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Simple Linear Regression 

 

  Page 
1. Introduction to regression analysis 13-2 

 
The Regression Equation 

2. Linear Functions 13-4 
3. Estimation and interpretation of model parameters 13-6 
4. Inference on the model parameters 13-11 
5. Sums of Squares and the ANOVA table 13-15 
6. An example  13-20 
7. Estimation and Prediction 13-23 
8. Standardized regression coefficients 13-28 
9. Additional concerns and observations 13-30 

 
 
 



13-2   2007 A. Karpinski 

 
The Regression Equation 

 
 
1. Overview of regression analysis 
 

• Regression analysis is generally used when both the independent and the 
dependent variables are continuous.  (But modifications exist to handle 
categorical independent variables and dichotomous dependent variables.) 

 
   

Type of  
Analysis 

Independent 
Variable 

Dependent 
Variable 

 
ANOVA 

 

 
Categorical 

 
Continuous 

 
Regression 

 

Continuous 
or 

Categorical 

   
Continuous 

 
Categorical Analysis 

(Contingency Table Analysis) 

  
Categorical 

   
 
 

• Goals of regression analysis: 
o To describe the relationship between two variables  
o To model responses on a dependent variable  
o To predict a dependent variable using one or more independent variables  
o To statistically control the effects of variables while examining the 

relationship between the independent and dependent variable 
 
 

• Regression analysis is usually performed on observational data.  In these 
cases, we describe, model, predict, and control, but we cannot make any 
causal claims regarding these relationships 
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• Terminology in regression analysis 

 
o As in ANOVA, we will develop a model to explain the data 

 
DATA = MODEL + ERROR 

 
o The model assumes greater importance in regression.  Unlike ANOVA, 

we are usually interested in the model parameters 
 

o The goal of most regression models is to use the information contained in 
a set of variables to predict a response.  As a result, we use slightly 
different terminology in regression, compared to ANOVA. 

 
 
 ANOVA REGRESSION 
 
 Dependent variable Dependent variable or 
  Response variable or 
  Outcome variable 
 
 Independent variables Independent variables or 
 Predictor variables
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Simple Linear Regression 
The Regression Equation 

 
2. Linear Functions 
 

• The goal of simple linear regression is to describe an outcome variable (Y) as 
a linear function of a predictor variable (X).   

 
• The end result will be a model that defines the equation of a straight line 

aXbY +=  
 Where  

b = the y-intercept 
a = the slope 

 
 

 

o Let’s consider a simple example: 
3

1 XY +−=  

 
• The y-intercept is -1 

⇒ The line crosses the y-axis at y = –1 
 
 

• The slope of the line is 1/3 
⇒ The slope is a measure of the steepness of the line 
⇒ The slope is the change in y associated with a 1 unit change in x 

 
 

Two data points
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A straight line through two  points
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o Let’s review the method covered in high school algebra for determining 
the line that falls through 2 points: )1,5(&)1,1( −−  

 
• First, we compute the slope of the line 

12

12

xx
yyslope

−
−

=  

 

333.
6
2

)1(5
)1(1

==
−−
−−

=slope  

 
We interpret the slope as the change in y associated with a 1 unit 
change in x 

 
In this example, for every 1unit increase in x, y will increase by .333 
 

x -1 0 1 2 3 4 5 
y -1 -.667 -.333 0 .333 .667 1 

 
 

• We compute the y-intercept by finding the value of y when x = 0 
 
We can use:  the equation for the slope of a line and the ),( yx  
coordinates of either known point to solve for ),0( 0y  
 
Let’s use )1,5(  

05
1

333. 0

−
−

=
y

 

 
01)5(333. y−=  

667.110 −=y  
667.0 −=y  

 
 

• Finally, we use the slope and the intercept to write the equation of the 
line through the 2 points 

 
aXbY +=  

)(333.667. XY +−=
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3. Estimation and interpretation of model parameters 
 

• With real data, the points rarely fall directly on a straight line.  Regression is 
a technique to estimate the slope and the y-intercept from noisy data 

 
• Because not every point will fall on the regression line, there will be error in 

our model 
 

DATA = MODEL + ERROR 
 
 

o The DATA, or the outcome we want to predict is the Y variable 
o The MODEL is the equation of the regression line, 110 Xbb +  

0b  = the population value of the intercept 
1b  = the population value of the slope 

1X  = the predictor variable 
 

o The ERROR is deviation of the observed data from our regression line.  
We refer to the individual error terms as residuals 

 
o The full simple linear regression model is given by the following 

equation: 
 

DATA = MODEL + ERROR 
ε++= 110 XbbY  

 
 
 

• Some key characteristics of this model 
o We can only model linear relationships between the outcome variable 

and the predictor variable 
o The model can be expanded to include the linear relationships between 

multiple predictor variables and a single outcome 
 

ε+++++= kk XbXbXbbY ...22110  
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• Predicted values and residuals 

 
o With real data, we need to estimate the value of the slope and the 

intercept. (Details on the estimation process will follow shortly.)  
 

ε++= 110
ˆˆ XbbY  

0b̂  = the estimated value of the intercept 

1̂b  = the estimated value of the slope 
 
 

o Based on the model, we have a “best guess” as to the participant’s 
response on the outcome variable 

ii XbbY 110
ˆˆˆ +=  

 
• In other words, we use the equation of the line we have developed to 

estimate how each participant responded on the outcome variable 
• iŶ  is called the predicted value or fitted value for the  ith  participant 

 
 

o If the actual response of the participant deviates from our predicted value, 
then we have some ERROR in the model.  We define the residual to be the 
deviation of the observed value from the predicted value.   

 
DATA = MODEL + ERROR 

( ) iii eXbbY ++= 110
ˆˆ  

iii eYY += ˆ  

iii YYe ˆ−=  
 
 

o If we want to know if our model is a “good” model, we can examine the 
residuals.  
• If we have many large residuals, then there are many observations that 

are not predicted well by the model. We say that the model has a poor 
fit. 

• If most of the residuals are small, then our model is very good at 
explaining responses on the Y variable.  This model would have a 
good fit. 
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o Let’s consider a simple example to illustrate these points 

 
Y X1 
1 1 
1 2 
2 3 
2 4 
4 5 

 
 

• We notice that a straight line can be drawn that goes directly through 
three of the 5 observed data points. Let’s use this line as our best 
guess line 

XY +−= 1~  
 

• Now we can calculate predicted values and residuals 
 

Y X  Ŷ  e  
1 1  0 1 
1 2  1 0 
2 3  2 0 
2 4  3 -1 
4 5  4 0 

 

0
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• In the previous example, we “eyeballed” a regression line.  We would like to 

have a better method of estimating the regression line.  Let’s consider 
desirable two properties of a good regression line 

 
i. The sum of the residuals should be zero 

0)ˆ( =−∑ yyi  

• If we have this property, then the average residual would be zero 
• In other words, the average deviation from the predicted line would be 

zero 
 

ii. Overall, we would like the residuals to be as small as possible 
• We already require the residuals to sum to zero, by property (i). 
• So, let’s require the sum of the squared residuals to be as small as 

possible.  This approach has the added benefit of “penalizing” large 
residuals more than small residuals 

mumminiyy ii =−∑ 2)ˆ(  
 

o Estimating a regression line using these two properties is called the 
ordinary least squares (OLS) estimation procedure 

o Estimates of the intercept and slope are called the ordinary least squares 
(OLS) estimates 

 
o To solve for these estimates, we can use the following procedure 

• We want to minimize 2
10

2 )()ˆ( ∑∑ −−=−= iiii XbbYYYSSE  
• We take the derivatives of SSE with respect to 0b  and 1b , set each 

equal to zero, and solve for 0b  and 1b  

0
0

=
∂

∂
b

SSE  and 0
1

=
∂

∂
b

SSE  

 
• We’ll skip the details and jump to the final estimates 

 

XX

XY

SS
SS

b =1̂   XYb 10
ˆ β−=  

 

Where ∑
−

−=
n

i
iXX XXSS

1

2)(  

  ∑
−

−−=
n

i
iiXY YYXXSS

1
))((   
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• Now, let’s return to our example and examine the least squares regression 

line 

 
• Let’s compare the least squares regression line to our eyeball regression line 

XY +−= 1~  
XY 7.1.ˆ +−=  

 
 Data Eyeball Least Squares 
 Y X Y~  e~  2~e  Ŷ  ê  2ê  
 1 1 0 1 2 0.6 .4 .16 
 1 2 1 0 0 1.3 -.3 .09 
 2 3 2 0 0 2.0 0 0 
 2 4 3 -1 2 2.7 -.7 .49 
 4 5 4 0 0 3.4 .6 .36 

∑ ie     0   0  

∑ 2
ie      4   1.1 

 
o For both models, we satisfy the condition that the residuals sum to zero 
o But the least squares regression line produces the model with the smallest 

squared residuals 
 

• Note that other regression lines are possible 
o We could minimize the absolute value of the residuals 
o We could minimize the shortest distance to the regression line 

0

1

2

3

4

5

0 1 2 3 4 5 6

LS Line

Eyeball Line
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4. Inference on the model parameters 
 

• We have learned how to estimate the model parameters, but also want to 
perform statistical tests on those parameters 

 

XX

XY

SS
SS

b =1̂   XbYb 10
ˆˆ −=  

 
 

• First, let’s estimate the amount of random error in the model, 2σ  
 

o Intuitively, the greater the amount of random error in a sample, the more 
difficult it will be to estimate the model parameters. 

 
o The random error in the model is captured in the residuals, ie  

• We need to calculate the variance of the residuals 
• Recall a variance is the average squared deviation from the mean 
• When applied to residuals, we obtain 

 
( )

2
)(

2

−

−
= ∑

N
Var i

i

εε
ε  

 
But we know 0=ε  
 

( )
22

)ˆ(
2

ˆ
ˆ)(ˆ

22
2

−
=

−

−
=

−
== ∑∑

N
sidualReSS

N
YY

N
rVa iii

i

ε
σε ε  

 
• Why use N-2? 

⇒ A general heuristic is to use N – (number of parameters fitted) 
⇒ In this case, we have estimated two parameter: the slope and the 

intercept  
⇒ Recall that for Var(X), we divided by N-1. We only estimated one 

parameter (the grand mean) 
⇒ This heuristic also applied for ANOVA.  
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• And so we are left with 

 
( )

MSresid
parametersofN

SSresid
N

rVa i
i =

−
=

−
= ∑

  #2
ˆ

)(ˆ
2ε

ε  

 
 
And we are justified using MSresid  as the error term for tests 
involving the regression model 

 
 

o Interpreting MSresid: 
• Residuals measure deviation from regression line (the predicted 

values) 
• The variance of the residuals captures the average squared deviation 

from the regression line 
• So we can interpret MSresid  as a measure of average deviation from 

the regression line.  SPSS labels MSresid  as “standard error of the 
estimate” 

 
 
 

• Now that we have an estimate of the error variance, we can proceed with 
statistical tests of the model parameters 

 
 

• We can perform a t-test using our familiar t-test formula 
 

estimatetheoferrorardstand
estimatet

    
~  

 
o We know how to calculate the estimates of the slope and the intercept.  

All we need are standard errors of the estimates 
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• Inferences about the slope, 1̂b  

o Deriving the sampling distribution of 1̂b  tedious.  We’ll skip the details 
(see an advanced regression textbook, if interested) and the end result is: 

 

∑ −
= 21 )(

)ˆ( 
XX

MSresidbstd. error
i

 

 
 

o Thus, we can conduct the following statistical test: 

0:
0:

11

10

≠
=

bH
bH

 

 

)ˆ(  

ˆ
~)2(

1

1

berrorardstand
b

Nt −  

 
o We can also easily compute confidence intervals around 1̂b  

 
estimateoferrordstandartestimate df    *   ,2/α±  

∑ −
± 2,2/1 )(

*   ˆ
XX

MSresidtb
i

dfα  

 
o Conclusions 

 
• If the test is significant, then we conclude that there is a significant 

linear relationship between X and Y 
 

For every one-unit change in X, there is a 1̂b unit change in Y 
 

• If the test is not significant, then there is no significant linear 
relationship between X and Y 

 
Utilizing the linear relationship between X and Y does not 
significantly improve our ability to predict Y, compared to using 
the grand mean. 
 
There may still exist a significant non-linear relationship between 
X and Y 
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• Inferences about the intercept, 0b  

o 0b   tells us the predicted value of Y when 0=X  
 

o The test of 0b  is automatically computed and displayed, but be careful not 
to misinterpret its significance! 

 
o Only rarely are we interested in the value of the intercept 

 
o Again, we’ll skip the details concerning the derivation of the sampling 

distribution of 0b̂  (see an advanced regression textbook, if interested) and 
the end result is: 

 

∑
∑

−
= 2

2

0 )(
)ˆ( 

XXN
X

MSresidbstd. error
i

i  

 
 

o Thus, we can conduct the following statistical test: 
 

0:
0:

01

00

≠
=

bH
bH

 

 

)ˆ(  

ˆ
~)2(

0

0

berrorardstand
b

Nt −  

 
o We can also easily compute confidence intervals around 0b̂  

 
estimateoferrordstandartestimate df    *   ,2/α±  

∑
∑

−
± 2

2

,2/0 )(
*   ˆ

XXN
X

MSresidtb
i

i
dfα  
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5. Sums of Squares in Regression and the ANOVA table 
 

• Total Sums of Squares (SST) 
 

o In ANOVA, the total sums of squares were the sum of the squared 
deviations from the grand mean 

o We will use this same definition in regression.  SST is the sum of the 
squared deviations from the grand mean of Y 

∑
=

−=
n

i
i YYSST

1

2)(  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
• Sums of Squares Regression 

 
o In ANOVA, we had a sum of squares for the model.  This SS captured 

the improvement in our prediction of Y based on all the terms in the 
model 

o In regression, we can also examine how much we improve our prediction 
(compared to the grand mean) by using the regression line to predict new 
observations 

 
• If we had not conducted a regression, then our “best guess” for a new 

value of Y would be the mean of Y, Y  
• But we can use the regression line to make better predictions of new 

observations   
ii XbbY 110

ˆˆˆ +=  
 

0

1

2

3

4

5

0 1 2 3 4 5 6

Mean(Y)
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• The deviation of the regression best guess (the predicted value) from 
the grand mean is the SS Regression.    

∑
=

−=
n

i
i YYgReSS

1

2)ˆ(  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Sums of Squares Error / Residual 
o The residuals are the deviations of the predicted values from the observed 

values 
iii YYe ˆ−=  

 
o The SS Residual is the amount of the total SS that we cannot predict from 

the regression model 

∑
=

−=
n

i
ii YYsidReSS

1

2)ˆ(  
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• Sums of Squares partitioning 

 
o We have three SS components and we can partition them in the following 

manner 
 

SSresidSSregSST +=  
 

∑∑∑ −+−=−
==

2

1

2

1

2 )ˆ()ˆ()( ii

n

i
i

n

i
i YYYYYY  

 
o In ANOVA, we had a similar partition 

 
SSerrorlmodeSSSST +=  

 
• It turns out that ANOVA is a special case of regression. If we set up a 

regression with categorical predictors, then we will find 

SSerrorSSresid
elmodSSSSreg

=
=  

 
• Every analysis we conducted in ANOVA, can be conducted in 

regression.  But regression provides a much more general statistical 
framework (and thus is frequently called the “general linear model”). 

 
 

• Where there are sums of squares, there is an ANOVA table. 
 

o Based on the SS decomposition, we can construct an ANOVA table 
 

Source SS df MS F 
  Regression 

∑
=

−=
n

i
i YYgReSS

1

2)ˆ(  
(# of parameters) 

-1 df
SSreg  

MSresid
MSreg  

  Residual 
∑

=

−=
n

i
ii YYsidReSS

1

2)ˆ(

 

N – 
(# of parameters) df

SSresid  
 

  Total 
∑

=

−=
n

i
i YYSST

1

2)(  
N-1   
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o The Regression test examines all of the slope parameters in the model 

simultaneously.  Do these parameters significantly improve our ability to 
predict Y, compared to using the grand mean to predict Y? 

 
0...: 210 ==== kbbbH  

:1H Not all 0' =sb j  

 
 

o For simple linear regression, we only have one slope parameter.  This test 
becomes a test of the slope of 1b  

 
0: 10 =bH  

:1H 01 ≠b  
 

• In other words, for simple linear regression, the Regression F-test will 
be identical to the t-test of the 1b  parameter 

• This relationship will not hold for multiple regression, when more 
than one predictor is entered into the model 

 
 

• Calculating a measure of variance in Y accounted for by X 
 

o SS Total is a measure of the total variability in Y 
 

∑
=

−=
n

i
i YYSST

1

2)(   
1

)(
−

=
N
SSTYVar  

 
o The SS Regression is the part of the total variability that we can explain 

using our regression line 
 

o As a result, we can consider the following ratio, 2R  to be a measure of 
the proportion of the sample variance in Y that is explained by X 

 

SSTotal
RegSSR =2  

 
• 2R  is analogous to 2η  in ANOVA 
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o But in ANOVA, we preferred a measure variance accounted for in the 
population ( 2ω ) rather than in the sample ( 2η ).   

 
o The regression equivalent of 2ω  is called the Adjusted 2R .   

 
•  Any variable (even a completely random variable) is unlikely to have 

SSReg exactly equal to zero.  Thus, any variable we use will explain 
some of the variance in the sample 

 
• Adjusted 2R  corrects for this overestimation by penalizing 2R  for the 

number of variables in the regression equation 
 
 

 
• What happens if we take the square root of 2R ? 

 

SSTotal
RegSSR =  

 
o R is interpreted as the overall correlation between all the predictor 

variables and the outcome variable  
o When only one predictor is in the model, R is the correlation between X 

and Y, XYr  
 
 
 



13-20   2007 A. Karpinski 

 
6. An example 
 

• Predicting the amount of damage caused by a fire from the distance of the 
fire from the nearest fire station 

 
Fire Damage Data 

Distance from 
Station 

Fire Damage  Distance from 
Station 

Fire Damage 

(Miles) (Thousands 
of Dollars) 

 (Miles) (Thousands 
of Dollars) 

3.40 26.20  2.60 19.60 
1.80 17.80  4.30 31.30 
4.60 31.30  2.10 24.00 
2.30 23.10  1.10 17.30 
3.10 27.50  6.10 43.20 
5.50 36.00  4.80 36.40 
0.70 14.10  3.80 26.10 
3.00 22.30    

 
 

• Always plot the data first!!! 

8.006.004.002.000.00

miles

40.00

30.00

20.00

10.00

do
lla

rs
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• In SPSS, we use the “Regression” command to obtain a regression analysis 
 

REGRESSION 
  /DEPENDENT dollars 
  /METHOD=ENTER miles. 

 
 

Variables Entered/Removedb

MILESa . Enter
Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: DOLLARSb. 
 

 
 

Model Summary

.961a .923 .918 2.31635
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), MILESa. 
 

 
 
 
 

ANOVAb

841.766 1 841.766 156.886 .000a

69.751 13 5.365
911.517 14

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), MILESa. 

Dependent Variable: DOLLARSb. 
 

 

Coefficientsa

10.278 1.420 7.237 .000
4.919 .393 .961 12.525 .000

(Constant)
MILES

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: DOLLARSa. 
 

 

This box tells us that 
“MILES” was entered as 
the only predictor 

This box gives us measures of 
the variance accounted for by 
the model

Here is our old friend 
the ANOVA table 

These are the tests of the 
intercept and the slope 

MSE
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o From this table, we read that 278.10ˆ
0 =b  and that 919.41̂ =b . Using this 

information we can write the regression equation 
 

XY *919.4278.10ˆ +=  
 
 

o To test the slope: 

0:
0:

11

10

≠
=

bH
bH

 

 
We find a significant linear relationship between the distance from the 
fire, and the amount of damage caused by the fire, 01.,53.12)13( <= pt . 
 
For every 1 mile from the fire station, the fire caused an additional 
$4,919 in damage 
 

o Note that the t-test for 1β̂ is identical to the Regression test on the ANOVA 
table because we only have one predictor in this case. 

 
o In this case, the test of the intercept is not meaningful 

 
 

• You can also easily obtain 95% confidence intervals around the parameter 
estimates 

 
REGRESSION 
  /STATISTICS coeff r anova ci 
  /DEPENDENT dollars 
  /METHOD=ENTER miles  . 

 
o COEFF, R and ANOVA are defaults  

• COEFF prints the estimates of 0b  and 1b  
• R prints 2R  and Adjusted 2R  
• ANOVA prints the regression ANOVA table 
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o Adding CI to the STATISTICS command will print the confidence 
intervals for all model parameters 

 
Coefficientsa

10.278 1.420 7.237 .000 7.210 13.346
4.919 .393 .961 12.525 .000 4.071 5.768

(Constant)
MILES

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: DOLLARSa. 
 

 
 

919.41̂ =b   001.,53.12)13( <= pt  
 
95% CI for 1̂b : )ˆ(*   ˆ

1,2/1 bstd.errortb dfα±  
   )393(.16.2919.4 +  
   )77.5 ,07.4(  

 
 
7. Estimation and prediction 
 

• One of the goals of regression analysis is to allow us to estimate or predict 
new values of Y based on observed X values.  There are two kinds of Y values 
we may want to predict 

 
o Case I: We may want to estimate the mean value of Y, Ŷ , for a specific 

value of X 
 

• In this case, we are attempting to estimate the mean result of many 
events at a single value of X 
 

• For example, what is the average damage caused by (all) fires that are 
5.8 miles from a fire station? 
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o Case II: We may also want to predict a particular value of Y, iŶ , for a 
specific value of X 

 
• In this case, we are attempting to predict the outcome of a single event 

at a single value of X 
 

• For example, what would be the predicted damage caused by a 
(single) fire that is 5.8 miles from a fire station? 
 
 

• In either case, we can use our regression equation to obtain an estimated 
mean value or particular value of Y 

XY *919.4278.10ˆ +=  
 

o For a fire 5.8 miles from a station, we substitute 8.5=X  into the 
regression equation 

 

81.38ˆ
8.5*919.4278.10ˆ

=

+=

Y

Y  

 
• The difference in these two uses of the regression model lies in the accuracy 

(variance) of our estimate of the prediction  
 
 

• Case I: Variance of the estimate the mean value of Y, Ŷ , at pX  
 

o When we attempt to estimate a mean value, there is one source of 
variability: the variability due to the regression line 

 
• We know the equation of the regression line: 

XbbY 10
ˆˆˆ +=  

 
)ˆˆ()ˆ( 10 XbbVarYVar +=  

 
• Skipping a few details, we arrive at the following equation 

 











 −
+==

XX

p
Y S

XX
N

MSEYVar
2

2
ˆ

)(1)ˆ(σ̂  
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o And thus, the equation for the confidence interval of the estimate of the 
mean value of Y, Ŷ  is 

YNtY ˆ2,2/ ˆˆ σα −±  
 











 −
+± −

XX

p
N S

XX
N

MSEtY
2

2,2/

)(1ˆ
α  

 
 
 

• Case II:  Variance of the prediction of a particular value of Y, iŶ , at pX  
 

o When we attempt to predict a single value, there are now two sources of 
variability: the variability due to the regression line and variability of Y 
around its mean 

Ŷ

Confidence interval for mean value of Y 

Prediction limits if the mean 
value of Y is at the upper bound

Prediction limits if the mean 
value of Y is at the lower bound

Prediction interval for a single value of Y  

 
 

o The variance for the prediction interval of a single value must include 
these two forms of variability 

 
2
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13-26   2007 A. Karpinski 

o And thus, the equation for the prediction interval of the estimate of the 
mean value of Y, Ŷ  is 

iYNtY ˆ2,2/ ˆˆ σα −±  











 −
++± −

XX

p
N S

XX
N

MSEtY
2

2,2/

)(11ˆ
α  

 
 

• Luckily, we can get SPSS to perform most of the intermediate calculations 
for us, but we need to be sneaky 

 
o Add a new line to the data file with a missing value for Y and pXX =  

 

 
 

 
o Ask SPSS to save the predicted value and the standard error of the 

predicted value when you run the regression 
 

REGRESSION 
  /MISSING LISTWISE 
  /DEPENDENT dollars 
  /METHOD=ENTER miles 
  /SAVE PRED (pred) SEPRED (sepred) . 
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• We will have two new variables in the data file  
PRED  Ŷ  for the X value 
SEPRED Ŷσ̂ for the X value 

 
 DOLLARS    MILES        PRED      SEPRED 
 
   26.20     3.40    27.00365      .59993 
   17.80     1.80    19.13272      .83401 
   31.30     4.60    32.90685      .79149 
   23.10     2.30    21.59239      .71122 
   27.50     3.10    25.52785      .60224 
   36.00     5.50    37.33425     1.05731 
   14.10      .70    13.72146     1.17663 
   22.30     3.00    25.03592      .60810 
   19.60     2.60    23.06819      .65500 
   31.30     4.30    31.43105      .71985 
   24.00     2.10    20.60852      .75662 
   17.30     1.10    15.68919     1.04439 
   43.20     6.10    40.28585     1.25871 
   36.40     4.80    33.89072      .84503 
   26.10     3.80    28.97139      .63199 
     .       5.80    38.81005     1.15640 

 
 

• For 8.5=pX  
81.38ˆ =Y    156.1ˆ ˆ =Yσ  

 
 

o Use the formulas to compute the confidence and prediction intervals 
• To calculate a 95% confidence interval around the mean value, Ŷ  

 

YNtY ˆ2,2/ ˆˆ σα −±  
)156.1(81.38 13,025.t±  
)156.1)(16.2(81.38 ±  

)31.41 ,31.36(  
 

• To calculate a 95% prediction interval around the single value, iŶ  
 

iYNtY ˆ2,2/ ˆˆ σα −±  
ˆ Y ± tα / 2,N −2 ˆ σ ε

2 + ˆ σ ˆ Y 
2  

 
38.81± t.025,13 5.365 + (1.156)2  

38.81± (2.16)(2.589)  
(32.08, 45.54)  
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• The regression line can be used for prediction and estimation, but not for 
extrapolation 

• In other words, the regression line is only valid for Xs within the range of the 
observed Xs 

 
• SPSS can be used to graph confidence intervals and prediction intervals 

8.006.004.002.000.00

miles
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20.00
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do
lla

rs

Confidence Bands

8.006.004.002.000.00

miles

40.00

30.00

20.00

10.00

do
lla

rs

Prediction Bands

 
 
 
8. Standardized regression coefficients  

• To interpret the slope parameter, we must return to the original scale of the 
data 

• 1561 =b  suggests that for every one unit change in the X variable, Y changes 
by 156 units. 

• This dependence on units can make for difficulty in comparing the effects of 
X on Y across different studies 

 
o If one researcher measures self-esteem using a 7 point scale and another 

uses a 4 point scale, they will obtain different estimates of 1b  
o If one researcher measures length in centimeters and another uses inches, 

they will obtain different estimates of 1b  
 

• One solution to this problem is to use standardized regression coefficients 
 

Y

Xb
σ
σ

β 11 =  
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• To understand how to interpret standardized regression coefficients, it is 
helpful to see how they can be obtained directly 

 
o Transform both Y and X into z-scores, zY and zX 

 
compute zmiles = (miles - 3.28)/1.5762. 
compute zdollar = (dollars - 26.41)/8.06898. 

 
 

o Regress zY on zX  
 

REGRESSION 
  /DEPENDENT zdollar 
  /METHOD=ENTER zmiles. 

 
 

Coefficientsa

4.131E-04 .074 .006 .996
.961 .077 .961 12.525 .000

(Constant)
ZMILES

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: ZDOLLARa. 
 

961.11 == βb  
 
 

o Compare this result to the regression on the raw data 
 

REGRESSION 
  /DEPENDENT dollars 
  /METHOD=ENTER miles. 

 
Coefficientsa

10.278 1.420 7.237 .000
4.919 .393 .961 12.525 .000

(Constant)
MILES

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: DOLLARSa. 
 

 
961.1 =β  
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o To interpret standardized beta coefficients, we need to think in terms of 

z-scores 
 

• A 1 standard deviation change in X (miles), is associated with a .96 
standard deviation change in Y (dollars) 

 
• For simple linear regression (with only 1 predictor), XYr=1β  

 
• With more than 1 predictor, standardized coefficients should not be 

interpreted as correlations.  It is possible to have standardized 
coefficients greater than 1. 

 
 
 
 
9. Additional concerns and observations 
 
 

• Standard assumptions of regression analysis 
),0(~ 2σε NID  

 
o All observations are independent and randomly selected from the 

population (or equivalently, the residual terms, siε , are independent) 
o The residuals are normally distributed at each level of X 
o The variance of the residuals is constant across all levels of X 

 
• Additionally, we assume that the regression model is a suitable proxy for the 

“correct” (but unknown) model: 
o The relationship between X and Y must be linear 
o No important variables have been omitted from the model 
o No outliers or influential observations 

 
• These assumptions can be examined by looking at the residuals 

 


