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1.

Simple Linear Regression
Regression Diagnostics and Remedial Measures

Residuals and regression assumptions

e The regression assumptions can be stated in terms of the residuals

&~ NID(0,0%)

o All observations are independent and randomly selected from the
population (or equivalently, the residual terms, ¢ s, are independent)

o The residuals are normally distributed at each level of X
o The variance of the residuals is constant across all levels of X

e We must also assume that the regression model is the correct model

o The relationship between the predictor and outcome variable is linear
o No relevant variables have been omitted
o No error in the measurement of predictor variables

e Types of residuals
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o (Unstandardized) residuals, e,

e, =Y - Y
A residual is the deviation of the observed value from the predicted
value on the original scale of the data
If the regression model fits the data perfectly, then there would be no
residuals. In practice, we always have residuals, but the presence of
many large residuals can indicate that the model does not fit the data
well
If the residuals are normally distributed, then we would expect to find
5% of residuals greater than 2o from the mean
1% of residuals greater than 2.5 from the mean
.1% of residuals greater than 3o from the mean
It can be difficult to eyeball standard deviations from the mean, so we
often turn to standardized residuals
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o Standardized residuals, ¢

Y -Y Y -7

" o, JMSE

Standardized residuals are z-scores. Why?

The average of the residuals is zero

zei =0
n

e =

The standard deviation of the residuals i1s v MSE

e —2)* e’
Var(e)zz(n’_2 ) =§_’2 =nSsz:MSE

So a standardized residual would be given by:
~ € —e g Y,-Y

e = = =
o, ~MSE ~JMSE

i

Because standardized residuals are z-scores, we can easily detect
outliers. When examining standardized residuals, we should find:
5% of |¢|s greater than 2

1% of [¢|s greater than 2.5
1% of |¢|s greater than 3

o Studentized residuals, ]

14-3

MSE is the overall variance of the residuals

It turns out that the variance of an individual residual is a bit more
complicated. Each residual has its own variance, depending on its
distance from X

When residuals are standardized using residual-specific standard
deviations, the resulting residual is called a studentized residual.
In large samples, it makes little difference whether standardized or
studentized are used. However, in small samples, studentized
residuals give more accurate results.

Because SPSS makes the use of studentized residuals easy, it is good
practice to examine studentized residuals rather than standardized
residuals
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¢ Obtaining residuals in SPSS

REGRESSION
/DEPENDENT dollars
/IMETHOD=ENTER miles
/ISAVE RESID (resid) ZRESID (zresid) SRESID (sresid) .

o RESID produces unstandardized residuals
o ZRESID produces standardized residuals
SRESID produces studentized residuals

O

o Each residual appears in a new data column in the data editor

RESID ZRESID SRESID
-.80365 -.34695 -.35921
-1.33272 -.57536 -.61672
-1.60685 -.69370 -.73813
1.50761 .65086 .68389
1.97215 .85140 .88173
-1.33425 -.57601 -.64739
.37854 .16342 .18972
-2.73592 -1.18114 -1.22407
-3.46819 -1.49727 -1.56097
-.13105 -.05658 -.05952
3.39148 1.46415 1.54912
1.61081 .69541 . 77910
2.91415 1.25808 1.49866
2.50928 1.08329 1.16348
-2.87139 -1.23962 -1.28850

¢ You can see the difference between standardized and studentized
residuals 1s small, but it can make a difference in how the model fit is
interpreted

e Because all the regression assumptions can be stated in terms of the
residuals, examining residuals and residual plots can be very useful in
verifying the assumptions

o In general, we will rely on residual plots to evaluate the regression
assumptions rather than rely on statistical tests of those assumptions
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2. Residual plots to detect lack of fit

e There are several reasons why a regression model might not fit the data well
including:
o The relationship between X and ¥ might not be linear
o Important variables might be omitted from the model

e To detect non-linearity in the relationship between X and Y, you can:

o Create a scatterplot of X against Y
e Look for non-linear relationships between X and Y

o Plot the residuals against the X values

e The residuals have linear association between X and ¥ removed. If X
and Y are linearly related, then all that should be remaining for the
residuals to capture is random error

e Thus, any departure from a random scatterplot indicates problems

e In general, this graph is easier to interpret than the simple scatterplot
and an added advantage of this graph (if studentized residuals are
used) is that you can easily spot outliers

e In simple linear regression, a plot of e, vs X is identical to a plot of e,
vs Y. Thus, there is no need to examine both of these plots.

The predicted values are the part of the Y's that have a linear
relationship with X, so ¥ and X will always be perfectly correlated

when there is only one predictor.

In multiple regression, different information may be obtained from
a plot of e, vs Xand from a plot of e, vs Y.
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e Example #1: A good linear regression model (n = 100)

o A scatterplot of X against ¥

GRAPH /SCATTERPLOT(BIVAR)=x WITH y.
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o The X-Y relationship looks linear

e Plot the residuals against the X values
GRAPH /SCATTERPLOT(BIVAR)=x WITH sresid.
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relationship between X and Y
We also see that no outliers are present
This graph is as good as it gets!

The plot looks random so we have evidence that there is no non-linear
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e Example #2: A nonlinear relationship between X and Y (n = 100)

o A scatterplot of X against ¥
GRAPH /SCATTERPLOT(BIVAR)=x1 WITH y.
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o The X-Y relationship looks mostly linear

o Plot the residuals against the X values
GRAPH /SCATTERPLOT(BIVAR)=x1 WITH sresid.
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o This graph has a slight U-shape, suggesting the possibility of a non-linear

relationship between X and Y
o We also see one outlier
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e Example #3: A second nonlinear relationship between X and Y (n = 100)

o A scatterplot of X against ¥
GRAPH /SCATTERPLOT(BIVAR)=x2 WITH y.
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o The X-Y looks slightly curvilinear in this case

o Plot the residuals against the X values
GRAPH /SCATTERPLOT(BIVAR)=x2 WITH sresid.
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o This graph has a strong U-shape, indicating a non-linear relationship

between X and Y
o Notice that it is easier to detect the non-linearity in the residual plot than

in the scatterplot
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o You can not determine lack-of-fit/non-linearity from the significance

tests on the regression parameters
REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP
/DEPENDENT y
/IMETHOD=ENTER x2

¢ In this case, we find evidence for a strong linear relationship between
X2 and Y, b =.887,(98) =18.195,p < .001 [r=.94]

Coefficients?
Standardi
zed
Unstandardized Coefficien
Coefficients ts Correlations
Model B Std. Error Beta t Sig. Zero-order Partial Part
1 (Constant) 232 .013 18.195 .000
X2 .887 .032 .941 27.458 .000 .941 .941 941

a. Dependent Variable: Y

e This linear relationship between X2 and Y accounts for 88.5% of the
variance in Y.

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .9412 .885 .884 .07585

a. Predictors: (Constant), X2

e Yet from the residual plot, we know that this linear model is incorrect
and does not fit the data well

e Despite the level of significance and the large percentage of the
variance accounted for, we should not report this erroneous model

e Detecting the omission of an important variable by looking at the residuals is
very difficult!
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3. Residual plots to detect homogeneity of variance

e We assume that the variance of the residuals is constant across all levels of
predictor variable(s)
e To examine if the residuals are homoscedastic, we can plot the residuals
against the predicted values
o If the residuals are homoscedastic, then their variability should be
constant over the range

3

2 ]
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o As previously mentioned, plotting residuals against fitted values (¥) or
against the predictor (X) produces the same plots when there is only one X
variable. In multiple regression, a plot of the residuals against fitted
values (Y) is generally preferred, but in this case it makes no difference

o The raw residuals and the standardized residuals do not take into account
the fact the variance of each residual is different (and depends on its
distance from the mean of X). For plots to examine homogeneity, it is
particularly important to use the studentized residuals
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o Example #1: A homoscedastic model (n = 100)
GRAPH /SCATTERPLOT(BIVAR)=sresid WITH pred.

2.00000 —

1.00000—

0.00000

Studentized Residual

-1.00000 —

-2.00000 —

o
o
o ° o°
o o ©
o
o o 00 ©
o
o o
o o © ©° o © °
o
o o
o
®
o o
Q &2 o
°c )
© o © o0 o 00
° o
@O o
o
o 00
o o
o © o
0o o o
o ® ©° ©
o o® o °
o o
oo ®

T
0.00000

0.20000

0.40000 0.60000

Unstandardized Predicted Value

0.80000

1.00000

o The band of residuals is constant across the entire length of the observed

predicted values

e Example #2: A heteroscedastic model (n = 100)
GRAPH /SCATTERPLOT(BIVAR)=sresid WITH pred.
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o This pattern where the variance increases as Y increases is a common
form of heteroscedasticity.

© 2007 A. Karpinski



o In this case, the unequal heteroscedasticity is also apparent from the X-Y
scatterplot. But in general, violations of the variance assumption are
easier to spot in the residual plots

GRAPH /SCATTERPLOT(BIVAR)=y WITH x.
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o As in the case of looking for non-linearity, examining the regression
model provides no clues that the model assumptions have been violated
REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP
/DEPENDENT y
/METHOD=ENTER x.

Model Summary

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .3032 .092 .083 4.11810
a. Predictors: (Constant), X
Coefficients?
Standardi
zed
Unstandardized Coefficien
Coefficients ts Correlations
Model B Std. Error Beta t Sig. Zero-order Partial Part
1 (Constant) 8.650 .649 13.336 .000
X -.222 .070 -.303 -3.153 .002 -.303 -.303 -.303

a. Dependent Variable: Y

14-12
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4. Residual plots to detect non-normality

e As for ANOVA, symmetry is more important than normality

e There are a number of techniques that we can use to check normality of the
residuals. In general, these are the same techniques we used to check
normality in ANOVA
o Boxplots or histograms of residuals
o A normal P-P plot of the residuals
o Coefficients of skewness/kurtosis may also be used

e Normality is difficult to check and can be influenced by other violations of
assumptions. A good strategy is to check and address all other assumptions
first, and then turn to checking normality

e These tests are not foolproof

o Technically, we assume that the residuals are normally distributed at each
level of the predictor variable(s)

o It is possible (but unlikely) that the distribution of residuals might be left-
skewed for some values of X and right skewed for other values so that,
on average, the residuals appear normal.

o If you are concerned about this possibility and if you have a very large
sample, you could divide the Xs into a equal categories, and check
normality separately for each of the a subsamples (you would want at
least 30-50 observations per group). In general, this is not necessary.

e Example #1: Normally distributed residuals (N = 100)

EXAMINE VARIABLES=sresid
/PLOT BOXPLOT HISTOGRAM NPPLOT.

Descriptives

Statistic Std. Error

Studentized Residual  Mean .0002928 |.10048947
5% Trimmed Mean -.0129241
Median -.0584096
Variance 1.010
Std. Deviation 1.004895
Minimum -2.22678
Maximum 2.57839
Range 4.80518
Interquartile Range 1.2754269

Skewness 21 241

Kurtosis -.182 478

o The mean is approximately equal to the median
o The coefficients of skewness and kurtosis are relatively small
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-2 Tests of Normality

Shapiro-Wilk
Statistic df Sig.
Studentized Residual .990 100 .648

N= 150
Studentized Residual

o Plots can also be obtained directly from the regression command
REGRESSION /DEPENDENT y
/IMETHOD=ENTER z
/RESIDUALS HIST(SRESID) NORM(SRESID)
ISAVE sRESID (sresid).

Histogram Normal P-P Plot of Regression

Dependent Variable: Y Studentized Residual
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o The histogram and P-P plot are as good as they get. There are no
problems with the normality assumption.
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e Example #2: Non-normally distributed residuals (N = 100)

REGRESSION
/DEPENDENT y

/METHOD=ENTER z1
/RESIDUALS HIST(ZRESID1) NORM(ZRESID1)
ISAVE ZRESID (zresid1).

Histogram

Dependent Variable: Y
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EXAMINE VARIABLES=zresid1
/PLOT BOXPLOT HISTOGRAM NPPLOT
ISTATISTICS DESCRIPTIVES.
Descriptives
Statistic Std. Error
Standardized Residual Mean .0000000 (.09949367
5% Trimmed Mean .1054551
Median .2856435
Variance .990
Std. Deviation .99493668
Minimum -4.06265
Maximum 1.13547
Range 5.19812
Interquartile Range 1.1329148
Skewness -1.769 241
Kurtosis 3.747 478
Tests of Normality
Shapiro-Wilk
Statistic df Sig.
Standardized Residual .835 100 .000
o All signs point to non-normal, non-symmetrical residuals. There is a
violation of the normality assumption in this case.
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5. Identifying outliers and influential observations

e Observations with large residuals are called outliers

e But remember, when the residuals are normally distributed, we expect a

14-16

small percentage of residuals to be large
We expect 5% of |e,|s greater than 2

We expect 1% of |e,|s greater than 2.5
We expect .1% of |e|s greater than 3

Expected number of residuals

# of observations b >2.5 >3
50 2.5 0.5 .005
100 5 1 0.1
200 10 2 0.2
500 25 5 0.5
1000 50 10 1

o Many people use |¢,|>2 as a check for outliers, but this criterion results

in too many observations being identified as outliers. In large samples,
we expect a large number of observations to have residuals greater than 2
o A more reasonable cut-off for outliers is to use |e,|>2.5 or even ¢/ >3
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e There are multiple kinds of outliers
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e When we examine extreme observations, we want to know:
o Isitan outlier? (i.e., Does it differ from the rest of the observed data?)

o Is it an influential observation?

(i.e., Does it have an impact on the regression equation?)

e C(learly, each of the values highlighted on the graph is an outlier, but how
will each influence estimation of the regression line?

o Outlier #1
¢ Influence on the intercept:
¢ Influence on the slope:

o Outlier #2
¢ Influence on the intercept:
e Influence on the slope:

o Outlier #3
¢ Influence on the intercept:
¢ Influence on the slope:

o Outlier #4
e Influence on the intercept:
e Influence on the slope:

14-17
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e Not all outliers are equally influential. It is not enough to identify outliers;
we must also consider the influence each may have (particularly on the
estimation of the slope)

14-18

Methods of identifying outliers and influential points:

O

0 O O O

Examination of the studentized residuals

A scatterplot of studentized residuals with X
Examination of the studentized deletion residuals
Examination of leverage values

Examination of Cook’s distance (Cook’s D)

Studentized Deletion Residuals

O

A deletion residual is the difference between the observed Y, and the
predicted ¥, value based on a model with the i observation deleted

di:Yi_Y.([)

The deletion residual is a measure of how much the /* observation
influences the overall regression equation

If the i observation has no influence on the regression line then Y, = f/m
and d,=0

The greater the influence of the observation, the greater the deletion
residual

Note that we cannot determine if the observation influences the
estimation of the intercept or of the slope. We can only tell that it has an
influence on at least one of the parameters in the regression equation.

The size of the deletion residuals will be determined, in part, by the scale
of the Y values. In order to create deletion residuals that do not depend
on the scale of Y, we can divide d. by its standard deviation to obtain a
studentized deletion residual

a~,‘ _ Yz — ? ii)
L s(d)

Studentized deletion residuals can be interpreted like z-scores (or more
precisely, like t-scores)
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e Leverage values

o It can be shown (proof omitted) that the predicted value for the i
observation can be written as a linear combination of the observed Y
values

I}i: hYi+hY,+. . +hY +.+hY

Where h,h,,...,h, are known as leverage values or leverage weights
0<h <0

o The leverage values are computed by only using the X value(s).

o A large 4, indicates that Y, is particularly important in determining Y]

But because the #,s are computed by only using the X value(s), 4,
measures the role of the X value(s) in determining how important Y, is in
affecting 7,.

o Thus, leverage values are helpful in identifying outlying X observations
that influence Y

o To identify large leverage values, we compare 4, to the average leverage
value. The standard rule of thumb is if the 4, is twice as large as the
average leverage value, then X observation(s) for the i participant
should be examined

The average leverage value is:
P
n
Where p = the number of parameters in the regression model
(2 for simple linear regression)

n = the number of participants

And so the rule-of -thumb cutoff value i1s:

hi>2—p
n

o Other common cut-off values include
® /,>.5
e Look for a large gap in the distribution of 4s
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Cook’s Distance (1979)

o Cook’s D is another measure of the influence an outlying observation has
on the regression coefficients. It combines residuals and leverage values
into a single number.

Di — elz hi
pEMSE | (1-h,)’

Where: e, is the (unstandardized) residual for the i observation
p 1s the number of parameters in the regression model
h. is the leverage for the i observation

o D, for each observation depends on two factors:
e The residual: Larger residuals lead to larger D.s
e The leverage: Larger leverage values lead to larger D.s

o The i” observation can be influential (have a large D,) by
e Having a large ¢, and only a moderate #,
e Having a moderate ¢, and a large 4,
e Having a large ¢, and a large &,

o A D, is considered to be large (indicating an influential observation) if it
falls at or above the 50™ percentile of the F-distribution

F . (a =.50,dfn,dfe)
dfn =# of parameters in the model = p (2 for simple linear regression)
dfe = degrees of freedom for error=N —p

e For example, with a simple linear regression model (p = 2) with 45
observations (dfe = 45-2=43)
D, = F(a =.50,dfn,dfe) = F(a = .50,2,43) = 704
In this case, observations with Cook’s D values greater than .704
should be investigated as possibly being influential
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e Other methods of identifying outliers and influential observations exist to
measure the influence of the i observation:
o on each regression coefficient (DFBETAS)
o on the predicted values (DFFITS)

e These methods of outliers and influence often work well, but can be
ineffective at times. Ideally, the different procedures would identify the
same cases, but this does not always happen. The use of these procedures
requires thought and good judgment on the part of the analyst.

¢ Once influential points are identified:
o Check to make sure there has not been a data coding or data entry error.

o Conduct a sensitivity analysis to see how much your conclusions would
change if the outlying points were dropped.

o Never drop data points without telling your audience why those
observations were omitted. In general, it is not advisable to drop
observations from your analysis

o The presence of many outliers may indicate an improper model

e Perhaps the relationship is not linear

e Perhaps the outliers are due to a variable omitted from the model
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e Baseline example: No outliers included

REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP

/IDEPENDENT y

/METHOD=ENTER x

ICASEWISE PLOT(SRESID) ALL
/ISAVE PRED (pred) SRESID (sresid).

o The regression model

Y =-.104 +.0000506 X Fvy =.876 R? =.767
o Examining residuals
Casewise Diagnostics
Stud. Predicted
Case Number Residual Value Residual
7 277 30 2870 0130
2 1.805 45 3676 0824
3 786 39 3539 0361
4 -1.518 33 3978 -.0678
5 1.170 40 3461 0539
6 977 33 3744 -.0444
7 131 33 3239 .0061
8 414 42 4015 0185
9 805 44 4042 0358 2-
10 712 30 2668 0332 ©
11 -.905 23 2723 -.0423 — 5 ©
12 -.956 31 3539 -.0439 S .- ©
13 1116 25 3021 -.0521 2 © o ° °
14 1.491 39 3207 0693 & © 5 o
15 196 22 2110 .0090 ° . O ° o
16 -1.155 4 1927 -.0527 8 ©
17 155 A7 1631 .0069 =
18 -1.226 A5 2063 -.0563 3 5 5
19 1.272 20 1440 .0560 % 7 o5 o ©
20 -.035 19 1916 -0016 o o 5
21 235 16 1496 0104
22 866 26 2200 .0400 2+
23 547 21 1851 0249
24 -1.427 A7 -2363 -0663 5000 6000 7000 8000 5000 10000
25 -1.465 26 3280 -.0680 .

a. Dependent Variable: Y

Look for Studentized Residuals larger than 2.5

14-22

© 2007 A. Karpinski



14-23

o Examining influence statistics
REGRESSION

/DEPENDENT y

/IMETHOD=ENTER x

ISAVE COOK (cook) LEVER (level) SDRESID (sdresid).
List var = ID cook level sdresid.

O 1o U WN R

O

20

21.
22.
23.
24.
25.

o Critical values
Cook’s D:

Leverage:

Studentized Deletion Residuals:

ID

.00
.00
.00
.00
.00
.00
.00
.00
.00
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
.00

00
00
00
00
00
00
00
00
00
00

00
00
00
00
00

COOK

.00162
.15078
.02389
.15820
.04787
.04820
.00046
.01235
.04834
.01084
.01722
.03537
.02788
.05806
.00139
.06141
.00162
.05796
.14004
.00006
.00443
.02431
.01523
.05487
.06055

LEVEL

.00029
.04468
.03175
.08079
.02541
.05181
.01122
.08593
.08969
.00102
.00035
.03179
.00283
.00963
.02770
.04435
.07952
.03156
.10758
.04544
.09888
.02094
.05234
.01111
.01339

SD

RESID

.27175

.90591

.77952

.56462

1.17947

.97548

.12792
.40647
.79907
.70417

.90124

-.95448

1.12251
.53438

.19142

.16348

.15130

.24063

1.29016

.03471

.22963
.86075
.53871

-1.
-1.

D

crit

46223
50504

= F(a =.50,2,23) =.714

o In this case, we do not identify any outliers or influential observations
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e Example #1: Outlier #1 included
REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP

/IDEPENDENT y

/METHOD=ENTER x

/ICASEWISE PLOT(SRESID) ALL
/ISAVE PRED (pred) SRESID (sresid).

o The regression model

Y =-.0967 +.0000506 X vy =.809
(Slope is unchanged)
o Examining residuals
Casewise Diagnostics
Stud. Predicted
Case Number Residual Value Residual
1 087 30 2947 10053
2 1.268 45 3753 0747
3 479 39 3616 0284
4 -1.309 33 4055 -.0755
5 777 40 3538 0462
6 -.888 33 3821 -.0521
7 -.027 33 3316 -.0016
8 187 42 4092 0108
9 490 A4 4119 .0281
10 424 .30 2744 10256
11 -.829 23 2800 -.0500
12 -871 31 3616 -.0516
13 -993 25 .3098 -.0598 §
14 1.027 .39 3284 0616 =l
15 022 22 2187 0013 o
16 -1.025 14 2004 -.0604 %
17 -013 A7 1708 -.0008 Q
18 -1.080 15 2140 -.0640 =
19 850 20 1517 0483 3
20 -.158 19 1993 -.0093 2
21 .047 16 1573 0027 @
22 542 26 2277 0323
23 293 21 1928 0172
24 -1.234 A7 2440 -.0740
25 -1.264 26 3357 -.0757
26 3.189 48 2877 1923

a. Dependent Variable: Y

2
R =.654
o
o
o
o o
o o o o
o o
Q fa) Qo o
o
o o]
o0 o o
(o) (e} o)
T T T T T T
5000 6000 7000 8000 9000 10000
X

Look for Studentized Residuals larger than 2.5
Observation #26 looks problematic

14-24
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o Examining influence statistics
REGRESSION

/DEPENDENT y

/IMETHOD=ENTER x

ISAVE COOK (cook) LEVER (level) SDRESID (sdresid).
List var = ID cook level sdresid.

O 1o U WN R

O

o Critical values
Cook’s D:

Leverage:

Studentized Deletion Residuals:

o Observation #26

ID

.00
.00
.00
.00
.00
.00
.00
.00
.00
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

COOK

.00015
.07291
.00868
.11600
.02059
.03909
.00002
.00249
.01765
.00370
.01386
.02864
.02122
.02665
.00002
.04745
.00001
.04390
.06178
.00115
.00018
.00926
.00428
.03972
.04367
.20343

LEVEL

.00029
.04468
.03175
.08079
.02541
.05181
.01122
.08593
.08969
.00102
.00035
.03179
.00283
.00963
.02770
.04435
.07952
.03156
.10758
.04544
.09888
.02094
.05234
.01111
.01339
.00000

SDRESID

.08550
.28518
.47159
.32978
.77023
.88363
.02646
.18329
.48210
.41665
.82313
.86611

-.99226

-1
-1

D

crit

d

e Has large residual and deletion residual
e Has OK Cook’s D and leverage

14-25

crit

crit

.02828
.02160
.02631
.01313
.08375
.84490
.15495
.04601
.53355
.28711
.24846
.28045
.11310

> 2p

>2.5

= F(a =.50,2,24) = .695

—=—=.154
N 26
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e Example #2: Only outlier #2 included
REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP

/IDEPENDENT y

/METHOD=ENTER x

/ICASEWISE PLOT(SRESID) ALL

/ISAVE PRED (pred) SRESID (sresid).

o The regression model
Y =-.00443 +.0000384 X

o Examining residuals

Casewise Diagnostics

Stud. Predicted
Case Number Residual Y Value Residual
1 126 .30 .2923 .0077
2 1.610 .45 .3534 .0966
3 779 .39 .3430 .0470
4 -.784 .33 .3763 -.0463
5 1.040 40 .3371 .0629
6 -A77 .33 .3585 -.0285
7 .160 .33 .3203 .0097
8 .695 42 3791 .0409
9 1.002 44 .3811 .0589
10 .376 .30 .2769 .0231
11 -.833 .23 2811 -.0511
12 -.547 .31 .3430 -.0330
13 -.877 .25 .3037 -.05637
14 1.184 .39 .3178 .0722
15 -.241 22 .2347 -.0147
16 -1.336 14 .2208 -.0808
17 -475 A7 .1983 -.0283
18 -1.336 .15 2311 -.0811
19 273 .20 .1839 .0161
20 -.496 19 .2200 -.0300
21 -475 .16 .1881 -.0281
22 304 .26 2415 .0185
23 -.084 .21 2151 -.0051
24 -1.371 A7 .2538 -.0838
25 -1.040 .26 .3233 -.0633
27 3.261 .28 .1059 1741

a. Dependent Variable: Y

14-26

Studentized Residual

R? = .564

4000

Look for Studentized Residuals larger than 2.5

Observation #27 looks problematic

6000 8000 10000
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14-27

o Examining influence statistics

REGRESSION
/DEPENDENT y
/IMETHOD=ENTER x
ISAVE COOK (cook) LEVER (level) SDRESID (sdresid).

List var = ID cook level sdresid.

O 1o U WN R

O

o Critical values
Cook’s D:

Leverage:

Studentized Deletion Residuals:

o Observation #27

ID

.00
.00
.00
.00
.00
.00
.00
.00
.00
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
27.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

COOK

.00033
.11241
.02246
.03788
.03662
.01065
.00068
.03099
.06647
.00284
.01389
.01107
.01720
.03644
.00167
.06241
.01110
.05370
.00458
.00870
.01299
.00242
.00027
.04294
.03021
1.97793

LEVEL

.00116
.04134
.03043
.07116
.02499
.04729
.01244
.07536
.07842
.00007
.00001
.03046
.00431
.01097
.01578
.02692
.05117
.01833
.07090
.02765
.06476
.01138
.03236
.00525
.01441
.23268

SD

RESID

.12296

.66884

L77271

77795

1.04164

.46875

.15652
.68703

.00235

.36942

.82777

-.53874

|
L R e T B e |

.87309
.19431
.23622
.35925
.46709
.35897

.26774

.48791
.46726

.29784

-1.
-1.

D

crit

.08220

39763
04229

.27763

= F(a =.50,2,24) = .695

2= 154
26

e Has large residual, deletion residual, Cook’s D, and leverage
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e Example #3: Only outlier #3 included
REGRESSION
ISTATISTICS COEFF OUTS R ANOVA ZPP

/IDEPENDENT y

/METHOD=ENTER x

/ICASEWISE PLOT(SRESID) ALL
/ISAVE PRED (pred) SRESID (sresid).

o The regression model
Y =-.105+.0000506 X

(No change in slope or intercept)

o Examining residuals

Casewise Diagnostics

Fyy =.900

Stud. Predicted
Case Number Residual Y Value Residual
1 .283 .30 .2870 .0130
2 1.839 .45 .3677 .0823
3 .802 .39 .3539 .0361
4 -1.542 .33 3979 -.0679
5 1.193 .40 .3461 .0539
6 -.995 .33 3744 -.0444
7 133 .33 3239 .0061
8 419 42 4016 .0184
9 .816 44 4042 .0358
10 727 .30 .2667 .0333
11 -.923 .23 2723 -.0423
12 -.976 .31 3539 -.0439
13 -1.140 25 .3021 -.0521
14 1.523 .39 .3207 .0693
15 199 22 2110 .0090
16 -1.167 14 .1926 -.0526
17 157 A7 11630 .0070
18 -1.242 15 .2063 -.0563
19 1.273 .20 11439 .0561
20 -.035 19 1916 -.0016
21 .236 16 .1496 .0104
22 .880 .26 .2200 .0400
23 .554 .21 .1851 .0249
24 -1.452 A7 .2363 -.0663
25 -1.497 .26 .3280 -.0680
28 -.007 .05 .0473 -.0003

a. Dependent Variable: Y

14-28

Studentized Residual

R? =811

4000

Look for Studentized Residuals larger than 2.5

All observations are OK

6000 8000 10000
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14-29

o Examining influence statistics

REGRESSION

/DEPENDENT y

/IMETHOD=ENTER x

ISAVE COOK (cook) LEVER (level) SDRESID (sdresid).
List var = ID cook level sdresid.

ID

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O 1o U WN R

S I T R R R R e e e e e N N
U™ WNER OWOWJ0UdWNRE OV

o Critical values
Cook’s D:

Leverage:

Studentized Deletion Residuals:

o Observation #28

COOK

.00166
.14731
.02385
.14727
.04836
.04665
.00048
.01137
.04440
.01059
.01705
.03536
.02903
.06035
.00114
.04801
.00122
.04678
.10074
.00004
.00325
.02042
.01179
.04835
.06259
.00001

e Has large leverage

e Has OK residual, deletion residual, and Cook’s D

LEVEL

.00114
.04166
.03063
.07179
.02514
.04767
.01248
.07603
.07913
.00008
.00001
.03067
.00430
.01100
.01611
.02743
.05206
.01870
.07207
.02818
.06584
.01164
.03296
.00539
.01447
.22342

SD

RESID

.27793

.94253

. 79550

.59008

1.20442

.99473

.13066
.41213
.81044
.71940

.92025

-.97485

1.14763
.56861

.19514

.17608

.15340

.25721

1.29087

.03419

.23152
.87563
.54551

-1.
-1.

D

crit

48820
53863

.00664

= F(a =.50,2,24) = .695

2= 154
26
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e Example #4: Only outlier #4 included

REGRESSION

ISTATISTICS COEFF OUTS R ANOVA ZPP

/IDEPENDENT y

/METHOD=ENTER x
/ICASEWISE PLOT(SRESID) ALL
/ISAVE PRED (pred) SRESID (sresid).

o The regression model

Y =.113+.0000203 X Iy =.403 R*=.162
o Examining residuals
Casewise Diagnostics
Stud. Predicted
Case Number Residual Y Value Residual
7 319 30 2699 10301
2 1.580 45 3022 1478
3 994 39 2967 0933
4 169 33 3143 0157
5 1.132 40 2936 1064
6 269 33 3049 0251
7 480 33 2847 0453
8 1.128 42 3158 1042
9 1.334 44 3169 1231 o
10 405 30 2617 0383
11 -359 23 2639 -.0339 3
12 142 31 2967 0133 -
13 274 25 2759 | -.0259 S 27
14 1129 39 2834 | 1086 | = oo 8
15 -207 22 2393 -0193 e " 5
16 -.992 14 2320 -.0920 5 . Co " 500
17 -547 A7 2201 -.0501 8 OOO ¥© o000
18 -.938 A5 2375 -.0875 T 4 00
19 -137 20 2124 -0124 3
20 -448 19 2315 -.0415 ‘% 2+
21 -.602 16 2147 -.0547
22 182 26 2429 0171 37
23 -205 21 2289 -.0189
24 -.845 A7 2495 -0795 *7
25 -279 26 2863 -.0263 5000 7300 10000 12500
29 -4.287 07 3944 -.3244 .

a. Dependent Variable: Y

Look for Studentized Residuals larger than 2.5

14-30

Observation #29 is clearly problematic
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14-31

o Examining influence statistics

REGRESSION
/DEPENDENT y
/IMETHOD=ENTER x
ISAVE COOK (cook) LEVER (level) SDRESID (sdresid).

List var = ID cook level sdresid.

ID

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

O 1o U WN R

NNMNMNNMNNMNNMNNNRRPRRPRRRRRRPRE
O U WNEFE OWOWJIOU D WN P O W

o Critical values
Cook’s D:

Leverage:

Studentized Deletion Residuals:

o Observation #29

COOK

.00204
.07917
.02744
.00125
.03319
.00245
.00508
.05754
.08286
.00350
.00268
.00056
.00151
.02759
.00144
.04004
.01675
.03104
.00129
.00827
.02337
.00102
.00185
.01885
.00175
5.74625

LEVEL

.00010
.02119
.01416
.04155
.01081
.02513
.00375
.04450
.04667
.00241
.00148
.01418
.00036
.00302
.02454
.03687
.06205
.02744
.08174
.03766
.07567
.01940
.04266
.01163
.00476
.34626

SDRESID

.31270
1.63404
.99364
.16580
1.13871
.26350
.47244
1.13456
1.35774
.39819
-.35230
.13866
-.26839
1.13603
-.20276
-.99116
-.53933
-.93564
-.13450
-.44047
-.59412
.17853
-.20071
-.84022
-.27318
-8.67294

D

crit

2p 4

= F(a =.50,2,24) = .695

2P 2 154
N 26

e Has large residual, deletion residual, Cook’s D, and leverage
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e Summary and comparison:

0.5
# —> &
C *
*
04 >
* o
/./..
*
0.3
#2 —> 4
* *
*
*
" *
0.2 g
/ .
*
*

) / bt >
43 —>4
Problematic?
Regression
Obs Equation Fyy e, d, D, h,
Baseline Y =-.104+.0000506X r , =.876 No No No No
#1 Y =-.097+.0000506 X  r,, =.809 Yes Yes No No
#2 Y =-.004+.0000384X r,, =.762 Yes Yes Yes Yes
#3 Y =-.105+.0000506X r, =.900 No No No Yes
#4 Y =.113+.0000203X Py =.403 Yes Yes Yes Yes

o Using a combination of all the methods, we (properly) identify outliers
#2 and #4 as problematic. Outlier #1 may or may not be problematic,
depending on our purposes.
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6. Remedial Measures: An overview of alternative regression models

e When regression assumptions are violated, you have two options
o Explore transformations of X or Y so that the simple linear regression
model can be used appropriately
o Abandon the simple linear regression model and use a more appropriate
model.

e More complex regression models are beyond the scope of this course, but let
me highlight some possible alternative models that could be explored.

e Polynomial regression
o When the regression function is not linear, a model that has non-linear
terms may better fit the data.

Y=B,+BX+B,X" +¢&
Y=B,+BX+BX +BX +. .+ X" +¢&

o In these models, we are fitting/estimating non-linear regression lines that
correspond with polynomial curves. This approach is very similar to the
trend contrasts that we conducted in ANOVA except:

e For polynomial regression, the predictor variable (IV) is continuous;
in ANOVA it is categorical.

¢ In polynomial regression, we obtain the actual equation of the
(polynomial) line that best fits the data.

o Weighted least squares regression
o The regression question we have been using is known as ordinary least
squares (OLS) regression. In the OLS framework, we solve for the
model parameters by minimizing the squared residuals (squared
deviations from the predicted line).
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SSE = zeiz =Z(Yl _?,-)2 = Z(Y, ~b, —b X))’

o When we minimize the residuals, solve for the parameters, and compute
p-values, we need the residuals to have equal variance across the range of
X values. If this equal variance assumption is violated, then the OLS
regression parameters will be biased.

o In OLS regression, each observation is treated equally. But if some
observations are more precise than others (i.e., they have smaller
variance), it make sense that they should be given more weight than the
less precise values.

o In weighted least squares regression, each observation is weighted by the
inverse of its variance

SSE =Y wel =3 w, (¥, = 1)’ =Y w, (¥, ~b, ~,X,)’

e Observations with a large variance are given a small weight;
observations with a small variance are given a big weight.

o Issues with weighted least squares regression
e We do not know the variances of the residuals; this value must be
estimated. The process of estimating these variances is not trivial —
particularly in small datasets.

e R’ is uninterpretable for weighted least squares regression (but that
does not stop most programs from printing it out!).
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e Robust regression

O

14-35

When assumptions are violated and/or outliers are present, OLS
regression parameters may be biased. Robust regression is a series of
approaches that computes estimates of regression parameters using
techniques that are robust to violations of OLS assumptions

Least absolute residual (LAR) regression estimates regression parameters
by minimizing the sum of the absolute deviations of the Y observations
from the regression line:

Z‘ei ‘ :Z‘K _Y‘l_ :Z|Yz —b, _lei|

e This approach reduces the influence of outliers

Least median of squares (LMS) regression estimates regression
parameters by minimizing the median of the squared deviations of the Y
observations from the regression line:

SSE = Median(e]) = median(Y, — V) = median(Y, —b, — b, X,)’
e This approach also reduces the influence of outliers

Iterative reweighed least squares (IRLS) regression is a form of weighted
least squares regression where the weights for each observation are M-
estimators of the residuals (Huber and Tukey-Bisquare estimators are the
most commonly used M-estimators).

e This approach reduces the influence of outliers

Disadvantages of these approaches include:
e They are not commonly included in statistical software

e They are robust to outliers, but they require that other regression
assumptions be satisfied.

e They are not commonly used in psychology and, thus, psychologists
may regard these methods skeptically
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e Non-parametric regression

o Non-parametric regression techniques do not estimate model parameters.
For a regression analysis, we are usually interested in estimating a slope,
thus non-parametric methods are of limited utility from an inferential
perspective.

o In general, non-parametric techniques can be used to explore the shape of
the regression line. These methods provide a smoothed curve that fits the
data, but do not provide an equation for this line or allow for inference on
this line.

o Previously, we examined the following data and concluded that the
relationship between X2 and Y was non-linear (see p. 14-8)

1.00—

0.80—

0.60—

0.40—

0.00—

x2

e Let’s examine this data with non-parametric techniques to explore the
relationship between X2 and Y.

e Method of moving averages

o The method of moving averages can be used to obtain a smoothed curve
that fits the data.

o To use this method, you must specify a window (w) — the number of
observations you will average across. First, average the Y values
associated with the first w responses (the w smallest X values), and plot
that point. Next, you discard the first value, add the next point along the
X axis, compute the average of this set of w Y values, and plot that point.
Continue moving the down the X axis, until you have used all the points.
Then draw a line to connect the smoothed average points.
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o For example, if w = 3, then you take the three smallest X values, average
the Y values associated with these points, and plot that point. Next, take
the 2", 3™, and 4™ smallest X values and repeat the process . . .

o An example of the method of moving averages, comparing different w

values:
Smoothing interval =5 Smoothing interval =9
1 1
0.75 - 0.75 -
> 05 > 05
0.25 0.25
0 T T T T O T T T T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X2 X2
Smoothing interval = 15 Smoothing interval = 25
1 1
* :0 o *o
*
075 - RS s 0.75 |
> ¢ *
o 33
00¢ 0 5
> 05 LR &¢ > 1
'
» o
o
025 |%¢ 0.25
N
4
O T T T T 0 T T T T
0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X2 X2

e [fthe window is too small, it does not smooth the data enough; if the
window is too large, it can smooth too much and you lose the shape of
the data.

e In this case, w = 15 looks about right.
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o Issues regarding the method of moving averages:

e Averages are affected by outliers, so it can be preferable to use the

method of moving medians

e The method of moving averages is particularly useful for time-series

data

o If the data are unequally spaced and/or have gaps along the X axis, the
method of moving averages can provide some wacky results.
e In EXCEL, you can use the method of moving averages and you can

specify w.

e [Loess smoothing
o Loess stands for “locally weighted scatterplot smoothing” (the w got

14-38

dropped somewhere along the way).

o Loess smoothing is a more sophisticated method of smoothing than the

method of moving averages.

e In each “neighborhood”, a regression line is estimated and the fitted

line is used for the smoothed line

e This regression is weighted to give cases further from the middle X

value less weight.

e This process of fitting a linear regression line is repeated in each
neighborhood so that observations with large residuals in the previous

iteration receive less weight.

Loess Smoothing

1.00—

0.80—

0.60—

0.40—

0.20—

0.00—

0.00 0.20 0.40 0.60 0.80
x2

1.00
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o One particularly useful application of loess smoothing is to confirm a

fitted regression function

e Fit a regression function and graph 95% confidence bands for the
fitted line

e Fit a loess smoothed curve through the data.

e Ifthe loess curve stays within the confidence bands, the fit of the
regression line is good. If the loess curve strays from the confidence
bands, the fit of the regression line is not good.

1.00—

0.40+

0.80—

030 0.60—

0.40—

0.204

0.20+

0.104 0.00—

T T T T T
4000.00 6000.00 8000.00 10000.00 12000.00 0.00 0.20 0.40 0.60 0.80 1.00
X x2

Good Fit Poor Fit

7. Remedial Measures: Transformations

e [fthe data do not satisfy the regression assumptions, a transformation
applied to either the X variable or to the Y variable may make the simple
linear regression model appropriate for the transformed data.

e General rules of thumb:
o Transformations on X
e Can be used to linearize a non-linear relationship
o Transformations on Y
e (Can be used to fix problems of nonnormality and unequal error
variances
¢ Once normality and homoscedasticity are achieved, it may be
necessary to transform X to achieve linearity
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e Prototypical patterns and transformations of X

Non Linear Relationship #1

Ln Transformation

0 10 20 30 40 50 0 1 2 3 4
o Try X'=In(X) or X'=+X
Non Linear Relationship #2 2 .
X* Transformation
1800
1600 1800
1600
1400
1400
1200 1200
1000 1000
800 800
600 600
400 400
200 200
0 0

o

10 20 30 40 50

o

500 1000 1500 2000
o Try X'=Xor X'=exp(X)

Non Linear Relationship #3 1/X Transformation

0 10 20 30 40 50 0 0.2 0.4 0.6 0.8 1 1.2

o Try X'=1/X or X'=exp(yX]
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e Transforming Y

O

If the data are non-normal and/or heteroscedasticitic, a transformation on
Y may be useful

o It can be very difficult to determine the most appropriate transformation

in Y to fix the data

o One popular class of transformations is the family of power

transformations
Yy'=Y*
A=2 Y =Y?
A=1 Y=Y
A=.5 Y' Y%
A=0 ln(Y ) by definition
A=-1
A=-2 /Y2

To determine a A that works:
e Guess (trial and error)
e Use the Box-Cox procedure (unfortunately not implemented in SPSS)

e Warnings and cautions about transformations

14-41

O
O

Do not transform the data because of a small number of outliers

After transforming the data, recheck the fit of the regression model using
residual analysis

Once the data are transformed, and a regression run on the transformed
data, b, and b, apply to the transformed data and not to the original
data/scale

For psychological data, if the original data are not linear, but the
transformed data are, it can often be very difficult to interpret the results
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e Transformations: An example
o Let’s examine the relationship between the number of credits taken in a
minor and interest in taking further coursework in that discipline.
o A university collects data on 100 students
e X = Number of credits completed in the minor
e Y = Interest in taking another course in the minor discipline

o First, let’s plot the data

OLS Regression Line

25.0000 —

20.0000 —

15.0000—

10.0000—

Interest in further coursework

50000 Loess Curve

Number of credits

e This relationship looks non-linear.
e We can try a square root or a log transformation to achieve linearity.

25.0000—
25.0000—

20.0000—
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o The log transformation appears to work, so we should check the
remaining assumptions
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REGRESSION
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/METHOD=ENTER Inx
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e The residuals appear to be normally distributed
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e We might worry about an outlier, but homoscedasticity seems ok.
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o Now, we can analyze the In-transformed data.

Model Summary®

Adjusted Std. Error of
Model R R Square | R Square | the Estimate
1 .8132 .661 .658 2.7779456

a. Predictors: (Constant), Inx

b. Dependent Variable: Interest in further coursework

Coefficients
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 1.337 1.244 1.075 .285
Inx 8.335 .603 .813 13.828 .000

a. Dependent Variable: Interest in further coursework

e There is a strong linear relationship between In of credits taken and
interest in taking additional courses in the discipline,
S =.81,098) =13.83,p < .OLR%,, ., =.66

o But in this case, the non-linear relationship is interesting (and
interpretable). We would be better off with an approach where we could
model the non-linearity than with this approach where we try to
transform to linearity.

o In this case, polynomial regression may be very useful.

o Note that if we had not graphed or explored our data, we would have
missed the non-linear relationship altogether!

Model Summary

Adjusted Std. Error of
Model R R Square | R Square [ the Estimate
1 7492 .561 .556 3.1625661

a. Predictors: (Constant), Number of credits

Coefficients?
Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 8.718 .897 9.721 .000
Number of credits 1.149 .103 749 11.187 .000

a. Dependent Variable: Interest in further coursework
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