or
L) randomly assigned to four samples of four fields. Irrigation and Density are
fully cross factored because measurements are taken at every combination of
factor levels, in this case from four replicate fields nested in each of the four
treatment combinations. (c) Example results, showing sample means and
standard deviation for each of the four treatment combinations. There is a
marked interaction of irrigation with sowing density: watering improves yield
at low density but not at high density. The interaction exposes an effect of
watering that is not apparent either in the irrigation main effect, which has
negligible magnitude after pooling across sowing densities (comparing means
of means given by “*’), or in the density main effect which shows a noticeable
overall increase in yield after pooling irrigation levels (comparing means of
means given by ‘+’). See also Figure 10 on page 78, showing the full range of
possible outcomes from designs of this type.

Uses of blocking, split plots and repeated measures

Blocking and repeated measures are two methods used to partition out
unwanted sources of random variation among sampling units in an
ANOVA. Blocked designs (detailed in Chapter 4), and their associated
split-plot variants (Chapter 5), and repeated-measures designs (Chapter 6),



26 Introduction to analysis of variance

all have repeated measures taken on each block or subject. The terms
‘block’, ‘split plot” and ‘repeated measures’ tend to be applied to designs
without full replication at each combination of factor levels, and that is
how we apply them here, drawing comparisons with equivalent fully
replicated designs.

Blocked designs are used to partition out background spatial or tem-
poral variation. Suppose you have a field that can be divided up into
plots, to which you wish to allocate different levels of a treatment. If the
allocation of treatments to plots is completely randomised, then differ-
ences between the plots will result partly from the treatments, partly from
spatial variation in soil conditions, shading, etc., and partly from mea-
surement error. The spatial variation and measurement error are both
uncontrolled sources of random variation that need to be distinguished
from the fixed effects of interest. The measurement error cannot be
eliminated, but at least some of the spatial variation can be partitioned
out of the analysis by organising the allocation of treatment levels to
groups of neighbouring plots. These groups of plots are called ‘blocks’.
Variation in the response among blocks provides an estimate of the
magnitude of the underlying spatial variation. In a fully randomised
block, the design is stratified so that every treatment level is represented
once in every block, and treatment levels are allocated randomly to plots
within each block. Blocks usually group sampling units in space, but any
random factor that cannot be randomly assigned to sampling units can be
regarded as a block. For example, Family is a block that groups siblings;
Parent plant is a block that groups seedlings (e.g., Newman et al. 1997;
Resetarits and Bernardo 1998).

As an example, consider a two-factor experiment designed to test the
response of crop yield to irrigation (factor A with two levels: watering
and control) and sowing density (factor B with two levels: high and low).
A total of sixteen plots of land are available for the experiment. A
naturally homogeneous landscape, with little natural variation between
plots, will suit a completely randomised design in which each of the four
combinations of treatment levels is allocated randomly to four plots
(Figure 6a). A natural variation amongst plots that is more marked,
however, will give large residual MS and an experiment with low power
to detect treatment effects. Moreover, any pattern to the natural varia-
tion, such as a gradient in soil moisture, may bias the predictions of the
completely randomised model.

A randomised-block design partitions out this unwanted background
variation by grouping plots into four groups of four in such a way that
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Figure 6 Example layouts of plots to test effects on crop yield of irrigation,
with watered plots designated by grey hatching and control plots unhatched,
and of sowing density, with high density designated by H and low density by
L. (a) Completely randomised design for a homogeneous landscape with 16
plots (the squares), and treatment combinations randomly assigned to
replicate plots. (b) Randomised-block design for partitioning out a left-right
environmental gradient, with four plots (separated by single lines) in each of
four blocks (double lines), and treatment combinations randomly assigned
to plots within each block.

the plots within each block are as homogeneous as possible. Each of the
four combinations of treatment levels is then represented once in each
block, with treatment levels randomly allocated to plots within each
block (Figure 6b). The blocks are modelled in the analysis as a random
factor with four levels. The variation in the response from block to block
is then partitioned out of the residual MS to provide a more powerful test
for the main treatment effects. It is essential to include the blocking factor
in the analysis because plots are not truly independent of each other,
since they belong to a particular block, and are randomly assigned to
treatment levels per block. To omit the block will result in falsely inflated
error degrees of freedom, and consequently an increased likelihood of
falsely rejecting a true null hypothesis (termed ‘pseudoreplication’ by
Hurlbert 1984). Note that blocking can only serve its purpose if the
investigator has some knowledge of the pattern of landscape hetero-
geneity. The visible habitat structure may not suffice to describe relevant
landscape heterogeneity, in which case a set of pre-measures of the
response taken across the experimental area can inform the placement of
blocks.

Split-plot designs are an extension of randomised-block designs in
which treatments are applied at different spatial or temporal scales. For
instance, logistical considerations may favour irrigating a larger unit of
area than the unit for sowing density. This is likely to be the case if the
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Figure 7 Example layout of split plots to test effects on crop yield of
irrigation, with irrigated plots designated by grey hatching and control plots
unhatched, and of sowing density, with high density designated by H and low
density by L. (a) Split-plot design I, with two sub-plots (demarked by thin
line) within each of two plots (thick line) within each of four blocks (double
lines), showing irrigation applied to one plot randomly selected in each block
and sowing density applied to one sub-plot randomly selected in each plot.
(b) Split-plot design 11, with two plots (demarked by single line) within each
of eight blocks (double lines), showing irrigation assigned at random to
replicate whole blocks and sowing density applied to one plot selected at
random within each block.

irrigation is provided by a piped water sprayer, whereas sowing density is
manipulated by hand. Continuing the example from above, irrigation
could be randomly allocated to one plot per block comprising half of its
area, and sowing density is then randomly allocated to one of two sub-
plots within each plot (Figure 7a). Alternatively, for an experimental area
with a smaller scale of natural variation, watering may be applied to
replicate whole blocks and sowing density to plots within blocks. For
example, four out of eight blocks could be chosen at random to receive
extra watering and one of the two plots in each block chosen at random
to receive high sowing density (Figure 7b). Such designs require care with
the construction of appropriate statistical models. In the first case, blocks
are crossed with both watering and density treatments, whereas in the
second case blocks are nested within watering and crossed with density
treatment.

Repeated-measures designs partition out variation among experimental
subjects by applying more than one treatment level to each subject.
Treatment levels are applied to the subject in temporal or spatial sequence.
The subject acts as a random blocking factor, but the sequential applica-
tion of treatment levels distinguishes this design from randomised-block
and split-plot designs, both of which have a random allocation of treat-
ment levels within each block. Repeated-measures designs are otherwise
directly analogous to randomised-block and split-plot designs; in the same
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way that observations are not fully independent when they come from the
same block, so repeated measurements may be correlated when made on
the same subject.

Both blocking and repeated measures can greatly increase the power of
an analysis to detect treatment effects because the variation among blocks
or among subjects can be measured and partitioned out. They also allow a
study to be performed block-by-block rather than simultaneously testing
all combinations of factors which can prove impractical for large designs.
The disadvantage of these techniques is that any interaction of block or
subject with the treatment factors will complicate the interpretation of the
analysis, and may not be testable unless the design is fully replicated by
having multiple, independent observations of each treatment level in each
block or on each subject. These difficulties should be anticipated at the
design stage, because tighter controls may eliminate the need for blocking
or repeated measures, and a fully replicated design will greatly facilitate
estimation and interpretation of interactions. The non-independence of
observations within a block or on a subject also requires that the ANOVA
meets an additional assumption, of homogeneity of covariances. This is
explained for randomised-block designs on page 118, for split-plot models
on page 143 and for repeated-measures designs on page 183.

The analysis of randomised-block, split-plot and repeated-measures
designs differs from that of their equivalent fully randomised models only
when the design lacks full replication. With or without full replication,
however, their interpretation is less straightforward than for fully ran-
domised models. A treatment effect cannot be fully interpreted in the
presence of a significant interaction with a block or repeated-measures
variable, because that random variable groups together multiple
unmeasured sources of variation. This problem is treated in more detail
in the descriptions of fully randomised models (Chapter 3) and blocked,
split-plot and repeated-measures models (Chapters 4 to 6).

Uses of covariates

A covariate is a predictor variable that is measured on a continuous scale
such as kg, km, hrs, etc., as opposed to a categorical scale, such as male/
female or low/medium/high. All of the ANOVA models in this book can
be adapted to include one or more covariates; the generic term for
parametric models that involve a combination of factors and covariates is
a general linear model (GLM).
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Covariates may be of interest in their own right. For example, a study
of male and female body sizes might aim to test whether sex differences
depend on age. Alternatively, covariates may serve to partition out an
unwanted source of variation in order to increase power to detect
treatment effects, in a similar fashion to blocking. For example, a study
of sex differences in body size might include age as a covariate if samples
of males and females cannot have individuals all of the same age.

Covariates of inherent interest are included as predictors in the model in
the same way as a categorical factor, with all interactions. For example, a
design with a single covariate X and a single factor A is tested with the
model:

Y=X+A+A*X +¢

In effect, the model fits a separate linear regression between the covariate
and the response at each level of A. The main effect X tests for a non-zero
slope of the response across the range of the covariate after pooling
across all levels of A, the main effect A tests for differences among the a
means of factor A after pooling across all X, and the A*X interaction
tests whether all levels of A have the same regression slope. Figure 8
shows an example. Note that analysis of main effects and interaction does
not require replicate subjects for each level of factor A at each value of
covariate X, nor the same values of X to be sampled within each level of
A. However, the n subjects within each level of A must sample a mini-
mum of three values of X to allow testing of the assumption of linearity.

The structure of the analysis of variance table is the same as that for a
factorial design with two categorical factors A and B, except for the
degrees of freedom. A linear covariate always has one d.f., because it
comprises two pieces of information: the regression slope and its inter-
cept, and one piece is required to measure its variation: the mean value of
the response (so 2—1=1 d.f.). The d.f. for the categorical factor A are
a—1, just as in a conventional ANOVA, whilst the d.f. for A*X inter-
action are the product of the d.f. for the component terms: (a—1)x
1=a—1. The residual variation will then have (n—2)a d.f., because
unexplained variation is measured by deviations of the n replicates from
their sample regression line which is fixed by the two parameters of slope
and intercept. Thus a covariate X measured on five replicates in each of
three levels of a treatment A will allow testing of the main effects and the
interaction against (5 —2)x3 =09 residual d.f.
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Figure 8 Relationship of the response to a covariate X (e.g., age in years)
measured on subjects nested in two levels of treatment A (e.g., sex: males and
females). For these data, analysis of covariance indicates a significant main
effect of X but a non-significant main effect of A. The non-significance
reflects the similar mean responses of A; and A, when data for each sample
are pooled across all covariate values (i.e., ignoring the covariate values).
The analysis produces a significant A*X interaction, which reflects the
different slopes of Y with X at each level of A. This interaction indicates that
factor A does indeed influence the response, with a switch in relative effect
across the range of X. See also Figure 10 on page 78, showing the full range
of possible outcomes from designs of this type.

Covariates of no inherent interest are included to partition out unwanted
variation in designs that are conventionally termed analysis of covariance
(‘ANCOVA’, though all models containing continuous factors are in fact
analyses of covariance). An ANCOVA partitions out the effect of the
covariate by adjusting the data for the regression relationship between
the response and the covariate. For a design with two crossed factors A
and B, the model is:

Y=X+A+B+B*A +¢

The continuous variable is conventionally entered as the first term in the
model, in order to partition out the unwanted covariation before testing
the factors of interest. Although this will only make a difference to
the results of non-orthogonal designs, ANCOVA is likely to be non-
orthogonal when it is unbalanced by having levels of the covariate that
are not set by the study design but measured separately on each randomly
selected subject or sampling unit. The imbalance is caused by not having
exactly repeated values of the covariate at each combination of levels of
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the categorical factors, and the resulting loss of orthogonality affects the
calculation of SS. This is discussed further on page 237, but will not be an
issue if the nuisance covariate is entered first into the model.

Because this model tests only the main effect X, it fits a common
regression relationship between the covariate and the response for all
groups or samples. It makes the implicit assumption of no interactions
between the covariate and any of the categorical factors, meaning that all
category levels have the same slope of Y with X. This assumption should
be tested, which requires fitting a full model that includes all covariate-
by-factor interactions. For the two-factor example above, the covariate
interactions are tested using the model:

Y =X+A+B+A*X 4+ B*X + B*A + B*A*X 4 ¢

Any non-significant interaction terms can be omitted and the model
refitted with the interaction SS pooled into the residual SS. Any sig-
nificant interaction terms should be retained in the model, and inter-
preted by plotting out the within-factor regression slopes. A significant
interaction indicates that the magnitude of treatment effects depends on
position along the covariate scale. Although significant interactions can
complicate interpretation of the analysis, they are often of considerable
biological interest and tend to be easier to interpret than interactions with
blocks, because the nature of the variation is more clearly defined.

An ANCOVA should always be used to partition out unwanted var-
iation in a continuous variable rather than any kind of ‘residuals analysis’
involving the creation of a new data set made up of regression residuals.
Analysing residuals is fundamentally flawed because factors used to
explain residual variation may interact with the covariate (Garcia-Ber-
thou 2001), or be correlated with it (Darlington and Smulders 2001)
leading to biased parameter estimates (Freckleton 2002).

All GLMs assume linear responses to the covariate, which can be
checked visually by plotting the raw data. Some relationships are
intrinsically non-linear, such as those comparing variables with different
dimensions (volume or weight to length or area, etc.). These are likely
also to violate the assumptions of a normal distribution and homo-
geneous variance of response residuals along the regression slope.
Transforming the response and/or the predictor can often correct all of
these problems, but remember always to plot the data again after any
transformation to check that it has had the desired effect.
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The value of a covariate analysis depends on its underlying linear
model having some biological meaning. When considering transforma-
tions, it is therefore sensible to think about the process that you hypo-
thesise is driving the observed pattern, and then find a way to present it in
linear form. For example, a Volume response will have a cubic relation to
a Length covariate if length is representative of the dimensions that make
up the volume. The hypothesis that Volume o« Length® will be tested by a
linear regression of log(Volume) against log(Length) with a predicted
regression coefficient »=3 defining the slope. Alternatively, one might
accept the existence of a cubic relation V=a-L®, and cube the length
measures in order to test only the value of the parameter a — for example,
whether it differs significantly from zero or between different treatments.
One or other transformation should be applied even if the distribution of
raw data is not obviously non-linear, unless you intend to test the bio-
logically more complex hypothesis that the volume-length relation is
represented by a constant of proportionality. Note that transformations
can change the structure of the model from an interpretive point of view.
Logging the response, for instance, alters the data points from being
additive to being multiplicative.

Other relationships may require more subtle transformations based on
an underlying mechanistic model to ensure interpretable predictions. This
is well illustrated by an example of predator responses to prey density.
Predators generally respond to increased prey density with an increased
ingestion rate, but for many species their responsiveness diminishes as
prey density increases. The positive relationship between ingestion rate
and prey density consequently takes a decelerating (concave) form,
known as a saturation response (Figure 9a). Such data are clearly not
suitable for analysis using the model Rate = Density + € without suitable
transformation. In this case we have no biological justification for log-
transforming prey density, even though it may well straighten out the
relationship. Instead, linearity is achieved more rationally by taking the
inverse of both the response and the covariate (Figure 9b). A simple
model of the underlying mechanism demonstrates why this is a biologi-
cally meaningful transformation. We partition the time interval between
consecutive ingestions into a search time that is inversely proportional to
prey density D, and a constant handling time a required to manipulate
and ingest each item. The linear regression of Interval on the y-axis
against 1/D on the x-axis then yields a prediction: Interval = b/D + a, with
slope b and intercept a. Since the inverse of the interval is the rate of
ingestion, we have Rate = D/(b+ aD), which is the concave predictor to



34 Introduction to analysis of variance

(a) 0.12 1 y=x/(0.796+5.040x) - (b) 40 y =5.040+0.796x o
- z
L < 301
£ 0.08 - g
[0] Q
© © € 204 ©
S 1< o
2 0.04 - o
] I 104
2 5
000 T T T T 1 O T T T 1
0.00 0.05 0.10 0.15 0.20 0.25 0 10 20 30 40
Prey density (m™2) Areaper item (m?)

Figure 9 (a) Saturation response of predator ingestion rate to prey density,
D. (b) Inverse transformations of both axes yield a relationship suitable for
linear regression if the predator has search time inversely proportional to
prey density (here with a predicted constant of proportionality b=10.796)
and constant handling time (here taking a predicted value of a =5.040 hrs).
The curved line in (a), with its equation above the graph, is derived from the
linear regression line in (b), with its equation above the graph.

fit through the data on rate against density. Note that a sampling effort
designed to give an approximately equal spread of prey densities will
yield values of search time that are skewed towards the origin, which is
not ideal for estimating the linear regression. This problem can be
avoided by weighting sampling effort towards lower prey densities (as in
Figure 9), but it requires thinking through the analysis before collecting
the data.

Wave functions from circular relationships can also be linearised, for
example if the wave is symmetrical and gives a straight-line response to
sine(X). Many other curvilinear relationships with peaks and troughs
cannot be transformed to a linear relationship in principle. These will not
suit linear models unless they can be represented by a polynomial of the
form Y =X|X+¢, or Y =A|X|X +¢, etc. Non-linear models lie beyond
the scope of this book, but they can be tested with specialist statistics
packages (e.g., see Crawley 2002; Motulsky and Christopoulos 2004).

Some kinds of data may require a comparison of models from alter-
native transformations in order to explore underlying processes. For
example, perhaps the density of a population appears to show a linear
increase over time despite an expectation of exponential growth. It is then
useful to compare the fit of the linear model: Density = Time + € to the fit
of the linearised exponential model: In(Density) = Time + €. The better
fitting model is the one with the higher proportion of explained variation,
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given by the coefficient of determination: r* = SSexplained/SStotal. In gen-
eral, however, a study with a focus on model comparison and parameter
estimation may be better suited to the likelihood approaches of GLIM or
Bayesian inference.

Models with covariate and categorical factors are unbalanced if the
covariate takes different values for one treatment level than for another.
Type 11 SS should then be used to take account of any resulting corre-
lation between covariates and factors (detailed on page 240). In extreme
cases, where the covariate takes lower values for one treatment level than
for another, the adjustment to the SS in an ANCOVA involves extra-
polation of the regression line beyond the range of the covariate values in
one or more groups. Interpretation of the results therefore requires
appropriate caveats about the assumptions made by this extrapolation.
ANCOVA is very sensitive to the assumption of homogeneity of var-
iances if the design is further unbalanced by having different numbers of
observations in each treatment level, for example if a factor Sex has
different sample sizes for male and female body weights measured against
the covariate Age.

Covariates are generally analysed as fixed factors, meaning that the
values are set by the design and measured without error (just like a fixed
categorical factor). This may not be the reality, particularly where a
covariate takes the role of a randomly sampled nuisance factor, in which
case regression slopes may be underestimated (e.g., Quinn and Keough
2002).

How F-ratios are constructed

The model designs shown in this book all adhere to a standard protocol
for constructing each F-ratio with an error MS that comprises all relevant
components of random variation (Schultz 1955). We give it here, because
it yields the correct F-ratios for any balanced ANOVA model with
categorical factors, including designs with more than three factors. It
adapts readily to include covariates, as we will describe. For protocols
that show the weightings on each independent component of variation,
see for example Winer et al. (1991); Kirk (1994); Underwood (1997).

To find the correct error mean square for each F-ratio, make up a table
with as many rows as sources of variation. Table 3 below shows a completed
example for the cross-factored fully replicated model Y =C|B/(A)+c«.
These are the steps to filling out the four columns in turn:
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Column I: Source of variation. List all of the sources, one per line, in their
hierarchical order from main effects and their nested effects through their
constituent interactions to the highest-order interactions and nested
components within them.

Column II: Degrees of freedom. For each source of variation, calculate its
degrees of freedom by multiplying together the number of levels for any
factors within parentheses, and the number of levels minus one for
any factors outside parentheses. For example, a source of variation given
by the interaction of two factors: B*A, with b and a levels respectively,
has (b — 1)(a—1) degrees of freedom; a source of residual variation given
by n subjects nested in three factors: S'(C'(B*A)), with ¢, b and a levels
respectively, has (n — 1)cba degrees of freedom. The column sum is the
number of degrees of freedom for the total variation, which equals one
minus the product of n with all factor levels. For example, all models with
three factors have ncha — 1 total degrees of freedom, regardless of nesting
or factoring, or repeated measures.

Column III: Components of variation estimated in the population. For each
source of variation in turn, list all of the components of variation estimated
in the population by the mean square for this source. These are identified
from amongst the sources of variation in lower rows. Start with the bottom
row and work upwards towards the current row, adding each source only
if (i) it contains all of the factor(s) in the current row source, and (ii) any
other factors outside parentheses are random, or if no parentheses, any
other factors are random. Finally add in the source for the current row.

Column IV: F-ratio. For each source of variation, identify its F-ratio from
a numerator comprising the mean square of the row source, and a
denominator comprising the mean square of the error variation. Identify
the source of error variation from whichever row beneath the test row
contains all of the same components of variation in the population (in
Column III), except for the test component. This error variation is always
the source that contains all of the factors in the test component plus one
and only one random factor (Keppel and Wickens 1973). No exact test
exists if there is more than one such source.

Some models present complications beyond the remit of this protocol.
Type II and mixed models allow pooling of error terms under appropriate
conditions, detailed in the next section. Other models have sources
of variation with no exact error MS, which can be analysed with quasi
F-ratios described below on page 40. Mixed models can use an alternative
set of rules for constructing the error MS of random factors, detailed in the
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section on unrestricted models on page 242. We signal these complications
as they arise in Chapters 1 to 7, in footnotes to the ANOVA tables.

If a factor is a linear covariate, then it will always have one d.f., because
the linear regression is defined by two pieces of information: its intercept
and slope, and one piece of information is required to sum its deviations
from horizontal: the grand mean. The residual error for each regression is
calculated with n—2 d.f. because it sums the squared deviations of n
observations from their regression defined by an intercept and slope.
Table 3 demonstrates how the ANOVA table is influenced by factor C
being a categorical factor or a covariate in the model C|B’(A) +¢.

Table 3 ANOVA tables for the fully replicated, cross-factored with nesting
model Y= CIB'(A) + ¢ (model 3.3 on page 98). (a) All factors are
categorical; (b) factor C is a covariate of the response. Differences between
the two tables are indicated by shading. Worked example 3 on page 51 shows
a specific application with specified numbers of factor levels and sample
sizes.

Components of variation

Mean square d.f. estimated in population F-ratio
(@) 1 11 11 v
1A a—1 S(C*B'(A))+B'(A)+ A 172
2 B'(A) (b—1a S'(C*B'(A)) + B'(A) 2/6
3C c—1 S'(C*B'(A))+ C*B'(A)+C 3/5
4 C*A (c—=D(a—1) S'(C*B'(A))+ C*B'(A)+ C*A  4/5
5 C*B'(A) (c=DB—-Da  S(C*B'(A))+C*B'(A) 5/6
6 S'(C*B'(A)) (n—1)cba S'(C*B'(A)) -
Total variation ncha — 1

b) I 11 111 v
1A a—1 S(C*B'(A))+B'(A)+ A 12
2 B'(A) b—1a S'(C*B'(A))+ B/(A) 2/6
3C 1 S'(C*B'(A))+ C*B'(A)+C 3/5
4 C*A (a—1) S'(C*B'(A))+C*B'(A)+ C*A  4/5
5 C*B'(A) b—1a S'(C*B'(A)) + C*B/'(A) 5/6
6 S'(C*B'(A)) (n—2)ba S'(C*B'(A)) -

Total variation nba — 1
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Use of post hoc pooling

The power of an F test is the ability to detect a specified difference between
two or more population means, or a linear trend across values of a cov-
ariate, with a specified level of confidence. Post hoc pooling is a technique
applied to models with ramdom factors to improve their power to detect
treatment effects by increasing the denominator degrees of freedom.

How does pooling work?

Planned post hoc pooling involves eliminating non-significant
components of variation from the ANOVA model and then pooling
mean square terms that estimate identical components of variation.
When pooling down — the most common and useful form of pooling —
the pooled error MS for a term is calculated by taking a weighted
average of the original denominator MS and the error MS of this
non-significant term, which is equivalent to summing the sums of
squares (SS) of the original terms and dividing by the sum of their
degrees of freedom:

(df] . MS]) aF (dfz . MSQ) . SS; + SS,
df; + df; ©dfy 4 df

M Spooled =

The pooled MS has degrees of freedom equal to df; + df,. The F-ratio is
then recalculated and tested as normal. The precise criteria for choosing
which error terms can be pooled with which are detailed in footnotes
to the ANOVA tables in this book (following Underwood 1997).

Although pooling is designed to improve power, statisticians do not agree
either about its desirability in principle, or about the criteria for identifying
non-significant components of variation for elimination. Pooling can sub-
stantially increase the statistical power of a test to detect difference among
treatments. Pooling can also increase the power of subsequent multiple
comparison tests and may therefore be desirable even if the original analysis
is already powerful enough to detect differences among treatments. On the
other hand, post hoc pooling results in the investigator seeking differences
between treatments with a design that has been modified in response to the
results from the original design for which the data were collected. More-
over, power is not always improved by pooling, and falsely pooling a term
when its effect is not zero (the result of a Type II error) can inflate the Type I
error rate for subsequent tests (Underwood 1997; Janky 2000).
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Given that pooling is a mixed blessing, when should it be used? In an
ideal world you would avoid compromising the integrity of your design
by ensuring sufficient replication to detect differences with the a priori
analysis, including all terms in the model. This should be the aim for any
experimental manipulation, but it may not be always achievable in the
presence of unmanipulated components such as blocks, or in mensurative
studies. Be wary of designs that rely on pooling to provide an exact
denominator to test a main effect or, more generally, that rely on pooling
to provide a reasonable number of denominator degrees of freedom to
test a main effect. Weigh the benefits of including random factors to test
across greater spatial scales against the costs of needing replicate samples
from across these scales, and the risk of failing to test a main effect
powerfully if the criteria for pooling are not met (see below). We
recommend pooling only when logistical considerations severely limit the
replication possible for an essential random block. For example, when it
is not possible to find, or impractical to sample, many replicate locations
nested in each level of a main effect, then post hoc pooling may be
necessary to provide a powerful test of the main effect. These con-
siderations are discussed in worked example 3, on page 51.

Statistical power is likely to be increased only by ‘pooling down’ (sensu
Hines 1996), which involves pooling the original denominator with an
MS that estimates fewer components of variation (i.e., one located lower
down in the ANOVA table). If the design accommodates post hoc pooling
in principle, appropriate terms and criteria should be identified in
advance to avoid the temptation to keep eliminating terms until the null
hypothesis is rejected. Terms and criteria for post hoc pooling are iden-
tified in the footnotes to tables in this book. Components of variation
should be eliminated only if there is a reasonable likelihood of detecting
the variation that is present among units. A common rule of thumb,
which we adopt, is to control the Type II error rate by pooling only if P >
0.25, having set =0.25 (Underwood 1997; Janky 2000). A more con-
servative set of rules for deciding when to pool is given in Sokal and
Rohlf (1995).

The alternative method: ‘pooling up’, involves pooling the original
denominator with an MS that has more components of variation (i.e.,
one located higher up in the ANOVA table). This generally produces a
higher MS which more than offsets any benefit associated with increasing
the denominator degrees of freedom. More fundamentally, finding a non-
significant interaction is not a good justification on its own for dropping
the interaction from the analysis (in effect, pooling up the original error
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term with the interaction). This is because the failure to detect a sig-
nificant interaction from the samples does not necessarily mean that there
is no interaction in the population. If it is there, and you are making a
Type II error in not finding it, then removing the interaction biases the
error MS and consequently the validity of the treatment F-ratios.

Likewise, it is not advisable to drop higher-order interactions a priori,
without testing significance. Doing so has two main shortcomings.
Firstly, assuming a lack of interaction between factors changes the test
hypothesis (see discussion in Newman ez al. 1997). In effect, undeclared
terms are pooled up untested into the error MS, which compromises the
integrity of the analysis and can render meaningless any attempt to
interpret causality from the main effects. Secondly, if factors do interact,
their pooling into the error term can reduce the power of the analysis to
detect main effects (Hines 1996). Keep test questions simple in order
always to estimate all potential sources of variation.

The need to report all potential sources of variation applies particu-
larly to models that are designed to test experimental hypotheses, and
especially to those that include blocking factors. It may be less relevant to
mensurative studies aiming to isolate the factors that most influence a
response and to identify the most parsimonious explanatory model. In
this case, the ANOVA functions as a tool for model simplification and
prediction rather than for hypothesis testing. Complex, often unbalanced,
models may be simplified by testing higher-order interactions first, fol-
lowed by lower-order interactions and main effects. Each term is tested
by comparing a full model to a reduced model without that term. Non-
significant terms are dropped from the model and their variation pooled
into the residual (Grafen and Hails 2002; Crawley 2002). Since the
removal of a main effect necessitates also removing any of its higher-
order interactions, this approach upholds the fundamental principle
of ANOVA that terms be tested in hierarchical order (known as the
principle of marginality).

Use of quasi F-ratios

For some mixed and random models there is no exact F-ratio denomi-
nator for certain tests. In such cases it may be possible to add and
subtract mean squares to construct an error mean square with the
appropriate estimated components of variation. This error mean square
is then used to obtain a quasi F-ratio. The corresponding error d.f. are
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also estimated from these additions and subtractions of k mean squares,
using the following formula (e.g., Kirk 1994):

(MS; + --- + MS;)?
MS;/dfy + - -+ + (MS;/dfy)

df = integer

Examples of quasi F-ratios are given in ANOVA tables wherever they
apply in Chapters 3 to 7. Quasi F-ratios produce only crude approx-
imations to valid tests, and post hoc pooling can often provide a more
favourable alternative (Underwood 1997). We will identify these alter-
natives where they arise in ANOVA tables in Chapters 3 to 7.
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In the following Chapters 1 to 7, we will describe all common models with
up to three treatment factors for seven principal classes of ANOVA design:

(1) One-factor — replicate measures at each level of a single explanatory
factor;

(2) Nested — one factor nested in one or more other factors;

(3) Factorial — fully replicated measures on two or more crossed factors;

(4) Randomised blocks — repeated measures on spatial or temporal
groups of sampling units;

(5) Split plot — treatments applied at multiple spatial or temporal scales;

(6) Repeated measures — subjects repeatedly measured or tested in
temporal or spatial sequence;

(7) Unreplicated factorial — a single measure per combination of two or
more factors.

For each model we provide the following information:

The model equation;

The test hypothesis;

A table illustrating the allocation of factor levels to sampling units;
Illustrative examples;

Any special assumptions;

Guidance on analysis and interpretation;

Full analysis of variance tables showing all sources of variation, their
associated degrees of freedom, components of variation estimated in
the population, and appropriate error mean squares for the F-ratio
denominator;

e Options for pooling error mean square terms.

42
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As an introduction to Chapters 1 to 7, we first describe the notation used,
explain the layout of the allocation tables, present some worked examples
and provide advice on identifying the appropriate statistical model.

Notation

Chapters 1 to 3 describe fully randomised and replicated designs. This
means that each combination of levels of categorical factors (A, B, C) is
assigned randomly to n sampling units (S’), which are assumed to be
selected randomly and independently from the population of interest. The
sampling unit is therefore the subject or plot from which a single data
point is taken. These replicate observations provide a measurable residual
error, which is denoted by ¢ in the model description and by S'(C B A) in
the ANOVA table. The ANOVA tables in Chapters | to 3 are appropriate
also to fully replicated versions of blocked designs in Chapters 4 to 6, and
this will be signalled where relevant.

Chapters 4 to 7 describe designs without full replication. This means
that each combination of levels of categorical factors is tested on just a
single independent sampling unit, leaving no measurable residual error
(residual d.f. =0). In addition, the designs in Chapters 4 to 6 are not fully
randomised: those in Chapters 4 and 5 involve one or more blocking
factors that group sampling units together spatially or temporally, whilst
those in Chapter 6 involve repeated measurements taken sequentially from
the same subject. These blocking factors/subjects are denoted by S
because they represent the only true form of replication in the model, and
the sampling units nested hierarchically within them are termed plots (P’),
sub-plots (Q") and sub-sub-plots (R’).

The full notation used in Chapters 1 to 7 is listed in Table 4. For
meanings of ‘d.f.’, ‘SS’, ‘MS’, ‘F’, and ‘P’ in the ANOVA tables, see the
general principles of ANOVA on page 7. The Glossary on page 271
provides further summary definitions of these and other terms.

Allocation tables

For each model in Chapters | to 7, an allocation table shows the allocation
of treatment levels amongst replicate sampling units, illustrated with two or
more levels of each factor. We have used a consistent number of factor levels
and replicates across all allocation tables in order to facilitate comparison
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Table 4 Notation used in Chapters 1 to 7.

Symbol Meaning

Y Continuous response variable.

A, B, C Fixed factor (e.g., Treatment A of watering regime).

AL B, C Random factor (e.g., Treatment B’ of crop genotype).

a, b, c Number of sample levels of factor A, B, C (e.g., factor A
may have a =2 levels, corresponding to ‘low’ and
‘high’).

S, P,Q, R Random factor representing randomly selected subjects/
blocks (S'), plots (P'), sub-plots (Q’), or sub-sub-plots
(R’), to which treatments are applied.

S; P; Q; R; Independent and randomly chosen subject/block, plot,
sub-plot or sub-sub-plot which provides a replicate
observation of the response.

n The size of each sample, given by the number of
measures of the response in each combination of factor
levels (including any repeated measures), or by the
number of measures across all values of a covariate.

N Total number of measures of the response across all
factor levels.

B'(A) Hierarchical nesting of one factor in another (here, B is
nested in A).

B*A Interaction between factors in their effects on the
response (here, interaction of B with A).

€ Residual variation left unexplained by the model, taking
the form S'(... ), P’'(...), Q'(...)or R'(...).

Y=C|BIA +¢ Full model (here, variation in Y around the grand mean

partitions amongst the three main effects A, B, C plus
the three two-way interactions B*A, C*A, C*B plus the
one three-way interaction C*B*A, plus the unexplained
residual (error) variation € =S'(C*B*A) around each
sample mean. This would not be a full model if only
main effects were tested, or only main effects and
two-way interactions).

across models, but these should not be taken to indicate adequate replication
for testing effects. The amount of replication required for a given error d.f.
can be judged from inspection of the ANOVA tables. The example alloca-
tion tables below apply to fully replicated models. Models with blocking
factors or repeated measures have allocation tables with at least one extra
level of nesting. These will be explained as they arise in Chapters 4 to 6.
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The allocation for the factorial model below shows n =4 subjects (S) in
each of a =2 levels of factor A, cross factored with b =2 levels of factor B,
as identified by column and row headers.

Model descriptor, showing hierarchy of
sampling units nested in treatment levels| Level 2 of factor
A, measured in

S'(B|A) A, each level of B
1st sample of | 7|~
n replicate B
subjects [
g}f;s? :n:;:i |_—| bath sample of n subjects, each
treatmgent \< measured once with treatment
combination By combination ByA, (here, the 4th
A¢By) S sample of four subjects,
b \ Y i allocated to ByAy)

Level 2 of cross factor B,
measured in each level of A

The allocation for the factorial-with-nesting model below shows n=2
subjects (S) in each of b =2 levels of factor B nested in each of a =2 levels
of factor A, and cross factored with ¢ = 2 levels of factor C, as identified by
column and row headers.

Level 1 of factor
A, measured in /’ Level 4 of factor B’

each level of C nested in A, measured
in each level of C

—_ T
< A Az /
2 1
| B | B, | B; | By
7
1st sample of | |
n replicate S1
C
subjects !
(here n=2) S, S
=—=L-"| cbath sample of n subjects,
| | each measured once with
Co treatment combination
s | CBpaA, (here, the eighth
\ ey N sample of two subjects,
\\ allocated to C5B,4A,)

Level 2 of cross factor
C, measured in each
level of B nested in A
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Examples

Examples are a valuable tool for understanding how to apply abstract
statistical models to real-world situations. For every model description
in the following chapters, we therefore outline a number of examples
to illustrate possible applications. In order to facilitate comparison
between models, two manipulative experiments reappear throughout
Chapters 1 to 7.

The first experiment hypothesises effects of up to three treatment factors
on the yield of a crop. The allocation of treatments may be completely
randomised (Chapters | to 3) or stratified (Chapters 4 to 6). Treatments
may be applied at the same spatial scale (e.g., Chapters 1 to 4) or different
spatial scales (Chapters 5 and 6). In field trials on crop yields, a treatment
such as watering regime may be applied most efficiently over a large block
of area, whereas sowing density can be manipulated between smaller plots,
and fertiliser between sub-plots. We consider treatments applied at up to
three nested spatial scales: block, plot and sub-plot (or plot, sub-plot and
sub-sub-plot in the case of model 5.4).

The second experiment describes the effects of up to three treatment
factors on the growth of plants within laboratory mesocosms (controlled-
environment rooms). We consider treatment levels of temperature applied
between mesocosms, and treatment levels of light and fertiliser that can be
applied within mesocosms. We also consider how to achieve adequate
replication from a small number of mesocosms, by re-using them across a
sequence of trials (a temporal blocking factor).

In addition to these descriptive applications, we present below three
detailed examples that work through the analysis of data for contrasting
types of experimental design. These worked analyses demonstrate how a
question of biological interest leads to a test hypothesis, which in turn
translates into a statistical model for analysis of variance. The first
example demonstrates a design with nested factors; the second example
illustrates a hypothesis concerning an interaction; the third example
combines nesting with cross-factored treatments in a split plot. This third
example also considers covariate analysis, and raises issues concerning
‘unbalanced’ designs and ‘unrestricted’ models which are discussed further
on pages 237 and 242.

Example datasets and statistical outputs for all the models in Chapters
1 to 7, plus the three worked examples, are available on the book’s website
at www.soton.ac.uk/~cpd/anovas.


http://www.soton.ac.uk/~cpd/anovas
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Worked example 1: Nested analysis of variance

Farm chickens are susceptible to many sources of stress even with free-range
access to an outdoor pen. Any form of suffering is clearly undesirable from
a welfare point of view, and it can also reduce the quantity and quality of
eggs and meat for the farmer. One approach to reducing stress is to add
complexity to the animals’ environment of a type that might have been
faced by their wild ancestors, and to which they may have evolved beha-
vioural and physiological adaptations. The experiment below tests whether
the wellbeing of free-range hens improves with a challenge to their foraging
skills in the form of a less predictable availability of food. The response
variable is the concentration of the hormone cortisol, which can be sampled
from blood or saliva and is a good indicator of an individual’s state of stress.

Test hypothesis

Does higher uncertainty in the location of food reduces physiological
stress? The hypothesis was tested experimentally by measuring cortisol
levels in hens subjected to predictable and unpredictable distributions of
their food. Food predictability was manipulated in communal outdoor
pens by distributing the same volume of grain either evenly or in small and
randomly sited patches over the ground. Pens were randomly assigned to
treatment levels and hens were randomly assigned to pens. Although the
design has a single treatment factor it does not suit one-way ANOVA
because responses were measured per individual, whereas the treatment
levels of food predictability were applied to pens. This mismatch between
the scale of treatment application and the scale of measurement means
that pen must be declared as a second factor in the model. Each pen
received just one food treatment, so the random factor Pen was nested in
treatment factor Food. Each hen was present in just one pen, so the
random factor Hen was nested in Pen. This gives model 2.1 (page 68):

Model
Cortisol = Pen’(Food) + ¢

Factors Levels Values

A. Food 2 ‘Even’ and ‘Patchy’
B. Pen(Food) 4 ‘1°, ‘2, °3°, ‘4’ in Even, ‘5, ‘6’, ‘7°, ‘8’ in Patchy
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Allocation table

The table shows Cortisol concentration (ug/dl) in samples of n =3 replicate
hens (S') in each of b = 4 Pens (B') at each of a = 2 levels of Food treatment (A).

g Even Patchy

o

» 1 2 3 4 5 6 7 8
155 || 18.7 || 12.0 || 12.4 || 16.1 7.5 5.2 8.8
16.2 || 15.0 || 15.0 || 10.4 7.3 7.2 9.4 |] 103
15.0 |} 20.8 || 13.2 9.5 || 10.5 || 10.8 oI5 9.9

The data were arranged in three columns: Food, Pen and Cortisol
concentration. Although the experiment used a total of eight pens, these
were coded as numbers 1 to 4 repeated in each level of Food, as demanded

by some software packages to reflect the balanced design.

Food Pen Cortisol
1 1 15.5
1 1 16.2
1 1 15.0
1 2 18.7

A balanced ANOVA was computed, requesting analysis of Y against
the terms: A + B(A), with B declared random.

ANOVA table

Food is a fixed factor, Pen is a random factor:

Source of variation d.f. Mean square F-ratio F P

1 Food 1 177.127 12 8.64 0.026
2 Pen’(Food) 6 20.498 2/3 3.78 0.016
3 Hen/(Pen’(Food)) 16 5.424

Total variation 23
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The analysis shows that the mean cortisol concentration differed among
pens within each treatment level (Fg 16 =3.78, P=0.016). Over and above
the variation at this scale, however, cortisol concentration was influenced
by food predictability (F=8.64, P=0.026). Mean cortisol concentra-
tion was lower on average in pens with a patchy distribution of food than
in pens with an even distribution of food. Note that the error d.f. for the
treatment effect depend on the number of replicate pens per treatment
level (F-ratio: 1/2) and not on the number of replicate hens per pen. Thus
the power of the test could have been improved with more replicate pens,
but not directly with more replicate hens.

The experiment suggests an impact of food predictability on welfare,
which now requires further exploration. The patchily distributed food
caused the hens to spend longer foraging and to interact more with each
other, and either time or interaction could have been primary causes of
the observed differences. The timing of sampling, the number of hens per
pen, and the previous history of the hens may all influence the result. These
could be investigated further with tests for changes in cortisol concentra-
tion associated with swapping from one regime to the other (see repeated-
measures models in Chapter 6). Although stress tends to raise cortisol
levels, a history of trauma can cause unusually low levels. It would thus
be sensible to test for long-term benefits of food predictability with
complementary measures of welfare such as weight gain or egg production.

Worked example 2: Cross-factored analysis of variance

Bullheads (Cottus gobio) and stone loach (Barbatula barbatula) are sym-
patric stream fish that prey on benthic macro-invertebrates such as
Chironomid larvae. Although ecologically similar to each other, they have
contrasting foraging strategies. Bullheads are sit-and-wait ambush pre-
dators, whereas stone loach actively search for prey. Predation can be
important in limiting the abundance of prey species. Moreover, predators
may facilitate each other’s prey capture if behavioural responses of prey to
one predator make them more vulnerable to attack from the other.

Test hypothesis

The test hypothesis is that bullheads and stone loach both reduce the
density of Chironomid larvae, and their combined effect is greater than the
summed effects of the two species in isolation.
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The hypothesis was tested experimentally by stocking five bullheads,
five stone loach, or five bullheads plus five stone loach into enclosures in a
stream. A fish exclosure treatment was used as a control. Each of the four
treatments was replicated five times. Fish were held in the cages for 21
days. At the end of the experiment, the gravel substrate in the base of
each enclosure was sampled to estimate densities of Chironomid larvae
remaining. Prey density was expressed as individuals/m? and log-
transformed to normalise residuals. The data were analysed by two-factor
ANOVA, with presence and absence of bullheads and presence and
absence of stone loach as fixed factors (model 3.1(i) on page 82). This
design is orthogonal since each predator is held with and without the
other. Because the enclosures contain different densities of fish, the
influence of consumer density confounds the influence of species presence
or absence. However, the effect of all individuals consuming Chironomids
equally will show up in the analysis of variance as equally strong main
effects for each species. The interesting test in this analysis is the interac-
tion between species, with a significant interaction indicating that one
species hinders or facilitates the other’s access to the food resource.

Model
Density = Bullhead | Stone loach + ¢

Factors Levels Values
A. Bullhead 2 ‘Absent’ and ‘Present’
B. Stone loach 2 ‘Absent’ and ‘Present’

Allocation table

The table shows Chironomid density (log;o(individuals/m?)) in samples of
n=>5 replicate cages in each of ba=4 combinations of levels of Stone
loach*Bullhead.

Bullhead
S'(B|A) Absent Present

Stone Absent || 3.89]] 3.94[| 4.19]| 3.99]| 4.04| 3.94]| 4.01|| 4.21]]| 4.10]] 4.02

loach

Present || 3.48]| 3.81|| 4.08]| 3.63|| 3.64|| 3.60]| 3.94|| 3.86]| 3.96]| 3.62
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The analysis was computed by requesting the model Y =B|A,
after arranging the data in three columns: Bullhead, Stone loach and
Chironomid density:

Bullhead Stone loach Density
Absent Absent 3.89
Absent Absent 3.94
Absent Absent 4.19
Absent Absent 3.99
I.’.rf.:sent l.).résent 362

ANOVA table
Bullhead and Stone loach are both fixed factors:

Source of variation d.f. Mean square F-ratio F P

1 Bullhead 1 0.01624 1/4 0.61 0.446
2 Stone loach 1 0.36721 2/4 13.79  0.002
3 Stone loach*Bullhead 1 0.00061 3/4 0.02 0.882
4 Cage/(Stone loach*Bullhead) 16 0.02663

Total variation 19

The analysis shows no interaction between the fish species in their impacts
on Chironomid larvae in the cage enclosures (F; 1= 0.02, P =0.882). This
non-significant result was obtained despite high power to detect a real
effect, given by the 16 error d.f. (see page 248 for further discussion of
statistical power). The density of larvae was reduced in the presence of
stone loach (F; 1= 13.79, P=0.002), by an amount that was unaffected
by the addition of bullheads, which had no discernable impact on larval
abundance (F 16=0.61, P =0.446). The full analysis described in Davey
(2003) included water velocity as a covariate to control for variation in
physical conditions between enclosures.

Worked example 3: Split-plot, pooling
and covariate analysis

The inter-tidal barnacle Semibalanus balanoides is a small crustacean
abundant on European rocky shores. With an entirely sessile adult stage



52 Introduction to model structures

and internal cross-fertilisation, adults can reproduce only if they live
within a penis-reach of neighbours. Although they are hermaphrodite and
have penises up to ten times their body length, this mode of reproduction is
likely to cause larvae to aggregate close to adult conspecifics when they
settle out from pelagic waters onto inter-tidal rocks. Larvae may be less
strongly influenced by the presence of adults on shores that have a gen-
erally high level of recruitment, however, because of the greater chance of
other larval settlers recruiting close by.

Test hypothesis

The test hypothesis is that adult clusters influence larval settlement, with
an effect of cluster size that depends on background levels of recruitment.

The hypothesis was tested experimentally by measuring the densities of
barnacles settling onto replicate patches of inter-tidal rock face during the
spring settlement season. Each patch had been scraped clean of barnacles,
except for a central cluster left untouched, which comprised either
two, eight or 32 adults. To test for an influence of background levels of
recruitment, patches were prepared on replicate shores of high and low
recruitment. Analysis called for an ANOVA that cross factored the
treatment with shores nested in recruitment type, which is split-plot model
5.6(i) on page 167. Because the design is fully replicated, however, it can be
analysed using the equivalent completely randomised design (model 3.3(i)
on page 98). We will show the analysis first with treatment as a fixed factor
and then with treatment as a covariate.

With a limited budget for the experiment, it was decided to sample just
two independent replicate shores within each level of recruitment. The
Recruitment effect has an F-ratio denominator given by the MS for
Shore’(Recruitment), and the low replication means it is tested with only
two error d.f.; in other words, with little power to detect a difference. This
is apparent from inspection of the table for model 3.3(i) on page 101,
where factor A (= Recruitment) has an F-ratio denominator given by the
MS for B'(A) (= Shore/(Recruitment)), with (b—1)a error d.f. (= 2—
1)x2). Preliminary observations had suggested, however, that the two
high recruitment shores were similarly high, and the two low were similarly
low, which could then permit pooling error terms (see footnote a to the
ANOVA table for model 3.3(i) on page 101). With three replicate patches
per sample and three samples per shore, this apparent similarity between
shores could be tested with 24 error d.f. giving a high power to avoid
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falsely accepting the null hypothesis of no difference between shores. The
Treatment effect has an F-ratio denominator given by the MS for
Treatment*Shore/(Recruitment), and having three treatment levels means it
will be tested with only four error d.f., unless there is no variation between
shores in the treatment effect. Doing the analysis will illustrate this weak-
ness, and point to design improvements.

Model

Density = Treatment | Shore’(Recruitment) + €

Samples of three replicate Patches (S') are nested in each level of
the Treatment (C) on each shore (B’), which is nested in background
Recruitment (A).

Factors Levels Values

A. Recruitment 2 ‘High” and ‘Low’ background recruitment
of barnacles

B. Shore(Recruitment) 2 ‘Cowes’ and ‘Seaview’ in High,
‘Totland’ and ‘Ventnor’ in Low

C. Treatment 3 2°, ‘8’ and ‘32’ adult barnacles in remnant
cluster

Allocation table

The table shows larval settlement density (square-root(cm™)) in samples
of n =3 replicate Patches in each of ¢ = 3 levels of Treatment C for each of
b=2 levels of Shore B nested in each of a =2 levels of Recruitment A.

S'(CIB(A)) High recruitment Lo R ER

Cowes ‘ Seaview Totland ‘ Ventnor

2 |fo.386}[0.397|[0.432] Jo.279] |0.411]|o.260] |o.190]|0.177]|0.300]f0.304]f0.302] f0.27¢]

[o.484|[0.482]f0.514]f0.625|0.531 [0.478] Jo.268] [0.26 1| 0396 [o.402][0.351] |0.254]

Treatment
[e¢]

3

N

fo.484]0.520]Jo.569} J0.738][0.570] 0.620]fo.384}[0.319][0.334]|0.244] 0.401{ [0.324]
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The data were arranged in four columns: Recruitment, Shore, Treat-
ment and the numeric Density:

Recruitment Shore Treatment Density
High Cowes 2 0.386
High Cowes 2 0.397
High Cowes 2 0.432
High Cowes 8 0.484
I:o.w \./.e.ntnor 32 0324

Mean squares were computed in a statistics package by requesting ana-
lysis of terms: C|A 4+ C|B(A), with Shore (B) declared a random factor. In
the table below, the F-ratios were calculated using the ‘restricted model’,
which follows the protocol for constructing F-ratios described on page 35.
The issue of restricted and unrestricted models is discussed on page 242.

ANOVA table

Recruitment and Treatment are fixed factors, Shore is a random block:

Source of variation d.f. Mean square F-ratio F P

1 Recruitment 0.3008 52 1/pooled(2 + 6)“ 79.60 <0.001

1

2 Shore/(Recruitment) 2 0.003136 2/6" 0.82  0.453
3 Treatment 2 0.0720 71 3/5¢ 7.18  0.047
4 Treatment*Recruitment 2 0.016622 4/5¢ 1.66  0.299
5 Treatment*Shore’ 4 0.0100 32 5/6 2.62  0.060

(Recruitment)
6 Patch’(Treatment* 24 0.0038 33 -

Shore’(Recruitment))
Total variation 35

“ The MS Shore/(Recruitment) gives a Recruitment effect F; , =95.93, P=0.010.
Because Shore’(Recruitment) has P> 0.25, however, we assume negligible
variance between nested shores, and make a more powerful test from
the pooled error MS:[SS{Shore’(Recruitment)} + SS{Patch’(Treatment*Shore’
(Recruitment))}]/[2 4 24] with 26 d.f. See page 38.

b Many packages default to an unrestricted model of random effects, which uses
Treatment*Shore’(Recruitment) as the error MS, giving a Shore/(Recruitment)
effect F,4,=0.31, P=0.748. See page 242.

¢ Treatment*Shore’(Recruitment) has P <0.25, ruling out post hoc pooling for
Treatment or Treatment*Recruitment.
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The analysis indicates that the response density of settling barnacles
depended on the background level of recruitment (F,6=79.60,
P < 0.001) irrespective of shore (F24=0.82, P > 0.05), and it depended on
the treatment of remnant cluster size (F,4="7.18, P <0.05) also irrespec-
tive of shore (F4,4=2.62, P > 0.05). Settlement density increased with
cluster size irrespective of background recruitment (F, 4= 1.66, P > 0.05).

Note that the design allowed only four error d.f. for testing the treat-
ment effect and its interaction with recruitment. This meant that a sig-
nificant effect could be detected only from an explained component of
variation that had more than seven times the magnitude of the unex-
plained component (because the result: F, 4=7.18 gave P =0.047, which
lies just within the 0.05 threshold for significance). In fact, the full
experiment described in Kent et al. (2003) had six levels of treatment, with
cluster sizes of ‘07, 2, ‘4’,*8’, 16, ‘32’, and the three extra levels gave ten d.f.
for the error MS of Treatment*Shore’(Recruitment) in row 5. The greater
range of treatment levels resulted in a much stronger treatment main effect
of F519=7.05, P=0.005; in other words, the six extra error d.f. helped to
reduce the probability of falsely rejecting the null hypothesis by a factor of
ten. Could the same improvement have been achieved by instead
increasing the replication of patches to six per sample? Most likely not,
since the within-sample replication does not directly influence the tests for
Treatment and Treatment®*Recruitment. These considerations illustrate
the value of planning for analysis of variance at the design stage, in order
to make the best use of available resources.

The analysis can also be done with Treatment as a covariate. We will
describe the ANCOVA for the purposes of comparison, although it will be
seen to provide an inferior analysis. Where previously we had three pat-
ches in each of 12 samples, we now have nine patches in each of four
samples, because the three levels of Treatment now belong to one sample
(instead of three), from which a regression is calculated at each level of
Shore. As before, the Treatment effects in rows 3 and 4 below are tested
against Treatment*Shore’/(Recruitment) in row 5. In effect, the slope of the
single regression for the Treatment main effect (row 3), and the variation
in slopes of the two regressions for Treatment*Recruitment (row 4), are
both calibrated against the variation in slopes between the shores within
each level of Recruitment. This time the calibration is accomplished with
only two error d.f. (compared to four with a categorical treatment),
because of the reduced number of samples. The residual d.f. are corre-
spondingly larger, at (n—2)x (1 x2x(2))=28, with n=9 responses per
regression per shore and a total of four shores.
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Note that some statistics packages will show ‘adjusted SS’ for
Recruitment and Shore’(Recruitment) that differ from the ‘sequential SS’,
even though the design is balanced and should be analysed with the
sequential SS. The difference is caused by the statistics package employing
a Type III adjustment, which adjusts each main effect for its interaction as
well as for the other main effects. The issues of balance and adjusted SS are
discussed in more detail on page 237. Some packages will use the residual
term in row 6 as the default error MS for testing the main effects in rows 3
and 4, in effect ignoring the designation of shore as a random factor for the
purposes of the regressions.

ANCOVA table

Recruitment is a fixed factor, Shore is a random block, Treatment is a

covariate:

Source of variation d.f. Mean square F-ratio F P

1 Recruitment 1 0.3008 52 1/pooled(2 +6)“ 55.73 <0.001
2 Shore/(Recruitment) 2 0.0031 36 2/6 0.56  0.575
3 Treatment 1 0.097297 3/5 6.30  0.129
4 Treatment* 1 0.025629 4/5 1.66  0.327

Recruitment
5 Treatment* 2 0.0154 46 5/6” 2.78  0.079

Shore'(Recruitment)
6 Patch/(Treatment* 28 0.0055 60 -
Shore’(Recruitment))

Total variation 35

9 Pooling as in the previous table.

b Treatment*Shore/(Recruitment) has P < 0.25, ruling out post hoc pooling for
Treatment or Treatment*Recruitment.

With only two error d.f. for testing the treatment main effect, this now
appears as a non-significant covariate. These reduced error d.f. mean that
the ANCOVA has lost power to distinguish the treatment effects of
interest, and this time there are no gains in error d.f. to be had from testing
more levels of Treatment. In addition, graphing the response against
Treatment at each shore reveals a decelerating rise in settlement density
with cluster size, at least on some shores. There is thus little biological
information to be gained even from an ANCOVA that treats Shore as a
fixed factor for the purposes of the regressions (the default option in many
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packages), and consequently deploys the 28 residual d.f. for measuring the
regression errors. For this particular experimental design, a much more
powerful and informative test was obtained from the ANOVA with
Treatment as a categorical factor. The categories of Treatment moreover
allow further post hoc testing (see page 245) to show that Density is most
sensitive to smaller cluster sizes.

In general, designating a factor as a covariate may decrease its error d.f.,
and hence reduce the power of the analysis to distinguish effects of
interest, if the model includes random cross factors (as here). Conversely,
designating a factor as a covariate may increase its error d.f. if the factor
would otherwise be treated as a random block or if any other cross factors
are fixed, and always assuming that the covariation describes a linear
response. These differences will be signalled as they arise in Chapters 1 to 3
of the model structures.

Key to types of statistical models

Use the key below to identify the appropriate chapter of model structures
on the following pages, then peruse the illustrations of alternative designs
to find one that matches your data structure.

(1) Can you randomly sample from a population with independent
observations? Yes — 2; No — the data may not suit statistical analysis
of any sort (see design considerations on page 15).

(2) Are you interested either in differences between sample averages or in
relationships between covariates? Yes — 3; No — the data may not
suit ANOVA or ANCOVA.

(3) Does one or more of your explanatory factors vary on a continuous
scale (e.g., distance, temperature etc.) as opposed to a categorical
scale (e.g., taxon, sex etc.)? Yes — consider treating the continuous
factor as a covariate and using ANCOVA designs in Chapters | to 3;
this will be the only option if each sampling unit takes a unique value
of the factor; No — 4.

(4) Can all factor levels be randomly assigned to sampling units without
stratifying any crossed factors and without taking repeated measures
on plots or subjects? Yes — 5; No — 9.

(5) Are all combinations of factor levels fully replicated? Yes — 6; No —
use an unreplicated design (Chapter 7).
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Fully randomised and fully replicated designs

(6) Do your samples represent the levels of more than one explanatory
factor? Yes — 7; No — use a one-factor design (Chapter 1).

(7) Is each level of one factor present in each level of another? Yes — §;
No — use a nested design with each level of one factor present in
only one level of another (Chapter 2).

(8) Use a fully replicated factorial design (Chapter 3), taking account of
any nesting within the cross factors (models 3.3 to 3.4).

Stratified random designs

(9) Are sampling units grouped spatially or temporally and all
treatment combinations randomly assigned to units within each
group? Yes — use a randomised-block design (Chapter 4), with
analysis by corresponding Chapter-3 ANOVA tables if fully
replicated; No — 10.

(10) Are treatments applied at different spatial scales and their levels
randomly assigned to blocks or to plots within blocks, etc.? Yes —
use a split-plot design (Chapter 5), taking account of nesting among
sampling units. No — use a repeated-measures design (Chapter 06),
taking account of repeated measures on each sampling unit in a
temporal or spatial sequence. Analyse with corresponding Chapter-3
ANOVA tables if fully replicated.

How to describe a given design with a statistical model

Follow these steps to work out the statistical model associated with a given
design. Then go to the appropriate chapter of the book to evaluate the
amount of replication needed to give sufficient error d.f. for testing the
effects of interest (see also page 248 on choosing experimental designs).

(1) Define your independent and random sampling units (S’, usually
subjects or plots) from which you measure the response variable (Y),
and decide how many factors contribute to explaining variation in Y.
This book deals with up to three factors, so let’s imagine you have
three, which we will label A, B and C.

(2) You will have a fully replicated design if each sample has n>1
replicates each measured once. The model then has S’ nested in all of
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the explanatory factors, in the form Y =S'(C B A), where the factors
within the parenthesis are variously crossed or nested with each other
as illustrated in Chapters | to 3. For example, factor B is nested in A
if each level of B belongs to (or is treated to) only one level of A;
factor C is cross factored with B if each level of C is represented in (or
treated to) each level of B. These models are conventionally described
without direct reference to S, as °Y = C|B’(A) + ¢’, etc. Here, the term
¢ refers to the unexplained (residual) variation of the S’ around their
sample means: S'(C|B’(A)). In a statistics package, request the model
without reference to &, as ‘C|A + C|B(A)’, etc. (further detailed on
page 258).

(3) If the design is not fully replicated, it may have repeated measures at
one or more levels, or be fully unreplicated. Your design will have
repeated measures if you measure each subject or plot, or level of a
blocking factor, at more than one level of a crossed factor. For
example, with repeated measures on subjects over time (C), the model
takes the form Y =C|S'(B A). The subjects S’ are nested in the
remaining factors A and B, because each subject belongs to (or is
treated to) only one level or combination of levels of these factors. We
now decide whether B is nested in A, meaning that each level of B
belongs to (or is treated to) one level of A, giving the full model:
Y =C|S'(B'(A)) as described on page 214. Alternatively, B may be
cross factored with A, meaning that each level of B is represented in (or
treated to) each level of A, giving the full model Y =C|S'(B|A) as
described on page 220. The lack of full replication means that these
models have no true residual variation €. Your statistics package may
fail to complete the analysis on account of this, unless you declare all
terms except the highest-order term (always the last numbered row
with non-zero d.f. in the ANOVA tables in this book; see also
page 258). If the repeated measures are taken within spatial blocks,
then you will have a randomised-block or split-plot design, which has
various forms illustrated in Chapters 4 to 6.

(4) The design is fully unreplicated if you have just one data point at each
combination of levels of the factors (n=1). These models of the form
Y = C|B|A are described in Chapter 7. As with repeated measures, the
lack of replication means that they have no true residual variation &.

A suitable statistics package can calculate SS for any of the models in
this book if you declare all of the numbered terms shown in the relevant
ANOVA table except for the last numbered term with non-zero d.f. (which



60 Introduction to model structures

the package will use as residual variation), and any terms with zero d.f.
Use the package with care when applying it to a complex model, and check
its outputs by comparing them to the relevant ANOVA table in the book.
If necessary, calculate the correct F-ratios by hand.

In worked example 1 on page 47, the response of cortisol concentration
was measured on replicate hens S'. There were two factors: food predict-
ability (A), with two levels: even and patchy food, and pen (B’), with four
levels per level of A. Each level of B was tested at only one level of A so the
design was nested (as opposed to cross-factored). The hierarchical struc-
ture of nesting is therefore Y =S/(B(A)), which we conventionally write
as Y =B(A)+c¢. Because of the nesting, it may need to be requested
in a statistics package in a more expanded form: A + B(A), declaring
B random.

In worked example 2 on page 49, the response of Chironomid larval
density was measured in replicate cages S’. There were two factors: bull-
head (A) and stone loach (B), each with two levels: present or absent. The
design was fully replicated, with samples of n =35 replicate cages, each
measured once. Each level of B was treated to each level of A so the design
was cross factored (as opposed to nested). The hierarchical structure
of nesting is therefore Y =S/(BJA), which we conventionally write
as Y =B|A +¢, and which can be requested in a statistics package as
Y =BJA.

In worked example 3 on page 51, the response of barnacle settlement
density was measured in replicate patches (S') of cleared rock face. There
were three factors: background recruitment (A), shore (B’) and treatment
(C). The design was fully replicated, with samples of n =3 replicate pat-
ches, each measured once, so it takes the form: Y =S/(C B A). Within the
parenthesis, each shore was present in only one level of background
recruitment, giving a nested component: B'(A); each level of treatment was
present in each shore and level of recruitment, adding a cross-factored
component: C|B’'(A). The hierarchical structure of nesting is therefore
Y =S'(C|B’(A)), which we conventionally write as: Y=C|B'(A)+=«.
Because of the nesting, it may need to be requested in a statistics package
in a more expanded form: C|A 4+ C|B(A), declaring B random.
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One-factor designs

The simplest form of analysis of variance is the one-factor ANOVA, which
seeks to compare the means of a levels of a single factor A. Each sampling
unit (S') is tested or measured in just one level of factor A, so sampling
units are nested within A. In manipulative experiments, in which the
investigator actively creates differences among sampling units by imposing
treatments, a levels of factor A are assigned randomly amongst na sam-
pling units, giving n independent replicate measures for each level of
A. For example, to investigate the effect of herbivore attack on leaf
chemistry, na plants are each subjected to one of a types of mechanical
defoliation. In mensurative studies, in which the investigator exploits pre-
existing differences among sampling units, n independent subjects are
drawn randomly from each of a populations. For example, the effect of
herbivore attack on leaf chemistry could be examined by comparing n
randomly selected plants showing evidence of herbivore browsing with n
randomly selected undamaged control plants.
The sampling unit for a given factor level is the subject or plot:

Subject or plot|| S’ replicated in a sample || S;

61
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Assumptions

One-factor designs have no assumptions other than those common to all
ANOVA models (page 14). Most importantly, every sampling unit or
observation should be independent of all others. Repeated measurements
taken from the same sampling unit are nested within that unit and should
be analysed using a nested model (Chapter 2). For example, multiple
leaves measured on the same plant will be correlated; treating them as
independent instead of nested replicates constitutes pseudoreplication
(Hurlbert 1984) and will inflate the Type I error rate.

Analysis

In the table below, we assume that samples sizes are balanced (i.e., equal n
for each level of factor A). Outputs are identical for unbalanced sample
sizes, except that the error d.f. = N — a, where N = the total number of
measures of the response across all factor levels. Such designs are never-
theless more sensitive to violation of the assumptions of ANOVA
(page 14), particularly homogeneity of variances.

1.1 One-factor model

Model

Y=A+c¢

Test hypothesis

Variation in the response Y is explained by a single factor A.

Description

Each level of A has n independent replicate subjects or plots (S'). In effect,
samples of n subjects or plots are nested in (belong to) levels of factor A.
Each subject is measured once.

Factors Levels

A a




1.1 One-factor model 63

Allocation table

The table illustrates samples of n = 4 replicate subjects nested in each of
a = 4 levels of A.

<
= A A A A
» 1 2 3 4
S;
Sn Sna
Examples

(1) Hy: Stress in free-range hens depends upon uncertainty in the
distribution of their grain, tested by measuring cortisol levels of hens
housed in n replicate Pens (S') at each of a levels of food Patchiness
(A). Worked example 1 on page 47 describes the experimental design
in more detail. One-factor ANOVA on a response variable
comprising the mean cortisol level of each cage will yield an A effect
identical to that from the two-factor analysis shown in the worked
example.

(2) Hy: Crop yield depends on Watering regime (A), with a regimes
randomly assigned amongst na Plots (S'). The response is the yield
from each plot, measured at the end of the experiment.

(3) H;: Plant growth depends on Temperature (A), with a Temperatures
randomly assigned amongst na Mesocosms (S'). The response is the
mean growth of plants in each mesocosm.

(4) H,: Breeding success of gull pairs (S') is influenced by a commercial
egg Harvest (A), with three levels of impact: undisturbed control,
disturbed by collectors, harvested by collectors. Planned contrasts
can test for a general effect of disturbance compared to the control,
and a difference in the effects of removing eggs compared to
disturbance only (see page 245 for uses of contrasts). If it were
possible to remove eggs without disturbance, then disturbance and
harvest could have been treated as independent and fully crossed
factors using model 3.1.
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Comparisons

When a = 2, the analysis is equivalent to a Student’s 7 test with N — 2 d.f.
and the statistic r = /F.

Model 1.1 can be extended to include replicate measurements taken on
each sampling unit (model 2.1) or a second, crossed factor applied to
sampling units (model 3.1). Levels of a second, crossed factor may also be
tested simultaneously in sub-plots (P’) within each plot (S'), giving split-
plot model 5.6, or tested sequentially on each subject (S'), giving repeated
measures model 6.3.

In testing the effect of a single treatment factor A, model 1.1 has similar
objectives to randomised-block model 4.1 and repeated-measures model
6.1. Crucially it differs from both in that the assignment of the a levels of
factor A to sampling units is completely randomised. Randomised-block
model 4.1 accounts for sources of unwanted background variation among
plots by grouping them into blocks either spatially or temporally. The
random assignment of treatments to sampling units (plots within blocks) is
then stratified so that every level of factor A is represented once in every
block. Repeated-measures model 6.1 achieves the same goal by testing the
levels of A sequentially on each subject. The order in which the treatments
are assigned to sampling units (times within each subject) is randomised
within each subject.

Notes

Care should be taken when testing and interpreting the effect of factors
that represent different locations or times. For example, consider a
study in which barnacle settlement density is measured on replicate
patches of rock at three elevations (A) on a single shore. Because shore
elevation is confounded by other sources of spatial variation across the
shore, such as trampling intensity or predation pressure, any significant
effect of A can be interpreted only as indicating differences in barnacle
density with elevation on that particular shore, not as general differences
among elevations on all shores. Moreover, the cause of any variation
among elevations cannot be determined without further experimenta-
tion. Similarly, in a study in which the condition of blackbirds is mea-
sured in each of four seasons (A) of a year, season is confounded by
other sources of temporal variation such as short-term weather events or
longer-term climatic fluctuations. Any significant effect of A can be
interpreted only as indicating differences in condition with season in
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that particular year. The null hypothesis being tested is therefore ‘no
difference among positions or times’, rather than ‘no difference among
elevations or seasons’. To test the more general second hypothesis would
require an experimental design in which the levels of elevation or season
are replicated independently in space or time (see page 16 for details).
This could be achieved by repeating the barnacle settlement study at the
same three elevations on a number of replicate shores (B’), or measuring
the condition of blackbirds in spring, summer, autumn and winter in a
number of replicate years (B’). The design is then analysed with model
3.1 if it has replicates at each level of B'*A or otherwise by model 6.1 in
a subject-by-trial design. The power to identify a main effect of elevation
or season now depends on the number of replicate shores or years (b)
rather than the number of replicate patches of rock at each elevation or
the number of individual birds measured in each season (n).

An alternative method is to measure elevation as a covariate on a
continuous scale as opposed to categorical levels, in order to seek a linear
trend in barnacle settlement with elevation. Provided the elevation of each
plot is measured without error, the covariate ceases to block unmeasured
variation and can be treated as a fixed factor (see page 29 on uses of
covariates).

ANOVA table for analysis of the term A

Model 1.1(i) A is a fixed or random factor:

Components of

variation

estimated
Mean square d.f. in population F-ratio
1A a—1 S'(A)+A 1/2
2 S'(A) (n—1a S'(A) -

Total variation na— 1

ANCOVA table for analysis of the term A

Examples 2 and 3 above could designate A as a covariate.
The model describes a linear regression on A. Figure 2 on page 11
illustrates an example of a regression analysis with single covariate of the
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response. The allocation table below illustrates one sample of n = 16
subjects each taking one of @ = 4 values of covariate A. Note that a full
analysis is possible with or without replicate subjects for each value of A.
The n subjects must sample a minimum of three values of A to allow
evaluation of the assumption of a linear response.

Aq Ay Az Ay
J J 2 J

S'(A)

S

Model 1.1(ii) A is a covariate of the response:

Components of
variation estimated

Mean square d.f.  in population F-ratio
1A 1 S'(A)+A 12
2 S'(A) n—2 S'(A) -

Total variation n—1
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Nested designs

Nested designs extend one-factor ANOVA to consider two or more
factors in a hierarchical structure. Nested factors cannot be cross fac-
tored with each other because each level of one factor exists only in one
level of another (but see models 3.3 and 3.4 for cross-factored models
with nesting). Nested designs allow us to quantify and compare the
magnitudes of variation in the response at different spatial, temporal or
organisational scales. They are used particularly for testing a factor of
interest without confounding different scales of variation. For example,
spatial variation in the infestation of farmed salmon with sea lice could be
compared at three scales — among farms (A’), among cages within each
farm (B’) and among fish within each cage (S') — by sampling n fish in
each of b cages on each of a farms. Similarly, seasonal variation (A) in
infestation of farmed salmon by sea lice, over and above short term
fluctuations in time (B’), could be measured by sampling n independent
fish on b random occasions in each of a seasons.

Designs are inherently nested when treatments are applied across one
organisational scale and responses are measured at a finer scale. For example
the genotype of a plant may influence the mean length of its parasitic fungal
hyphae. A test of this hypothesis must recognise the fact that hyphae grow in
colonies (S') that are nested within leaves (C), which in turn are nested within
plants (B’), which in turn are nested in genotype (A’) (discussed further on
page 23). In effect, the nested design accounts for correlation among repe-
ated measurements taken from the same plant or leaf.

Nested factors are generally random in order to ensure that higher-
order factors are sampled representatively. Fixed nested factors are
unusual but may be needed if levels of the nested factor are not selected at
random; for example if the purpose is to control for variation between
taught classes of students nested within year-group. The fixed classes

67
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must then be designated such that the random subjects nested within
them also sample the higher-order factors representatively.

The sampling unit for a given combination of factor levels is the subject
or plot:

Subject or plot|| S’ replicated in a sample || S;

Assumptions

Nested designs have no assumptions other than those common to all
ANOVA models (page 14). Note, however, that the levels of any random
factors are deemed to be drawn from an infinite (or effectively infinite)
population, and that if the factor is used as an error term, its samples of
level means are assumed to be normally distributed with homogeneous
variances between samples.

Analysis

The nested designs below all have the nested factor being measured at the
same number of levels in each level of the higher-order factor. Imbalance in
nested designs results in inexact F tests for all but the last term in the model.
Consider using Satterthwaite’s approximation (Sokal and Rohlf 1995), or
deleting data points at random to reinstate balance (see page 237).

2.1 Two-factor nested model

Model

Y=B(A)+¢

Test hypothesis

Variation in the response Y is explained by treatment A and by grouping
factor B nested in A.
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Description

Samples of n subjects or plots (S") are nested in levels of grouping factor B
which are nested in levels of treatment A. Each subject is measured once.

Factors Levels
A a
B(A) b

Allocation table

The table illustrates samples of n = 4 replicate subjects in each of b = 2
levels of B nested in each of a = 2 levels of A.

< Ay Az

o

n| By B, B3 B4
S;
S, Snp Siba

Examples

(1) Hy: Academic performance of students depends upon Tutorial system
(A), tested by assigning each of » randomly selected Tutors (B') of
each of a Systems (A) to n randomly selected Pupils (S').

(2) H;: Fungal infestation of horticultural plants depends upon
Fungicide (A), tested by measuring the number of fungal colonies
per leaf for n Leaves (S') randomly selected on each of b Plants (B’)
subjected to one of a Fungicide treatments.

(3) H;: Crop yield depends on Watering regime (A) with a regimes randomly
assigned amongst ba Fields (B') sampled at random across a region. Crop
yield is measured in n replicate Plots (S) in each Field. The response is the
total yield from each plot measured at the end of the experiment.

(4) H;: Plant growth depends on Temperature (A), with a Temperatures
randomly assigned amongst ba Mesocosms (B’), each containing n
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replicate Trays of plants (S). The response is the mean growth of
plants in each of the nba trays.
(5) See worked example 1 on page 47.

Comparisons

Model 2.1 is an extension of model 1.1 to include sub-sampling of each
sampling unit. If there is only one observation for each level of B’, then
the model reverts to model 1.1.

The design is useful when sampling units (B’) are costly or time consuming
to set up, but collection of replicate observations (S') is relatively easy. If
there is little variation among levels of B’, B'(A) may be pooled into the
residual error term, producing potentially substantial gains in power to test
A. If post hoc pooling is not possible, the error d.f. for testing fixed factor A
will be set by the number of levels of B/, and it is therefore a good principle of
design to anticipate this eventuality by investing most effort in replication at
the level of B'. Nevertheless, some replication at the lowest level of the design
can usefully improve the precision of estimates for levels of B’.

Model 2.1 can be extended to include further sub-sampling (model 2.2),
a third factor crossed with B’ (model 3.3) or a third factor crossed with A
(model 3.4).

If B' is a random factor that represents different locations or times then
it may be regarded as a blocking factor (S'), with subjects as plots (P’)
nested within blocks. Applying levels of a second treatment factor to the
plots within each block then yields split-plot model 5.6.

ANOVA table for analysis of terms A + B(A)

Model 2.1(i) A is fixed or random, B' is random:

Components of
variation estimated

Mean square d.f. in population F-ratio
1A a—1 S'(B'(A))+B'(A)+A 1/2¢

2 B'(A) (b—1)a S'(B'(A))+ B'(A) 2/3

3 S'(B'(A)) (n—1)ba S'(B'(A)) -
Total variation nba — 1

@ Planned post hoc pooling is permissible for A if B'(A) has P> (.25. Obtain the
pooled error mean square from [SS{B’(A)} + SS{S'(B'(A))}]/la(nb — 1)] and use
a(nb—1) d.f. See page 38.
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ANCOVA table for analysis of terms A + B(A), with
A as a covariate

Factor A may be treated as a covariate, for example in measuring the diversity
of arboreal arthropods in relation to woodland area A. The diversity response
is measured by fumigating n trees in each of » woods of different sizes.

The model describes a linear regression on A of the mean response at
each level of B. The allocation table illustrates samples of n = 4 replicate
subjects in each of b = 4 samples of B each taking a unique value of
covariate A. Note that a full analysis is possible with or without replicate
observations (levels of B) for each value of A. The b levels of factor B
must sample a minimum of three values of A to allow evaluation of the
assumption of a linear response.

AR A, Ay A,
al X \A A
® | B, B, Bs B,
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Model 2.1(ii) A is a covariate of the response, B' is a random factor:

Components of
variation estimated

Mean square d.f. in population F-ratio
1A 1 S'(B'(A))+B'(A)+ A 1/2¢

2 B'(A) b—2 S'(B'(A)) + B'(A) 2/3

3 S'(B'(A)) (n—1b S'(B'(A)) -
Total variation nb—1

“ Planned post hoc pooling is permissible for A if B'(A) has P > 0.25. Obtain the
pooled error mean square from [SS{B'(A)} + SS{S'(B'(A)}1/[(b —2) + (n — 1)b].
See page 38.
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2.2 Three-factor nested model

Model

Y = C(B(A)) +¢

Test hypothesis
Y responds to all or any of factor C’ nested in factor B’, or B’ nested in
treatment A, or A.
Description

Samples of n subjects or plots (S') are nested in levels of grouping factor
C which are nested in levels of super-grouping factor B which in turn are
nested in levels of treatment A. Each subject is measured once.

Factors Levels
A a
B(A) b
C(B) c

Allocation table

The table illustrates samples of n=4 replicate subjects in each of c=2
levels of C nested in each of b =2 levels of B nested in each of a =2 levels

of A.

S'(C(B(A))
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&
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Examples

(1) Hy: Stress in laboratory mice depends upon animal husbandry
practices (A), tested by measuring cortisol levels in saliva samples
from n mice randomly assigned to each of ¢ Cages (C') maintained by
b Technicians (B’) at each of a = 2 levels of diet Enrichment
treatment: hazelnuts with shells either intact or broken.

(2) H,: Fungal infection of horticultural plants depends upon Fungicide
(A), tested by measuring the sizes of n fungal Colonies (S’) on each of
¢ Leaves (C") randomly selected on each of b Plants (B’) subjected to
one of a Fungicide treatments.

(3) Hy: Crop yield depends on Watering regime (A), with a regimes
randomly assigned amongst ba Farms (B’). Each farm contains ¢
replicate Fields (C'), and each field contains n replicate Plots (S'). The
response is the yield from each plot, measured at the end of the
experiment.

(4) Hy: Plant growth depends on Temperature (A), with a temperatures
randomly assigned amongst ba Mesocosms (B’). Each mesocosm
contains c replicate Trays (C’), each containing n replicate plants. The
response is growth of each of the ncba individual Plants.

Comparisons

Model 2.2 is an extension of model 2.1 to include further sub-sampling.
If there is only one observation for each level of C/, then the model
reverts to model 2.1.

With C’' and B’ both random, the analysis effectively comprises a
separate ANOVA at each scale in the nesting. The design is useful when
sampling units (C') are costly or time consuming to set up, but collection
of replicate observations (S') is relatively easy. If there is little variation
among levels of C’, C'(B/(A)) may be pooled into the residual error term,
producing potentially substantial gains in power to test A and B'(A).
Likewise, if there is little variation among levels of B’, B'(A) may be
pooled with C'(B’(A)), producing potentially substantial gains in power
to test A. If post hoc pooling is not possible, the error d.f. for testing fixed
factor A will be set by the number of levels of B’, and it is therefore a
good principle of design to anticipate this eventuality by investing most
effort in replication at the level of B’. Nevertheless, some replication at
lower levels of the design can usefully improve the precision of estimates
at higher levels.



74 Nested designs

If B' and C' are random factors that represent different locations
or times then they may be regarded as blocking factors (blocks S’ and
plots P’, respectively), with subjects as sub-plots (Q’) nested within
plots nested within blocks. Applying levels of a second treatment factor
to the plots within each block and levels of a third treatment factor to the
sub-plots within each plot then yields split-plot model 5.5.

ANOVA table for analysis of terms A + B(A) + C(B A)

Model 2.2(i) A is fixed or random, B’ and C' are random factors:

Components of variation estimated

Mean square d.f. in population F-ratio
1A a—1 S(C'(B'(A)+C(B'(A)+B(A)+A 1227

2 B'(A) - 1a S'(C'(B'(A))) + C'(B'(A)) + B'(A) 2/3"

3 C'(B'(A)) (c—Dba S'(C'(B'(A))) + C'(B'(A)) 3/4

4 S'(C'(B'(A))) (n—1)cba  S'(C'(B'(A))) -
Total variation ncha — 1

@ Planned post hoc pooling is permissible for A if B'(A) has P > 0.25. Obtain
the pooled error mean square from [SS{B'(A)} + SS{C'(B'(A))}]/[cb — 1)a]. See
page 38.

b Planned post hoc pooling is permissible for B/(A) if C'(B'(A)) has P> 0.25.
Obtain the pooled error mean square from [SS{C'(B'(A))} + SS{S'(C'(B'(A)))}]/
[(nc — 1)ba]. See page 38.

ANCOVA table for analysis of terms A 4+ B(A)+ C(B A),
with A as a covariate

Factor A may be treated as a covariate, for example in measuring the
diversity of gall wasps in relation to woodland area A. The diversity
response is measured by counting galls on n leaves from each of ¢ trees in
each of b woods of different sizes.

The model describes a linear regression on A of the mean response at
each level of B. The allocation table illustrates samples of n = 4 replicate
subjects in each of ¢ = 2 samples of C in each of b = 4 samples of B each
taking a unique value of covariate A. Note that a full analysis is possible
with or without replicate observations (levels of B) for each value of A.
The b levels of factor B must sample a minimum of three values of A to
allow evaluation of the assumption of a linear response.
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Model 2.2(ii) A is a covariate of the response, B' and C' are random factors:

Components of variation estimated

Mean square d.f. in population F-ratio
1A 1 S'(C'(B'(A))+C'(B'(A)+B'(A)+ A 1/2¢

2 B'(A) b-2 S'(C'(B'(A)))+C'(B'(A)) +B'(A) 2/3"

3 C'(B'(A)) (c—=Db S (C'(B'(A))) + C'(B'(A)) 3/4

45 (C([B'A)  (m—Deb  S(CB(A)) -
Total variation neb — 1

“ Planned post hoc pooling is permissible for A if B'(A) has P >0.25. Obtain the
pooled error mean square from [SS{B'(A)} + SS{C'(B'(A)}1/[(b — 2) + (c — 1)b].
See page 38.

b Planned post hoc pooling is permissible for B'(A) if C'(B'(A)) has P> 0.25.
Obtain the pooled error mean square from [SS{C'(B'(A))} + SS{S'(C'(B'(A)))}1/
[(c— 1)b+ (n— 1)cb]. See page 38.



3
Fully replicated factorial designs

Factorial models test multiple independent effects simultancously. The
models in this chapter are orthogonal designs with crossed factors,
meaning that each level of each factor is tested in combination with each
level of the other(s). Fully replicated orthogonal designs allow us to test
whether factors influence the response additively as main effects, or whe-
ther the effect of one factor is moderated by another in an interaction.
Non-orthogonal designs that cannot test interactions are best organised as
a nested model. Further details of factorial designs are given on page 24.

The sampling unit for a given combination of factor levels is the subject
or plot:

Subject or plot S’ replicated in a sample S,

Assumptions

Fully replicated factorial designs have no assumptions other than those
common to all ANOVA models (page 14). Note, however, that the levels
of any random factors are deemed to be drawn from an infinite (or
effectively infinite) population, and that if the factor is used as an error
term, its samples of level means are assumed to be normally distributed
with homogeneous variances between samples.

Analysis

Factorial designs must be analysed with respect to their hierarchy of inter-
actions. Each interaction is entered into the model only after entering its
component main effects; likewise, higher-order interactions are entered after

76
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their component lower-order interactions. The SS then account for inde-
pendent components in sequence, and are aptly named ‘sequential SS’. In
contrast, the tabulated outputs from factorial designs should be read from
the bottom upwards, in order to interpret higher-order interactions first, and
lower-order interactions before main effects. This is because a significant
interaction can render unnecessary further interpretation of its constituent
effects. For example, in the allocation table for the two-factor model 3.1 on
page 79, a response with increasing magnitude from left to right in the upper
rows and from right to left in the lower rows can result in a strong interaction
with apparently insignificant main effects. The interaction is all important,
because each main effect is obscured by pooling across levels of the other
factor. Although a main effect should not be interpreted without reference to
its interactions, it may have interest in addition to them, insofar asit indicates
the overall response averaged across levels of the other factor(s). Where one
or more cross factors are random, significant main effects are interpretable
even without reference to a significant interaction term, provided that the
interaction is present in the estimated components of variation for the main
effect. For example, main effect A in model 3.1(ii): Y = B/|A + ¢ is tested
against an error MS of the interaction B'*A, and its significance is therefore
reported over and above that of the interaction. This is not the case for
model 3.1(i). For both types of model, any non-significant factors should be
interpreted with respect to higher-order interactions, since a significant
interaction may mask real treatment effects.

The interaction plots in Figure 10 encompass the full range of possible
outcomes from model 3.1: Y =B|A +¢, depending on which combina-
tions of main effects and interactions are significant (shown in each
equation above the graph). For each of three levels of a factor A, the lines
join response means for two levels of a factor B. If factor B is a covariate,
and so measured on a continuous scale on the x axis, then these lines
represent linear regressions fitted to the responses at each level of A.
These graphs illustrate the importance of interpreting main effects with
respect to their higher-order interactions. The second row shows three
alternative outcomes in which A and B both influence the response even
though only one, or neither, is significant as a main effect.

With factorial designs involving several factors, the temptation to
simplify models by not declaring some or all interactions should be
avoided, because these terms are then pooled — untested — into the error
MS (see page 40). The analysis is invalidated altogether by testing for
interactions without declaring their component main effects.

Here we treat only symmetrical designs. If two factors cannot be fully
crossed in principle, the existing combinations can be redefined as levels of a
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Figure 10 Alternative interaction plots for a two-factor ANOVA, showing how
relationships can vary according to the influence of factors A and B additively
and interactively. Statistically significant components are indicated in equations
above each graph.

single factor and analysed with a priori contrasts (see page 245). Asymmetry
also arises unplanned from missing data or from inherent co-dependence
between factors, in which case the loss of orthogonality compromises the
independence of the constituent components of variation. General linear
models (GLM) accommodate this non-independence by using SS that have
been adjusted for other components of the same or lower orders in the model
hierarchy. When using the ‘adjusted SS’ of computer packages, care must
be taken to ensure that the SS have not been adjusted for higher-order
interactions, as to do so can invalidate the test hypotheses (see page 241).

3.1 Two-factor fully cross-factored model

Model
Y =BJ|A +¢

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.
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Description

Samples of n subjects or plots (S') are nested in each combination of levels
of B cross factored with A. Each subject is measured once.

Factors Levels
A a
B b

Allocation table

The table illustrates samples of n =4 replicate subjects in each of ba=4
combinations of levels of B*A.

S'(BJA) A, A,
S
B1
S
B>
Snb e Snba
Examples

(1) H,: Crop yield depends on a combination of Watering regime (A) and
sowing Density (B) treatments, with ba combinations of levels
randomly assigned amongst nba Plots (S'). The response is the yield
from each plot, measured at the end of the experiment. Figure 5 on
page 25 shows an example design and result.

(2) H,: Plant growth depends on a combination of Temperature (A) and
Light (B), with ba combinations of levels randomly assigned amongst
nba Mesocosms (S'). The response is the mean growth of plants in
each mesocosm.

(3) H;: Condition of birds depends on Sex (A) and Species (B’), with n
birds of each sex sampled for each of b randomly selected species.

(4) Hy: Seedling growth depends on fertiliser Treatment (A) and parental
Genotype (B’). A total of b randomly chosen Plants (B') are grown
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under identical conditions until mature, when na seeds are collected
from each plant and sown individually into a total of nba Pots (S').
Each of a fertiliser Treatments (A) is allocated to n randomly selected
seeds from each plant. The response is the growth of each individual
seedling. Note that this design isolates the effect of parental genotype
from random environmental variation arising from different locations
of parent plants.

(5) A drug has been designed to treat a medical condition with a difficult
diagnosis; its safety is tested by randomly assigning each of two levels
of Treatment A (drug or placebo) to two samples each of n randomly
selected volunteers, divided by Condition B (with or without the
medical condition). The health response to the treatments is
monitored for all individuals. A significant B*A interaction signals
potential dangers of administering the drug without a definitive
diagnosis, for example if it causes an improvement in health for those
with the condition but provokes illness in those without the
condition.

(6) See worked example 2 on page 49.

(7) See also examples to randomised-block model 4.1 on page 122 and
repeated-measures model 6.1 on page 188, which are analysed with
model 3.1 ANOVA tables if they are fully replicated or designate one
or both factors as covariates.

Comparisons

Model 3.1 is an extension of model 1.1 to include a second crossed factor
applied to subjects or plots. If there is only one observation for each of
the ba levels of factors A and B, then the design is unreplicated and
should be analysed using model 7.1.

Model 3.1 can be extended to include a third crossed factor, levels of
which may be assigned randomly to subjects or plots (model 3.2),
assigned randomly to replicate sampling units within each plot (model 5.9,
where each plot, S, becomes a blocking factor), or tested sequentially in
random order on each subject (model 6.7). Model 3.1 can also be
extended to include sub-sampling of each sampling unit (model 3.4).

In testing the combined effect of two crossed factors, model 3.1 has
similar objectives to randomised-block model 4.2, split-plot models 5.1
and 5.6 and repeated-measures models 6.2 and 6.3. Crucially, however,
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the assignment of the ba levels of factors B and A to sampling units is
completely randomised. Model 4.2 accounts for sources of unwanted
background variation among sampling units (plots) by grouping them
into blocks either spatially or temporally. The random assignment of
treatments to plots within blocks is then stratified so that every combi-
nation of levels of factors A and B is represented once in every block.
Split-plot models 5.1 and 5.6 achieve the same goal, but assign levels of
factors A and B to sampling units at different scales. Repeated-measures
models 6.2 and 6.3 account for sources of unwanted background varia-
tion among sampling units (subjects) by testing the levels of one or both
factors sequentially on each subject. The order of assignment of treat-
ments to sampling units (times within each subject) may be randomised
between subjects.

If B’ is a random factor that represents different locations or times then
it is more properly regarded as a random blocking factor because it
measures multiple sources of random spatial or temporal variation and
constrains the random allocation of levels of factor A to plots. The model
is then a one-factor randomised-block design (model 4.1). Full replication
at each level of B'*A allows analysis by model 3.1, however, provided
levels of A are randomly assigned to sampling units (plots) within each
level of B’. The special assumption of homogeneity of covariances (page
118) that usually applies to randomised-block designs is then subsumed
into the general assumption of homogeneity of sample variances. The
principal advantage of full replication is that it allows testing of the B'*A
interaction, and in the event of it being non-significant, validation of the
main effect A. The B'*A interaction cannot be interpreted, however,
because B’ measures multiple sources of variation. The main effect of
factor A may therefore be tested more efficiently with unreplicated model
4.1 which assumes a non-significant B'*A interaction for the purpose of
interpreting a non-significant main effect of A.

Notes

Analysis and interpretation require care when factors are not randomly
assigned to sampling units, but instead represent different locations or
times, such as elevation on a shore or season of the year (see page 18 and
notes to model 1.1 on page 64 for details). For example, if barnacle
settlement is measured in replicate plots of different surface Rugosity (A)
at three inter-tidal Elevations (B) on a single shore, then unless the
objective is to test for differences among those specific locations on that
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particular shore, B must be regarded as a random block because any
effect of elevation is completely confounded with unmeasured spatial
variation across the shore. Elevation can be fixed by repeating the study
at the same three elevations on two or more randomly selected shores (C’)
within the region of interest. The design is then analysed with model 3.2 if
it has replicate plots at each level of C'*B*A or otherwise by model 6.2 in
a subject-by-trial design. The power to identify a main effect of elevation
or season now depends on the number of replicate shores (c¢) rather than
the number of replicate plots at each elevation (n).

ANOVA tables for analysis of terms B|A

Model 3.1(i) A and B are both fixed factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B*A)+ A 1/4
2B b—1 S'(B*A)+B 2/4

3 B*A b-1a-1) S'(B*A) + B*A 3/4

4 S'(B*A) (n— 1)ba S'(B*A) -
Total variation nba — 1

Model 3.1(ii) A is a fixed factor, B' is a random factor (mixed model):

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B'*A)+B*A+ A 1/3¢
2B b—1 S'(B'*A) + B/ 2/4°

3 B'*A b-1a-1) S'(B'*A) + B'*A 3/4

4 S'(B'*A) (n—1)ba S'(B'*A) -
Total variation nba — 1

¢ Planned post hoc pooling is permissible for A if B’*A has P> 0.25. Obtain the
pooled error mean square from [SS{B'*A}+ SS{S'(B'*A)}|/[(b— 1)(a—1)+
(n — 1)ba]. See page 38.
An unrestricted model tests the MS for B’ over the MS for its interaction with A
(F-ratio = 2/3). See page 242.
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Model 3.1(iii) A" and B’ are both random factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B'*A’) + B'*A’ + A’ 1/3¢
2B b—1 S'(B'*A’)+B'*A’ + B’ 2/3¢

3 B'*A/ b-D@-1) S'(B'*A’) + B'*A’ 3/4

4 S'(B'*A) (n— Dba S'(B'*A") -
Total variation nba — 1

¢ Planned post hoc pooling is permissible for A’ and B’ if B'*A’ has P> 0.25.
Obtain the pooled error mean square from [SS{B'*A’} + SS{S'(B'*A")}]/[(b — 1)
(a— 1)+ (n—1)ba]. See page 38.

ANCOVA tables for analysis of terms BJ|A,
with B as a covariate

Examples 1 and 2 above could measure factor B as a covariate on a
continuous scale. Figure 8 on page 31 illustrates an example of a cov-
ariate interaction.

The model describes a linear regression on B at each level of A. The
allocation table illustrates a = 2 samples of n = 8 subjects, with each subject
taking one of b =4 values of covariate B. Note that analysis of main effects
and interaction does not require replicate measures for each level of factor A
at each value of covariate B, nor does it require the same values of B to be
sampled within each level of A. The assumption of a linear response can only
be evaluated, however, if the covariate takes more than two values. Use
adjusted SS rather than sequential SS if the design is not fully orthogonal.
Non-orthogonality arises from unequal replication, unequal sample sizes, or
because each sampling unit takes a unique value of B (see page 237).

S'(B|A) A A,

B1 - S1
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Model 3.1(iv) A is a fixed factor, B is a covariate of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B*A)+ A 1/4
2B 1 S'(B*A)+B 2/4

3 B*A a—1 S'(B*A) + B*A 3/4

4 S'(B*A) (n—2)a S'(B*A) -
Total variation na—1

Model 3.1(v) A" is a random factor, B is a covariate of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B*A") + A’ 1/4
2B 1 S'(B*A')+B*A’+B 2/3¢

3 B¥A/ a—1 S'(B*A’) + B*A’ 3/4

4 S'(B*A") (n—2)a S'(B*A") -
Total variation na—1

¢ Planned post hoc pooling is permissible for B if B*A’ has P> 0.25. Obtain the
pooled error mean square from [SS{B*A’} + SS{S'(B*A")}/[(a — 1) + (n — 2)a].
See page 38.

Model (v) describes a linear regression on B at each level of A. The var-
iation in regression slopes among levels of A provides the error term for
measuring the deviation from horizontal of the average regression slope for
covariate B (pooled across levels of A). Note that the default for some
statistics package is to take the residual term (row 4) as the error for the
covariate main effect rather than the B*A’ interaction (row 3). Using this
term requires a priori justification, because it effectively ignores the random
designation of factor A. If covariate B can be redefined as a categorical factor
with more than two levels, this will increase the d.f. for B*A’, and therefore
the error d.f. for the main effect of B, whilst decreasing the d.f. for the residual
variation, which is the error term only for random effects A’ and B*A'.
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ANCOVA table for analysis of terms BJ|A,
with A and B as covariates

Examples 1 and 2 above could measure factors A and B as covariates.

The model describes a plane in the dimensions of Y, A and B. The plane
may tilt with Y in the A dimension (significant A effect) and/or in the B
dimension (significant B effect), and/or may warp across its surface (significant
B*A effect). The model can be applied to a curvilinear relationship in one-
dimension by requesting the covariates as a single polynomial predictor: A|A,
and taking sequential SS.

The allocation table illustrates one sample of n = 16 subjects each taking
one of a = 4 values of covariate A and one of b = 4 values of covariate B. Note
that analysis of main effects and interaction does not require replicate sub-
jects at each combination of levels of the covariates A and B, nor does it
require the same values of B to be sampled at each value of A. The assumption
of linear responses can only be evaluated, however, if the covariates each
take more than two values. Use adjusted SS rather than sequential SS if
the design is not fully orthogonal. Non-orthogonality may arise from
unequal replication or incomplete cross factoring between the covariates, or
because each sampling unit takes unique values of A and B (see page 237).
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Model 3.1(vi) A and B are both covariates of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A 1 S'(B*A)+A 1/4
2B 1 S'(B*A) +B 2/4

3 B*A 1 S'(B*A) + B*A 3/4

4 S'(B*A) n—2° S'(B*A) -

Total variation n—1
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3.2 Three-factor fully cross-factored model

Model
Y =C|B/A+¢

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Samples of n subjects or plots (S') are nested in each combination of levels
of C and B cross factored with A. Each subject is measured once.

Factors Levels
A a
B b
C c

Allocation table

The table illustrates samples of n =2 replicate subjects in each of cha =8
combinations of levels of C*B*A.

% A, A,
e
o | Bi B, By B,
S
Cq
Sy
C,
Snc sncb e Sncba

Examples

(1) Hy: Crop yield depends on a combination of Watering regime (A),
sowing Density (B) and Fertiliser (C) treatments, with cha combinations
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of levels randomly assigned amongst ncha Plots (S'). The response is the
yield from each plot, measured at the end of the experiment.

(2) Fully replicated spatial block: Hy: Crop yield depends on a
combination of sowing density (A) and Fertiliser (C) treatments,
with ca combinations of levels randomly assigned amongst nca Plots
(S') in each of b Blocks (B’). The blocks stratify a natural
environmental gradient in soil moisture from top to bottom of a
sloping field. The response is the yield from each plot, measured at
the end of the experiment.

(3) H,: Plant growth depends on a combination of Temperature (A),
Light (B) and Fertiliser (C), with cha combinations of levels
randomly assigned amongst ncba Mesocosms (S'). The response is
the mean growth of plants in each mesocosm.

(4) A drug has been designed to treat a medical condition with a difficult
diagnosis; its safety is tested by randomly assigning each of two levels
of Treatment A (drug or placebo) to four samples each of n randomly
selected volunteers. The four samples are divided by Condition B
(with or without the medical condition) and Gender C (male or
female). The health response to the treatments is monitored for all
individuals. A significant C*B*A interaction signals potential dangers
of administering the drug without a definitive diagnosis, for example
if it improves health for females with the condition but provokes
illness in males without it. Likewise, significant two-way interactions
signal condition-specific and gender-specific responses to the drug.

(5) See also examples to randomised-block model 4.2 on page 129 and
repeated-measures model 6.2 on page 191, which are analysed with
model 3.2 ANOVA tables if they are fully replicated or designate one
or more factors as covariates.

Comparisons

Model 3.2 is an extension of model 3.1 to include a third crossed factor
applied to subjects or plots. If there is only one observation for each of
the cba combinations of levels of factors A, B and C, then the design is
unreplicated and should be analysed using model 7.2.

In testing the combined effect of three crossed factors, model 3.2 has
similar objectives to randomised-block model 4.3, split-plot models 5.2 to
5.5, 5.7 and 5.9, and repeated-measures models 6.5 and 6.7. Crucially,
however, the assignment of the cha levels of factors C, B and A to sampling
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units is completely randomised. Model 4.3 accounts for sources of
unwanted background variation among plots by grouping them into
blocks either spatially or temporally. The random assignment of treat-
ments to plots within blocks is then stratified so that every combination of
levels of factors A, B and C is represented once in every block. The various
split-plot models achieve the same goal, but assign levels of factors A, B
and C to sampling units at different scales. The repeated-measures models
account for sources of unwanted background variation among subjects by
testing the levels of one or more factors sequentially on each subject.

If C’ is a random factor that represents different locations or times then it
is more properly regarded as a random blocking factor because it measures
multiple sources of random spatial or temporal variation and stratifies the
random allocation of levels of factors A and B within blocks. The model is
then a two-factor randomised-block design (model 4.2). Full replication at
each level of C'*B*A allows analysis by model 3.2, however, provided levels
of A and B are randomly assigned to sampling units (plots) within each level
of C'. The special assumption of homogeneity of covariances (page 118) that
usually applies to randomised-block designs is then subsumed into the
general assumption of homogeneity of sample variances. The principal
advantage of full replication is that it allows testing of interactions with C’,
and in the event of their being non-significant, validation of the B|A effects.
Interactions involving C’' cannot be interpreted, however, because C' mea-
sures multiple sources of variation. The effect of factors A and B and their
interaction B*A may therefore be tested more efficiently with unreplicated
model 4.2 which assumes non-significant block-by-treatment interactions
for the purpose of interpreting non-significant treatment effects.

ANOVA tables for analysis of terms C|B/A

Model 3.2(i) A, B and C are all fixed factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S (C*B*A)+ A 1/8
2B b—1 S'(C*B*A)+B 2/8

3 B*A b—Da-1) S'(C*B*A) + B*A 3/8
4C c—1 S'(C*B*A)+C 4/8

5 C*A (c=D@-1) S'(C*B*A) + C*A 5/8

6 C*B (c=D@d-1 S'(C*B*A) + C*B 6/8

7 C*B*A (c—=DB-D(a—1) S'(C*B*A) + C*B*A 7/8

8 S/(C*B*A) (n—1)cba S'(C*B*A) -

Total variation ncha — 1
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92 Fully replicated factorial designs

ANCOVA tables for analysis of terms C|BJ|A,
with C as a covariate

Examples 1 and 3 above could measure factor C as a covariate if it is
measured on a continuous scale of application rate.

The model describes a linear regression on C at each level of BJA. If a
factor has more than two levels on a numerical scale, designating it as a
covariate will decrease error d.f. for covariate effects, and hence reduce
the power of the analysis to distinguish these effects, if the model includes
random cross factors. Conversely, designating it as a covariate will
increase the power of the analysis if it would otherwise be treated as a
random block, or if any other cross factors are fixed, always assuming it
meets the assumption of a linear response.

The allocation table illustrates ba=4 samples of n=4 subjects,
with each subject taking one of ¢ =4 values of covariate C. Note that
analysis of main effects and interactions does not require replicate
measures for each combination of levels of factors A and B at each
value of covariate C, nor does it require the same value of C to be
sampled at each level of B|A. The assumption of a linear response can
only be evaluated, however, if the covariate takes more than two values.
Use adjusted SS rather than sequential SS if the design is not fully
orthogonal. Non-orthogonality may arise from unequal replication or
unequal sample sizes, or because each sampling unit takes a unique
value of C (see page 237).

% A, A,
% B, B, B, B,
Ci— S,

Coss

Cs

Cas || 8o || Sov || - || Soea
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Model 3.2(v) A and B are fixed factors, C is a covariate of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B*A)+ A 1/8
2B b—-1 S'(C*B*A)+B 2/8

3 B*A b—1(a-1) S'(C*B*A) + B*A 3/8
4C 1 S'(C*B*A)+C 4/8

5 C*A (a—1) S'(C*B*A) + C*A 5/8

6 C*B b®-1) S'(C*B*A)+C*B 6/8

7 C*B*A b—-1(a-1) S'(C*B*A) + C*B*A 7/8

8 S'(C*B*A) (n—2)ba S'(C*B*A) -
Total variation nba — 1

Model 3.2(vi) A is a fixed factor, B' is a random factor, C is a covariate of
the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B'*A)+B*A+ A 1/3¢
2B b—1 S'(C*B'*A)+ B’ 2/8¢

3 B*A (b—1)a—1) S(C*B*A)+B'*A 3/8
4C 1 S/(C*B'*A)+ C*B' 4+ C 4/6"

5 C*A (a—1) S'(C*B'*A) + C*B'*A + C*A 5/7¢

6 C*B' (b-1) S'(C*B'*A) + C*B/ 6/8

7 C*B/*A (b—1)a—1) S(C*B'*A)+C*B'*A 7/8

8 S(C*B*A)  (n—2)ba S/(C*B'*A) -

Total variation nba — 1

¢ Planned post hoc pooling is permissible for A if B'*A has P>0.25. Use
the pooled error mean square: [SS{B'*A}+ SS{S'(C*B'*A)}]/[(b—1)
(a—1)+ (n—2)ba). See page 38.

b Planned post hoc pooling is permissible for C if C*B’ has P >0.25. Use the
pooled error mean square: [SS{C*B’} 4+ SS{S'(C*B'*A)}]/[(b — 1)+ (n — 2)bal].
See page 38.

¢ Planned post hoc pooling is permissible for C*A if C*B'*A has P >0.25. Use
the pooled error mean square: [SS{C*B’*A}+ SS{S'(C*B*A)}]/[(b—1)
(a—1)+(n—2)ba]. See page 38.

¢ An unrestricted model tests the MS for B’ over the MS for B'*A (F-ratio = 2/3).
See page 242.



'8¢ a8ed 293G “[rq(z — 1) + (1 — )1 — DI/ V+,d+D),SISS + {, Vs, d+D}SS]
:arenbs ueow 10110 pojood oyl () GTO<d SBY ,Vi,dsD J1 dsD PUB VD JIoJ Qqisstuurad st Jurood ooy sod pauueld

'8¢ 95ed 23 "ST') <d SBY ,V4,H4D JI 2u0p 3q ued Jurood saypng “[(1 —= )1 —q) + (1 1) + 1DV, V«dxD}SS + {,V+O}
SS+ {,d+D}SS] :arenbs ueaw 10115 psjood Yy asn ‘G700 < d QARY VD Pu® gD Yloq JI -arenbs uvow I0LId S ,V,D Sunjew
D) 10y arenbs ueow Yy woly g, LUIIP UY} (S7T°0>d SBY V4D 1NQq) ST0<d Sey gD JI "2renbs ueow 10112 s31 ,g,D Sunjew
D 10j a1enbs uBAW Ay} WOIJ V4D ABUIWIP (670> d SBY 4D INQ) ST'0<d SBY ,VxD JI "D 10J I01BUILOUIP 1OBXI UB JALIDP O} Pasn
oq ued Furjood doy sod udYy) ‘1AIMOY ‘GT'() < d PABY gD 10/put 4D JI “(0F 98ed 29s) 153} SIY) 10§ JOJBUIOUIP JOLXD OU SI I, ,

"g¢ a8ed 00 *[rq(z — u) + (1 — )1 — PVI{(,V+,dxD)

SISS + {,V+,d}SS] :orenbs uvow 10115 pajood ay) asn) ‘ST 0<d SBY V4,4 J1 ,d pue ,y 10J d[qisstuwrad st Surjood soy 1sod pauueld ,

| —pqu uoneLieA [ejogJ,

- (,V«d+D)S pq(7 — u) (V+d:D)S 8

8/L NV eD+ (Vi d:D),S (1—o)(1—9) NdxD L

SLI9 D+ Vi, D+ (V4,d+D)S ()] D9

LIS VDT Vi, dsD + (Ve d:D)S (1-) VD S
JAL—9+ S O+ VD + d:D+ Va,d:D + (Vi d:D),S I o
8/€ NVied+ (Ve d:D)S (1—-2)(1-9) Vil €

»EIT A+ Ve d+ (Ve d:D)S 1—4 AT

ST N+ Ve d+ (Ve d:D) S [—» VI

onel-,/ uvonendod ur pajewnss uoneLeA jo syuduodwo)) P drenbs ueop

:asuodsad 2y o 210LIDA0D D S1 ) ‘S40300f wopuna 240 g pup |y (114)7 ¢ [PPOIN

94



3.2 Three-factor fully cross-factored model 95

ANCOVA tables for analysis of terms C|BJA,
with B and C as covariates

Examples 1 and 3 above could measure factors B and C as covariates if C
is measured on a continuous scale of application rate.

The model describes one plane in the dimensions of Y, B and C for
each level of A. The planes may tilt with Y in the B dimension
(significant B effect) and/or in the C dimension (significant C effect),
and/or may warp across their surfaces (significant C*B effect), and
these tilts and warps may variously differ according to the level of A
(significant interactions with A). The model can be applied to a
curvilinear relationship in one-dimension by treating the covariates as
a single polynomial predictor and requesting analysis of terms: B|B|A
with sequential SS.

The allocation table illustrates a =2 samples of n=8 subjects, with
each subject taking one of b =2 values of covariate B and one of c=4
values of covariate C. Note that analysis of main effects and interac-
tions does not require replicate measures for each level of A at each
combination of values of the covariates B and C, nor does it require the
same values of B and C to be sampled at each level of A. The
assumption of linear responses can only be evaluated, however, if
the covariates each take more than two values. Use adjusted SS rather
than sequential SS if the design is not fully orthogonal. Non-
orthogonality may arise from unequal replication or unequal sample
sizes, or because each sampling unit takes unique values of B and C (see
page 237).
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Model 3.2(viii) A is a fixed factor, B and C are covariates of the
response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B*A)+ A 1/8
2B 1 S'(C*B*A)+ B 2/8

3 B*A a—1 S'(C*B*A) + B*A 3/8
4C 1 S'(C*B*A)+C 4/8

5 C*A a—1 S'(C*B*A) + C*A 5/8

6 C*B 1 S'(C*B*A)+ C*B 6/8

7 C*B*A a—1 S'(C*B*A) + C*B*A 7/8

8 S/(C*B*A) (n-2%)a S/(C*B*A) -
Total variation na—1

Model 3.2(ix) A’ is a random factor, B and C are covariates of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B*A") + A’ 1/8
2B 1 S'(C*B*A’)+B*A’ + B 2/3¢

3 B*A’ a—1 S'(C*B*A’) + B*A’ 3/8
4C 1 S/(C*B*A’) 4+ C*A' +C 4/5"

5 C*A’ a—1 S'(C*B*A’) + C*A’ 5/8

6 C*B 1 S'(C*B*A’) + C*B*A’ + C*B 6/7°

7 C*B*A’ a—1 S'(C*B*A’) + C*B*A’ 7/8

8 S/(C*B*A’) (n—2%a S/(C*B*A’) -
Total variation na—1

“ Planned post hoc pooling is permissible for B if B*A’ has P >0.25. Use the
pooled error mean square: [SS{B*A’} + SS{S'(C*B*A")}]/[ (a— 1)+ (n—4)a].
See page 38.

b Planned post hoc pooling is permissible for C if C*A’ has P> 0.25. Use the
pooled error mean square: [SS{C*A’} + SS{S'(C*B*A")}/[1 + (n—4)a]. See
page 38.

¢ Planned post hoc pooling is permissible for C*B if C¥*B*A’ has P > 0.25. Use the
pooled error mean square: [SS{C*B*A’} + SS{S(C*B*A")}/[(a — 1)+ (n—4)a].
See page 38.
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ANCOVA table for analysis of terms C|BJA,
with A, B and C as covariates

Examples | and 3 above could measure factors A, B and C as covariates
if C is measured on a continuous scale of application rate.

The model describes a volume in the four-dimensional space of Y, A, B
and C. Sections through the volume at a given level of A may tilt with Y
in the B dimension (significant B effect) and/or in the C dimension
(significant C effect), and/or may warp across their surfaces (significant
C*B effect), and these tilts and warps may variously differ according to
the level of A (significant interactions with A). The model can be applied
to a curvilinear relationship in one-dimension by treating the three cov-
ariates as a single polynomial predictor and requesting analysis of terms:
A|A|A with sequential SS. Alternatively, it can be applied to a curvilinear
relationship in two-dimensions by requesting two of the covariates as a
single polynomial predictor: B|B|A, and taking sequential SS.

The allocation table illustrates one sample of n=16 subjects each
taking one of a =2 values of covariate A, one of b =2 values of covariate
B, and one of ¢=4 values of covariate C. Note that analysis of main
effects and interactions does not require replicate subjects at every
combination of values of the covariates A, B and C. The assumption of
linear responses can only be evaluated, however, if the covariates each
take more than two values. Use adjusted SS rather than sequential SS if
the design is not fully orthogonal. Non-orthogonality may arise from
unequal replication, or because each sampling unit takes unique values of
A, B and C (see page 237).
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Model 3.2(x) A, B and C are all covariates of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A 1 S'(C*B*A)+ A 1/8
2B 1 S'(C*B*A)+ B 2/8

3 B*A 1 S'(C*B*A) + B*A 3/8
4C 1 S'(C*B*A)+C 4/8

5 C*A 1 S'(C*B*A) + C*A 5/8

6 C*B 1 S'(C*B*A)+C*B 6/8

7 C*B*A 1 S'(C*B*A) + C*B*A 7/8

8 S'(C*B*A) n-2° S'(C*B*A) -
Total variation n—1

3.3 Cross-factored with nesting model

Model
Y =C|B(A)+¢

Test hypothesis

Variation in the response Y is explained by the combined effects of
treatments C and A, with levels of C measured at each level of B nested
in A.

Description

Samples of n subjects or plots (S’) are nested in each level of treatment C
for each level of grouping factor B, which is nested in treatment A. Each
subject is measured once.

Factors Levels
A a
B(A) b

C c
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Allocation table

The table illustrates samples of n=2 replicate subjects in each of ¢=2
levels of C for each of b =2 levels of B nested in each of a =2 levels of A.

)

(@)
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4)
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Snc Sncb e Sncba

Examples

Hi: Seedling growth depends upon watering regime experienced by
the parent plant and fertiliser concentration. The experiment tests a
levels of Watering regime (A), each allocated to b randomly chosen
Plants (B’). When the plants have matured, nc seeds are collected
from each of the ba plants and individually sown into a total of ncha
Pots (S'). Each of ¢ concentrations of Fertiliser (C) is allocated to n
pots from each of the ba plants. The response is seedling growth rate
in each pot.

H,: Maternal nourishment influences subsequent dispersal distance
by offspring. The experiment tests a levels of Diet quality (A), each
assigned to b female Lizards (B’) selected at random from the
population. From each female, a random sample of n offspring of
each Sex (C) is fitted with radio transmitters for monitoring
subsequent dispersal.

H,: Academic performance of students depends upon tutorial system
(A) and gender (C), tested by assigning each of b randomly selected
Tutors (B’) of each of a Systems (A) to n randomly selected Pupils (S)
of each Gender (C, with two levels: male and female).

See worked example 3 on page 51, which is a fully replicated split-plot
analysed with model 3.3 ANOVA tables.
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(5) See other examples to split-plot model 5.6 on page 168 and repeated-
measures model 6.3 on page 196, which may all be analysed with
model 3.3 ANOVA tables if they are fully replicated or designate one
or both cross factors as covariates.

Comparisons

Model 3.3 is an extension of model 2.1 to include a third factor (C)
crossed with B’. It has a similar structure to split-plot model 5.6
(where B’ corresponds with S/, and C corresponds with B) in that it
tests the effect of two nested factors crossed with a third factor. It
differs from model 5.6, however, in two important respects: (i) the
assignment of treatments to sampling units is completely randomised,
which permits full interpretation of all terms in the model; (ii) all
combinations of treatment levels are fully replicated, which removes
the need for a special assumption of homogeneity of covariances that
would otherwise apply (page 143). In example 1, above, for instance,
sowing seeds from b randomly chosen plants (B’) into individual pots
(S') isolates the variation among parent plants from all other sources
of random spatial and temporal variation, which allows a significant
C*B’ interaction to be interpreted unambiguously as an effect of
fertiliser concentration that varies between parent plants.

If B’ is a random factor that represents different locations or times
then it is more properly regarded as a random blocking factor because
it measures multiple sources of random spatial or temporal variation
and constrains the random allocation of levels of factor C to sampling
units. The model is then a split-plot design (model 5.6). Full replica-
tion at each level of C*B'(A) nevertheless allows analysis by model 3.3,
provided levels of C are randomly assigned to sampling units (plots)
within each level of B’. The special assumption of homogeneity of cov-
ariances (page 143) that usually applies to split-plot designs is then
subsumed into the general assumption of homogeneity of sample var-
iances. Nonetheless, the C*B’(A) interaction cannot be interpreted
because B’ measures multiple sources of variation. The main effect of
factor C may therefore be tested more efficiently with unreplicated model
5.6 which assumes a non-significant C*B/(A) interaction for the purpose
of interpreting a non-significant main effect of C.
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Notes

Care must be taken not to inadvertently confound the effect of treat-
ment factor B’ with a random blocking factor. For instance, if the
seeds from each parent plant in example 1 are all sown in the same
grow-bag, then watering treatment A will be applied to whole bags
(B’) and fertiliser treatment C will be applied to individual seedlings
within bags. The n replicates at each level of C*B’(A) allow measure-
ment of the interaction but not its interpretation because factor B’
measures both variation among parent plants and variation among
grow-bags.

Likewise, a field-based version of example 1 might allow the seeds from
each plant to germinate where they fall in the vicinity of the plant. The
extra realism gained by working in the field comes at the cost of reduced
interpretability because B’ now measures two sources of variation —
random variation among parent plants and random variation among
locations of parent plants — making it impossible to distinguish genetic
and environmental contributions to subsequent growth.

ANOVA tables for analysis of terms C|A 4+ C|B(A)
Model 3.3(i) A and C are fixed factors, B' is a random factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B'(A))+ B'(A) + A 124

2 B'(A) (b—1)a S'(C*B'(A))+ B'(A) 2/6°
3C c—1 S/(C*B'(A)) + C*B'(A) +C 3/5°

4 C*A (c—D(a—1) S'(C*B'(A)) + C*B'(A) + C*A 4/5"

5 C*B/(A) (c=D(b—-1a S'(C*B/'(A))+ C*B'(A) 5/6

6 S'(C*B'(A)) (n—1)cba S'(C*B'(A)) -
Total variation ncba — 1

¢ Planned post hoc pooling is permissible for A if B'(A) has P>0.25. Use the
pooled error mean square: [SS{B'(A)} + SS{S'(C*B'(A)}]/[(b— 1a+(n—1)
cba). See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B/(A) has P > 0.25.
Use the pooled error mean square: [SS{C*B’(A)} + SS{S'(C*B/(A))}]/[(c — 1)
(b —1D)a—+ (n—1)cba). See page 38.

¢ An unrestricted model tests the MS for B'(A) over the MS for its interaction
with C (F-ratio = 2/5). See page 242.
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Model 3.3(iii) A" and B’ are random factors, C is a fixed factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B/(A")) + B/(A/) + A’ 1244

2 BI(A)) (b-—1a S'(C*B/(A")) + B'(A') 2/6°
3C c—1 S/(C*B/(A")) + C*B/(A’) + C*A’ + C 3/4°

4 C*A’ (c—Da-1 S'(C*B/(A")) + C*B'(A") + C*A’ 4/5°

5 C*B/(A) (c—)(b—1a S'(C*B/(A")) + C*B/(A") 5/6

6 S'(C*B'(A")) (n—1)cba S'(C*B'(A")) -

Total variation ncha — 1

“ Planned post hoc pooling is permissible for A’ if B'(A’) has P >0.25. Use the pooled error
mean square: [SS{B'(A’)} + SS{S'(C*B'(A"))}]/[(b — 1)a+ (n — 1)cba]. See page 38.

b Planned post hoc pooling is permissible for C if C*A’ has P> 0.25. Use the pooled error
mean square: [SS{C*A’} + SS{C*B'(A")})/[(c — 1)(a— 1)+ (¢ — 1)(b — 1)a]. See page 38.

¢ Planned post hoc pooling is permissible for C*A’ if C*B'(A’) has P >0.25. Use the pooled
error mean square: [SS{C*B'(A’)} + SS{S'(C*B'(A")}]/[(c — 1)(b — 1)a+ (n— 1)cba). See
page 38.
An unrestricted model has an inexact F-ratio denominator (see page 242).

¢ An unrestricted model tests the MS for B/(A’) over the MS for its interaction with C
(F-ratio = 2/5). See page 242.

Model 3.3(iv) A, B' and C' are all random factors:

Components of variation

Mean square d.f. estimated in population F-ratio

1A a—1 S'(C'*B/(A")) + C'*B/(A’) + C'*A’ + 1/2+4-5)"
B/(A/) + A/

2 B'(A) (b—1a S'(C'*B'(A")) + C'*B/(A’) + B'(A’) 2/5"

3C c—1 S'(C'*B/(A")) + C'*B/(A") + C'*A’ + C' 3/4°

4 C'*A! (c—=D@—-1) S'(C'*B/(A")) + C"*B/(A") + C'*A’ 4/5°

5 C'*B/(A) (c—=Db—1a S (C*B'(A")+C*B'(A) 5/6

6 S'(C'*B'(A))  (n—l)cha S'(C'*B/(A")) -

Total variation ncha — 1

“ There is no exact denominator for this test (see page 40). If B/(A’) and/or C'*A’ have
P>0.25, however, then post hoc pooling can be used to derive an exact denominator
for A’. If B'(A’) has P>0.25 (but C'*A’ has P<0.25), then eliminate B'(A’) from
the mean square for A’, making C'*A’ its error mean square. If C'*A’ has P > 0.25 (but B’
(A’) has P <0.25), eliminate C'*A’ from the mean square for A’, making B'(A’) its error
mean square. If both B'(A’) and C'*A’ have P >0.25, use the pooled error mean square:
[SS{B'(A")} + SS{C'*A’} + SS{C"*B'(A)})/[(b — Da+ (c — 1)(a— 1)+ (¢ — 1)(b — 1)al.
Further pooling can be done if C'*B/(A’) has P >0.25. See page 38.

b Planned post hoc pooling is permissible for B/(A’) and C'*A’ if C'*B/(A’) has P> 0.25.
Use the pooled error mean square: [SS{C'*B/'(A")} + SS{S'(C"*B'(A")})/[(c — 1)(b—1)a
+ (n— 1)cba). See page 38.

¢ Planned post hoc pooling is permissible for C’ if C'*A’ has P > 0.25. Use the pooled error
mean square: [SS{C'*A’} + SS{C"*B'(A")}]/[(c — 1)(@a— 1)+ (¢ — 1)(b — 1)a]. See page 38.
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ANCOVA tables for analysis of terms C|A + C|B(A),
with C as a covariate

Example 1 above could measure factor C as a covariate on a continuous
scale. If a covariate C can be redefined as a categorical factor with more
than two levels, this will increase the d.f. for C*B/(A), which is the error
term for C and C*A, whilst decreasing the d.f. for the residual variation,
which is the error term only for random effects. The analysis will thereby
have increased power to distinguish covariate effects (see worked example
3 on page 51).

The model describes a linear regression on C at each level of B nested
in A. The variation in regression slopes among the levels of B is used as
the error term to test the main-effect regression slope of the covariate,
and also the C|A interaction describing the difference in regression slopes
between levels of A. Note that some packages will use the residual term
(row 6 in the tables below) as the default error MS for testing the cov-
ariate main effect and its interaction with A, in effect ignoring the des-
ignation of B as a random factor for the purposes of the regressions.

The allocation table illustrates b =2 samples nested in each of a=2
levels of A, with each sample containing n =4 subjects and each subject
taking one of ¢=4 values of covariate C. Note that analysis of main
effects and interactions does not require replicate subjects for each level
of factor B at each value of covariate C, nor does it require the same
value of C to be sampled at each level of B. The assumption of a linear
response can only be evaluated, however, if the covariate takes more than
two values. Use adjusted SS rather than sequential SS if the design is not
fully orthogonal. Non-orthogonality may arise from unequal replication
or unequal sample sizes, or because each sampling unit takes a unique
value of C (see page 237).
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Model 3.3(v) A is a fixed factor, B' is a random factor, C is a covariate
of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B'(A))+B'(A)+ A 1/2¢

2 B'(A) (b—1a S'(C*B'(A)) + B'(A) 2/6
3C 1 S'(C*B'(A)) + C*B'(A) +C 3/5°

4 C*A (a-1) S'(C*B'(A))+ C*B'(A) + C*A 4/5°

5 C*B'(A) (b—1)a S'(C*B'(A)) + C*B'(A) 5/6

6 S'(C*B'(A)) (n—2)ba S'(C*B'(A)) -
Total variation nba — 1

¢ Planned post hoc pooling is permissible for A if B'(A) has P> 0.25. Use the
pooled error mean square: [SS{B’(A)} + SS{S'(C*B'(A))}1/[(b — )a + (n — 2)ba).
See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B'(A) has P > 0.25.
Use the pooled error mean square: [SS{C*B/(A)} + SS{S'(C*B'(A))}1/[(b — )a
+ (n— 1)ba]. See page 38.

Model 3.3(vi) A" and B" are random factors, C is a covariate of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C*B'(A")+B'(A")+ A’ 12¢

2 B'(A) (b—1a S'(C*B'(A")) + B'(A") 2/6
3C 1 S'(C*B'(A")) + C*B'(A") + C*A' + C 3/4°

4 C*A’ (a—1) S'(C*B'(A")) + C*B/(A’) + C*A’ 4/5¢

5 C*B'(A)) (b—1a S'(C*B'(A")) + C*B/(A") 5/6

6 S'(C*B'(A)) (n—2)ba S'(C*B'(A")) -
Total variation nba — 1

¢ Planned post hoc pooling is permissible for A’ if B'(A’) has P> 0.25. Use the
pooled error mean square: [SS{B'(A")} + SS{S(C*B'(A')}J/[(b — a+ (n—2)
ba). See page 38.

b Planned post hoc pooling is permissible for C if C*A’ has P> 0.25. Use the
pooled error mean square: [SS{C*A’} + SS{C*B'(A")}]/[(a— 1)+ (b— 1)a]. See
page 38.

¢ Planned post hoc pooling is permissible for C*A’ if C*B'(A’) has P > 0.25. Use
the pooled error mean square: [SS{C*B'(A’)} + SS{S'(C*B'(A")}/[(b — Da+
(n —2)ba). See page 38.
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ANCOVA tables for analysis of terms C|A + C|B(A),
with A as a covariate

Example 1 above could measure factor A as a covariate on a continuous
scale. Alternatively, factor A may be treated as a covariate, for example
in measuring the diversity of arboreal arthropods in relation to woodland
area A and tree species C. The diversity response is measured by fumi-
gating n trees of each of ¢ species in each of b woods of different sizes.

The model describes ¢ linear regressions on A of the mean response at
each level of B. The allocation table illustrates samples of n =2 replicate
subjects in each of ¢=2 levels of C for each of b=4 levels of B each
taking a unique value of covariate A. Note that a full analysis is possible
with or without replicate observations (levels of B) for each value of A.
The assumption of a linear response can only be evaluated, however, if
the covariate takes more than two values.
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Model 3.3(vii) C is a fixed factor, B' is a random factor, A is a covariate of
the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A 1 S(C*B'(A)) +B'(A)+A 1/2¢

2 B'(A) b—2 S'(C*B'(A)) +B/'(A) 2/6°
3C c—1 S'(C*B'(A)) + C*B/(A) 4 C 3/5°

4 C*A c—1 S'(C*B'(A))+ C*B'(A) + C*A 4/5”

5 C*B'(A) (c—1)(b-2) S'(C*B'(A)) + C*B'(A) 5/6

6 S'(C*B'(A)) (n—1)cb S'(C*B'(A)) -
Total variation nch — 1

“ Planned post hoc pooling is permissible for A if B'(A) has P> 0.25. Use the pooled error
mean square: [SS{B'(A)} + SS{S'(C*B'(A))})/[(b — 2) + (n — 1)cb). See page 38.

b Planned post hoc pooling is permissible for C and C*A if C¥B/(A) has P > 0.25. Use the pooled
error mean square: [SS{C*B/(A)} + SS{S'(C*B'(A))}]/[(c — 1)(b — 2) + (n — 1)cb). See page 38.

¢ An unrestricted model tests the MS for B'(A) over the MS for its interaction with C
(F-ratio = 2/5). See page 242.
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Model 3.3(viii) B’ and C' are random factors, and A is a covariate of the
response:

Components of variation

Mean square d.f. estimated in population F-ratio

1A 1 S'(C'*B'(A)) + C'*B'(A)+ C'*A  1/Q2+4-5)"
+B'(A)+A

2 B'(A) b-2 S'(C'*B'(A))+ C'*B'(A)+ B/(A)  2/5”

3C c—1 S'(C’'*B'(A)) + C'*B'(A) + C’ 3/5?

4 C'*A c—1 S'(C’*B'(A)) 4+ C'*B/(A) + C'*A  4/5°

5 C'*B/(A) (c—DB-2) S(C*B'(A)+C*B'(A) 5/6

6 S'(C'*B'(A)) (n—1)ch S'(C'*B'(A)) -

Total variation ncb —1

“ There is no exact denominator for this test (see page 40). If B'(A) and/or C'*A
have P >0.25, however, then post hoc pooling can be used to derive an exact
denominator for A. If B'(A) has P>0.25 (but C'*A has P <0.25), then elim-
inate B'(A) from the mean square for A, making C'*A its error mean square. If
C'*A has P>0.25 (but B'(A) has P<0.25), eliminate C'*A from the mean
square for A, making B’(A) its error mean square. If both B'(A) and C'*A have
P >0.25, use the pooled error mean square: [SS{B/(A)} + SS{C'*A} + SS{C'*B’
(A)N/Ib—2)+(c— 1)+ (c — 1)(b — 2)]. Further pooling can be done if C'*B/(A)
has P> 0.25. See page 38.

b Planned post hoc pooling is permissible for B'(A), C’ and C'*A if C'*B'(A) has
P>0.25. Use the pooled error mean square: [SS{C*B’(A)} + SS{S'(C'*B’
(AN}/l(c = 1)(b —2) 4+ (n — 1)cb]. See page 38.

ANCOVA table for analysis of terms C|A + C|B(A),
with A and C as covariates

Example 1 above could measure factors A and C as covariates on con-
tinuous scales. Alternatively, factors A and C may be treated as covari-
ates, for example in measuring the diversity of arboreal arthropods in
relation to woodland area A and trunk girth C. The diversity response is
measured by fumigating n trees of different girths in each of b woods of
different sizes.

The model describes planes in the dimensions of Y, A and C at each
level of B and all hinged on the regression of the mean response at ecach
level of B on A. The planes may tilt with Y at their common hinge in the
A dimension (significant A effect) and/or they may tilt with Y in the C
dimension (significant C effect), and/or they may warp across their sur-
faces (significant C*A effect), and the tilts in the C dimension may differ
according to the level of B (significant interaction with B).
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The allocation table illustrates b samples of n=4 replicate subjects,
with each subject taking a unique value of covariate C, and each of the
b=4 levels of B taking a unique value of covariate A. Note that analysis
of main effects and interactions does not require replicate subjects for
each value of covariate C at each level of factor B, nor does it require
replicate levels of factor B at each value of covariate A. The assumption
of linear responses can only be evaluated, however, if the covariates each
take more than two values.
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Model 3.3(ix) A and C are covariates of the response, B' is a random factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A 1 S'(C*B'(A))+B/(A) + A 1/2°

2 B'(A) b—2 S'(C*B'(A)) + B'(A) 2/6
3C 1 S'(C*B'(A)) +C*B'(A) +C 3/5°

4 C*A 1 S'(C*B'(A))+ C*B'(A)+ C*A 4/5°

5 C*B'(A) b—-2 S'(C*B'(A))+ C*B'(A) 5/6

6 S'(C*B'(A)) (n—2)b S'(C*B'(A)) -
Total variation nb — 1

“ Planned post hoc pooling is permissible for A if B'(A) has P> 0.25. Use the
pooled error mean square: [SS{B'(A)} + SS{S'(C*B'(A)})/[(b —2)+ (n— 2)b].
See page 38.

b Planned post hoc pooling is permissible for C and C*A if C*B/(A) has P > 0.25.
Use the pooled error mean square: [SS{C*B/'(A)} + SS{S'(C*B'(A)}1/[(b —2)
+ (n—2)b]. See page 38.
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3.4 Nested cross-factored model

Model
Y=C(BIA) +¢

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A and B. Subjects are nested in sampling groups (C’), which
themselves are nested within A cross factored with B.

Description

Samples of n subjects or plots (S’) are nested in each level of factor C,
which is nested in each combination of levels of treatments B cross
factored with A. Each subject is measured once.

Factors Levels
A a
B b
C(B*A) c

Allocation table

The table illustrates samples of n=4 replicate subjects in each of ¢=2
levels of C nested in each of ba =4 levels of B*A.

S'(C(B|A))
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Examples

(1) H;: Academic performance of students depends upon tutorial system
(A) and gender (B), tested by assigning each of ¢ randomly selected
Tutors (C') of each Gender (B, with two levels: male and female) and
each of a Systems (A) to n randomly selected Pupils (S').

(2) H,: Fungal infection of horticultural plants depends upon fungi-
cide, tested by measuring the number of fungal colonies per leaf
for n Leaves (S’) randomly selected from each of ¢ Plants (C')
subjected to one of ba levels of Fungicide treatment A and Light
treatment B.

(3) H;: Crop yield depends on a combination of Watering regime (A) and
sowing Density (B) treatments, with ba combinations of levels
randomly assigned amongst cba Plots (C'). Each plot contains n
replicate Plants (S’). The response is the yield from each plant,
measured at the end of the experiment.

(4) H;: Plant growth depends on a combination of Temperature (A)
and Light (B), with ba combinations of levels randomly assigned
amongst cba Mesocosms (C'), each containing n replicate Trays of
plants (S'). The response is the mean growth of plants in each of the
ncba trays.

Comparisons

Model 3.4 is an extension of model 3.1 to include sub-sampling of each
sampling unit. If there is only one replicate observation for each level of
C’, then the model reverts to model 3.1.

The design is useful when sampling units (C') are costly or time
consuming to set up, but collection of replicate observations (S') is
relatively easy. If there is little variation among levels of C’, C'(B*A)
may be pooled into the residual error term, producing potentially
substantial gains in power to test main effects A and B, and their inter-
action B*A.

If C' is a random factor that represents different locations or times
then it may be regarded as a blocking factor, with subjects as plots nested
within blocks. Applying levels of a third treatment factor to the plots
within each block then yields split-plot model 5.9.
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ANOVA tables for analysis of terms B|/A + C(B A)
Model 3.4(i) A and B are both fixed, C' is a random factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C'(B*A))+ C'(B*A) + A 1/4¢
2B b—1 S'(C'(B*A)) +C'(B*A)+B 2/4°

3 B*A b—a—-1) S'(C'(B*A)) + C'(B*A) + B*A 3/4°

4 C'(B*A) (¢ — Dba S'(C'(B*A)) + C'(B*A) 4/5

5 S'(C'(B*A)) (n— l)cha S'(C'(B*A)) -
Total variation ncba — 1

“ Planned post hoc pooling is permissible for A, B and B*A if C'(B*A) has P > 0.25. Obtain the pooled
error mean square from [SS{C'(B*A)} + SS{S'(C'(B*A))}/[(c — 1)ba + (n — 1)cba]. See page 38.

Model 3.4(ii) A is fixed, B' and C' are random factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C'(B'*A)) + C'(B'*A) + B*A + A /3¢
2B b—1 S'(C'(B'*A)) + C'(B'*A) + B’ 2/4%

3 B'*A b-D@-1) S'(C'(B'*A)) + C'(B'*A) + B'*A 3/4°

4 C'(B'*A) (¢ —)ba S'(C'(B'*A)) + C'(B'*A) 4/5

5 S/(C'(B'*A)) (n— Dcba S'(C'(B'*A)) -
Total variation ncbha — 1

“ Planned post hoc pooling is permissible for A if B"*A has P > (.25. Obtain the pooled error mean square
from [SS{B'*A} + SS{C'(B'*A)})/[(b — 1)(a — 1) + (c — 1)ba]. See page 38. Further pooling is possible if
C'(B'*A) has P>0.25.

b Planned post hoc pooling is permissible for B and B'*A if C'(B'*A) has P> 0.25. Obtain the pooled
error mean square from [SS{C'(B'*A)} + SS{S'(C'(B"*A))}1/[(c — )ba + (n — 1)cba]. See page 38.

¢ An unrestricted model tests the MS for B’ over the MS for its interaction with A (F-ratio = 2/3). See page 242.

Model 3.4(iii) A', B' and C' are all random factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C'(B'*A")) 4+ C'(B'*A’) + B'*A’ + A’ 1/3¢
2B b—1 S'(C'(B'*A")) + C'(B'*A’) + B'*A’ + B 2/3¢

3 B'*A’ b-—1D@-1) S'(C'(B'*A")) + C'(B'*A’) + B'*A’ 3/4°

4 C'(B'*A") (c—1)ba S'(C'(B'*A")) + C'(B'*A") 4/5

5 S'(C'(B'*A")) (n— 1)cba S'(C'(B'*A")) -
Total variation ncba — 1

“ Planned post hoc pooling is permissible for A" and B’ if B’*A’ has P > 0.25. Obtain the pooled error
mean square from [SS{B*A’} + SS{C'(B'"*A")}]/[(b— 1)(a— 1)+ (c — 1)ba]. See page 38. Further
pooling is possible if C'(B’*A’) has P> 0.25.

b Planned post hoc pooling is permissible for B'*A’ if C/(B'*A’) has P> 0.25. Obtain the pooled error
mean square from [SS{C'(B'*A’)} + SS{S'(C'(B"*A"))}]/[(c — 1)ba + (n — 1)cba). See page 38.
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ANCOVA tables for analysis of terms B|/A + C(B A),
with B as a covariate

Examples 3 and 4 above could measure factor B as a covariate on a
continuous scale. Alternatively, factor B may be treated as a covariate,
for example in measuring the diversity of arboreal arthropods in relation
to woodland isolation A and area B. The diversity response is measured
by fumigating n trees in each of ¢ woodland patches of different sizes at
each of a levels of isolation from neighbouring woodland.

The model describes a linear regressions on B of the mean responses at
each level of C. The allocation table illustrates samples of n=4 replicate
subjects in each of ¢ =4 levels of C each taking a unique value of covariate
B and nested in a =2 levels of factor A. Note that the analysis does not
require replicate measures of C at each value of covariate B, or the same
values of B at each level of A. The assumption of a linear response can only
be evaluated, however, if the covariate takes more than two values.

~ A, A,
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Model 3.4(iv) A is a fixed factor, B is a covariate of the response, C' is a
random factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C'(B*A)) + C'(B*A) + A 1/4°
2B 1 S'(C'(B*A)) + C'(B*A)+B 2/4*

3 B*A a—1 S'(C'(B*A)) + C'(B*A) + B*A 3/4¢

4 C'(B*A) (c—2)a S'(C'(B*A)) + C'(B*A) 4/5

5 S'(C'(B*A)) (n— Dca S'(C'(B*A)) -
Total variation nea — 1

“ Planned post hoc pooling is permissible for A, B and B*A if C'(B*A) has P > 0.25. Obtain the pooled
error mean square from [SS{C'(B*A)} + SS{S'(C'(B*A))}1/[(c — 2)a + (n — 1)ca). See page 38.
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Model 3.4(v) A" and C' are random factors, B is a covariate of the response:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(C'(B*A')) + C'(B*A') + A’ 1/4¢
2B 1 S/(C'(B*A')) + C'(B*A’) + B*A’ + B 2/3"

3 B*A’ a—1 S'(C'(B*A")) + C'(B*A’) + B*A’ 3/4¢

4 C'(B*A) (c—2)a S'(C'(B*A')) + C'(B*A") 4/5

5 S/(C'(B*A")) (n—1)ca S'(C'(B*A")) -
Total variation nca— 1

“ Planned post hoc pooling is permissible for A’ and B*A’ if C'(B*A’) has P >0.25. Obtain
the pooled error mean square from [SS{C'(B*A’)} + SS{S'(C'(B*A")}1/[(c —2)a+ (n— 1)
cal. See page 38.

% Planned post hoc pooling is permissible for B if B*A’ has P > 0.25. Obtain the pooled error
mean square from [SS{B*A’} +SS{C'(B*A")}]/[(a — 1)+ (c —2)a]. See page 38. Further
pooling is possible if C'(B*A’) has P >0.25.

ANCOVA tables for analysis of terms B|A + C(B A),
with A and B as covariates

Examples 3 and 4 above could measure factors A and B as covariates on
continuous scales. Alternatively, factors A and B may be treated as
covariates, for example in measuring the diversity of arboreal arthropods
in relation to woodland isolation A and area B. The diversity response is
measured by fumigating n trees in each of ¢ woodland patches of b sizes
at each of a levels of isolation from neighbouring woodland.

The model describes a plane in the dimensions of Y, A and B with tilt
and warp determined by the mean responses at each level of C. The plane
may tilt with Y in the A dimension (significant A effect) and/or in the B
dimension (significant B effect), and/or may warp across its surface
(significant B*A effect).

The model can be applied to a curvilinear relationship in one-dimen-
sion by requesting the covariates as a single polynomial predictor: A|A,
and taking sequential SS.

The allocation table illustrates samples of n =4 replicate subjects in each
of ¢=38 levels of C each taking a unique combination of values of cov-
ariates B*A. Note that the analysis does not require replicate measures of
C at each value of B|A, or the same values of B at each level of A. The
assumption of linear responses can only be evaluated, however, if the
covariates each take more than two values.
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Model 3.4(vi) A and B are covariates of the response, C' is arandom factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A 1 S'(C'(B*A))+C'(B*A)+A 1/4¢
2B 1 S'(C'(B*A))+ C'(B*A) +B 2/4¢

3 B*A 1 S'(C'(B*A)) + C'(B*A) + B*A 3/4°

4 C'(B*A) c—2? S'(C'(B*A))+ C'(B*A) 4/5

5 S'(C'(B*A)) (n— 1) S'(C'(B*A)) -
Total variation nc—1

“ Planned post hoc pooling is permissible for A, B and B*A if C'(B*A) has
P>0.25. Obtain the pooled error mean square from [SS{C'(B*A)} + SS{S'(C’
(B*A)}/[(c —4) + (n — 1)c]. See page 38.
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Randomised-block designs

Blocking is a method of partitioning out unwanted sources of variation that
cannot otherwise be controlled for, in order to increase the power of an
analysis to detect treatment effects. Blocking factors group sampling units
or observations that are essentially homogeneous, leaving the full range of
natural variation in the environment to be sampled between blocks. Blocks
are therefore treated as random factors because they group together, and
measure simultaneously, multiple sources of variation. Due to the origins of
this experimental design in agricultural field trials, the sampling units or
observations nested within each block are usually termed plots:

Plot | P’ | nestedin a block

Blocks are often arbitrarily defined units of space or time. The char-
acteristic feature of randomised-block designs is that treatment levels are
randomly assigned to sampling units within each block. This distinguishes
them from the fully replicated designs of Chapter 3 where treatment levels are
randomly assigned across all sampling units. It also distinguishes them from
repeated-measures designs, which use blocks, but assign treatment levels
within each block in temporal or spatial sequence. Randomised-block
models are otherwise conceptually similar to repeated-measures models of
Chapter 6; taking repeated measurements on each block to control for spatial
or temporal background variation is equivalent to taking repeated mea-
surements on each subject to control for intrinsic variation between them.

115
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We illustrate this similarity using S’ to denote either blocks or subjects and
P’ to denote either plots nested in block or observations nested in subject.

Randomised-block designs are termed complete when every treatment
level is present in every block. Incomplete block designs, in which every
treatment level is not present in every block, present specific problems of
analysis and interpretation that are summarised on pages 124 and 127.

Sampling units may be grouped into spatial blocks to control for known
or suspected background variation from place to place. For example, in an
experiment to compare the effectiveness of different fertiliser formulations
on crop yield, experimental plots may be grouped into blocks to control for
spatial variation in soil characteristics and microclimate across the field.
Replicate pieces of field or laboratory equipment that group sampling
units together spatially — such as buckets, mesocosms or PCR machines —
may also be treated as blocks to control for variation among them.

Alternatively, sampling units may be grouped into temporal blocks to
control for extraneous variables such as weather conditions, circadian
cycles and drifts in calibration of equipment. For example, when sampling
the densities of fish in replicate pools, runs and riffles over the course of
three days, day could be included as a blocking factor to control for
day-to-day variation in catch efficiency with water temperature, weather
conditions and operator motivation. Temporal blocks are also used
when limited availability of sampling units requires an experiment to be
repeated over time to achieve adequate replication. For example, if only
two mesocosms are available to investigate the effect of temperature on
plant growth, pairs of trials may be conducted sequentially over time with
temperature treatments randomly reallocated to the two mesocosms each
time. If re-using sampling units, care must be taken to ensure that previous
treatments do not contaminate or alter the sampling units in such a way
that might affect the outcome of subsequent trials. Note that the identity
of the sampling units is not considered as a factor in this design, and that
each unit is not necessarily tested with every combination of treatments, in
contrast to a subject-by-treatment repeated-measures design in which the
identity of the sampling units (subjects) is considered as a factor and units
are specifically tested in every level of the within-subject factor(s).

Blocks may also be discrete biological units, such as individual volun-
teers, trees or ponds. Each unit is tested in all levels of one or more
treatment factors that can be randomly assigned within the unit. In a
manipulative experiment, treatments are applied randomly to replicate
parts of each unit; for example, the effect of ointment on acne may be
tested by applying ointment to one cheek of each patient and a placebo to
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the other, the effect of herbivore attack on the production of trichomes
may be tested by mechanically defoliating one branch on each sapling
and leaving another branch intact as a control. In mensurative studies,
the different levels of the within-block factor generally occur in a fixed
sequence. For example, the manual dexterity of right and left hands of
individual subjects, or the north and south sides of tree trunks cannot be
randomly assigned, and are therefore more appropriately analysed as
repeated-measures models (Chapter 0).

Randomised-block designs usually have just one observation of each
treatment or treatment combination in each block, in which case the
number of plots in each block equals the number of treatment combi-
nations. The lack of within-block replication maximises the power of the
experiment to detect treatment effects for a given availability of plots. It
complicates the interpretation of results, however, because certain
interactions between treatments and blocks cannot then be tested. Fully
replicated randomised blocks, which have two or more observations of
each treatment or treatment combination in each block, allow block-by-
treatment interactions to be tested but often give relatively modest
improvements in power for the extra resources invested (e.g., see meso-
cosm example 4 on page 142). Blocked designs that have full replication
are analysed by the models in Chapter 3 (further detailed in the section
below on analysis of randomised-block designs).

For designs that block plots across some defined gradient (e.g., of soil
moisture), the blocking factor could be substituted by a covariate measured
in each plot, although there would then be little point in grouping the
arrangement of plots. A more likely scenario is that a covariate is measured
just once for each block, which yields an orthogonal design (modelled in
Chapter 3). This approach of partitioning out sources of nuisance variation
has two advantages over categorical blocks: (i) the interaction of the
treatment with the covariate can be tested (unlike the interaction with a
categorical block), and (ii) the covariate uses up just one d.f., so potentially
leaving more error d.f. for testing the main treatment effect. These must be
offset against two disadvantages: (i) the single measurement of the covariate
per block makes an untested assumption that the value applies without error
across the whole block, and (ii) the covariate will only increase the power of
the test if it has a large, linear influence on the response. A covariate should
never be used without satisfying its assumption of a linear response, because
a non-significant result may mask real non-linear responses. Unless a gra-
dient is well defined, it is often safer to partition out multiple sources of
unknown random variation with a random blocking factor.
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Assumptions

For models with more than two treatment levels, the restricted allocation
of treatments to plots per block introduces an additional assumption of
homogeneity of covariances. Unlike a completely randomised design, in
which all sampling units are independent of each other, sampling units
within a block are correlated with each other by virtue of being within the
same block. This correlation does not present a problem, provided that
the covariances (i.e., correlations) are the same between treatment levels
within each block. This is an extension to the standard assumption of
homogeneous variances that applies to all ANOVA (page 14), and it is
relevant also to unreplicated split-plot (Chapter 5) and repeated-measures
(Chapter 6) designs. In practice, these ANOVAs require only an addi-
tional homogeneity amongst the set of variances obtained from all pairs
of treatment levels, where each variance is calculated from the differences
in the response between the levels across blocks: known as the ‘sphericity
condition’. For a design with three levels of factor A each tested once in
each of six blocks, one variance is calculated from the six differences in
response between A; and A,, another from the six for A;—Ajs, and the
third from the six for A,—Aj3. Heterogeneity amongst these variances will
result in a liberal test that inflates the Type I error rate. Kirk (1982),
Winer et al. (1991) and Quinn and Keough (2002) suggest ways to adjust
the ANOVA when this assumption is not met. If the design is fully
replicated, then the assumption of homogeneity of covariances becomes
subsumed within the standard assumption of homogeneity of variances
between all samples.

With only one replicate sampling unit (plot) per combination of block
and treatment levels, the requirement that it be drawn independently
ceases to apply, but it must be representative of the block, level of A and
level of B. Spatial non-independence of plots within blocks can be pro-
blematic when the sampling units are in close proximity, or when the
block represents an indivisible biological unit. Care must be taken to
ensure that the response of each plot is unaffected by the response of
other plots in the same block. For example, in an agricultural field trial
of an insecticide, plots within each block should be spaced far enough
apart to ensure that insecticide concentrations applied to one plot do not
contaminate neighbouring plots and that invertebrates cannot move
easily from one plot to another. Similarly, an ointment applied to patients
with acne should have only localised effects on the cheek to which it
is applied, and not systemic effects on both control and treatment cheeks.
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Despite the potential problem of non-independence among sampling
units, the randomisation of treatment levels to plots within blocks ensures
no systematic bias, in contrast to repeated-measures designs which are
susceptible to bias from practice and carryover effects (see Chapter 6).
Unreplicated randomised-block designs generally cannot test for
interactions of treatments with blocks, which must therefore be assumed
to have negligible effect. Although full replication allows testing of these
interactions, their interpretation remains problematic (see below).

Two approaches to analysis of randomised-block designs

Blocking factors are always random because they describe a randomly
and independently drawn set of levels that group multiple sources of
uncontrolled variation in a wider population (detailed on page 19). The
precise identity of each block holds no value in itself and a subsequent
analysis could use a different set of blocks drawn randomly from the
population to re-test the same hypothesis. Random blocking factors
differ from random treatment factors in two ways: they constrain the
random allocation of other treatment factors to experimental units, and
they measure multiple sources of variation. For example, variation
among blocks of experimental plots in a field arises from sources such
as soil moisture, shading, soil micro-nutrients and so on. Similarly,
variation among randomly selected trees may comprise components due
to individual genotype, local environmental conditions, age etc. Separ-
ating and testing these different sources of variation requires careful
experimental design. For an illustration, see example 4 to model 3.1 on
page 79.

Complete randomised-block experiments are analysed as factorial
ANOVAs because every treatment level is present in every block. Text-
books prescribe two contrasting approaches to the analysis of randomised-
block designs without full replication, which differ primarily in their a
priori assumptions regarding the presence of the untestable block-by-
treatment interactions. Following Newman et al. (1997), we term these
approaches ‘Model 1’ and ‘Model 2’. The Model I approach assumes that
block-by-treatment interactions are present and uses the relevant block-
by-treatment MS as the F-ratio denominator to test treatment effects.
The Model 2 approach assumes that block-by-treatment interactions are
absent and pools all block-by-treatment MS into the residual MS to test
treatment effects. Be aware that textbooks and reports of analyses



120 Randomised-block designs

frequently omit to mention this assumption and give no indication in the
ANOVA table that pooling has been carried out.

In practice, these two methods produce similar results for designs with
a single treatment factor, but they can produce markedly different results
for designs with two or more treatment factors. We illustrate both
approaches for models 4.1 to 4.3 below. The Model-2 approach poten-
tially provides a more powerful test of treatment effects but the
assumption of no block-by-treatment interactions cannot be tested unless
the design has replicate observations for each combination of treatments
within each block to estimate the residual error term. Furthermore,
Model 2 uses an error term for some treatment effects that comprises all
block-by-treatment MS. For example, in model 4.2(i), A, B and their
interactions are tested against the pooled error MS[S'*A +S'*B+
S’*B*A]. Pooling in this manner assumes that these contributions to the
error term have approximately equal MS values. Kirk (1982) recom-
mends testing this assumption with an F,,,, test, and using the Model-1
approach in the event of heterogeneity of error MS contributions or
significant block-by-treatment interactions.

Interpretation of non-significant treatment factors in randomised-block
designs is problematic because they may indicate no treatment effect, or a
treatment effect that has opposing effects in different blocks. The latter
possibility often cannot be tested if the design is unreplicated. Full repli-
cation allows testing of the assumption of no significant block-by-treatment
interactions and thereby — in the event of no significant interactions —
validation of non-significant treatment effects. Fully replicated rando-
mised-block designs can be analysed using equivalent completely
randomised models in Chapters | to 3; if there is little evidence of block-
by-treatment interactions (i.e., high P values), then those terms may be
pooled into the residual MS to increase power to test treatment effects
(see page 38). In the event of a significant block-by-treatment interac-
tion, however, interpretation is problematic because the interaction with
block means that the treatment effect may depend upon any of the
multiple sources of variation encompassed by the blocking factor. Thus,
the causal mechanisms giving rise to a significant block-by-treatment
interaction cannot be interpreted without further experimentation.
Significant treatment factors do not pose the same level of interpretative
difficulty, because they are tested against interactions with the random
block, and therefore report significance over and above any treatment-
by-block interaction.
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4.1 One-factor randomised-block model

Model
Y =S/A

Test hypothesis

Variation in the response Y is explained by factor A.

Description

Each of a levels of treatment A is randomly assigned one of a plots (P’) in
each of n blocks (S’). This design is a complete randomised block because
every treatment is represented in every block.

Factors Levels Repeated measures on S’
A a yes
N n

Allocation table

The table illustrates a =4 levels of factor A assigned randomly amongst a
plots (demarked by single lines) within each of n =4 blocks (demarked by
double lines). Note that the table does not indicate the spatial distribu-
tion of treatment combinations, which must be randomised within each
block. For example, treatment level A; should not be assigned to the first
plot in every block.

P'(S'|A)| S4 S; | S5 | S




122 Randomised-block designs

Examples

(1) Spatial block example: Hy: Crop yield depends on sowing Density (A),
with a densities randomly assigned amongst a Plots (P’) in each of n
Blocks (S'). The blocks stratify a natural environmental gradient, such
as soil moisture from top to bottom of a sloping field. The response is
the yield from each plot, measured at the end of the experiment.

(2) Temporal block example: H,: Plant growth depends on Temperature
(A), with a temperatures randomly assigned amongst a Mesocosms (P’).
The whole experiment is repeated with new plants n Times in sequence
(S'), with temperatures randomly reassigned to mesocosms each time.

(3) Spatial block example: Hy: Acne is reduced by treatment with
ointment, tested by applying the ointment to one cheek and a
placebo to the other, with side randomised between subjects.

(4) Spatial block example: H,: Barnacle settlement density on a rocky
shore depends on rock-surface rugosity (A), with a roughness levels
randomly assigned amongst a Plots (P’) at each of n Elevations (S') up
the shore.

Comparisons

This design can be extended to include a second crossed factor applied to
whole blocks (model 5.6), to plots within blocks (model 4.2), or to
replicate sub-plots within each plot (model 5.1).

When a=2, model 4.1 is equivalent to a paired-sample ¢ test. In testing
the effect of a single treatment factor A, model 4.1 has similar objectives to
completely randomised model 1.1 and repeated-measures model 6.1. It
differs from model 1.1 in that a blocking factor (S’) partitions out
unwanted sources of background variation among sampling units by
grouping plots into blocks spatially or temporally. The random allocation
of treatments to plots is then stratified so that each of the a levels of factor
A is represented once in each block. Although the Model-1 analysis for
model 4.1 is identical to that for repeated-measures model 6.1, with block
corresponding with subject (S'), it escapes systematic bias from practice
and carryover effects because the levels of A are randomised within each
block rather than being tested sequentially on each subject.

Model 4.1 has a similar structure to model 3.1 (where S’ corresponds
with B’) in that it tests the effect of two crossed factors. Indeed, the fully
replicated version of model 4.1 is analysed with model 3.1. The design
nevertheless differs from model 3.1 in that assignment of levels of A to
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sampling units is randomised only within blocks, and it is not fully
replicated.

The Model-1 analysis is identical to the analysis of an unreplicated
two-factor design with at least one random factor (model 7.1), except that
it must meet the additional assumption of homogeneity of covariances
across blocks.

Special assumptions (see also general
assumptions on page 118)

The model cannot test the block-by-treatment interaction, because the
lack of replication means that there is no residual error term (shaded
grey in the ANOVA tables below). Interpretation of a non-significant A
effect is therefore compromised by not knowing whether it arises from no
effect or opposing effects in different blocks. The assumption of no
significant block-by-treatment interaction can be tested if independent,
replicate plots (P’) are used for each of the a treatments in each block.
The design is then fully replicated and the analysis identical to that for
model 3.1, with B’ substituting for S’. The interpretation of a significant
block-by-treatment interaction is still problematic because the treatment
effect may depend upon any of the multiple sources of variation
encompassed by the blocking factor. Thus, the causal mechanisms
underlying the significant interaction effect cannot be interpreted without
further experimentation.

ANOVA tables for analysis of terms S+ A

Model 4.1(i) A is a fixed treatment, S' is a random blocking factor:

. F-ratio

Components of variation —
Mean square d.f. estimated in population ~ Model 1 Model 2
Between n blocks
18 n—1 P'(S"*A)+ S No test” 1/3
Between na plots
2A a—1 P/(S"*A)+S*A+A 2/3 2/3
3 S'*A (n—1D(a—1) P/(S*A)+S*A No test  No test
4 P'(S'*A) 0 P/(S'*A) - -

Total variation na—1

“ An unrestricted model tests the MS for S’ over the MS for its interaction with A
(F-ratio = 1/3). See page 242.
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Model 4.1(ii) A’ is a random factor, S’ is a random blocking factor

o F-ratio
Components of variation

Mean square d.f. estimated in population Model I Model 2
Between n blocks
19 b—1 P(S'*A’) +S'*A’ + 8 1/3 1/3
Between na plots
2 A a—1 P/(S™*A") + S"*A’ + A’ 2/3 2/3
3 S'*A! (n—1D(a—1) P/(S*A")+S*A’ No test No test
4 P'(S'*A") 0 P/(S'*A") - -

Total variation na—1

Balanced incomplete-blocks variant

The randomised complete-block design has a reduced version known as a
‘balanced incomplete block’. The design is incomplete because each of the
n blocks tests only ¢ levels of treatment A, where ¢ < a.

The example allocation table shows four levels of treatment A tested in
random pairs in each of six blocks (S).

P'(S'|A)| S S, S3 S, Sg S
Al Py P, P,
A |l Ps Ps Pe
Aj P; Pg Py
A, P1o Py P2

This design is balanced provided that each treatment level is tested the
same number of times, r =nc/a, and each pair of treatment levels appears
in the same number of blocks, A =nc(c—1)/[a(a—1)]. In the above
example, a=4, n=06, c=2, so r=3 tests per treatment level, and 1 =1
block for each pair of treatment levels. The incomplete design means
that factors A and S are not independent of each other, making it
vital to randomly assign treatment levels to the ¢ subjects (or plots) per
block.
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To analyse this design, request the model Y=A +S in a GLM with
adjusted SS (rather than sequential SS), so that the SS of A is calculated
after partitioning out SS of S, and vice versa. The design assumes no
interaction of S with A.

A further example of balanced incomplete blocks is the Youden square
described on page 127.

Latin square variant

The ‘Latin square’ is an extension of a one-factor randomised-block
design (model 4.1) to include a second blocking factor. The blocking
factors may be both spatial, both temporal or a mixture. Its defining
feature is that each blocking factor has the same number of blocks as
there are levels of Factor A (treatments), and each treatment appears just
once in each and every block. The design is conveniently represented as a
square grid with as many columns and rows (the blocks) as treatment
levels. The treatments are dispersed within the grid in such a way that
they all appear once in each column (B) and once in each row (C).

Columns and rows may be treated as random blocks, or one of them
may represent a fixed factor. They might account for unwanted variation
in altitude or shading for example, or any unquantified spatial variation
in two dimensions. Treating them as random factors means assuming
that they representatively sample the true variation in the factors. The
design is then a type of randomised complete block. The Latin-square
design is required for crossover trials, in which treatment levels are
assigned to different subjects for a given time period, after which the
assignments are switched. The two blocking factors are then Subject
(e.g., columns) and Time period (rows). The objective is for subjects
to receive treatments in different sequences, always paying attention to
the potential problem of carryover effects from one treatment into
the next.

Below is an example of a Latin square layout for three treatment levels
in a 3x3 grid of nine plots:
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It is important that levels of the factors A, B and C are paired
randomly. This can be assured for the 3x3 layout by beginning with
the design above which has the levels of A in numerical order across
the columns of row 1, starting with A in column 1, and again in row 2
starting with A,, etc. From this ‘standard’ form, randomly permute
first rows and then columns of the matrix to obtain one of 12 possible
Latin squares (including this one). Larger grids generate many more
permutations. A 4x4 layout has 576 possible Latin squares, of which
only 144 can be obtained by randomising from a standard form with
the levels of A in numerical order. For these and larger squares, it is
therefore recommended to ensure a truly random arrangement of
treatment levels by using tables of Latin squares, or algorithms that are
available on the web. Below is the design for ANOVA of the above
layout.

The example allocation table shows three levels of treatment A dis-
persed across rows C and columns B in 3x3 standard form.

<

o Aq Ay Ag

e

=~ !B | B, | B | B | B, | B | B | B, | B
Cs S, Ss || s

Regardless of whether B or C are treated as random or fixed, the design
assumes no significant interactions. It is analysed with GLM, requesting
the reduced model: Y =A + B+ C. Each factor is then tested against a
residual MS with (a — 1)(a — 2) d.f., constructed from (SS[total] — SS[C] —
SS[B] — SS[A])/([a — 1][a — 2]). More power can be achieved by replicating
the Latin square, either in separate squares, or stacked in a single square.
For example, a two-replicate stack of the 3x3 square would have six
observations per treatment, distributed across three column blocks each
with six plots and down six row blocks each with three plots. The
increased size of the column block then allows testing of its interaction
with the treatment.
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The examples below are oppropriate for Latin Square designs.

(1) Spatial example. H,: Crop yield in a sloping field depends on sowing
Density (A). A square grid of a* Plots is used to control for spatial
variation both down and across the slope. Within the grid, a Density
treatments are randomly assigned to plots so that each treatment is
tested once at each position down and across the slope.

(2) Temporal example. H,: Plant growth depends on Temperature (A).
Each of a ambient temperatures is randomly assigned to one of a
Mesocosms (B’) for a period sufficient for measuring plant growth.
The whole experiment is then repeated over a Time periods (C’), each
time with new plants and mesocosms reassigned to temperatures such
that every mesocosm is tested at every temperature.

Youden square variant

The Youden square is a further reduction, in which a row or column has
been removed from the Latin square (making it actually a rectangle). It
is commonly used to balance out the effects of the position of a treat-
ment in a repeated-measures sequence. For example, to test for predator
aversion behaviour, each of b Mice (B) might be offered food tainted
with a variety of predator Odours (A). Each mouse can be tested with
one less than the total number of odour types, in Order (C) assigned by
the Youden square.

Removing a row from the above design, we have treatment A with a
levels compared across b =a levels of a random block B’, and c=a — 1
levels of a random block C’. This is one of many possible ‘balanced
incomplete-block’ designs. The design is incomplete because it does not
test each treatment level in each level of B and in each level of C (as the
Latin square did). It is balanced because each treatment level is tested
the same number of times, r=bc/a, and each pair of treatment levels
appears in the same number of blocks, A =bc(c —1)/[a(a—1)]. The
design assumes no significant interactions. It is analysed with
GLM, requesting the reduced model: Y =A + B+ C. In this case, use
adjusted SS in a GLM (rather than sequential, as in the Latin square),
so that the SS of A is calculated after partitioning out SS of B, and
vice versa.
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4.2 Two-factor randomised-block model

Model
Y = §'[B|A

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.

Description

Each of ba combinations of crossed factors B and A is randomly
assigned one of ba plots (P’) in each of n blocks (S). This design is a
complete randomised block because every treatment combination is
represented in every block.

Factors Levels Repeated measures on S’
A a yes
B b yes
S n -

Allocation table

The table shows ba =4 combinations of levels of B*A assigned randomly
amongst ba plots (demarked by single lines) within each of n = 4 blocks
(demarked by double lines). Note that the table does not indicate the
spatial distribution of treatment combinations, which must be rando-
mised within each block. For example, treatment level B; should not be
assigned to the first plot in every block.

P(S'BIA)| Sy | S, | S; | S,

A B, Il Py N | =3
B Il .. O | -3

A =

? B Il .. o |l Popa
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Examples

(1) Spatial block example: Hy: Crop yield depends on a combination of
sowing density (A) and Fertiliser (B) treatments, with ba combina-
tions of levels randomly assigned amongst ba Plots (P’) in each of n
Blocks (S’). The blocks stratify a natural environmental gradient,
such as soil moisture from top to bottom of a sloping field. The
response is the yield from each plot, measured at the end of the
experiment.

(2) Temporal block example: H,: Plant growth depends on a
combination of Temperature (A) and Light (B), with ba combina-
tions of levels randomly assigned amongst ba Mesocosms (P’). The
whole experiment is repeated with new plants n Times in sequence
(S'), with temperatures and light randomly reassigned to mesocosms
each time.

Comparisons

Model 4.2 is an extension of a one-factor randomised-block model
(model 4.1) to include a second crossed factor applied to plots. If A or B
is random, then consider using the Latin or Youden Square variants of
model 4.1 above (pages 125 to 127). The model can be extended to
include a third crossed factor, which may be applied to whole blocks
(model 5.7), to plots within blocks (model 4.3), or to replicate sub-plots
within each plot (model 5.2).

In testing the combined effect of two crossed factors, model 4.2 has
similar objectives to cross-factored models 3.1, 5.1, 5.6 and 6.2. Crucially,
it differs from fully randomised model 3.1 in that the assignment of
treatments to sampling units (plots) is randomised only within blocks, and
it differs from split-plot models 5.1 and 5.6 in that both factors are applied
to sampling units at the same scale. Although the Model 1 analysis for
model 4.2 is identical to that for repeated-measures model 6.2, with block
corresponding with subject (S'), it escapes systematic bias from practice
and carryover effects because the levels of A and B are randomised within
each block rather than being tested sequentially on each subject.

Model 4.2 has a similar structure to model 3.2 (where S’ corresponds
with C’) in that it tests the effect of three crossed factors. Indeed,
the fully replicated version of model 4.2 is analysed with model 3.2.
The design nevertheless differs from model 3.2 in that assignment of
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the ba levels of factors A and B to sampling units is randomised only
within blocks, and it is not fully replicated.

The Model-1 analysis is identical to the analysis of an unreplicated
three-factor design with at least one random factor (model 7.2), except
that it must meet the additional assumption of homogeneity of covar-
iances across blocks.

Special assumptions (see also general
assumptions on page 118)

The model assumes that some or all block-by-treatment interactions are
absent or not significant, many of which cannot be tested anyway because
the lack of replication means that there is no residual error term (shaded
grey in the ANOVA tables below). Interpretation of non-significant A, B
or A*B is compromised because it could result either from no effect, or
from opposing effects in different blocks. The assumption of no sig-
nificant block-by-treatment interactions can be tested if independent,
replicate plots (P') are used for each of the ab treatment combinations in
each block. The design is then fully replicated and the analysis identical
to that for model 3.2, with C’ substituting for S’. The interpretation of a
significant block-by-treatment interaction is nevertheless problematic
because the treatment effect may depend upon any of the multiple
sources of variation encompassed by the blocking factor. Thus, the causal
mechanisms underlying the significant interaction effect cannot be
interpreted without further experimentation.

If all block-by-treatment interactions are assumed to be absent, the
error term for some treatment effects may comprise all block-by-
treatment MS (Model 2, Newman et al. 1997). For example, in model 4.2
(i), A, B and B*A are tested against the pooled error MS[S'*A + S'*B
+ S"*B*A]. Pooling in this manner assumes that these contributions to
the error term have approximately equal MS values (see page 120).
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4.3 Three-factor randomised-block model

Model
Y = S'|C|B|A

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A, factor B and factor C.

Description

Each of cba combinations of crossed factors C, B and A is randomly assigned
one of cba plots (P') in each of n blocks (S'). This design is a complete
randomised block because every treatment combination is represented in
every block.

Factors Levels Repeated measures on S’
A a yes
B b yes
C c yes
S n -

Allocation table

The table shows cha =8 combinations of levels of C¥B*A assigned ran-
domly amongst cha plots (demarked by single lines) within each of n = 4
blocks (demarked by double lines). Note that the table does not indicate
the spatial distribution of treatment combinations, which must be ran-
domised within each block. For example, treatment level C; should not
be assigned to the first plot in every block.
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Examples

Spatial block example: Hy: Crop yield depends on a combination of
Herbicide (A), sowing Density (B) and Fertiliser (C) treatments, with cba
combinations of levels randomly assigned amongst cba Plots (P') in
each of n Blocks (S'). The blocks stratify a natural environmental
gradient, such as soil moisture from top to bottom of a sloping field. The
response is the yield from each Plot, measured at the end of the
experiment.

Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C), with cha combinations
of levels randomly assigned amongst cha Mesocosms (P’). The whole
experiment is repeated with new plants n Times in sequence (S), with
temperatures, light levels and fertiliser type randomly reassigned to
mesocosms each time. It is likely that different fertiliser treatments
can be applied within each mesocosm, in which case use model 5.2,
which uses only ba mesocosms.

Comparisons

Model 4.3 is an extension of a two-factor randomised-block model
(model 4.2) to include a third crossed factor applied to plots. In testing
the combined effect of three crossed factors, model 4.3 has similar objectives
to completely randomised model 3.2, split-plot models 5.2, 5.3, 5.4, 5.5,
5.7, 5.9 and repeated-measures models 6.5 and 6.7. Crucially, it differs
from model 3.2 in that the assignment of treatments to sampling units
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(plots) is not completely randomised. It differs from the various split-plot
models in that factors A, B and C are assigned to sampling units at the same
scale, and from the repeated-measures models in that factor levels are ran-
domly assigned within blocks rather than being applied in sequence.

Special assumptions (see also general
assumptions on page 118)

The model assumes that some or all block-by-treatment interactions are
absent or not significant, many of which cannot be tested anyway because
the lack of replication means that there is no residual error term (shaded grey
in the ANOVA tables below). Interpretation of non-significant effects
amongst A, B, C and their interactions is compromised because the result
could mean either no effect, or opposing effects in different blocks. The
assumption of no significant block-by-treatment interactions can be tested if
independent, replicate plots (P') are used for each of the cha treatment
combinations in each block. The interpretation of a significant block-by-
treatment interaction is nevertheless problematic because the treatment
effect may depend upon any of the multiple sources of variation encom-
passed by the blocking factor. Thus, the causal mechanisms underlying the
significant interaction effect cannot be interpreted without further experi-
mentation.

If all block-by-treatment interactions are assumed to be absent, the
error term for some treatment effects may comprise all block-by-treat-
ment MS (Model 2, Newman et al. 1997). For example, in model 4.3(i),
A, B, C and their interactions are tested against the pooled error MS
[S"*A 4+ S"*B+ S"*C + S'*B*A + S'*C*A + S'*C*B + S’*C*B*A]. Pooling
in this manner assumes that these contributions to the error term have
approximately equal MS values (see page 120).
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5
Split-plot designs

Split-plot models extend the randomised-block designs of Chapter 4
to situations in which different treatments are assigned to sampling units
at different scales. In addition to one or more treatments being assigned
at random to plots within each block, further treatments are assigned at
random to whole blocks and/or to sub-plots nested in plots (and even to
sub-sub-plots nested within each sub-plot). Cross-factored treatments are
therefore applied to a hierarchy of nested sampling units: sub-sub-plots in
sub-plots in plots in blocks. Further details of split-plot designs are given
on page 25.

These are the four scales of sampling unit to which a given treatment
level may be assigned in the models described in this chapter:

Q in a plot in a block

p’

As with randomised-block designs, randomisation of treatments to
sampling units occurs only within each block, plot or sub-plot. Split-plot
designs are usually unreplicated, with just one observation of each
treatment or combination of treatments within a particular block, plot,
sub-plot or sub-sub-plot. This lack of replication complicates the inter-
pretation of results, because it precludes testing of certain interactions
between treatment factors and sampling units. Full replication allows
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testing of these interactions, but often gives relatively modest improve-
ments in power for the extra resources invested.

The application of treatments at more than one (usually spatial) scale
has a number of practical advantages.

(1) In multi-factor experiments it may be impractical to apply some
treatments to very large or very small sampling units. For example, in
a field trial to test the response of crop yield to watering regime (A)
and fertiliser concentration (B), neighbouring small plots cannot
receive different watering regimes because the water will leach across
plot boundaries. One solution is to apply different watering regimes
to replicate groups of plots (blocks, S") and to apply different fertiliser
concentrations to plots (P’) within each block, resulting in split-plot
model 5.6.

(2) Split-plot designs allow new treatment factors to be introduced into
an experiment already in progress. Each of the smallest existing
sampling units can be split into yet smaller units, to which the levels
of the new factor are applied. Suppose, for example, that an
investigator decides to incorporate a third treatment, pesticide (C),
into the above experiment. As the experiment is already in progress
and no more plots of land are available, each plot is further
subdivided into ¢ sub-plots (Q’) and one concentration of pesticide is
applied to each sub-plot. The experiment is then analysed using
model 5.5.

(3) Split-plot designs are useful for analysing multiple response variables.
Suppose that the biomass of weeds is recorded from each plot in the
first experiment, in addition to the biomass of the crop. Plant type
then becomes a third factor (C) and the experiment is again analysed
using model 5.5.

(4) Split-plot designs allow multi-factor experiments to be conducted
with few primary sampling units (blocks). For example, suppose that
a laboratory experiment to test the response of seedling growth to
four concentrations of nitrogen Fertiliser (A) and three Temperatures
(B) has available only six mesocosms (S’). The investigator wants to
test for interacting effects of fertiliser and temperature, but cannot do
this in a fully replicated two-factor design without having at least 24
mesocosms — one for each of two replicates at each of the 12
combinations of levels of A and B. However, all treatment effects
may be tested with just six mesocosms if each of high, medium and
low temperature are allocated to two mesocosms and all four
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concentrations of fertiliser are then tested in each mesocosm, one per
tray of seedlings (P’). As more than one observation is made in each
mesocosm, the analysis must now declare Mesocosm as a random
blocking factor (S') to account for variation between mesocosms.
Since each mesocosm has its own temperature setting but all levels of
fertiliser, the factor Mesocosm is nested in Temperature and cross
factored with Fertiliser, giving model 5.6. Note that having just three
mesocosms will not suffice, because the effect of temperature is then
entirely confounded with unmeasured differences between the
mesocosms.

Assumptions

Split-plot models involve repeated measurements on blocks (and on plots
if sub-plots are present, and on sub-plots if sub-sub-plots are present),
which introduces an additional assumption of homogeneity of covariances.
Because blocks group plots (which in turn group sub-plots, which in turn
group sub-sub-plots), any observations made on factors within these
blocks (or plots or sub-plots) are not independent of each other. This
source of correlation between levels of within-block (or plot or sub-plot)
factors is not a problem provided that the covariances (i.e., correlations)
are the same between treatment levels within each block (or plot or sub-
plot). This is an extension to the standard assumption of homogeneous
variances, which applies to all ANOVA (page 14). In practice, these
ANOVAs require only an additional homogeneity amongst the set of
variances obtained from all pairs of treatment levels, where each variance
is calculated from the differences in response between the levels across
blocks (or plots or sub-plots): known as the ‘sphericity condition’. Het-
erogeneity amongst these variances will result in a liberal test that inflates
the Type I error rate. Kirk (1982), Winer et al. (1991) and Quinn and
Keough (2002) suggest ways to adjust the ANOVA when this assumption
is not met. If the design is fully replicated, then the assumption of
homogeneity of covariances becomes subsumed within the standard
assumption of homogeneity of variances between all samples.

With only one replicate observation per combination of sampling unit
and treatment levels, the requirement that it be drawn independently
ceases to apply, but it must be representative of the sampling and
treatment level. Spatial non-independence of sampling units can be a
problem if they are in close proximity. To avoid this problem, replicate
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plots (or sub-plots or sub-sub-plots) should be spaced apart such that
treatments applied to one sampling unit do not influence measurements
taken from its neighbours. Despite the potential for non-independence
among sampling units, the randomisation of treatment levels to sampling
units ensures no systematic bias, in contrast to repeated-measures designs
which are susceptible to bias from practice and carryover effects (see
Chapter 0).

Unreplicated split-plot designs generally cannot test for interactions of
within-block treatments with blocks, which must therefore be assumed to
have negligible effect. Although full replication would allow testing of
these interactions, their interpretation remains problematic (see below).

Analysis

Split-plot designs are analysed as unreplicated factorial models with
nesting. They are factorial because ecach level of each treatment factor
is tested in combination with each level of the other treatment factors,
and nested because the sampling units (blocks, plots, sub-plots and sub-
sub-plots) to which the treatments are applied are hierarchical. The
nesting of sampling units means that each sampling scale has its own
ANOVA table.

Analysis follows the Model-2 approach used for randomised-block
designs (page 119). If the design is unreplicated then it is not possible to
test for interactions of treatment factors with blocks, plots, sub-plots or
sub-sub-plots because the relevant error terms cannot be estimated. These
interaction terms are assumed to be zero and pooled together in order to
test treatment effects. The error term for a particular treatment effect is
then the interaction between blocks and all treatments that are applied to
that sampling unit or larger. Pooling assumes that the MS contributions
to the pooled error term have approximately equal MS values. Kirk
(1994) recommends an F,,, test of this assumption, and using the less
powerful unpooled test in the event of heterogeneous variances.

Interpretation of non-significant results is problematic because they
may indicate no treatment effect, or a treatment effect that has opposing
effects in different sampling units. Full replication allows testing of the
assumption of no sampling unit-by-treatment interactions and thereby —
in the event of no significant interactions — validation of non-significant
treatment effects. Interpretation of significant interactions is nevertheless
problematic because the treatment effect may depend upon any of the
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multiple sources of variation encompassed by the blocking factor. Thus,
the causal mechanisms giving rise to a significant sampling unit-by-
treatment interaction cannot be interpreted without further experi-
mentation. Significant treatment factors do not pose the same level of
interpretative difficulty, because they are tested against interactions with
the random sampling units, and therefore report significance over and
above any interactions with them.

Types of split-plot model

Textbooks vary in the terminology used to describe the nested sampling
units in split-plot designs. For consistency with the randomised-block
models in Chapter 4, we refer to the top level in the hierarchy as blocks,
and subsequent levels in the hierarchy as plots, sub-plots and sub-sub-
plots (see also Underwood 1997; Crawley 2002; Quinn and Keough
2002). However, other books refer to the top level in the hierarchy as
plots and term the lower levels accordingly (for example, Winer et al.
1991).

Split-plot models are similar in concept to repeated-measures models.
Repeated observations are taken on each block in the same way that
repeated measurements are taken on each subject. We illustrate this
similarity using S’ to denote both blocks and subjects and P’ to denote
both plots nested in blocks and observations nested in subject. Split-plot
models differ from repeated-measures models, however, in that treatment
levels are randomly assigned within blocks (subjects), rather than being
applied in spatial or temporal sequence. Split-plot designs therefore do
not suffer systematic bias from practice and carryover effects, which are
unique to repeated-measures designs. Care must be taken, nevertheless,
to ensure that treatments applied to one part of a sampling unit do not
affect other treatments applied to other parts of the sampling unit.

In this chapter, we describe nine common split-plot designs, listed in
Table 5. Because split-plot designs have been developed specifically for
multiple treatments, we detail all models with up to three fixed factors
having categorical levels. Models 5.1 to 5.5 have no equivalent amongst
standard repeated-measures models. They may be used as repeated-
measures models, however, if the factor applied at the lowest level in the
hierarchy is a temporal or spatial sequence. For example, model 5.1 could
be a one-factor (A) randomised-block model with each plot repeatedly
sampled over time (B). Models 5.6 to 5.9 are directly equivalent to
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Table 5 Split-plot designs with up to three fixed treatments factors (A, B, C)
allocated to blocks, plots within blocks, sub-plots within plots and sub-sub
plots within sub-plots. Any corresponding repeated-measures models are
identified in the first column.

Treatments applied to

Model Sub-sub-plots Sub-plots Plots Blocks
Number Model (R) Q) P (S)H
5.1 Y =B|P'(S'|A) B A -
5.2 Y =C|P'(S'|B|A) C BIA -
5.3 Y =C|B|P'(S'|A) CB A -
5.4 Y=C|Q(BIP'(S'1A)) C B A -
5.5 Y =C|P'(B|S'(A)) C B A
5.6=6.3 Y =BJIS'(A) B A
5.7=6.5 Y =C|B|S'(A) C|B A
5.8=6.6 Y =C|S'(B(A)) C B(A)
5.9=6.7 Y =C|S'(B|A) C BIA

standard repeated-measures models 6.3 and 6.5 to 6.7. As the analysis
of equivalent split-plot and repeated-measures models is identical, we
refer readers to the ANOVA tables in Chapter 6 to avoid unnecessary
replication.

5.1 Two-factor split-plot model (i)
Model

Y = B[P'(S'|A)

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.

Description

Each of a levels of treatment A is randomly assigned one of « plots (P’) in
each of n blocks (S'), and each of b levels of treatment B is randomly
assigned one of b sub-plots (Q’) in each plot.
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Factors Levels Repeated measures on S’
A a yes
B b yes
S n -

Allocation table

The table shows a = 2 levels of factor A allocated amongst a plots P’ in
each of n = 4 blocks §', and b = 2 levels of factor B allocated amongst b
sub-plots Q' in each plot. Note that the table does not indicate the spatial
distribution of treatment combinations, which must be randomised
within each sampling unit. For example, treatment level B; should not be
assigned to the first sub-plot in every plot.

)

(@)

Q'(BIP'(S'|A)|  S; Sz | S3 | S

B Q

A1 1 Q1 n
B Il .. S | e
B

Ay
Bz e e e ana

Examples

Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A) and sowing Density (B) treatments. The a levels
of watering are randomly assigned amongst a Plots (P’) in each of n
Blocks (S'), and the b sowing densities are randomly assigned
amongst b Sub-plots (Q’) within each Plot. The response is the yield
from each sub-plot, measured at the end of the experiment.
Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A) and Fertiliser (B). The a temperatures are
randomly assigned amongst a Mesocosms (P’) and b levels of fertiliser
are randomly assigned amongst b Trays of plants (Q’) within each
mesocosm. The whole experiment is repeated with new plants n Times
in sequence (S'), with temperatures randomly reassigned to meso-
cosms and fertiliser treatment randomly reassigned to trays within
mesocosms each Time.
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Comparisons

Model 5.1 is an extension of a one-factor randomised-block model 4.1 to
include a second crossed factor applied to sub-plots nested within plots.

Model 5.1 can be extended to include a third, crossed treatment factor
applied to whole blocks (model 5.5), plots (model 5.2), sub-plots
(model 5.3) or sub-sub-plots (model 5.4).

In testing the combined effect of two crossed factors, model 5.1 has
similar objectives to cross-factored models 3.1, 4.2, 5.6, 6.2 and 6.3.
Crucially, it differs from fully randomised model 3.1 in that the assign-
ment of treatments to sampling units (plots) is not completely rando-
mised, and from randomised-block model 4.2 in that factors A and B are
assigned to sampling units at different scales. Model 5.1 differs from
split-plot model 5.6 only in the way treatment factors are applied to
sampling units. In contrast to repeated-measures models 6.2 and 6.3,
model 5.1 randomly assigns levels of both treatment factors within blocks
rather than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of sampling units with treatments, which
cannot be tested anyway because the lack of replication means that there is
no residual error term (shaded grey in the ANOVA table below). Inter-
pretation of non-significant A, B or A*B is compromised because the result
could mean either no effect, or opposing effects in different sampling units.
The assumption of no sampling unit-by-treatment interactions can be tested
if independent, replicate plots (P’) are used for each level of A in each block
and independent, replicate sub-plots (Q’) are used for each level of B in each
plot. The interpretation of a significant sampling unit-by-treatment inter-
action is nevertheless problematic because the treatment effect may depend
upon any of the multiple sources of variation encompassed by the blocking
factor. Thus, the causal mechanisms underlying a significant interaction
cannot be interpreted without further experimentation.

The nesting of Sub-plot’(Plot’(Block’)) means that the error term for
each fixed main effect or main-effect interaction comprises the interaction
between the block and all factors applied to that sampling unit or larger.
Thus, A is tested against the error MS[S'*A], while B and B*A are tested
against the pooled error MS[B*S'+ B*S'*A]. Pooling terms in this
manner assumes that these contributions to the error term have
approximately equal MS values (see page 144).



"TT 98ed 298 “(§/T = ONBI-4) V YIM UONOIRIIUL S JOJ SIA Y} JOAO S SISI) [9POW PIIOLISAIUN Uy

[ — pqu uoneLIBA [B)0],

= (V+,8),d«8).,0 0 (V%,8).d+9.,0 01

159} ON (V,8),d+d + (V+,9),d«8),0 0 (V8 d«d 6
159) ON Vi, Sl + (V,9),dsd + (Vs,9),d+ ) ,0 (1= -w(1 -9 Vi S+d 8
159) ON Sl + (V,9),dsb + (V,9),d«D),0 (1—u)(1—9) S+d L
[+ L1d/9 Vil + Vi, S8 + (Vi,S) dsd + (V4,8),d«D),0 1-0-9 Vil 9
[8 -+ Lld/s qd+ S8+ (Ve,9),dsd + (V,9),d«D,0O -9 q s
sjord-qns »qu UMY

153) ON (V8 d + (V+,9),d«0),0 0 (V«S)d ¥
159} ON VSt (VS).d+ (Vs,S),d«d),0 (1—2)(0 —u) VS €
€7 V+ VSt (Vi S)d+ (Vi,S)d«d),0 [-D vV T

sjord pu uIMIdY

1591 ON S+ V8 d+ (Vs,8),d«D.0 [ —u S I
SYO0[q U UMPY

onel-,/ uonendod ur pajewnsd uoneLeA Jo sjuduodwo)) TP Jrenbs ueop

240300f 3upyd20]q wopund v st § ‘s101ovf paxif auv sjopd-qns ur g puv sjopd ui Y (1)1°G [PPON

VIS + V|g swid Jo sisk[eue 10J 9[qe) VAONY

149



150 Split-plot designs

5.2 Three-factor split-plot model (i)
Model

Y = C|P'(S'BJA)

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Each of ba combinations of levels of A*B is randomly assigned one of ba
plots (P) in each of n blocks (S’), and each of ¢ levels of treatment C is
randomly assigned one of ¢ sub-plots (Q’) in each plot.

Factors Levels Repeated measures on S’

A a yes
B b yes
C c yes
S n -

Allocation table

The table shows ba =4 combinations of levels of factors B and A allocated
amongst ba plots P’ in each of n=4 blocks S', and ¢ =2 levels of factor C
allocated amongst ¢ sub-plots Q’ in each plot. Note that the table does not
indicate the spatial distribution of treatment combinations, which must be
randomised within each sampling unit. For example, treatment level C,
should not be assigned to the first sub-plot in every plot.
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Q'(C|P'(S’[B|A)) | Sy S, S3 Sy
C Q Q
B1 1 1 n
C Q
A1 2 nc
©
B,
C, Qb
©
By
Ca
Az
@
B,
C, Qreba
Examples

Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C) treatments.
The ba combinations of watering and density are randomly assigned
amongst ba Plots (P') in each of n Blocks (S'), and the ¢ levels
of fertiliser are randomly assigned amongst ¢ Sub-plots (Q’) within
each Plot. The response is the yield from each sub-plot, measured at
the end of the experiment.

Temporal block example: H;: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C). The ba combina-
tions of temperature and light are randomly assigned amongst ba
Mesocosms (P), and the ¢ fertiliser concentrations are randomly
assigned amongst ¢ Trays of plants (Q) within each mesocosm. The
whole experiment is repeated with new plants n Times in sequence
(S"), with temperatures and light levels randomly reassigned to
mesocosms and fertiliser levels randomly reassigned to trays within
mesocosms each time.

Comparisons

Model 5.2 is an extension of two-factor randomised-block model 4.2 to
include a third, crossed factor, applied to sub-plots within each plot, and
an extension of split-plot model 5.1 to include a third crossed factor
applied to plots.
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In testing the combined effect of three crossed factors, model 5.2 has
similar objectives to cross-factored models 3.2, 4.3, 5.3, 5.4, 5.5, 5.7, 5.9,
6.5 and 6.7. Crucially, it differs from fully randomised model 3.2 in that
the assignment of treatments to sampling units is not completely ran-
domised, and from randomised-block model 4.3 in that factors A, B and
C are assigned to sampling units at different scales. Model 5.2 differs
from the other three-factor split-plot models only in the way treatment
factors are applied to sampling units. In contrast to repeated-measures
models 6.5 and 6.7, model 5.2 randomly assigns treatment levels rather
than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of sampling units with treatments,
which cannot be tested anyway because the lack of replication means that
there is no residual error term (shaded grey in the ANOVA table below).
Interpretation of any non-significant main effects and interactions is
compromised because the result could mean either no effect, or opposing
effects in different sampling units. The assumption of no sampling unit-
by-treatment interactions can be tested if independent, replicate plots (P’)
are used for each of the ba levels of factors B and A in each block and
independent, replicate sub-plots (Q’) are used for each level of C in each
plot. The interpretation of a significant sampling unit-by-treatment
interaction is nevertheless problematic because the treatment effect may
depend upon any of the multiple sources of variation encompassed by the
blocking factor. Thus, the causal mechanisms underlying a significant
interaction cannot be interpreted without further experimentation.

The nesting of Sub-Plot’(Plot/(Block’)) means that the error term for
each fixed main effect or main-effect interaction comprises the interaction
between the block and all factors applied to that sampling unit or larger.
Pooling terms in this manner assumes that these contributions to the
error term have approximately equal MS values (see page 144).
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5.3 Three-factor split-plot model (ii)
Model

Y = C/BIP/(S'|A)

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Each of a levels of treatment A is randomly assigned one of a plots
(P') in each of n blocks (S'), and each of ¢b combinations of levels of
treatments C and B is randomly assigned one of ¢b sub-plots (Q’) in
each plot.

Factors Levels Repeated measures on S’
A a yes
B b yes
C c yes
S n -

Allocation table

The table shows a=2 levels of factor A allocated amongst a plots
P’ in each of n =4 blocks S, and ¢h =4 combinations of levels of factors
C and B allocated amongst cb sub-plots Q' in each plot. Note that the
table does not indicate the spatial distribution of treatment combinations,
which must be randomised within each sampling unit. For example,
treatment level C; should not be assigned to the first sub-plot in
every plot.
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(1) Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C)
treatments. The a levels of watering are randomly assigned amongst
a Plots (P') in each of n Blocks (S'), and the ¢h combinations of
sowing density and fertiliser are randomly assigned amongst cb Sub-
plots (Q’) within each Plot. The response is the yield from each sub-
plot, measured at the end of the experiment.

(2) Temporal block example: H;: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C). The a temperatures
are randomly assigned amongst a Mesocosms (P’), and the cb
combinations of light and fertiliser are randomly assigned amongst cb
Trays of plants (Q’) within each Mesocosm. The whole experiment is
repeated with new plants n Times in sequence (S'), with temperatures
randomly reassigned to mesocosms and light and fertiliser levels
randomly reassigned to trays within mesocosms each time.

Comparisons

Model 5.3 is an extension of split-plot model 5.1 to include a third
crossed factor applied to sub-plots.

In testing the combined effect of three crossed factors, model 5.3
has similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.4, 5.5,
5.7,5.9, 6.5 and 6.7. Crucially, it differs from fully randomised model 3.2
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in that the assignment of treatments to sampling units is not completely
randomised, and from randomised-block model 4.3 in that factors A, B
and C are assigned to sampling units at different scales. Model 5.3 differs
from the other three-factor split-plot models only in the way treatment
factors are applied to sampling units. In contrast to repeated-measures
models 6.5 and 6.7, model 5.3 randomly assigns treatment levels rather
than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of sampling units with treatments,
which cannot be tested anyway because the lack of replication means that
there is no residual error term (shaded grey in the ANOVA table below).
Interpretation of any non-significant main effects and interactions is
compromised because the result could mean either no effect, or opposing
effects in different sampling units. The assumption of no sampling unit-
by-treatment interactions can be tested if independent, replicate plots (P’)
are used for each of the a levels of factor A in each block and indepen-
dent, replicate sub-plots (Q’) are used for each of the cb levels of factors B
and C in each plot. The interpretation of a significant sampling unit-by-
treatment interaction is nevertheless problematic because the treatment
effect may depend upon any of the multiple sources of variation
encompassed by the blocking factor. Thus, the causal mechanisms
underlying a significant interaction cannot be interpreted without further
experimentation.

The nesting of Sub-Plot’(Plot/(Block’)) means that the error term for
each fixed main effect or main-effect interaction comprises the interaction
between the block and all factors applied to that sampling unit or larger.
Pooling terms in this manner assumes that these contributions to the
error term have approximately equal MS values (see page 144).
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5.4 Split-split-plot model (i)
Model

Y = CIQ'(B[P'(S'|A))

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Each of a levels of treatment A is randomly assigned one of a plots (P’)
in each of n blocks (S'), and each of b levels of treatment B is randomly
assigned one of b sub-plots (Q') in each plot, and each of ¢ levels
of treatment C is randomly assigned one of ¢ sub-sub-plots (R’) in
each plot.

Factors Levels Repeated measures on S’
A a yes
B b yes
C c yes
N n -

Allocation table

The table shows a =2 levels of factor A allocated amongst a plots P’ in
each of n=4 blocks S, and b =2 levels of factor B allocated amongst b
sub-plots Q' in each plot, and ¢ =2 levels of factor C allocated amongst ¢
sub-sub-plots R’ in each sub-plot. Note that the table does not indicate
the spatial distribution of treatment combinations, which must be ran-
domised within each sampling unit. For example, treatment level B,
should not be assigned to the first sub-plot in every plot.



5.4 Split-split-plot model (i) 159

R'(CIQ'(BIP'(S'|A))| Sy Sz | S3 | S
B, " ISR | DA |
A (o3 | R o |l Re
B, L | IS | ISR | i | R
(o3 | U | T
B, LI | IS | ISR | Sl |
Co
A2
C1 e e e e
B, —F-----4k-----{}-----1}-----
(o2 | I oo || Rocpa
Examples

(1) Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C)
treatments. The a levels of watering are randomly assigned amongst
a Plots (P) in each of n Blocks (S'), the b levels of sowing density are
randomly assigned amongst b Sub-plots (Q') within each Plot, and
the ¢ levels of fertiliser are randomly assigned amongst ¢ Sub-sub-
plots (R’) within each Sub-plot. The response is the yield from each
sub-sub-plot, measured at the end of the experiment.

(2) Temporal block example: H;: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C). The a temperatures
are randomly assigned amongst a Mesocosms (P’), the b levels of light
are randomly assigned amongst b Shelves (Q') within each mesocosm,
and the ¢ levels of fertiliser are randomly assigned amongst ¢ Trays
(R’) on each shelf. The whole experiment is repeated with new plants
n Times in sequence (S'), each time with a random reassignment of
temperatures to mesocosms, light levels to shelves within mesocosms,
and fertiliser levels to trays on each shelf.

Comparisons

Model 5.4 is an extension of split-plot model 5.1 to include a third
crossed factor applied to sub-sub-plots within each sub-plot.

In testing the combined effect of three crossed factors, model 5.4 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 5.5, 5.7, 5.9,
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6.5 and 6.7. Crucially, it differs from fully randomised model 3.2 in that
the assignment of treatments to sampling units is not completely ran-
domised, and from randomised-block model 4.3 in that factors A, B and
C are assigned to sampling units at different scales. Model 5.4 differs
from the other three-factor split-plot models only in the way treatment
factors are applied to sampling units. In contrast to repeated-measures
models 6.5 and 6.7, model 5.4 randomly assigns treatment levels rather
than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of sampling units with treatments,
which cannot be tested anyway because the lack of replication means that
there is no residual error term (shaded grey in the ANOVA table below).
Interpretation of any non-significant main effects and interactions is
compromised because the result could mean either no effect, or opposing
effects in different sampling units. The assumption of no sampling unit-
by-treatment interactions can be tested if independent, replicate plots (P’)
are used for each level of factor A in each block, independent replicate
sub-plots (Q’) are used for each level of factor B in each plot, and
independent replicate sub-sub-plots (R’) are used for each level of factor
C in each sub-plot. The interpretation of a significant sampling unit-by-
treatment interaction is nevertheless problematic because the treatment
effect may depend upon any of the multiple sources of variation
encompassed by the blocking factor. Thus, the causal mechanisms
underlying a significant interaction cannot be interpreted without further
experimentation.

The nesting of Sub-sub-plot'(Sub-plot’(Plot’(Block’))) means that the
error term for each fixed main effect or main-effect interaction comprises
the interaction between the block and all factors applied to that sampling
unit or larger. Pooling terms in this manner assumes that these con-
tributions to the error term have approximately equal MS values (see
page 144).
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5.5 Split-split-plot model (ii)

Model
Y = C|P'(B|S'(A))

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Replicate whole blocks (S) are assigned to each level of treatment A, and
each of b levels of treatment B is randomly assigned one of b plots (P’) in
each block, and each of ¢ levels of treatment C is randomly assigned one
of ¢ sub-plots (Q') in each plot.

Factors Levels Repeated measures on S’
A a no
B b yes
C c yes
S n -

Allocation table

The table shows n =2 replicate blocks S’ nested in each of a =2 levels of
factor A, and b =2 levels of factor B allocated amongst b plots P’ in each
block, and ¢=2 levels of factor C allocated amongst ¢ sub-plots Q’ in
each plot. Note that the table does not indicate the spatial distribution of
treatment combinations, which must be randomised within each sam-
pling unit. For example, treatment level C; should not be assigned to the
first sub-plot in every plot.
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(1) Spatial block example: H;: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C)
treatments. The a levels of watering are randomly assigned amongst
na Blocks (S'), the b levels of sowing density are randomly assigned
amongst b Plots (P") within each block, and the c levels of fertiliser
are randomly assigned amongst ¢ Sub-plots (Q’) within each Plot.
The response is the yield from each sub-plot, measured at the end of
the experiment.

(2) Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C). The a temperatures
are randomly assigned amongst a series of na Trials (S’) conducted
sequentially. In each trial, b light levels are randomly assigned
amongst b Mesocosms (P’) all held at the same temperature, and the ¢
levels of fertiliser are randomly assigned amongst ¢ Trays of plants
(Q’) within each mesocosm. For each trial, new plants are used, light
levels are randomly reassigned to mesocosms, and fertiliser levels are
randomly reassigned to trays within mesocosms.

Comparisons

Model 5.5 is an extension of split-plot model 5.6 to include a third
crossed factor applied to sub-plots within each plot.

In testing the combined effect of three crossed factors, model 5.5 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 54, 5.7,
5.9, 6.5 and 6.7. Crucially, it differs from fully randomised model 3.2 in
that the assignment of treatments to sampling units is not completely
randomised, and from randomised-block model 4.3 in that factors A, B
and C are assigned to sampling units at different scales. Model 5.5
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differs from the other three-factor split-plot models only in the way
treatment factors are applied to sampling units. In contrast to repeated-
measures models 6.5 and 6.7, model 5.5 randomly assigns treatment levels
rather than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of sampling units with treatments,
which cannot be tested anyway because the lack of replication means that
there is no residual error term (shaded grey in the ANOVA table below).
Interpretation of any non-significant main effects and interactions is
compromised because the result could mean either no effect, or opposing
effects in different sampling units. The assumption of no sampling unit-
by-treatment interactions can be tested if independent, replicate plots (P’)
are used for each level of factor B in each block, and if replicate sub-plots
(Q') are used for each level of factor C in each plot. The interpretation of
a significant sampling unit-by-treatment interaction is nevertheless pro-
blematic because the treatment effect may depend upon any of the
multiple sources of variation encompassed by the blocking factor. Thus,
the causal mechanisms underlying a significant interaction cannot be
interpreted without further experimentation.

The nested structure of Sub-plot’(Plot’(Block’)) means that the error
terms for B, C and all their interactions comprise the interaction between
the block and all factors applied to that sampling unit or larger. Pooling
terms in this manner assumes that these contributions to the error term
have approximately equal MS values (see page 144).
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5.6 Two-factor split-plot model (ii)

Model
Y = BIS'(A)

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.

Description

Replicate whole blocks (S) are assigned to each level of treatment A, and
each of b levels of treatment B is randomly assigned one of b plots (P’) in
each block.

Factors Levels Repeated measures on S’
A a no
B b yes
N n -

Allocation table

The table shows n =2 replicate blocks S’ nested in each of a =2 levels of
factor A, and b =4 levels of factor B allocated amongst b plots P’ in each
block. Note that the table does not indicate the spatial distribution of
treatment combinations, which must be randomised within each sam-
pling unit. For example, treatment level B; should not be assigned to the
first plot in every block.

< A A
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Examples

(1) Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A) and sowing Density (B) treatments. The a
concentrations of watering are randomly assigned amongst na Blocks
(S), and the b sowing densities are randomly assigned amongst b
Plots (P’) in each block. The response is the yield from each plot,
measured at the end of the experiment.

(2) Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A) and Light (B). The a temperatures are randomly
assigned amongst a series of na Trials (S") conducted sequentially. In
each trial, b light levels are randomly assigned amongst » Mesocosms
(P’), which are all held at the same temperature. For each trial, new
plants are used and light levels are randomly reassigned to
Mesocosms.

(3) Spatial block example: Hy: Barnacle settlement depends upon back-
ground rate of recruitment and resident adult cluster size, tested by
measuring barnacle density on b Patches (P’) of rock subjected to
different cluster-size Treatments (B) on Shores (S') nested in
background rate of Recruitment (A). See worked example 3 on
page 51 for a fully replicated version of this design.

(4) Temporal block example: A local environmental disturbance Event (A,
with two levels: before and after) is monitored at random Times (S’)
and random Locations (B’), with impact gauged by B'*A. The
unbalanced version of this ‘before-after-control-impact’ design is
described in Underwood (1994).

Comparisons

Model 5.6 is an extension of model 1.1 to include a second crossed factor
applied to plots nested within each block, and is an extension of ran-
domised-block model 4.1 to include a second crossed factor applied to
whole blocks. It can be extended to include a third crossed factor applied
to blocks (model 5.9), to plots within blocks (model 5.7) or to sub-plots
within plots (model 5.5).

The test for the main effect of A is identical to a fully replicated one-
factor ANOVA (model 1.1) on the mean value of the response for each
block pooled across levels of B. When b =2, the test for the interaction
B*A is identical to a fully replicated one-factor ANOVA on a treatment
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levels, tested with one response per block comprising the value of B,
subtracted from B;.

In testing the combined effect of two crossed factors, model 5.6 has
similar objectives to cross-factored models 3.1, 4.2, 5.1 and 6.2. Crucially,
it differs from fully randomised model 3.1 in that the assignment of
treatments to sampling units (plots) is not completely randomised, and
from randomised-block model 4.2 in that factors A and B are assigned to
sampling units at different scales. Model 5.6 differs from split-plot model
5.1 only in the way treatment factors are applied to sampling units. In
contrast to repeated-measures model 6.2, model 5.6 randomly assigns
treatment levels within blocks rather than applying them sequentially.

Model 5.6 has a similar structure to completely randomised model 3.3
(where S’ corresponds with B’, and B corresponds with C) in that it tests
the effect of one factor nested in another and crossed with a third factor.
It differs from model 3.3, however, in two important respects: the
assignment of treatments to sampling units is constrained because S’
groups plots spatially or temporally, and the interaction of treatment B
with blocks S’ is not replicated. The interpretation of the analysis is
influenced by the fact that the allocation of factor levels is constrained to
be randomised only within each block (see special assumptions below),
and the lack of full replication is acceptable only under the assumption of
homogeneity of covariances (see the general assumptions of split plots on
page 143).

Model 5.6 is equivalent to repeated-measures model 6.3, where block
corresponds with subject (S'), except that levels of factor B are randomly
assigned to plots within each block rather than being tested sequentially on
each subject. It therefore escapes systematic bias from practice and car-
ryover effects, which are unique to the sequential application of treatments.

Special assumptions (see also general
assumptions on page 143)

The model assumes no B*S' interaction, which cannot be tested because
lack of replication means that there is no residual error term. Inter-
pretation of non-significant B or B*A is compromised because the result
could mean either no effect, or opposing effects in different blocks. This
problem is not resolved by excising the lack of replication with a response
variable that measures the difference between b =2 levels of factor B.
The assumption of no B*S’ interaction can be tested if independent,
replicate plots (P") are used for each of b levels of factor B in each of n
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blocks (S'). The design is then fully replicated and can be analysed using
model 3.3, with B’ substituting for S’ and C substituting for B. The
interpretation of a significant treatment-by-block interaction is never-
theless problematic because the treatment effect may depend upon any of
the multiple sources of variation encompassed by the blocking factor.
Thus, the causal mechanisms underlying a significant interaction cannot
be interpreted without further experimentation.

ANOVA tables

Use tables for model 6.3 on page 198, where ‘Subjects’ denotes ‘Blocks’.

5.7 Three-factor split-plot model (iii)

Model
Y = C/BIS'(A)

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B and C.

Description

Replicate whole blocks (S’) are assigned to each level of treatment A, and
each of ¢b combinations of levels of treatments C and B is randomly
assigned one of ¢b plots (P’) in each block.

Factors Levels Repeated measures on S’
A a no
B b yes
C c yes
N n -
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Allocation table

The table shows n =2 replicate blocks S’ nested in each of a =2 levels of
factor A, and ch =4 combinations of levels of factors C and B allocated
amongst ¢b plots P’ in each block. Note that the table does not indicate
the spatial distribution of treatment combinations, which must be ran-
domised within each sampling unit. For example, treatment level C;
should not be assigned to the first plot in every block.
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Examples

Spatial block example: Hy: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C) treatments.
The a levels of watering are randomly assigned amongst na Blocks (S'),
and ¢b combinations of sowing density and fertiliser are randomly
assigned amongst cb Plots (P’) in each block. The response is the yield
from each plot, measured at the end of the experiment.

Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A), Light (B) and Fertiliser (C). The a temperatures
are randomly assigned amongst a series of na Trials (S’) conducted
sequentially. In each trial, cb combinations of light and fertiliser are
randomly assigned amongst ch Mesocosms (P’). For each trial, new
plants are used and light and fertiliser treatments are randomly
reassigned to mesocosms.

Spatial block example: H,: Barnacle settlement depends upon back-
ground recruitment, rock type and resident adult cluster size, tested
by measuring barnacle density on ch Boulders (P") randomly selected
from b available Rock types (B’), and subjected to ¢ different cluster-
size Treatments (C) on n Shores (S') nested in a background rates of
Recruitment (A). This design is a variant of the design for worked
example 3 on page 51, with stratified random sampling of rock
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types, which assumes that the boulders of different rock types are
distributed independently, not grouped together.

Comparisons

Model 5.7 is an extension of randomised-block model 4.2 to include a
third crossed factor applied to blocks, and an extension of split-plot
model 5.6 to include a third crossed factor applied to plots.

The test for the main effect of A is identical to a fully replicated one-
factor ANOVA (model 1.1) on the mean value of the response for each
block pooled across levels of B and C. When ¢ =2, the interaction of C
with B|S/(A) is identical to split-plot model 5.6 on a treatments, tested
with b responses per block each comprising the value of C, subtracted
from C;. When both ¢ and b=2, the interaction of C*B with A is
identical to a fully replicated one-factor ANOVA on a treatments (model
1.1), tested with one response per block comprising the value of [(C, — Cy)
at By] - [(C, — Cy) at By].

Model 5.7 is equivalent to repeated-measures model 6.5, where block
corresponds with subject (S'), except that the cb levels of factors B and C
are randomly assigned to plots within each block rather than being tested
sequentially on each subject. It therefore escapes systematic bias from
practice and carryover effects, which are unique to the sequential appli-
cation of treatments in repeated-measures.

In testing the combined effect of three crossed factors, model 5.7 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 5.4, 5.5, 5.9
and 6.7. Crucially, it differs from fully randomised model 3.2 in that the
assignment of treatments to sampling units (plots) is not completely
randomised, and from randomised-block model 4.3 in that factors A, B
and C are assigned to sampling units at different scales. Model 5.7 differs
from the other three-factor split-plot models only in the way treatment
factors are applied to sampling units. In contrast to repeated-measures
model 6.7, model 5.7 randomly assigns treatment levels within blocks
rather than applying them sequentially.

Special assumptions (see also general
assumptions on page 143)

The model assumes no interactions of B and C with S/, which cannot be
tested because the lack of replication means that there is no residual error
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term. Interpretation of any non-significant terms amongst B, C, C*B and
their interactions with A is compromised because the result could mean
either no effect, or opposing effects in different blocks. The assumption
of no treatment-by-block interactions can be tested if independent,
replicate plots (P’) are used for each of the bc combinations of factors B
and C in each block. The interpretation of a significant treatment-by-
block interaction is nevertheless problematic because the treatment effect
may depend upon any of the multiple sources of variation encompassed
by the blocking factor. Thus, the causal mechanisms underlying a sig-
nificant treatment-by-block effect cannot be interpreted without further
experimentation.

ANOVA tables
Use tables for model 6.5 on page 208, where ‘Subjects’ denotes ‘Blocks’.

5.8 Split-plot model with nesting

Model
Y = CIS/(B(A))

Test hypothesis

Variation in the response Y is explained by the combined effects of
factors A, B nested in A, and C.

Description

Replicate blocks (S') are nested in super-blocks (B’) which are themselves
nested in levels of treatment A, and each of c¢ levels of treatment C is
randomly assigned one of ¢ plots in each block.

Factors Levels Repeated measures on S’
A a no
B(A) b no
C c yes
N n -
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Allocation table

The table shows n =2 replicate blocks S’ nested in each of b =2 levels of
super-blocks B’ nested in each of a=2 levels of treatment A, and ¢=4
levels of factor C allocated amongst ¢ plots P’ in each block. The a
temperatures are randomly assigned amongst a series of nba Trials (S')
conducted sequentially, with a randomly selected Mesocosm (B’) used for
each trial. In each trial, ¢ levels of fertiliser are randomly assigned
amongst ¢ Trays of plants (P').
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Examples

(1) Spatial block example: H;: Crop yield depends on a combination of
Watering regime (A) and sowing Density (C). The a watering regimes
are randomly assigned amongst ba Fields (B') sampled at random
across a region, and the ¢ levels of sowing density are randomly
assigned amongst ¢ Plots (P') in each of n Blocks (S') per field. The
response is the yield from each plot, measured at the end of the
experiment.

(2) Temporal block example: H,: Plant growth depends on a combination
of Temperature (A) and Fertiliser (C). The a temperatures are
randomly assigned amongst a series of ba Trials (B’) conducted
sequentially, with n Mesocosms (S’) used for each trial. In each
mesocosm, ¢ levels of fertiliser are randomly assigned amongst ¢
Trays of plants (P’). For each trial, new plants are used and fertiliser
treatments are randomly reassigned to trays.

(3) Spatial block example: Hy: Barnacle settlement depends upon back-
ground rate of recruitment, shore and resident adult cluster size,
tested by measuring barnacle density on ¢ Boulders (P’) randomly
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subjected to different cluster-size Treatments (C) in n randomly
selected Patches (S') on each of b randomly-selected Shores (B’) in
each of a background rates of Recruitment (A).

Comparisons

Model 5.8 is an extension of model 2.1, in which each subject (S') is
tested in every level of a third factor C. If ¢ =2, tests for interactions
with C are numerically equivalent to nested model 2.1 using a response
of C2 - C1~

Model 5.8 is equivalent to repeated-measures model 6.6, where block
corresponds with subject (S'), except that levels of factor C are randomly
assigned to plots within each block rather than being applied sequentially
on each subject. It therefore escapes systematic bias from practice and
carryover effects, which are unique to the sequential application of
treatments in repeated measures.

Special assumptions (see also general
assumptions on page 143)

The model assumes no C*S’ interaction, which cannot be tested because
the lack of replication means that there is no residual error term. Inter-
pretation of a non-significant C or C*A is compromised because the
result could mean either no effect or opposing effects in different blocks.
The assumption of no C*S’ interaction can be tested if independent,
replicate plots (P') are used for each of the ¢ levels of factor C in each
block. The interpretation of a significant C*S’ is nevertheless problematic
because the treatment effect may depend upon any of the multiple
sources of variation encompassed by the blocking factor. Thus, the causal
mechanisms underlying a significant treatment-by-block effect cannot be
interpreted without further experimentation.

ANOVA tables

Use tables for model 6.6 on page 216, where ‘Subjects’ denotes ‘Blocks’.
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5.9 Three-factor split-plot model (iv)

Model
Y = CIS'(B|A)

Test hypothesis

Variation in the response Y is explained by the combined effects of
treatments A, B and C.

Description

Each of ba combinations of levels of treatments B and A is randomly
allocated to n whole blocks (S'), and each of ¢ levels of treatment C is
randomly assigned one of ¢ plots (P’) in each block.

Factors Levels Repeated measures on S’
A a no
B b no
C c yes
N n -

Allocation table

The table shows n=2 replicate blocks S’ nested in each of ba=4
combinations of levels of factors B and A, and ¢ =4 levels of factor C
allocated amongst ¢ plots P’ in each block. Note that the table does not
indicate the spatial distribution of treatment combinations, which must
be randomised within each sampling unit. For example, treatment level
C, should not be assigned to the first plot in every block.
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Examples

(1) Spatial block example: H;: Crop yield depends on a combination of
Watering regime (A), sowing Density (B) and Fertiliser (C)
treatments. The ba combinations of watering and sowing density
are randomly assigned amongst nba Blocks (S'), and the ¢ levels of
fertiliser are randomly assigned amongst ¢ Plots (P’) within each
block. The response is the yield from each plot, measured at the end
of the experiment.

(2) Temporal block example: Hy: Plant growth depends on a combination
of Temperature (A), Light (B) and CO, concentration (C). The ba
combinations of temperature and light are randomly assigned
amongst a series of nba Trials (S') conducted sequentially. In each
trial, ¢ concentrations of CO, are randomly assigned amongst ¢
Mesocosms (P'). For each trial, new plants are used and CO,
concentrations are randomly reassigned to mesocosms.

Comparisons

Model 5.9 is an extension of completely randomised two-factor model 3.1
in which each subject (S') is tested in every level of an extra cross factor
(C), and also an extension of split-plot model 5.6 to include a third
crossed factor applied to blocks. If ¢ =2, tests for interactions with C are
numerically equivalent to fully replicated two-factor model 3.1 using a
response of C, — Cy.

Model 5.9 is equivalent to repeated-measures model 6.7, where block
corresponds with subject (S), except that levels of factor C are randomly
assigned to plots within each block rather than being applied sequentially
on each subject. It therefore escapes systematic bias from practice and
carryover effects, which are unique to the sequential application of
treatments in repeated measures.

In testing the combined effect of three crossed factors, model 5.9 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 5.4, 5.5, 5.7
and 6.5. Crucially, it differs from fully randomised model 3.2 in that the
assignment of treatments to sampling units (plots) is not completely
randomised, and from randomised-block model 4.3 in that factors A, B
and C are assigned to sampling units at different scales. Model 5.9 differs
from the other three-factor split-plot models only in the way treatment
factors are applied to sampling units. In contrast to repeated-measures
model 6.5, model 5.9 randomly assigns levels of treatment factors rather
than applying them sequentially.
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Special assumptions (see also general
assumptions on page 143)

The model assumes no C*S' interaction, which cannot be tested because
the lack of replication means that there is no residual error term. Inter-
pretation of non-significant terms amongst C and its interactions with
A and B is compromised because the result could mean either no effect,
or opposing effects in different blocks. The assumption of no C*S'
interaction can be tested if independent, replicate plots (P’) are used for
each of the ¢ levels of factor C in each block. The interpretation of a
significant C*S’ is nevertheless problematic because the treatment effect
may depend upon any of the multiple sources of variation encompassed
by the blocking factor. Thus, the causal mechanisms underlying a sig-
nificant treatment-by-block effect cannot be interpreted without further
experimentation.

ANOVA tables
Use tables for model 6.7 on page 223, where ‘Subjects’ denotes ‘Blocks’.
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Repeated-measures designs

Repeated-measures designs involve measuring each sampling unit repeat-
edly over time or applying treatment levels in temporal or spatial sequence
to each sampling unit. Because these designs were developed primarily for
use in medical research, sampling units are often referred to as subjects.
Those factors for which each subject participates in every level are termed
‘within-subject’ or ‘repeated-measures’ factors; levels of the within-subject
factor are applied in sequence to each subject. Conversely, ‘between-
subjects’ factors are grouping factors, for which each subject participates in
only one level. Repeated-measures models are classified into two types,
subject-by-trial and subject-by-treatment models, according to the nature
of the within-subject factors (Kirk 1994).

Subject-by-trial designs apply the levels of the within-subject factor to
each subject in an order that cannot be randomised, because time or space
is an inherent component of the factor. Subjects (sampling units) may be
measured repeatedly over time to track natural temporal changes in some
measurable trait — for example, blood pressure of patients at age 40, 50 and
60, biomass of plants in plots at fixed times after planting, build-up of
lactic acid in muscle during exercise. Likewise, subjects may be measured
repeatedly through space to determine how the response varies with
position — for example barnacle density in plots at different shore eleva-
tions, or lichen diversity on the north and south sides of trees. Alter-
natively, subjects may be measured before and after an experimental
manipulation or specific event — for example, blood pressure of patients
before and after taking a drug, biomass of plants in plots before and after a
fire, lactic acid concentration in muscles before, during and after a race.
At each sampling occasion, either the whole subject is sampled non-
destructively (for example, the blood pressure of a patient), or a part of
each subject is removed for measurement (for example, one randomly

179
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selected plant from each plot, on the assumption that this will not affect
subsequent growth of remaining plants).

When assessing the effect of a natural event or experimental manip-
ulation occurring at a particular point in time, a control treatment level is
required to ensure that the effect of the event or manipulation is not
confounded by time or by factors that co-vary with time such as the state
of the environment or the condition of the subjects. For example, to study
the effect of fire on plant biomass, replicate plots susceptible to burning
should be compared to a control set of unburned plots measured at the
same times. In medicinal trials, the control treatment may take the form of
a placebo. Consider an experiment in which a new drug to lower blood
pressure is given to a randomly selected group of patients. The blood
pressure of each patient is measured before, and again eight hours after,
administering the drug in the form of an oral pill. Any statistically sig-
nificant difference in mean activity level over time cannot be attributed
unambiguously to the effect of the drug, because a whole range of con-
founding influences could have influenced the change, such as time of day,
temperature or hunger level, or the psychological boost to the patient
resulting simply from believing in the treatment. No logically valid con-
clusion can be drawn from the experiment without including a placebo
treatment to control for these confounding influences. The treatment levels
of drug and placebo are randomly assigned to patients, with the placebo
taking the form of a pill that is identical in all respects to the drug pill
except that it does not contain the drug. The drug and placebo treatments
will need administering in a ‘double blind” process for any trial involving
human subjects. This means coding the doses in such a way that neither the
patient nor the doctor are aware of which treatment level is being admi-
nistered, in order to minimise bias in the results due to prior beliefs or
desires about the effectiveness of the drug. Some form of blinding should
be considered in any experimental manipulation that risks bias in the
recording or analysis of results.

Treatments with a control or placebo always introduce a between-sub-
ject grouping factor to the design. Further between-subject factors may be
used to compare the effect of the treatment among different populations of
subjects. Isolated, one-off events, such as pollution incidents or hurricanes,
which cannot be replicated in space, require more specialised asymmetrical
designs (see Underwood 1994).

The same hypotheses are often testable using a completely randomised
model, with separate sets of subjects measured on each occasion or subjects
measured only after the event. However, repeatedly measuring the same
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subjects can increase the power to detect treatment effects because the
repeated measures control for inherent differences among subjects, for
example in blood pressure among patients, in plant biomass among plots
or in fitness among athletes.

Subject-by-treatment designs apply the sequential levels of the within-sub-
ject factor (treatments) in an order that is randomised in time. For example,
the performance-enhancing effects of drinking a specially formulated isotonic
glucose electrolyte may be tested by clocking athletes’ times over a 10 km
course after drinking either the electrolyte or water, and clocking them again
after swapping their treatments. The order in which each athlete receives the
two treatments is randomised. Similarly, the palatability of three types of
seeds may be tested by presenting the seeds, one type at a time, to individual
mice and measuring the mass of seeds consumed in two minutes. Again, the
treatments are applied to each subject in a random order. Testing all levels of
a within-subject factor on each subject increases the power of the experiment
to detect an effect of the within-subject factor by controlling for inherent
differences among subjects — in fitness among athletes, or in body size among
mice. Thus, a repeated-measures design requires fewer subjects to achieve the
same power and precision as a completely randomised design, in which each
subject is tested in just one level of an experimental factor.

Subject-by-treatment designs may have between-subject factors, just as
the subject-by-trial designs group subjects by treatment versus control. For
example, athletes could be classified according to their level of fitness to
test the hypothesis that the type of fluid intake affects the performance of
elite athletes more than that of recreational joggers; similarly, mice could
be classified according to body size to test the hypothesis that larger mice
prefer larger seeds.

The disadvantage of the subject-by-treatment design is its inherent
susceptibility to practice effects and carryover effects. Practice effects arise
when the condition of the subjects changes systematically during the course
of the experiment. For example, athletes could be more tired in the second
trial than the first due to their exertions in the first trial; the appetite of the
mice might decrease over time as they become satiated. Carryover effects
arise when exposure to one experimental treatment influences the effect of
one or more subsequent treatments. For example, athletes that receive the
electrolyte drink in the first trial may still derive some benefit from it
during the second trial; mice may be more likely to consume a particular
type of seed if it looks or smells like one they have been presented with
previously. In statistical terms, practice effects are an effect of time since
the start of the study, whilst carryover effects are an interaction between a
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treatment factor and the order or sequence of application of its levels. Both
effects can potentially increase the variation within each subject and
thereby reduce the power of the experiment to test treatment effects.
Practice effects and carryover effects may be reduced or eliminated by
providing rest periods between successive treatments, for example by
conducting trials on successive days to allow athletes sufficient rest for
their fluid levels to return to normal between trials. However, this may not
be an effective solution to carryover effects that arise from subjects
remembering or learning from previous treatments. For example, the
behaviour of mice may be modified by their memory of previously
encountered seed types even after a rest period of several days or weeks.
Alternatively, practice effects and carryover effects can be controlled for
by systematically varying the presentation order of the treatments, a process
known as ‘counterbalancing’ or ‘switching’. For example, if half the athletes
drink water first and electrolyte second and the other half drink electrolyte
first and water second, then the order of the treatments will be balanced
across all the subjects and any difference between the treatments will not be
confounded by practice or carryover effects. The advantage of counter-
balancing is that the existence of a carryover effect can then be tested by
seeking an interaction between the treatment and its order of application.
For example, we could test whether any benefit of the electrolyte drink
depends on the fatigue of the athlete, or whether the palatability of seeds is
affected by prior experience of other seed types. The disadvantage of
counterbalancing is that it may require large numbers of subjects for factors
with three or more levels. For example, controlling for all carryover effects in
the seed palatability study requires testing at least two mice in each of the six
permutations of order, and then cross factoring order with seed type (a =6
levels of Order, b= 3 levels of Seed type in model 6.3). However, since this
design requires at least 12 subjects, seed preference could have been tested
more efficiently with a fully replicated one-factor ANOVA in which 12 mice
are each tested with just one seed type, assigned to them at random
(model 1.1). Alternatively, the Latin square variant of one-factor rando-
mised blocks provides a design that uses just three mice as levels of a Subject
block, which are cross factored with three levels of an Order block (detailed
on page 125). Although this kind of ‘crossover’ design only samples the
variation in order, it can be replicated to improve power (see examples in
Ratkowski er al. 1993; Crawley 2002; Quinn and Keough 2002).
Repeated-measures models are similar in concept to randomised-block
and split-plot models (see Chapters 4 and 5): taking repeated measure-
ments on each subject to control for intrinsic variation between them is



Repeated measures designs 183

equivalent to taking repeated measurements on each block to control for
inherent spatial or temporal background variation. We illustrate this
similarity using S’ to denote both subjects and blocks and P’ to denote both
observations nested in subject and plots nested in blocks. Repeated-
measures models differ from randomised-block and split-plot models,
however, in that the within-subject (block) treatment levels are assigned in
spatial or temporal sequence rather than being randomly assigned within
each block. Practice and carryover effects are therefore unique to repeated-
measures designs.

The sampling unit for a given treatment level or combination in
repeated-measures designs is the observation:

Observation in time or space 2 nested in a subject

S/

Assumptions

As with randomised-block and split-plot models, repeated measures
designs make an assumption of homogeneity of covariances because the
repeated measurements on each subject from different levels of the within-
subject factor are not independent of each other. This source of correlation
between levels of the within-subject factor is not a problem provided that
the covariances (i.e., correlations) are the same between treatment levels
within each subject. This is an extension to the standard assumption of
homogeneous variances, which applies to all ANOVA (page 14). In prac-
tice, the assumption requires only an additional homogeneity amongst the
set of variances obtained from all pairs of within-subject treatment levels,
where each variance is calculated from the differences in response between
the levels across subjects: known as the ‘sphericity condition’. Thus, in the
design for model 6.1 below, with a = 3 levels of factor A and n = 6 subjects,
one variance is calculated from the six differences in response between A;
and A,, another from the six for A; and As, and the third from the six for
A, and A;. Heterogeneity amongst these variances will result in a liberal
test that inflates the Type I error rate. Kirk (1982), Winer et al. (1991) and
Quinn and Keough (2002) suggest methods of dealing with this problem.
Note that a model that has a single within-subject factor with just two
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levels has only one covariance, and is therefore not subject to the sphericity
condition. If the design is fully replicated, then the assumption of homo-
geneity of covariances becomes subsumed within the standard assumption
of homogeneity of variances between all samples.

With only one replicate observation made per subject on each level of
the within-subject factor(s), the requirement that it be drawn independently
ceases to apply, but it must be representative of the subject, and of that
level of the within-subject factor(s). Unlike randomised-block designs,
which randomise the assignment of treatment levels within each block,
repeated-measures designs are constrained by a sequential assignment of
levels. They must therefore assume no practice or carryover effects.

Unreplicated repeated-measures designs generally cannot test for inter-
actions of within-subject treatments with subjects, which must therefore be
assumed to have negligible effect. Although full replication allows testing
of these interactions, their interpretation remains problematic (see below).

Analysis

Repeated measurement of the same subject over time or of the same
subject in spatial sequence will give rise to non-independent observations.
Treating these observations as independent replicates constitutes pseu-
doreplication (Hurlbert 1984), which can increase the probability of a Type
I error (rejection of a true null hypothesis) by inflating the denominator
degrees of freedom for tests of treatment effects. This non-independence is
explicitly accounted for in repeated-measures models by including Subject
as a random factor (S').

Subjects are always crossed with within-subject factors and nested in
between-subject factors. Subject-by-trial designs have the sequential factor
Time or Location as the within-subject factor. When measurements are
taken on each subject three or more times, post hoc tests or orthogonal
contrasts (page 245) may be used to compare measurements. For example,
a study of lactic acid concentrations in muscles before, during and after
exercise could use Dunnett’s test to specifically compare the during and
after measurements with the before measurements. Alternatively, repeated
measurements that track natural changes in the subjects can model time as
a covariate to compare regression slopes among subjects.

Repeated-measures models usually test every subject just once in each level
of the within-subject factor, as this maximises the power of the experiment to
detect treatment effects. The lack of replication has a serious shortcoming,
common to all unreplicated models. Specifically, interactions between
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subjects and within-subject factors generally cannot be tested, which thereby
increases the likelihood of a Type II error (acceptance of a false null
hypothesis) when interpreting lower-order effects (Underwood 1997). In
other words, an apparently non-significant within-subject factor may have a
real influence on the response that varies by subject. However, the existence
of within-subject effects can retain interest regardless of interactions with
subject, if the priority is to avoid Type I errors.

A number of approaches overcome or avoid the problem of incomplete
replication:

e The possiblity that subjects have opposing responses to a treatment can
be excluded post hoc by finding positive correlations of equal magnitude
between all pairs of levels of the within-subject factor.

e Obtain full replication by repeatedly testing every subject in each level of
the within-subject factor. In some cases, the design can then be analysed
using equivalent models in Chapter 3. Although this allows all subject-
by-treatment interactions to be tested, full replication may provide
relatively little improvement in power for the extra resources invested
and may be impossible in subject-by-trial designs.

e Eliminate the repeated measures altogether by redefining the response
as a single summary statistic per subject that encapsulates the
information on the within-subject factor of interest (Grafen and
Hails 2002). For example, to compare the biomass of plants in plots at
fixed times after planting, one could take a response variable from the
last observation only, or from the difference between the first and the
last, or from the slope of the regression of biomass against time.

e Employ a multivariate approach, such as discriminant function analysis or
MANOVA (see, for example, Underwood 1997; Grafen and Hails 2002).

All of the repeated-measures designs described in this chapter have an
equivalent randomised-block or split-plot model in which levels of the
within-subject factor are applied to different parts of each subject (block)
rather than in sequence. This is reflected in the allocation tables for this
chapter, which denote subjects by S’ to illustrate their similarity with
blocks, and the replicate observations on each subject by P’ to illustrate
their similarity with plots nested in blocks. The randomised-block and
split-plot designs are analysed and interpreted in exactly the same way as
repeated measures, except that they do not suffer the inherent biases of
practice and carryover effects. In order to appreciate the fundamental
differences between these types of model, consider variations on an
agricultural experiment to test the effect of a fertiliser Treatment (A) on
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crop yield. Imagine that the experiment requires a random factor Block
with eight levels to group unmeasured environmental heterogeneity. The
experiment could be designed with various levels of replication and ran-
domisation, and these considerations will determine which of Chapters | to
6 provide the appropriate ANOVA tables.

Chapter 1. Fully replicated one-factor model 1.1. Treatment levels are
randomly assigned to whole blocks (S') and one response measured
per block.

Chapter 2. Fully replicated nested model 2.1. The response is measured as
the yield per plot (S') nested in blocks (B').

Chapter 3. Fully replicated cross-factored model 3.1(ii). Each treatment
level is randomly assigned to replicate plots (S’) within each block (B’).

Chapter 4. Randomised-block model 4.1. Each treatment level is randomly
assigned to one plot (P’) within each block (S').

Chapter 5. Split-plot model 5.6. Treatment levels are randomly assigned to
whole blocks (S'), and tested against a sowing Density cross factor (B,
with two levels: high and low) randomly assigned to plots (P") within
blocks.

Chapter 6(a). Repeated measures in time (subject-by-trial) model 6.3.
Treatment levels are randomly assigned to whole blocks (S'), and
tested against a Time cross factor (B’, with two levels: before and
after fertiliser application).

Chapter 6(b). Repeated measures in space (subject-by-trial) model 6.3.
Treatments level are randomly assigned to whole blocks (S'), and
tested against a cross factor Sector (B, with two levels: north and
south end of block).

Chapter 6(c). Repeated measures in time (subject-by-treatment) model 6.3.
Whole blocks (S') are allocated at random to fertiliser treatments of
phosphate then nitrogen, or nitrogen then phosphate. This design has
two cross factors: Order (A, with two levels: earlier and later
application of phosphate) in which the blocks are nested, and the
repeated-measures factor of Fertiliser (B, with two levels: phosphate
and nitrogen). Although the Order factor could be ignored, since it is
randomised, the testable Order*Treatment interaction would likely
be of interest if significant.

Chapter 6(d). Repeated measures in space (subject-by-treatment) model 6.3.
Whole blocks (S') are allocated at random to phosphate and nitrogen
in north and south ends respectively, or in south and north ends
respectively. This design has two cross-factors: Sector (A, with two
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levels: north and south end for phosphate) in which the blocks are
nested, and the repeated-measures factor of fertiliser (B, with two
levels: phosphate and nitrogen). Although the Sector factor could be
ignored, since it is randomised, the testable Sector*Treatment
interaction would likely be of interest if significant.

6.1 One-factor repeated-measures model

Model
Y=SA

Test hypothesis

Variation in the response Y is explained by repeated-measures factor A.

Description

Repeated observations (P’) are taken on n subjects (S'), once at each level
of factor A.

Factors Levels Repeated measures on S’
A a yes
S n -

Allocation table

The table illustrates n =4 subjects S’ each observed once at a sequence of
a=4 levels of factor A. Unlike the allocation table for randomised-block
model 4.1, this table does indicate the spatial or temporal sequence of
treatment combinations.

P(S'IA)| Sy | S, | S3 | S,

N | P | P,

Ao

As

Al - o |l P




188 Repeated measures designs

Examples

(1) Subject-by-trial design: H,: Barnacle settlement density on Shores (S')
varies with elevation (A), tested by sampling one Plot (P’) at each of a
elevations on each of n shores.

(2) Subject-by-trial design: Hy: Species diversity of lichens on Trees (S)
changes with tree Aspect (A), tested by sampling once on each of north
and south sides of each tree.

(3) Subject-by-treatment design: H,: Performance of n Athletes (S') depends
on Drink treatment (A with two levels: isotonic glucose electrolyte and
water). Performance is measured by clocking the running times of
athletes over a 10 km course after drinking either electrolyte or water,
and clocking them again after swapping their treatments. The order in
which each athlete receives the two treatments is randomised.

(4) Subject-by-treatment design: H,: Social interactions in n captive lemur
Groups (S') depend on public Viewing (A with two levels: open and
closed to view). The order in which each group of lemurs is opened and
closed to view is randomised.

Comparisons

Model 6.1 can be extended to include a second crossed factor applied to
subjects (model 6.3) or tested sequentially on each subject (model 6.2).

When a =2, the test is equivalent to a paired-sample 7 test, which itself is
equivalent to testing the mean difference in response between two times
against the null hypothesis of zero difference.

In testing the effect of a single treatment factor A, model 6.1 has similar
objectives to completely randomised model 1.1 and randomised-block
model 4.1. It differs from model 1.1 in that each subject (') is tested in
each level of factor A to partition out unwanted sources of background
variation among subjects. Although the analysis for model 6.1 is identical
to model 4.1 (Model 1), with subject corresponding with block (S'), the
levels of A are tested sequentially on each subject rather than being ran-
domised within each block. Model 6.1 is therefore inherently susceptible to
practice and carryover effects from the sequential application of treatments
in repeated measures.

The analysis of model 6.1 is identical to the analysis of an unreplicated
two-factor design with at least one random factor (model 7.1), except that
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it must meet the additional assumptions of homogeneity of covariances
across subjects and no practice and carryover effects.

Special assumptions (see also general assumptions
of repeated measures on page 183)

The model cannot test the subject-by-treatment interaction, because the
lack of replication means that there is no residual error term (shaded
grey in the ANOVA tables below). Interpretation of a non-significant A
is compromised because the result could mean either no effect, or
opposing effects on different subjects. The assumption of no significant
subject-by-treatment interaction can be tested if independent, replicate
observations (P’) are made for each of the a treatments on each subject.
The design is then fully replicated and the analysis identical to that for
model 3.1, with B’ substituting for S’. The interpretation of a significant
block-by-treatment interaction is nevertheless problematic because the
treatment effect may depend upon any of the multiple sources of variation
encompassed by the subject factor. In Example 1 above, a significant S'’*A
interaction would mean that the effect of shore elevation on barnacle
settlement varies spatially, due to differences among shores in geology,
microclimate, human impact and so on. Thus, the causal mechanisms
underlying a significant subject-by-treatment effect cannot be interpreted
without further experimentation.

Notes

Model 6.1 is suitable only for detecting changes over time (or across space),
and not for attributing causality to the change. It cannot analyse treat-
ments in ‘before—after’ experiments because it has no control for the
numerous factors that co-vary with time. For some studies, the con-
founding influence of time can be avoided by cross factoring it with a
between-subject treatment, using model 6.3. For example, subjects may be
tested before and after ingesting a medical treatment, with one group given
a drug and another a placebo. Causality can then be inferred from a
significant treatment-by-time interaction.
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ANOVA tables for analysis of terms S+ A

Model 6.1(i) A is a fixed factor, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

18 n—1 P'/(S'*A)+ S No test”
Within subjects

2A a—1 P'(S*A)+S*A+ A 2/3

3 S'*A (n—1)(a-1) P/(S'*A) + S'*A No test
4 P'(S'*A) 0 P'(S'*A) -

Total variation na—1

% An unrestricted model tests the MS for S’ over the MS for its interaction with A
(F-ratio = 1/3). See page 242.

Model 6.1(ii) A’ is a random factor, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

19 n—1 P/(S"*A") +S'*A’ + 8 1/3
Within subjects

2A a—1 P/(S™*A") +S"*A’ + A’ 2/3

3 S*A! (n—1)(a-1) P/(S"*A") + S'*A’ No test
4 P/(S'*A") 0 P/(S'*A") -
Total variation na—1

6.2 Two-factor repeated-measures model

Model
Y =Y'IBIA

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.
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Description

Repeated observations (P’) are taken on n subjects (S'), once at each
combination of levels of cross factors B and A.

Factors Levels Repeated measures on S’
A a yes
B b yes
N n -

Allocation table

The table illustrates n =4 subjects S', each observed once at each of ba=4
combinations of levels of factors B and A.

P(S'BIA)| Sy | S, | S; | S,
B B B

Al 1 1 n
BZ Pnb
B1

A2
B, || ... o N Prba

Examples

(1) Subject-by-trial design: H;: Barnacle settlement density on Shores (S')
varies with Elevation (A) and Surface rugosity (B), tested by allocating
one Plot (P’) to each of b levels of rugosity at each of a elevations on
each of n shores.

(2) Subject-by-trial design: Hy: Species diversity of lichens on Trees (S')
changes with Aspect (A with two levels: north or south side) and Age
(B with three levels: 5, 10 and 20 years) of tree. Both sides of n trees are
sampled repeatedly at ages 5, 10 and 20 years.

(3) Subject-by-treatment design: H,: Performance of Athletes (S') depends
on Drink treatment (A with two levels: isotonic glucose electrolyte and
water) and Vitamin supplement (B, vitamin tablet, placebo control).
Performance is measured by clocking the running times of athletes (S')
over a 10km course after taking each combination of drink and
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vitamin supplement. The order in which each athlete receives the four
treatment combinations is randomised.

Comparisons

Model 6.2 is an extension of model 6.1 to include a second crossed factor
(B). It can be extended to include a third crossed factor applied to subjects
(model 6.5).

In testing the combined effect of two crossed factors, model 6.2 has
similar objectives to cross-factored models 3.1, 4.2, 5.1, 5.6 and 6.3. Cru-
cially, it differs from fully randomised model 3.1 in that each subject (S') is
tested in all levels of factors A and B to partition out unwanted sources of
background variation among subjects. Although the analysis of model 6.2
is identical to randomised-block model 4.2 (Model 1), with subject corre-
sponding with block (S'), the ba levels of factors A and B are tested
sequentially on each subject rather than being randomised within each
block. Model 6.2 is therefore inherently susceptible to practice and car-
ryover effects from the sequential application of treatments in repeated
measures. Similarly, model 6.2 is distinguished from split-plot models 5.1
and 5.6 by the sequential application of treatments to sampling units.
Finally, model 6.2 differs from repeated-measures model 6.3 in that A is a
within-subjects factor rather than a between-subjects factor.

The analysis of model 6.2 is identical to the analysis of an unreplicated
three-factor design with at least one random factor (model 7.2), except that
it must meet the additional assumptions of homogeneity of covariances
across subjects and no practice and carryover effects.

Special assumptions (see also general assumptions
of repeated measures on page 183)

Model 6.2 cannot test subject-by-treatment interactions, because the lack
of replication means that there is no residual error term (shaded grey in the
ANOVA tables below). Interpretation of non-significant A, B or B*A is
compromised because the result could mean either no effect, or opposing
effects on different subjects. The assumption of no significant subject-by-
treatment interaction can be tested if independent, replicate observations
(P") are made on each subject for each of the ba levels of factors A and B.
The design is then fully replicated and the analysis identical to that for
model 3.2, with C’ substituting for S’. The interpretation of a significant
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block-by-treatment interaction is nevertheless problematic because the
treatment effect may depend upon any of the multiple sources of variation
encompassed by the subject factor.

In example 2 above, the slow growth rates of lichens provides little
opportunity to take independent replicate observations on a tree within
each aspect and age group. An alternative fully replicated design would
involve measuring simultaneously many trees of different ages and aspects.
The test hypothesis for such a two-factor ANOVA would be that lichen
diversity varies with tree age and aspect, as opposed to changing with tree
age according to aspect, which is the question directly tested by the repe-
ated-measures design.

Notes

Model 6.2 is suitable only for detecting changes over time, and not for
attributing causality to the change. It cannot analyse treatments in ‘before—
after” experiments because it has no control for the numerous factors that
co-vary with time. For some studies, the confounding influence of time can
be avoided by cross factoring it with between-subject treatments, using
model 6.7. For example, male and female subjects may be tested before
and after ingesting a medical treatment, with one group of each sex given a
drug and another a placebo. Causality can then be inferred from a sig-
nificant treatment-by-time interaction.

ANOVA tables for analysis of terms S|BJA — S*B*A

Model 6.2(i) A and B are fixed factors, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

19 n—1 P/(S"*B*A) + S/ No test”
Within subjects

2A a—1 P/(S"*B*A) +S"*A + A 2/5

3B b—1 P'(S'"*B*A) +S*B+B 3/6

4 B*A b—1a-1) P'(S'*B*A)+ S'*B*A + B*A 4/7
5S*A n—1)a—1) P/(S"*B*A) + S'*A No test
6 S'*B n—1Db-1) P'(S'*B*A)+ S'*B No test
7 S'”*B*A n—1b-1a—-1) P/(S'"*B*A) + S"*B*A No test
8 P/(S'*B*A) 0 P/(S'*B*A) -

Total variation nba — 1

“ An unrestricted model has an inexact F-ratio denominator (see page 242).
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Model 6.2(ii) A is a fixed factor, B' is a random factor, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

18 n—1 P/(S'*B'*A) +S'*B' +§' 1/6"

Within subjects

2A a—1 P/(S'*B'*A) + S'*B'*A + S'*A + B'*A 2/(4+5—7)"
+A

3B b—1 P/(S"*B'*A) + S'*B' + B/ 3/6°

4 B'*A (b—1)a—1) P/(S*B'*A) 4+ S*B'*A + B'*A 4/7

5S8*A (n—1)a—1) P/(S"*B'*A) 4 S'*B'*A + S'*A 5/7

6 S'*B’ (n—1)(b—1) P/(S'*B'*A) 4 S'*B’ No test

7 S*B'*A (n—(b—1)a—1) P/(S'*B'*A) + S'*B'*A No test

8 P/(S'*B'*A) 0 P/(S'*B'*A) =

Total variation nba — 1

“ There is no exact denominator for this test (see page 40). If B'*A and/or S'*A have P> (.25, however,
then post hoc pooling can be used to derive an exact denominator for A. If B'*A has P> 0.25 (but S'*A
has P < 0.25), eliminate B'*A from the mean square for A, making S'*A its error mean square. If S'*A
has P> 0.25 (but B'*A has P < 0.25), then eliminate S'*A from the mean square for A, making B'*A its
error mean square. If both B'*A and S'*A have P>0.25, use the pooled error mean square: [SS
{B'*A} + SS{S'*A} + SS{S"*B'*A}]/[(b — 1)(@a— 1)+ (n— 1)(@— 1)+ (n— 1)(b — 1)(a — 1)]. Further pool-
ing can be done if S’*B'*A has P >0.25. See page 38.

b An unrestricted model has an inexact F-ratio denominator (see page 242).

Model 6.2(iii) A" and B’ are random factors, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

15 n—1 P/(S*B'*A’) + S'*B'*A’ + S'*B' + S'*A’ +§' 1/(5+6 —7)"
Within subjects

2 A a—1 P/(S*B*A’) + S*B'*A’ + S'*A’ + B'*A’ + A/ 2/(4+5-7)"
3B b—1 P/(S"*B'*A’) + S'*B'*A’ + S'*B’ + B'*A’ + B 3/(4+6 —7)"
4 B'*A’ b—1)(a—-1) P/(S*B'*A’) + S'*B'*A’ + B'*A’ 4/7

5 S*A! (n—1)(a—1) P/(S*B'*A’) + S'*B'*A’ + S'*A/ 57

6 S'*B’ (n—1(b-1) P/(S*B'*A’) + S'*B'*A’ + S'*B’ 6/7

7 S"*B'*A’ (n—1D(b—1)a—1)  P/(S*B'*A")+ S*B'*A’ No test

8 P/(S'*B'*A’) 0 P/(S'*B'*A’) -

Total variation nba — 1

“ There is no exact denominator for this test (see page 40). If higher-order interactions contributing to the
mean square have P > 0.25, however, then they can be removed from the mean square in post hoc pooling
to derive an exact denominator (applying the same technique as for A in model (ii) above).



6.3 Two-factor model with repeated measures on one cross factor 195

6.3 Two-factor model with repeated measures
on one cross factor

Model
Y =BIS'(A)

Test hypothesis

Variation in the response Y is explained by the combined effects of factor
A and factor B.

Description

Replicate subjects (S') are assigned to each level of treatment A, and
repeated observations (P) are taken on each subject, once at each level of

factor B.

Factors Levels Repeated measures on S’
A a no
B b yes
N n -

Allocation table

The table shows n =2 replicate subjects S’ nested in each of a =2 levels of
factor A, and each subject observed once at each of b =4 levels of factor B.

< A A

(23

)

B1 P1 Pn Pna
B,

Bs

B4 e PR e Pnba
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Examples

(1) Subject-by-trial design: H;: Blood pressure of Patients (S') responds to
Ingestion (B with two levels: before and after) of Medicine (A with two
levels: drug and placebo).

(2) Subject-by-trial design: H,: Visual acuity varies between left and right
Eye (B) of each Subject (S') according to their Handedness (A).

(3) Subject-by-trial design: Barnacle settlement density is measured on
Patches (P’) of rock at different Elevations (B) on Shores (S") nested in
background rate of Recruitment (A).

(4) Subject-by-treatment design: H,: Performance of Athletes (S') depends
on Drink treatment (B with two levels: isotonic glucose electrolyte and
water). Performance is measured by clocking the running times of
athletes over a 10km course after drinking either electrolyte or water,
and clocking them again after swapping their treatments. Each athlete
receives the two treatments in a particular Order (A with two levels:
electrolyte first and water first).

(5) Subject-by-treatment design: H,;: Social interactions in Groups of
captive lemurs (S') depend on public Viewing (B with two levels:
open and closed to view) and Management regime (A with two levels:
single-species cages and mixed-species cages). n groups of lemurs are
studied in each of ¢ management regimes. The order in which each
group of lemurs is opened and closed to view is randomised. This
analysis assumes that the effect of management is not confounded by
other factors, such as number of individuals per cage.

Comparisons

Model 6.3 is an extension of model 1.1 in which each subject is tested
sequentially in every level of a second, crossed factor B, and it is an
extension of repeated-measures model 6.1 to include a between-subjects
factor. It can be further extended to include an additional between-subjects
factor (model 6.7) or an additional within-subjects factor (model 6.5).

The test for the main effect of A is identical to a fully replicated one-
factor ANOVA on the mean value of the response for each subject pooled
across levels of B. When b =2, the test for the interaction B*A is identical
to a fully replicated one-factor ANOVA on a treatments (model 1.1),
tested with one response per subject comprising the value of B, subtracted
from B,.
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Model 6.3 is equivalent to split-plot model 5.6, where subject
corresponds with block (S'), except that levels of factor B are tested
sequentially on each subject rather than being randomly assigned within
each block. It is therefore inherently susceptible to practice and carryover
effects from the sequential application of treatments in repeated measures.

In testing the combined effect of two crossed-factors, model 6.3 has
similar objectives to cross factored models 3.1, 4.2, 5.1 and 6.2. Crucially, it
differs from fully randomised model 3.1, randomised-block model 4.2 and
split-plot model 5.1 in that the b levels of factor B are tested sequentially
on each subject. Finally, model 6.3 differs from repeated-measures
model 6.2 in that A is a between-subjects factor rather than a within-
subjects factor.

Special assumptions (see also general
assumptions of repeated measures on page 183)

Model 6.3 cannot test the B*S' interaction, because lack of replication
means that there is no residual error term (shaded grey in the ANOVA
tables below). Interpretation of non-significant B or B¥A is compromised
because the result could mean either no effect, or opposing effects on
different subjects. This problem is not resolved by excising the lack of
replication with a response variable that measures the difference between
b =2 levels of factor B. The assumption of no significant B*S’ interaction
can be tested if independent, replicate observations (P') are made for each
of b levels of factor B in each of n subjects (S). The design is then fully
replicated and can be analysed using model 3.3, with B’ substituting for S’
and C substituting for B. The interpretation of a significant treatment-by-
subject interaction is nevertheless problematic because the treatment effect
may depend upon any of the multiple sources of variation encompassed by
the subject factor. If treatment effects may be subject-dependent, one
should consider what aspect of the subject may be influencing the treat-
ment effect and include it as an additional between-subjects factor (using
model 6.7).

For instance, Example 1 above tests particularly for a significant B*A
interaction, which indicates an effective drug. The model cannot test
whether this effect depends on subject, however, and a non-significant
interaction could mean either that the drug has no effect, or that it has
opposing effects on different subjects. These questions of causality are
not resolved by applying a one-factor ANOVA between the drug and
placebo to a response variable that compares change in blood pressure
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(B, subtracted from B;). Testing for a subject-dependent effect requires
taking random and independent observations within each subject and level
of the crossfactor and using model 3.3 (with factor B’ coding for subjects in
both cases, and S’ for observations). The interpretation of a significant
interaction with subject is nevertheless problematic because the random
subject factor encompasses multiple sources of variation. Thus, the causal
mechanisms underlying a significant interaction with subject cannot be
interpreted without further experimentation.

ANOVA tables for analysis of terms B|A 4+ B|S(A) — B*S(A)
Model 6.3(i) A and B are fixed factors, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

1A a—1 P'(B*S'(A)) +S'(A)+ A 12

2 S'(A) (n—1a P'(B*S'(A)) + S'(A) No test’
Within subjects

3B b—1 P'(B*S'(A)) + B*S'(A)+ B 3/5

4 B*A b—1(a-1) P'(B*S'(A)) + B*S'(A) + B*A 4/5

5 B*S'(A) b—-Dn—1)a P'(B*S'(A)) + B*S'(A) No test
6 P'(B*S'(A)) 0 P'(B*S'(A)) -

Total variation nba — 1

“ An unrestricted model tests the MS for S'(A) over the MS for its interaction with B (F-ratio = 2/5). See
page 242.

Model 6.3(ii) A is a fixed factors, B' is a random factor, S’ is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

1A a—1 P'(B'*S'(A))+ B'*S'(A)+ B *A+S'(A)+ A 1/2+4-5)
2 S'(A) (n—1a P/(B'*S'(A)) + B'*S'(A) + S'(A) 2/5

Within subjects

3B b—1 P'(B'*S'(A))+B'*S'(A)+ B’ 35"

4 B'*A b—1(a-1) P'(B'*S'(A)) + B'*S'(A) + B'*A 4/5

5 B'*S'(A) b—-1(n—1a P'(B'*S'(A)) + B'*S'(A) No test

6 P'(B'*S'(A)) 0 P'/(B'*S'(A)) -

Total variation nba — 1

“ There is no exact denominator for this test (see page 40). If S'(A) and/or B'*A have P> 0.25, however,
then post hoc pooling can be used to derive an exact denominator for A. If S'(A) has P> 0.25 (but B'*A
has P < 0.25), then eliminate S'(A) from the mean square for A, making B'*A its error mean square. If
B'*A has P> 0.25 (but S'(A) has P < 0.25), eliminate B'*A from the mean square for A, making S'(A) its
error mean square. If both S'(A) and B'*A have P > 0.25, use the pooled error mean square: [SS{S'(A)}+
SS{B'*A}+SS{B'*S'(A)})/[(n — Da-+(b— 1)(a— 1)+(b— 1)(n — 1)a]. See page 38.

® An unrestricted model tests the MS for B’ over the MS for its interaction with A (F-ratio = 3/4). See page 242.
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Model 6.3(iii) A’ is a random factor, B is a fixed factor, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

1A a—1 P'(B*S/(A")) +S/(A") + A’ 1/2¢

2 S'(A) (n—1a P'(B*S'(A"))+S'(A) No test”
Within subjects

3B b—1 P'(B*S'(A’)) + B*S'(A’) + B*A’ + B 3/4°

4 B*A/ (b—1)(a—1) P'(B*S/(A)) + B*S'(A") + B*A’ 4/5

5 B*S'(A) b—1)n—1)a P'(B*S'(A’)) + B*S'(A") No test
6 P'(B*S'(A")) 0 P'(B*S'(A)) -

Total variation nba— 1

“ An unrestricted model has an inexact F-ratio denominator (see page 242).

b An unrestricted model tests the MS for S'(A’) over the MS for its interaction with B
(F-ratio =2/5). See page 242.

¢ Planned post hoc pooling is permissible for B if B¥A’ has P> 0.25. Use the pooled error mean
square: [SS{B*A’}+SS{B*S'(A")}]/[(b — 1)(@ — 1)+(b — 1)(n— 1)a]. See page 38.

Model 6.3(iv) A’ and B’ are random factors, S' is a random subject:

Components of variation
Mean square d.f. estimated in population F-ratio

Between subjects

1A a—1 P/(B'*S'(A")) + B"*S'(A’) + B'*A’ 1/2+4-5)
+ S/(A/) +A

2 S'(A) (n—1a P'(B'*S'(A")) + B"*S'(A") + S'(A") 2/5

Within subjects

3B b—1 P'(B'*S'(A")) + B'*S'(A") + B"*A’ + B’ 3/4°

4 B'*A’ b—-1a-1) P'(B'*S'(A")) + B'*S'(A’") + B'*A’ 4/5

5 B'*S'(A") b-1Dmn—1)a PB*S(A)+B*S'(A) No test

6 P'(B'*S'(A")) 0 P'(B'*S'(A")) -

Total variation nba — 1

“ There is no exact denominator for this test (see page 40). If S'(A’) and/or B'*A’ have
P >0.25, however, then post hoc pooling can be used to derive an exact denominator for A’.
If S'(A’) has P> 0.25 (but B'*A’ has P < 0.25), then eliminate S'(A’) from the mean square
for A’, making B'*A’ its error mean square. If B"*A’ has P> 0.25 (but S'(A’) has P <0.25),
eliminate B'*A’ from the mean square for A’, making S'(A’) its error mean square. If both S’
(A’) and B'*A’ have P>0.25, use the pooled error mean square: [SS{S'(A")}+SS
{B'*A’} + SS{B'*S'(A)})/l(n — Da+ (b — 1)(a— 1)+ (b — 1)(n— 1)a]. See page 38.

b Planned post hoc pooling is permissible for B’ if B'*A’ has P >0.25. Use the pooled error
mean square: [SS{B'*A’} + SS{B'*S'(A")}J/[(b — 1)(a — 1)+ (b — 1)(n — 1)a]. See page 38.
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6.4 Three-factor model with repeated measures
on nested cross factors

Model
Y =C(B)IS'(A)

Test hypothesis

Variation in the response Y is explained by A cross factored with repeated
measures on B and C nested in B.

Description

Replicate subjects (S') are assigned to each level of treatment A, and
repeated observations (P’) are taken on each subject, once at each level of
factor C nested in levels of treatment B.

Factors Levels Repeated measures on S’
A a no
B b yes
C(B) c yes
N n -

Allocation table

The table shows n =2 replicate subjects S’ nested in each of a =2 levels of
treatment A, and each subject observed once at each of ¢=2 levels of
factor C nested in each of b =2 levels of treatment B.

A1 A2
P'(C(B)|S'(A))
81 82 83 84

B1 C1 P1 Pn Pna

C2 Pnca

CS
B,

C4 Pncba
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Examples

(1) Subject-by-trial design: H,: Blood pressure of Patients (S') responds to
Ingestion (B with two levels: before and after) of Medicine (A with two
levels: drug and placebo). The blood pressure of each patient is
monitored at random Times (C') before and after taking the medicine.

(2) Subject-by-trial design: The effect of a local environmental disturbance
Event (B, with two levels: before and after) is monitored by repeated
measures of stress levels at random Times C’ in Subjects (S’) occupying
different Locations (A’), with impact gauged by B*A’. This is a
variation on the ‘before-and-after-control-impact’ design given by
model 5.6.

Comparisons

Model 6.4 is an extension of model 6.3 to include an extra nested
factor (C).

The test for the main effect of A is identical to a fully replicated one-
factor ANOVA (model 1.1) on the mean value of the response for each
subject pooled across levels of C.

Special assumptions (see also general assumptions
of repeated measures on page 183)

The model cannot test the C'*S' interaction, because the lack of replication
means that there is no residual error term (shaded grey in the ANOVA
tables below). If independent, replicate observations (P’) are made for each
of the ¢b levels of factor C nested in B in each subject, then the design is
fully replicated. The principal advantage of full replication is that it allows
testing of the assumption of no significant interaction of C’ with S’ and
thereby — in the event of no significant S’*C’ — validation of a non-
significant main effect C. The interpretation of a significant treatment-
by-subject interaction is nevertheless problematic because the treatment
effect may depend upon any of the multiple sources of variation encom-
passed by the subject factor. Thus, the causal mechanisms underlying
a significant treatment-by-subject effect cannot be interpreted without
further experimentation.
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6.5 Three-factor model with repeated measures
on two cross factors

Model
Y = C|BIS/(A)

Test hypothesis

Variation in the response Y is explained by A cross factored with repeated
measures on C cross factored with B.

Description

Replicate subjects (S') are assigned to each level of treatment A, and
repeated observations (P’) are taken on each subject, once at each com-
bination of levels of cross factors C and B.

Factors Levels Repeated measures on S’
A a no
B b yes
C c yes
N n -

Allocation table

The table shows n =2 replicate subjects S’ nested in each of a =2 levels of
factor A, and each subject observed once at each of ¢ =2 levels of factor C
in each of =2 levels of treatment B.

A1 A2
P'(CIB|S'(A))
c, il P P P
B1 1 1 n na
C2 Pnca
C
By [
Cg Pncba
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Examples

(1) Subject-by-trial design: Hy: Systolic and diastolic blood Pressure (C) of
Patients (S') responds to Ingestion (B with two levels: before and after)
of Medicine (A with two levels: drug and placebo).

(2) Subject-by-trial design: H,: Barnacle settlement depends upon back-
ground recruitment, elevation up shore, and substrate aspect, tested by
measuring barnacle density on c¢b Patches (P') of rock at different
Elevations (B) and Aspects (C) on n Shores (S") nested in a background
rates of Recruitment (A). For example, east- and west-facing sides of
the shore are sampled at low- and mid-shore on four shores at high
and four at low background rates of recruitment.

(3) Subject-by-treatment design: H,: Performance of athletes depends on
Drink treatment (C with two levels: isotonic glucose electrolyte and
water) and Vitamin supplement (B with two levels: vitamin tablet and
placebo). Performance is measured by clocking the running times of
athletes (S) over a 10km course after taking each combination of
drink and vitamin supplement. Each athlete receives the four
treatments in a particular Order (A with ten levels).

Comparisons

Model 6.5 is an extension of repeated-measures model 6.2 to include a
between-subjects factor, and is an extension of repeated-measures model
6.3 to include a second within-subjects factor.

The test for the main effect of A is identical to a fully replicated one-
factor ANOVA (model 1.1) on the mean value of the response for each
subject pooled across levels of B and C. When ¢ =2, the interaction of C
with B|S'(A) is identical to the repeated-measures split-plot model 6.3 on a
treatments, tested with b responses per subject each comprising the value of
C, subtracted from C;. When both ¢ and » = 2, the interaction of C*B with
A is identical to a fully replicated one-factor ANOVA on a treatments
(model 1.1), tested with one response per subject comprising the value of
[(C; = Cy) at By] = [(C, - Cy) at By].

Model 6.5 is equivalent to split-plot model 5.7, where subject corre-
sponds with block (S'), except that the cb levels of factors B and C are
tested sequentially on each subject rather than being randomly assigned
within each block. It is therefore inherently susceptible to practice and
carryover effects from the sequential application of treatments in repeated
measures.
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In testing the combined effect of three crossed factors, model 6.5 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 54, 5.5, 5.7,
5.9 and 6.7. Crucially, it differs from completely randomised, randomised-
block and split-plot models in that the levels of factors B and C are tested
sequentially on each subject. Model 6.5 differs from repeated-measures
model 6.7 in that it has one between-subjects factor and two within-
subjects factors, rather than two between-subjects factors and one within-
subjects factor.

Special assumptions (see also general assumptions of repeated
measures on page 183)

The model cannot test the interactions of B and C with S, because the lack
of replication means that there is no residual error term (shaded grey in the
ANOVA tables below). Interpretation of non-significant terms amongst B,
C, C*B and their interactions with A is compromised because the result
could mean either no effect, or opposing effects on different subjects. The
assumption of no significant treatment-by-subject interactions can be tes-
ted if independent, replicate observations (P’) are made for each of the bc
combinations of factors B and C on each subject. The interpretation of a
significant treatment by-subject interaction is nevertheless problematic
because the treatment effect may depend upon any of the multiple sources
of variation encompassed by the subject factor. Thus, the causal
mechanisms underlying a significant treatment-by-subject effect cannot be
interpreted without further experimentation.
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214 Repeated measures designs

6.6 Nested model with repeated measures on a cross factor

Model
Y =C|S'(B(A))

Test hypothesis

Variation in the response Y is explained by repeated-measures treatment C
combined with treatment A and with grouping factor B nested in A.

Description

Replicate subjects (S') are nested in groups (B') which are themselves
nested in levels of treatment A, and repeated observations (P’) are taken on
each subject, once at each level of factor C.

Factors Levels Repeated measures on S’
A a no
B(A) b no
C c yes
N n -

Allocation table

The table shows n =2 replicate subjects S’ nested in each of b=2 groups B’
nested in each of a =2 levels of treatment A, and each subject observed
once at each of ¢ =4 levels of treatment C.

P'(C|S'(B(A))

&
o
o
=
o
=
S8
o
=
S
D

C4 e e . e e e e Pncba
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Examples

(1) Subject-by-trial design: H,: Blood pressure of Patients (S) responds to
drug treatment over Time (C with two levels: before and after) according
to Doctor (B') nested in Medicine (A with two levels: drug and placebo).
This analysis assumes that doctors are allocated randomly to patients
and that medicines are assigned randomly to doctors.

(2) Subject-by-treatment design: Hy: Social interactions in Groups of captive
lemurs (S') depend on public Viewing (C with two levels: open and closed
to view) according to Zoo (B’) nested in Management regime (A with two
levels: single-species cages and mixed-species cages). n groups of lemurs
are studied in each of  zoos in each of @ management regimes. The order
in which each group of lemurs is opened and closed to view is
randomised. This analysis assumes that the effect of management is not
confounded by other factors, such as number of individuals per cage.

Comparisons

Model 6.6 is an extension of model 2.1, in which each subject (S') is tested
sequentially in every level of an extra cross factor (C). If ¢ =2, tests for
interactions with C are numerically equivalent to nested model 2.1 using a
response of C, — C;.

Model 6.6 is equivalent to split-plot model 5.8, where subject corre-
sponds with block (S'), except that the ¢ levels of factor C are tested
sequentially on each subject rather than being randomly assigned within
each block. It is therefore inherently susceptible to practice and carryover
effects from the sequential application of treatments in repeated measures.

Special assumptions (see also general assumptions
of repeated measures on page 183)

The model cannot test the C*S' interaction, because the lack of replication
means that there is no residual error term (shaded grey in the ANOVA
tables below). Interpretation of non-significant C or C*A is compromised
because the result could mean either no effect, or opposing effects on dif-
ferent subjects. The assumption of no significant C*S' interaction can
be tested if independent, replicate observations (P') are made for each of the
¢ levels of factor C in each subject. The interpretation of a significant
treatment-by-subject interaction is nevertheless problematic because the
treatment effect may depend upon any of the multiple sources of variation
encompassed by the subject factor. Thus, the causal mechanisms underlying
a significant treatment-by-subject effect cannot be interpreted without
further experimentation.
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Repeated measures designs

6.7 Three-factor model with repeated measures
on one factor

Variation in the response Y is explained by the interaction of repeated-
measures treatment C with factors A and B combined.

Each of ba combinations of levels of treatments B and A is randomly
allocated n subjects (S'), and repeated observations (P) are taken on each
subject, once at each level of factor C.

The table shows n =2 replicate subjects S’ nested in each of ba=4 com-
binations of levels of cross factors B and A, and each subject observed once
at each of ¢ =4 levels of treatment C.

Model

Y = C|S'(B|A)

Test hypothesis

Description

Allocation table

Factors Levels Repeated measures on S/
A a no
B b no
C c yes
N n -

Aq

B,

B,

B;

B,

P'(CIS'(B|A))

S

Sz

Ss

s

Ss

Se

S;

Ss

&
nu

Pnba

Pncba
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Examples

(1) Subject-by-trial design: H,: Species diversity of lichens on Trees (S')
depends on Aspect (C with two levels: north and south side), tree
Species (B with two levels: oak and beech) and Ivy (A, with two levels:
present or absent).

(2) Subject-by-trial design: H;: Blood pressure of Patients (S') responds
over Time (C with two levels: before and after) to ingestion of
Medicine (A with two levels: drug and placebo) depending upon
Gender (B with two levels: male and female).

(3) Subject-by-treatment design: H,: Performance of Athletes (S) depends
on Drink treatment (C with two levels: isotonic glucose electrolyte and
water) and Gender (B). Performance is measured by clocking the
running times of Athletes (S') over a 10 km course after drinking either
isotonic glucose electrolyte or water, and clocking them again after
swapping their treatments. Each athlete receives the two treatments in
a particular Order (A with two levels: electrolyte first and water first).

(4) Subject-by-treatment design: Hy: Social interactions in Groups of
captive lemurs (S') depend on public Viewing (C with two levels:
open and closed to view), Zoo (B') and Management regime (A with
two levels: single-species cages and mixed-species cages). n groups of
lemurs in single-species cages and n groups of lemurs in mixed-species
cages are studied in each of b zoos. The order in which each group of
lemurs is opened and closed to view is randomised. This analysis
assumes that the effect of management is not confounded by other
factors, such as number of individuals per cage.

Comparisons

Model 6.7 is an extension of model 3.1 in which each subject is tested
sequentially in every level of a third crossed factor C. It is also an extension
of repeated-measures model 6.3 to include an additional between-subjects
factor. If ¢ =2, tests for interactions with C are numerically equivalent to
fully replicated two-factor model 3.1 using a response of C, — C;.

Model 6.7 is equivalent to split-plot model 5.9, where subject corre-
sponds with block (S'), except that the ¢ levels of factor C are tested
sequentially on each subject rather than being randomly assigned within
each block. It is therefore inherently susceptible to practice and carry-
over effects from the sequential application of treatments in repeated
measures.
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In testing the combined effect of three crossed factors, model 6.7 has
similar objectives to cross-factored models 3.2, 4.3, 5.2, 5.3, 54, 5.5, 5.7,
5.9 and 6.5. Crucially, it differs from completely randomised, randomised-
block and split-plot models in that the ¢ levels of factor C are tested
sequentially on each subject. Model 6.7 differs from repeated-measures
model 6.5 in that it has two between-subjects factors and one within-
subjects factor, rather than one between-subjects factor and two within-
subjects factors.

Special assumptions (see also general assumptions of repeated
measures on page 183)

The model cannot test the C*S’ interaction, because the lack of replication
means that there is no residual error term (shaded grey in the ANOVA
tables below). Interpretation of non-significant terms amongst C and its
interactions with A and B is compromised because the result could mean
either no effect, or opposing effects on different subjects. The assumption
of no significant C*S' interaction can be tested if independent, replicate
observations (P’) are made for each of the ¢ levels of factor C on each
subject. The interpretation of a significant C*S' is nevertheless problematic
because the treatment effect may depend upon any of the multiple sources
of variation encompassed by the subject factor.
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7
Unreplicated designs

Every model in Chapters 2 and 3 has one or more equivalents without full
replication. For model 2.1 it is 1.1, for 2.2 it is 2.1, for 3.1 it is 4.1 or 6.1,
for 3.2 itis 4.2 or 6.2, for 3.3 it is 5.6 or 6.3, and for 3.4 it is 3.1. Here we
give two further versions of factorial models 3.1 and 3.2 without full
replication. The lack of replicated sampling units means that at least one
of the factors must be random, as demonstrated by model 7.1(i) below in
comparison to (ii) and (iii). Factorial designs that lack full replication
must further assume that there are no significant higher-order interac-
tions between factors, which cannot be tested by the model since there is
no measure of the residual error among replicate observations (subjects).
This is problematic because lower-order effects can only be interpreted
fully with respect to their higher-order interactions (chapter 3). Falsely
assuming an absence of higher-order interactions will cause tests of
lower-order effects to overestimate the Type I error (rejection of a true
null hypothesis) and to underestimate the Type II error (acceptance of a
false null hypothesis). Without testing for interactions, causality cannot
be attributed to significant main effects, and no conclusion can be drawn
about non-significant main effects. For some analyses, the existence of a
significant main effect when levels of an orthogonal random block are
pooled together may hold interest regardless of whether or not the effect
also varies with block; the main effect indicates an overall trend averaged
across levels of the random factor.

The sampling unit for a given treatment level or combination in
unreplicated designs is the plot, neither nested in a sample (as in Chapters
1 to 3) nor in a block (as in Chapters 4 to 6):

S/
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7.1 Two-factor cross-factored unreplicated model

Model
Y =BJ|A

Test hypothesis

Variation in the response Y is explained by additive effects of factors
A and B.

Description

Each combination of levels of cross factors B and A are randomly
assigned to a different subject or plot (S). Each subject (or plot) is
measured once.

Factors Levels Repeated measures on S’
A a no
B b no

Allocation table

The table illustrates ba= 16 combinations of levels of cross factors B
and A assigned randomly amongst ba subjects or plots. For plots, note
that the table does not indicate the spatial distribution of treatment
combinations, which must be randomised.

S'BIA) A, | A | Ay | A

B, S, S,
B,
Bs
N | | O
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Example

(1) Hy: Crop yield depends upon sowing Density (A), with one of a
sowing density treatments and one of b levels of a Watering regime
(B’) randomly assigned to each of ba Plots (S').

Comparisons

This design is an unreplicated version of a two-factor ANOVA (model
3.1). It assumes no two-way interaction, and it is logically testable only if
at least one of the two factors is random. It differs from a one-factor
randomised-block design (model 4.1) in that the levels of the random
factor are randomly assigned to sampling units S, rather than being
blocked in space. Were it not for the lack of full replication, such a factor
could otherwise be treated as fixed (see discussion of fixed and random
factors on page 106).

Example 1 is suitable for analysis (ii) below if the replicate plots for each
level of watering are not blocked together. Such a design might be used to
test for an effect of sowing density over the natural range of rainfall likely
to be experienced across years. If watering level is grouped in space, for
example by a natural gradient in moisture, use randomised-block
model 4.1. The design is fully interpretable only if A and B have additive
effects, since there is no within-plot replication with which to test the
interaction. If the response to the sowing density may depend on soil
moisture, then use the fully replicated two-factor model 3.1.

ANOVA tables for analysis of terms A + B
Model 7.1(i) A and B are both fixed factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B*A) + A No test”
2B b—1 S'(B*A)+B No test”
3 B*A (b—1)a—1) S'(B*A)+B*A No test”
4 S'(B*A) 0 S'(B*A) -

Total variation ba—1

“ A, B and B*A are all untestable because the residual error cannot be estimated.
Use the fully replicated two-factor model 3.1(i).
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Model 7.1(ii) A is a fixed factor, B' is a random factor:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B'*A)+B'*A+ A 1/3
2B b—1 S'(B'*A) + B No test’
3 B'*A (b—1(a—-1) S (B*A)+B*A No test
4 S'(B'*A) 0 S'(B'*A) -

Total variation ba—1

“ An unrestricted model tests the MS for B’ over the MS for its interaction with A
(F-ratio =2/3). See page 242.

Model 7.1(iii) A" and B’ are both random factors:

Components of variation

Mean square d.f. estimated in population F-ratio
1A a—1 S'(B'*A")+B*A"'+ A’ 1/3
2B b—1 S'(B'*A’) + B'*A’ + B/ 2/3

3 B'*A’ b—Da-1) SB*A)+B*A’ No test
4 S'(B'*A) 0 S'(B'*A") -
Total variation ba—1

7.2 Three-factor cross-factored unreplicated model

Model
Y =C|B/A

Test hypothesis

Response Y depends on factors A, B, C and their two-factor interactions.

Description

Each combination of levels of cross factors C, Band A are randomly assigned
to a different subject or plot (S'). Each subject (or plot) is measured once.

Factors Levels Repeated measures on S’
A a no
B b no

C c no
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Allocation table

The table illustrates cba = 16 combinations of levels of cross factors C, B
and A assigned randomly amongst cba subjects or plots. For plots, note
that the table does not indicate the spatial distribution of treatment
combinations, which must be randomised.

<

m Aq Ao

=

Ci |l S Sp Spa
C,

Cs

(oo | O | RO | B | =P

Example

(1) H,: Crop yield depends upon Fertiliser (A) and Shading (C), with one
of ca combinations of Fertiliser and Shading treatments and one of b
levels of a Watering regime (B’) randomly assigned to each of cba
Plots (S).

Comparisons

The design is an unreplicated version of a three-factor ANOVA (model
3.2). It assumes no three-way interaction and is logically testable only if
at least one of the three factors is random. It differs from a two-factor
randomised-block design (model 4.2) in that it does not assume homo-
geneous covariances for randomised blocks.

Example 1 is suitable for analysis (if) below, provided that the replicate
plots at each of the levels of moisture and shading are fully independent,
and not grouped together spatially. Alternative field designs for blocking
a natural gradient in soil moisture (or shading) are described by model 4.2
and model 5.1. If plots are grouped both for moisture and shading, the
treatment effect may be tested more efficiently with a Latin square design
(page 129).
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ANOVA tables for analysis of terms C|B|A — C¥*B*A

Model 7.2(i) A, B and C are all fixed factors:

Components of
variation estimated

Mean square d.f. in population F-ratio
1A a—1 S'(C*B*A) + A No test”
2B b—1 S'(C*B*A)+B No test”
3 B*A b—1a-1) S'(C*B*A) + B*A No test”
4C c—1 S'(C*B*A)+C No test”
5 C*A (c=D@@-1) S'(C*B*A)+ C*A No test”
6 C*B (c=DB-1) S'(C*B*A)+ C*B No test”
7 C*B*A (c=D(bB-1)a—-1) S(C*B*A)+ C*B*A No test”
8 S/(C*B*A) 0 S'(C*B*A) -

Total variation cha—1

“ A, B, C and their interactions are all untestable because the residual error
cannot be estimated. Use the fully replicated three-factor model 3.2(i).

Model 7.2(ii) A and C are fixed factors, B' is a random factor:

Components of
variation estimated

Mean square d.f. in population F-ratio
1A a—1 S'(C*B'*A)+B*A + A 1/3
2B b—1 S'(C*B'*A)+ B’ No test”
3 B*A b—1(a-1) S'(C*B'*A) + B'*A No test”
4 C c—1 S'(C*B'*A)+ C*B' +C 4/6

5 C*A (c—1)a—-1) S'(C*B'*A) + C*B'*A + C*A  5/7

6 C*B’ (c—1)(-1) S'(C*B'*A) + C*B’ No test”
7 C*B'*A (c—=Db—-1)a—-1) S(C*B'*A)+ C*B'*A No test
8 S'(C*B'*A) 0 S'(C*B'*A) -

Total variation cba —1

“ An unrestricted model has an inexact F-ratio denominator (see page 242).
b An unrestricted model tests the MS for B'*A and for C*B’ over the MS for the
interaction term C*B'*A. See page 242.
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Further topics

Balanced and unbalanced designs

Balanced designs have the same number of replicate observations in each
sample. Thus a one-factor model Y = A + ¢ will be balanced if sample sizes
all take the same value n at each of the a levels of factor A. Balanced designs
are generally straightforward to analyse because factors are completely
independent of each other and the total sum of squares (SS) can be parti-
tioned completely among the various terms in the model. The SS explained
by each term is simply the improvement in the residual SS as that term is
added to the model. These are often termed ‘sequential SS” or “Type I SS°.
Designs become unbalanced when some sampling units are lost,
destroyed or cannot be measured, or when practicalities mean that it is
easier to sample some populations than others. For nested models,
imbalance may result from unequal nesting as well as unequal sample
sizes. Thus a nested model Y = B’(A) + ¢ will be balanced only if each of
the a levels of factor A has b levels of factor B/, and each of the ba level of
B’ has n replicate observations. For factorial models, an imbalance means
that some combinations of treatments have more observations than
others. An extreme case of unbalanced data arises in factorial designs
where there are no observations for one or more combinations of treat-
ments, resulting in missing samples and a substantially more complicated
analysis. Missing data are particularly problematic for unreplicated
designs, such as randomised-block, split-plot or repeated-measures models,
where each data point represents a unique combination of factor levels.
Where this is a risk, avoid such designs in favour of fully replicated models.
Unbalanced one-factor ANOVA presents few problems other than
increased sensitivity to the assumptions, particularly of homogeneity of
variances. Unbalanced designs with more than one factor are likewise less

237
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robust to violations of the assumptions (including homogeneity of cov-
ariances for randomised-block, split-plot and repeated-measures designs,
pages 118, 143 and 183).

Imbalance in nested designs causes no difficulties for computing SS and
MS, but results in inexact F-tests for all but the last term in the model
(Underwood 1997). Under certain conditions, Satterthwaite’s approxima-
tion will provide adjusted F-ratios that follow a true F distribution (Sokal
and Rohlf 1995). Alternatively, randomly sub-sampling an equal number of
replicates per level can reinstate balance, with the consequent reduction in
replication being offset by a likely gain in homogeneity of sample variances.

Loss of balance in factorial models can cause the factors to become
correlated with each other, and therefore non-orthogonal (i.e., non-inde-
pendent), with the result that the sequential SS cannot partition the total
SS straightforwardly amongst the various terms in the model. This loss of
orthogonality applies to categorical factors just as to covariates, and it can
be an inherent feature even of certain balanced designs (e.g., balanced
incomplete blocks and Youden squares on pages 124 and 127). It will
always arise among covariates that take observed values as opposed to
values set by experimental manipulation, unless the two covariates have a
correlation coefficient equal to zero. To determine the independent effect
of a term, its SS must be adjusted to factor out the correlated effects of
other terms in the model (see box on page 240). The analysis of variance is
then done on these ‘adjusted SS’. Be aware that if two factors are highly
correlated as a result of severe imbalance, it may be impossible to deter-
mine the independent effect of each predictor using adjusted SS. Neither
factor may add additional predictive power after controlling for the effect
of the other, even though the model as a whole is significant. In such cases
consider testing just one of the correlated variables in a simpler model, or
use a technique such as principal components analysis to reduce the
number of variables in the analysis to strictly orthogonal components
which can then be tested with factorial ANOVA.

Although an unequal distribution of sample sizes can be planned to
avoid loss of orthogonality (Grafen and Hails 2002), the usual outcome
of measuring some combinations of factor levels less than others is that
the factors lose their independence and adjusted SS differ from sequential
SS. The adjustment may raise or lower the SS of a particular term,
depending on whether the factor is made more or less informative by
accounting for the other sources of variation. If the explanatory power of
a factor A is increased in the presence of another factor B, then any
correlation between them raises the adjusted SS above the sequential SS
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for A when B is included in the model. In contrast, if factor A shares
information on the response with factor B, then any correlation between
them reduces the adjusted SS below the sequential SS for A.

This difference is illustrated by considering the example of rate of
increase in the size of a population of breeding insects. A population of size
N, in year ¢, has a per capita rate of increase measured from births minus
deaths that approximates to r =—In(V,) + In(V,,). If the population is free
to grow without density limitation, growth rate » will be independent of N,
and the covariate In(N,) will therefore have little or no power to explain
variation in r with a statistical model of the form Y = A + €. However, the
two covariates In(N,) and In(N,, ;) in combination will explain all or vir-
tually all variation in r with a model of the form Y=A + B +¢. In this
two-factor model, the first-entered predictor In(V,) will have sequential SS
close to zero, but a large adjusted SS reflecting its high explanatory power
when In(N,, ) is already included in the model (Figure 11a). In contrast, if
the population is density limited, growth rate r will decrease as population
size increases and the covariate In(N,) will therefore have high explanatory
power when tested with a statistical model of the form Y = A + &. However,

a)  In(Ny,4)=20 b
(k) ( m)\ 25 30 (b) g_
- 10 | o . . =
(0] M ~ [0}
T T |In(Npq) =
£ 15 £ o175
= N o +18.8
2 51 e . ° 5 0222
g g 240
8 3 0251
= 10 . = 26.7
@ 0 » ‘* * ) 20 T T ————
o o
5 10 15 20 25 10 15 20 25 30
In(Ny In(N})

Figure 11 Contrasting datasets of population growth rate r on the y-axis as a
function of population size In(N,) on the x-axis. Each point has an associated
value of In(N,,;) and broken lines join points with equal In(N,, ;). Both
graphs are analysed with the same statistical covariate model r = In(N,) +
In(N,;1) + e&. (a) With density independent population growth, the first
entered term In(N,) has sequential SS close to zero because it has almost no
explanatory power in the absence of the second term. Analysis with adjusted
SS is more informative, showing both terms to be highly significant as an
additive combination. (b) With density-dependent population growth, both
main effects are non-significant when analysed with adjusted SS, because of a
strong correlation between In(N;) and In(N,, ). Analysis with sequential SS is
more informative in this case, indicating a highly significant linear trend with
In(N,), as suggested by the graph, and little additional explanatory power
provided by In(N, ).
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its SS will now be adjusted downwards on adding a second covariate
In(N,; 1) because of a strong positive correlation between In(»V,) and
In(N,;1). The adjusted SS may become so small as to render a clear trend
apparently insignificant (Figure 11b).

Sums of squares in non-orthogonal factorial models

Two factors A and B are orthogonal if the distribution of levels of B
is independent of the distribution of levels of A (i.c., they are
uncorrelated with each other). Orthogonal designs are analysed with
sequential (Type I) SS that are not influenced by their order of entry
into the model. Non-orthogonal designs have sequential SS with
values that depend on their order of entry into the model. These
models can be analysed with adjusted SS that are computed by one of
two methods, termed Type II and Type III. The merits of these
alternative types of adjustment have received much attention and are
a subject of ongoing debate (Shaw and Mitchell-Olds 1993; Grafen
and Hails 2002; Quinn and Keough 2002). Type II and III SS are
computed from sequential SS by comparing the residual SS of full
and appropriately reduced models.

Type II SS are the reduction in residual SS obtained by adding
a term to a model consisting of all the other terms that do not
contain the term in question. For example, in a three-factor ANOVA:
Y = C|BJA + ¢, the main effect A is adjusted for B and C and B*C,
but not A*B, A*C or A*B*C, by comparing Y =B + C + B*C with
model Y =B+ C + B*C + A. Similarly, the two-way interaction A*B
is adjusted for all terms except A*B*C. Type II SS use marginal
means weighted by the sample sizes and so test hypotheses that are
complex functions of the sample sizes. Type II SS are suitable for
models with fixed cross factors but unsuitable for models with
random cross factors (Searle er al. 1992).

Type III SS are the reduction in residual SS obtained by adding a
term to a model that contains all other terms. This is equivalent to the
SS explained by a term when it is the last to enter the model.
Continuing the three-factor ANOVA example, the SS explained by A
is found by comparing Y =B+ C+ A*B + A*C + B*C + A*B*C
with Y=B+ C+ A*B + A*C + B*C + A*B*C + A. Type III SS are
based on unweighted marginal means, and so tests of hypotheses are
unaffected by the imbalance in the data. Type III SS are suitable for
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models with random cross factors, but unsuitable for models with
only fixed cross factors.

The problem with using Type III SS in fixed-factor models is that
terms are illogically adjusted for their own higher-order interactions
(Grafen and Hails 2002). As a result, Type I1I SS violate the principle
of marginality, that terms be tested in hierarchical order (see how
F-ratios are constructed on page 35). The hierarchical ordering is
logical, because the test of an interaction includes tests of its
constituent main effects. A significant interaction means by definition
that the main effects of which it is composed must also be important,
since the effect of each on the response is deemed to depend on the
other (regardless of the significance of each as an individual main
effect — detailed on page 77). Because an interaction contains a main
effect, it makes no sense to include it when testing the explanatory
power of the main effect, yet the interaction does get included with a
Type III SS that is being adjusted for the influence of all other
variables in the model.

The adjustment of SS by comparison of full and reduced models is auto-
mated in many statistics packages, and you should check which methods
your statistics package offers and which is used as the default. If your SS
have been adjusted for higher-order interactions (a Type III adjustment),
this will be evident in non-identical sequential and adjusted SS for the last
entered main effect in the model. Some packages only do Type III SS, and
therefore cannot avoid adjusting for higher-order interactions in fixed
effects, which thereby violates the principle of marginality (see box above).
You can nevertheless obtain Type II SS by requesting sequential SS and
running the GLM as many times as there are main effects, each time
changing their order of entry into the model and keeping the sequential SS
(and its MS and F) only for the last-entered main effect and its interac-
tions. In that way you ensure that the retained SS will have been correctly
adjusted for all terms other than those containing the term in question.
The process of comparing full and reduced models is also used to
simplify complex unbalanced models. The highest-order interaction is
tested first, followed by lower-order interactions and main effects, pool-
ing non-significant terms into the residual term en route (Crawley 2002).
Whilst this is a valid method of model simplification to find the most
parsimonious of unbalanced models and useful for deriving predictive
models, the indiscriminate and uncritical use of pooling means that it is
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not the best approach to hypothesis testing (see the section on post hoc
pooling on page 38, in particular the problems associated with pooling
up). Formal significance testing of specific terms should be achieved using
the ANOVA table and F-tests that follow from the design of the
experiment, as set out in the tables in this book.

The analysis of unbalanced designs with missing whole samples poses
substantial difficulties. In factorial designs, the imbalance may prevent
testing of some main effects and interactions. Certain hypotheses may
still be tested, however, either by running a one-factor ANOVA to
compare all the sample means and then partitioning the variation using
planned contrasts (page 245), or by analysing balanced subsets of the full
dataset (e.g., worked examples in Quinn and Keough 2002). For unre-
plicated models, including randomised-block and repeated-measures
designs, omitting any blocks or subjects that have missing values is the
easiest solution but may result in a considerably reduced dataset for
analysis. Balance can also be reinstated by estimating missing values from
the marginal means and adjusting the residual d.f. accordingly (Sokal and
Rohlf 1995; Underwood 1997). This technique has the advantage of not
losing any data but relies on the assumption that there are no interactions
between treatment and block or subject. A third option is to compute the
SS for each term by comparing appropriate full and reduced models
(detailed in Quinn and Keough 2002).

Restricted and unrestricted mixed models

A mixed model is one with both random and fixed factors. It is termed
‘restricted’ or ‘unrestricted’ according to the method of constructing error
mean squares of its random factors (see box).

The choice of model does not change the mean squares or their asso-
ciated degrees of freedom but it does affect the estimated variance
components, the expected mean squares and, most critically, some error
terms used to calculate F-ratios. For example: in model 3.3(7) (page 101),
the random factor B'(A) estimates the following independent components
of variation:

e Restricted model: S'(C*B'(A)) + B'(A), with error estimated by the MS
for S'(C*B/(A));

e Unrestricted model: S'(C*B’(A))+ C*B’'(A)+B'(A), with error esti-
mated by the MS for C*B’(A).
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In the restricted model, C*B’(A) does not contribute to the indepen-
dent components of variation estimated by B’(A) because it sums to zero
over the a levels of fixed factor A.

What are restricted and unrestricted models?

To distinguish the two types, it is necessary to define an important
characteristic of fixed factors. All fixed factors and their interactions
with each other have a zero sum for the deviation of their sample
means from the grand mean y (e.g., Winer et al. 1991). Worked
example 3 on page 51 illustrates the principle. Let us use the coding of
model 3.3(i) to denote the mean value for the 18 measures at high
Recruitment as ya;, and for the 12 measures at Treatment level ‘2’ as
yci1, and for the six measures at Treatment level 2’ and high
Recruitment as yciaq. Then:

a

across columns: > (ya; —9) =0,
i=1
C

C a
and across rows: »_ (ycr —y) =0, and also " > (ycrai —y) =0
k=1 k=1i=1

Consider now all random factors and their interactions with other
factors, whether random or fixed. These are each assumed to
contribute a random component of variation with a normal
distribution around a mean of zero. In the worked example, the
deviations from y by each mean of the nine measures per Site: yp(a);
sum to zero across the four levels of Site; likewise, the 12 deviations
(Ycrp'(a) — ¥) sum to zero. A restricted mixed model requires in
addition that the random components with crossed, mixed factors
(C*B/(A) in the worked example) sum to zero over the levels of each
fixed factor. An ‘unrestricted’ mixed model does not require this
constraint, and in consequence all its random components are
considered to be independent of each other.

The reasons for choosing one form over the other have not been clearly
defined in the statistical literature (Quinn and Keough 2002). Most text-
books adhere to the restricted model and this is the one we use because it is
consistent with the method of generating error terms from the principles
described on page 35. The unrestricted model is appropriate for unba-
lanced data (Searle 1971), and is the default option for many statistics
packages, though some will allow optional use of the restricted form for
balanced designs. If your statistics package does not provide this option
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and you wish to use the restricted model, then manually recalculate the
F-ratios using the correct error terms provided by the tables in this book.

Magnitude of effect

Analysis of variance provides information on the magnitude of an effect in
addition to testing its significance as a source of variation. Although this
book focuses on the hypothesis-testing applications of ANOVA, its more
exploratory uses often concern predictions about effect sizes. The size of an
effect cannot be gauged from its significance alone, since significance
depends also on the amount of background variation and the sample size.
An effect of small magnitude can be strongly significant if it is sampled
with little residual variation from many replicates. Conversely, an appar-
ently large effect may have no significance if it is sampled with large
residual variation or from few replicates. Here we summarise briefly the
issues involved in measuring the magnitude of a significant effect. For
more detailed analysis, we recommend Searle ef al. (1992), Graham and
Edwards (2001) and Quinn and Keough (2002).

The magnitude of an effect is measured in different ways depending on
the type of effect. The size of a fixed categorical effect is estimated in
terms of deviations of sample means from the grand mean, which are zero
in the case of no effect. The impact of a covariate is estimated by the
steepness of the regression slope, which is horizontal in the case of no
covariation. The size of a random effect is estimated by the magnitude of
between-sample variance, which is zero in the case of no effect.

Effect sizes for fixed factors should be measured for the highest-order
significant fixed effects in the model hierarchy. Thus, in the event of a
significant interaction B*A, measure deviations from the global mean of
the ba sample means, rather than the deviations of the « means of main
effect A and the b means of B. Effect sizes may be illustrated most
succinctly with an interaction plot, or main-effects plots if there is no
interaction. In the event of a significant interaction with a random factor,
B'*A, the size of a significant A effect can be measured from the devia-
tions of the ¢ means of main effect A, because the significance of A is
estimated over and above that of the interaction with the random factor.

Regression slopes for covariates should be measured and graphed only
for significant effects. The slope is the increment or decrement in the
response Y with each unit of increment in the covariate X. In the event of
a significant interaction of a covariate with a categorical fixed factor:
X*A, the magnitude of the interaction is given by the amount of variation
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between the a slopes. The coefficient of determination, 2, is an alternative
measure of effect size for a covariate, since its estimate of the proportion
of explained variation is informative about how tightly the data are
grouped around the regression line.

Variance components for random factors are measured for nested ran-
dom effects, which are deemed significant if they have non-zero variance
between their sample means. A variance component for a random effect
is given by the increase in the effect MS over its error MS, divided by its
pooled sample size. For example, model 2.2: Y =C'(B'(A))+¢, has a
variance component for subjects S’ (nested in C’ nested in B’ nested in A)
given directly by the residual MS. At the next step up in the hierarchy, the
variance component for C’ is (MS[C'] — MS|¢])/n. Finally, the variance
component for B’ is (MS[B']— MS[C'])/nc. All variance components
should be positive or zero, reflecting the increasing number of compo-
nents of variation estimated in the population at each step up in the
model hierarchy. A negative value has no meaning, and is conventionally
returned as zero. The relative contribution of each step in the hierarchy is
given by the variance component as a percentage of the sum of all var-
iance components. This information can be useful for improving the
efficiency of a design. For example, the power to test a treatment factor A
in the above model may be enhanced by focussing replication at the scale
with the largest variance component. Any imbalance in the nested design
poses problems for estimating variance components and GLIM methods
are then preferred, such as restricted maximum likelihood estimation
(REML), discussed in detail in Searle e al. (1992).

A priori planned contrasts and post hoc unplanned
comparisons

A significant categorical factor allows us to reject the null hypothesis that
group means are equal, but for fixed effects with more than two levels it
does not indicate how they are unequal. Additional tests are available to
find out which groups differ from which others, either as an integral part
of the analysis or as a supplementary analysis. The two approaches are a
priori planned contrasts and post hoc unplanned comparisons.

A priori planned contrasts are pre-meditated tests of specific subsidiary
hypotheses concerning group means within fixed effects. They can be
made on a factor of interest even if it returns a non-significant effect in
the ANOVA. Planned contrasts compare the mean of the response
among groups or combinations of groups. For instance, one could
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compare the mean of group 1 to the mean of group 2, or compare the
mean of group 1 to the weighted average of groups 2 and 3. Each contrast
has d.f.=k—1, where k is the number of groups, or combinations
of groups, being compared. Contrasts are tested for significance using an
F-ratio test with the same denominator MS as that used for the original
test of overall significance.

A set of planned contrasts is orthogonal if each contrast is independent
of all other contrasts — i.e., if the outcome of each contrast does not
influence the outcome of any other contrast. A treatment factor with a > 2
levels has explained SS that can be partitioned completely into a—1
planned orthogonal contrasts. There is often more than one way to con-
struct a set of orthogonal contrasts for a particular treatment factor and
the choice will depend upon the hypotheses to be tested. Provided they are
orthogonal, planned contrasts use the same pre-determined significance
level (e.g., @ =0.05) for rejecting the null hypothesis as the original test of
overall significance.

Planned orthogonal contrasts are particularly useful for analysing
factors that are incompletely crossed by design. For example, the one-
factor ANOVA model 1.1 on page 62 might be used to test the influence
of a commercial egg Harvest (A) on breeding success of gull pairs (S'). An
experiment could have a =3 levels of impact: undisturbed control, dis-
turbed by collectors, harvested by collectors. If it were possible to remove
eggs without disturbance, then disturbance and harvest could have been
treated as independent and fully crossed factors using model 3.1 (page
78). Since harvesting inevitably involves disturbance, however, we cannot
sample a harvested—undisturbed combination. Instead, planned contrasts
can firstly test for a general effect of disturbance by comparing the mean
of the undisturbed control with the weighted mean of the disturbed-by-
collectors and the harvested-by-collectors treatments. The contrasts can
independently test for an effect of harvesting by comparing the mean
breeding success of gulls that are disturbed and harvested with those that
are disturbed only. In general for contrasts within a factor A, a contrast B
between a control (B;) and the average of two or more experimental
treatments (B,) has one d.f., and a contrast C(B,) between the ¢ treat-
ments nested in B, has a—2 d.f., with SS(B+ C(B,))=SS(A). These
particular contrasts can be done in a GLM model that requests analysis
of terms: B+ C(B), where C(B) tests variation amongst experiments
around the overall experimental mean, and the error term € = MS[S'(A)]
as in the one-way test.
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A set of planned contrasts is non-orthogonal if the outcome of each
contrast influences the outcome of any other contrast. Performing
simultanecously a number of non-independent contrasts inflates the
family-wise error rate (the probability of making at least one Type I error
in a set of tests) by an unknown amount. A variety of procedures are
available to limit this error rate by adjusting «, the threshold for sig-
nificance of each individual test (Day and Quinn 1989; Quinn and
Keough 2002). For example, Dunnett’s test specifically contrasts a con-
trol group against all other groups, while the sequential Bonferroni
method or the Dunn-Sidak procedure can be useful for other sets of non-
orthogonal contrasts (but see cautions in Moran 2003).

Post hoc unplanned comparisons explore a significant main effect by
comparing all possible pairs of group means. Unplanned comparisons, as
the name suggests, should be used when the researcher has no pre-
meditated subsidiary hypotheses to test and desires simply to identify
which groups differ from which others. Unplanned comparisons are
invariably non-orthogonal and, just as with planned contrasts, simulta-
neously performing multiple non-independent tests inflates the family-
wise error rate. Again, a variety of procedures have been developed to
control the excessive rate of Type I error that otherwise accrues in
multiple exploratory comparisons (Day and Quinn 1989; Quinn and
Keough 2002). For example, Ryan’s test provides the most powerful pair-
wise comparisons, and Tukey’s honestly significant difference test is
practical for hand-calculation of unplanned comparisons.

In multi-factor models with significant nested or crossed effects, post
hoc unplanned comparisons should be used to explore only the significant
source(s) of variation at the highest level in the hierarchy of sources. For
example, if the model Y = B|A + ¢ produces a significant interaction B*A,
then a post hoc test should be used to compare all combinations of levels
of B with A. If only the main effects have a significant influence on the
response, then levels of main effect A can be compared with each other
(pooling levels of B), and levels of main effect B can be compared with
each other (pooling levels of A).



Choosing experimental designs

Empirical research invariably requires making informed choices about the
design of data collection. Although the number and identity of experimental
treatments is determined by the question(s) being addressed, the investigator
must decide at what spatial and temporal scales to apply them and whether
to include additional fixed or random factors to extend the generality of the
study. The investigator can make efficient use of resources by balancing the
cost of running the experiment against the power of the experiment to detect
a biologically significant effect. In practice this means either minimising the
resources required to achieve a desired level of statistical power or max-
imising the statistical power that can be attained using the finite resources
available. An optimum design can be achieved only by careful planning
before data collection, particularly in the selection of an appropriate model
and allocation of sampling effort at appropriate spatial and temporal scales.

Inadequate statistical power continues to plague biological research
(Jennions and Mpller 2003; Ioannidis 2005), despite repeated calls to
incorporate it into planning (Peterman 1990; Greenwood 1993; Thomas
and Juanes 1996). Yet efficient experimentation has never been more in
demand. Journal editors and grant review panels are increasingly scru-
tinizing the statistical power of studies submitted for publication or
funding (McClelland 1997). At the same time, increased competition for
funding imposes financial constraints on replication, and animal welfare
guidelines require researchers to minimise the number of animals used in
their experiments.

Statistical power

To provide a robust test of the hypotheses of interest, an experiment
should have a reasonable chance of detecting a biologically important
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effect if it truly occurs. In statistical terms this means having a low Type
IT error rate — the probability B of accepting a false null hypothesis. The
probability that a test will reject a false null hypothesis (1 — p) is therefore
a measure of the sensitivity of the experiment, and is known as statistical
power.

The power of an experiment can be calculated retrospectively to
demonstrate that a study producing a non-significant result had sufficient
power to detect a real effect. Such calculations commonly work on the
sampled effect and error mean squares, however, in which case the ret-
rospective power contains no other information than that provided by
the P-value (Hoenig and Heisey 2001). A non-significant effect from a
powerful test can be more persuasively demonstrated simply by graphing
fitted values with their confidence intervals (Colegrave and Ruxton 2003).

Power analysis is far more useful if used prospectively to ensure that a
proposed experiment will have adequate power to detect a given differ-
ence between population means, known as the effect size. Prospective, or
a priori, power analysis can be employed to optimise the design of a study
in two ways: either it can determine the minimum amount of resources
(i.e., replication) required to detect a specified effect size, or it can
determine the minimum detectable effect size for a fixed total quantity of
resources. These calculations require an estimate of the error variance,
specification of the desired power and significance threshold, and a
knowledge of either the total quantity of resources available or the
minimum effect size that we wish to detect.

The statistical power (1 — ) to detect a given effect size (0) increases
with the significance threshold (o) and the number of replicates (n), and
decreases with increasing error variance (¢°). The error variance (o%) may
be estimated from a pilot experiment, previously published data or from
personal experience. Whatever source is used, it is important that the
conditions under which the variance is estimated match as closely as
possible the conditions of the future experiment (Lenth 2001; Carey and
Keough 2002).

Since a smaller significance threshold (o) has the effect of reducing
power (1 — ), it is rarely possible in practice to achieve the ideal of o
close to zero and 1 — B close to unity. The trade-off is usually resolved by
a compromise, many investigators arbitrarily setting o at 0.05 and power
at 0.80, respectively — the so-called ‘five-eighty convention’ (Di Stefano
2003), which sets the probability of Type I and Type II errors at 5 % and
20 %, respectively. Adopting this convention implies an acceptance that
the cost of making a Type I error is four times more important than the



250 Choosing experimental designs

cost of making a Type II error (Cohen 1988; Di Stefano 2003). However,
Type II errors may be more critical than Type I errors, for example when
assessing environmental impacts, testing the toxicity of chemicals, or
managing natural resources (Mapstone 1995; Dayton 1998; Field et al.
2004). The relative costs of making Type I and Type II errors should
therefore be taken into account when deciding on an acceptable level of
statistical power. More flexible methods that evaluate these relative costs
are described by Mapstone (1995) and Keough and Mapstone (1997).

The effect size (0) measures absolute change in the response variable,
usually relative to a control group. The specified effect size should be the
minimum change in the response that is biologically meaningful. This is
often difficult to decide in practice, especially for complex and poorly
understood systems (Lenth 2001). It can be tempting to use arbitrary effect
sizes. For example, Cohen (1988) took the standardised difference between
group means ([y, —y1]/o) as a measure of the effect size, in order to
quantify ‘large’, ‘medium’ and ‘small’ effects as 0.8, 0.5 and 0.2, respectively.
This ‘off-the-shelf” approach suffers two main drawbacks: the effects may or
may not be biologically important, and it takes no account of measurement
precision (Lenth 2001). Given the difficulty of specifying a single meaningful
effect size, an alternative approach is to plot the attainable power or
required sample size for a range of effect sizes to get an idea of the sensitivity
of the experiment (Lenth 2001; Quinn and Keough 2002).

Armed with this information, power analysis can be used to compare
alternative models and determine the optimal allocation of resources
within a given design.

Evaluating alternative designs

Power analysis is a useful tool for evaluating the relative efficiency of
different experimental designs. Investigators can achieve considerable
gains in efficiency by choosing between alternatives on the basis of their
statistical power at a given level of replication, or their cost in replication
required to detect a specified effect size (Allison et al. 1997).

The exact formulae to be used depend upon the model being evaluated.
Detailed descriptions of power-analysis calculations are beyond the scope of
this book; interested readers should consult more specialist texts, and use
power-analysis software freely available on the web. Each hypothesis
requires a separate calculation, and it may be necessary to prioritise them to
ensure that the experiment has adequate power to detect the key hypotheses.
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The main limitation of power analysis is that it requires reliable
estimates of the error variation. Whilst this can be fairly straightforward
for simple designs, more complex designs may require comprehensive
pilot studies. For example, to calculate the power of a test for A in the
fully replicated model A|B’, one needs to know the expected variance of
the A*B’ interaction (which forms the denominator of the F-ratio), which
may be difficult to estimate without conducting a large-scale pilot study.

If the error variation cannot be estimated from earlier studies and there
are insufficient resources to conduct a pilot study, sensible design deci-
sions can still be made without a formal power analysis, by adhering to
the following general rules.

(1) Prioritise your hypotheses and focus on those of most interest. Since
more complex designs usually require more resources than simple
designs, trying to answer too many questions at once may mean that
resources are insufficient to answer any of them adequately.

(2) Ensure that a valid F-ratio is available to test key hypotheses. For
example, the unreplicated two-factor design B|A (model 7.1(i)) has no
residual variation with which to test any of its terms — although your
statistics package may go ahead and test them anyway.

(3) Be aware of the problems of interpreting unreplicated, repeated-
measures and split-plot designs; interpretation of results will be
clearer and easier to justify to your audience if you can use a
completely randomised and fully replicated design.

(4) An unreplicated randomised complete block will be more powerful
than an equivalent unblocked design only if it has a reduction in the
residual MS that more than compensates for the reduction in residual
d.f. from lack of replication. In the absence of good pilot data, a
decision to block without replication must be made on the likely
magnitude of variation between blocks relative to that within blocks.
In the event that blocks (or repeated measures) are used, and the block
effect turns out to be non-significant, avoid the temptation to simplify
the model post hoc by removing block (or subject) from the main
effects declared in the model. Failure to detect a significant effect in
samples does not necessarily mean that there is no effect in the
population. Removing the effect from the model biases the error MS
and consequently the validity of the treatment F-ratios.

(5) Avoid subjecting a null hypothesis to more than one test. Incorporate
multiple factors into a single ANOVA rather than doing several
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one-factor ANOV As, which ignore nesting or interactions and accrue
excessive Type I errors as a result of not partitioning the total
variation into distinct sources. Likewise, use one-factor ANOVA
rather than multiple 7 tests. As an example of just how excessive the
Type I errors can be in multiple tests of the same null hypothesis,
consider a response that has been measured across ten samples of a
factor. The sensible analysis is one-factor ANOVA, but suppose
instead that you wish to probe the data with an unplanned search for
any significant differences amongst the 45 sample pairs. You might be
tempted to do 45 ¢ tests all of the same null hypothesis Hy: no
difference between any pair of means. The approach is disastrous,
however, because it leads to a 90 % chance of falsely rejecting Hy on
at least one test. This ‘family-wise’ Type I error rate is calculated
from one minus the probability of not making a Type I error in any
of the 45 individual tests: 1 — (1 — 0.05)*=0.90 (e.g., Moran 2003).
Setting o =0.05 means that we are willing to falsely reject the null
hypothesis on up to 5 % of occasions. In 45 tests, we may thus expect
to falsely reject the null hypothesis on as many as 2-3 occasions with
this o. ANOVA avoids the problem of multiple tests by partitioning
the variance in the data into distinct sources and testing one unique
null hypothesis per partition. It is possible to do unplanned post hoc
tests after an ANOVA, in order to seek where differences lie amongst
sample means, but these are designed specifically to control the
family-wise error rate (see page 245).

There is little point in doing a very weak test with only one or a few
error degrees of freedom, because a significant difference would be
obviously different anyway and no conclusions could be drawn from
a non-significant difference. Conversely, there may be little extra
power to be gained from having hundreds rather than tens of error
d.f., and usually little opportunity of obtaining large numbers of
truly independent replicates. For example, the critical value of F at
a=0.05 for a test with one and six degrees of freedom is Fg
[0.0s]=3.99. This means that an effect will register as significant only
if the measure of explained variance given by the test mean square is
at least six times greater than the unexplained (error) variance.
This threshold increases in incrementally bigger steps with fewer error
d.f., until F jj905;= 161, and it tails off going the other way, until
F=1.00. For a given test and workload of total observations, the
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critical F depends on the distribution of data points between levels of
sampling units and treatments. Figure 12 illustrates the rapid increase
in threshold as the error d.f. drop below six, and the rapidly
diminishing returns in power as the error d.f. increase in the other
direction. For a given total of NV data points, the critical F will tend to
be smaller in designs that partition N between more samples, as
opposed to more replicates per sample (illustrated by circles in Figure
12). This is particularly true for mixed models, where the number of
levels of the random factor determine the error degrees of freedom.

24 -

18 4

12 1

F-statistic

1 2 3 4 5 6 7 8 9 10 11 12
Error degrees of freedom

Figure 12 Upper 5 % points of the F distribution for given test degrees of
freedom. Dotted lines show the threshold ratio of test to error MS for one
and six d.f.; circles show thresholds for one-factor analyses of two, three,
four and six samples (right to left), all with the same total number of
observations (N=12).

When comparing alternative designs it can be informative to consider
how many subjects in total are required to obtain a given number of error
d.f. for the main hypotheses of interest. For example, the following
models all test a two-level fixed factor A with six error d.f. but require
collection of vastly different quantities of data:
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1.1. One-factor model Y =A +¢ tests A with one and six d.f. from
error MS[S’(A)] on N =8 subjects:

S'A)| A | A
Si || Ss
Sy || ss

2.1(i) Nested model Y =B/(A) + ¢ tests A with one and six d.f. from
error MS[B’(A)] on N> 16 subjects:

< A1 Az

a

> B, | B, | By | By | Bs | By | B, | By
S | | O |
st s

3.1. Cross factored models ...

(1) Y =BJA + ¢ tests A with one and six d.f. from error MS[S'(B*A)]
on N =12 subjects:

S'(B|A) A, A,
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(ii) Y =B'|A + ¢ tests A with one and six d.f. from error MS[B'*A]
on N > 28 subjects:

S'(B'|A) A, A,

B || s || s

B7 . B 827 828

4.1(i) or 6.1(i) Randomised-block or repeated-measures model Y =S'|A
tests A with one and six d.f. from error MS[S’*A] on N=7 blocks or
subjects:

P(SIA)| Sy | So | Ss | Si | S5 | Ss | Sy

Ay P4

5.6(i) or 6.3(i). Split-plot or repeated-measures model Y = B|S/(A) tests
A with one and six d.f. from error MS[S’(A)] on N =8 blocks or subjects:

A4 A,
P'(B|S'(A))
B1 P1
B2 e e e e e e Y P16

We end this chapter with a caution that some types of scientific endea-
vour will always be more susceptible than others to false claims, regardless
of the design of data collection. Although a more powerful design will
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increase the chance of forming true conclusions from a test, a claimed
finding may yet have low probability of being true. This is because its
chance of being true depends on the prevalence of the effect in the popu-
lation, in addition to the Type I and II error rates for the test. This should
not pose a problem for tests of an effect with putative 100 % prevalence.
For example, we may suppose that crop yield either does or does not
depend on watering regime, always and everywhere within the defined
environment of interest. If it does not, then we can expect a false positive
result on 5 % of trials given an o = 0.05; if it does, then we can expect a false
negative on 20 % of trials given a 3 = 0.20. Problems arise, however, when
statistics are used to claim a finding of some rare attribute or event. Rare
findings attract high profile attention and thus tend to be claimed with
vigour, but the statistical evidence must be interpreted with great caution to
avoid later embarrassment in the face of contradictory results.

The frequency of false positive results can be extremely high in studies
that trawl many thousands of suspects for a few rare dependencies
(Ioannidis 2005). For example, if a heritable disease is likely to be
associated with around ten gene polymorphisms out of 100000 available
for testing, then a claim to have identified one of these polymorphisms
with P < 0.01 will have no more than 1 % chance of being true even with
the most powerful test (i.e., with § ~ 0). This is because an analysis with
o =0.01 must sanction 1000 false positive results in the total 100 000 tests
that would embrace the ~10 true polymorphisms, yielding ~10/1010
chance of a given positive result being true. If the test has only 60 %
power (B=0.4), then about four of the ~10 true results are likely to be
misdiagnosed, resulting in ~0.6 % chance that the positive result is a true
find. With such a high likelihood of error, it can be only a matter of
time before the claim is contradicted by other independent studies of the
same polymorphism. Indeed, claims and counter-claims are a recurrent
feature of scientific endeavour of this sort (Ioannidis 2005). The positive
result nevertheless serves a valuable purpose, even in the face of counter-
claims, inasmuch as it reveals ~60-fold increase in probability for that
polymorphism, relative to the pre-test probability. Similar issues arise
with diagnostic screening for rare diseases (see example on page 268).
These kinds of studies should draw probabilistic conclusions with respect
to the known rarity of relationships, rather than claiming to reveal
a truth.

In general, a statistically significant result is more likely true than false
only if the expected ratio of wrongly to correctly rejected null hypotheses
(ot/(1 — B)) is less than the actual ratio of false to true null hypotheses in
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the field of research. In fact, in order to have as little as a 1 % chance of
a false positive result from a test with o« =0.01 would require the putative
effect to have at least 99 % prevalence in the population (and more if
B> 0). If such an effect is known to be so prevalent, however, there is
nothing to be gained by testing for it. This is an example of the una-
voidable trade-off between certainty and utility that can seem to reduce
statistical analysis to a dispenser of either useless truths or false claims.
It emphasises the importance of identifying a correct statistical approach
with respect to the objectives of the study. The method of falsification,
which is the great strength of hypothesis-testing statistics, is severely
undermined in applications that involve screening for a sought-after
result. These endeavours are much better suited to the more subjective
approach of Bayesian inference, which concerns the impact of new
information on a previous likelihood. The method of testing a falsifiable
null hypothesis for which statistics such as ANOVA were developed
is best suited to studies that can obtain persuasive evidence from a
single test.



How to request models
in a statistics package

You will need to declare any random factors and covariates as such. For
balanced designs you may have an option to use the restricted form of the
model (see page 242).

For a fully replicated design, most packages will give you all main
effects and their interactions if you request the model in its abbreviated
form. For example, the design Y = C|B|A + ¢ (model 3.2) can be requested
as: ‘C|B|A’. Where a model has nested factors, you may need to request it
with expansion of the nesting. For example the design Y =C|B'(A) +¢
(model 3.3) is requested with ‘C|A + C|B(A)’.

Repeated-measures and unreplicated designs have no true residual
variation. The package may require residual variation nevertheless, in
which case declare all the terms except the highest-order term (always the
last row with non-zero d.f. in the ANOVA tables in this book). For
example, for the design Y = B|S'(A) (model 6.3) request: ‘B|A + B|S(A) —
B*S(A)’, and the package will take the residual from the subtracted term.
Likewise, for the design Y =S'|A (model 4.1) request: ‘S|A — S*A’, and
the package will take the residual from the subtracted term; or equally,
request ‘A +S’, and the package will take the residual from the one
remaining undeclared term: S*A.

Where models contain nesting of the form B(A), factor B may need to
have its levels coded as 1, 2, ..., b repeated within each level of A. Where
a model has nesting into more than one factor simultaneously, you may
need to simplify the description of the model. For example, the designs
Y =C'(B'(A)) +eand Y = C/(B|A) + ¢, of models 2.2 and 3.4 respectively,
both need factor C to be written as ‘C(B A)’. The first is analysed by
requesting: ‘A + B(A)+ C(B A)’, and the second by requesting: ‘B|A +
C(B A)’. The same structure of the input is required for both these requests,
and also for Y=C|BJA+cand Y=C|B'(A)+¢ (models 3.2 and 3.3).
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For example, a response Y measured on two subjects at each of two levels
of factors C, B and A is input in the following form regardless of nesting
or cross factoring:

>
o]
@]
=~

PO B D DO = = = = PN DD D DD = = =
RO — — PN — — NN — — N DD — —
~
o

(NS NG T NG T NG T NG T NG T NG T N T S gy Sy S Gy S

Because your data will be correctly analysed by only one model, it is
obviously vital that you request the correct one. Find the appropriate
model in the book with the help of the guide to model construction on
page 58, and the diagrams on p. 288. Remember that a factor is nested in
another if each of its levels belongs to only one level of the other (e.g.,
subject nested in gender, plot nested in treatment). It is cross factored if
each of its levels are represented in each level of the other. All repeated
measures on replicate subjects or blocks are cross factored with the
replicate.



Best practice in presentation of the design

How to report your designs and analyses

The objective of a Methods section to a report is to allow anyone to
repeat all of your procedures. You therefore need to explain what you did
and report all decisions relevant to the design of data collection and its
analysis.

In the Methods, write out the statistical model either fully or in its
contracted form (e.g., Y =B|A +¢). The residual variation should be
indicated by € in a fully replicated model, to distinguish it from unre-
plicated or repeated-measures designs that do not have true residual
variation. Clearly identify your sampling or observational unit, from
which you draw each data point. Explain which factors are fixed and
which random. Explain the function served by any random factors, and
detail how these influence the construction of F-ratios. Where an analysis
will not be testing for some interactions, explain why not. The reason is
likely to have to do with intrinsic design features, for example of some
split-plot and other non-orthogonal designs, or because of insufficient
replication. That an interaction may be deemed biologically uninteresting
is not a good reason for dropping it from the analysis, because to do so
pools up the interaction with the error term and changes the estimates of
the main effects.

Also in the Methods, justify the assumptions of random and inde-
pendent observations, and report results of tests or checks for homo-
geneity of variances and normality of residuals (after any necessary
transformations). If post hoc pooling is an option, show that this has been
planned into the data-collection design.

The objective of the Results section to a report is to interpret the
outcomes of your analyses (according to protocols described in the

260



Best practice in presentation of the design 261

Methods), showing sufficient detail of the analysis to allow your audience
to evaluate the interpretation. So remember to fulfil the formal require-
ments of showing degrees of freedom or sample sizes, in addition to
emphasising the result that you consider most important.

In the Results, try to summarise principal differences and trends gra-
phically. If possible, show one graph per analysis of variance. An
‘interaction plot” may suit a cross-factored analysis with significant
interactions, showing sample means without associated variation and
linking means of the same factor. Otherwise, always attach a measure of
variation to any mean, clearly identifying which measure it is (standard
deviation, standard error, or confidence intervals, etc.). If the analysis
required transformed data, then show back-transformed means and
confidence intervals on the graph and in the text. More than two factors
may require panels of graphs, or a table to summarise sample means and
confidence intervals. In graphs, use the minimum necessary axis marks,
labelled to sensible decimal places. In tables, give all non-integer values to
whatever numbers of decimal places are appropriate to the scale and
accuracy of measurement. If space permits, show statistics for all sources,
regardless of significance, because non-significant results have the same
biological validity as significant ones. For each source of variation, report
the value of F, the two values of d.f., and P. For analyses with more than
two factors, this may be achieved most succinctly in a table listing each
source, its d.f., MS, F and P. Always interpret such a table from the
bottom up, because interactions take precedence over main effects. In
complex analyses consider how to get more from the global test by
comparing magnitudes of effect (page 244) or using post hoc comparisons
of sample means (page 245).

A one-factor ANOVA can be completely described by a single sen-
tence, such as: ‘Body weights differed by sex (mean =+ s.e. of males=
23.6 £3.3 g, females=18.2 + 3.4 g; F, 3=6.48, P <0.05).” There is no
need to talk about a ‘significant difference’ because that only opens the
door to nonsensical permutations such as ‘males were heavier than
females but the difference was not significant’ when an analysis has not
yielded a desired result. The statistic provides the evidence that the factor
levels either did differ at a probability o of rejecting a true null hypothesis,
or did not differ at a probability B of accepting a false null hypothesis. Be
informative about what is revealed by each result. To state that ‘the results
were significant’ is uninformative, and that ‘the results are presented in
Table 1’ is lazy. Obviously, avoid annoying your audience with statements
of the type: ‘The data were significant’.
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Where factors vary on a continuous scale, show regression lines only
for significant trends. For each source of variation, report the value of F,
the two values of d.f., P, and the > which represents the proportion of
variation explained by the model. A linear regression is completely
described in one sentence, such as: ‘The per capita birth rate day™
declined with population density m™ (y=34 - 0.2x, Fy,2,=28.32,
P<0.01, #=0.41)"

How to understand the designs and analyses
reported by others

Authors often omit to make any explicit mention of design in their
Methods, either because it is simple and self-evident, or because it is
complicated and they have let a statistics package sort out that bit for
them. If you suspect the latter, then treat the analyses and their inferences
with suspicion. Statistical analyses should not be judged correct simply by
virtue of having been published, but by virtue of well-justified explana-
tions of the logic underpinning design choices.

Graphs or tables of principal results will usually provide clues to the
appropriate design, if not to the actual design used by the authors. If
error bars are attached to means, then the data probably suit an ANOVA
or related analysis. If means have no error bars, then again think of
ANOVA remembering that, except for interaction plots, means should
always be given with their errors. A graph with two or more types of data
point or bar is likely to need factorial ANOVA; equally a graph with two
or more regression lines is likely to need a factorial ANCOVA. Analysis
of residuals is not an acceptable substitute for ANCOVA (see page 32).

Authors use different measures of variation around sample means to
represent their data, and they don’t always clearly identify what the
measure is. Standard errors are always smaller than s.d. and confidence
limits, but all of these measures can show up any non-homogeneity of
variances (unless the graph shows only the pooled standard deviation
from the error MS).

If the report shows an ANOVA table, then use the relevant tables in
this book to check that effects have been tested with the appropriate error
MS. This is particularly important in mixed models and nested designs
where omitting to identify random factors as random can lead to grossly
inflated levels of significance (e.g., compare F-ratios for factor A in
models 3.1(i) and (ii)). Where tables are not shown, the values of error
d.f. will generally reveal which source of variation was used for the error
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MS. If no error d.f. are shown, then treat the results as highly suspect
because of the failure to report the amount of replication underpinning
the inferences. If error d.f. are very large, then question whether they
refer to genuinely independent replicates. For example, do they corre-
spond to the number of subjects or plots? If not, has subject or plot been
factored into the analysis in a repeated-measures design?



Troubleshooting problems during analysis

Correctly identifying the appropriate model to use (see page 57) is the
principal hurdle in any analysis, but running the chosen model in your
favourite statistics package also presents a number of potential pitfalls. If
you encounter problems when using a statistics package, do refer to its
help routines and tutorials in order to understand the input requirements
and output formats, and to help you interpret error messages. If that fails
then look to see if you have encountered one of these common problems.

Problems with sampling design

If I just want to identify any differences amongst a suite of samples, can I do t
tests on all sample pairs? No, the null hypothesis of no difference requires
a single test yielding a single P-value. Multiple P-values are problematic
in any unplanned probing of the data with more than one test of the same
null hypothesis, because the repeated testing inflates the Type I error rate
(illustrated by an example on page 252). If an ANOVA reveals a general
difference between samples, explore where the significance lies using post
hoc tests designed to account for the larger family-wise error (page 245).

How can I get rid of unwanted variation? In experimental designs, a
treatment applied to a group of sampling units should be compared to
a control group which is the same in all respects other than the test
manipulation. Full control is often not logistically feasible, particularly in
field experiments, and mensurative studies typically have no controls. It is
then important to declare all the components of random variation in the
model, so that the analysis can test the factors of interest independently
of other sources of variation. This needs thinking about at the design
stage, because the different sources of random variation will influence the
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amount of replication for testing effects of interest. See sections on
nesting, blocking and covariates (pages 21, 25, 29).

I have applied a treatment factor to whole sampling units but have taken
replicate measurements from within each sampling unit. Use a nested model
to account for the nesting of replicate measurements within sampling
units (see the introduction to nesting on page 21, worked example 1 on
page 47 and the models in Chapter 2).

Allocation of treatment levels cannot be fully randomised, because of
natural gradients in the landscape. Use stratified random sampling in a
randomised-block design (see the introduction to blocking on page 25
and the models in Chapter 4).

Cross-factored treatments are applied to sampling units at different spatial
scales. If one factor has treatment levels assigned to blocks, while another
factor has treatment levels assigned to plots nested in blocks, then use a
split-plot design (see the introduction to blocking on page 25, and the
models in Chapter 5).

Some combinations of factor levels cannot be measured in principle.
Redefine the existing combinations as levels of a single factor and analyse
with orthogonal contrasts (page 245).

Do the levels of a random blocking factor need to be independent of each
other? The mean responses per block need to vary independently of each
other around the overall mean response for the block factor. Check for
an absence of correlation between the responses per block.

Do the values of a covariate need to be independent or evenly spaced? 1t is
only the response residuals that need to provide independent information
in ANOVA and ANCOVA. There is no special requirement for covariate
values to be evenly spaced, though a skewed distribution can cause
the few values in the long tail to have a high leverage — i.e., to exert an
undue influence on the regression slope. A covariate cross factor should
be measured at the same or similar level for each level of the other factor,
if possible, and adjusted SS used to adjust for any discrepancies (see the
discussion of unbalanced designs on page 237).

Can I use the same test many times over to screen a population for a rare
phenomenon? Hypothesis testing is not well suited to finding a few rare
dependencies amongst a large number of suspects. For example, a posi-
tive result with P < 0.05 is more likely false than true if the effect occurs in
less than 5% of the population available for testing, regardless of the
power of the analysis (page 256).
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Problems with model specification

I just want to do a one-way ANOVA on three samples, but the statistics
package demands information on a ‘response’ and ‘factors’. All analyses of
variance use statistical models, and the package is simply asking for the
elements of your model, in this case a response variable containing all the
measured data and an explanatory variable which describes the factor
level or covariate value applied to each observation. Most statistics
packages require the response and each factor or covariate to be arranged
in columns of equal length (as described in the worked examples, pages
48, 51, 54). Make sure that the model you request will contain all the
testable sources of variation present in your design, even those that
account only for nuisance variation.

How do I get rid of nuisance variables? If your design has not controlled
for unwanted variation, then any nuisance variables will need to be
factored into the model. Failure to declare all sources of variation as
factors will result in their contributions to variation becoming pooled
into the residual variation. Although this raises the residual MS, it also
increases the residual d.f. which can greatly inflate the Type I error for
the test.

If I am only interested in main effects from a multi-factor analysis, is it
wrong to not request the interactions? Interactions can provide valuable
additional information about the significance of main effects (see page 77)
and it is generally advisable to include them in hypothesis-testing designs.
In more exploratory analyses, you can consider dropping non-significant
interactions as part of model simplification (page 40). In designs without
full replication (Chapters 4 to 7), some or all interactions cannot be tested
and are assumed to be zero, though they still need to be entered into the
model as (untestable) sources of variation. Such models cannot be fully
interpreted without testing the assumption of no interaction, which would
require full replication (using models in Chapters | to 3).

A factor of interest varies on a continuous scale, but has been measured in
discrete increments; should it be declared as a categorical factor or as a
covariate? Either is feasible, and which you choose depends on the nature
of the response and the desired hypothesis. Plot a graph of the response
against the continuous factor to find out whether the relationship is linear
or whether the response and/or the factor can be transformed to make the
relationship linear. If so, modelling it as a covariate may give a more
parsimonious model and allow you to interpolate between the measured
values of the covariate. It can also increase the residual d.f. which
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increases the power to detect some or all declared effects in the model
(though not always those of most interest — see worked example 3 on
page 51).

If a categorical factor of interest has levels arranged on an ordinal scale,
can it be analysed as a covariate? It may be reasonable to designate a set
of ordered categories as a covariate for the purpose of testing a null
hypothesis of no systematic increase or decrease in response. The
ANCOVA cannot be used to predict the value of the response, however,
unless a covariate is measured on an interval scale, such that the interval
between values of one and two has the same value as that between two
and three, etc. This may not necessarily be the case with ordered cate-
gories that measure qualitative degrees, for example of the health of a
subject, or the shadiness of a plot.

I am trying to do an analysis of variance on a categorical factor, but my
statistics package insists on treating the factor as a covariate. Some sta-
tistics packages automatically treat a factor with numerical values as a
covariate unless you identify it as a categorical factor. This problem will
not arise if levels of a factor are coded using words or letters rather than
numbers.

The statistics package won't give me the interaction term in a two-factor
ANOVA. Make sure that you have asked it to by requesting ‘B|A’, or
‘A + B+ B*A’ instead of just ‘A 4 B’. The two-factor ANOVA can only
estimate an interaction if the design is fully replicated, with more than
one measure at each combination of levels of A and B.

I have many possible explanatory factors — should I include them all in the
model? If your goal is to explore a dataset to identify which of many
competing factors most influence a response, then ANOVA can be used
as a tool to select the most parsimonious model. If your goal is to test
specific hypotheses rather than to develop a predictive model, then you
would be wise to keep things simple. Each additional cross factor added
to an ANOVA design adds an extra dimension to the analysis, multiplies
up the number of potential sources of variance and creates extra com-
plexity that can be difficult to interpret. In addition, it can reduce the
power of the analysis to detect a significant effect, unless an appropriate
increase is planned in the number of measures to be taken on the
response. A good design is therefore one that samples the minimum
number of factors necessary to answer the question of interest, and
measures sufficient replicates to estimate all potential sources of variance
amongst those chosen few factors.
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Not all samples contain the same number of replicate observations (or
more generally, the nesting is not symmetrical). This is not a problem for
one-factor analyses, though it increases sensitivity to the assumptions of
the analysis. For designs with more than one factor, use adjusted sums of
squares in a general linear model (see page 237). If the GLM package
cannot avoid adjusting for higher-order interactions between fixed fac-
tors, request only sequential SS and run the GLM as many times as there
are main effects, each time changing their order of entry into the model
and keeping results only for the last-entered main effect and its interac-
tions. Alternatively, resample from the data to reinstate symmetry,
whereupon sequential and adjusted SS will be equal.

The data are not normally distributed. 1t is the residuals that are assumed
by ANOVA to be normally distributed, not the raw data (see page 14).
The residuals are the squared distance of each data point from its sample
mean (or from the regression line in ANCOVA), from which is calculated
the unexplained (residual) variation on the assumption that this is ade-
quately represented for all samples by the same normal distribution.
Most statistical packages will calculate and store residuals for you, which
you can then test for normality using a normal probability plot. If you
suspect there is a significant departure from normality, then consider
applying a transformation to the response (see assumptions of ANOVA
on page 14 and of ANCOVA on page 32).

Sample variances differ, or residuals are not normally distributed around
sample means. Consider applying a transformation to the response (see
assumptions of ANOVA on page 14 and of ANCOVA on page 32).

Problems with results

A diagnostic test for a disease has a Type I error rate of 1 %; if it returns a
positive result (P < 0.01) on a patient’s sample, does the patient have > 99 %
chance of carrying the disease? No, the error rate indicates a 1 % chance
of the analysis returning a false positive, but the probability of this
particular diagnosis being true depends also on the prevalence of the
disease and the Type II error rate of the test. For a disease carried by 1 in
5000 of the population, a test with o= 0.01 will return 100 false positives
on average for every couple of true positives. If the test has B=0.5, then
one of these true positives will be missed on average, and the patient
returning a positive result will have a 1 in 101 chance of carrying the
disease — in other words >99 % chance of nor having it! The test has
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nevertheless served a purpose, by reporting a 50-fold increase in the
patient’s probability of being a carrier relative to the pre-test probability
of 1 in 5000 (see also page 256).

The statistics package returns an ANOVA table with only one set of d.f.
assigned to each term. Should I report the treatment effect as ‘F, = 9.78 etc?
No, always report two sets of d.f. for an ANOVA result. The first set is
the test d.f., which provides information about the number of levels of the
effect. The second set is the error d.f., which provides information on the
amount of replication available for testing the effect. For an ANOVA
without random factors, this will be the residual d.f. in the last line of the
table before the total d.f. For any other type of ANOVA, use the tables in
this book to determine the correct error d.f. for each term. Then check
that the package has used the correct error terms by dividing the effect
MS by the error MS to get the same F-value as that returned by the
package.

Can I transform the data in order to improve their fit to the model? The
data represent your best estimate of reality and so cannot be fitted to
a model. The purpose of statistics is to compare the fit of alternative
models to the data (see page 2). The validity of any model inevitably
depends on its underlying assumptions. Although many types of biolo-
gical data violate the assumptions of ANOVA, it is often possible to
apply some form of transformation to correct the problem (see pages 14
and 32). The sole purpose of transformations is therefore to allow valid
tests of model hypotheses.

The data contain numerous zeros. If these contribute to violating the
assumptions of ANOVA, this will present a problem that cannot be
resolved by transformation. Consider redefining the hypothesis to
exclude zeros from consideration. Regression analyses can be severely
biased by a heavy weighting of zeros in the response and/or covariate
even without violating underlying assumptions. For example, consider a
test of ‘camera traps’ deployed to photograph jaguars patrolling forest
trails, which pairs a camera with a new type of heat-sensitive trigger
against one with a standard infra-red trigger of known efficiency. The
frequency of captures by the new type might bear no relation to that by
the standard type, but it will appear as strongly correlated if the analysis
includes the many trap points where neither camera was triggered by a
jaguar. These locations may simply contain no jaguars, and they can be
excluded from the analysis on this assumption.

Adjusted sums of squares differ from sequential sums of squares. The explan-
atory factors are not orthogonal, requiring care in the interpretation of
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main effects (page 237). If two continuous variables are strongly corre-
lated with each other, they may both show as non-significant even when
each has a clear linear relationship to the response. This is because the
effect of each is measured after adjusting for the other. SS should not be
adjusted for higher-order interactions between their fixed effects.

The statistics package returns an F-test denominator of zero, or zero error
d.f. Erase from the input model the last-entered (and highest-order) term,
which then becomes the residual error term (see pages 57 and 258).

The statistics package returns an inexact F-test. The design permits only
a quasi F-ratio, although post hoc pooling may present a viable alter-
native (see page 40 and footnotes to tables of the model structures).

The statistics package calculates the F-ratio for some random factors
using a different denominator to that prescribed in this book. It may be using
an unrestricted mixed model (see page 242 and footnotes to tables of the
model structures).

In a design with many crossed factors, is there a problem with getting
multiple P-values in the ANOVA table of results? Multiple P-values are not
a problem when they are generated by an ANOVA that has partitioned
sources of variation in the response, because each tests a different null
hypothesis. This is true also of a priori contrasts, but unplanned post hoc
tests must account for an inflated Type I error that results from multiple
tests of the same null hypothesis (page 245).

My ANOVA on three samples is not significant, but when I do a t test on
each pair of samples, one of them does give a significant result. All that the
multiple tests have given you is an excessive Type I error rate. See the
section on evaluating alternative designs (page 250, and particularly point
5 on page 252). Consider use of post hoc tests designed to account for the
inflated error (page 245).

There are few error degrees of freedom for one or more F-ratios. Inves-
tigate options for post hoc pooling (see page 38 and footnotes to tables of
the model structures). If pooling is not possible then reflect on the need to
plan the analysis before collecting the data (see the example on page 51).
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Adjusted sums of squares Adjustment to the sum of squares used in general
linear models (GLM) to account for designs without orthogonality. A Type
IT adjustment to the SS of a term involves adjusting for all other terms in the
model that do not contain the term in question. A Type III adjustment
involves adjusting for all other terms in the model, including those
containing the term in question. Only Type II SS are suitable for models
with fixed cross factors, and only Type III SS are suitable for models with
random cross factors.

Analysis of covariance (ANCOVA)  Analysis of variance on a model
containing one or more covariates, usually in addition to one or more
categorical factors. Each covariate X is tested for a linear trend with the
continuous response Y.

Analysis of variance (ANOVA)  An analysis of the relative contributions of
explained and unexplained sources of variance in a continuous response
variable. In this book, we use the term ‘ANOVA’ in its broad sense to
include explanatory factors that vary on continuous as well as categorical
scales, with a focus on balanced designs. Parametric ANOVA and GLM
partition the total variance in the response by measuring sums of squared
deviations from modelled values. Significant effects are tested with the F
statistic, which assumes a normal distribution of the residual error,
homogeneous variances and random sampling of independent replicates.

A priori tests  Tests that are integral to the original hypothesis.

Assumptions  These are the necessary preconditions for fitting a given type of
model to data. No form of generalisation from particular data is possible
without assumptions. They provide the context for, and the means of
evaluating, scientific statements purporting to truly explain reality. As with
any statistical test, ANOVA assumes unbiased sampling from the population
of interest. Its other assumptions concern the error variation against which
effects are tested by the ANOVA model. Underlying assumptions should be
tested where possible, and otherwise acknowledged as not testable for a given
reason of design or data deficiency.

271



272 Glossary

Balance A balanced design has the same number of replicate observations in
each sample. Balance is a desirable attribute particularly of cross-factored
models, where loss of balance generally (though not inevitably) leads to loss
of orthogonality. The consequent complications to the partitioning of
sources of variance in the response are accommodated by general linear
models.

Block A level of a random factor designated to sample unmeasured variation in
the environment.

Blocking factor A random factor designated to sample unmeasured variation
in the environment.

Categorical factor A factor with levels that are classified by categories (e.g.,
factor Sex with levels male and female). A factor may vary on a continuous
scale (e.g., distance in km, or time in hours) but still be treated as categorical
if it is measured at fixed intervals (e.g., before and after a place or event).

Control A treatment level used to factor out extraneous variation by
mimicking the test procedure in all respects other than the manipulation
of interest. For example, a liquid fertiliser applied to a crop needs to be tested
against a control of an equal quantity of liquid without the fertiliser
ingredients. Failure to do so can result in a false positive induced by the
carrier medium alone.

Correlation  Any co-variation of continuous factors with each other or with a
continuous response. Correlation between explanatory factors is a form of
non-orthogonality.

Covariate A factor X that varies at least on an ordinal scale, and usually on a
continuous scale (such as time, distance, etc.) and is therefore a covariate of
the response Y. Analysis of covariance assumes that the response has a linear
relation to the covariate, and transformations of response or covariate may
be necessary to achieve this prior to analysis.

Crossed factor  One factor is crossed with another when each of its levels is
tested in each level of the other factor. For example, watering regime is
crossed with sowing density if the response to the wet regime is tested at both
high and low sowing density, and so is the response to the dry regime
(assuming both factors have just two levels).

Data  The measurements of the response at given levels of factors of interest.

Degrees of freedom (d.f.) The number of independent pieces of information
required to measure the component of variation, subtracted from the total
number of pieces contributing to that variation. Analysis of variance always
has two sets of d.f.: the first informs on the number of test samples and the
second informs on the amount of replication available for testing the effect.
For example, a result F, 1, =3.98, P <0.05 indicates a significant effect with
three levels allocated between 15 sampling units.

Effect A term in the statistical model accounting for one of several independent
sources of variance in the response. For example the cross-factored model
Y = B|A + ¢ has two main effects (A and B) and one interaction effect (B*A).

Effect size  The magnitude of an effect, measured in terms of deviations
of sample means from the grand mean (fixed factor), or the steepness of
the regression slope from horizontal (covariate), or the magnitude of



Glossary 273

between-sample variance (random factor). The significance of an effect
depends upon a combination of its size, the amount of background variation
and the sample size. An effect of small magnitude can thus be strongly
significant if it is sampled with little residual variation from many replicates.
Conversely, an apparently large effect may have no significance if it is
sampled with large residual variation or from few replicates.

Error variance The random variation in the response against which an effect is
tested, containing all of the same components of variation estimated in the
population except for the test effect. The validity of ANOVA depends on
three assumptions about the error variance: (i) that the random variation
around fitted values is the same for all sample means of a factor, or across
the range of a covariate; (ii) that the residuals contributing to this variation
are free to vary independently of each other; (iii) that the residual variation
approximates to a normal distribution.

Experiment A manipulative study involving the application of one or more
treatments under controlled conditions. Where possible, treatment levels are
randomly assigned to sampling units, and effects compared against a control.

Factor A source of variance in the response. A categorical factor is measured in
categorical levels, whereas a covariate factor is measured on a scale of
continuous (or sometimes ordinal) variation. A model might be constructed
to test the influence of a factor as the sole explanation (Y = A +¢) or as one
of many factors variously crossed with each other or nested within each
other.

Factorial model A model containing crossed factors in which every level of
each factor is tested in combination with every level of the other factors.
Fully replicated factorial designs test whether the effect of one factor is
moderated by interaction with another.

False negative  The result of making a Type II error by accepting a false null
hypothesis. This type of error can incur severe consequences for sampling
units, such as patients being screened for a disease or rivers being screened for
a pollutant. The Type II error rate  can be minimised by using a design with
sufficient replication to ensure high power for distinguishing true effects.

False positive  The result of making a Type I error by rejecting a true null
hypothesis. Tests that are deemed significant if P < 0.05 must sanction a false
positive arising once in every 20 runs on average. This causes problems
particularly in studies that apply the same test to a large number of datasets to
screen for a phenomenon with low incidence in the population. A positive
identification is more likely false than true if incidence < o, the Type I error
rate.

Fitted values The values of the response predicted by the model for each data
point. Fitted values are the sample means for categorical factors, or points
on a regression line for a covariate.

Fixed factor A factor with levels that are fixed by the design and could be
repeated without error in another investigation. The factor has a significant
effect if sample means differ by considerably more than the background
variation, or for a covariate, if the variation of the regression line from
horizontal greatly exceeds the variation of data points from the line.
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F statistic  The test statistic used in ANOVA and GLM, named in honour of
R. A. Fisher, who first described the distribution and developed the method
of analysis of variance in the 1920s. The continuous F distribution for a given
set of test and error d.f. is used to determine the probability of obtaining at
least as large a value of the observed ratio of explained to unexplained
variation, given a true null hypothesis. The associated P-value reports the
significance of the test effect on the response.

Fully replicated design A design with replicate sampling units at each factor
level, or for designs with more than one factor, each combination of factor
levels. Such designs have residual variation given by these nested random
sampling units, which permits the ANOVA to test all sources of variance in
the response. A design without full replication has the random sampling unit
cross-factored with other terms, contributing to the variance in the response
having one or more untestable sources.

General linear model (GLM)  Generic term for parametric analyses of variance
that can accommodate combinations of factors and covariates, and
unbalanced and non-orthogonal designs. GLMs generally use an
unrestricted model for analysing combinations of fixed and random factors.

Generalised linear model (GLIM)  Generic term for analyses of variance that
can accommodate combinations of factors and covariates, and can permit
the residuals to follow any distribution from the exponential family, which
includes Gaussian, Poisson, binomial and gamma distributions. Components
of variation are partitioned using maximum likelihood rather than sums of
squares.

Hypothesis test ~An analysis of data to test for pattern against the null
hypothesis Hy: no pattern. Analysis of variance subjects a dataset to one or
more test hypotheses, described by a model. For example, a test of the model
Y = BJA + &€ may reject or accept the null hypothesis of no effect of A on the
response. Likewise, it rejects or accepts the null hypotheses of no B effect and
of no interaction effect. A decision to reject Hy is taken with some predefined
probability o of making a Type I error by rejecting a true null hypothesis. A
decision to accept Hy is taken with a probability B of making a Type II error
by accepting a false null hypothesis.

Independent replicates  The power of any statistical test to detect an effect
depends on the accumulation of independent pieces of information. ANOVA
assumes that replicate data points are independent of each other in the sense
that the value of one data point at a given factor level has no influence on the
value of another sampled at the same level. The assumption is often violated
by the presence of confounding factors. For instance, a sample of ten
subjects will not provide ten independent pieces of information about a
response if it comprises five pairs of siblings. Independence can be restored
by declaring a factor Sibling, or by measuring just one individual at random
of each pair. Likewise, a response of leaf area to soil type is tested with
replicates given by the number of independent plants not, by the number of
leaves.

Interaction  An interaction tests whether the effect of one factor on a response
depends on the level of another factor. For example, students may respond
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to different tutorial systems according to their age, indicated by a significant
interaction effect Age*System on the response. If one factor is a covariate,
the interaction is illustrated by different regression slopes at each level of the
categorical factor. Two covariates show a significant interaction in a curved
plane for their combined effect on the response. An interaction effect must
always be interpreted before its constituent main effects, because its impact
influences interpretation of the main effect.

Linear model A model with linear (additive) combinations of parameter
constants describing effect sizes. Linear models can describe non-linear
trends in covariates, for example by transformation of the data or fitting a
polynomial model. All the models in this book are linear.

Main effect A main effect tests whether the effect of one factor on a response
occurs irrespective of the level of another factor. For example, students may
respond to different tutorial systems regardless of their age. Main effects
must always be interpreted after interpreting any interactions.

Marginality  The fundamental principle of ANOVA that terms be tested in
hierarchical order. This becomes an issue in non-orthogonal designs, where
the variance due to an interaction must be estimated after factoring out the
variance due to the terms contained within it.

Mean The arithmetic average value of the responses in a sample. The sample
means provide the fitted values from which effect size is measured in analyses
of categorical factors. In covariate analysis, the linear regression pivots on
the coordinate for the sample means of response and covariate: (x, y).

Mean square (MS) The variance measured as variation per degree of freedom.
The F-ratio is the ratio of explained to unexplained MS, where the
numerator is the MS explained by the model and the denominator is the
error MS left unexplained by the model.

Mensurative study A study that tests the effect of one or more factors on a
response without controlled manipulation.

Mixed model A model with random and fixed factors.

Model The hypothesised effect(s) on a response, which can be tested with
ANOVA for evidence of pattern in the data. An ANOVA model contains
one or more terms, each having an effect on the response that is tested
against unmeasured error or residual variation. A model with a single factor
(whether categorical or covariate) is written: Y =A +¢, and the ANOVA
tests the term A against the residual €. Models with multiple factors require
care with declaring all terms in a statistical package. For example, the cross-
factored with nesting model: Y =C|B'(A) +¢ is analysed by declaring the
terms: C|A + C|B(A). The two-factor randomised-block model: Y + S'|B|A is
analysed by declaring the terms: S|B|A — S*B*A for a Model 1 analysis, or
the terms: S+ BJA for a Model 2 analysis.

Model 1 In designs without full replication, an ANOVA model that assumes
the presence of block-by-treatment interactions, even though the design has
not allowed for their estimation. Randomised-block designs may be analysed
by Model 1 or Model 2. Repeated-measures designs are generally analysed
by Model 1.
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Model 2 In designs without full replication, an ANOVA model that assumes the
absence of block-by-treatment interactions, even though the design has not
allowed for any direct test of this assumption. Randomised-block designs may be
analysed by Model 1 or 2. Split-plot designs are generally analysed by Model 2.

Multiple tests ~ Multiple tests of the same hypothesis cause inflation of the Type I
error rate. The problem arises in data probing, involving an unplanned search
for any significant differences amongst a set of samples. For example, if
replicate measures are taken from two levels of a factor A and from three levels
of a factor B, then a search for any differences between the five samples might
involve a total of ten independent ¢ tests (A; versus A,, A; versus By, ... etc.).
If each has a Type I error rate of 0.05, then the ensemble of ten tests has a
probability of 1 —0.95'" = 0.40 of mistakenly rejecting the null hypothesis of no
single difference between any sample means. This unacceptably high rate is
avoided only by using a statistical model that respects a planned design of data
collection. A cross-factored ANOVA would partition the total variance in the
response into three testable sources: A, B, and B*A, each with their own P-
value testing a specific null hypothesis.

Nested factor  One factor is nested within another when each of its levels are
tested in (or belong to) only one level of the other. For example a response
measured per leaf for a treatment factor applied across replicate trees must
declare the trees as a random factor nested in the treatment levels. The
sampling unit of Leaf is then correctly nested in Tree nested in Treatment.

Nuisance variable  Factors or covariates holding no interest in their own right,
but requiring inclusion in the model in order to factor out their contributions
to variation in the data.

Null hypothesis (Hy) The statistically testable hypothesis of no pattern in the
data. The null hypothesis is the proposal that nothing interesting is
happening, against which to test a model hypothesis of trend in a sample
or differences between samples. If the test upholds the null hypothesis, then
we conclude that the ANOVA model takes the form Y =¢g; otherwise we
infer a significant effect of a factor of interest on the response. A null
hypothesis must be open to falsification. For example, a null hypothesis of
zero difference between samples is capable of falsification. A suitable
ANOVA will evaluate the evidence for a difference and accept or reject the
null hypothesis accordingly. In contrast, a null hypothesis of a difference
between samples is not capable of falsification, because absence of evidence
(for a difference) is not evidence of absence.

Ordinary least squares (OLS) A method of estimating the values of parameters
in linear models by minimising the sum of squared deviations of each
observation of the response from the model estimate. In ANOVA, this sum is
known as the residual sum of squares, SS,csiqua, and it partitions out the
variation left unexplained by the model.

Orthogonality A cross-factored design is orthogonal if each of its factors are
independent of each other. Two categorical cross factors are orthogonal by
design if each level of one is measured at every level of the other. Orthogonal
designs partition total variation in the response straightforwardly into
testable components using sequential sums of squares for each effect in turn.
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Although a balanced design generally (but not inevitably) ensures
orthogonality, this can be difficult to achieve in practice, especially with
covariates. Two covariates are only orthogonal if they have a correlation
coefficient of zero. Loss of orthogonality can reduce or enhance the power of
a design to detect effects, and usually requires analysis with the aid of
adjusted sums of squares calculated in a GLM.

Parsimony  The principle of sampling the minimum number of factors
necessary to answer the question of interest with a single model. Each
additional cross factor adds an extra dimension to the design and multiplies
up the number of potential sources of variation in the response. For example
the one-way model Y =A +¢ has one testable source (A); the two-factor
model: Y=B|A +¢ has three testable sources (A + B+ B*A); the three
factor model Y = C|B|A + ¢ has seven testable sources, and so on. Parsimony
is not improved by ignoring any nuisance factors that contribute to variation
in the data. These must be included in the analysis.

Placebo A treatment used in medicinal trials to control for extraneous
variation by mimicking the test procedure in all respects other than the
therapeutic benefit of interest. For example, a drug trial for the effectiveness
of a medicinal pill requires a treatment with two levels: drug and placebo,
where the placebo is a dummy pill of the same shape and colour as the drug
pill except that it does not contain the drug. The need for a control is well
illustrated by the ‘placebo effect’ — the psychological boost to health that can
be stimulated by an environment of medical care. For this reason, the
treatment levels usually need to be allocated in a ‘double blind’ trial, whereby
neither doctor nor patient can distinguish drug from placebo.

Polynomial predictor A polynomial equation describes a curvilinear
relationship with one or more exponents. Polynomials can be tested with
linear models by declaring the covariate more than once. For example, the
relationship: y =a + bx + cx? is tested in GLM by requesting the polynomial
predictor in the form: X|X and taking sequential SS.

Pooling  The construction of an error term from more than one source of
variance in the response. A priori pooling occurs in designs without full
replication, where untestable interactions with random factors are pooled
into the residual variation. The analysis then proceeds on the assumption
that the interactions are either present (Model 1) or absent (Model 2).
Planned post hoc pooling is applied to mixed models by pooling a non-
significant error term with its own error term. The design is thereby
influenced by the outcome of the analysis (in terms of whether or not an
error term is itself significant). More generally, pooling can describe the
process of joining together samples, for example in calculating a main effect
MS by pooling across levels of a cross factor.

Population In a statistical model for analysis of variance, the population is the
theoretical complete set of units from which we sample replicate independent
and randomly selected measures for the purposes of testing treatment effects.
Any random factor requires a clear definition of the population it describes,
so that a given sampling regime can be seen to fairly represent it. For
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example, do the subjects for a treatment come from a particular age, gender
or ethnic group?

Post hoc tests  Tests that are supplementary to the original hypothesis.

Power The capacity of a statistical test to detect an effect if it truly occurs. A
test with high power has a low probability of mistakenly accepting a false
null hypothesis (i.e., a low Type II error rate). Power increases with more
replication, provided it is applied at an appropriate scale. For example a
response measured per leaf for a treatment applied across replicate trees
includes trees as a random factor nested in the treatment levels. The power of
the design depends on the number of replicate trees per treatment level, and
not directly on the number of replicate leaves per tree.

Pseudoreplication ~ The result of replicates in a sample not being truly
independent of each other, which inflates the Type I error rate. ANOVA
models are particularly prone to pseudoreplication if they omit to declare
sources of nuisance variation in addition to the effects of interest.

Random factor A factor with levels that sample at random from a defined
population. A random factor will be assumed to have a normal distribution
of sample means, and homogeneous variance of means, if its MS is the error
variance for estimating other effects (e.g., in nested designs). The random
factor has a significant effect if the variance among its levels is considerably
greater than zero.

Random sampling  Replicate measures of a response to a given factor level
must be taken at random if they are to represent the population that is being
sampled. As with any statistical test, ANOVA assumes random sampling.
This assumption is violated for instance if a test for a gender effect of body
weight samples heavier males and lighter females.

Randomised-blocks A design containing a random blocking factor, crossed
with other factor(s) that have a randomised order of levels within each block.

Regression  Analysis of a covariate, or multiple covariates in the case of multiple
regression. In this book we refer to such analyses as analyses of covariance,
regardless of whether or not the model also includes categorical factors.

Repeated-measures A design containing a random factor (usually Subject)
crossed with one or more treatments having levels that are applied in a fixed
sequence (usually temporal). For example, the performance of subjects may be
tested before and after imbibing a treatment drink with two levels: tonic and
control. The repeated-measures factor is Time with two levels: before and
after. The design has no degrees of freedom for testing residual variation.

Repeated-measures factor A factor (usually temporal) with a fixed sequence of
levels that are crossed with a random factor (usually Subject).

Replicates Randomly selected and independent measurements of the response
that together make up a sample of the population of interest.

Replication A model is fully replicated if it has true residual variation, given by
a nesting of sampling units in samples. Full replication requires taking more
than one independent, randomly selected measurement of the response at
each level of each categorical factor, or at each combination of levels of
crossed factors. The true residual variation allows estimation of all the
explained components of variation.
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Residual variation ~ All ANOVA models have residual variation defined by the
variation amongst sampling units within each sample. This is always given by
the last mean square in ANOVA tables, and denoted ‘¢’ (epsilon) in the
descriptions of fully replicated models. Models without full replication may
have no degrees of freedom for measuring residual variation (e.g.,
randomised-block, split-plot and repeated-measures models).

Response  The continuous variable on which data are collected to test for
sources of variance. The response is the variable Y on the left of the equals
sign in the model equation: Y = A + ¢, etc.

Restricted model A mixed model (i.e., with random and fixed factors) is termed
restricted if a random factor is not allowed to have fixed cross factors
amongst its components of variation estimated in the population. This
restriction influences the choice of error MS for random effects. The
ANOVA tables in this book are all constructed with the restricted model.

Sample A group of replicate measures of the response taken at the same level of
a categorical factor (or combination of factor levels if several categorical
factors are present), or across a range of values of a covariate.

Sampling unit  The basic unit from which is recorded a single measure or
observation of the response.

Significance  The strength of evidence for an effect, measured by a P-value
associated with the F-ratio from analysis of variance. A significant effect has
a small P-value indicating a small chance of making a Type I error. For
example, P < 0.05 means a less than 5% chance of mistakenly rejecting a true
null hypothesis. For many tests this would be considered a reasonable level
of safety for rejecting the null hypothesis of no effect, in favour of the model
hypothesis of a significant effect on the response. The significance of an effect
is not directly informative about the size of the effect. Thus an effect may be
statistically highly significant as a result of low residual variation, yet have
little biological significance as a result of a small effect size in terms of the
amount of variation between sample means or the slope of a regression. A
non-significant effect should be interpreted with reference to the Type II
error rate, which depends on the power of the test to detect significant effects.

Split-plot A design with two or more treatment factors, and the levels of one
factor applied at a different scale to those of another. For example, whole
blocks might be allocated to wet or dry watering regime, and plots within
blocks allocated to dense or sparse sowing density.

Sum of squares (SS)  The sum of squared deviations of each independent piece of
information from its modelled value. Analysis of variance partitions the total
variation in the response into explained and unexplained sums of squares.

Test hypothesis H;  The hypothesis describing the statistical model to be tested
by analysis of variance. The hypothesis H; may have several partitions (e.g.,
A + B+ B*A), which describe putative pattern in the data. The evidence for
pattern is tested against the null hypothesis H, of no pattern.

Transformation A re-scaling procedure applied systematically to the response
and/or covariates with the purpose of meeting the assumptions of the
analysis. For example, measurements of volume and length might be log-
transformed to linearise the relationship between them.



280 Glossary

Treatment A factor with levels that are applied in a manipulative experiment.
More loosely, a factor of interest (as opposed to a nuisance variable).
Type I error  The mistake of rejecting a true null hypothesis. A maximum
acceptable Type I error rate should be set a priori; in the biological sciences it
is often taken to be a=0.05. An effect is then considered significant if it
returns a P < 0.05. The Type I error is particularly susceptible to inflation in
multiple tests of the same hypothesis. It is an unavoidable cause of false

positives in screening programmes for rare phenomena.

Type Il error  The mistake of accepting a false null hypothesis. An acceptable
Type 11 error should be set a priori; in the biological sciences it is often taken
to be f=0.20. The power of a test is greater the smaller is 3. Models without
full replication are particularly susceptible to Type II error, as a result of not
testing higher-order interactions.

Unrestricted model A mixed model (i.e., with random and fixed factors) is
termed unrestricted if a random factor is allowed to have fixed cross factors
amongst its components of variation estimated in the population. This
freedom influences the choice of error MS for random effects. The
unrestricted model is not used in this book to construct ANOVA tables,
though differences are noted in footnotes to the tables. It is generally used
for unbalanced designs analysed with GLM.

Variance The variation in the data, measured as the average squared deviation
of the data from the mean. Analysis of variance partitions the total variance
into explained and unexplained components and estimates these variances as
mean squares (MS).



References

Allison, D. B., Allison, R. L., Faith, M. S., Paultre, F. and Pi-Sunyer, F. X. (1997)
Power and money: designing statistically powerful studies while minimizing
financial costs. Psychological Methods, 2, 20-33.

Beck, M. W. (1997) Inference and generality in ecology: Current problems and an
experimental solution. Oikos, 78, 265-73.

Carey, J. M. and Keough, M.J. (2002) The variability of estimates of variance,
and its effect on power analysis in monitoring design. Environmental
Monitoring and Assessment, 74, 225-41.

Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences, Second
Edition. New Jersey: Lawrence Erlbaum.

Cohen, J. (1992) Quantitative methods in psychology: a power primer.
Psychological Bulletin, 112, 155-9.

Colegrave, N. and Ruxton, G.D. (2003) Confidence intervals are a more useful
complement to nonsignificant tests than are power calculations. Behavioral
Ecology, 14, 446-450.

Crawley, M. J. (2002) Statistical Computing. An Introduction to Data Analysis using
S-Plus. Chichester: Wiley.

Darlington, R.B. and Smulders, T.V. (2001) Problems with residual analysis.
Animal Behaviour, 62, 599-602.

Davey, A.J.H. (2003) Competitive interactions in stream fish communities. Ph.D.
thesis, University of Southampton, Southampton.

Day, R. W. and Quinn, G. P. (1989) Comparisons of treatments after an analysis
of variance in ecology. Ecological Monographs, 59, 433-63.

Dayton, P.K. (1998) Reversal of the burden of proof in fisheries management.
Science, 279, 821-2.

Di Stefano, J. (2003) How much power is enough? Against the development of an
arbitrary convention for statistical power calculations. Functional Ecology,
17, 707-9.

Dytham, C. (1999, 2003) Choosing and Using Statistics: A Biologist’s Guide.
Oxford: Blackwell.

Field, S. A., Tyre, A.J., Jonzén, N., Rhodes, J. R. and Possingham, H. P. (2004)
Minimizing the cost of environmental management decisions by optimizing
statistical thresholds. Ecology Letters, T, 669-75.

281



282 References

Freckleton, R.P. (2002) On the misuse of residuals in ecology: regression of
residuals vs. multiple regression. Journal of Animal Ecology, 71, 542-5.
Garcia-Berthou, E. (2001) On the misuse of residuals in ecology: testing
regression residuals vs. the analysis of covariance. Journal of Animal Ecology,

70, 708-11.

Grafen, A. and Hails, R. (2002) Modern Statistics for the Life Sciences. Oxford:
Oxford University Press.

Graham, M.H. and Edwards, M.S. (2001) Statistical significance versus fit:
estimating the importance of individual factors in ecological analysis of
variance. Oikos, 93, 505-13.

Greenwood, J.J. D. (1993) Statistical power. Animal Behaviour, 46, 1011.

Hines, W.G.S. (1996) Pragmatics of pooling in ANOVA tables. The American
Statistician, 50, 127-39.

Hoenig, J. M. and Heisey, D. M. (2001) The abuse of power: the pervasive fallacy
of power calculations for data analysis. American Statistician, 55, 19-24.
Hurlbert, S.H. (1984) Pseudoreplication and the design of ecological field

experiments. Ecological Monographs, 54, 187-211.

Toannidis, J. P. A. (2005) Why most published research findings are false. Public
Library of Science Medicine, 2, 696-701.

Janky, D. G. (2000) Sometimes pooling for analysis of variance hypothesis tests:
a review and study of a split-plot model. The American Statistician, 54,
269-179.

Jennions, M. D. and Maoller, A.P. (2003) A survey of the statistical power of
research in behavioral ecology and animal behavior. Behavioral Ecology, 14,
438-45.

Kent, A., Hawkins, S.J. and Doncaster, C. P. (2003) Population consequences of
mutual attraction between settling and adult barnacles. Journal of Animal
Ecology, 72, 941-52.

Keough, M.J. and Mapstone, B. D. (1997) Designing environmental monitoring
for pulp mills in Australia. Water Science and Technology, 35, 397-404.
Keppel, G. and Wickens, T.D. (1973, 1982, 1991, 2004) Design and Analysis: A

Researcher’s Handbook. New Jersey: Prentice-Hall.

Kirk, R. E. (1968, 1982, 1994) Experimental Design: Procedures for the Behavioural
Sciences. Belmont CA: Wadsworth.

Lenth R.V. (2001) Some practical guidelines for effective sample size
determination. American Statistician, 55, 187-93.

Mapstone, B. D. (1995) Scalable decision rules for environmental impact studies:
effect size, Type I and Type II errors. Ecological Applications, 5, 401-10.

McClelland, G. H. (1997) Optimal design in psychological research. Psychological
Methods, 2, 3—19.

McKillup, S. 2006. Statistics Explained. An Introductory Guide for Life Scientists.
Cambridge: Cambridge University Press.

Moran, M.D. (2003) Arguments for rejecting the sequential Bonferroni in
ecological studies Oikos, 100, 403-5.

Motulsky, H. and Christopoulos, A. (2004) Fitting Models to Biological Data
Using Linear and Nonlinear Regression. Oxford: Oxford University Press.



References 283

Newman, J.A., Bergelson, J. and Grafen, A. (1997) Blocking factors
and hypothesis tests in ecology: is your statistics text wrong? Ecology, 78,
1312-20.

Peterman, R. M. (1990) Statistical power analysis can improve fisheries research
and management. Canadian Journal of Fisheries and Aquatic Sciences, 47,
2-15.

Quinn, G. P. and Keough, M.J. (2002) Experimental Design and Data Analysis for
Biologists. Cambridge: Cambridge University Press, UK.

Ratkowski, D.A., Evans, M.A. and Alldredge, J.R. (1993) Cross-over
Experiments. Design, Analysis and Application. Statistics Textbooks and
Monographs. New York: Marcel Dekker.

Resetarits, W.J., Jr. and Bernardo, J. (eds.) (1998) Experimental Ecology: Issues
and Perspectives. Oxford: Oxford University Press.

Ruxton, G. D. and Colegrave, N. (2003) Experimental Design for the Life Sciences.
Oxford: Oxford University Press.

Schultz, E.F. (1955) Rules of thumb for determining expectations of mean
squares in analysis of variance. Biometrics, 11, 123-35.

Searle, S.R. (1971, 1997) Linear Models. New York: John Wiley.

Searle, S. R., Casella G. and McCulloch, C. E. (1992) Variance Components. New
York: John Wiley & Sons.

Shaw, R.G. and Mitchell-Olds, T. (1993) ANOVA for unbalanced data: an
overview. Ecology, 74, 1638—45.

Sokal, R.R. and Rohlf, F.J. (1969, 1981, 1995) Biometry. New York: Freeman
and Co.

Tagg, N., Innes, D.J. and Doncaster, C.P (2005). Outcomes of reciprocal
invasions between genetically diverse and genetically uniform populations of
Daphnia obtusa (Kurz). Oecologia, 143, 527-36.

Thomas, L. and Juanes, F. (1996) The importance of statistical power analysis: an
example from animal behaviour. Animal Behaviour, 52, 856-9.

Underwood, A.J. (1994) On beyond BACI: sampling designs that might reliably
detect environmental disturbance. Ecological Applications, 4, 3—15.

Underwood, A.J. (1997) Experiments in Ecology: Their Logical Design and
Interpretation Using Analysis of Variance. Cambridge: Cambridge University
Press.

Winer, B.J., Brown, D.R. and Michels, K. M. (1962, 1971, 1991) Statistical
Principles in Experimental Design. New York: McGraw-Hill.

Zar, J.H. (1974, 1984, 1996, 1998) Biostatistical Analysis. New Jersey: Prentice
Hall.



Index of all ANOVA models

with up to three factors

D—D=APMm T=2J1¢:L9 vid o) (via)slo=x 9L1 6'S
D=D=APMm T=2J11T 99 (Vg o) (V) so=x €L1 EXS
D-D=APMT=2]J19¢¢9 A% qa/0 (v)slalo=x 0LT LS
- =AM ‘T=qJ '] ¢9 v q (V)sld=x L91 9¢
\% q o) (W) sldo=x €91 Y
- A% q o) (vl,9)dla)0lb=x 8S1 ¥'S
- A% qa/0 (vI,9)dldao=x pST €¢
- vid o) (vlal,s)dlo=A 0ST Ts
- v q vl,9)dld=X 91 I's
suSisop jord-dg ¢ 1adey)
- vidaD vigolis=A pel 7
9 - vid vidals=x 8TI T
19 - v vIS=4X& 11 I't
SuSISop }o0[q-pasiwopuey :f Idey)
Surduwres-qns qum [°¢ (VgD s+(VD=A 601 v'e
8%} {e) 3+ (V)ED=X 86 €€
vigaD 3+vldo=x 98 Te
vid 3+vld=A 8L I'¢
sugisop [eLI0jov) paresrdar A :¢ 1adey)
Surdures-qns qiA [°C (V)9)D 2+ (VDO=A L Tt
Surpdwes-qns Qs '] (V4 3+ (V)d=A 89 1'c
sugisop pajsoN 7 1ardey)
189} J SJuapmI§ B ‘T=0 J| v 3+V=4X 79 I'l
suSisop 10300)-0uQ | Joydey)
sooud[eAmbey (S (d)  (O)sod  ()srord [PPOIN a5eq 1dey)
sy00lqns 10 S10[d -qng  -qns-qng
syoorg

01 pardde sjuouneary,

‘sugisop pajeoridar A[ny e a1e yooq oy} jo ¢ 01 | siadey)
Ul po[Ie1dp 9SO, SI0J0B] JUdW)LAI) 1Y) 0 dn Ym S[OPOW [[B IA0D MO[q PisI| SuSisap ¢z oy L

284



uoneordor JnoyIm ¢

uonedrdar jnoyim ¢

D=4 ym
D-D=Aym
D=4 ym

g —g =X pm

T=2]1€6S
T=2J1T RS
T=2JE9LS

T=N119¢
4
(2%

1591 7 o[dwres-pasted ® ‘¢=0 J1 {['}

/0
(@0

vidaD
vid

vidd=A
via=A

(vla)so=x
(V) so=x

W)slao=x
(W) sl@o=x

(V)sla=x
vlgadls=A
vidl s=X

vIS=A

[4%4 L
0€T I'L
sugisop pajeodrjdorun) i/ 11dey)
0ce L9
4% 99
S0T S9
00T ¥'9
sol €9
061 9
L81 1'9

sugisop sarnseaw-pajeadoy :9 11dey)

285



Index

a priori contrasts, 245
adjusted sums of squares, 35, 78, 125, 127,
237, 240, 268, 269
analysis of covariance, 11 See ANCOVA
models
ANCOVA models, 11, 16, 29, 57
ANOVA models, 8, 284
assumptions of ANOVA, 14, 118, 143, 183
fixed predictor, 16
homogeneity of covariances, 16, 118, 143,
183
homogeneous variances, 15, 17
independence, 15, 118, 143, 184
linearity, 16, 32
normality, 15, 17, 268
random sampling, 15

balance, 237
Bayesian inference, 2, 257
before-after-control-impact, 168, 201
block, 58, 87, 115, 141, 182
balanced incomplete, 124, 127
blocking, 26
nested blocks, 99
randomised complete, 125, 251
Bonferroni method, 247

carryover effects, 125, 181

coefficient of determination, 12, 35, 245

comparisons, 247 See post hoc comparisons

confounding factors, 67, 189, 193

contrasts, 245 See a priori contrasts

control, 4, 21, 50, 117, 180, 246, 264

correlation, 35, 67, 118, 143, 183, 229, 238
coefficient, 12, 238

counterbalancing, 182

covariates, 1, 4, 29, 37, 77, 265,

266, 267
crossed factors, 24 See factorial designs
crossover trial, 125

degrees of freedom, &, 10, 12,
23, 36, 253

double blind trial, 180

Dunnett’s test, 184, 247

Dunn-Sidak procedure, 247

effect size, 244, 249, 250
error rate, 3, 13
Type 1, 3, 10, 12, 13, 38, 62, 118,
143, 183, 184, 229, 247, 252, 264,
268, 270
Type 11, 3, 13, 38, 39, 185, 229, 249
error variance, 4, 6, 10, 12, 37, 249

F distribution, 10, 15
factorial designs, 5, 24, 58, 76
false claims, 255
fixed factor, 5, 17, 243
fixed predictor assumption, 16
See assumptions of ANOVA

F-ratio, 10, 12, 35

Quasi-, inexact or approximate, 40

general linear models, 29 See GLM
generalised linear models, 29 See GLIM
GLIM, 2, 16, 35, 245

GLM, 29, 32, 78, 125, 241, 247, 268

hierarchical structure, 36, 67, 76, 241
homogeneity of covariances assumption, 16
See assumptions of ANOVA
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homogeneous variances assumption, 15
See assumptions of ANOVA
hypothesis testing, 13

independence, 15, 118, 143, 184
See assumptions of ANOVA

interaction, 5, 24, 31, 266, 267

interaction plot, 77, 261

Latin-square design, 125
linearity assumption, 16, 32
see assumptions of ANOVA

magnitude of effect, 244

main effect, 5, 6, 24, 30, 241

manipulative experiment, 1, 61, 116

marginality principle, 40, 241

mean squares, 10, 12

mensurative study, 1, 18, 61

mixed model, 21, 242

model formulation, 2, 58, 258

model presentation, 260, 264

model simplification, 2, 40, 77, 238, 241

multiple comparisons, 247 See post hoc
comparisons

multiple tests, 247, 252, 256, 270

nested designs, 5, 21, 58, 67
non-significant terms, 38, 251
normality assumption, 15, 17, 268

See assumptions of ANOVA
nuisance variable, 2, 17, 26, 32, 117, 266
null hypothesis, 2, 3, 13, 17, 39, 53, 55

one-factor designs, 58, 61
ordinal scale, 267

ordinary least squares, 11
orthogonal factors, 238, 240

paired-sample ¢ test, 122, 188, 285
parsimony, 2, 40, 241

placebo, 180 See control

planned contrasts, 245 See a priori contrasts
polynomial predictor, 34, 85, 95, 97, 113
post hoc comparisons, 245

post hoc pooling, 38, 41, 51

power of the design, 38, 52, 248, 250
practice effects, 181

pseudoreplication, 27, 62, 184

P-value, 3, 10, 12, 13, 261, 270

random factor, 5, 16, 242
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random-sampling assumption, 15
See assumptions of ANOVA

randomised block, 26 See blocking
regression, 4 See covariates
regression slope, 12, 30, 35, 244
repeated measures, 28, 58, 59, 127, 179
replication, 8, 10, 19, 21, 70, 185, 252

advantages of, 120, 144, 189

cost of, 252

lack of, 26, 29, 43, 117, 141, 184, 266
residual variance, 4 See error variance
response variable, 3, 6, 8, 44
restricted maximum-likelihood, 245
restricted model, 242, 243
Ryan’s test, 247

Satterthwaite’s approximation, 68, 238
significance level, 3, 10, 13, 246, 249
spatial factors, 19, 116
sphericity condition, 183 See homogeneity
of covariances assumption

split-plot design, 27, 52, 58, 99, 141, 197
statistical model, 2, 6, 13
stratified random design, 26, 171
Student’s ¢ test, 64, 284

misuse of, 252
subject-by-treatment designs, 181
subject-by-trial designs, 179
sum of squares, 8, 12
switching, 125, 182

temporal factors, 19, 116

test hypothesis, 3, 13

transformations, 16, 33, 261, 269
troubleshooting, 264

Tukey’s honestly significant difference, 247
Type I error, 13 See error rate

Type II error, 13 See error rate

unbalanced designs, 35, 62, 68, 237

unplanned comparisons, 247 See post hoc
comparisons

unreplicated designs, 16, 59, 119, 144, 184
See replication

unrestricted model, 54, 242, 243

unwanted variation, 26 See nuisance
variable

variance components, 245
Youden-square design, 127

zeros values, 269



Categories of model

1. One factor 4. Randomised blocks
S'A) A | A | A | A, P'(S'BIA)| S; | S; | S3 | S,
s it o B[l Pl - || - (] P,
Bb Pnb
B
A, !
7 | I | I | =T Boll - Il - | - ||Pnpa
2. Fully replicated nested 5. Split plot
factors
z A, A, Q'BIP(S'1A) S; | S» | S; | S,
8 B B B B, || @ Q
7 1 -3 ba A, 1 "N | R | n
B o | T | I | e
S1 b nb
B
A,
Bo f| = | - | - [|Qnea
Sn Snb Snba
3. Fully replicated crossed 5-6. Split plot + repeated
factors measures
S'(BJA) A, A, % A A,
)
S1 E_’ S1 Sn sna
B1
Sn B1 l:)1 Pn Pna
BZ
By B
S - |lIs
® nba Boll - Il - Il - I|Posa




