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Multi-Factor Repeated Measures ANOVA 
Designs with on Between-Subjects and one Within-Subjects Factors 

 
1. Introduction 
 

• Let’s start with a simple example: one between subjects factor and one 
within-subjects factor 

 
• Imagine that our previous data on the effects of a test prep class did not 

come from pre- and post-test scores from the same participants, but instead 
were scores from two different groups of people.  In this case, we randomly 
assigned people to either take a test prep class, or to not take the test prep 
class.  

 
 

No Training  Training 
Subscale1 Subscale2 Subscale3  Subscale1 Subscale2 Subscale3 

42 42 48  48 60 78 
42 48 48  36 48 60 
48 48 54  66 78 78 
42 54 54  48 78 90 
54 66 54  48 66 72 
36 42 36  36 48 54 
48 48 60  54 72 84 
48 60 66  54 72 90 
54 60 54  48 72 78 
48 42 54  54 66 78 

46.2 51.0 52.8  49.2 66.0 76.2 
 

 
 
 

 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Yes 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
 ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 
 
 
 

Between-Subjects 
Comparison

Within-Subjects 
Comparison 
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2. Structural model, SS partitioning, and the ANOVA table 
 

• To understand the structural model of a between and within design, let’s 
start with the model of a design containing two within factors, and see what 
changes.  We will consider the A factor the between subjects factor, and the 
B factor the within subjects factor 

 
σσσσ αβπβπαπαβπβαµ )()()()( +++++++= jkkjijkY  

 
o µ  is the grand mean of all scores 
o jα  is the effect of the between subjects factor 

 
 
 
 
 
 
 

o kβ  is the effect of the within subjects factor 
 
 
 
 
 

 
 

o jkαβ  is the interaction of the within and between subjects factors 
 
 
 
 
 
 
 
 
 
 

o These fixed effect parameters are computed exactly the same as for a all 
between- or all within-subjects design.

No 
Training 

  
Training 

50.0  63.8 

Subscale1 Subscale2 Subscale3
47.7 58.5 64.5 

 Subscale1 Subscale2 Subscale3 
No Training 46.2 51.0 52.8 
Training 49.2 66.0 76.2 

1α 2α

1β 2β 3β

21αβ 22αβ 23αβ

12αβ

13αβ
11αβ
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o σπ  is the subject effect, but we have a subject effect for each level of A, 
the between-subjects factor.  We refer to this as the subject effect within 
(each level of) A, )( jσπ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Note that )( jσπ  measures how much the factor A effect varies by 
subject.  We can think of the )( jσπ  terms as a measure of the error in 
the jα  effect.  For this to work, we will need )1(σπ )2(σπ=  

 
• σαπ )(  is the interaction between subject and A. But subjects are not 

crossed with factor A. There are different subjects in each level of A.  
Thus, we cannot estimate this term. 

 
When a factor (Subjects) is not crossed with each level of another 
factor (A), but instead only appears within a single level of that factor 
(A), we say that subjects are nested within A 

 

No 
Training 

  
Training 

44  62 
46  48 
50  74 
50  72 
58  62 
38  46 
52  70 
58  72 
56  66 
48  66 

1σπ 2σπ
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o σβπ )( is the interaction between subject and B.  We will be able to 
estimate this term.  Each subject gets each level of the within subjects 
factor.   

 
• Because we have two groups of subjects, we will have two 

estimates of σβπ )( , one for each level.  We refer to this as the 
subject by B effect within (each level of) A, )()( jσβπ  

 
 

No Training  Training 
Subscale1 Subscale2 Subscale3  Subscale1 Subscale2 Subscale3 

42 42 48  48 60 78 
42 48 48  36 48 60 
48 48 54  66 78 78 
42 54 54  48 78 90 
54 66 54  48 66 72 
36 42 36  36 48 54 
48 48 60  54 72 84 
48 60 66  54 72 90 
54 60 54  48 72 78 
48 42 54  54 66 78 

 
 

• Note that )()( jσβπ  measures how much the factor B effect varies by 
subject.  )()( jσβπ is also a measure of the extent to which the A*B 
interaction varies by subject 

• Thus, we can think of the )()( jσβπ  terms as a measure of the error in 
the kβ  and jkαβ  effects. Again, for this to work nicely, we need 

)1()( σβπ )2()( σβπ=  
 
 

• Finally, the σαβπ )(  effect is the three-way interaction between subject, 
A and B. But as we already noted, subjects are not crossed with factor 
A; subjects are nested within A.  Thus, we cannot estimate how 

)()( iσβπ  varies across subjects. 
 

1σβπ
2σβπ
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• So we are left with the following model for a between (A) and within (B) 
factors design: 

)()( )()( ijkikjijkY σσ βπαβπβαµ +++++=  

 
• Let’s look at the expected mean squares for each of the terms in the model to 

see if our intuitions about the error terms are correct: 
 

  Source E(MS) F 
Factor A 

1

2
22

−
++ ∑

a
nb

b jα
σσ πε  )/( ASMS

MSA  

Subjects/A 
   (Between Error) 

22
πε σσ b+   

   
Factor B 

1

2
22

−
++ ∑

b
na kβ

σσ βπε  )/*( ASBMS
MSB  

A * B 

)1)(1(

2
22

−−
++ ∑

ba
n jkαβ

σσ βπε  )/*( ASBMS
MSAB  

B*Subjects/A 
    (Within Error) 

22
βπε σσ +   

 
 

• ANOVA Table 
 

  Source SS df MS F 
Factor A SSA (a-1) 

1−a
SSA  

)/( ASMS
MSA  

Subjects/A 
   (Between 
Error) 

SS(S/A) N-a 
aN
ASSS

−
)/(  

 

     
Factor B SSB (b-1) 

1−b
SSB  

)/*( ASBMS
MSB  

A * B SSAB (a-1)(b-1) 
)1)(1( −− ba

SSAB  
)/*( ASBMS

MSAB

 
B*Subjects/A 
    (Within Error) 

SS(B*S/A) (N-a)(b-1) 
)1)((
)/*(

−− baN
ASBSS
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3. Assumptions for between and within factor designs 
 

• Assumptions for between-subjects tests: These assumptions are identical to 
the assumptions for a one-way between-subjects ANOVA.   
o To conduct the omnibus test for the between subjects effect, assumptions 

are made on the marginal between-subjects means. 
• Samples are independent and randomly drawn from the population 
• Each group is normally (symmetrically) distributed 
• All groups have a common variance 

o If you will perform simple effects tests on the between-subjects factor, 
then you need to make the following assumptions on the between-
subjects cell means at each level of the within-subjects factor. 
• Each group is normally (symmetrically) distributed 
• All groups have a common variance 

 
• Assumptions for within-subjects tests:  

o When examining the model parameters, we noted that we needed the 
error terms to be equal in the two samples: )1(σπ )2(σπ=  and 

)1()( σβπ )2()( σβπ= . To satisfy this assumption, we must have homogeneity 
of variance/covariance matrices for each sample/group 

 
 A1 A2 

σ1
2 σ12 σ13

σ12 σ 2
2 σ23

σ13 σ23 σ 3
2

 

 

 
 
 
 

 

 

 
 
 
 

=
σ1

2 σ12 σ13

σ12 σ2
2 σ 23

σ13 σ 23 σ3
2

 

 

 
 
 
 

 

 

 
 
 
 
 

 
• Homogeneity of variance/covariance matrices is required for any 

omnibus comparisons on the within-subjects marginal means or for 
omnibus interaction tests on between & within cell means.   

• SPSS provides Box’s M test and Levine’s test as a check of 
homogeneity of variance/covariance matrices. 

• If this assumption is violated, the omnibus tests may not be preformed 
for the main effect of the within-subjects effect or for the interaction 
between the within-subjects and between-subjects factor. 
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o If homogeneity of variance/covariance matrices is satisfied, then in 
order to  conduct omnibus tests for the main effect of the within-subjects 
effect or for the interaction between the within-subjects and between-
subjects factor we must have: 
• Sphericity of the pooled variance/covariance matrix. 
• Normality of repeated measures (but we already checked this) 
• Participants are independent and randomly selected from the 

population (but we already checked this) 
 

o If we wish to conduct simple effects tests for the effect of the repeated 
measures factor at each level of the between-subject factor, then we must 
have sphericity of the variance/covariance matrix for each between 
subjects group. 
• Note that we do not need to have homogeneity of variance/covariance 

matrices in order to test this assumption. 
 

• Testing assumptions: Normality 
o For all tests on the marginal within-subjects means and on the cell means, 

we need to check normality on a cell-by-cell basis. 
EXAMINE VARIABLES=scale1 scale2 scale3 BY cond 
  /PLOT BOXPLOT NPPLOT SPREADLEVEL 
  /COMPARE VARIABLES. 

 

1 01 0 1 01 0 1 01 0N =

COND

2 .0 01 .0 0

1 00

9 0

8 0

7 0

6 0

5 0

4 0

3 0

SCALE1

SCALE2

SCALE3

1 6

6

8

1 21 6

1 3 Tests of Normality

.911 10 .287

.897 10 .202

.886 10 .151

.869 10 .097

.897 10 .203

.892 10 .180

cond
1.00
2.00
1.00
2.00
1.00
2.00

scale1

scale2

scale3

Statistic df Sig.
Shapiro-Wilk

 
 
 

o No cell seems too asymmetrical. We appear to be OK for normality 
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o In order to conduct all tests on the between-subjects marginal means, we 
need the marginal means to be normally distributed.  To test the marginal 
means, we must manually average across the repeated measures, compute 
the marginal effects, and conduct our usual tests for normality. 

 
COMPUTE  between = (scale1+scale2+scale3)/3. 
EXAMINE VARIABLES=between BY cond 
  /PLOT BOXPLOT NPPLOT SPREADLEVEL. 

 

1010N =

COND

2.001.00

BE
TW

EE
N

80

70

60

50

40

30

16

   
0.50 1.00 1.50 2.00

cond

40.00

50.00

60.00

70.00

be
tw

ee
n

A

A

AA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

AA

 
Tests of Normality

.952 10 .689

.853 10 .064

COND
1.00
2.00

BETWEEN
Statistic df Sig.

Shapiro-Wilk

 
 

o Normality (Symmetry) is satisfied. 
 
 
 
 

• To check homogeneity/sphericity, we will adopt a three-step approach 
o Check the equality of the variance/covariance matrices across the 

different samples  
o Check the sphericity of the pooled variance/covariance matrix (Overall 

sphericity) 
o Check the sphericity of the variance/covariance matrix for each group 

separately (Multi-sample sphericity) 
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• To check the homogeneity of the variance/covariance matrices across the 
different samples, we use Box’s test of equality of the variance/covariance 
matrices and Levene’s test of variances. 

GLM  scale1 scale2 scale3 by cond 
  /WSFACTOR = scale 3  
  /PRINT = DESC HOMO. 

 
o Box’s test is an omnibus test of equivalence of variance/covariance 

matrices 
H0 :Var /Cov1 = Var /Cov2 = ... =Var /Cova  
H1 : At least 1 Var/Cov matrix differs from the others 

 A1 A2 
σ1

2

σ12 σ 2
2

σ13 σ 23 σ 3
2

 

 

 
 
 

 

 

 
 
 

=
σ1

2

σ12 σ 2
2

σ13 σ 23 σ 3
2

 

 

 
 
 

 

 

 
 
 
 

 
• Note that this test is not examining if the Var/Cov matrices are 

spherical, only if they are equal  
• If we reject the null hypothesis, we can not pool the matrices to test 

within-subject effects (and we will need to consider alternative 
approaches to omnibus analyses). 

Box's Test of Equality of Covariance Matrices

5.682
.774

6
2347.472

.591

Box's M
F
df1
df2
Sig.

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

 
 

F(6,2347.47) = 0.774, p = .59 
 

• We fail to reject null hypothesis, so we have no evidence that the 
variance/covariance matrices are unequal. 
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o Levene’s test is a more focused test of the equivalence of only the 
variances 

 A1 A2 
σ1

2

σ12 σ 2
2

σ13 σ 23 σ 3
2

 

 

 
 
 

 

 

 
 
 

=
σ1

2

σ12 σ 2
2

σ13 σ 23 σ 3
2

 

 

 
 
 

 

 

 
 
 
 

 
Levene's Test of Equality of Error Variances

.635 1 18 .436

.248 1 18 .624
1.204 1 18 .287

SCALE1
SCALE2
SCALE3

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

 
 

• This test only examines if the variances of the different groups are 
equal 

• For subscale 1 
H0 :σ1

2 = σ2
2 = ...= σa

2 
H1 : At least 1 σ i

2differs from the others 
F(1,18) = 0.64, p = .43 

• For subscale 2 
H0 :σ1

2 = σ2
2 = ...= σa

2 
H1 : At least 1 σ i

2differs from the others 
F(1,18) = 0.25, p = .62  

• For subscale 3  
H0 :σ1

2 = σ2
2 = ...= σa

2 
H1 : At least 1 σ i

2differs from the others 
F(1,18) =1.20, p = .29  

 
o If either Box’s test or any of Levene’s Tests are significant, then we 

reject the assumption of homogeneity of the variance/covariance 
matrices. 

o In this case, we have no evidence to conclude that the matrices are 
different, so we may pool them and test for sphericity. 
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• Next, we test for overall sphericity by averaging across the between subjects 
factor and examining the epsilon 

Entire Sample

Measure: MEASURE_1

.961 1.000 .500
Within Subjects Effect
SCALE

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
o In this case, the overall sphericity assumption is satisfied  
o We may conduct unadjusted omnibus tests on the within-subjects factors 

• SCALE 
• SCALE*CONDITION  

 
• If we plan on conducting simple effects tests (of the within-subjects factor at 

each level of the between-subjects factor), then we need to examine the 
epsilon for each condition (the multi-sample sphericity). 

 
temporary. 
select if cond=1. 
GLM  scale1 scale2 scale3 
  /WSFACTOR = scale 3. 

CONDITION #1

Measure: MEASURE_1

.864 1.000 .500
Within Subjects Effect
SCALE

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 

temporary. 
select if cond=2. 
GLM  scale1 scale2 scale3 
  /WSFACTOR = scale 3. 

Condition #2

Measure: MEASURE_1

.776 .907 .500
Within Subjects Effect
SCALE

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

o We conclude that, separately, the var/cov matrix for each condition is not 
spherical, but the violation is fixable 
• If we want to conduct follow-up tests on each condition, we need to 

adjust all omnibus tests 
 
• Overall we conclude that: 

o The var/cov matrix for condition 1 equals the var/cov matrix for 
condition 2 

o When we combine the 2 conditions, the overall var/cov matrix is 
spherical 

o BUT the neither the var/cov matrix for condition 1 nor the var/cov matrix 
for condition 2 is spherical! 
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• Remember that all this funny business of checking the var/cov matrix can be 
skipped if we avoid omnibus tests and stick to contrasts! 

 

• If assumptions are violated: A recap 
 

i. If normality/symmetry is not satisfied: 
o All F-tests may be biased. 
o Try advanced non-parametric/distribution-free tests  

 

ii. If the variances are not equal between groups within each condition 
(Levene’s test and boxplots suggest heterogeneity): 
o Then we cannot conduct between-subjects tests that require equal 

variances (omnibus tests and/or standard contrasts). 
o Test all between-subject contrasts with unequal variance contrasts. 
o Test all between-subject omnibus tests with the Brown-Forsyth F* Test. 

 

iii. If variance/covariance matrices are not equal across all groups (Box’s M is 
significant or Levene’s test suggests heterogeneity): 
o Then we cannot pool var/cov matrices over the between-subjects groups. 
o The omnibus within-subject error term (used to test within-subject effects 

and between/within interactions) is not valid. 
o Use the MANOVA approach for omnibus tests of within-subject effects and 

between/within interactions OR use contrasts for between/within tests. 
 

iv. If sphericity of the combined variance/covariance matrix (Overall sphericity) 
is violated: 
o Note: If assumption (iii.) is violated, then we cannot pool the var/cov 

matrices and this assumption is automatically violated. 
o The omnibus within-subject error term (used to test within-subject effects 

and between/within interactions) is not valid. 
o If violation is moderate, use epsilon-adjusted omnibus tests or contrasts. 
o If violation is extreme, use contrasts for between/within tests or the MANOVA 

approach for omnibus tests of within-subject effects and between/within interactions. 
 

v. If the sphericity of the variance/covariance matrix for each group separately 
(Multi-sample sphericity) is violated: 
o Note: If assumption (iii.) is violated, then this assumption may still be 

satisfied. 
o The omnibus within-subject error term calculated at each level of the 

between subject factor  (simple effects of the within-subjects factor at 
each level of the between subjects factor) is not valid. 

o If violation is moderate, use epsilon-adjusted simple effect omnibus tests or contrasts. 
o If violation is extreme, use the MANOVA approach for simple effect omnibus tests of 

within-subject effects or contrasts. 
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4. Analysis of omnibus ANOVA effects 

• Partial eta-squared is a measure of percentage of the variance accounted for 
(in the sample) that can be used for omnibus tests: 

ˆ η (Effect )
2 =

SSeffect

SSeffect + SSErrorTermForEffect

 

ASA

A
A SSSS

SS

/

2ˆ
+

=η  
ASBB

B
B SSSS

SS

/*

2ˆ
+

=η  
ASBBA

BA
BA SSSS

SS

/**

*2
*ˆ

+
=η  

 
 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Yes 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
 ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 
• In this case, we may conduct unadjusted within subjects tests (see p. 11B-12) 

GLM scale1 scale2 scale3 by cond 
  /WSFACTOR = scale 3  
  /PRINT = DESC. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

2899.200 2 1449.600 61.424 .000
2899.200 1.921 1508.872 61.424 .000
2899.200 2.000 1449.600 61.424 .000
2899.200 1.000 2899.200 61.424 .000
1051.200 2 525.600 22.271 .000
1051.200 1.921 547.091 22.271 .000
1051.200 2.000 525.600 22.271 .000
1051.200 1.000 1051.200 22.271 .000

849.600 36 23.600
849.600 34.586 24.565
849.600 36.000 23.600
849.600 18.000 47.200

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
SCALE

SCALE * COND

Error(SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 

77.
6.8492.2889

2.2899ˆ 2 =
+

=Scaleη   55.
6.8492.1051

2.1051ˆ 2
* =

+
=ScaleTimeη  

 
Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

194256.600 1 194256.600 949.446 .000
2856.600 1 2856.600 13.962 .002
3682.800 18 204.600

Source
Intercept
COND
Error

Type III Sum
of Squares df Mean Square F Sig.

 

44.
8.36826.2856

6.2856ˆ 2 =
+

=Conditionη  
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o Tests of the within subjects factors: 

• The main effect of scale: 77.,01.,42.61)36,2( 2 =<= ηpF  
⇒ Collapsing across level of training, there are significant differences 

in the scores to the three sub-scales of the test  
• The scale by training interaction: 55.,01.,27.22)36,2( 2 =<= ηpF  

⇒ The effect of training is not the same for each subscale of the test  
 

o Tests of the between subjects factors: 
• The main effect of training: 44.,01.,96.13)18,1( 2 =<= ηpF  

⇒ Averaging across subscales, those who received training performed 
better than those who do not receive training. 

 
 

• To interpret effects, you use the same logic outlined for factorial ANOVA. 
Start with the highest order significant (or important) effect.  Interpret lower 
order effects only if they are meaningful. 
o In this case, we have a significant scale by training interaction.  We could 

follow-up this result with simple effect tests. 
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5. Contrasts 

• The contrast formulae remain the same: 

=observedt

∑

∑
′

=
′

n
c

EMS

Xc

j

jj

2

.
)ˆ(rerro standard

 ˆ
ψ

ψ    

 

SS ˆ ψ = 

∑ n
c j

2

2  ψ̂    
EMS

SSfdF
′

=′ ψ̂),1(  

 
o For between-subjects tests on the marginal means: 

• If the homogeneity of variances assumption is satisfied, then MS ′ E  
will be the between-subjects error term, MS ′ E = MSS / A  (with df = N-a). 

• If the homogeneity of variances assumption is not satisfied, then we 
can use the unequal variance test for contrast (Welsh’s test). 

 
o For between-subjects tests within one level of the within-subject factor: 

• If the homogeneity of variances assumption is satisfied at that level of 
the within subjects factor, then MS ′ E  will be the between-subjects 
error term, jASMSEMS /=′  (with df = N-a). 

• If the homogeneity of variances assumption is not satisfied, then we 
can use the unequal variance test for contrast (Welsh’s test). 

 
o For within subjects tests (either on marginal within-subjects means or on 

the between*within cell means): 
• MS ′ E  will be a contrast-specific error term (with df = N-a). 
• If the data are spherical, then we could use an omnibus error term. For 

contrasts on the marginal within-subjects means or on the 
between/within cell means, use the omnibus within-subjects error 
term, MS ′ E = MSB*S / A  (with df = (b-1)(N-a)).  However, I recommend 
that you always use the contrast-specific error term. 

 
 

o Note that all contrasts should have df = N-a. 
(Unless for some reason you decide to use the omnibus error term for 
within-subject or between*within contrasts.) 
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• Effect sizes for contrasts 
o Partial eta-squared is a measure of percentage of the variance accounted 

for (in the sample) that can be used for contrasts: 

orContrastErrorTermFContrast

Contrast
Contrast SSSS

SS
+

=2η̂  

 
o For contrasts (except maybe polynomial trends), we can also compute a d 

as a measure of the effect size, just as we did for the paired t-test. 

ψσ
ψ
ˆ

ˆ =d  but if and only if ci∑  

Where:  ψ is the average value of the contrast of interest 
              ˆ σ ψ is the standard deviation of the contrast values 

 
For between-subject contrasts, we can compute d directly from the t-
statistic: 

df
td *2ˆ =  

 
o For all contrasts, we can also compute an r as a measure of the effect 

size. 

contrastContrast

Contrast

contrastContrast

Contrast

dfF
F

dft
t

r
+

=
+

= 2

2

ˆ  

 
 

• To perform contrasts on the between subjects marginal means, you need to 
compute an average across the within subjects factor. 

 
 
 
 

 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Yes 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
 ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 
 
 

Within-Subjects 
Marginal Means 

Between-Subjects 
Marginal Means
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o To run a test on the marginal between-subject means, we need to 
compute a new variable and then run an ANOVA (or t-test). 

COMPUTE  between = (scale1+scale2+scale3)/3. 
T-TEST GROUPS=cond(1 2) 
  /VARIABLES=between . 

Group Statistics

10 50.0000 6.39444 2.02210
10 63.8000 9.77298 3.09049

cond
1.00
2.00

between
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

1.414 .250 -3.737 18 .002 -13.80000 3.69324 -21.55920 -6.04080

-3.737 15.512 .002 -13.80000 3.69324 -21.64936 -5.95064

Equal variances
assumed
Equal variances
not assumed

between
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 

76.1
18
737.3*2*2

===
df

td  

 
ONEWAY between by cond. 

ANOVA

BETWEEN

952.200 1 952.200 13.962 .002
1227.600 18 68.200
2179.800 19

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 

44.
6.1227952

9522 =
+

=
+

=
orContrastErrorTermFContrast

Contrast

SSSS
SS

η  

 

• Individuals in the training condition performed better than intervals 
without training: 76.1,01.,73.3)18( =<= dpt  

• This test is identical to the main effect of training obtained from the 
repeated measures analysis, 44.,01.,96.13)18,1( 2 =<= ηpF  

 

o In this example, the between subjects factor has only two levels so 
follow-up tests are unnecessary.   
• If the between subjects factor had more than two levels, you could use 

the CONTRAST command to test the between subjects contrasts. 
• If the between-subjects variances are unequal, you can use unequal 

variance contrasts.  
• You may need to adjust the p-value of the tests, depending on whether 

the tests are planned or post-hoc. 
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• To conduct contrasts on the within subjects marginal means:  

 
 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Yes 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
 ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 
 
 
 
 

o The easiest approach to conducting contrasts on the within subjects 
marginal means is to use SPSS’s built in contrasts: 
• Specify a type of contrast on the within-subject factor using the 

WSFACTOR subcommand: 
• To test if subscale 2 differs from subscale3: 

GLM  scale1 scale2 scale3 by cond 
  /WSFACTOR = scale 3 helmert. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

3808.800 1 3808.800 110.400 .000
720.000 1 720.000 14.876 .001

1312.200 1 1312.200 38.035 .000
352.800 1 352.800 7.289 .015
621.000 18 34.500
871.200 18 48.400

SCALE
Level 1 vs. Later
Level 2 vs. Level 3
Level 1 vs. Later
Level 2 vs. Level 3
Level 1 vs. Later
Level 2 vs. Level 3

Source
SCALE

SCALE * COND

Error(SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 

45.
2.871720

7202 =
+

=
+

=
orContrastErrorTermFContrast

Contrast

SSSS
SS

η  

 
• We want to conduct tests on the marginal scale means (average across 

condition), so we need to read the line labeled “SCALE” 
• Averaging across level of training, we find that scores on scale 3 are 

higher than scores on scale 2, 45.,01.,87.14)18,1( 2 =<= ηpF  
 

Within-Subjects 
Marginal Means 
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o An alternative approach to conducting contrasts on the within subjects 

marginal means is to use the special command: 
GLM  scale1 scale2 scale3 by cond 
  /WSFACTOR = scale 3 special (  1  1  1   
                                                        0  -1 1 
                         -1 0 1). 

 
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

720.000 1 720.000 14.876 .001
5644.800 1 5644.800 103.007 .000

352.800 1 352.800 7.289 .015
2080.800 1 2080.800 37.971 .000

871.200 18 48.400
986.400 18 54.800

SCALE
L1
L2
L1
L2
L1
L2

Source
SCALE

SCALE * COND

Error(SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 
 

• The contrast labeled “SCALE L1” gives us the same results as the 
previous analysis 

 
 

o If we try to create a new variable reflecting the contrast, and run a t-test, 
we get an incorrect result because the between-subjects factor is no 
longer included in the analysis (and we are ignoring the fact that we have 
different groups of participants).  You should not use this method. 

compute c1 = scale3 - scale2. 
T-TEST /TESTVAL=0 
  /VARIABLES=c1. 

One-Sample Test

3.343 19 .003 6.0000 2.2436 9.7564C1
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
 

• When we convert this to an F-value, F(1,19) = 11.18, p = .003  
• The degrees of freedom are off by one, and this method uses a slightly 

different error term because this method of analysis completely drops 
between-subjects factor from the analysis. 

 
o Again, depending on the nature of these tests, the p-values may need 

adjustment. 
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• To conduct contrasts on the between subjects by within subjects cell means, 
SPSS makes the task difficult. 

 
o To compute a between/within contrast in SPSS, we must be able to write 

the contrast as an interaction contrast (a difference of differences). 
• Suppose we want to examine if the difference between scores on 

subscale 2 and subscale 3 depends on training: 
 
 
 
 
 

  
o Method #1: Use brand-name contrasts * condition tests. 

This contrast is a test of whether the (scale3 – scale2) contrast differs by 
condition.  
 
The effect of scale3 – scale2 for no training: 23 NoTrainNoTrain µµ −  
The effect of scale3 – scale2 for training: 23 TrainTrain µµ −  

 
Do these effects differ? 

( ) ( )2323: TrainTrainNoTrainNoTrain µµµµψ −−−  
2323: TrainTrainNoTrainNoTrain µµµµψ +−−  

 
 

• I can obtain this contrast from SPSS by asking for an interaction 
between the (scale3 – scale2) contrast on the marginal scale means 
and a (Training – No Training) contrast on the marginal training 
condition means 

 
 
 
 
 
 
 
 

 Subscale1 Subscale2 Subscale3  
No Training  1 -1  
Training  -1 1  
     

 Subscale1 Subscale2 Subscale3  
No Training    -1 
Training    1 
  -1 1  
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• This test result was printed when we asked for the Helmert contrasts: 
GLM  scale1 scale2 scale3 by cond 
 /WSFACTOR = scale 3 helmert. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

3808.800 1 3808.800 110.400 .000
720.000 1 720.000 14.876 .001

1312.200 1 1312.200 38.035 .000
352.800 1 352.800 7.289 .015
621.000 18 34.500
871.200 18 48.400

SCALE
Level 1 vs. Later
Level 2 vs. Level 3
Level 1 vs. Later
Level 2 vs. Level 3
Level 1 vs. Later
Level 2 vs. Level 3

Source
SCALE

SCALE * COND

Error(SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 

29.
2.8718.352

8.3522 =
+

=
+

=
orContrastErrorTermFContrast

Contrast

SSSS
SS

η  

 
29.,02.,29.7)18,1( 2 === ηpF  

 
 

o Method #2: Use special contrasts * condition tests. 
GLM  scale1 scale2 scale3 by cond 
  /WSFACTOR = scale 3 special (  1  1  1 
                                                       0  -1 1 
                                                      -1  0  1). 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

720.000 1 720.000 14.876 .001
5644.800 1 5644.800 103.007 .000

352.800 1 352.800 7.289 .015
2080.800 1 2080.800 37.971 .000

871.200 18 48.400
986.400 18 54.800

SCALE
L1
L2
L1
L2
L1
L2

Source
SCALE

SCALE * COND

Error(SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 
 

29.,02.,29.7)18,1( 2 === ηpF  
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o Method #3: Manually compute the main effect contrast of interest, and 
run a t-test comparing that variable across levels of training: 

compute c1 = scale3 - scale2. 
UNIANOVA c1 by cond. 

Tests of Between-Subjects Effects

Dependent Variable: C1

352.800a 1 352.800 7.289 .015
720.000 1 720.000 14.876 .001
352.800 1 352.800 7.289 .015
871.200 18 48.400

1944.000 20
1224.000 19

Source
Corrected Model
Intercept
COND
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .288 (Adjusted R Squared = .249)a. 
 

29.,02.,29.7)18,1( 2 === ηpF  
 

T-TEST  GROUPS = cond(1 2) 
  /VARIABLES = c1 . 

Group Statistics

10 1.8000 8.02496 2.53772
10 10.2000 5.69210 1.80000

cond
1.00
2.00

c1
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

-2.700 18 .015 -8.40000 3.11127 -14.93654 -1.86346c1
t df Sig. (2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 

28.1
18

7.2*2*2
===

df
td  

28.1,02.,70.2)18( === dpt  
 
 

40
45
50
55
60
65
70
75
80

Subscale 2 Subscale 3

Pre-test
Post-test

 

• We conclude that the difference 
between scale 2 and scale 3 scores 
differs as a result of training.  The 
difference between scores on scale 2 
and scale 3 becomes larger after 
training 
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o For contrasts that are not differences across levels of the between-

subjects factor, more advanced techniques are required (but it is not clear 
that you should be running these types of contrasts.  How would you 
interpret this?).  

 
 
 
 
 
 

o If the between-subjects factor has more than two levels, then testing 
between/within contrasts is trickier (see example 1). 

 
 
 
 
 

  
 

o If these contrasts are post-hoc and need adjustment, follow the 
adjustment procedures for factorial designs (using the appropriate error 
term and error degrees of freedom). 

 
 

 Subscale1 Subscale2 Subscale3  
No Training -1 1   
Training  -1 1  
     

 Subscale1 Subscale2 Subscale3  
No Training     
Type A Training  1 -1  
Type B Training  -1 1  
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6. Simple Effects Tests 

• To conduct simple effects (of the between-subjects factor at each level of the 
within-subjects factor), we can run between-subject analyses on each scale. 
o We want to compute an error term based only on the within-subject 

information that is test-specific.  Thus, it is acceptable to run separate 
tests on each subscale 

o The variances of the training conditions are equal for each subscale 
(recall the Levene’s tests, p. 11B-11), so standard tests may be conducted. 

 
 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8  
   Yes 

12.X = 49.2 22.X = 66.0 32.X = 76.2  

     
 

ONEWAY scale1 scale2 scale3 by cond. 
ANOVA

45.000 1 45.000 .812 .379
997.200 18 55.400

1042.200 19
1125.000 1 1125.000 11.598 .003
1746.000 18 97.000
2871.000 19
2737.800 1 2737.800 27.543 .000
1789.200 18 99.400
4527.000 19

Between Groups
Within Groups
Total
Between Groups
Within Groups
Total
Between Groups
Within Groups
Total

SCALE1

SCALE2

SCALE3

Sum of
Squares df Mean Square F Sig.

 

04.
99745

452
1 =

+
=Scaleη    39.

17461125
11252

2 =
+

=Scaleη   60.
2.17898.2737

8.27372
3 =

+
=Scaleη  

0167.0
3
05.

==critp  

 
• There is no effect of training on performance on subscale 1, F(1,18) = 

0.81, ns. 04.,,82.0)18,1( 2 == ηnsF  
• For subscales 2 and 3, training improves performance, 

39.,05.,60.11)18,1( 2 =<= ηpF , and 60.,05.,54.27)18,1( 2 =<= ηpF , 
respectively.  

 
o These contrasts could also be run as t-tests. 

T-TEST  GROUPS = cond(1 2) 
  /VARIABLES = scale1 scale2 scale3. 
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• To conduct simple effects (of the within-subjects factor at each level of the 

between-subjects factor), we can run within-subject analyses at each level of 
training. 
o These are omnibus within-subjects tests.  An epsilon adjustment is 

required for each test. 
o The variance/covariance matrices for training and no training conditions 

are equal.  Thus, we would like to pool information from both between-
subject conditions to calculate the error term (in order to increase power 
and the precisions of the estimate of the error term). 

 
 Subscale of test   
Training Subscale 1 Subscale 2 Subscale 3  
   No 

11.X = 46.2 21.X = 51.0 31.X = 52.8  

   Yes 
12.X = 49.2 22.X = 66.0 32.X = 76.2  

     
 

 
o If we analyze the training and no training groups separately, the error 

terms will only contain information from the training and no training 
groups, respectively (Note that this procedure would be acceptable if the 
variances between the training and no training groups were unequal) 
• Thus, unless the between-subjects variances are unequal, we should 

avoid doing the following: 
Temporary. 
Select if cond = 1. 
GLM  scale1 scale2 scale3  
  /WSFACTOR = scale 3. 

Temporary. 
Select if cond = 2. 
GLM  scale1 scale2 scale3  
  /WSFACTOR = scale 3. 

 
Each of these tests will only have n-1 degrees of freedom (assuming 
equal n per group), rather than N-a.  Thus, with this approach, we lose 
power and accuracy (assuming homogeneity of variance) 
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• However, we can select each group separately to obtain the sum of 

squares for the simple effects tests.  We can then manually compute 
tests for the effect of time for training and no training groups 
separately using the omnibus within-subjects error term: 

 

TrainingSubjectScale

OnlyTrainingNoScale

MS
MS

baNaF
/*

)  ( )]1)((ˆ),1(ˆ[ =−−− εε  

 
From the full within-subjects omnibus tests we can obtain the 
appropriate epsilon correction and error mean squares. 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.961 1.000 .500
Within Subjects Effect
scale

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

2899.200 2 1449.600 61.424 .000
2899.200 1.921 1508.872 61.424 .000
2899.200 2.000 1449.600 61.424 .000
2899.200 1.000 2899.200 61.424 .000
1051.200 2 525.600 22.271 .000
1051.200 1.921 547.091 22.271 .000
1051.200 2.000 525.600 22.271 .000
1051.200 1.000 1051.200 22.271 .000
849.600 36 23.600
849.600 34.586 24.565
849.600 36.000 23.600
849.600 18.000 47.200

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
scale

scale * cond

Error(scale)

Type III Sum
of Squares df Mean Square F Sig.

 
 

 

60.23
)]36*725(.),2*725[(. )  ( OnlyTrainingNoScaleMS

F =  

 
From the within-subjects omnibus tests at each level of the between 
subjects factor, we can obtain the value of epsilon, and the appropriate 
numerator mean squares. 

SORT CASES BY cond . 
SPLIT FILE  LAYERED BY cond . 
GLM  scale1 scale2 scale3 
  /WSFACTOR = scale 3. 
SPLIT FILE OFF. 
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Mauchly's Test of Sphericity

Measure: MEASURE_1

.864 1.000 .500

.776 .907 .500

Within Subjects Effect
scale
scale

cond
1.00
2.00

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

232.800 2 116.400 5.046 .018
232.800 1.727 134.792 5.046 .024
415.200 18 23.067
415.200 15.544 26.711

3717.600 2 1858.800 77.022 .000
3717.600 1.551 2396.735 77.022 .000
434.400 18 24.133
434.400 13.960 31.117

Sphericity Assumed
Greenhouse-Geisser
Sphericity Assumed
Greenhouse-Geisser
Sphericity Assumed
Greenhouse-Geisser
Sphericity Assumed
Greenhouse-Geisser

Source
scale

Error(scale)

scale

Error(scale)

cond
1.00

2.00

Type III Sum
of Squares df Mean Square F Sig.

 
 

 
 

400.116)  ( =OnlyTrainingNoScaleMS  
 

22.
6.8498.232

8.2322
)( =

+
=OnlyNoTrainingScaleη  

 

93.4
60.23
40.116]36,2[ ==F  

22.,01.0,93.4)36,2( 2 === ηpF  
 

80.1858) ( =OnlyTrainingScaleMS  
 

81.
6.8496.3717

6.37172
)( =

+
=lyTrainingOnScaleη  

 

86.78
60.23

8.1858]36,2[ ==F  

81.,01.,86.78)36,2( 2 =<= ηpF

 
• We are conducting two simple effects tests, and thus, we need to 

apply a p-value correction. 
025.0

2
05.

==critp  

o Conclusions: 
• For the no training condition, we find a significant difference  in 

performance over the three subscales, 22.,05.,93.4)36,2( 2 =<= ηpF . 
• For the training condition, we find a significant difference in 

performance over the three subscales, 81.,05.,86.78)36,2( 2 =<= ηpF .   
• Further pairwise tests must be conducted to understand these 

differences. 
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7. Final thoughts 
 

• The approach to repeated measures that we have studied is known as the 
univariate approach.  We assumed that all the differences of all the repeated 
measures were drawn from the same population. This assumption led us to a 
restrictive assumption on the covariance matrix and correlation matrix 

 





















2

2

2

2

σσσσ
σσσσ
σσσσ
σσσσ

ccc

ccc

ccc

ccc

  



















1
1

1
1

ρρρ
ρρρ
ρρρ
ρρρ

 

 
 

• Other approaches are possible, and if omnibus tests are called for are usually 
preferable.  One approach is to assume that each difference of variables is 
drawn from a different population.  This approach is known as the 
multivariate approach and leads to no assumptions on the 
covariance/correlation matrix. 
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• More recently, people have begun trying to model the structure of the 
variance covariance matrix: 
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o This approach is complicated, but it has much appeal if you  

• Have missing observations 
• Have unequal spacing in your repeated measurements 
• Are interested in the variance components 
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8. An example: Changes in bone calcium over time (2 * 4) 
 

• A diet/exercise treatment was developed to stop bone calcium loss in 
women. A sample of older women was obtained and the women were placed 
in either a control group (n = 15) or a treatment group (n = 16).  Bone calcium 
levels were obtained by photon absorptiometry readings of the dominant 
ulna bone at the time of enrollment in the study and at one year, two year, 
and three year follow-ups.  Investigators were interested in: 
o Whether the treatment group had less bone loss than the control group. 
o Whether the rate of bone loss differs between the treatment group and the 

control group. 
 

• The following data were obtained: 
 

Control Group  Treatment Group 
Baseline 1 Year 2 Year 3Year  Baseline 1 Year 2 Year 3Year 

87.3 86.9 86.7 75.5  83.3 85.5 86.2 81.2 
59.0 60.2 60.0 53.6  65.3 66.9 67.0 60.6 
76.7 76.5 75.7 69.5  81.2 79.5 84.5 75.2 
70.6 76.1 72.1 65.3  75.4 76.7 74.3 66.7 
54.9 55.1 57.2 49.0  55.3 58.3 59.1 54.2 
78.2 75.3 69.1 67.6  70.3 72.3 70.6 68.6 
73.7 70.8 71.8 74.6  76.5 79.9 80.4 71.6 
61.8 68.7 68.2 57.4  66.0 70.9 70.3 64.1 
85.3 84.4 79.2 67.0  76.7 79.0 76.9 70.3 
82.3 86.9 79.4 77.4  77.2 74.0 77.8 67.9 
68.6 65.4 72.3 60.8  67.3 70.7 68.9 65.9 
67.8 69.2 66.3 57.9  50.3 51.4 53.6 48.0 
66.2 67.0 67 56.2  57.3 57.0 57.5 51.5 
81.0 82.3 86.8 73.9  74.3 77.7 72.6 68.0 
72.3 74.6 75.3 66.1  74.0 74.7 74.5 65.7 

     57.3 56.0 64.7 53.0 
 
 

 Time  
Group Baseline Year 1 Year 2 Year 3  
  Control 72.38 73.29 72.47 64.79 70.73 
  Treatment 69.23 70.66 71.18 64.53 68.90 
 70.75 71.93 71.81 64.65  
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• First, let’s consider how we might test the hypotheses. 
 

o Question #1: Does the treatment group have less bone loss than the 
control group? 

 
 
 
 
 
 
 
 

o Question #2: Is the rate of bone loss different between the treatment 
group and the control group? 
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• Next, let’s test all the assumptions for this model. 

o Normality 
EXAMINE VARIABLES= baseline year1 year2 year3 BY group 
  /PLOT BOXPLOT NPPLOT SPREADLEVEL 
  /COMPARE VARIABLES. 

2.001.00

group

90

80

70

60

50

year3
year2
year1
baseline

 

Tests of Normality

.979 15 .961

.935 16 .289

.964 15 .766

.918 16 .155

.968 15 .831

.976 16 .919

.957 15 .646

.952 16 .515

group
Control
Treatment
Control
Treatment
Control
Treatment
Control
Treatment

baseline

year1

year2

year3

Statistic df Sig.
Shapiro-Wilk

 
 
 

• If we want to perform tests on the marginal group means, then we 
should check normality on the marginal group means. 
(Would tests on the marginal group means make sense?) 
 
COMPUTE average = SUM(baseline,year1,year2,year3)/4. 
EXAMINE VARIABLES= average  BY group 
  /PLOT BOXPLOT  SPREADLEVEL. 
 

TreatmentControl

group

90.00

80.00

70.00

60.00

50.00

av
er

ag
e

Tests of Normality

.968 15 .827

.950 16 .497

group
Control
Treatment

average
Statistic df Sig.

Shapiro-Wilk

 
 
 

• These data satisfy the normality assumption 
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o Homogeneity of variances / Sphericity 

 
• Homogeneity of the variance covariance matrices 

GLM  baseline year1 year2 year3 BY group 
  /WSFACTOR = time 4 Polynomial 
  /PRINT = DESCRIPTIVE HOMOGENEITY. 

 
Box's Test of Equality of Covariance Matrices

17.926
1.522

10
3977.868

.125

Box's M
F
df1
df2
Sig.

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

 

Levene's Test of Equality of Error Variances

.076 1 29 .784

.042 1 29 .839

.163 1 29 .689

.013 1 29 .911

baseline
year1
year2
year3

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.  

 
 

We have no evidence that the variance/covariance matrices are different 
across the two treatment groups.  This assumption is satisfied.  We may 
average the data from the groups together to test within subject effects 
(marginal time means and time by group interaction effects) 

 
 

• Homogeneity of variances for between group tests.   
Necessary for equal variance tests of all between group effects. 

 
 
GLM  baseline year1 year2 year3 BY group 
  /WSFACTOR = time 4 Polynomial 
  /PRINT = DESCRIPTIVE HOMOGENEITY. 

Levene's Test of Equality of Error Variances

.076 1 29 .784

.042 1 29 .839

.163 1 29 .689

.013 1 29 .911

baseline
year1
year2
year3

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.  

 
 
COMPUTE average = SUM (baseline,year1,year2,year3)/4. 
EXAMINE VARIABLES= average  BY group 
  /PLOT BOXPLOT  SPREADLEVEL. 

Test of Homogeneity of Variance

.104 1 29 .749

.066 1 29 .799

.066 1 28.388 .799

.108 1 29 .745

Based on Mean
Based on Median
Based on Median and
with adjusted df
Based on trimmed mean

average

Levene
Statistic df1 df2 Sig.

 
We do not have any evidence that the variances are different across the two 
groups.  We may conduct all between group tests under the assumption that 
the variances between groups are equal. 
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• Overall sphericity (averaging over the between subjects factor).  

Necessary for omnibus tests on the marginal time means and for 
omnibus time*group interaction tests (Are these tests meaningful?) 

 
GLM  baseline year1 year2 year3 BY group 
  /WSFACTOR = time 4 Polynomial 
  /PRINT = DESCRIPTIVE HOMOGENEITY. 

Measure: MEASURE_1

.911 1.000 .333
Within Subjects Effect
time

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

The data are spherical.  We can conduct omnibus tests for the within-subject 
effect (time) or for between/within subject interactions (group*time). 

 
 
 

• Multi-sample sphericity: sphericity within each group/treatment level 
(the between subjects factor).  Necessary for simple effect omnibus 
tests for the effect of time for the treatment group and the effect of 
time for the control group (Are these tests meaningful?) 

 
SORT CASES BY group . 
SPLIT FILE LAYERED BY group . 
GLM  baseline year1 year2 year3  
  /WSFACTOR = time 4 Polynomial 
  /PRINT = DESCRIPTIVE HOMOGENEITY. 
SPLIT FILE OFF. 

 
Measure: MEASURE_1

.879 1.000 .333

.779 .932 .333

Within Subjects Effect
time
time

group
Control
Treatment

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 
 

Within each treatment level, the data are not spherical, but the violation is 
fixable.  We can conduct epsilon-adjusted simple effect omnibus tests for the 
within-subject effect (time) at each level of the between-subjects factor 
(group). 
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 Time  
Group Baseline Year 1 Year 2 Year 3  
  Control 72.38 73.29 72.47 64.79 70.73 
  Treatment 69.23 70.66 71.18 64.53 68.90 
 70.75 71.93 71.81 64.65  

 
o Conclusions from tests of assumptions: 

 
Tests of between subjects effects 
• We may perform an omnibus test (and/or standard contrasts) on the 

marginal between-subjects (group) means. 
• We may perform standard simple-effects tests (in this case, contrasts) 

for the effect of the between-subjects factor (group) at each level of 
the within-subjects factor (time). 

 
Tests of within subjects effects 
• We may perform standard omnibus tests on the marginal within-

subjects (time) effect and on the between/within (group by time) 
interaction.   

• Within each group level, the data are not spherical, but the violation is 
fixable.  We can conduct epsilon-adjusted simple effect omnibus tests 
for the within-subject effect (time) at each level of the between-
subjects factor (group). 

 
• Question#1: Does the treatment group have less bone loss than the control 

group? 
o We can perform tests of the effect of group at each year.  The hypotheses 

about the rate of bone loss are more important – those will be our planned 
tests.  Thus, we will consider these four pairwise comparisons to be post-
hoc tests. 
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o The easiest way to run these tests is as 4 separate independent samples t-
tests.  
T-TEST GROUPS = group(1 2) 
  /VARIABLES = baseline year1 year2 year3. 
 

Group Statistics

15 72.3800 9.59786 2.47816
16 69.2313 9.89186 2.47297
15 73.2933 9.43803 2.43689
16 70.6563 10.02975 2.50744
15 72.4733 8.47884 2.18923
16 71.1813 9.29245 2.32311
15 64.7867 8.68586 2.24268
16 64.5313 9.02306 2.25577

group
Control
Treatment
Control
Treatment
Control
Treatment
Control
Treatment

baseline

year1

year2

year3

N Mean Std. Deviation
Std. Error

Mean

 
Independent Samples Test

.898 29 .376 3.14875 3.50450 -4.01876 10.31626

.753 29 .458 2.63708 3.50362 -4.52862 9.80278

.404 29 .690 1.29208 3.20186 -5.25645 7.84062

.080 29 .937 .25542 3.18494 -6.25851 6.76934

baseline
year1
year2
year3

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 

33.
29
898.0*2

=baselined   29.
29
753.0*2

1 =Yeard   15.
29
404.0*2

2 ==Yeard   03.
29
080.0*2

3 =Yeard  

 
We should apply a Tukey HSD post-hoc correction to these tests.  Because 
none of these tests are significant, it is not necessary to do the calculations, 
we can report the tests are non-significant with the Tukey HSD procedure.  
However, for completeness, here is the correction: 

26.3
2

613.4
2

)29,8,1(
==

−
=

αqtcrit  

 
Applying a Tukey HSD correction to these pairwise tests, we find: 

• No evidence that the treatment and the control group differed in their 
calcium bone density at baseline, 33.,,90.0)29( == dnst . 

• No evidence that the treatment and the control group differed in their 
calcium bone density at the one year follow-up, 29.,,75.0)29( == dnst . 

• No evidence that the treatment and the control group differed in their 
calcium bone density at the two year follow-up, 15.,,40.0)29( == dnst . 

• No evidence that the treatment and the control group differed in their 
calcium bone density at the two year follow-up, 03.,,08.0)29( == dnst . 
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• Question #2: Is the rate of bone loss different between the treatment group 
and the control group? 
o We can test for: 

• (Downward) polynomial trends in the control condition, 
• (Downward) polynomial trends in the treatment condition,  
• And for differences in the polynomial trends between the groups. 
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o Although there are many tests here (nine), they are the key tests of the 
hypotheses and we have a strong theory supporting these hypotheses.  
Thus, were these my own data, I would not apply a p-value correction to 
them. 

o If you were to apply a correction: 
• These are complex contrasts, so you could use a Scheffé correction: 

802.8934.2*3)29,3,05.(*3 ===αF  
• Alternatively, you will be conducting 9 planned contrasts, so a 

Bonferroni correction could also be appropriate: 
0056.

9
05.

==critp  

• You can select whichever of these two methods is less conservative. 
In this case, the Bonferroni correction is less conservative by a hair, so 
were we to apply a correct we should use the Bonferroni correction. 
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• Question #2 A and B: Are there polynomial trends in the control condition?  
Are there polynomial trends in the treatment condition? 
o These are contrast tests within one level of the between-subjects variable. 
o Method #1: Select the level of the between-subjects variable of interest 

and conduct polynomial trends on that level. 
SORT CASES BY group . 
SPLIT FILE LAYERED BY group . 
GLM  baseline year1 year2 year3  
  /WSFACTOR = time 4 Polynomial. 
SPLIT FILE OFF. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

417.720 1 417.720 40.180 .000
277.350 1 277.350 32.683 .000

19.763 1 19.763 3.125 .099
145.547 14 10.396
118.805 14 8.486

88.540 14 6.324
147.425 1 147.425 38.266 .000
260.823 1 260.823 241.391 .000

31.500 1 31.500 6.050 .027
57.790 15 3.853
16.208 15 1.081
78.106 15 5.207

time
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
time

Error(time)

time

Error(time)

group
Control

Treatment

Type III Sum
of Squares df Mean Square F Sig.

 

ηLinear−Control
2 =

417.72
417.72 +145.547

= .74   ηQuadratic−Control
2 =

277.35
277.35 +118.805

= .70 

ˆ η Cubic−Control
2 =

19.763
19.763 + 88.50

= .18  

 

72.
790.57425.147

425.1472 =
+

=−TreatmentLinearη   94.
208.16823.260

823.2602 =
+

=−TreatmentQuadraticη  

ˆ η Cubic−Treatment
2 =

31.5
31.5 + 78.106

= .29 

 
FLinear−Control (1,14) = 40.18, p < .01,η2 = .74  
FQuadratic−Control (1,14) = 32.68, p < .01,η2 = .70 
FCubic−Control (1,14) = 3.13, p = .10,η2 = .18 
 

FLinear−Treatment (1,15) = 38.27, p < .01,η2 = .72 
FQuadratic−Treatment (1,15) = 241.39, p < .01,η2 = .94  
FCubic−Treatment (1,15) = 6.50, p = .03,η2 = .29  
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o Advantages of method #1 

• It is easy to run 
o Disadvantages of method #1 

• Each test has fewer than (N-a) degrees of freedom.  If the variances 
between groups are homogeneous, then we are (voluntarily) 
sacrificing accuracy and power. 

 
 

o Method #2: Compute the contrast of interest.  Trick SPSS into testing it 
within each group separately using an error term with information from 
all between-subjects groups.  (This method is only appropriate if you 
have equal variances between groups). 

compute linear = -3*baseline + -1*year1 + 1*year2 + 3*year3.  
compute quad = 1*baseline + -1*year1 + -1*year2 + 1*year3.  
compute cubic = -1*baseline + 3*year1 + -3*year2 + 1*year3.  
 
ONEWAY  linear quad cubic BY group 
  /CONTRAST= 1 0 
  /CONTRAST= 0 1 
  /STATISTICS DESCRIPTIVES HOMOGENEITY. 

 
 

• What is being tested by the contrast commands? 
 

3:2:1::: *3*1*1*3 YearControlYearControlYearControlBaselineControlControlLinear µµµµψ ++−+−=  

3:2:1::: *3*1*1*3 YearTreatmentYearTreatmentYearTreatmentBaselineTreatmentTreatmentLinear µµµµψ ++−+−=  
 

Contrast #1 
0*0*1: ::0 =+ TreatmentLinearControlLinearH ψψ  

0: :0 =ControlLinearH ψ  
H0 : −3* µControl:Baseline + −1* µControl:Year1 +1* µControl:Year2 + 3* µControl :Year3 = 0 

 
Contrast #2 

0*1*0: ::0 =+ TreatmentLinearControlLinearH ψψ  
0: :0 =TreatmentLinearH ψ  

0*3*1*1*3: 3:2:1::0 =++−+− YearTreatmentYearTreatmentYearTreatmentBaselineTreatmentH µµµµ  
 
 

• By using the contrast subcommand, we obtain an error term that uses 
information from both groups (and has N-a dfs). 
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• Note that the assume equal variances tests have N-a dfs and that the 
does not assume equal variances tests are identical to Method 1 where 
we ran the contrast only on the (between-subjects) group of interest. 

Contrast Tests

-23.6000a 3.05758 -7.719 29 .000
-13.5750a 2.96049 -4.585 29 .000
-23.6000a 3.72312 -6.339 14.000 .000
-13.5750a 2.19449 -6.186 15.000 .000
-8.6000a 1.11422 -7.718 29 .000
-8.0750a 1.07884 -7.485 29 .000
-8.6000a 1.50431 -5.717 14.000 .000
-8.0750a .51974 -15.537 15.000 .000
-5.1333a 2.76800 -1.855 29 .074
-6.2750a 2.68011 -2.341 29 .026
-5.1333a 2.90385 -1.768 14.000 .099
-6.2750a 2.55123 -2.460 15.000 .027

Contrast
1
2
1
2
1
2
1
2
1
2
1
2

Assume equal variances

Does not assume equal variances

Assume equal variances

Does not assume equal variances

Assume equal variances

Does not assume equal variances

linear

quad

cubic

Value of
Contrast Std. Error t df

Sig.
(2-tailed)

The sum of the contrast coefficients is not zero.a. 
 

r =
tContrast

2

tContrast
2 + dfcontrast

 

 
• Assume Equal Variance Tests 

N-a degrees of freedom 
 
 

tLinear−Control (29) = −7.72, p < .01,r = .82  
tQuadratic−Control (29) = −7.72, p < .01,r = .82  
tCubic−Control (29) = −1.86, p = .07,r = .33 
 
tLinear−Treatment (29) = −4.59, p < .01,r = .65  
tQuadratic−Treatment (29) = −7.49, p < .01,r = .81 
tCubic−Treatment (29) = −2.34, p = .03,r = .40 

• Does Not Assume Equal Variance Tests 
Matches Method #1 output 
nj-1 degrees of freedom 

 
tLinear−Control (14) = −6.34, p < .01,r = .86  
tQuadratic−Control (14) = −5.72, p < .01,r = .84  
tCubic−Control (14) = −1.77, p = .10,r = .42 
 
tLinear−Treatment (15) = −6.19, p < .01,r = .85  
tQuadratic−Treatment (15) = −15.54, p < .01,r = .97 
tCubic−Treatment (15) = −2.46, p = .03,r = .53 

 
• Which method is right? It depends! 

If the variances between groups are equal, then we should pool the 
error term to include information from both groups.  This 
procedure results in more accurate error estimates and tests with 
greater power. 

If the variances between groups are unequal, then we should not pool 
the error term and we should only use information from the group 
of interest to calculate the error term. 

 
o Advantages of method #2 

• It gives us both equal variance and unequal variance output 
o Disadvantages of method #2 

• More time consuming to run than method #1 
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• Question #2 C: Are there differences in the polynomial trends between the 
groups? 
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Linear: Treatment 

 Time 
Group Baseline Year 

1 
Year 
2 

Year 
3 

 Control     
 Treatment -3 -1 1 3 
     

 

Linear: Control 
 Time 
Group Baseline Year 

1 
Year 
2 

Year 
3 

 Control -3 -1 1 3 
 Treatment     
     

 
Linear: Treatment – Linear: Control 

 Time 
Group Baseline Year 1 Year 2 Year 3 
 Control 3 1 -1 -3 
 Treatment -3 -1 1 3 
     

 
 

ψLinear:Treatment = −3* µTreatment:Baseline + −1* µTreatment:Year1 +1* µTreatment:Year2 + 3* µTreatment:Year3  
ψLinear−Control = −3* µControl:Baseline + −1* µControl :Year1 + 1* µControl:Year2 + 3* µControl:Year3  

 
 
ψLinear:Treatment−Control =ψLinear:Treatment −ψLinear:Control  
 
       = −3* µTreatment:Baseline + −1* µTreatment:Year1 +1* µTreatment:Year2 + 3* µTreatment:Year3  

         −1(−3* µControl:Baseline + −1* µControl :Year1 +1* µControl:Year2 + 3* µControl:Year3) 
 

       = −3* µTreatment:Baseline + −1* µTreatment:Year1 +1* µTreatment:Year2 + 3* µTreatment:Year3  
          3* µControl:Baseline +1* µControl:Year1 −1* µControl :Year2 − 3* µControl :Year3 

 
o We can repeat this procedure for differences in the quadratic and cubic 

trends 
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o Method #1: Examine the interaction between the polynomial trends on 
time (the repeated measures factor) and condition. 

GLM  baseline year1 year2 year3 BY group 
  /WSFACTOR = time 4 Polynomial. 
 

 Time * Group (Linear) 
 Time  
Group Baseline Year 1 Year 2 Year 3  
  Control     -1 
  Treatment     1 
 -3 -1 1 3  

 
 Time  
Group Baseline Year 1 Year 2 Year 3  
  Control 3 1 -1 -3  
  Treatment -3 -1 1 3  
      

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

534.960 1 534.960 76.296 .000
538.172 1 538.172 115.597 .000

50.381 1 50.381 8.767 .006
38.903 1 38.903 5.548 .025

.533 1 .533 .115 .737

.505 1 .505 .088 .769
203.337 29 7.012
135.013 29 4.656
166.645 29 5.746

time
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
time

time * group

Error(time)

Type III Sum
of Squares df Mean Square F Sig.

 

16.
337.203903.38

903.382 =
+

=nLinearDiffernceIη   01.
013.135533.0

533.02 <
+

=nQuadraticDiffernceIη  

01.
645.166505.0

505.02 <
+

=nCubicDiffernceIη  

 
 

Difference in linear trends: 16.,03.,55.5)29,1( 2 === ηpF  
Difference in quadratic trends: 01.,74.,12.0)29,1( 2 <== ηpF  
Difference in cubic trends: 01.,77.,09.0)29,1( 2 <== ηpF  

 
 

o Advantages of method #1 
• Easy to run 

o Disadvantages of method #1 
• Only works (provides a 1 df contrast test of difference between 

polynomial trends) when a=2. 
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o Method #2: Compute the contrast of interest and (manually) ask for a 

comparison between the treatment group and the control group. 
ONEWAY  linear quad cubic BY group 
  /CONTRAST= -1 1. 

 
• What is being tested by the contrast command? 

 
3:2:1::: *3*1*1*3 YearControlYearControlYearControlBaselineControlControlLinear µµµµψ ++−+−=  

3:2:1::: *3*1*1*3 YearTreatmentYearTreatmentYearTreatmentBaselineTreatmentTreatmentLinear µµµµψ ++−+−=  
 
 

0*1*1: ::0 =+− TreatmentLinearControlLinearH ψψ  
 

)*3*1*1*3(*1: 3:2:1::0 YearControlYearControlYearControlBaselineControlH µµµµ ++−+−−  
0)*3*1*1*3(*1 3:2:1:: =++−+−+ YearTreatmentYearTreatmentYearTreatmentBaselineTreatment µµµµ  

 
3:2:1::0 *3*1*1*3: YearControlYearControlYearControlBaselineControlH µµµµ −+−++  

  0*3*1*1*3 3:2:1:: =++−+−+ YearTreatmentYearTreatmentYearTreatmentBaselineTreatment µµµµ  
 

 Time  
Group Baseline Year 1 Year 2 Year 3  
  Control 3 1 -1 -3  
  Treatment -3 -1 1 3  
      

 
• Thus, the contrast command tests for a difference in linear, quadratic, 

and cubic trends between the control and treatment groups (exactly 
the same as Method #1). 

 
Contrast Tests

10.0250 4.25597 2.356 29 .025
.5250 1.55093 .339 29 .737

-1.1417 3.85290 -.296 29 .769

Contrast
1
1
1

linear
quad
cubic

Value of
Contrast Std. Error t df Sig. (2-tailed)

 

r =
tContrast

2

tContrast
2 + dfcontrast

 

 

40.
29356.2

356.2
2

2

=
+

=LinearDiffr  06.
29339.0

339.0
2

2

=
+

=QuadDiffr   05.
29296.0

296.0
2

2

=
+

=CubicDiffr  
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Difference in linear trends: 40.,03.,36.2)29( === rpt  
Difference in quadratic trends: 06.,74.,34.0)29( === rpt  
Difference in cubic trends: 05.,77.,30.0)29( === rpt  

 
o Advantages of method #2 

• Can be used to test for differences in trends when there are more than 
2 between-subject groups in the factor (a>2). 

• Also provides output to test the contrasts when the variance between 
groups is not homogeneous 

o Disadvantages of method #2 
• More time consuming to run than method #1. 

 
• Conclusions 

o Question #2: Is the rate of calcium loss different between the treatment 
group and the control group? 
• Yes.  There are significant linear, quadratic, and (significant or 

marginally significant) cubic trends in calcium bone loss for both the 
treatment and control group.  These trends indicate that over time, 
participants in both groups are losing calcium in their bones.  
However, the linear rate of calcium bone loss is stronger in the 
control group than in the treatment group.  Thus, there is some 
evidence that the treatment is associated with less bone loss. 

 
o Question #1: Does the treatment group have less calcium loss than the 

control group? 
• No.  At the same time, there were no differences in bone calcium 

levels at any of the follow-up assessments. 
 

• This example is an illustration of growth curve analysis.  In growth curve 
analysis, the rate/pattern of change over time is modeled and usually 
compared between 2 or more groups. 
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Appendix 
Two Additional Between/Within Examples 

 
9. : Effects of brain damage on memory (3 * 3) 

• A neuropsychologist is exploring short-term memory deficits in brain-
damaged individuals.  Patients were classified as either having left-
hemisphere damage, right-hemisphere damage, or no damage (control).   

Participants viewed stimuli consisting of string of all digits, all letter, 
and mixed letters and digits.  The longest string that each participant could 
remember in each condition is listed below: 

 
 Stimuli 
Damage Digits Letters Mixed 
  Left Brain 6 

8 
7 

8 
6 
7 

5 
7 
7 

5 
4 
6 

6 
5 
4 

8 
7 
5 

  Right Brain 9 
8 
9 

7 
7 
9 

8 
8 
7 

8 
6 
8 

6 
7 
8 

8 
7 
7 

  Control 8 
10 
9 

9 
8 

10 

8 
9 

10 

7 
8 

10 

7 
9 
8 

9 
8 
9 

 
• The researcher would like to know: 

o Does recall vary by type of stimuli? 
o Does this difference vary by type of brain damage? 

 
o Does recall vary by type of brain damage? 
o Does this difference vary by type stimuli? 

 

5

6

7

8
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digit letter mixed

Re
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Control

 

5
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• Tests of assumptions 

 
o Normality: Cell means 

EXAMINE VARIABLES=digit letter mixed BY damage 
  /PLOT BOXPLOT STEMLEAF NPPLOT 
  /COMPARE GROUP. 
 

Descriptives

.000 .845
-1.875 1.741

-.456 .845
-2.390 1.741

.000 .845
-1.875 1.741

-.075 .845
-1.550 1.741

-.857 .845
-.300 1.741
-.075 .845

-1.550 1.741
.418 .845

-.859 1.741
.000 .845

-.248 1.741
-.857 .845
-.300 1.741

Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis

damage
Left Brain

Right Brain

Control

Left Brain

Right Brain

Control

Left Brain

Right Brain

Control

digit

letter

mixed

Statistic Std. Error

Tests of Normality

.853 6 .167

.775 6 .035

.853 6 .167

.907 6 .415

.822 6 .091

.907 6 .415

.958 6 .804

.960 6 .820

.822 6 .091

DAMAGE
Left Brain
Right Brain
Control
Left Brain
Right Brain
Control
Left Brain
Right Brain
Control

DIGIT

LETTER

MIXED

Statistic df Sig.
Shapiro-Wilk

 
 

ControlRight BrainLeft Brain

damage

10

9

8

7

6

5

4

mixed
letter
digit
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o Normality: Marginal between-subjects means 

COMPUTE between = (digit + letter + mixed)/3. 
EXAMINE VARIABLES=between BY damage 
  /PLOT BOXPLOT  SPREADLEVEL. 

 

ControlRight BrainLeft Brain

damage

10.00

9.00

8.00

7.00

6.00

be
tw

ee
n

11

 

Tests of Normality

.863 6 .201

.873 6 .238

.950 6 .739

damage
Left Brain
Right Brain
Control

between
Statistic df Sig.

Shapiro-Wilk

 
Descriptives

.811 .845
-1.029 1.741
-1.153 .845
2.500 1.741
.000 .845

-1.875 1.741

Skewness
Kurtosis
Skewness
Kurtosis
Skewness
Kurtosis

damage
Left Brain

Right Brain

Control

between
Statistic Std. Error

 
• The data look relatively symmetrical 

 
o Homogeneity of variances / Sphericity 

• Homogeneity of variances for between group tests: 
 
GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3  
  /PRINT = DESC HOMO. 

Levene's Test of Equality of Error Variances

.250 2 15 .782
1.000 2 15 .391
1.250 2 15 .315

DIGIT
LETTER
MIXED

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

 
 

COMPUTE between = (digit + letter + mixed)/3. 
EXAMINE VARIABLES=between BY damage 
  /PLOT BOXPLOT  SPREADLEVEL. 
 

Test of Homogeneity of Variance

1.573 2 15 .240BETWEEN

Levene
Statistic df1 df2 Sig.

 
We do not have any evidence that the variances are different across the 
between-subjects groups.  This assumption is satisfied. 
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• Homogeneity of the variance covariance matrices 
GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3  
  /PRINT = DESC HOMO. 

 
Box's Test of Equality of Covariance Matrices

24.372
1.422

12
1090.385

.149

Box's M
F
df1
df2
Sig.

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

Levene's Test of Equality of Error Variances

.250 2 15 .782
1.000 2 15 .391
1.250 2 15 .315

DIGIT
LETTER
MIXED

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

 
 

We do not have any evidence that the variance/covariance matrices 
are different across the three groups.  This assumption is satisfied. 

 
 

• Overall sphericity (averaging over the between subjects factor): 
GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3  
  /PRINT = HOMOGENIETY. 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.689 .837 .500
Within Subjects Effect
RECALL

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

The data are not spherical and the violation is severe.  We cannot conduct 
omnibus tests for the within-subject effect (recall) or for between/within 
subject interactions (recall*stimuli). 
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• Multi-Sample Sphericity: Sphericity at each level of the between 

subjects factor: 
SORT CASES BY damage . 
SPLIT FILE LAYERED BY damage . 
GLM digit letter mixed 
  /WSFACTOR = recall 3.  
SPLIT FILE OFF. 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.545 .581 .500

.937 1.000 .500

.571 .630 .500

Within Subjects Effect
recall
recall
recall

damage
Left Brain
Right Brain
Control

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

The data are only spherical for patients with right brain damage.  For the 
other two groups, the data are not spherical and the violation is severe and 
unfixable.  If we want to use the same methods to test effects at each level, 
then we cannot conduct simple effect omnibus tests for the within-subject 
effect (recall) within each level of the between-subjects factor (stimuli). 

 
 

o Conclusions from tests of assumptions: 
• We may perform an omnibus test and/or standard contrasts on the 

marginal between-subjects (damage) means. 
• We may not perform any omnibus tests involving within-subjects 

effects.  Tests on the marginal within-subjects (stimuli) means or on 
the between/within interaction (damage by stimuli) must use a 
contrast-specific error term. 

 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  
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• Hypothesis testing: 
o The researcher is basically asking for all possible tests of interest to be 

conducted.  We will consider all tests to be exploratory (post-hoc). 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  

 
o Does recall vary by type of stimuli? 

• Main effect for stimuli (Within subject effect) 
We cannot conduct a standard omnibus test 
We will conduct pairwise tests on marginal (within-subject) stimuli 
means. 

 
 

o Does this difference vary by type of brain damage? 
• Interaction between damage and stimuli (between by within effect) 

We cannot conduct a standard interaction omnibus test 
We will conduct pairwise tests on the effect of stimuli within each 

level of brain damage. 
 
 

o Does recall vary by type of brain damage? 
• Main effect for brain damage (between subject effect) 

We can conduct a standard omnibus test 
We will follow this test with pairwise tests on marginal (between-

subject) brain damage means. 
 
 
o Does this difference vary by type of stimuli? 

• Interaction between damage and stimuli (between by within effect) 
We cannot conduct a standard omnibus interaction test 
We can examine the simple effect of brain damage within each 

level of stimuli and follow each test with pairwise comparisons 
to identify differences. 
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o Does recall vary by type of stimuli? 

We will conduct pairwise tests on marginal stimuli means. 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  

 
GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3 simple (1). 
GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3 simple (2). 

 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

12.500 1 12.500 10.714 .005
12.500 1 12.500 7.353 .016
17.500 15 1.167
25.500 15 1.700

recall
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

Source
recall

Error(recall)

Type III Sum
of Squares df Mean Square F Sig.

 
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.000 1 .000 .000 1.000
53.000 15 3.533

recall
Level 3 vs. Level 2
Level 3 vs. Level 2

Source
recall
Error(recall)

Type III Sum
of Squares df Mean Square F Sig.

 
 

42.
5.175.12

5.122
. =

+
=LettersDigitsVη   33.

5.255.12
5.122

. =
+

=MixedDigitsVη   0.
5350
02

. =
+

=MixedLettersVη  

 
 
 
 

 Tukey HSD critical value: ( ) ( ) 747.6
2
67.3

2
)15,3,05(. 22

===
qF crit  

 
Digits vs. Letters: 42.,05.,71.10)15,1( 2 =<= ηpF  
Digits vs. Mixed: 33.,05.,35.7)15,1( 2 =<= ηpF  
Letters vs. Mixed: 00.0,,00.0)15,1( 2 == ηnsF  
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o Does this difference in recall of types of stimuli vary by type of brain 
damage?  
• We want to repeat the three contrasts we just ran, but we want to look 

within each level of brain damage (rather than averaging over the 
types of damage). 

 
Digits vs. Letters 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17  X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00  X = 8.67 X = 8.33 X = 8.67  
 X = 8.06  X = 7.22 X = 7.22  
 

To examine these differences at each level of brain damage, we can 
compute the difference of interest and use the ONEWAY command and the 
CONTRAST subcommand: 

Compute dig_let = digit - letter. 
ONEWAY dig_let by damage 
  /STAT = DESC 
  /CONT = 1 0 0  
  /CONT = 0 1 0 
  /CONT = 0 0 1. 

ANOVA

dig_let

3.000 2 1.500 1.286 .305
17.500 15 1.167
20.500 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
Contrast Tests

1.3333 .44096 3.024 15 .009
.8333 .44096 1.890 15 .078
.3333 .44096 .756 15 .461

Contrast
1
2
3

dig_let

Value of
Contrast Std. Error t df Sig. (2-tailed)

 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  tcrit =
q(.10 3,3,15)

2
=

3.973
2

= 2.809  
 

03.1
29.1
33.1

==LeftBraind   64.0
29.1
833.0

==RightBraind   26.0
29.1

3333.
==Controld  

 
 

Digits vs. Letters 
Left Brain: 03.1,10.,02.3)15( =<= dpt  
Right Brain: 64.0,,89.1)15( == dnst  
No Damage: 26.0,,76.0)15( == dnst  

 Digit-Letters 
Damage  
  Left Brain 1.33 
  Right Brain 0.84 
  Control 0.33 
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Digits vs. Mixed 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17  X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00  X = 8.67 X = 8.33 X = 8.67  
 X = 8.06  X = 7.22 X = 7.22  
 

Compute dig_mix = digit - mixed. 
ONEWAY dig_mix by damage 
  /STAT = DESC 
  /CONT = 1 0 0  
  /CONT = 0 1 0 
  /CONT = 0 0 1. 

ANOVA

dig_mix

1.000 2 .500 .294 .749
25.500 15 1.700
26.500 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
Contrast Tests

1.1667 .53229 2.192 15 .045
.6667 .53229 1.252 15 .230
.6667 .53229 1.252 15 .230

Contrast
1
2
3

dig_mix

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 
 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  tcrit =
q(.10 3,3,15)

2
=

3.973
2

= 2.809  

 

90.0
303.1
167.1

==LeftBraind   51.0
303.1
667.0

==RightBraind   52.0
303.1
667.

==Controld  

 
 
Digits vs. Mixed 

Left Brain: 90.,,19.2)15( == dnst  
Right Brain: 52.,,25.1)15( == dnst  
No Damage: 52.,,25.1)15( == dnst  

 

 Digit-Mixed 
Damage  
  Left Brain 1.167 
  Right Brain 0.667 
  Control 0.667 
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Letter vs. Mixed 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67  X = 5.83 X = 6.17  
  Right Brain X = 8.17  X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00  X = 8.67  X = 8.33 X = 8.67  
 X = 8.06  X = 7.22 X = 7.22  
 

Compute let_mix = letter - mixed. 
ONEWAY let_mix by damage 
  /STAT = DESC 
  /CONT = 1 0 0  
  /CONT = 0 1 0 
  /CONT = 0 0 1. 

ANOVA

let_mix

1.000 2 .500 .142 .869
53.000 15 3.533
54.000 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
Contrast Tests

-.1667 .76739 -.217 15 .831
-.1667 .76739 -.217 15 .831
.3333 .76739 .434 15 .670

Contrast
1
2
3

let_mix

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  tcrit =
q(.10 3,3,15)

2
=

3.973
2

= 2.809  

 

09.0
880.1
1667.0

==LeftBraind   09.0
880.1
1667.0

==RightBraind   18.0
880.1
333.

==Controld  

 
Letters vs. Mixed 

Left Brain: 09.,,22.0)15( =−= dnst  
Right Brain: 09.,,22.0)15( =−= dnst  
No Damage: 18,,43.0)15( == dnst  

 
Overall, the effects are relatively consistent within each level of brain 

damage, although there is some (marginal) evidence that the advantage of 
digits over letters is stronger in left-brain damaged individuals than in 
control or right-brain damaged participants.  

 

 Letter-Mixed 
Damage  
  Left Brain 0.167 
  Right Brain 0.167 
  Control 0.333 
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 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67  X = 5.83 X = 6.17  
  Right Brain X = 8.17  X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00  X = 8.67  X = 8.33 X = 8.67  
 X = 8.06 bc X = 7.22b X = 7.22c  

 
Note: Within each row, means with a common subscript are 
significantly different from each other. 

 

5

6

7

8

9

10

Left Brain Right Brain Control

R
ec

al
l digit

letter
mixed

 
 
 

o Does recall vary by type of brain damage? 
• Main effect for brain damage (between subject effect) 

We will follow-up this test with pairwise tests on marginal brain 
damage means. 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  
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GLM digit letter mixed BY damage 
  /WSFACTOR = recall 3 
  /POSTHOC = damage (TUKEY) 

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

3037.500 1 3037.500 2462.838 .000
57.000 2 28.500 23.108 .000
18.500 15 1.233

Source
Intercept
DAMAGE
Error

Type III Sum
of Squares df Mean Square F Sig.

 

75.
5.1857

572 =
+

=η  

 
There is a significant main effect for brain damage, 

76.,01.,10.23)15,2( 2 =<= ηpF .  Overall, recall varies by type of brain damage. 
 

Multiple Comparisons

Dependent Variable: BETWEEN
Tukey HSD

-1.5000* .37019 .003 -2.4615 -.5385
-2.5000* .37019 .000 -3.4615 -1.5385
1.5000* .37019 .003 .5385 2.4615

-1.0000* .37019 .041 -1.9615 -.0385
2.5000* .37019 .000 1.5385 3.4615
1.0000* .37019 .041 .0385 1.9615

(J) DAMAGE
Right Brain
Control
Left Brain
Control
Left Brain
Right Brain

(I) DAMAGE
Left Brain

Right Brain

Control

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .050 level.*. 
 

SPSS computes appropriate Tukey-HSD adjusted p-values. 
35.1

110.1
5.1

==LeftVRightd   25.2
110.1

5.2
==olLeftVContrd   9.0

110.1
1

==rolRightVContd  

 
Left-brain vs. right brain: 35.1,01.,05.4)15( =<= dpt  
Left-brain vs. control:  25.2,01.,75.6)15( =<= dpt  
Right-brain vs. control: 90.0,04.,70.2)15( === dpt  

 
• These exact same tests can be conducted by manually averaging over 

the within-subjects factor and conducting an ANOVA on this average 
variable. 
COMPUTE between = (digit + letter + mixed)/3. 
ONEWAY between by damage 
  /POSTHOC = TUKEY.  
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o Does this difference vary by type of stimuli? 

• We can examine the simple effect of brain damage within each level 
of stimuli and follow each test with pairwise comparisons to identify 
differences. 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  

 
• To conduct simple effects within each level of stimuli, we can select 

the appropriate level and run an omnibus test comparing the levels of 
damage.  (Note that we can select a level of stimuli because stimuli is 
a within-subjects factor.  For within subjects factors, we compute 
error estimates based only on information involved in the 
comparison).  

 
• Simple effect of damage for digits only: 

ONEWAY digit by damage 
  /STAT = DESC 
  /CONTRAST = -1 1 0 
  /CONTRAST = -1 0 1 
  /CONTRAST =  0 -1 1. 

ANOVA

DIGIT

12.111 2 6.056 7.078 .007
12.833 15 .856
24.944 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 

pcrit =
.05
3

= .0167   49.
833.12111.12

111.122 =
+

=η  

 
There is a significant simple effect for brain damage on recall of digits 
only, 49.,05.,08.7)15,2( 2 =<= ηpF .  Overall, recall of digits only varies by 
type of brain damage. 
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Contrast Tests

1.1667 .53403 2.185 15 .045
2.0000 .53403 3.745 15 .002
.8333 .53403 1.560 15 .139

Contrast
1
2
3

digit

Value of
Contrast Std. Error t df Sig. (2-tailed)

 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  

 

26.1
925.
1667.1

==LeftVRightd   16.2
9252.

2
==olLeftVContrd   90.0

9252.
8333.

==rolRightVContd  

 
 

Recall of digits: 
Left-brain vs. right brain: 26.1,,18.2)15( == dnst  
Left-brain vs. control:  16.2,05.,75.3)15( =<= dpt  
Right-brain vs. control: 90.0,,56.1)15( == dnst  

 
 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00 X = 5.67 X = 5.83 X = 6.17  
  Right Brain X = 8.17 X = 7.33 X = 7.50 X = 7.67 
  Control X = 9.00 X = 8.67 X = 8.33 X = 8.67  
 X = 8.06 X = 7.22 X = 7.22  

 

5

6

7

8

9

10

digit letter mixed

R
ec

al
l Left Brain

Right Brain
Control
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• Simple effect of damage for letters only: 
ONEWAY letter by damage 
  /STAT = DESC 
  /CONTRAST = -1 1 0 
  /CONTRAST = -1 0 1 
  /CONTRAST =  0 -1 1.  

ANOVA

LETTER

27.111 2 13.556 11.296 .001
18.000 15 1.200
45.111 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 

pcrit =
.05
3

= .0167   60.
000.18111.27

111.272 =
+

=η  

 
There is a significant simple effect for brain damage on recall of 
letters only, 60.,05.,30.11)15,2( 2 =<= ηpF .  Overall, recall of letters 
only varies by type of brain damage. 

 
Contrast Tests

1.6667 .63246 2.635 15 .019
3.0000 .63246 4.743 15 .000
1.3333 .63246 2.108 15 .052

Contrast
1
2
3

letter

Value of
Contrast Std. Error t df Sig. (2-tailed)

 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  

52.1
095.1

6667.1
==LeftVRightd   74.2

095.1
3

==olLeftVContrd   21.1
095.1
333.1

==rolRightVContd  

 
Recall of letters: 

Left-brain vs. right brain: 52.1,,64.2)15( == dnst  
Left-brain vs. control:  74.2,05.,74.4)15( =<= dpt  
Right-brain vs. control: 21.1,,10.2)15( == dnst  

5

6

7

8

9

10

digit letter mixed

R
ec

al
l Left Brain

Right Brain
Control
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• Simple effect of damage for mixed stimuli: 
ONEWAY mixed by damage 
  /STAT = DESC 
  /CONTRAST = -1 1 0 
  /CONTRAST = -1 0 1 
  /CONTRAST =  0 -1 1. 

ANOVA

mixed

19.444 2 9.722 7.415 .006
19.667 15 1.311
39.111 17

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 

pcrit =
.05
3

= .0167  50.
667.19444.19

444.192 =
+

=η  

 
There is a significant simple effect for brain damage on recall of letters and 
numbers, 50.,05.,41.7)15,2( 2 =<= ηpF .  Overall, recall of letters only varies 
by type of brain damage. 

Contrast Tests

1.6667 .66109 2.521 15 .024
2.5000 .66109 3.782 15 .002
.8333 .66109 1.261 15 .227

Contrast
1
2
3

mixed

Value of
Contrast Std. Error t df Sig. (2-tailed)

 

tcrit =
q(.05 3,3,15)

2
=

4.473
2

= 3.163  

46.1
145.1

6667.1
==LeftVRightd   18.2

145.1
5.2

==olLeftVContrd   73.0
145.1
8333.0

==rolRightVContd  

 
 

Recall of mixed stimuli (digits and letters): 
Left-brain vs. right brain: 46.1,,52.2)15( == dnst  
Left-brain vs. control:  18.2,05.,78.3)15( =<= dpt  
Right-brain vs. control: 73.0,,26.1)15( == dnst  

5

6

7

8

9

10

digit letter mixed

R
ec

al
l Left Brain

Right Brain
Control
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• Conclusions from simple effects of the effect of brain damage on 
recall for each type of stimulus 
 

 Stimuli  
Damage Digits Letters Mixed  
  Left Brain X = 7.00a X = 5.67 b X = 5.83c X = 6.17 d

  Right Brain X = 8.17  X = 7.33 X = 7.50 X = 7.67d

  Control X = 9.00 a X = 8.67 b X = 8.33c X = 8.67 d

 X = 8.06  X = 7.22 X = 7.22  
 

Note: Within each column, means with a common subscript are 
significantly different from each other. 

 
 
 

o The simple effects and pairwise tests allow us to indirectly test the 
stimuli by damage interaction.  However, we never actually tested any 
interaction contracts (all of our contrasts on cell means were within a 
level of a factor).  When the between-subjects factor has more than two 
levels, testing interaction contrasts is not straightforward. 
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10.  Relationship between time of year and cholesterol (2 * 4) 
• Example #2: The Seasons data come from a longitudinal study recently 

conducted by the UMass Medical School (Merriam et al., 1999).  Subjects 
were volunteers recruited from the membership of a large HMO in central 
Massachusetts.  For some of the variables, subjects provided data during 
each season of the year. The number at the end of the variable name 
indicates the season:  1=winter; 2=spring; 3=summer; and 4=fall. 

Participants’ total cholesterol (TC) level was measured in each of the 
four seasons.  The researcher would like to know if total cholesterol levels 
varied season, and if this variation differed for men and women. 

 

Descriptive Statistics

224.0591 40.79346 220
216.4171 42.84937 211
220.3179 41.93859 431
218.8182 40.11304 220
213.2204 40.43307 211
216.0777 40.32061 431
222.1636 41.60071 220
214.0924 41.07910 211
218.2123 41.49518 431
222.5182 39.90822 220
215.0948 42.98048 211
218.8840 41.55878 431

SEX
Male
Female
Total
Male
Female
Total
Male
Female
Total
Male
Female
Total

TC1

TC2

TC3

TC4

Mean Std. Deviation N

 

Total Cholesterol by Season

210

212

214

216

218

220

222

224

226

Winter Spring Summer Fall

To
ta

l C
ho

le
st

er
ol

Men
Women
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• Tests of assumptions 

o Normality 
EXAMINE VARIABLES=tc1 tc2 tc3 tc4 BY sex 
  /PLOT BOXPLOT NPPLOT SPREADLEVEL 
  /COMPARE VARIABLES. 

 

211220 211220 211220 211220N =

SEX

FemaleMale

500

400

300

200

100

0

TC1

TC2

TC3

TC4

266230
395397

214

41

1

252

277

214

17166
195
73

1

230

11
214

731
41

214

7157
73
1
94

Tests of Normality

.978 220 .002

.995 211 .759

.979 220 .003

.991 211 .205

.971 220 .000

.994 211 .554

.982 220 .007

.988 211 .088

SEX
Male
Female
Male
Female
Male
Female
Male
Female

TC1

TC2

TC3

TC4

Statistic df Sig.
Shapiro-Wilk

 
 

 
EXAMINE VARIABLES=tc_mean BY sex 
  /PLOT BOXPLOT NPPLOT SPREADLEVEL 
  /COMPARE VARIABLES. 

 

211220N =

SEX

FemaleMale

400

300

200

100

0

277230

214

41
73

1

Tests of Normality

.981 220 .005

.994 211 .634

SEX
Male
Female

TC_MEAN
Statistic df Sig.

Shapiro-Wilk

 
 

 
• The data look relatively symmetrical, but there are a number of 

outliers.  A sensitivity analysis would be in order. 
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o Homogeneity of variances / Sphericity 

 
• Homogeneity of the variance covariance matrices 

 
GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4  
  /PRINT = DESC HOMO. 

 

Box's Test of Equality of Covariance Matrices

14.276
1.413

10
876387.4

.167

Box's M
F
df1
df2
Sig.

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

 
 

We do not have any evidence that the variance/covariance matrices 
are different across the three groups.  This assumption is satisfied. 
 
 

• Homogeneity of variances for between group tests: 
 
GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4  
  /PRINT = DESC HOMO. 

 
Levene's Test of Equality of Error Variances

.927 1 429 .336

.565 1 429 .453

.364 1 429 .546

.620 1 429 .431

TC1
TC2
TC3
TC4

F df1 df2 Sig.

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

 

 
COMPUTE mean_tc = (tc1 + tc2 + tc3 + tc4)/4. 
EXAMINE VARIABLES= mean_tc BY sex 
  /PLOT BOXPLOT  SPREADLEVEL. 
 

Test of Homogeneity of Variance

.693 1 429 .406TC_MEAN

Levene
Statistic df1 df2 Sig.

 
We do not have any evidence that the variances are different across 
the two groups.  This assumption is satisfied. 
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• Overall sphericity (averaging over the between subjects factor): 

 
GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4  
  /PRINT = DESC HOMO. 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.980 .989 .333
Within Subjects Effect
TIME

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

The data are spherical.  We can conduct omnibus tests for the within-
subject effect (time) or for between/within subject interactions 
(sex*time). 

 
 
 

• Sphericity within each level of the between subjects factor: 
 

Temporary. 
select if sex = 0. 
GLM  tc1 tc2 tc3 tc4  
  /WSFACTOR = time 4. 

 
Mauchly's Test of Sphericity

Measure: MEASURE_1

.979 .994 .333
Within Subjects Effect
TIME

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 
 
 
 

Temporary. 
select if sex = 1. 
GLM  tc1 tc2 tc3 tc4  
  /WSFACTOR = time 4. 

 
Mauchly's Test of Sphericity

Measure: MEASURE_1

.952 .966 .333
Within Subjects Effect
TIME

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 

 
Within each level of stimuli the data are spherical.  We can conduct 
simple effect omnibus tests for the within-subject effect (time) within 
each level of the between-subjects factor (sex). 
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o Conclusions from tests of assumptions: 

• We may perform an omnibus test and/or standard contrasts on the 
marginal between-subjects (sex) means. 

• We may perform standard omnibus tests on the marginal within-
subjects (time) effect and on the between/within (sex by time) 
interaction.   

• We may perform standard simple-effect omnibus tests for the effect of 
the within-subjects factor (time) within each level of the between-
subjects factor (sex). 

• Contrasts on the marginal within-subjects (time) means or on the 
between/within (sex by time) cell means may use the omnibus error 
term.  However, I recommend always using a contrast-specific error 
term, so all tests will use these contrast-specific error terms. 

• There are a number of outliers; a sensitivity analysis should be 
conducted.  

 
• General ANOVA omnibus tests: 

GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4  
  /PRINT = DESC HOMO. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

3982.386 3 1327.462 5.382 .001
3982.386 2.939 1355.223 5.382 .001
3982.386 2.968 1341.813 5.382 .001
3982.386 1.000 3982.386 5.382 .021
384.530 3 128.177 .520 .669
384.530 2.939 130.857 .520 .665
384.530 2.968 129.562 .520 .667
384.530 1.000 384.530 .520 .471

317410.663 1287 246.628
317410.663 1260.637 251.786
317410.663 1273.235 249.295
317410.663 429.000 739.885

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
TIME

TIME * SEX

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

o Omnibus tests using the within-subjects error term SexSubTimeMS /* : 
• Main effect of time: F(3,1287) = 5.38, p = .001 
• Time by gender interaction: F(3,1287) = 0.52, p = .67  
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Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

82119676.7 1 82119676.65 13558.029 .000
22231.744 1 22231.744 3.670 .056

2598411.686 429 6056.904

Source
Intercept
SEX
Error

Type III Sum
of Squares df Mean Square F Sig.

 
 

o Omnibus tests using the between-subjects error term SexSubMS / : 
• Main effect of gender: F(1,429) = 3.67, p = .056  

 
 
 

• Simple effects of season within each gender: 
o There are two simple effects tests (for men and for women).  We need to 

use an adjusted critical p-value to maintain αFW = .05 
pcrit =

.05
2

= .025 

 
 
 

o We want our test of season to be based on an error term containing 
information from both men and women (because overall sphericity is 
satisfied, we should use the omnibus within-subjects error term).   
• If we select men and women separately, the error terms will only 

contain information from the male and female participants, 
respectively. 

• However, we can select each group separately to obtain the sum of 
squares for the simple effects tests.  We can then manually compute 
tests for the effect of time for men and women separately using the 
omnibus error term: 

 

SexSubTime

OnlyMenTime

MS
MS

baNaF
/*

)  ())1)((,1( =−−−  
SexSubTime

OnlyWomenTime

MS
MS

baNaF
/*

)  ())1)((,1( =−−−  
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o Simple effect of season for men: 

Temporary. 
select if sex = 0. 
GLM  tc1 tc2 tc3 tc4  
  /WSFACTOR = time 4. 

 

Tests of Within-Subjects Effects

Measure: MEASURE_1

3214.312 3 1071.437 4.356 .005
3214.312 2.938 1093.868 4.356 .005
3214.312 2.983 1077.619 4.356 .005
3214.312 1.000 3214.312 4.356 .038

161583.937 657 245.942
161583.937 643.528 251.091
161583.937 653.231 247.361
161583.937 219.000 737.826

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

 
• We can use the SS and MS for the effect of time within men, but we 

should not use the F-test.  Because overall sphericity is satisfied, we 
should use the omnibus within-subject error term for this simple effect 
test 

 
 

SexSubTime

OnlyMenTime

MS
MS

baNaF
/*

)  ())1)((,1( =−−−  F(3,1287) =
1071.437
246.648

= 4.344, p = .0048 

 

pcrit =
.05
2

= .025 

 

F(3,1287) =
1071.437
246.648

= 4.344, p < .05 

 
 

• There is a significant simple effect of time on total cholesterol levels 
for men, F(3,1287) = 4.34, p < .05 .
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o Simple effect of season for women: 

Temporary. 
select if sex = 1. 
GLM  tc1 tc2 tc3 tc4  
  /WSFACTOR = time 4. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

1194.775 3 398.258 1.610 .186
1194.775 2.855 418.543 1.610 .188
1194.775 2.898 412.266 1.610 .187
1194.775 1.000 1194.775 1.610 .206

155826.725 630 247.344
155826.725 599.467 259.942
155826.725 608.594 256.044
155826.725 210.000 742.032

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

 

SexSubTime

OnlyWomenTime

MS
MS

baNaF
/*

)  ())1)((,1( =−−−  F(3,1287) =
398.258
246.648

=1.6147, p = .1841 

 

pcrit =
.05
2

= .025 

 

F(3,1287) =
398.258
246.648

=1.61,ns  

 
 

• There is no significant simple effect of time on total cholesterol levels 
for women, F(3,1287) =1.62, p < .05 . 
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• Simple effects of gender within each time: 

o There are four simple effects tests (one for each season).  We need to use 
an adjusted critical p-value to maintain αFW = .05 

pcrit =
.05
4

= .0125 

 
o Simple effect of gender in winter (time 1): 

GLM tc1 by sex 
  /PRINT = DESC. 

 
Tests of Between-Subjects Effects

Dependent Variable: TC1

6289.922a 1 6289.922 3.598 .059
20896457.5 1 20896457.46 11952.558 .000

6289.922 1 6289.922 3.598 .059
750013.530 429 1748.283
21677027.0 431
756303.452 430

Source
Corrected Model
Intercept
SEX
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .008 (Adjusted R Squared = .006)a. 
 

 
• We find no evidence for a significant simple effect of gender at time 

1(winter): 
F(1,429) = 3.60,ns  

 
 
 

o Simple effect of gender in spring (time 2): 
GLM tc2 by sex 
  /PRINT = DESC. 

Tests of Between-Subjects Effects

Dependent Variable: TC2

3374.917a 1 3374.917 2.081 .150
20103556.2 1 20103556.17 12396.791 .000

3374.917 1 3374.917 2.081 .150
695698.230 429 1621.674
20822283.8 431
699073.146 430

Source
Corrected Model
Intercept
SEX
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .005 (Adjusted R Squared = .003)a. 
 

 
• We find no evidence for a significant simple effect of gender at time 

2(spring): 
F(1,429) = 2.08,ns  
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o Simple effect of gender in summer (time 3): 

GLM tc3 by sex 
  /PRINT = DESC. 

Tests of Between-Subjects Effects

Dependent Variable: TC3

7016.268a 1 7016.268 4.104 .043
20497967.4 1 20497967.41 11990.563 .000

7016.268 1 7016.268 4.104 .043
733379.057 429 1709.508
21263152.8 431
740395.325 430

Source
Corrected Model
Intercept
SEX
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .009 (Adjusted R Squared = .007)a. 
 

 
• We find no evidence for a significant simple effect of gender at time 

3(summer): 
F(1,429) = 4.10,ns  

 
 
 

o Simple effect of gender in fall (time 4): 
GLM tc4 by sex 
  /PRINT = DESC. 

Tests of Between-Subjects Effects

Dependent Variable: TC4

5935.168a 1 5935.168 3.456 .064
20625678.0 1 20625678.00 12010.367 .000

5935.168 1 5935.168 3.456 .064
736731.532 429 1717.323
21391963.5 431
742666.700 430

Source
Corrected Model
Intercept
SEX
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .008 (Adjusted R Squared = .006)a. 
 

 
• We find no evidence for a significant simple effect of gender at time 

4(fall): 
F(1,429) = 3.46,ns  
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• Tests of polynomial trends over time: 

 
 Season 
Gender Winter Spring Summer Fall 
  Male 224.06 218.82 222.16 222.51 
  Female 216.42 213.22 214.09 216.09 
 220.32 216.07 218.21 218.88 

 
 

o Polynomial trends on the marginal season means: 
GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4  
  /PRINT = DESC HOMO. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

102.937 1 102.937 .362 .548
2583.051 1 2583.051 10.575 .001
1296.398 1 1296.398 6.140 .014

17.789 1 17.789 .063 .803
52.504 1 52.504 .215 .643

314.237 1 314.237 1.488 .223
122043.560 429 284.484
104784.659 429 244.253

90582.444 429 211.148

TIME
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
TIME

TIME * SEX

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

o These are complex post-hoc tests and require a Scheffe correction: 
F crit= dfseason * F (.05,dfseason ,dferror ) = 3* F(.05,3,429) = 3* 3.01= 9.05  

 
 

• Linear trend in total cholesterol over seasons: F(1,429) = 0.36,ns  
• Quadratic trend in total cholesterol over seasons: F(1,429) =10.58, p < .05 
• Cubic trend in total cholesterol over seasons: F(1,429) = 6.14,ns  
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o Next, we test if these polynomial trends differ by gender: 

• These tests (linear*sex, quadratic*sex, and cubic*sex) were printed in 
the previous analysis. 

• These are complex post-hoc tests and require a Scheffe correction: 
F crit= dfseason *sex * F (.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 9.05 

 
 Season 
Linear Winter Spring Summer Fall 
  Male -3 -1 1 3 
  Female 3 1 -1 -3 
     

 
There is no difference in linear trends in total cholesterol over seasons 
between men and women: F(1,429) = 0.06,ns  

 
 

 Season 
Quadratic Winter Spring Summer Fall 
  Male 1 -1 -1 1 
  Female -1 1 1 -1 
     

 
There is no difference in quadratic trends in total cholesterol over 
seasons between men and women: F(1,429) = 0.22,ns  

 
 

 Season 
Cubic Winter Spring Summer Fall 
  Male -3 1 -1 3 
  Female 3 -1 1 -3 
     

 
There is no difference in cubic trends in total cholesterol over seasons 
between men and women: F(1,429) =1.49,ns  
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• Next, we conduct repeated contrasts on the marginal time means (comparing 

each level to the previous level): 
 

GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = time 4 repeated 
  /PRINT = DESC HOMO. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

7667.696 1 7667.696 17.697 .000
1915.740 1 1915.740 4.288 .039
198.305 1 198.305 .402 .527
450.076 1 450.076 1.039 .309
658.904 1 658.904 1.475 .225
45.200 1 45.200 .092 .762

185873.819 429 433.272
191652.790 429 446.743
211850.594 429 493.824

TIME
Level 1 vs. Level 2
Level 2 vs. Level 3
Level 3 vs. Level 4
Level 1 vs. Level 2
Level 2 vs. Level 3
Level 3 vs. Level 4
Level 1 vs. Level 2
Level 2 vs. Level 3
Level 3 vs. Level 4

Source
TIME

TIME * SEX

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 
 

o These are post-hoc pairwise comparisons and require a Tukey HSD 
correction. 

F crit=
q(.05,4,429)( )2

2
=

3.633( )2

2
= 6.60  

 
 

• Winter vs. Spring: 05.,70.17)429,1( <= pF  
• Spring vs. Summer: nsF ,29.4)429,1( =  
• Summer vs. Fall: nsF ,40.0)429,1( =  

 
 

• We also want to test if these repeated contrasts differ for men and women. 
o Again, tests of these contrasts were provided as interaction contrasts when 

we asked for the repeated contrasts. 
o These are complex, interaction post-hoc tests and require a Scheffe 

correction: 
 

F crit= dfseason *sex * F (.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 9.05 
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 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male 1 -1 0 0 
  Female -1 1 0 0 
     

 
• Difference in winter vs. spring total cholesterol levels between men 

and women: F(1,429) =1.04,ns  
 
 

 Season 
Spring vs. Summer Winter Spring Summer Fall 
  Male 0 1 -1 0 
  Female 0 -1 1 0 
     

 
• Difference in spring vs. summer total cholesterol levels between men 

and women: F(1,429) =1.48,ns  
 
 
 

 Season 
Summer vs. Fall Winter Spring Summer Fall 
  Male 0 0 1 -1 
  Female 0 0 -1 1 
     

 
• Difference in summer vs. fall total cholesterol levels between men and 

women: F(1,429) = 0.09,ns  
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o These differences in repeated contrasts between men and women can also 

be conducted by computing repeated contrasts on the marginal season 
means, and then testing if these contrasts differ by gender 

 
• Step 1: Compute a contrast comparing winter to spring. 

ψWinter −Spring = µWinter −µSpring  
 
 

 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male     
  Female     
 1 -1   

 
 

• Step 2: Test if this contrast differs by gender. 
ψ interaction =ψWinter− Spring (men) −ψWinter −Spring (women)  

= µWinter (men) −µSpring (men)( )− µWinter(women) −µSpring (women)( ) 
= µWinter(men) −µSpring (men) − µWinter(women) + µSpring (women)  

 
 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male 1 -1   
  Female -1 1   
     

 
 

• A test of whether the difference in winter vs. spring total cholesterol 
levels are equal for men and women is equivalent to a test of the 
interaction contrast, H0 :ψinteraction = 0 

 
H0 :ψinteraction = 0 
H0 :ψWinter− Spring (men) −ψWinter −Spring (women) = 0 
H0 :ψWinter− Spring (men) =ψWinter −Spring (women)  
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o In SPSS: 

 
Compute t1vst2 = tc1  - tc2.  
Compute t2vst3 = tc2  - tc3.  
Compute t3vst4 = tc3  - tc4.  
 
T-TEST GROUPS=sex(0 1) 
  /VARIABLES=t1vst2 t2vst3 t3vst4. 

 
Independent Samples Test

.491 .484 1.019 429 .309 2.0442 2.00570

1.021 427.693 .308 2.0442 2.00164

.856 .355 -1.214 429 .225 -2.4734 2.03664

-1.217 426.741 .224 -2.4734 2.03177

.656 .418 .303 429 .762 .6478 2.14127

.302 416.015 .763 .6478 2.14734

Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed

T1VST2

T2VST3

T3VST4

F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

t-test for Equality of Means

 
 

tcrit = dfseason *sex * F(.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 3.01 
 
 

• Difference in winter vs. spring total cholesterol levels between men 
and women: t(429) =1.02,ns  

• Difference in spring vs. summer total cholesterol levels between men 
and women: t(429) =1.21,ns  

• Difference in summer vs. fall total cholesterol levels between men and 
women: t(429) = 0.30,ns  

 
 

o These results exactly match the results we obtain by asking for repeated 
contrasts (and repeated*gender interaction contrasts) in the repeated-
measures ANOVA.  Both analyses test the same hypothesis and include 
gender as a between-subjects factor in the design. 

o An advantage of this method is that it can be used when the variance 
between the male and female (contrast) scores are not equal. 
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• If we wish to conduct simple contrasts (comparing cholesterol levels at each 
time point to the cholesterol levels in winter): 

 
GLM  tc1 tc2 tc3 tc4 BY sex 
  /WSFACTOR = tc 4 simple(1) 
  /PRINT = DESC HOMO. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

7667.696 1 7667.696 17.697 .000
1918.108 1 1918.108 3.468 .063

882.930 1 882.930 1.621 .204
450.076 1 450.076 1.039 .309

19.839 1 19.839 .036 .850
5.148 1 5.148 .009 .923

185873.819 429 433.272
237265.107 429 553.066
233599.217 429 544.520

TIME
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1

Source
TIME

TIME * SEX

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

 
 
 

o These are post-hoc pair-wise comparisons and require a Tukey HSD 
correction. 

F crit=
q(.05,4,429)( )2

2
=

3.633( )2

2
= 6.60  

 
 

• Winter vs. Spring: F(1,429) =17.70, p < .05 
• Winter vs. Summer: F(1,429) = 3.47,ns  
• Winter vs. Fall: F(1,429) =1.62,ns  

 
 

• We can also test if these simple contrasts differ for men and women. 
o These are complex, interaction post-hoc tests and require a Scheffe 

correction: 
F crit= dfseason *sex * F (.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 9.05 
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o The tests of these contrasts were provided as interaction contrasts when 
we asked for the repeated contrasts:  

 
 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male 1 -1 0 0 
  Female -1 1 0 0 
     

 
• Difference in winter vs. spring total cholesterol levels between men 

and women: F(1,429) =1.04,ns  
 
 
 

 Season 
Spring vs. Summer Winter Spring Summer Fall 
  Male 1 0 -1 0 
  Female -1 0 1 0 
     

 
• Difference in winter vs. summer total cholesterol levels between men 

and women: F(1,429) = 0.04,ns  
 
 
 

 Season 
Summer vs. Fall Winter Spring Summer Fall 
  Male 1 0 0 -1 
  Female -1 0 0 1 
     

 
• Difference in winter vs. fall total cholesterol levels between men and 

women: F(1,429) = 0.01,ns  
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o Again, differences in simple contrasts between men and women can also 

be conducted by computing simple contrasts on the marginal season 
means, and then testing if these contrasts differ by gender 

 
o In SPSS: 

Compute t1vst2 = tc1  - tc2.  
Compute t1vst3 = tc1  - tc3.  
Compute t1vst4 = tc1  - tc4.  
 
T-TEST  GROUPS=sex(0 1) 
  /VARIABLES=t1vst2 t1vst3 t1vst4. 

 
Independent Samples Test

.491 .484 1.019 429 .309 2.0442 2.00570

1.021 427.693 .308 2.0442 2.00164

.153 .696 -.189 429 .850 -.4292 2.26608

-.189 428.071 .850 -.4292 2.26630

.018 .895 .097 429 .923 .2186 2.24850

.097 427.401 .923 .2186 2.24941

Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed

T1VST2

T1VST3

T1VST4

F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

t-test for Equality of Means

 
 

tcrit = dfseason *sex * F(.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 3.01 
 
 

• Difference in winter vs. spring total cholesterol levels between men 
and women: t(429) =1.02,ns  

• Difference in winter vs. summer total cholesterol levels between men 
and women: t(429) = 0.19,ns  

• Difference in winter vs. fall total cholesterol levels between men and 
women: t(429) = 0.01,ns  
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• Finally, when we look at the data, we may decide to examine some complex 

contrasts on the marginal season means: 
 

 Season 
Gender Winter Spring Summer Fall 
  Male 224.06 218.82 222.16 222.51 
  Female 216.42 213.22 214.09 216.09 
 220.32 216.07 218.21 218.88 

 
i. Do cholesterol levels in winter differ from average 

cholesterol levels in summer and fall? 
Season 

Winter Spring Summer Fall 
2 0 -1 -1 

 
ii. Do cholesterol levels in spring differ from average 

cholesterol levels in summer and fall? 
Season 

Winter Spring Summer Fall 
0 2 -1 -1 

 
iii. Do average cholesterol levels in the winter and fall differ 

from average cholesterol levels in summer and fall? 
Season 

Winter Spring Summer Fall 
-1 1 1 -1 

iv.  
 
 

o We cannot test these hypotheses on the marginal means in SPSS by 
computing a value reflecting this contrast (because we need to keep 
gender in the analysis).   

o We must enter these contrasts in the special subcommand as contrasts 
coefficients on the marginal season means. 

 
 
 

o These are complex post-hoc tests and require a Scheffe correction: 
F crit= dfseason * F (.05,dfseason ,dferror ) = 3* F(.05,3,429) = 3* 3.01= 9.05  
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GLM tc1 tc2 tc3 tc4 by sex 
  /WSFACTOR = time 4 special (1 1 1 1   2 0 -1 -1  0 -2 1 1  -1 1 1 -1) 

. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

5403.773 1 5403.773 3.176 .075
10326.706 1 10326.706 7.505 .006
10332.205 1 10332.205 10.575 .001

4.775 1 4.775 .003 .958
1990.511 1 1990.511 1.447 .230
210.014 1 210.014 .215 .643

729878.055 429 1701.347
590257.230 429 1375.891
419138.635 429 977.013

TIME
L1
L2
L3
L1
L2
L3
L1
L2
L3

Source
TIME

TIME * SEX

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

• Winter vs. (Summer and Fall): F(1,429) = 3.18,ns  
• Spring vs. (Summer and Fall): F(1,429) = 7.50,ns  
• (Winter and Fall) vs. (Spring and Summer): F(1,429) =10.58, p < .05 

 
 

• We also should check to test if these comparisons differ for men and women. 
 

o Again, these are complex, interaction post-hoc tests and require a Scheffe 
correction: 

F crit= dfseason *sex * F (.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 9.05 
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o The tests of these contrasts were provided as interaction contrasts when 

we asked for the special contrasts:  
 
 

 Season 
L1* Sex Winter Spring Summer Fall 
  Male 2 0 -1 -1 
  Female -2 0 1 1 
     

 
• Difference in winter vs. (summer and fall) total cholesterol levels 

between men and women: F(1,429) = 0.01,ns  
 
 
 

 Season 
L2* Sex Winter Spring Summer Fall 
  Male 0 2 -1 -1 
  Female 0 -2 1 1 
     

 
• Difference in spring vs. (summer and fall) total cholesterol levels 

between men and women: F(1,429) =1.45,ns  
 
 
 

 Season 
L3* Sex Winter Spring Summer Fall 
  Male -1 1 1 -1 
  Female 1 -1 -1 1 
     

 
• Difference in (winter and fall) vs. (spring and summer) total 

cholesterol levels between men and women: F(1,429) = .22,ns  
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o These differences in complex interaction contrasts can also be conducted 
by computing the complex contrasts on the marginal season means, and 
then testing if these contrasts differ by gender 

 
• For example, first compute a contrast comparing winter to (summer 

and fall): 
ψWin− SumFall = 2µWin − (µSum + µFall ) 

 
 

 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male     
  Female     
 2  -1 -1 

 
 

• Next, test if this contrast differs by gender 
 

ψ interaction =ψWin−SumFall (men) −ψWin−SumFall (women)  
   = 2µWin (men) − (µSum (men) + µFall (men))( )− 

2µWin (women) − (µSum (women) + µFall (women))( ) 
= 2µWin (men) −µSum (men) −µFall (men) +  

−2µWin (women) + µSum(women) + µFall (women)  

 
 Season 
Winter vs. Spring Winter Spring Summer Fall 
  Male 2 0 -1 -1 
  Female -2 0 1 1 
     

 
• A test of whether the difference in winter vs. (summer and fall) total 

cholesterol levels is equal for men and women is equivalent to testing 
if the interaction contrast differs from zero ( H0 :ψinteraction = 0). 

 
H0 :ψinteraction = 0 
H0 :ψWin−SumFall (men) −ψWin−SumFall (women) = 0 
H0 :ψWin−SumFall (men) =ψWin−SumFall (women)  
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o In SPSS: 

compute t1vst34 = tc1  - (tc3 + tc4)/2. 
compute t2vst34 = tc2  - (tc3 + tc4)/2. 
compute t14vst23 = (tc1 + tc4)/2  - (tc2 + tc3)/2. 
 
T-TEST GROUPS=sex(0 1) 
  /VARIABLES= t1vst34  t2vst34 t14vst23. 

 
Independent Samples Test

.007 .934 -.053 429 .958 -.1053 1.98725

-.053 428.862 .958 -.1053 1.98625

.712 .399 -1.203 429 .230 -2.1495 1.78710

-1.205 427.915 .229 -2.1495 1.78366

.743 .389 .464 429 .643 .6982 1.50594

.463 421.550 .644 .6982 1.50881

Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed
Equal variances
assumed
Equal variances
not assumed

T1VST34

T2VST34

T14VST23

F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

t-test for Equality of Means

 
 
 

tcrit = dfseason *sex * F(.05,dfseason *sex ,dferror ) = 3* F(.05,3,429) = 3* 3.01 = 3.01 
 
 

• Difference in winter vs. (summer and fall) total cholesterol levels 
between men and women: t(429) = 0.05,ns  

• Difference in spring vs. (summer and fall) total cholesterol levels 
between men and women: t(429) =1.20,ns  

• Difference in (winter and fall) vs. (spring and summer) total 
cholesterol levels between men and women: t(429) = 0.46,ns  

 
o These results exactly match the results we obtain by asking for special 

contrasts (and special*gender interaction contrasts) in the repeated-
measures ANOVA.  Both analyses test the same hypotheses and include 
gender as a between-subjects factor in the design. 

 
 

• Remember that our check of assumptions revealed a number of outliers.  We 
should conduct a sensitivity analysis to see of the outliers affected any of our 
conclusions. 

 


