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Regression with Categorical Predictor Variables 
 

 
1.   Overview of regression with categorical predictors 
 

• Thus far, we have considered the OLS regression model with continuous 
predictor and continuous outcome variables.  In the regression model, there 
are no distributional assumptions regarding the shape of X; Thus, it is not 
necessary for X to be a continuous variable. 

• In this section we will consider regression models with a single categorical 
predictor and a continuous outcome variable. 
o These analyses could also be conducted in an ANOVA framework.  

We will explore the relationship between ANOVA and regression. 
 

• The big issue regarding categorical predictor variables is how to represent a 
categorical predictor in a regression equation.  Consider an example of the 
relationship between religion and attitudes toward abortion.  In your dataset, 
you have religion coded categorically.  A couple of problems immediately 
arise: 
o Because religion is not quantitative, there is not a unique coding 

scheme.  Coding scheme A and coding scheme B are both valid ways 
to code religion – we need to make sure that our results are not 
dependent on how we have coded the categorical predictor variable. 

 
Coding A 
Religion Code 
Catholic 1 
Protestant 2 
Jewish 3 
Other 4 

 

Coding B 
Religion Code 
Protestant  1 
Jewish 2 
Catholic 3 
Other 4 

 
 

o Even if we solve the coding problem (say we could get all researchers 
to agree on coding scheme A), the regression model estimates a linear 
relationship between the predictor variable and the outcome variable. 
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XbbY 10 +=  

)(Re10 ligionbbionowardAbortAttitudesT +=  
 

• Consider the interpretation of 1b : A one-unit increase in religion is 
associated with a 1b  using increase in attitudes toward abortion. 

• But what is a one-unit increase in religion!?! 
• We need to consider alternative methods of coding for categorical 

predictor variables 
 

• We will consider three ways to code categorical predictor variables for 
regression: 
o Dummy coding 
o Effects coding 
o Contrast coding 

What all these methods have in common is that for a categorical predictor 
variable with a levels, we code it into a-1 different indicator variables.  All a-
1 indicator variables that we create must be entered into the regression 
equation. 

 
2.   Dummy coding 

• For dummy coding, one group is specified to be the reference group and is 
given a value of 0 for each of the (a-1) indicator variables.   

 
 

Dummy Coding of Gender 
     (a = 2) 
Gender D1 
Male 1 
Female 0 

 

Dummy Coding of Treatment Groups 
    (a = 3) 
Group D1 D2 
Treatment 1 0 1 
Treatment 2 1 0 
Control 0 0 
 

Dummy Coding of Religion (a = 4) 
Religion D1 D2 D3 

Protestant 0 0 0 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 
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• The choice of the reference group is statistically arbitrary, but it affects how 
you interpret the resulting regression parameters. Here are some 
considerations that should guide your choice of reference group (Hardy, 
1993): 
o The reference group should serve as a useful comparison (e.g., a 

control group; a standard treatment; or the group expected to have the 
highest/lowest score). 

o The reference group should be a meaningful category (e.g., not an 
other category). 

o If the sample sizes in each group are unequal, it is best if the reference 
group not have a small sample size relative to the other groups. 

 
• Dummy coding a dichotomous variable 

o We wish to examine whether gender predicts level of implicit self-
esteem (as measured by a Single Category Implicit Association Test).  
Implicit self-esteem data are obtained from a sample of women (n = 
56) and men (n = 17). 
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o In the data gender is coded with male = 1 and female = 2.   
 

o For a dummy coded indicator variable, we need to recode the variable, 
Let’s use women as the reference group (imagine we live in a 
gynocentric world). 
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Dummy Coding of Gender (a = 2) 

Gender D1 
Male 1 

Female 0 
 

IF (gender = 2) dummy = 0. 
IF (gender = 1) dummy = 1. 

 
o Now, we can predict implicit self esteem from the dummy-coded 

gender variable in an OLS regression. 
 

DummybbEsteemSelfImplicit  *10 +=−  
 

o Using this equation, we can obtain separate regression lines for women 
and men by substituting appropriate values for the dummy variable. 

 
For women: Dummy = 0 

0*10 bbEsteemSelfImplicit  +=−  
  0b=  
 

For men: Dummy = 1 
1*10 bbEsteemSelfImplicit  +=−  

  10 bb +=  
 

o Interpreting the parameters: 
• 0b  = The average self-esteem of women (the reference group) 

The test of 0b  tells us whether the mean score on the outcome variable of 
the reference group differs from zero. 

• 1b  = The difference in self-esteem between women and men 
The test of 1b  tells us whether the mean score on the outcome variable 
differs between the reference group and the alternative group. 
 

• If we wanted a test of whether the average self-esteem of men differed 
from zero, we could re-run the analysis with men as the reference 
group. 
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o Interpreting other regression output 
• The Pearson correlation between D1 and Y, YDr

1
, is the point biserial 

correation between gender (male vs. female) and Y. 
• 22

1YDrR =  is the percentage of variance (of the outcome variable) that 
can be accounted for by the female/male dichotomy. 

 
o Running the analysis in SPSS 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT implicit 
  /METHOD=ENTER dummy. 

 
Model Summary

.404a .163 .151 .28264
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), dummya. 
 

Coefficientsa

.493 .038 13.059 .000
-.291 .078 -.404 -3.716 .000 -.404 -.404 -.404

(Constant)
dummy

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: implicita. 
 

 
DummyEsteemSelfImplicit  *)291.(493. −+=−  

 
• The test of 0b  indicates that women have more positive than negative 

associations with the self (high self-esteem), 01.,06.13)71(,49. <== ptb .  
Also, we know 49.0=WomenY . 

• The test of 1b  indicates that men’s self esteem differs from women’s 
self-esteem by -0.29 units (that is, they have lower self-esteem), 

01.,72.3)71(,29. <=−= ptb . 
• By inference, we know that the average self-esteem of men is 

202.291.493.10 =−=+ bb .  However, with this dummy coding, we do 
not obtain a test of whether or not the mean score for men differs from 
zero. 

 
• The female/male distinction accounts for 16% of the variance in 

implicit self-esteem scores, 16.2 =R . 
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o Confirming the results in SPSS 
EXAMINE VARIABLES=implicit BY gender. 

Descriptives

.2024 .07529

.4932 .03662
Mean
Mean

gender
Male
Female

implicit
Statistic Std. Error

 
 

• Dummy coding a categorical variable with more than 2 levels 
o Let’s return to our example of the relationship between religion and 

attitudes toward abortion.  We obtain data from 36 individuals   
(Protestant, n = 13; Catholic, n = 9; Jewish, n = 6; Other, n = 8). 
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o Because religion has four levels, we need to create 3 dummy variables.  
We have a choice of four possible reference groups: 

 
Reference Group = Protestant  

Religion D1 D2 D3 
Protestant 0 0 0 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 

 
Reference Group = Catholic 

Religion D1 D2 D3 
Protestant 1 0 0 
Catholic 0 0 0 
Jewish 0 1 0 
Other 0 0 1 

 

Reference Group = Jewish 
Religion D1 D2 D3 

Protestant 1 0 0 
Catholic 0 1 0 
Jewish 0 0 0 
Other 0 0 1 

 
Reference Group = Other 

Religion D1 D2 D3 
Protestant 1 0 0 
Catholic 0 1 0 
Jewish 0 0 1 
Other 0 0 0 
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• For this example, we will use Protestant as the reference group. 
 

IF (religion = 2) dummy1 = 1. 
IF (religion ne 2) dummy1 = 0. 
 
IF (religion = 3) dummy2 = 1. 
IF (religion ne 3) dummy2 = 0. 
 
IF (religion = 4) dummy3 = 1. 
IF (religion ne 4) dummy3 = 0. 

 
o When the categorical variable has more than two levels (meaning that 

more than 1 dummy variable is required), it is essential that all the 
dummy variables be entered into the regression equation. 

 
( ) ( ) ( )3322110 *** DbDbDbbATA +++=  

 
o Using this equation, we can obtain separate regression lines for each 

religion by substituting appropriate values for the dummy variables. 
 

Reference Group = Protestant 
Religion D1 D2 D3 

Protestant 0 0 0 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 

 
 
For Protestant: 0;0;0 321 === DDD  

( ) ( ) ( )0*0*0* 3210 bbbbATA +++=  
  0b=  

 
For Catholic: 0;0;1 321 === DDD  

( ) ( ) ( )0*0*1* 3210 bbbbATA +++=  
  10 bb +=  

 

For Jewish: 0;1;0 321 === DDD  
( ) ( ) ( )0*1*0* 3210 bbbbATA +++=  

  20 bb +=  
 
For Other: 1;0;0 321 === DDD  

( ) ( ) ( )1*0*0* 3210 bbbbATA +++=  
  30 bb +=  
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o Interpreting the parameters: 
• 0b  = The average ATA of Protestants (the reference group) 

The test of 0b  tells us whether the mean score on the outcome variable for 
the reference group differs from zero. 

• 1b  = The difference in ATA between Protestants and Catholics 
The test of 1b  tells us whether the mean score on the outcome variable 
differs between the reference group and the group identified by D1. 

• 2b  = The difference in ATA between Protestants and Jews 
The test of 2b  tells us whether the mean score on the outcome variable 
differs between the reference group and the group identified by D2. 

• 3b  = The difference in ATA between Protestants and Others 
The test of 3b  tells us whether the mean score on the outcome variable 
differs between the reference group and the group identified by D3. 

 

• If we wanted a test of whether the ATA of Catholics, Jews, or others 
differed from zero, we could re-run the analysis with those groups as 
the reference group.  Likewise if we wanted to test for differences in 
attitudes between Catholics and Jews, we could reparameterize the 
model with either Catholics or Jews as the reference group. 

 
o Interpreting Pearson (zero-order) correlation coefficients: 
• The Pearson correlation between D1 and Y, YDr

1
, is the point biserial 

correlation between the Catholic/non-Catholic dichotomy and Y. 
• 2

1YDr  is the percentage of variance (of the outcome variable) that can be 
accounted for my the Catholic/non-Catholic dichotomy 

 

• The Pearson correlation between D2 and Y, YDr
2

, is the point biserial 
correlation between the Jewish/non-Jewish dichotomy and Y. 

• 2
2YDr  is the percentage of variance (of the outcome variable) that can be 

accounted for my the Jewish/non-Jewish dichotomy 
 

• The Pearson correlation between D3 and Y, YDr
3

, is the point biserial 
correlation between the Other/non-Other dichotomy and Y. 

• 2
3YDr  is the percentage of variance (of the outcome variable) that can be 

accounted for my the Other/non-Other dichotomy 
 

• 2R  is the percentage of variance in Y (ATA) in the sample that is 
associated with religion.  2

AdjustedR  is the percentage of Y (ATA) 
variance accounted for by religion in the population
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o Running the analysis in SPSS 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT ATA 
  /METHOD=ENTER dummy1 dummy2 dummy3. 

Model Summary

.596a .355 .294 23.41817
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), dummy3, dummy2, dummy1a. 
 

Coefficientsa

93.308 6.495 14.366 .000
-32.641 10.155 -.514 -3.214 .003 -.442 -.494 -.456
10.192 11.558 .138 .882 .384 .355 .154 .125

-23.183 10.523 -.351 -2.203 .035 -.225 -.363 -.313

(Constant)
dummy1
dummy2
dummy3

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: ataa. 
 

ATA = 93.308+ −32.641* D1( )+ 10.192* D2( )+ −23.183* D3( ) 
  

• The test of 0b  indicates that the mean ATA score for Protestants, 
31.93=sProtestantY , is significantly above zero, 

01.,37.14)32(,31.93 <== ptb .  In this case, 0b  is probably meaningless 
(the scale responses have to be greater than zero). 

 
• The test of 1b  indicates that the mean ATA score for Catholics is 

significantly less than (because the sign is negative) the mean ATA 
score for Protestants, 01.,21.3)32(,64.32 <=−= ptb .  The mean ATA 
score for Catholics is 67.6064.3231.9310 =−=+= bbYCatholics .  The 
Catholic/non-Catholic distinction accounts for 19.5% of the variance 
in ATA scores ( 195.442. 22

1
==YDr ). 

 
• The test of 2b  indicates that the mean ATA score for Jews is not 

significantly different from the mean ATA score for Protestants, 
38.,88.0)32(,19.10 === ptb .  The mean ATA score for Jews is 

50.10319.1031.9320 =+=+= bbYJews .  The Jew/non-Jew distinction 
accounts for 19.5% of the variance in ATA scores ( 126.355. 22

2
==YDr ). 
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• The test of 3b  indicates that the mean ATA score for Others is 
significantly lower than the mean ATA score for Protestants, 

04.,20.2)32(,18.23 =−=−= ptb .  The mean ATA score for Others is 
13.7018.2331.9330 =−=+= bbYOthers .  The Other/non-Other distinction 

accounts for 5.1% of the variance in ATA scores ( 051.225. 22
3

=−=YDr ) 
 

• Overall 35.5% of the variability in ATA scores in the sample is 
associated with religion; 29.4% of the variability in ATA scores in the 
population is associated with religion. 

 
Note that the dummy variables are not orthogonal to each other.  As a 
result, the model 2R  does not equal (and in fact must be less than) the 
sum of the variance accounted for by each dummy variable. 

 
2222

321 YDYDYD rrrR ++<  
372.051.126.195.355. =++<  

 
• If we want other pairwise comparisons, we need to re-parameterize 

the model and run another regression.  For example, to compare each 
group to the mean response of Jewish respondents, we need Jewish 
respondents to be the reference category. 

 
Reference Group = Jewish 

Religion D1 D2 D3 
Protestant 1 0 0 
Catholic 0 1 0 
Jewish 0 0 0 
Other 0 0 1 

 
o Cautions about dummy coding 
• In some dummyesque coding systems, people use 1 or 2 coding or 0 

or 2 coding rather than a 0 or 1 coding.  You should not do this – it 
changes the interpretation of the model parameters. 

• We have (implicitly) assumed that the groups are mutually exclusive, 
but in some cases, the groups may not be mutually exclusive.  For 
example, a bi-racial individual may indicate more than one ethnicity.  
This, too, affects the model parameters and extreme care must be 
taken to avoid erroneous conclusions. 
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o Comparing alternative parameterization of the model. 
 

• Omitting all the details, let’s compare the four possible dummy code 
parameterizations of the model. 

 

 
o Note that model parameters, p-values, and correlations are all different. 
o In all cases, it is the unstandardized regression coefficients that have 

meaning.  We should not interpret or report standardized regression 
coefficients for dummy code analyses (This general rule extends to all 
categorical variable coding systems). 

o So long as the a-1 indicator variables are entered into the regression 
equations, the Model R2 is the same regardless of how the model is 
parameterized. 

 
 
 
 
 

Reference Group b β p r Model R2 
Protestant   b0 93.31  < .001  
   Dummy 1 -32.64 -.51 .003 -.44 
   Dummy 2 10.19 .14 .384 .36 
   Dummy 3 -23.18 -.35 .035 -.23 

 
 

.355 

       
Catholic   b0 60.67  < .001   
   Dummy 1 32.64 .57 .003 .32  
   Dummy 2 42.83 .58 .002 .36 .355 
   Dummy 3 9.46 .14 .412 -.23  
       
Jewish   b0 103.50  < .001   
   Dummy 1 -42.83 -.68 .002 -.44  
   Dummy 2 -10.19 -.18 .384 .32 .355 
   Dummy 3 -33.38 -.51 .013 -.23  
       
Other   b0 70.13  < .001   
   Dummy 1 -9.46 -.15 .412 -.44  
   Dummy 2 23.18 .41 .035 .32 .355 
   Dummy 3 33.38 .45 .013 .36  
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3.   (Unweighted) Effects coding 

• Dummy coding allows us to test for differences between levels of a 
(categorical) predictor variable.  In some cases, the main question of interest 
is whether or not the mean of a specific group differs from the overall 
sample mean.  Effects coding allow us to test these types of hypotheses. 

• These indicator variables are called “effects codes” because they reflect the 
treatment effect (think α  terms in ANOVA). 

• For effects coded indicator variables, one group is specified to be the base 
group and is given a value of -1 for each of the (a-1) indicator variables.   

 
 

Effects Coding of Gender 
     (a = 2) 
Gender E1 
Male 1 
Female -1 

 

Effects Coding of Treatment Groups 
    (a = 3) 
Group E1 E2 
Treatment 1 0 1 
Treatment 2 1 0 
Control -1 -1 
 

Effects Coding of Religion (a = 4) 
Religion E1 E2 E3 

Protestant -1 -1 -1 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 

 
 

• Once again, the choice of the base group is statistically arbitrary, but it 
affects how you interpret the resulting regression parameters. In contrast to 
dummy coding, the base group is often the group of least interest because 
the regression analysis does not directly inform us about the base group. 
o For each of the other groups, the effects coded parameters inform us 

about the difference between the mean of each group and the grand 
mean. 
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• Effects coding for a dichotomous variable 
o Again, let’s use women as the reference group: 

 
IF (gender = 2) effect1 = -1. 
IF (gender = 1) effect1 = 1. 
 

Effects Coding of Gender (a = 2) 
Gender E1 
Male 1 
Female -1 

 
 

o Now, we can predict implicit self esteem from the effects coded gender 
variable in an OLS regression 

 
1*10 EffectbbEsteemSelfImplicit  +=−  

 
o Using this equation, we can get separate regression lines for women 

and men by substituting appropriate values for the effects coded 
variable. 

 
For women: Effect1 = -1 

10 bbEsteemSelfImplicit  −=−  
 

For men: Effect1 = 1 
10 bbEsteemSelfImplicit  +=−  

 
o Interpreting the parameters: 
• 0b  = The average self-esteem of all the group means  

The test of 0b  tells us whether the grand mean (calculated as the average 
of all the group means) on the outcome variable of the reference group 
differs from zero. 
If the sample sizes in each group are equivalent, then 0b  is the grand 
mean.. 

• 1b  = The difference between men’s average self-esteem and the mean  
level of self-esteem. 
The test of 1b  tells us whether the mean score for the group coded 1 
differs from the grand mean (the calculated as the average of all the group 
means).   
In an ANOVA framework, we would call the group effect for men, Menα . 
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o Interpreting other regression output: 
• When a = 2, the Pearson correlation between E1 and Y, YEr

1
, is the 

point biserial correlation between gender (male vs. female) and Y.  
When a > 2, the interpretation of YEr

1
 is ambiguous. 

• When a = 2, 2
1YEr  is the percentage of variance (of the outcome 

variable) that can be accounted for by the female/male dichotomy, 
When a > 2, the interpretation of 2

1YEr  is ambiguous. 
 

o Running the analysis in SPSS 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT implicit 
  /METHOD=ENTER effect1. 
 

Model Summary

.404a .163 .151 .28264
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), effect1a. 
 

Coefficientsa

.348 .039 8.887 .000
-.145 .039 -.404 -3.716 .000 -.404 -.404 -.404

(Constant)
effect1

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: implicita. 
 

1*145.348. EffectEsteemSelfImplicit  +=−  

 
• The test of 0b  indicates that the average self-esteem score (the average 

of men’s self-esteem and of women’s self-esteem) is greater than 
zero, 01.,89.8)71(,35. <== ptb . 

• The test of 1b  indicates that men’s self-esteem differs from the 
average self-esteem score by -0.145 units (that is, they have lower self-
esteem), 01.,72.3)71(,15. <=−= ptb .   

• Thus, we know that 203.145.348. =−=MenY  and that 
493.145.348. =+=WomenY . 

 
• The female/male distinction accounts for 16% of the variance in 

implicit self-esteem scores, 16.2
1
=YDr . 
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o Note that with unequal sample sizes, the “grand mean” is the average 
of the group means 0348.4932.2024. bYUnweighted ==+=  and is not the 
grand mean of all N observations 426.=Y .   

Descriptives

implicit

17 .2024 .31041
56 .4932 .27403
73 .4255 .30676

Male
Female
Total

N Mean Std. Deviation

 
• Previously, we called this approach the unique Sums of Squares (or 

Type III SS approach to unbalanced data).  Sometimes this approach is 
also called the regression approach to unbalanced data.  This is the 
default/favored approach to analyzing unbalanced data (see pp. 9-6 to 
9-13). 

• When you have unbalanced designs, be careful about interpreting 
effects coded variables! 

 
• Effect coding a categorical variable with more than 2 levels 

o Let’s (again) return to our example of the relationship between religion 
and attitudes toward abortion.   

 
o Because religion has four levels, we need to create 4 effects coded 

variables.  We have a choice of four possible base levels: 
 
Reference Group = Protestant  

Religion E1 E2 E3 
Protestant -1 -1 -1 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 

 
Reference Group = Catholic 

Religion E1 E2 E3 
Protestant 1 0 0 
Catholic -1 -1 -1 
Jewish 0 1 0 
Other 0 0 1 

 

Reference Group = Jewish 
Religion E1 E2 E3 

Protestant 1 0 0 
Catholic 0 1 0 
Jewish -1 -1 -1 
Other 0 0 1 

 
Reference Group = Other 

Religion E1 E2 E3 
Protestant 1 0 0 
Catholic 0 1 0 
Jewish 0 0 1 
Other -1 -1 -1 
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• For this example, we will use Protestant as the base group.  In 
practice, it would probably be better to use Other as the base group, 
but for the purposes of comparing effects coding output to dummy 
coding output, we will stick with Protestant as the base group. 

 
 
IF (religion = 1) effect1 = -1 . 
IF (religion = 2) effect1 = 1 . 
IF (religion = 3) effect1 = 0 . 
IF (religion = 4) effect1 = 0 . 
 

IF (religion = 1) effect2 = -1 . 
IF (religion = 2) effect2 = 0 . 
IF (religion = 3) effect2 = 1 . 
IF (religion = 4) effect2 = 0 . 
 

IF (religion = 1) effect3 = -1 . 
IF (religion = 2) effect3 = 0 . 
IF (religion = 3) effect3 = 0 . 
IF (religion = 4) effect3 = 1 .

o As with dummy variables, it is essential that all the effect coded 
variables be entered into the regression equation. 

 
ATA = b0 + b1 * E1( )+ b2 * E2( )+ b3 * E3( ) 

 
o Using this equation, we can get separate regression lines for each 

religion by substituting appropriate values for the effect coded 
variables. 

 
Reference Group = Protestant 
Religion E1 E2 E3 

Protestant -1 -1 -1 
Catholic 1 0 0 
Jewish 0 1 0 
Other 0 0 1 

 
 
For Protestant: E1 = −1;E2 = −1;E3 = −1 

ATA = b0 + b1 *−1( )+ b2 *−1( )+ b3 *−1( )
       = b0 − (b1 + b2 + b3) 

 
For Catholic: E1 =1;E2 = 0;E3 = 0 

( ) ( ) ( )0*0*1* 3210 bbbbATA +++=  
  10 bb +=  

 

For Jewish: E1 = 0;E2 =1;E3 = 0 
( ) ( ) ( )0*1*0* 3210 bbbbATA +++=  

  20 bb +=  
 
For Other: E1 = 0;E2 = 0;E3 =1 

( ) ( ) ( )1*0*0* 3210 bbbbATA +++=  
  30 bb +=  
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o Interpreting the parameters: 
• 0b  = The average ATA (averaging the mean of the four groups) 

The test of 0b  tells us whether the average score of the outcome variable 
differs from zero. 

• 1b  = The difference in ATA between Catholics and the mean 
The test of 1b  tells us whether the mean score on the outcome variable for 
the group identified by E1.differs from the grand mean. 

• 2b  = The difference in ATA between Protestants and the men 
The test of 2b  tells us whether the mean score on the outcome variable for 
the group identified by E2.differs from the grand mean. 

• 3b  = The difference in ATA between Protestants and Others 
The test of 3b  tells us whether the mean score on the outcome variable for 
the group identified by E3.differs from the grand mean. 

 

• If we wanted a test of whether the ATA of Protestants differed from 
the mean, we could re-run the analysis with a different group as the 
base group. 

• Again, be careful about interpreting “average” when the cell sizes are 
unequal; average refers to the average of the group means, not the 
average of the N observations. 

 
o Interpreting correlation coefficients: 
• With more than two groups for an effects coded predictor variable, we 

should refrain from interpreting rE1Y
, rE2Y

, or rE 3Y . 
• So long as all effects coded indicators are entered into the same 

regression equation, 2R  is still interpretable as the percentage of 
variance in Y (ATA) in the sample that is associated with religion.  

2
AdjustedR  is the percentage of Y (ATA) variance accounted for by religion 

in the population. 
 

o Running the analysis in SPSS 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT ATA 
  /METHOD=ENTER effect1 effect2 effect3. 

 



15-19   2007 A. Karpinski 

Model Summary

.596a .355 .294 23.41817
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), effect3, effect1, effect2a. 
 

Coefficientsa

81.900 4.055 20.198 .000
-21.233 6.849 -.598 -3.100 .004 -.444 -.481 -.440
21.600 7.883 .550 2.740 .010 -.029 .436 .389

-11.775 7.122 -.322 -1.653 .108 -.328 -.281 -.235

(Constant)
effect1
effect2
effect3

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: ataa. 
 

 
ATA = 81.90+ −21.233* E1( )+ 21.60* E2( )+ −11.76* E3( ) 

  
• The test of 0b  indicates that the mean ATA score, Y Group Means = 81.90  

(calculated as the average of the four group means), is significantly 
above zero, b = 81.90, t(32) = 20.20, p < .01. 

 
• The test of 1b  indicates that the mean ATA score for Catholics is 

significantly less than (because the sign is negative) the mean ATA 
score, b = −21.23, t(32) = 3.10, p < .01.  The mean ATA score for Catholics 
is Y Catholics = b0 + b1 = 81.900− 21.233= 60.67. 

 
• The test of 2b  indicates that the mean ATA score for Jews is 

significantly greater than (because the sign is positive) the mean ATA 
score, b = 21.60, t(32) = 2.74, p = .01.  The mean ATA score for Jews is 
Y Jews = b0 + b2 = 81.900+ 21.600 =103.50 . 

 
• The test of 3b  indicates that the mean ATA score for Others is not 

significantly different than the mean ATA score, 
b = −11.78,t(32) = −1.65, p = .11.  The mean ATA score for Others is 
Y Others = b0 + b3 = 81.900−11.775 = 70.13.   

 
• Overall 35.5% of the variability in ATA scores in the sample is 

associated with religion; 29.4% of the variability in ATA scores in the 
population is associated with religion. 
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o Unweighted vs. Weighted effects codes 
• We have considered unweighted effects coding.  That is, each group 

mean is unweighted (or treated equally) regardless of the number of 
observations contributing to the group mean. 

• It is also possible to consider weighted effects coding in which each 
group mean is weighted by the number of observations contributing to 
the group mean. 
- The construction of the indictor variables takes into account the 

various group sizes. 
- Weighted effects codes correspond with Type I Sums of Squares in 

ANOVA 
- In general, you would only want to consider weighted effects 

codes if you have a representative sample. 
 
4. Contrast coding 

• Contrast coding allows us to test specific, focused hypotheses regarding the 
levels of the (categorical) predictor variable and the outcome variable.   

• Contrast coding in regression is equivalent to conducting contrasts in an 
ANOVA framework. 

 
• Let’s suppose a researcher wanted to compare the attitudes toward abortion 

in the following ways: 
o Judeo-Christian religions vs. others  
o Christian vs. Jewish 
o Catholic vs. Protestant 

 
• We need to convert each of these hypotheses to a set of contrast coefficients 

 
Religion C1 C2 C3 
Catholic  1 1 1 

Protestant 1 1 -1 
Jewish 1 -2 0 
Other -3 0 0 

 
o For each contrast, the sum of the contrast coefficients should equal zero 
o The contrasts should be orthogonal (assuming equal n) 
• If the contrast codes are not orthogonal, then you need to be very 

careful about interpreting the regression coefficients.  
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IF (religion = 1) cont1 = 1. 
IF (religion = 2) cont1 = 1 . 
IF (religion = 3) cont1 = 1 . 
IF (religion = 4) cont1 = -3. 
 

IF (religion = 1) cont2 = 1 . 
IF (religion = 2) cont2 = 1. 
IF (religion = 3) cont2 = -2 . 
IF (religion = 4) cont2 = 0. 
 

IF (religion = 1) cont3 = -1 . 
IF (religion = 2) cont3 =  1 . 
IF (religion = 3) cont3 =  0 . 
IF (religion = 4) cont3 =  0. 

• Now, we can enter all a-1 contrast codes into a regression equation 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT ATA 
  /METHOD=ENTER cont1 cont2 cont3. 

 

Model Summary

.596a .355 .294 23.41817
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), cont3, cont1, cont2a. 
 

Coefficientsa

81.900 4.055 20.198 .000
3.925 2.374 .237 1.653 .108 .225 .281 .235

-8.838 3.608 -.352 -2.449 .020 -.277 -.397 -.348
-16.321 5.077 -.459 -3.214 .003 -.444 -.494 -.456

(Constant)
cont1
cont2
cont3

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: ataa. 
 

 
 

ATA = 81.90+ 3.925*C1( )+ −8.838*C2( )+ −16.321*C3( ) 
 
 
For Catholic: C1 =1;C2 =1;C3 =1 

ATA = b0 + b1 *1( )+ b2 *1( )+ b3 *1( )    
       = b0 + b1 + b2 + b3  
       = 60.67 

 
For Protestant: C1 =1;C2 =1;C3 = −1 

ATA = b0 + b1 *1( )+ b2 *1( )+ b3 *−1( )
        = b0 + b1 + b2 − b3 

  = 93.31 
 

For Jewish: C1 =1;C2 = −2;C3 = 0 
ATA = b0 + b1 *1( )+ b2 *−2( )+ b3 *0( )
        = b0 + b1 − 2 * b2 

   =103.50 
 
For Other: C1 = −3;C2 = 0;C3 = 0 

ATA = b0 + b1 *−3( )+ b2 *0( )+ b3 *0( )
  = b0 − 3* b1 

  = 70.13 
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o The variance accounted for by religion is 35.5%, the same as we found 
in other parameterizations of the model. 

o The test of 0b  indicates that the mean ATA score (calculated as the 
average of the four group means), Y Group Means = 81.90 , is significantly 
above zero, b = 81.90, t(32) = 20.20, p < .01.  The intercept may be 
interpreted as the mean because the set of contrast coding coefficients 
is orthogonal.  The regression coefficients are not affected by the 
unequal n because we are taking an unweighted approach to 
unbalanced designs. 

 
o In general, the other regression slope parameters are not directly 

interpretable, but the significance test associated with each parameter 
tells us about the contrast of interest. 

• Judeo-Christian religions and others do not differ in their attitudes 
toward abortion, b = 3.93, t(32) =1.65, p = .11. 

• Individuals of a Christian faith have less favorable attitudes toward 
abortion than Jewish individuals, b = −8.84, t(32) = −2.45, p = .02  

• Catholic individuals less favorable attitudes toward abortion than 
Protestant individuals, b =16.32,t(32) = −3.31, p < .01 

 
• We would have obtained the same results had we conducted these contrasts 

in a oneway ANOVA framework. 
 

ONEWAY ata BY religion 
  /CONTRAST= 1 1 1 -3 
  /CONTRAST= 1 1 -2 0 
  /CONTRAST= -1 1 0 0 
 

Contrast Tests

47.0994 28.48656 1.653 32 .108
-53.0256 21.65011 -2.449 32 .020
-32.6410 10.15480 -3.214 32 .003

Contrast
1
2
3

Assume equal variancesata

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 

o Note that the t-values and the p-values are identical to what we 
obtained from the regression analysis. 
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5. A Comparison between Regression and ANOVA 
• When the predictor variable is categorical and the outcome variable is 

continuous, we could run the analysis as a one-way AVOVA or as a 
regression.  Let’s compare these two approaches. 

• For this example, we’ll examine ethnic differences in body mass index 
(BMI).  First, we obtain a (stratified) random sample of Temple students, 
with equal numbers of participants in each of the four ethnic groups we are 
considering (n = 27).  For each participant, we assess his or her BMI.  
Higher numbers indicate greater obesity. 

 
African-

American 
Hispanic-
American 

Asian- 
American 

Caucasian-
American 

20.98 
22.46 
23.05 
19.65 
23.17 
23.18 
19.97 
21.13 
23.57 
21.38 
19.79 
20.98 
19.48 
23.01 

 

20.63 
21.58 
22.59 
15.66 
22.05 
19.22 
23.40 
23.29 
21.70 
20.80 
23.62 
20.25 
23.63 

20.52 
22.04 
17.71 
26.36 
27.97 
19.08 
23.01 
23.43 
18.30 
34.89 
29.18 
29.44 
19.75 
25.10 

21.13 
22.31 
22.52 
26.60 
27.05 
24.03 
25.82 
41.50 
24.13 
18.01 
24.22 
36.91 
25.80 

 

20.94 
18.36 
19.00 
18.30 
20.17 
18.02 
18.18 
18.83 
21.80 
18.71 
19.46 
19.76 
19.13 
18.89 

20.52 
21.03 
22.46 
19.58 
20.52 
19.53 
16.47 
22.46 
16.47 
22.31 
20.98 
22.46 
17.75 

18.01 
19.79 
20.72 
20.80 
23.49 
23.49 
24.69 
24.69 
31.47 
15.78 
17.63 
17.71 
17.93 
18.01 

18.65 
19.13 
19.20 
19.37 
19.57 
19.65 
19.74 
19.76 
19.79 
19.80 
20.12 
20.25 
20.30 

Caucasian-AmericanAsian-AmericanHispanic-AmericanAfrican-American

ethnic

45.00

40.00

35.00

30.00

25.00

20.00

15.00

B
M

I

88
86

91

48

52

37

18

90

 
o We have some outliers and unequal variances, but let’s ignore the 

assumptions for the moment and compare the ANOVA and regression 
outputs. 
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• In a regression framework, we can use effects coding to parameterize the 

model.  I’ll pick Caucasian-Americans to be the reference group.   
• Effects code parameters are interpreted as deviations from the grand mean.  

Thus, the regression coefficients that come out of the model should match 
the jα̂  terms we calculate in the ANOVA framework.  Let’s compute the 
model parameters in both models: 

 
 

• ANOVA approach: 
Yij = µ + α j + εij  

Descriptives

BMI

27 21.4896
27 25.0670
27 19.7070
27 20.3533

108 21.6543

African-American
Hispanic-American
Asian-American
Caucasian-American
Total

N Mean

 
 

65.21ˆ =µ  
 

...ˆ YY jj −=α  
165.06543.214869.21ˆ1 −=−=α  

413.36543.210670.25ˆ2 =−=α  
947.16543.217070.19ˆ3 −=−=α  
301.16543.213533.20ˆ4 −=−=α  

 

• Regression Approach 
Effects Coding 

 
IF (ethnic = 1) effect1 = 1 . 
IF (ethnic = 2) effect1 = 0 . 
IF (ethnic = 3) effect1 = 0 . 
IF (ethnic = 4) effect1 = -1 . 
 
IF (ethnic = 1) effect2 = 0 . 
IF (ethnic = 2) effect2 = 1 . 
IF (ethnic = 3) effect2 = 0 . 
IF (ethnic = 4) effect2 = -1 . 
 
IF (ethnic = 1) effect3 = 0 . 
IF (ethnic = 2) effect3 = 0 . 
IF (ethnic = 3) effect3 = 1 . 
IF (ethnic = 4) effect3 = -1 . 

Coefficientsa

21.654 .334
-.165 .578
3.413 .578

-1.947 .578

(Constant)
effect1
effect2
effect3

Model
1

B Std. Error

Unstandardized
Coefficients

Dependent Variable: BMIa. 
 

 
o As we expected, the coefficients match exactly! 

0
ˆˆ b=µ  

11
ˆˆ b=α  

22
ˆˆ b=α  

33
ˆˆ b=α  

 
 

o These matching parameters indicate that is it possible for an ANOVA 
model and a regression model to be identically parameterized. 
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• The ANOVA tables outputted from ANOVA and regression also test 
equivalent hypotheses: 
o ANOVA: 43210 : αααα ===H   (There are no group effects) 
o Regression: 0: 3210 === bbbH  (The predictor variable accounts for no 

variability in the outcome variable). 
 

o Let’s compare the ANOVA tables from the two analyses 
 
ONEWAY BMI BY ethnic 
  /STATISTICS DESCRIPTIVES. 
 

ANOVA

BMI

463.272 3 154.424 12.828 .000
1251.986 104 12.038
1715.258 107

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 

REGRESSION 
  /DEPENDENT BMI 
  /METHOD=ENTER effect1 effect2 effect3. 

ANOVAb

463.272 3 154.424 12.828 .000a

1251.986 104 12.038
1715.258 107

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), effect3, effect2, effect1a. 

Dependent Variable: BMIb. 
 

• The results are identical, 01.,83.12)104,3( <= pF  
 
 

o If the results are identical, the effect size measures should also match, 
and they do! 

Model Summary

.520a .270 .249 3.46963
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), effect3, effect2, effect1a. 

Tests of Between-Subjects Effects

Dependent Variable: BMI

463.272a 3 154.424 12.828 .000 .270
50641.950 1 50641.950 4206.727 .000 .976

463.272 3 154.424 12.828 .000 .270
1251.986 104 12.038

52357.208 108
1715.258 107

Source
Corrected Model
Intercept
ethnic
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

R Squared = .270 (Adjusted R Squared = .249)a. 
 

 
27.22 ==ηR  

 
• We have not yet examined the individual parameter estimates from the 

regression output.  All the regression output we have examined thus far is 
independent of how the regression model is parameterized.  Thus, any 
parameterization of the regression model should produce identical output to 
the ANOVA results. 
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• In fact, when you use the UNIANOVA command in SPSS, SPSS constructs 

dummy variables, runs a regression, and converts the output to an ANOVA 
format.  We can see this by asking for parameter estimates in the output. 

 
 
UNIANOVA BMI  BY ethnic 
  /PRINT = PARAMETER. 

Parameter Estimates

Dependent Variable: BMI

20.353 .668 30.481 .000
1.136 .944 1.203 .232
4.714 .944 4.992 .000
-.646 .944 -.684 .495

0a . . .

Parameter
Intercept
[ethnic=1.00]
[ethnic=2.00]
[ethnic=3.00]
[ethnic=4.00]

B Std. Error t Sig.

This parameter is set to zero because it is redundant.a. 
 

 
• These are dummy variable 

indicators with group 4 as the 
reference group 

 

IF (ethnic = 1) dummy1 = 1 . 
IF (ethnic ne 1) dummy1 = 0 . 
IF (ethnic = 2) dummy2 = 1 . 
IF (ethnic ne 2) dummy2 = 0 . 
IF (ethnic = 3) dummy3 = 1 . 
IF (ethnic ne 3) dummy3 = 0 . 
 
REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT BMI 
  /METHOD=ENTER dummy1 dummy2 dummy3. 

Coefficientsa

20.353 .668 30.481 .000
1.136 .944 1.203 .232
4.714 .944 4.992 .000
-.646 .944 -.684 .495

(Constant)
dummy1
dummy2
dummy3

Model
1

B Std. Error

Unstandardized
Coefficients

t Sig.

Dependent Variable: BMIa. 

 
 

• The tests of these the regression parameters will be equivalent to various 
contrasts in ANOVA. 

 
ANOVA  Regression 

Deviation contrasts Effects coded parameters 
Simple contrasts Dummy coded parameters 

Complex contrasts Contrast coded parameters 
 
 

• We have shown that ANOVA and regression are equivalent analyses.  The 
common framework that unites the two is called the general linear model.  
Specifically, ANOVA is a special case of regression analysis.    
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• Some concepts and output are easier to understand or interpret from a 
regression framework. 
o Oftentimes, the regression approach is conceptually easier to 

understand than the ANOVA approach. 
o Unequal n designs are more easily understood from within a regression 

framework than an ANOVA framework. 
o In complicated designs (with many factors and covariates), it is easier 

to maintain control over the analysis in a regression framework. 
 
 

• At this point, you might be asking yourself the converse question – why 
bother with ANOVA at all? 
o With simple designs, ANOVA is easier to understand and interpret. 
o Testing assumptions is a bit easier within an ANOVA framework than 

in a regression framework. 
o The procedures for controlling the Type I error (especially post-hoc 

tests) are easier to implement in an ANOVA framework. 
o Some tests that have been developed for assumption violations 

(Welch’s t-test; Brown-Forsythe F* test; some non-parametric tests) 
are easier to understand from an ANOVA approach. 

 
 


