
14-1   2007 A. Karpinski 

Chapter 14 
Simple Linear Regression 

Regression Diagnostics and Remedial Measures 
 

  Page 
1. Residuals and regression assumptions 14-2 
2. Residual plots to detect lack of fit 14-5 
3. Residual plots to detect homogeneity of variance 14-10 
4. Residual plots to detect non-normality  14-13 
5. Identifying outliers and influential observations 14-16 
6. Remedial Measures: 14-33 

An overview of alternative regression models 
7. Remedial Measures: Transformations 14-39 

  
 

 



14-2   2007 A. Karpinski 

Simple Linear Regression 
Regression Diagnostics and Remedial Measures 

 
 
1.   Residuals and regression assumptions  
 

• The regression assumptions can be stated in terms of the residuals 
 

),0(~ 2σε NID  
 

o All observations are independent and randomly selected from the 
population (or equivalently, the residual terms, siε , are independent) 

o The residuals are normally distributed at each level of X 
o The variance of the residuals is constant across all levels of X 

 
• We must also assume that the regression model is the correct model 

o The relationship between the predictor and outcome variable is linear 
o No relevant variables have been omitted 
o No error in the measurement of predictor variables 

 
 

• Types of residuals 
 

o (Unstandardized) residuals, ie  
YYe ii
ˆ−=  

 
• A residual is the deviation of the observed value from the predicted 

value on the original scale of the data 
• If the regression model fits the data perfectly, then there would be no 

residuals.  In practice, we always have residuals, but the presence of 
many large residuals can indicate that the model does not fit the data 
well 

• If the residuals are normally distributed, then we would expect to find 
5% of residuals greater than σ2  from the mean 
1% of residuals greater than σ5.2  from the mean 
.1% of residuals greater than σ3  from the mean 

• It can be difficult to eyeball standard deviations from the mean, so we 
often turn to standardized residuals 
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o Standardized residuals, ie~  
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• Standardized residuals are z-scores.  Why? 

 
The average of the residuals is zero 
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The standard deviation of the residuals is MSE  
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So a standardized residual would be given by: 
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• Because standardized residuals are z-scores, we can easily detect 

outliers. When examining standardized residuals, we should find:  
5% of sei

~  greater than 2  
1% of sei

~  greater than 5.2  
.1% of sei

~  greater than 3   
 

o Studentized residuals, ie′  
• MSE is the overall variance of the residuals 
• It turns out that the variance of an individual residual is a bit more 

complicated.  Each residual has its own variance, depending on its 
distance from X   

• When residuals are standardized using residual-specific standard 
deviations, the resulting residual is called a studentized residual. 

• In large samples, it makes little difference whether standardized or 
studentized are used. However, in small samples, studentized 
residuals give more accurate results. 

• Because SPSS makes the use of studentized residuals easy, it is good 
practice to examine studentized residuals rather than standardized 
residuals 



14-4   2007 A. Karpinski 

• Obtaining residuals in SPSS 
 

REGRESSION 
  /DEPENDENT dollars 
  /METHOD=ENTER miles 
  /SAVE RESID (resid) ZRESID (zresid)  SRESID (sresid) . 

 
o RESID produces unstandardized residuals 
o ZRESID  produces standardized residuals 
o SRESID  produces studentized residuals 

 
o Each residual appears in a new data column in the data editor 

 
      RESID      ZRESID      SRESID 
 
    -.80365     -.34695     -.35921 
   -1.33272     -.57536     -.61672 
   -1.60685     -.69370     -.73813 
    1.50761      .65086      .68389 
    1.97215      .85140      .88173 
   -1.33425     -.57601     -.64739 
     .37854      .16342      .18972 
   -2.73592    -1.18114    -1.22407 
   -3.46819    -1.49727    -1.56097 
    -.13105     -.05658     -.05952 
    3.39148     1.46415     1.54912 
    1.61081      .69541      .77910 
    2.91415     1.25808     1.49866 
    2.50928     1.08329     1.16348 
   -2.87139    -1.23962    -1.28850 

 
• You can see the difference between standardized and studentized 

residuals is small, but it can make a difference in how the model fit is 
interpreted 

 
• Because all the regression assumptions can be stated in terms of the 

residuals, examining residuals and residual plots can be very useful in 
verifying the assumptions 

 
o In general, we will rely on residual plots to evaluate the regression 

assumptions rather than rely on statistical tests of those assumptions  
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2.  Residual plots to detect lack of fit 
 

• There are several reasons why a regression model might not fit the data well 
including: 
o The relationship between X and Y might not be linear 
o  Important variables might be omitted from the model 

 
• To detect non-linearity in the relationship between X and Y, you can: 

 
o Create a scatterplot of X against Y 

• Look for non-linear relationships between X and Y 
 

o Plot the residuals against the X values  
• The residuals have linear association between X and Y removed.  If X 

and Y are linearly related, then all that should be remaining for the 
residuals to capture is random error 

• Thus, any departure from a random scatterplot indicates problems 
• In general, this graph is easier to interpret than the simple scatterplot 

and an added advantage of this graph (if studentized residuals are 
used) is that you can easily spot outliers 

 
• In simple linear regression, a plot of ie  vs X is identical to a plot of ie  

vs Ŷ .  Thus, there is no need to examine both of these plots. 
 

The predicted values are the part of the Ys that have a linear 
relationship with X, so Ŷ  and X will always be perfectly correlated 
when there is only one predictor.   

 
In multiple regression, different information may be obtained from 
a plot of ie  vs X and from a plot of ie  vs Ŷ . 
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• Example #1: A good linear regression model (n = 100) 
o A scatterplot of X against Y 

GRAPH /SCATTERPLOT(BIVAR)=x WITH y. 
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o The X-Y relationship looks linear 

 
• Plot the residuals against the X values 

GRAPH /SCATTERPLOT(BIVAR)=x WITH sresid. 
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o The plot looks random so we have evidence that there is no non-linear 

relationship between X and Y 
o We also see that no outliers are present 
o This graph is as good as it gets! 
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• Example #2: A nonlinear relationship between X and Y (n = 100) 

o A scatterplot of X against Y 
GRAPH /SCATTERPLOT(BIVAR)=x1 WITH y. 
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o The X-Y relationship looks mostly linear 

 
• Plot the residuals against the X values 

GRAPH /SCATTERPLOT(BIVAR)=x1 WITH sresid. 
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o This graph has a slight U-shape, suggesting the possibility of a non-linear 

relationship between X and Y 
o We also see one outlier  
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• Example #3: A second nonlinear relationship between X and Y (n = 100) 

o A scatterplot of X against Y 
GRAPH /SCATTERPLOT(BIVAR)=x2 WITH y. 
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o The X-Y looks slightly curvilinear in this case 

 
• Plot the residuals against the X values 

GRAPH /SCATTERPLOT(BIVAR)=x2 WITH sresid. 
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o This graph has a strong U-shape, indicating a non-linear relationship 
between X and Y 

o Notice that it is easier to detect the non-linearity in the residual plot than 
in the scatterplot  
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o You can not determine lack-of-fit/non-linearity from the significance 
tests on the regression parameters 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x2 

 
• In this case, we find evidence for a strong linear relationship between 

X2 and Y, b = .887, t(98) =18.195, p < .001 [r = .94] 
 

Coefficientsa

.232 .013 18.195 .000

.887 .032 .941 27.458 .000 .941 .941 .941
(Constant)
X2

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: Ya. 
 

 
 

• This linear relationship between X2 and Y accounts for 88.5% of the 
variance in Y.  

Model Summary

.941a .885 .884 .07585
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), X2a. 
 

 
 

• Yet from the residual plot, we know that this linear model is incorrect 
and does not fit the data well 

  
• Despite the level of significance and the large percentage of the 

variance accounted for, we should not report this erroneous model 
 
 

• Detecting the omission of an important variable by looking at the residuals is 
very difficult!  
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3.  Residual plots to detect homogeneity of variance 
 

• We assume that the variance of the residuals is constant across all levels of 
predictor variable(s) 

• To examine if the residuals are homoscedastic, we can plot the residuals 
against the predicted values 
o If the residuals are homoscedastic, then their variability should be 

constant over the range 
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o As previously mentioned, plotting residuals against fitted values ( Ŷ ) or 

against the predictor (X) produces the same plots when there is only one X 
variable.  In multiple regression, a plot of the residuals against fitted 
values ( Ŷ ) is generally preferred, but in this case it makes no difference 

 
o The raw residuals and the standardized residuals do not take into account 

the fact the variance of each residual is different (and depends on its 
distance from the mean of X).  For plots to examine homogeneity, it is 
particularly important to use the studentized residuals 



14-11   2007 A. Karpinski 

• Example #1: A homoscedastic model (n = 100) 
GRAPH /SCATTERPLOT(BIVAR)=sresid WITH pred. 
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o The band of residuals is constant across the entire length of the observed 

predicted values 
 
 

• Example #2: A heteroscedastic model (n = 100) 
GRAPH /SCATTERPLOT(BIVAR)=sresid WITH pred. 
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o This pattern where the variance increases as Y increases is a common 

form of heteroscedasticity. 
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o In this case, the unequal heteroscedasticity is also apparent from the X-Y 
scatterplot.  But in general, violations of the variance assumption are 
easier to spot in the residual plots  

GRAPH /SCATTERPLOT(BIVAR)=y WITH x. 

20.0015.0010.005.000.00

x

20.00
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o As in the case of looking for non-linearity, examining the regression 
model provides no clues that the model assumptions have been violated 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x. 

 
Model Summary

.303a .092 .083 4.11810
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Xa. 
 

Coefficientsa

8.650 .649 13.336 .000
-.222 .070 -.303 -3.153 .002 -.303 -.303 -.303

(Constant)
X

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Zero-order Partial Part
Correlations

Dependent Variable: Ya. 
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4.  Residual plots to detect non-normality 
 

• As for ANOVA, symmetry is more important than normality 
• There are a number of techniques that we can use to check normality of the 

residuals.  In general, these are the same techniques we used to check 
normality in ANOVA 
o Boxplots or histograms of residuals 
o A normal P-P plot of the residuals 
o Coefficients of skewness/kurtosis may also be used 

• Normality is difficult to check and can be influenced by other violations of 
assumptions.  A good strategy is to check and address all other assumptions 
first, and then turn to checking normality 

 
• These tests are not foolproof 

o Technically, we assume that the residuals are normally distributed at each 
level of the predictor variable(s) 

o It is possible (but unlikely) that the distribution of residuals might be left-
skewed for some values of X and right skewed for other values so that, 
on average, the residuals appear normal.   

o If you are concerned about this possibility and if you have a very large 
sample, you could divide the Xs into a equal categories, and check 
normality separately for each of the a subsamples (you would want at 
least 30-50 observations per group).  In general, this is not necessary. 

 
• Example #1: Normally distributed residuals (N = 100) 

 
EXAMINE VARIABLES=sresid 
 /PLOT BOXPLOT HISTOGRAM NPPLOT. 

Descriptives

.0002928 .10048947
-.0129241
-.0584096

1.010
1.004895
-2.22678
2.57839
4.80518

1.2754269
.211 .241

-.182 .478

Mean
5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Studentized Residual
Statistic Std. Error

 
o The mean is approximately equal to the median 
o The coefficients of skewness and kurtosis are relatively small 
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100N =

Studentized Residual

3
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Tests of Normality

.990 100 .648Studentized Residual
Statistic df Sig.

Shapiro-Wilk

 
 

 
 

o Plots can also be obtained directly from the regression command 
REGRESSION /DEPENDENT y 
  /METHOD=ENTER z 
  /RESIDUALS HIST(SRESID) NORM(SRESID)  
  /SAVE sRESID (sresid). 

 

Regression Studentized Residual

Histogram

Dependent Variable: Y
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o The histogram and P-P plot are as good as they get.  There are no 
problems with the normality assumption. 
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• Example #2: Non-normally distributed residuals (N = 100) 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER z1 
  /RESIDUALS HIST(ZRESID1) NORM(ZRESID1)  
  /SAVE ZRESID (zresid1). 
 

Regression Standardized Residual

Histogram

Dependent Variable: Y
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EXAMINE VARIABLES=zresid1 
  /PLOT BOXPLOT HISTOGRAM NPPLOT 
  /STATISTICS DESCRIPTIVES. 

Descriptives

.0000000 .09949367

.1054551

.2856435
.990

.99493668
-4.06265
1.13547
5.19812

1.1329148
-1.769 .241
3.747 .478

Mean
5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Standardized Residual
Statistic Std. Error

 
Tests of Normality

.835 100 .000Standardized Residual
Statistic df Sig.

Shapiro-Wilk

 
 

o All signs point to non-normal, non-symmetrical residuals.  There is a 
violation of the normality assumption in this case. 
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5. Identifying outliers and influential observations 
 

• Observations with large residuals are called outliers 
• But remember, when the residuals are normally distributed, we expect a 

small percentage of residuals to be large 
We expect 5% of sei  greater than 2  
We expect 1% of sei  greater than 5.2  
We expect .1% of sei  greater than 3  
 

 
 Expected number of residuals 
# of observations >2 >2.5 >3 
      50 2.5 0.5 .005 
    100 5 1 0.1 
    200 10 2 0.2 
    500 25 5 0.5 
  1000 50 10 1 

 
 

o Many people use 2>ie  as a check for outliers, but this criterion results 
in too many observations being identified as outliers. In large samples, 
we expect a large number of observations to have residuals greater than 2 

o A more reasonable cut-off for outliers is to use 5.2>ie  or even 3>ie  
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• There are multiple kinds of outliers 

0
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o #1 is an Y outlier 
o #2 is an X outlier 
o #3 and #4 are outliers for both X and Y 

 
• When we examine extreme observations, we want to know: 

o Is it an outlier? (i.e., Does it differ from the rest of the observed data?) 
o Is it an influential observation?  

(i.e., Does it have an impact on the regression equation?) 
 

• Clearly, each of the values highlighted on the graph is an outlier, but how 
will each influence estimation of the regression line? 
o Outlier #1 

• Influence on the intercept: 
• Influence on the slope: 

o Outlier #2 
• Influence on the intercept: 
• Influence on the slope: 

o Outlier #3 
• Influence on the intercept: 
• Influence on the slope: 

o Outlier #4 
• Influence on the intercept: 
• Influence on the slope: 
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• Not all outliers are equally influential.  It is not enough to identify outliers; 
we must also consider the influence each may have (particularly on the 
estimation of the slope) 

 
• Methods of identifying outliers and influential points: 

o Examination of the studentized residuals 
o A scatterplot of studentized residuals with X 
o Examination of the studentized deletion residuals 
o Examination of leverage values 
o Examination of Cook’s distance (Cook’s D) 

 
 
 

• Studentized Deletion Residuals 
 

o A deletion residual is the difference between the observed Yi  and the 
predicted ˆ Y ( i)  value based on a model with the ith observation deleted 

di = Yi − ˆ Y i( i ) 
 

o The deletion residual is a measure of how much the ith observation 
influences the overall regression equation 

o If the ith observation has no influence on the regression line then Yi = ˆ Y i( i ) 
and di = 0 

o The greater the influence of the observation, the greater the deletion 
residual 

o Note that we cannot determine if the observation influences the 
estimation of the intercept or of the slope. We can only tell that it has an 
influence on at least one of the parameters in the regression equation. 

 
o The size of the deletion residuals will be determined, in part, by the scale 

of the Y values.  In order to create deletion residuals that do not depend 
on the scale of Y, we can divide di  by its standard deviation to obtain a 
studentized deletion residual 

˜ d i =
Yi − ˆ Y i( i )

s(di)
 

 
o Studentized deletion residuals can be interpreted like z-scores (or more 

precisely, like t-scores) 
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• Leverage values 
 

o It can be shown (proof omitted) that the predicted value for the ith 
observation can be written as a linear combination of the observed Y 
values 

ˆ Y i = h1Y1 + h2Y2 + ...+ hiYi + ...+ hnYn  
 

Where h1,h2,...,hn  are known as leverage values or leverage weights 
0 ≤ hi ≤ 0 
 

o The leverage values are computed by only using the X value(s).  
 

o A large hi  indicates that Yi  is particularly important in determining ˆ Y j .  
o But because the his  are computed by only using the X value(s), hi  

measures the role of the X value(s) in determining how important Yi  is in 
affecting ˆ Y j . 

 
o Thus, leverage values are helpful in identifying outlying X observations 

that influence ˆ Y  
 

o To identify large leverage values, we compare hi  to the average leverage 
value.  The standard rule of thumb is if the hi  is twice as large as the 
average leverage value, then X observation(s) for the ith participant 
should be examined 

 
The average leverage value is: 

h =
p
n

 

Where p = the number of parameters in the regression model 
(2 for simple linear regression) 

 n = the number of participants 
 

And so the rule-of -thumb cutoff value is: 
hi >

2p
n

 

 
o Other common cut-off values include 

• hi > .5 
• Look for a large gap in the distribution of his  
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• Cook’s Distance (1979) 
o Cook’s D is another measure of the influence an outlying observation has 

on the regression coefficients. It combines residuals and leverage values 
into a single number. 
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Where:  ie  is the (unstandardized) residual for the ith observation 

    p  is the number of parameters in the regression model  
    ih  is the leverage for the ith observation 

 
o iD  for each observation depends on two factors: 

• The residual: Larger residuals lead to larger sDi  
• The leverage: Larger leverage values lead to larger sDi  

 
o The ith observation can be influential (have a large iD ) by 

• Having a large ie  and only a moderate ih  
• Having a moderate ie  and a large ih  
• Having a large ie  and a large ih  

 
 

o A iD  is considered to be large (indicating an influential observation) if it 
falls at or above the 50th percentile of the F-distribution 

 
),,50.( dfedfnFcrit =α  

dfn  = # of parameters in the model = p (2 for simple linear regression) 
dfe  = degrees of freedom for error = N – p  
 

• For example, with a simple linear regression model (p = 2) with 45 
observations (dfe = 45-2=43) 

704.)43,2,50.(),,50.( ===== αα FdfedfnFDcrit  
 

In this case, observations with Cook’s D values greater than .704 
should be investigated as possibly being influential  
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• Other methods of identifying outliers and influential observations exist to 
measure the influence of the ith observation: 
o on each regression coefficient (DFBETAS) 
o on the predicted values (DFFITS) 

 
• These methods of outliers and influence often work well, but can be 

ineffective at times.  Ideally, the different procedures would identify the 
same cases, but this does not always happen.  The use of these procedures 
requires thought and good judgment on the part of the analyst. 

 
• Once influential points are identified: 

o Check to make sure there has not been a data coding or data entry error. 
o Conduct a sensitivity analysis to see how much your conclusions would 

change if the outlying points were dropped. 
o Never drop data points without telling your audience why those 

observations were omitted. In general, it is not advisable to drop 
observations from your analysis 

o The presence of many outliers may indicate an improper model 
• Perhaps the relationship is not linear 
• Perhaps the outliers are due to a variable omitted from the model 
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• Baseline example: No outliers included 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x  
  /CASEWISE PLOT(SRESID) ALL 
 /SAVE PRED (pred) SRESID (sresid). 
 

o The regression model 
XY 0000506.104. +−=   876.=XYr   767.2 =R  

 
o Examining residuals 

 
Casewise Diagnosticsa

.277 .30 .2870 .0130
1.805 .45 .3676 .0824
.786 .39 .3539 .0361

-1.518 .33 .3978 -.0678
1.170 .40 .3461 .0539
-.977 .33 .3744 -.0444
.131 .33 .3239 .0061
.414 .42 .4015 .0185
.805 .44 .4042 .0358
.712 .30 .2668 .0332

-.905 .23 .2723 -.0423
-.956 .31 .3539 -.0439

-1.116 .25 .3021 -.0521
1.491 .39 .3207 .0693
.196 .22 .2110 .0090

-1.155 .14 .1927 -.0527
.155 .17 .1631 .0069

-1.226 .15 .2063 -.0563
1.272 .20 .1440 .0560
-.035 .19 .1916 -.0016
.235 .16 .1496 .0104
.866 .26 .2200 .0400
.547 .21 .1851 .0249

-1.427 .17 .2363 -.0663
-1.465 .26 .3280 -.0680

Case Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Stud.
Residual Y

Predicted
Value Residual

Dependent Variable: Ya. 
 

5000 6000 7000 8000 9000 10000

x

-2

-1

0

1

2

St
ud

en
tiz

ed
 R

es
id

ua
l

A

A

A

A

A

A

A

A

AA

A A
A

A

A

A

A

A

A

A

A

A

A

A A

 
 

Look for Studentized Residuals larger than 2.5 
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o Examining influence statistics 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER x 
  /SAVE COOK (cook) LEVER (level) SDRESID (sdresid). 
List var = ID cook level sdresid. 
 
      ID        COOK       LEVEL     SDRESID 
 
    1.00      .00162      .00029      .27175 
    2.00      .15078      .04468     1.90591 
    3.00      .02389      .03175      .77952 
    4.00      .15820      .08079    -1.56462 
    5.00      .04787      .02541     1.17947 
    6.00      .04820      .05181     -.97548 
    7.00      .00046      .01122      .12792 
    8.00      .01235      .08593      .40647 
    9.00      .04834      .08969      .79907 
   10.00      .01084      .00102      .70417 
   11.00      .01722      .00035     -.90124 
   12.00      .03537      .03179     -.95448 
   13.00      .02788      .00283    -1.12251 
   14.00      .05806      .00963     1.53438 
   15.00      .00139      .02770      .19142 
   16.00      .06141      .04435    -1.16348 
   17.00      .00162      .07952      .15130 
   18.00      .05796      .03156    -1.24063 
   19.00      .14004      .10758     1.29016 
   20.00      .00006      .04544     -.03471 
   21.00      .00443      .09888      .22963 
   22.00      .02431      .02094      .86075 
   23.00      .01523      .05234      .53871 
   24.00      .05487      .01111    -1.46223 
   25.00      .06055      .01339    -1.50504 

 
o Critical values 

Cook’s D:    714.)23,2,50.( === αFDcrit  

Leverage:    16.
25
42

==>
N
phcrit  

Studentized Deletion Residuals: 5.2~
>critd  

 
o In this case, we do not identify any outliers or influential observations  
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• Example #1: Outlier #1 included 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x  
  /CASEWISE PLOT(SRESID) ALL 
 /SAVE PRED (pred) SRESID (sresid). 
 

o The regression model 
XY 0000506.0967. +−=   809.=XYr   654.2 =R  

(Slope is unchanged) 
 
 

o Examining residuals 
 

Casewise Diagnosticsa

.087 .30 .2947 .0053
1.268 .45 .3753 .0747

.479 .39 .3616 .0284
-1.309 .33 .4055 -.0755

.777 .40 .3538 .0462
-.888 .33 .3821 -.0521
-.027 .33 .3316 -.0016
.187 .42 .4092 .0108
.490 .44 .4119 .0281
.424 .30 .2744 .0256

-.829 .23 .2800 -.0500
-.871 .31 .3616 -.0516
-.993 .25 .3098 -.0598
1.027 .39 .3284 .0616

.022 .22 .2187 .0013
-1.025 .14 .2004 -.0604

-.013 .17 .1708 -.0008
-1.080 .15 .2140 -.0640

.850 .20 .1517 .0483
-.158 .19 .1993 -.0093
.047 .16 .1573 .0027
.542 .26 .2277 .0323
.293 .21 .1928 .0172

-1.234 .17 .2440 -.0740
-1.264 .26 .3357 -.0757
3.189 .48 .2877 .1923
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Look for Studentized Residuals larger than 2.5 
Observation #26 looks problematic 
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o Examining influence statistics 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER x 
  /SAVE COOK (cook) LEVER (level) SDRESID (sdresid). 
List var = ID cook level sdresid. 
 
      ID        COOK       LEVEL     SDRESID 
 
    1.00      .00015      .00029      .08550 
    2.00      .07291      .04468     1.28518 
    3.00      .00868      .03175      .47159 
    4.00      .11600      .08079    -1.32978 
    5.00      .02059      .02541      .77023 
    6.00      .03909      .05181     -.88363 
    7.00      .00002      .01122     -.02646 
    8.00      .00249      .08593      .18329 
    9.00      .01765      .08969      .48210 
   10.00      .00370      .00102      .41665 
   11.00      .01386      .00035     -.82313 
   12.00      .02864      .03179     -.86611 
   13.00      .02122      .00283     -.99226 
   14.00      .02665      .00963     1.02828 
   15.00      .00002      .02770      .02160 
   16.00      .04745      .04435    -1.02631 
   17.00      .00001      .07952     -.01313 
   18.00      .04390      .03156    -1.08375 
   19.00      .06178      .10758      .84490 
   20.00      .00115      .04544     -.15495 
   21.00      .00018      .09888      .04601 
   22.00      .00926      .02094      .53355 
   23.00      .00428      .05234      .28711 
   24.00      .03972      .01111    -1.24846 
   25.00      .04367      .01339    -1.28045 
   26.00      .20343      .00000     4.11310 

 
o Critical values 

Cook’s D:    695.)24,2,50.( === αFDcrit  

Leverage:    154.
26
42

==>
N
phcrit  

Studentized Deletion Residuals: 5.2~
>critd  

 
o Observation #26  

• Has large residual and deletion residual 
• Has OK Cook’s D and leverage 
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• Example #2: Only outlier #2 included 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x  
  /CASEWISE PLOT(SRESID) ALL 
 /SAVE PRED (pred) SRESID (sresid). 
 

o The regression model 
XY 0000384.00443. +−=   762.=XYr   564.2 =R  

 
 

o Examining residuals 
 

Casewise Diagnosticsa

.126 .30 .2923 .0077
1.610 .45 .3534 .0966
.779 .39 .3430 .0470

-.784 .33 .3763 -.0463
1.040 .40 .3371 .0629
-.477 .33 .3585 -.0285
.160 .33 .3203 .0097
.695 .42 .3791 .0409

1.002 .44 .3811 .0589
.376 .30 .2769 .0231

-.833 .23 .2811 -.0511
-.547 .31 .3430 -.0330
-.877 .25 .3037 -.0537
1.184 .39 .3178 .0722
-.241 .22 .2347 -.0147

-1.336 .14 .2208 -.0808
-.475 .17 .1983 -.0283

-1.336 .15 .2311 -.0811
.273 .20 .1839 .0161

-.496 .19 .2200 -.0300
-.475 .16 .1881 -.0281
.304 .26 .2415 .0185

-.084 .21 .2151 -.0051
-1.371 .17 .2538 -.0838
-1.040 .26 .3233 -.0633
3.261 .28 .1059 .1741
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Look for Studentized Residuals larger than 2.5 
 

Observation #27 looks problematic 
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o Examining influence statistics 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER x 
  /SAVE COOK (cook) LEVER (level) SDRESID (sdresid). 
List var = ID cook level sdresid. 
 
      ID        COOK       LEVEL     SDRESID 
 
    1.00      .00033      .00116      .12296 
    2.00      .11241      .04134     1.66884 
    3.00      .02246      .03043      .77271 
    4.00      .03788      .07116     -.77795 
    5.00      .03662      .02499     1.04164 
    6.00      .01065      .04729     -.46875 
    7.00      .00068      .01244      .15652 
    8.00      .03099      .07536      .68703 
    9.00      .06647      .07842     1.00235 
   10.00      .00284      .00007      .36942 
   11.00      .01389      .00001     -.82777 
   12.00      .01107      .03046     -.53874 
   13.00      .01720      .00431     -.87309 
   14.00      .03644      .01097     1.19431 
   15.00      .00167      .01578     -.23622 
   16.00      .06241      .02692    -1.35925 
   17.00      .01110      .05117     -.46709 
   18.00      .05370      .01833    -1.35897 
   19.00      .00458      .07090      .26774 
   20.00      .00870      .02765     -.48791 
   21.00      .01299      .06476     -.46726 
   22.00      .00242      .01138      .29784 
   23.00      .00027      .03236     -.08220 
   24.00      .04294      .00525    -1.39763 
   25.00      .03021      .01441    -1.04229 
   27.00     1.97793      .23268     4.27763 

 
o Critical values 

Cook’s D:    695.)24,2,50.( === αFDcrit  

Leverage:    154.
26
42

==>
N
phcrit  

Studentized Deletion Residuals: 5.2~
>critd  

 
o Observation #27  

• Has large residual, deletion residual, Cook’s D, and leverage 
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• Example #3: Only outlier #3 included 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x  
  /CASEWISE PLOT(SRESID) ALL 
 /SAVE PRED (pred) SRESID (sresid). 
 

o The regression model 
XY 0000506.105. +−=   900.=XYr   811.2 =R  

  (No change in slope or intercept) 
 

o Examining residuals 
 

Casewise Diagnosticsa

.283 .30 .2870 .0130
1.839 .45 .3677 .0823
.802 .39 .3539 .0361

-1.542 .33 .3979 -.0679
1.193 .40 .3461 .0539
-.995 .33 .3744 -.0444
.133 .33 .3239 .0061
.419 .42 .4016 .0184
.816 .44 .4042 .0358
.727 .30 .2667 .0333

-.923 .23 .2723 -.0423
-.976 .31 .3539 -.0439

-1.140 .25 .3021 -.0521
1.523 .39 .3207 .0693
.199 .22 .2110 .0090

-1.167 .14 .1926 -.0526
.157 .17 .1630 .0070

-1.242 .15 .2063 -.0563
1.273 .20 .1439 .0561
-.035 .19 .1916 -.0016
.236 .16 .1496 .0104
.880 .26 .2200 .0400
.554 .21 .1851 .0249

-1.452 .17 .2363 -.0663
-1.497 .26 .3280 -.0680
-.007 .05 .0473 -.0003
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Look for Studentized Residuals larger than 2.5 
 

All observations are OK 
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o Examining influence statistics 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER x 
  /SAVE COOK (cook) LEVER (level) SDRESID (sdresid). 
List var = ID cook level sdresid. 
 
      ID        COOK       LEVEL     SDRESID 
 
    1.00      .00166      .00114      .27793 
    2.00      .14731      .04166     1.94253 
    3.00      .02385      .03063      .79550 
    4.00      .14727      .07179    -1.59008 
    5.00      .04836      .02514     1.20442 
    6.00      .04665      .04767     -.99473 
    7.00      .00048      .01248      .13066 
    8.00      .01137      .07603      .41213 
    9.00      .04440      .07913      .81044 
   10.00      .01059      .00008      .71940 
   11.00      .01705      .00001     -.92025 
   12.00      .03536      .03067     -.97485 
   13.00      .02903      .00430    -1.14763 
   14.00      .06035      .01100     1.56861 
   15.00      .00114      .01611      .19514 
   16.00      .04801      .02743    -1.17608 
   17.00      .00122      .05206      .15340 
   18.00      .04678      .01870    -1.25721 
   19.00      .10074      .07207     1.29087 
   20.00      .00004      .02818     -.03419 
   21.00      .00325      .06584      .23152 
   22.00      .02042      .01164      .87563 
   23.00      .01179      .03296      .54551 
   24.00      .04835      .00539    -1.48820 
   25.00      .06259      .01447    -1.53863 
   28.00      .00001      .22342     -.00664 

 
 

o Critical values 
Cook’s D:    695.)24,2,50.( === αFDcrit  

Leverage:    154.
26
42

==>
N
phcrit  

Studentized Deletion Residuals: 5.2~
>critd  

 
o Observation #28  

• Has large leverage 
• Has OK residual, deletion residual, and Cook’s D 
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• Example #4: Only outlier #4 included 

REGRESSION 
  /STATISTICS COEFF OUTS R ANOVA ZPP 
  /DEPENDENT y 
  /METHOD=ENTER x  
  /CASEWISE PLOT(SRESID) ALL 
 /SAVE PRED (pred) SRESID (sresid). 
 

o The regression model 
XY 0000203.113. +=   403.=XYr   162.2 =R  

 
o Examining residuals 

 
Casewise Diagnosticsa

.319 .30 .2699 .0301
1.580 .45 .3022 .1478
.994 .39 .2967 .0933
.169 .33 .3143 .0157

1.132 .40 .2936 .1064
.269 .33 .3049 .0251
.480 .33 .2847 .0453

1.128 .42 .3158 .1042
1.334 .44 .3169 .1231
.405 .30 .2617 .0383

-.359 .23 .2639 -.0339
.142 .31 .2967 .0133

-.274 .25 .2759 -.0259
1.129 .39 .2834 .1066
-.207 .22 .2393 -.0193
-.992 .14 .2320 -.0920
-.547 .17 .2201 -.0501
-.938 .15 .2375 -.0875
-.137 .20 .2124 -.0124
-.448 .19 .2315 -.0415
-.602 .16 .2147 -.0547
.182 .26 .2429 .0171

-.205 .21 .2289 -.0189
-.845 .17 .2495 -.0795
-.279 .26 .2863 -.0263

-4.287 .07 .3944 -.3244
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Look for Studentized Residuals larger than 2.5 
 

Observation #29 is clearly problematic 
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o Examining influence statistics 

REGRESSION 
  /DEPENDENT y 
  /METHOD=ENTER x 
  /SAVE COOK (cook) LEVER (level) SDRESID (sdresid). 
List var = ID cook level sdresid. 
 
      ID        COOK       LEVEL     SDRESID 
 
    1.00      .00204      .00010      .31270 
    2.00      .07917      .02119     1.63404 
    3.00      .02744      .01416      .99364 
    4.00      .00125      .04155      .16580 
    5.00      .03319      .01081     1.13871 
    6.00      .00245      .02513      .26350 
    7.00      .00508      .00375      .47244 
    8.00      .05754      .04450     1.13456 
    9.00      .08286      .04667     1.35774 
   10.00      .00350      .00241      .39819 
   11.00      .00268      .00148     -.35230 
   12.00      .00056      .01418      .13866 
   13.00      .00151      .00036     -.26839 
   14.00      .02759      .00302     1.13603 
   15.00      .00144      .02454     -.20276 
   16.00      .04004      .03687     -.99116 
   17.00      .01675      .06205     -.53933 
   18.00      .03104      .02744     -.93564 
   19.00      .00129      .08174     -.13450 
   20.00      .00827      .03766     -.44047 
   21.00      .02337      .07567     -.59412 
   22.00      .00102      .01940      .17853 
   23.00      .00185      .04266     -.20071 
   24.00      .01885      .01163     -.84022 
   25.00      .00175      .00476     -.27318 
   29.00     5.74625      .34626    -8.67294 

 
 

o Critical values 
Cook’s D:    695.)24,2,50.( === αFDcrit  

Leverage:    154.
26
42

==>
N
phcrit  

Studentized Deletion Residuals: 5.2~
>critd  

 
o Observation #29  

• Has large residual, deletion residual, Cook’s D, and leverage 
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• Summary and comparison: 

0

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000 8000 10000 12000 14000 16000

#1 

#2 

#3 
#4 

 
 

   Problematic?  
 
Obs 

Regression 
Equation 

 
XYr  

 
ie~  

 
id  

 
iD  

 
ih  

Baseline XY 0000506.104. +−= 876.=XYr No No No No 
  #1 XY 0000506.097. +−= 809.=XYr Yes Yes No No 
  #2 XY 0000384.004. +−= 762.=XYr Yes Yes Yes Yes 
  #3 XY 0000506.105. +−= 900.=XYr No No No Yes 
  #4 XY 0000203.113. +=  403.=XYr Yes Yes Yes Yes 

 
 

o Using a combination of all the methods, we (properly) identify outliers 
#2 and #4 as problematic.  Outlier #1 may or may not be problematic, 
depending on our purposes. 
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6. Remedial Measures: An overview of alternative regression models 
 

• When regression assumptions are violated, you have two options 
o Explore transformations of X or Y so that the simple linear regression 

model can be used appropriately 
o Abandon the simple linear regression model and use a more appropriate 

model. 
 

• More complex regression models are beyond the scope of this course, but let 
me highlight some possible alternative models that could be explored. 

 
 

• Polynomial regression 
o When the regression function is not linear, a model that has non-linear 

terms may better fit the data. 
 

εβββ +++= 2
210 XXY  

 
εβββββ ++++++= k

k XXXXY ...3
3

2
210  

 
o In these models, we are fitting/estimating non-linear regression lines that 

correspond with polynomial curves.  This approach is very similar to the 
trend contrasts that we conducted in ANOVA except: 
• For polynomial regression, the predictor variable (IV) is continuous; 

in ANOVA it is categorical. 
• In polynomial regression, we obtain the actual equation of the 

(polynomial) line that best fits the data. 
 
 

• Weighted least squares regression 
o The regression question we have been using is known as ordinary least 

squares (OLS) regression.  In the OLS framework, we solve for the 
model parameters by minimizing the squared residuals (squared 
deviations from the predicted line). 
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2

10
22 )()ˆ( ∑∑∑ −−=−== iiiii XbbYYYeSSE  

 
o When we minimize the residuals, solve for the parameters, and compute 

p-values, we need the residuals to have equal variance across the range of 
X values.  If this equal variance assumption is violated, then the OLS 
regression parameters will be biased.   

 
o In OLS regression, each observation is treated equally.  But if some 

observations are more precise than others (i.e., they have smaller 
variance), it make sense that they should be given more weight than the 
less precise values. 

 
o In weighted least squares regression, each observation is weighted by the 

inverse of its variance 
 

2

1

i
iw

σ
=  

 
2

10
22 )()ˆ( ∑∑∑ −−=−== iiiiiiii XbbYwYYwewSSE  

 
• Observations with a large variance are given a small weight; 

observations with a small variance are given a big weight. 
 

o Issues with weighted least squares regression 
• We do not know the variances of the residuals; this value must be 

estimated.  The process of estimating these variances is not trivial – 
particularly in small datasets. 

• 2R  is uninterpretable for weighted least squares regression (but that 
does not stop most programs from printing it out!). 
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• Robust regression 

o When assumptions are violated and/or outliers are present, OLS 
regression parameters may be biased.  Robust regression is a series of 
approaches that computes estimates of regression parameters using 
techniques that are robust to violations of OLS assumptions 

 
o Least absolute residual (LAR) regression estimates regression parameters 

by minimizing the sum of the absolute deviations of the Y observations 
from the regression line: 

∑∑∑ −−=−= iiiii XbbYYYe 10
ˆ  

• This approach reduces the influence of outliers 
 
 

o Least median of squares (LMS) regression estimates regression 
parameters by minimizing the median of the squared deviations of the Y 
observations from the regression line: 

2
10

22 )()ˆ()( iiii XbbYmedianYYmedianeMedianSSE −−=−==  

• This approach also reduces the influence of outliers 
 

o Iterative reweighed least squares (IRLS) regression is a form of weighted 
least squares regression where the weights for each observation are M-
estimators of the residuals (Huber and Tukey-Bisquare estimators are the 
most commonly used M-estimators). 
• This approach reduces the influence of outliers 

 
o Disadvantages of these approaches include: 

• They are not commonly included in statistical software 
• They are robust to outliers, but they require that other regression 

assumptions be satisfied. 
• They are not commonly used in psychology and, thus, psychologists 

may regard these methods skeptically 
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• Non-parametric regression 

o Non-parametric regression techniques do not estimate model parameters.  
For a regression analysis, we are usually interested in estimating a slope, 
thus non-parametric methods are of limited utility from an inferential 
perspective.  

o In general, non-parametric techniques can be used to explore the shape of 
the regression line.  These methods provide a smoothed curve that fits the 
data, but do not provide an equation for this line or allow for inference on 
this line. 

 
o Previously, we examined the following data and concluded that the 

relationship between X2 and Y was non-linear (see p. 14-8) 

1.000.800.600.400.200.00

x2

1.00

0.80

0.60

0.40

0.20

0.00

y

 

• Let’s examine this data with non-parametric techniques to explore the 
relationship between X2 and Y. 

 
• Method of moving averages 

o The method of moving averages can be used to obtain a smoothed curve 
that fits the data. 

o To use this method, you must specify a window (w) – the number of 
observations you will average across.  First, average the Y values 
associated with the first w responses (the w smallest X values), and plot 
that point. Next, you discard the first value, add the next point along the 
X axis, compute the average of this set of w Y values, and plot that point.  
Continue moving the down the X axis, until you have used all the points.  
Then draw a line to connect the smoothed average points. 
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o For example, if w = 3, then you take the three smallest X values, average 
the Y values associated with these points, and plot that point.  Next, take 
the 2nd, 3rd, and 4th smallest X values and repeat the process . . .  

 
o An example of the method of moving averages, comparing different w 

values: 
Smoothing interval = 5
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Smoothing interval = 15
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• If the window is too small, it does not smooth the data enough; if the 
window is too large, it can smooth too much and you lose the shape of 
the data. 

• In this case, w = 15 looks about right. 
 
 



14-38   2007 A. Karpinski 

o Issues regarding the method of moving averages: 
• Averages are affected by outliers, so it can be preferable to use the 

method of moving medians 
• The method of moving averages is particularly useful for time-series 

data 
• If the data are unequally spaced and/or have gaps along the X axis, the 

method of moving averages can provide some wacky results. 
• In EXCEL, you can use the method of moving averages and you can 

specify w. 
 

• Loess smoothing 
o Loess stands for “locally weighted scatterplot smoothing” (the w got 

dropped somewhere along the way). 
o Loess smoothing is a more sophisticated method of smoothing than the 

method of moving averages. 
• In each “neighborhood”, a regression line is estimated and the fitted 

line is used for the smoothed line 
• This regression is weighted to give cases further from the middle X 

value less weight. 
• This process of fitting a linear regression line is repeated in each 

neighborhood so that observations with large residuals in the previous 
iteration receive less weight. 
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o One particularly useful application of loess smoothing is to confirm a 
fitted regression function 
• Fit a regression function and graph 95% confidence bands for the 

fitted line 
• Fit a loess smoothed curve through the data. 
• If the loess curve stays within the confidence bands, the fit of the 

regression line is good.  If the loess curve strays from the confidence 
bands, the fit of the regression line is not good. 
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7. Remedial Measures: Transformations 
 

• If the data do not satisfy the regression assumptions, a transformation 
applied to either the X variable or to the Y variable may make the simple 
linear regression model appropriate for the transformed data. 

 
• General rules of thumb: 

o Transformations on X 
• Can be used to linearize a non-linear relationship 

o Transformations on Y  
• Can be used to fix problems of nonnormality and unequal error 

variances 
• Once normality and homoscedasticity are achieved, it may be 

necessary to transform X to achieve linearity 
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• Prototypical patterns and transformations of X 
Non Linear Relationship #1
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o Try ′ X = ln(X)  or ′ X = X  
 

Non Linear Relationship #2
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o Try ′ X = X 2 or ′ X = exp(X)  

Non Linear Relationship #3
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o Try ′ X =1/ X  or ′ X = exp 1

X( ) 
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• Transforming Y 

o If the data are non-normal and/or heteroscedasticitic, a transformation on 
Y may be useful 

o It can be very difficult to determine the most appropriate transformation 
in Y to fix the data 

 
o One popular class of transformations is the family of power 

transformations 
′ Y = Y λ  

 
λ = 2   ′ Y = Y 2 
λ =1   ′ Y = Y  
λ = .5   ′ Y = Y  
λ = 0   ′ Y = ln(Y)    by definition 
λ = −.5  ′ Y = 1

Y
 

λ = −1   ′ Y = 1
Y  

λ = −2   ′ Y = 1
Y 2  

 
To determine a λ  that works: 
• Guess (trial and error) 
• Use the Box-Cox procedure (unfortunately not implemented in SPSS) 

 
 
 

• Warnings and cautions about transformations 
o Do not transform the data because of a small number of outliers 
o After transforming the data, recheck the fit of the regression model using 

residual analysis 
o Once the data are transformed, and a regression run on the transformed 

data, b0 and b1 apply to the transformed data and not to the original 
data/scale 

o For psychological data, if the original data are not linear, but the 
transformed data are, it can often be very difficult to interpret the results 
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• Transformations: An example 
o Let’s examine the relationship between the number of credits taken in a 

minor and interest in taking further coursework in that discipline. 
o A university collects data on 100 students 

• X = Number of credits completed in the minor 
• Y = Interest in taking another course in the minor discipline 

 
o First, let’s plot the data 
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• This relationship looks non-linear.  
• We can try a square root or a log transformation to achieve linearity. 
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o The log transformation appears to work, so we should check the 

remaining assumptions 

OLS Regression Line 

Loess Curve
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REGRESSION 
  /DEPENDENT ybr 
  /METHOD=ENTER lnx 
  /RESIDUALS HIST(SRESID) NORM(SRESID)  
  /SAVE RESID (resid1) ZRESID (zresid1)  SRESID (sresid1) pred (pred1). 

3210-1-2-3

Regression Studentized Residual
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Mean = -2.31E-4
Std. Dev. = 1.005
N = 100

Dependent Variable: Interest in further coursework

Histogram
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• The residuals appear to be normally distributed 
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• We might worry about an outlier, but homoscedasticity seems ok. 
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o Now, we can analyze the ln-transformed data. 

Model Summaryb

.813a .661 .658 2.7779456
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), lnxa. 

Dependent Variable: Interest in further courseworkb. 
 

Coefficientsa

1.337 1.244 1.075 .285
8.335 .603 .813 13.828 .000

(Constant)
lnx

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Interest in further courseworka. 
 

 
• There is a strong linear relationship between ln of credits taken and 

interest in taking additional courses in the discipline, 
66.,01.,83.13)98(,81. 2 =<== AdjustedRptβ  

 
o But in this case, the non-linear relationship is interesting (and 

interpretable).  We would be better off with an approach where we could 
model the non-linearity than with this approach where we try to 
transform to linearity.   

o In this case, polynomial regression may be very useful. 
 

o Note that if we had not graphed or explored our data, we would have 
missed the non-linear relationship altogether! 

 

Model Summary

.749a .561 .556 3.1625661
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Number of creditsa. 
 

Coefficientsa

8.718 .897 9.721 .000
1.149 .103 .749 11.187 .000

(Constant)
Number of credits

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Interest in further courseworka. 
 

 


