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Correlation 
 
 
1. Pearson product moment correlation coefficient 
 

• One method of describing the relationship between two variables is to 
indicate the strength of the linear relationship between the two variables.   

 
• The correlation coefficient is a quantitative measure of this linear association 

between two variables. 
 

o Rho, ρ , quantifies the linear relationship between two variables in the 
population.   
• Rho varies between –1 and +1. 
• 0=ρ indicates no linear relationship between two variables. 
• The greater rho deviates from zero, the greater the strength of the 

linear relationship between the two variables: 
1+=ρ  indicates a perfect positive linear relationship between 

two variables. 
1−=ρ  indicates a perfect negative linear relationship between 

two variables. 
 

o The Pearson product moment correlation coefficient, r   (1890’s), 
quantifies the linear relationship between two variables in the sample. 
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o Examples of linear relationships in large (n = 1000) and small (n = 20) 

datasets: 
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 Rho = .50 
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• Understanding the correlation coefficient: 
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• To understand the correlation between two variables, it is useful to consider 

the correlation as having two parts: 
o Part 1: A measure of the association between two variables  
o Part 2: A standardizing process  

 
• Part 1 of the correlation coefficient: The covariance between two variables is 

a measure of linear association between two variables. 
 

o The covariance is similar to the variance, except that the covariance is 
defined over two variables (X and Y) whereas the variance is defined 
over one variable (X). 
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When we expand this formula to two variables, we obtain the covariance: 
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o The covariance is a measure of the direction and the magnitude of the 
linear association between X and Y.  

 
• Covariance can be thought of as the sum of matches and mismatches 

across subjects. 
 

• A match occurs when both variables are on the same side of the mean. 
• A mismatch occurs when the score on one variable is above the mean 

and the score on the other variable is below the mean (or vice versa). 
 
 

o We can think of the variance as the covariance of a variable with itself: 
• For XXCov , all pairs will be matches. 
• XXCov  (or XVar ) then is the extent to which X deviates from its mean. 
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o For XYCov , some pairs may be matches and some may be mismatches: 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o The sign of the covariance tells us the direction of the relationship 
between X and Y. 

o The size of the covariance tells us the magnitude of the relationship 
between X and Y. 
• If there is a strong linear relationship, then most pairs will be matches 

and the covariance will be large. 
• If there is a weak linear relationship, then some mismatches will 

cancel some of the matches, and the covariance will be small. 
 

o The covariance only describes linear relationships between X and Y.  
 

o The covariance depends on the scale of the variable, making the 
magnitude of the relationship difficult to interpret: 
• If responses are on a 1-7 scale, then the covariance will be relatively 

small. 
• If responses are on a 1-100 scale, then the covariance will be 

relatively large. 
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• Part 2 of the correlation coefficient: A standardizing process so that the 

correlation coefficient will not depend on the scale of a variable. 
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o By dividing the covariance by the standard deviation of each variable, we 

standardize the covariance.  The correlation ranges between –1 and +1, 
regardless of scale of the variables. 

o The N-1 terms in the numerator and denominator cancel.  Thus, a 
correlation can be thought of as a ratio of sums of squares (it is the 
product of the first moments). 

 
• Properties of the correlation coefficient: 

o If we multiply each variable by a constant, the correlation remains 
unchanged. 

o If we add a constant to each variable, the correlation remains unchanged. 
 
 
 

• Effect size 
o XYr  is a measure of effect size.  It measures the strength of the linear 

association between two variables. 
 

o 2
XYr  is known as the coefficient of determination 

• It is a measure of the proportion of the variance in Y that is accounted 
for by the linear relationship between X and Y. 

• This measure of “variance accounted for” differs from our previous 
effect size measures because it only measures the variance accounted 
for by the linear relationship. 
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• Cautions regarding correlation coefficients 
o There may be a non-linear relationship between X and Y, but XYr  will only 

capture linear relationships.  XYr  will not be useful in measuring non-
linear relationships between X and Y.  
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There is no linear relationship between X and Y, but it would be 
misleading to say that X and Y were unrelated. 

 
o The correlation coefficient is quite sensitive to outliers 
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2. Inferential tests on correlation coefficients 
 

o To test if a correlation is different from zero: 
• State null and alternative hypotheses: 
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• Construct test statistic: 
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We can estimate XYρ  with the correlation coefficient, XYr  
 
Without going into all the details, we can compute the standard 
error of XYr  with the following formula: 
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• Look-up p-value. 
 

• Alternatively, some people prefer tables of critical values for 
significant correlations. 

 
Notice that the t-test for the correlation only depends on the size of the 

correlation and the sample size.  Thus, we can work backwards and 
determine critical r-values for significance at α = .05.  However, it 
is usually preferable to report exact p-value. 
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o In SPSS 
CORRELATIONS 
  /VARIABLES=x1 x2 x3. 

 
• If you use the pull-down menus, be sure to use “Bivariate correlation” 

with a two-tailed Pearson correlation coefficient. 
(These are defaults so no extra syntax is required)  

 
• SPSS outputs a correlation matrix. You only need to examine the top 

half or the bottom half. 
Correlations

1 .954 .903
. .000 .000

50 50 50
.954 1 .958
.000 . .000

50 50 50
.903 .958 1
.000 .000 .

50 50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

X1

X2

X3

X1 X2 X3

 
For the correlation between X1 and X2:  001.,95.)48( <= pr  
For the correlation between X1 and X3:  001.,90.)48( <= pr  
For the correlation between X2 and X3:  001.,96.)48( <= pr  
 

• Anytime you report a correlation, you should examine the scatterplot 
between those two variables. 

⇒ To check for outliers 
⇒ To make sure that the relationship between the variables is a 

linear relationship 
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o These “standard” significance tests only apply for testing for differences 
from zero. 
• The sampling distribution of the correlation is only symmetric when 

0=ρ .  If 0≠ρ , then the sampling distribution is asymmetric and 
other methods of inference must be used. 

 
 

o The Fisher r-to-z transformation for a single correlation: 
 

• Fisher showed that we can transform a correlation to a z-score: 
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The sampling distribution of fZ  is asymptotically normal with 
variance:  

3
1
−N

 

 
Where N = the number of participants used to compute the correlation  

(or the number of pairs of scores) 
 

• As a consequence, we can compute a test statistic:  
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Where nullZ  is the null hypothesis of r transformed to the fZ  scale. 
This test statistic follows a standard normal distribution. 
 
If 96.1>obsZ  then obsr  differs from nullr  with a two-tailed 05.=α  
Or look up exact p-value on z-table 
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• For example, let’s test if 954.12 =r  differs from 80.=nullr , N = 50 

 
H0 : ρ12 = .80   
H0 : ρ12 ≠ .80  
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Z =
1.8745 −1.0986

1
50 − 3

=
0.7759

.146
= 5.31, p < .001 

 
We conclude that 954.12 =r  differs significantly from 80.=nullr  

 
 

o Extending the Fisher r-to-z transformation to correlations from two 
independent samples: 

 
• When correlations come from two independent samples, we may want 

to know if they differ from each other 
 

210 : ρρ =H   211 : ρρ ≠H  
0: 210 =− ρρH  0: 211 >− ρρH  

 
Or more generally 

kH =− 210 : ρρ  kH >− 211 : ρρ  
 

After transforming both observed correlations to the fZ  scale, we can 
compute a Z-test statistic: 
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Where n1 = the number of participants used to compute the first 

correlation  
  n2 = the number of participants used to compute the second 

correlation  
 

If 96.1>obsZ  then reject the two-tailed null hypothesis at 05.=α  
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• For example, suppose 2.1 =r  with N1 = 40 and 8.2 =r  with N2 = 45. We 

would like to test if 1r  differs from 2r . 
 

H0 : ρ1 = ρ2    
0: 210 =− ρρH   

 
First transform 2.1 =r  and 8.2 =r  to the fZ  scale  
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Next compute the test statistic, Z  

 
Z =

.2027 −1.0986 − 0
1

40 − 3
+

1
45 − 3

=
−0.8959

.2255
= −3.973 

 
 

Finally, determine significance  
 

710000.,973.3 == pZobs     

Reject null hypothesis with 2-tailed test 
 

 
3. Correlational assumptions 
 

• The assumptions of this of the test for a correlation are that both X and Y are 
normally distributed (Actually X and Y must jointly follow a bivariate 
normal distribution). 

 
o No other assumptions are required, but remember: 

• The correlation coefficient is very sensitive to outliers 
• The correlation coefficient only detects linear relationships 

 
o These assumptions can be checked visually: 

• Boxplots, histograms & univariate scatterplots of each variable 
• Bivariate scatterplots of the two variables together 

 



12-14   2007 A. Karpinski 

 
o The normality assumption is only required for the significance test of the 

correlation.  It is not necessary if you only want to calculate the 
correlation coefficient. 

 
o If you have a violation of the normality assumption (or if outliers are 

present) 
• Use the Spearman rank correlation 

 
 
 
4. Non-parametric measures of correlation 
 

• The Spearman rank correlation, ρ  (1904), is a correlation performed on the 
rank of the variables. 
o Rank X from small to large (rX). 
o Rank Y from small to large (rY). 
o Compute the Pearson correlation coefficient on the rank variables. 

• (Spearman’s formula for determining significance is actually a bit 
different, but for large sample sizes the results are similar.) 

 
RANK VARIABLES=x1 x2 x3. 
CORRELATIONS 
  /VARIABLES=rx1 rx2 rx3. 

Correlations

1 .935 .885
. .000 .000

50 50 50
.935 1 .954
.000 . .000

50 50 50
.885 .954 1
.000 .000 .

50 50 50

Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N

RANK of X1

RANK of X2

RANK of X3

RANK of X1 RANK of X2 RANK of X3

 
 
For the correlation between X1 and X2:  001.,94.)48( <= pρ  
For the correlation between X1 and X3:  001.,89.)48( <= pρ  
For the correlation between X1 and X3:  001.,95.)48( <= pρ  
 



12-15   2007 A. Karpinski 

• You can also ask for Spearman’s rho directly 
NONPAR CORR 
  /VARIABLES=x1 x2 x3 
  /PRINT=SPEARMAN. 

Correlations

1.000 .935 .885
. .000 .000

50 50 50
.935 1.000 .954
.000 . .000

50 50 50
.885 .954 1.000
.000 .000 .

50 50 50

Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N
Correlation Coefficient
Sig. (2-tailed)
N

X1

X2

X3

Spearman's rho
X1 X2 X3

 
 

• Spearman’s rho can be used for: 
⇒ Non-normal data 
⇒ Data with outliers 
⇒ Data that arrive in rank format 

 
However, rho still only detects linear relationships. 

 
• If both of X and Y are dichotomous, then you can conduct a compute phi, φ, 

as a measure of the strength of association between dichotomous variables 
(see p. 2-65). 

N

2χφ =  

o An example: 
 Candidate Preference 
 Candidate U Candidate V 
  Homeowners 19 54 
  Non-Homeowners 60 52 

 
CROSSTABS 
 /TABLES = prefer by homeown  
 /STAT = CHISQ. 

Chi-Square Tests

13.704 1 .000
185

Pearson Chi-Square
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

 272.
185

704.132

===
N
χφ  
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5. A correlational example 
• Consider the SENIC (Study on the Efficacy of Nosocomial Infection 

Control) data set from 1975-76.  This data set contains information on 113 
hospitals (each “subject” is a hospital) including: 

  length    'Average length of stay (in days)' 
  infrisk   'Probability of acquiring an infection in the hospital' 
  age       'Average age (years)' 
  beds      'Number of beds in the hospital' 

 
• We would like to look for relationships between each of the variables and 

the average length of stay in hospitals. 
• For a correlational analysis to be valid, we need: 

o The relationships between all the variables to be linear. 
o Each variable to be normally (or symmetrically distributed). 
o No outlying observations influencing the analysis. 

 
• Let’s start by checking our key variable, average length of stay, for 

normality and outliers: 
EXAMINE VARIABLES=length  
  /PLOT BOXPLOT HISTOGRAM NPPLOT. 

Descriptives

9.6483 .17981
9.4864
9.4200

6.70
19.56
2.069 .227
8.077 .451

Mean
5% Trimmed Mean
Median
Minimum
Maximum
Skewness
Kurtosis

LENGTH
Statistic Std. Error
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o It looks like we have a normal distribution with two outliers.  We will 

have to keep track of these outliers and see if they influence our 
conclusions. 
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• To examine the relationship between length of hospital visits and the 
probability of acquiring an infection in the hospital, we need to make sure 
that this second variable is normally/symmetrically distributed with no 
outliers. 

EXAMINE VARIABLES=infrisk  
  /PLOT BOXPLOT HISTOGRAM NPPLOT. 

Descriptives

4.3549 .12614
4.3586
4.4000

1.30
7.80

-.120 .227
.182 .451

Mean
5% Trimmed Mean
Median
Minimum
Maximum
Skewness
Kurtosis

INFRISK
Statistic Std. Error
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o Risk of infection looks normal and symmetric. 

 
• The next step is to check for non-linearity in the relationship between length 

of stay and infection risk 

 
o The relationship looks linear, but those two outliers are menacing! 
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• Now that we have done all our back ground work, we can finally examine 

the correlation between the two variables 
 

CORRELATIONS /VARIABLES=length WITH infrisk. 
Correlations

.533

.000
113

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
INFRISK

 
o There is a significant positive correlation between infection risk and 

average length of stay in a hospital, r(111) = .533, p < .001. 
 
 

• But we want to make sure that those outliers are not influencing our 
conclusions.  We have two methods to examine their influence: 
o Conduct a sensitivity analysis. 
o Conduct a rank regression (Spearman’s rho). 

 
o Let’s start by conducting a sensitivity analysis: 

TEMPORARY. 
SELECT IF length < 15. 
CORRELATIONS /VARIABLES=length WITH infrisk. 

Correlations

.549

.000
111

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
INFRISK

 
• Correlation with the outliers:  r(111) = .533, p < .001 
• Correlation without the outliers: r(109) = .549, p < .001 

 
• In this case the outliers do not influence the magnitude of the 

correlation or the significance of the correlation.  It appears that we 
can report the correlation on the full data with confidence. 
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o A second check on the influence of the outliers can be done by 
computing Spearman’s Rho on the data. 

 
• If Spearman’s Rho and the Pearson correlation are similar in 

magnitude, then we can be more confident the outlier does not 
influence the analysis. 

 
• There are two ways to compute Spearman’s Rho. First, we can ask for 

it directly in SPSS. 
NONPAR CORR /VARIABLES=length WITH infrisk age 
  /PRINT=SPEARMAN . 

Correlations

.549

.000
113

Correlation Coefficient
Sig. (2-tailed)
N

LENGTHSpearman's rho
INFRISK

 
 
 

• Alternatively, we can rank the data manually. 
RANK VARIABLES= infrisk length. 

 
• The advantage of this method is that we can look at the ranked data 

GRAPH /SCATTERPLOT(BIVAR)=rinfrisk WITH rlength. 
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• We can also obtain the Rho by performing a Pearson correlation on 

the ranked data 
CORRELATIONS /VARIABLES=rlength WITH rinfrisk rage. 

Correlations

.549

.000
113

Pearson Correlation
Sig. (2-tailed)
N

RANK of LENGTH

RANK of
INFRISK

 
 

• In this case we find nearly identical results for the two methods (Pearson vs. 
Spearman) of computing the correlation: 

ρ(111) = .549, p < .001 
r(111) = .533, p < .001 

 
o This finding gives us additional confidence that the Pearson correlation is 

an accurate estimate of the linear relationship between the two variables. 
 
 
 

• Now, let’s turn to the second variable of interest.  To examine the 
relationship between length of hospital visits and the average age of patients, 
we need to make sure that are is normally/symmetrically distributed with no 
outliers and that the relationship between the variables is linear. 

EXAMINE VARIABLES= age   
  /PLOT BOXPLOT HISTOGRAM NPPLOT. 

 
Descriptives

53.2319 .41971
53.2481
53.2000

38.80
65.90
-.104 .227
1.066 .451

Mean
5% Trimmed Mean
Median
Minimum
Maximum
Skewness
Kurtosis

AGE
Statistic Std. Error

 



12-21   2007 A. Karpinski 

Average age (years)
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o Normality/symmetry looks OK for the age variable 

 
o This scatterplot does not contain any indications of nonlinearity.  

However, those two outliers will again require out attention 
 

o Let’s look at the correlation between length of stay and average age of 
patients. 

CORRELATIONS /VARIABLES=length WITH age. 
Correlations

.189

.045
113

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
AGE

 
 

We find a significant linear relationship between average length of 
stay and average age of patients, r(111) = .189, p = .045. 
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o Now, let’s check the influence of the outliers by conducting a sensitivity 

analysis and by examining Spearman’s Rho. 
 

• A sensitivity analysis: 
TEMPORARY. 
SELECT IF length < 15. 
CORRELATIONS /VARIABLES=length WITH age. 

Correlations

.122

.201
111

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
AGE

 
 

• This time, we find a very different result (in terms of both magnitude 
and significance) when we omit the outliers. 

 
r(109) = .122, p = .201 

 
 

• Rank-based correlation: 
NONPAR CORR /VARIABLES=length WITH age 
  /PRINT=SPEARMAN . 

Correlations

.113

.232
113

Correlation Coefficient
Sig. (2-tailed)
N

LENGTHSpearman's rho
AGE

 
• Again, we find a very different result (in terms of both magnitude and 

significance) when we conduct Spearman’s Rho 
 

ρ(111) = .113, p = .232  
 
 
 

o In this case, the two outliers exert a large influence on the conclusions we 
draw.  We should be very cautious about reporting and interpreting the 
Pearson correlation on the complete data. 
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• Finally, to examine the relationship between the third variable, number of 
hospital beds, and average length of stay in the hospital, we need to examine 
the assumptions. 

EXAMINE VARIABLES= beds   
  /PLOT BOXPLOT HISTOGRAM NPPLOT. 

Descriptives

252.1681 18.14111
233.5772
186.0000

29.00
835.00

1.379 .227
1.281 .451

Mean
5% Trimmed Mean
Median
Minimum
Maximum
Skewness
Kurtosis

BEDS
Statistic Std. Error
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o This looks like a clear case of non-normality.  If we run a Pearson 
correlation on these data, the statistical tests and p-values will be biased.   

o The solution is to compute Spearman’s Rho rather than the Pearson 
correlation. 
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o But first, we need to make sure that the relationship between rank of 

average length of stay and rank of number of hospital beds is linear 
 
RANK VARIABLES=beds. 
GRAPH /SCATTERPLOT(BIVAR)=rbeds WITH rlength. 

 
 

CORRELATIONS /VARIABLES=rlength WITH rbeds. 
Correlations

.503

.000
113

Pearson Correlation
Sig. (2-tailed)
N

RANK of LENGTH

RANK of
BEDS

 
ρ(111) = .503, p < .001 

 
• We find a significant linear relationship between the rank of average 

length of stay and the rank of number of hospital beds.  
• Because of the assumption violation, we should report Spearman’s 

Rho rather than the Pearson correlation. 
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• One additional variable in the SENIC dataset is affiliation with a medical 

school or not.   Suppose we would like to check if the correlation between 
average length of hospital stay and risk of hospital infection differs for med 
school affiliated hospitals compared to non-med school affiliated hospitals 

 
o First, compute the Pearson correlation separately for each sample. 

 
 
 
TEMPORARY.     TEMPORARY. 
SELECT IF medsch=1.    SELECT IF medsch=2. 
CORRELATIONS      CORRELATIONS 
   /VARIABLES=length WITH infrisk.  /VARIABLES=length WITH infrisk. 

Correlations

.463

.061
17

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
INFRISK

  

Correlations

.510

.000
96

Pearson Correlation
Sig. (2-tailed)
N

LENGTH
INFRISK
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o There appears to be a similar sized linear relationship in both samples.  

To statistically test for this difference, we can conduct a Fisher r-to-z 
transformation and then conduct a z-test. 

 
H0 : ρNo = ρYes

H1 : ρNo ≠ ρYes

 

 
ZYes =

1
2

ln
1+ r
1− r

 
 

 
 =

1
2

ln
1+ .463
1− .463

 
 

 
 = .501  ZNo =

1
2

ln
1+ r
1− r

 
 

 
 =

1
2

ln
1+ .510
1− .510

 
 

 
 = .563 

 
Z =

ZNo − ZYes

1
NNo − 3

+
1

NYes − 3

=
.563 − .501

1
14

+
1

93

= 0.217, p = .83  

 
 

• We fail to reject the null hypothesis.  There is insufficient evidence to 
conclude the linear relationship between length of stay and risk of 
infection differs by med school affiliation, Z = 0.22, p = .83. 
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6. Relationship between correlation and the t-test 
 

• Consider the relationship between a dichotomous independent variable and a 
continuous variable (and for the simplicity, we will assume that we have 
nice data with all standard parametric assumptions satisfied). 

 
• Previously, we considered the relationship between sleep deprivation and 

memory (see 2-45). 
 

 
Control Sleep Deprived 

55 58 48 55 
43 45 38 40 
51 48 53 49 
62 54 58 50 
35 56 36 58 
48 32 42 25 

 
 
 

Independent Samples Test

.256 .618 .748 22 .462 2.9167 3.89922 -5.16982 11.00315

.748 21.781 .462 2.9167 3.89922 -5.17453 11.00786

Equal variances
assumed
Equal variances
not assumed

MEMORY
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

46.,75.0)22( == pt  
 
 

o We concluded that there was no evidence to suggest that recall memory 
was affected by sleep deprivation. 
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• What would happen if we tried to analyze these data using a correlation?   

 
o The t-test examines differences between groups by comparing the 

average score. 
 

o A correlation between group (control vs. sleep deprived) and recall 
would examine the linear relationship between the two variables. 
• If the is no difference between the means of the two groups, then there 

would be no linear relationship. 
• If there is a difference between the groups, then a linear relationship 

will be observed, and the greater the difference between the groups, 
the greater the strength of the linear relationship. 

• Thus, intuitively, it make sense the when the IV is dichotomous and 
the DV is continuous, then a t-test and a correlation are testing the 
same hypothesis using different methods. 
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o When we analyze these data with a correlation, we find the exact same 
significance value as we observed with the t-test. 

 
CORRELATIONS 
  /VARIABLES=group WITH memory. 

Correlations

-.157
.462

24

Pearson Correlation
Sig. (2-tailed)
N

MEMORY
GROUP

 
 

Correlation: r(22) = −.16, p = .46  
t-test:  46.,75.0)22( == pt  

 
o This is not a coincidence. When the IV/predictor is dichotomous and the 

DV/outcome is continuous, a t-test and a correlation will give identical 
tests of significance. 

 
• Which test should you use? 

o A correlation a measure of the linear relationship between two variables 
(i.e., as X increases, Y increases). 

o If it makes sense to interpret your effect as a linear relationship, then a 
correlation is appropriate. 
• In our example, we can say that as sleep deprivation increases, recall 

does not significantly change.   This statement is interpretable, so a 
correlation is appropriate. 

 
o If it does not make sense to interpret your effect as a linear relationship, 

then a correlation is not appropriate. 
• Consider a study of gender differences in recall. 
• In this example, a correlation would mean that as gender increases, 

the DV increased/decreased/did not change. 
• But it makes no sense to say, “as gender increased. . .”!!!  Thus, a t-

test would be more appropriate to explore gender differences. 
 

o In sum, the two approaches to analysis will lead you to identical 
conclusions.  You should choose to present the analysis that is the easiest 
to interpret. 
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7. Factors that will limit the size of the correlation coefficient 
 

• The reliability of X and Y 
 

o What is reliability? 
• The correlation between two equivalent measures of the same variable  
• The extent to which all items on a scale assess the same construct 

(internal consistency) 
 

X = Xt + error  
 

Reliability =
Var(True Score)

Var(Observed Score)
=

Var(Xt )
Var(Xt + error)

 

 
• Reliability may be interpreted as the proportion of a measure’s 

variance that is left to correlate with other variables (because error is 
assumed not to correlate with anything). 

 
o When computing a correlation coefficient, we assume that X and Y are 

measured without error.  If X and Y are measured with error, then it 
reduces the maximum correlation we can observe between those 
variables 

rX tYt
=

rXY

αX *αY

 

 
• Image you find a correlation of rXY = .44 , but each variable is measured 

with error: αX = .70 and αY = .80.  What correlation should you have 
observed between X and Y? 

 

rX tYt
=

rXY

αX *αY

=
.44

.70 * .80
= .78 

 
• Image you know the true correlation between X and Y is ρXY = .45, but 

each variable is measured with error: αX = .73 and αY = .66.  What 
correlation are you likely to observe between X and Y?  

 

rX tYt
=

rXY

αX *αY

    .45 =
rXY

.73* .66
   rXY = .22 
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o Structural equation modeling can be used to estimate the error captured 
in each variable and to estimate the true correlation between two 
variables in the absence of error 

o Unreliability of variables can result in low correlations, but it can not 
cause correlations to be spuriously high 

 
 

• Restriction of range 
o When the range of either X or Y is restricted by the sampling procedure, 

the correlation between X and Y may be underestimated. 
 

o AN Example: Consider the relationship between time since PhD and 
number of publications.  Data are collected for 15 professors are obtained 
(range of time since PhD from 3 to 18 years).  In an analysis of a subset 
of these data, only professors with 5 to 11 years since their PhD are 
considered. 

 
Full Range      Restricted Range 

4 .00 8 .00 1 2.0 0 1 6.0 0

tim e 

1 0.0 0

2 0.0 0

3 0.0 0

4 0.0 0

pu
b 

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

   

6 .00 8 .00 1 0.0 0

tim e 

1 0.0 0

2 0.0 0

3 0.0 0

4 0.0 0

pu
b 

A

A

A

A

A

A

A

A

A

A

 
Correlations

.635

.011
15

Pearson Correlation
Sig. (2-tailed)
N

time
pub

 
 
 

Correlations

.345

.328
10

Pearson Correlation
Sig. (2-tailed)
N

time
pub

 
 
 

o You need to be very careful in interpreting correlation coefficients with 
you have a limited range of values. 

 
 


