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Multi-Factor Repeated Measures ANOVA
Designs with on Between-Subjects and one Within-Subjects Factors

1. Introduction

e Let’s start with a simple example: one between subjects factor and one
within-subjects factor

e Imagine that our previous data on the effects of a test prep class did not
come from pre- and post-test scores from the same participants, but instead
were scores from two different groups of people. In this case, we randomly
assigned people to either take a test prep class, or to not take the test prep

class.
No Training Training
Subscalel Subscale2 Subscale3 Subscalel Subscale2 Subscale3
42 42 48 48 60 78
42 48 48 36 48 60
48 48 54 66 78 78
42 54 54 48 78 90
54 66 54 48 66 72
36 42 36 36 48 54
48 48 60 54 72 84
48 60 66 54 72 90
54 60 54 48 72 78
48 42 54 54 66 78
46.2 51.0 52.8 49.2 66.0 76.2
Between-Subjects
Comparison \
Subscale of test \
Training Subscale 1 Subscale 2 Subscale 3
No X, =462 X.,,=51.0 X.,=528  X.,=500
Yes X.,=49.2 X.,,=66.0 X.,=762  X.,=63.8

X..=477 X.,.=58.5 X..=645

——

Within-Subjects
Comparison
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2. Structural model, SS partitioning, and the ANOVA table

e To understand the structural model of a between and within design, let’s
start with the model of a design containing two within factors, and see what
changes. We will consider the A factor the between subjects factor, and the
B factor the within subjects factor

Yy =pta;+f, +7,+(@p), +(an), +(fr), +(afr),

O

4 1s the grand mean of all scores
o a; is the effect of the between subjects factor

No
Trainiyg Training
/300 638

a, o,

o B, is the effect of the within subjects factor

Subscalel Subscale2 Subscale3

B, p B

o af, is the interaction of the within and between subjects factors

ap,, P,
Subscalel e2 Subscale3 aBi,

No Training
Trainin

ap,, ap,, ap,;

o These fixed effect parameters are computed exactly the same as for a all
between- or all within-subjects design.
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o =, is the subject effect, but we have a subject effect for each level of A,

the between-subjects factor. We refer to this as the subject effect within
(each level of) A, =

0))

No
To Trhinkg Trdining o2
44 62

46
50
50
58
38
52
58
6
48 66

e Note that 7, , measures how much the factor A effect varies by

subject. We can think of the 7z, terms as a measure of the error in

the a, effect. For this to work, we will need 7, =7,

e (ar), is the interaction between subject and A. But subjects are not

crossed with factor A. There are different subjects in each level of A.
Thus, we cannot estimate this term.

When a factor (Subjects) is not crossed with each level of another
factor (A), but instead only appears within a single level of that factor
(A), we say that subjects are nested within A
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11B-5

o (Bn), 1s the interaction between subject and B. We will be able to

estimate this term. Each subject gets each level of the within subjects
factor.

e Because we have two groups of subjects, we will have two
estimates of (fBr), , one for each level. We refer to this as the

subject by B effect within (each level of) A, (8r)

a(J)

ﬂﬂ.al ﬂﬂ' o2
7
__No Fraining / Training
Subscafel Subscale2 Subscale3/  Subsgcatél Subscale2 Swubscale3/
42 42 48 48 60 78
42 48 48 36 48 60
48 48 54 66 78 78
42 54 54 48 78 90
54 66 54 48 66 72
36 42 36 36 48 54
48 48 60 54 72 84
48 60 66 54 72 90

54 60 54
48 42 5

48 72 78
54 66 78

e Note that (Br)

subject. (f7),, 1s also a measure of the extent to which the A*B

»(, measures how much the factor B effect varies by

interaction varies by subject
o Thus, we can think of the (f7),,, terms as a measure of the error in

the g, and of,, effects. Again, for this to work nicely, we need

(B7) g0y = (BT

e Finally, the (af7), effect is the three-way interaction between subject,

A and B. But as we already noted, subjects are not crossed with factor
A; subjects are nested within A. Thus, we cannot estimate how
(f7),, varies across subjects.
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e So we are left with the following model for a between (A) and within (B)
factors design:
Yijk =HTQ, + Tow T (aﬂ)jk +(ﬁﬂ.)o‘(z‘)

o Let’s look at the expected mean squares for each of the terms in the model to

11B-6

see if our intuitions about the error terms are correct:

Source E(MS) F

Factor A nbz o’ MSA
2 2 J P ——

Subjects/A 0'52 +bo ;

(Between Error)
Factor B , , naz Bl MSB

Qﬁf%ﬁfT MS(B*S/ A)
A*B "Z af’ MSAB
ol + 0'/23 +—= VS(R*C/ A
£ " a—1)b-1) MS(B*S/A)
B*Subjects/A o—j + g;”
(Within Error)

e ANOVA Table

Source SS df MS F
Factor A SSA4 (a-1) SSA MSA

a-1 MS(S/ A)

Subjects/A SS(S/A) N-a SS(S/A)

(Between N—a
Error)
Factor B SSB (b-1) SSB MSB

b-1 MS(B*S/A)
A*B SSAB (a-1)(b-1) SSAB MSAB
(a—1)(b-1) MS(B*S/A)
B*Subjects/A SS(B*S/4)  (N-a)(b-1)  SS(B*S/A)
(Within Error) (N —a)(b-1)
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3. Assumptions for between and within factor designs

e Assumptions for between-subjects tests: These assumptions are identical to

the assumptions for a one-way between-subjects ANOVA.

o To conduct the omnibus test for the between subjects effect, assumptions
are made on the marginal between-subjects means.
e Samples are independent and randomly drawn from the population
e Each group is normally (symmetrically) distributed
e All groups have a common variance

o Ifyou will perform simple effects tests on the between-subjects factor,
then you need to make the following assumptions on the between-
subjects cell means at each level of the within-subjects factor.
e Each group is normally (symmetrically) distributed
e All groups have a common variance

e Assumptions for within-subjects tests:
o When examining the model parameters, we noted that we needed the
error terms to be equal in the two samples: = and

=7
o) = o)
(B7) 5y = (B7) 4, - TO satisfy this assumption, we must have homogeneity

of variance/covariance matrices for each sample/group

2
6, O Oy O, O Op
O, O, 0y |=|0 O, Opn

2 2
O3 Oy Oy O3 Oy O3

e Homogeneity of variance/covariance matrices is required for any
omnibus comparisons on the within-subjects marginal means or for
omnibus interaction tests on between & within cell means.

e SPSS provides Box’s M test and Levine’s test as a check of
homogeneity of variance/covariance matrices.

e If this assumption is violated, the omnibus tests may not be preformed
for the main effect of the within-subjects effect or for the interaction
between the within-subjects and between-subjects factor.
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o If homogeneity of variance/covariance matrices is satisfied, then in
order to conduct omnibus tests for the main effect of the within-subjects
effect or for the interaction between the within-subjects and between-
subjects factor we must have:

e Sphericity of the pooled variance/covariance matrix.

e Normality of repeated measures (but we already checked this)

e Participants are independent and randomly selected from the
population (but we already checked this)

o If we wish to conduct simple effects tests for the effect of the repeated
measures factor at each level of the between-subject factor, then we must
have sphericity of the variance/covariance matrix for each between
subjects group.

e Note that we do not need to have homogeneity of variance/covariance
matrices in order to test this assumption.

e Testing assumptions: Normality
o For all tests on the marginal within-subjects means and on the cell means,

we need to check normality on a cell-by-cell basis.
EXAMINE VARIABLES=scale1 scale2 scale3 BY cond
/PLOT BOXPLOT NPPLOT SPREADLEVEL

/COMPARE VARIABLES.
100
90
80
70
(e} o Tests of Normality
60 Shapiro-Wilk
Qs . :
cond Statistic df Sig.
50 - scalel  1.00 911 10 .287
o B scaie 2.00 .897 10 .202
o o Escae | scale2  1.00 .886 10 151
30 - - e 2.00 .869 10 .097
1 00 200 scale3  1.00 .897 10 .203
2.00 .892 10 .180
COND

o No cell seems too asymmetrical. We appear to be OK for normality
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o In order to conduct all tests on the between-subjects marginal means, we
need the marginal means to be normally distributed. To test the marginal
means, we must manually average across the repeated measures, compute
the marginal effects, and conduct our usual tests for normality.

COMPUTE between = (scale1+scale2+scale3)/3.
EXAMINE VARIABLES=between BY cond

80

BETWEEN

/PLOT BOXPLOT NPPLOT SPREADLEVEL.

COND

Tests of Normality

between

COND

Shapiro-Wilk

Statistic

df

Sig.

BETWEEN

1.00
2.00

.952
.853

10
10

.689
.064

o Normality (Symmetry) is satisfied.

cond

e To check homogeneity/sphericity, we will adopt a three-step approach
o Check the equality of the variance/covariance matrices across the

different samples

o Check the sphericity of the pooled variance/covariance matrix (Overall

sphericity)

o Check the sphericity of the variance/covariance matrix for each group

separately (Multi-sample sphericity)

11B-9
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e To check the homogeneity of the variance/covariance matrices across the
different samples, we use Box’s test of equality of the variance/covariance

matrices and Levene’s test of variances.
GLM scale1 scale2 scale3 by cond
/WSFACTOR = scale 3
/PRINT = DESC HOMO.

o Box’s test is an omnibus test of equivalence of variance/covariance

matrices
H, :Var/Cov,=Var/Cov,=...=Var/Cov,
H, : At least 1 Var/Cov matrix differs from the others
A A,
o o
Oy, 05 =|0n O-g

2 2
O3 Oy O O3 Oy O

e Note that this test is not examining if the Var/Cov matrices are
spherical, only if they are equal

e [f we reject the null hypothesis, we can not pool the matrices to test
within-subject effects (and we will need to consider alternative
approaches to omnibus analyses).

Box's Test of Equality of Covariance Matrices

Box's M 5.682
F 774
df1 6
df2 2347.472
Sig. .591

Tests the null hypothesis that the observed covariance
matrices of the dependent variables are equal across groups.

F(6,2347.47)=0.774, p = .59

o We fail to reject null hypothesis, so we have no evidence that the
variance/covariance matrices are unequal.
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o Levene’s test is a more focused test of the equivalence of only the
variances
A A,
o o
2 2
0, O, =0 O,

P P
O3 Oy O O3 Oy O

Levene's Test of Equality of Error Variances

F df1 df2 Sig.
SCALE1 .635 1 18 436
SCALE2 .248 1 18 .624
SCALE3 1.204 1 18 .287

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

e This test only examines if the variances of the different groups are
equal
e For subscale 1
2 2 2
H,:0,=0,=..=0,
H,: At least 1 odiffers from the others
F(1,18)=0.64,p = .43
e For subscale 2
2 2 2
H,:0=0,=..=0,
H,: Atleast 1 odiffers from the others
F(1,18)=0.25,p=.62
e For subscale 3
2 2 2
H,:0,=0,=..=0,
H,: Atleast 1 odiffers from the others
F(1,18)=1.20,p =29

o Ifeither Box’s test or any of Levene’s Tests are significant, then we
reject the assumption of homogeneity of the variance/covariance
matrices.

o In this case, we have no evidence to conclude that the matrices are
different, so we may pool them and test for sphericity.
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« Next, we test for overall sphericity by averaging across the between subjects
factor and examining the epsilon
Entire Sample

Measure: MEASURE_1

Epsilon
Greenhous
Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
SCALE .961 1.000 .500

o In this case, the overall sphericity assumption is satisfied

o We may conduct unadjusted omnibus tests on the within-subjects factors
e SCALE
e SCALE*CONDITION

e If we plan on conducting simple effects tests (of the within-subjects factor at
each level of the between-subjects factor), then we need to examine the
epsilon for each condition (the multi-sample sphericity).

temporary. temporary.
select if cond=1. select if cond=2.
GLM scale1 scale2 scale3 GLM scale1 scale2 scale3
/WSFACTOR = scale 3. /WSFACTOR = scale 3.
CONDITION #1 Condition #2
Measure: MEASURE_1 Measure: MEASURE_1
Epsilon Epsilon
Greenhous Greenhous
Within Subjects Effect | e-Geisser | Huynh-Feldt | Lower-bound Within Subjects Effect | e-Geisser | Huynh-Feldt | Lower-bound
SCALE .864 1.000 .500 SCALE 776 907 500

o We conclude that, separately, the var/cov matrix for each condition is not
spherical, but the violation is fixable
e If we want to conduct follow-up tests on each condition, we need to
adjust all omnibus tests

e Overall we conclude that:
o The var/cov matrix for condition 1 equals the var/cov matrix for
condition 2
o When we combine the 2 conditions, the overall var/cov matrix is
spherical
o BUT the neither the var/cov matrix for condition 1 nor the var/cov matrix
for condition 2 is spherical!
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11.

1il.

1v.
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Remember that all this funny business of checking the var/cov matrix can be
skipped if we avoid omnibus tests and stick to contrasts!

If assumptions are violated: A recap

If normality/symmetry is not satisfied:
o All F-tests may be biased.

o Try advanced non-parametric/distribution-free tests

If the variances are not equal between groups within each condition
(Levene’s test and boxplots suggest heterogeneity):
o Then we cannot conduct between-subjects tests that require equal

variances (omnibus tests and/or standard contrasts).
o Test all between-subject contrasts with unequal variance contrasts.
O Test all between-subject omnibus tests with the Brown-Forsyth F* Test.

If variance/covariance matrices are not equal across all groups (Box’s M is

significant or Levene’s test suggests heterogeneity):

o Then we cannot pool var/cov matrices over the between-subjects groups.

o The omnibus within-subject error term (used to test within-subject effects
and between/within interactions) is not valid.

o Use the MANOVA approach for omnibus tests of within-subject effects and
between/within interactions OR use contrasts for between/within tests.

If sphericity of the combined variance/covariance matrix (Overall sphericity)

is violated:

o Note: If assumption (iii.) 1s violated, then we cannot pool the var/cov
matrices and this assumption is automatically violated.

o The omnibus within-subject error term (used to test within-subject effects

and between/within interactions) is not valid.

o If violation is moderate, use epsilon-adjusted omnibus tests or contrasts.

o If violation is extreme, use contrasts for between/within tests or the MANOVA
approach for omnibus tests of within-subject effects and between/within interactions.

If the sphericity of the variance/covariance matrix for each group separately

(Multi-sample sphericity) is violated:

o Note: If assumption (iii.) is violated, then this assumption may still be
satisfied.

o The omnibus within-subject error term calculated at each level of the
between subject factor (simple effects of the within-subjects factor at

each level of the between subjects factor) is not valid.
o If violation is moderate, use epsilon-adjusted simple effect omnibus tests or contrasts.
o Ifviolation is extreme, use the MANOVA approach for simple effect omnibus tests of
within-subject effects or contrasts.
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4. Analysis of omnibus ANOVA effects

e Partial eta-squared is a measure of percentage of the variance accounted for

(in the sample) that can be used for omnibus tests:

;72 ) — SS&{[fect
e S S effect + S SErrorT ermForEffect
. SS, oSS, oSS

N1 = aq T ac =0 o Nes =

SS, +S8Sg,, SS, +SS5, 4 SS g +SS 55, 4
Subscale of test

Training Subscale 1 Subscale 2 Subscale 3
No X., =462 X.,,=51.0 X.,=528  X.,=500
Yes X.,=492 X.,,=66.0 X.,=762  X.,=638

X..=47.7 X.,.=585 X..=64.5

¢ In this case, we may conduct unadjusted within subjects tests (see p. 11B-12)
GLM scale1 scale2 scale3 by cond
IWSFACTOR = scale 3
/PRINT = DESC.

Tests of Within-Subjects Effects
Measure: MEASURE_1

Type Il Sum
Source of Squares df Mean Square F Sig.
SCALE Sphericity Assumed 2899.200 2 1449.600 61.424 .000
Greenhouse-Geisser 2899.200 1.921 1508.872 61.424 .000
Huynh-Feldt 2899.200 2.000 1449.600 61.424 .000
Lower-bound 2899.200 1.000 2899.200 61.424 .000
SCALE * COND  Sphericity Assumed 1051.200 2 525.600 22.271 .000
Greenhouse-Geisser 1051.200 1.921 547.091 22.271 .000
Huynh-Feldt 1051.200 2.000 525.600 22.271 .000
Lower-bound 1051.200 1.000 1051.200 22.271 .000
Error(SCALE) Sphericity Assumed 849.600 36 23.600
Greenhouse-Geisser 849.600 34.586 24.565
Huynh-Feldt 849.600 36.000 23.600
Lower-bound 849.600 18.000 47.200
"2 2899.2 a2 1051.2
nScale = = 77
2889.2 +849.6

N time*scate = m -

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type Ill Sum
Source of Squares df Mean Square F Sig.
Intercept | 194256.600 1 194256.600 949.446 .000
COND 2856.600 1 2856.600 13.962 .002
Error 3682.800 18 204.600
.2 2856.6
nConditiun

T 2856.6+3682.8
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o Tests of the within subjects factors:
e The main effect of scale: F(2,36)=61.42,p<.0L,n° =.77
= Collapsing across level of training, there are significant differences
in the scores to the three sub-scales of the test
e The scale by training interaction: F(2,36) =22.27, p <.01,n* =.55
= The effect of training is not the same for each subscale of the test

o Tests of the between subjects factors:
e The main effect of training: F(1,18) =13.96, p <.01,n° = .44

= Averaging across subscales, those who received training performed
better than those who do not receive training.

e To interpret effects, you use the same logic outlined for factorial ANOVA.
Start with the highest order significant (or important) effect. Interpret lower
order effects only if they are meaningful.

o In this case, we have a significant scale by training interaction. We could
follow-up this result with simple effect tests.
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5. Contrasts
e The contrast formulae remain the same:

_ W _ ZCJ-)?:;

t o = =
obered — standard error'(y) o2
MSE"Y —
n

A2 A
~ v ’ SSW
SSy= F,df") =
v c? @4 MSE'

o For between-subjects tests on the marginal means:
e If the homogeneity of variances assumption is satisfied, then MSE’
will be the between-subjects error term, MSE'= MS,,, (with df= N-a).
e [fthe homogeneity of variances assumption is not satisfied, then we
can use the unequal variance test for contrast (Welsh’s test).

o For between-subjects tests within one level of the within-subject factor:
o [f the homogeneity of variances assumption is satisfied at that level of
the within subjects factor, then MSE’ will be the between-subjects
error term, MSE' = MS;, , . (with df= N-a).

e [fthe homogeneity of variances assumption is not satisfied, then we
can use the unequal variance test for contrast (Welsh’s test).

o For within subjects tests (either on marginal within-subjects means or on
the between*within cell means):

e MSE' will be a contrast-specific error term (with df = N-a).

e [fthe data are spherical, then we could use an omnibus error term. For
contrasts on the marginal within-subjects means or on the
between/within cell means, use the omnibus within-subjects error
term, MSE'= MS,.,,, (with df= (b-1)(N-a)). However, | recommend
that you always use the contrast-specific error term.

o Note that al/ contrasts should have df= N-a.
(Unless for some reason you decide to use the omnibus error term for
within-subject or between*within contrasts.)
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e Effect sizes for contrasts

o Partial eta-squared is a measure of percentage of the variance accounted
for (in the sample) that can be used for contrasts:

SS

_ Contrast

ﬁ 2
Contrast —
SS Contrast + SS

ErrorTermForContrast

o For contrasts (except maybe polynomial trends), we can also compute a d
as a measure of the effect size, just as we did for the paired t-test.

4 but if and only if Z|Ci|

Where: i is the average value of the contrast of interest
6, 1s the standard deviation of the contrast values

For between-subject contrasts, we can compute d directly from the ¢-
statistic:

2%t

N

o For all contrasts, we can also compute an » as a measure of the effect

size.
2
; — \/ tContrast — \/ FContrast
2
tCnntrast + df contrast F + df

Contrast contrast

d=

e To perform contrasts on the between subjects marginal means, you need to
compute an average across the within subjects factor.

Between-Subjects
Marginal Means

Subscale of test
Training Subscale 1 Subscale 2 Subscale 3
No X., =462 X.,=51.0 X.,=528  X. =500
Yes X.,=492 X.,,=66.0 X.,=762  X.,=63.8
X..=477 X.,.=585 X..=64.5

Within-Subjects
Marginal Means
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o To run a test on the marginal between-subject means, we need to
compute a new variable and then run an ANOVA (or t-test).
COMPUTE between = (scale1+scale2+scale3)/3.
T-TEST GROUPS=cond(1 2)
IVARIABLES=between .

Group Statistics

Std. Error

cond N Mean Std. Deviation Mean
between  1.00 10 50.0000 6.39444 2.02210
2.00 10 63.8000 9.77298 3.09049

Independent Samples Test

Levene's Test for
Equality of Variances t-test for Equality of Means
95% Confidence
Interval of the
Mean Std. Error Difference
F Sig. t df Sig. (2-tailed) | Difference | Difference Lower Upper
between Equal variances
assumed 1.414 .250 -3.737 18 .002 | -13.80000 3.69324 | -21.55920 | -6.04080
Equal variances
not assumed -3.737 15.512 .002 | -13.80000 3.69324 | -21.64936 | -5.95064
2%t 2%3.737
d= = =1.76
Jdf 18
ONEWAY between by cond.
ANOVA
BETWEEN
Sum of
Squares df Mean Square F Sig.

Between Groups 952.200 1 952.200 13.962 .002

Within Groups 1227.600 18 68.200

Total 2179.800 19

772 — SSContrast — 952 — 44
952 +1227.6

SS +8S

Contrast ErrorTermForContrast

¢ Individuals in the training condition performed better than intervals
without training: ¢#(18) =3.73, p <.01,d =1.76

e This test is identical to the main effect of training obtained from the
repeated measures analysis, F(1,18) =13.96, p <.01,5° = .44

o In this example, the between subjects factor has only two levels so

follow-up tests are unnecessary.

e If the between subjects factor had more than two levels, you could use
the CONTRAST command to test the between subjects contrasts.

o If the between-subjects variances are unequal, you can use unequal
variance contrasts.

¢ You may need to adjust the p-value of the tests, depending on whether
the tests are planned or post-hoc.
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e To conduct contrasts on the within subjects marginal means:

Subscale of test

Training Subscale 1 Subscale 2 Subscale 3
No X, =462 X.,,=51.0 X.,=528  X.,=500
Yes X.,=49.2 X.,,=66.0 X.,=762  X.,=638
X..=477 X.,.=585 X..=64.5

Within-Subjects
Marginal Means

o The easiest approach to conducting contrasts on the within subjects

marginal means is to use SPSS’s built in contrasts:

e Specify a type of contrast on the within-subject factor using the

WSFACTOR subcommand:
e To test if subscale 2 differs from subscale3:
GLM scale1 scale2 scale3 by cond
IWSFACTOR = scale 3 helmert.
Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type 1l Sum

Source SCALE of Squares df Mean Square F Sig.
SCALE Level 1 vs. Later 3808.800 1 3808.800 110.400 .000

Level 2 vs. Level 3 720.000 1 720.000 14.876 .001
SCALE * COND Level 1 vs. Later 1312.200 1 1312.200 38.035 .000

Level 2 vs. Level 3 352.800 1 352.800 7.289 .015
Error(SCALE) Level 1 vs. Later 621.000 18 34.500

Level 2 vs. Level 3 871.200 18 48.400

772 — SSContrast 720

= =.45
SS + SSErrorTermForContrast 720 + 871 2

Contrast

e We want to conduct tests on the marginal scale means (average across
condition), so we need to read the line labeled “SCALE”

e Averaging across level of training, we find that scores on scale 3 are
higher than scores on scale 2, F(1,18) =14.87, p <.01,n" = .45
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o An alternative approach to conducting contrasts on the within subjects
marginal means is to use the special command:
GLM scale1 scale2 scale3 by cond
/WSFACTOR = scale 3 special ( 1 1 1
0-11
101).

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type Ill Sum

Source SCALE | of Squares df Mean Square F Sig.
SCALE L1 720.000 1 720.000 14.876 .001

L2 5644.800 1 5644.800 103.007 .000
SCALE *COND L1 352.800 1 352.800 7.289 .015

L2 2080.800 1 2080.800 37.971 .000
Error(SCALE) L1 871.200 18 48.400

L2 986.400 18 54.800

e The contrast labeled “SCALE L1” gives us the same results as the
previous analysis

o If we try to create a new variable reflecting the contrast, and run a t-test,
we get an incorrect result because the between-subjects factor is no
longer included in the analysis (and we are ignoring the fact that we have

different groups of participants). You should not use this method.
compute c1 = scale3 - scale2.
T-TEST /TESTVAL=0
IVARIABLES=c1.

One-Sample Test

Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper
C1 3.343 19 .003 6.0000 2.2436 9.7564

e When we convert this to an F-value, 7(1,19)=11.18, p = .003

e The degrees of freedom are off by one, and this method uses a slightly
different error term because this method of analysis completely drops
between-subjects factor from the analysis.

o Again, depending on the nature of these tests, the p-values may need
adjustment.
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e To conduct contrasts on the between subjects by within subjects cell means,
SPSS makes the task difficult.

o To compute a between/within contrast in SPSS, we must be able to write
the contrast as an interaction contrast (a difference of differences).
e Suppose we want to examine if the difference between scores on
subscale 2 and subscale 3 depends on training:

Subscalel Subscale2 Subscale3
No Training 1 -1
Training -1 1

o Method #1: Use brand-name contrasts * condition tests.
This contrast is a test of whether the (scale3 — scale2) contrast differs by
condition.

The effect of scale3 — scale2 for no training: ... s = Hxozrains
The effect of scale3 — scale2 for training: .., — ity

Do these effects differ?
W : (/uNoTrain3 - IuNoTrainZ )_ (luTrain3 - luTraiHZ )
W : luNoTrainS - luNonin2 - luTrain3 + luTrainZ

e [ can obtain this contrast from SPSS by asking for an interaction
between the (scale3 — scale2) contrast on the marginal scale means
and a (Training — No Training) contrast on the marginal training
condition means

Subscalel Subscale2 Subscale3
No Training -1
Training
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o This test result was printed when we asked for the Helmert contrasts:
GLM scale1 scale2 scale3 by cond
/WSFACTOR = scale 3 helmert.
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type lll Sum

Source SCALE of Squares df Mean Square F Sig.
SCALE Level 1 vs. Later 3808.800 1 3808.800 110.400 .000

Level 2 vs. Level 3 720.000 1 720.000 14.876 .001
SCALE * COND Level 1 vs. Later 1312.200 1 1312.200 38.035 .000

Level 2 vs. Level 3 352.800 1 352.800 7.289 .015
Error(SCALE) Level 1 vs. Later 621.000 18 34.500

Level 2 vs. Level 3 871.200 18 48.400

772 — SSContrast — 3528 — 29
SSContrust + SSErrorTermForContrust 3 52 8 + 871 2

F(1,18)=7.29,p=.02,n° =.29

o Method #2: Use special contrasts * condition tests.
GLM scale1 scale2 scale3 by cond
/WSFACTOR = scale 3 special ( 1 1 1
0-11
-1 0 1).
Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type lll Sum

Source SCALE | of Squares df Mean Square F Sig.
SCALE L1 720.000 1 720.000 14.876 .001

L2 5644.800 1 5644.800 103.007 .000
SCALE *COND L1 352.800 1 352.800 7.289 .015

L2 2080.800 1 2080.800 37.971 .000
Error(SCALE) L1 871.200 18 48.400

L2 986.400 18 54.800

F(1,18)=7.29,p=.02,n°> =.29
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o Method #3: Manually compute the main effect contrast of interest, and

run a t-test comparing that variable across levels of training:
compute c1 = scale3 - scale2.
UNIANOVA c1 by cond.

Tests of Between-Subjects Effects

Dependent Variable: C1

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 352.8002 1 352.800 7.289 .015
Intercept 720.000 1 720.000 14.876 .001
COND 352.800 1 352.800 7.289 .015
Error 871.200 18 48.400
Total 1944.000 20
Corrected Total 1224.000 19

a. R Squared = .288 (Adjusted R Squared = .249)

F(1,18)=7.29,p=.02,n°> =.29

T-TEST GROUPS = cond(1 2)
IVARIABLES = c1 .

Group Statistics

Std. Error

cond N Mean Std. Deviation Mean
c1 1.00 10 1.8000 8.02496 2.53772
2.00 10 10.2000 5.69210 1.80000

Independent Samples Test

t-test for Equality of Means

95% Confidence
Interval of the

Mean Std. Error Difference
t df Sig. (2-tailed) | Difference | Difference Lower Upper
cl -2.700 18 .015 -8.40000 3.11127 | -14.93654 | -1.86346
2%t 2%27
d= = =1.28

o

t(18) =2.70, p =.02,d =1.28

e We conclude that the difference

80

75 = between scale 2 and scale 3 scores
70 differs as a result of training. The

65 '/ " difference between scores on scale 2
:z B Post-tost and scale 3 becomes larger after

50 «—"* traming

45

40 .

Subscale 2 Subscale 3
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o For contrasts that are not differences across levels of the between-
subjects factor, more advanced techniques are required (but it is not clear
that you should be running these types of contrasts. How would you

interpret this?).
Subscalel Subscale2 Subscale3
No Training -1 1
Training -1 1

o If'the between-subjects factor has more than two levels, then testing
between/within contrasts is trickier (see example 1).

Subscalel Subscale2 Subscale3

No Training
Type A Training 1 -1
Type B Training -1

o If these contrasts are post-hoc and need adjustment, follow the
adjustment procedures for factorial designs (using the appropriate error
term and error degrees of freedom).
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6. Simple Effects Tests
e To conduct simple effects (of the between-subjects factor at each level of the

within-subjects factor), we can run between-subject analyses on each scale.

o We want to compute an error term based only on the within-subject
information that is test-specific. Thus, it is acceptable to run separate
tests on each subscale

o The variances of the training conditions are equal for each subscale
(recall the Levene’s tests, p. 11B-11), so standard tests may be conducted.

Subscale of test

Training Subscale 1 Subscale 2 Subscale 3
No X., =462 X.,,=51.0 X, =528
Yes X.,=49.2 X.,,=66.0 X.,=76.2

ONEWAY scale1 scale2 scale3 by cond.

ANOVA
Sum of
Squares df Mean Square F Sig.
SCALE1 Between Groups 45.000 1 45.000 812 379
Within Groups 997.200 18 55.400
Total 1042.200 19
SCALE2 Between Groups | 1125.000 1 1125.000 11.598 .003
Within Groups 1746.000 18 97.000
Total 2871.000 19
SCALE3 Between Groups | 2737.800 1 2737.800 27.543 .000
Within Groups 1789.200 18 99.400
Total 4527.000 19
772 _ 45 _ o4 772 _ 1125 _ 772 _ 2737.8 — 60
Sl 454997 Sl 1125 +1746 Sl 2737.8+1789.2
.05

pcrit = T =0.0167

e There is no effect of training on performance on subscale 1, F(1,18) =
0.81, ns. F(1,18)=0.82,ns,n> =.04

e For subscales 2 and 3, training improves performance,
F(1,18)=11.60, p <.05,n° =.39, and F(1,18) =27.54, p <.05,n” =.60,
respectively.

o These contrasts could also be run as t-tests.
T-TEST GROUPS = cond(1 2)
/VARIABLES = scale1 scale2 scale3.
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e To conduct simple effects (of the within-subjects factor at each level of the
between-subjects factor), we can run within-subject analyses at each level of
training.

o These are omnibus within-subjects tests. An epsilon adjustment is
required for each test.

o The variance/covariance matrices for training and no training conditions
are equal. Thus, we would like to pool information from both between-
subject conditions to calculate the error term (in order to increase power
and the precisions of the estimate of the error term).

Subscale of test

Training Subscale 1 Subscale 2 Subscale 3
No X., =462 X.,,=51.0 X, =528
Yes X.,=49.2 X.,,=66.0 X.,=762

o If we analyze the training and no training groups separately, the error
terms will only contain information from the training and no training
groups, respectively (Note that this procedure would be acceptable if the
variances between the training and no training groups were unequal)

e Thus, unless the between-subjects variances are unequal, we should
avoid doing the following:

Temporary. Temporary.

Select if cond = 1. Select if cond = 2.

GLM scale1 scale2 scale3 GLM scale1 scale2 scale3
/WSFACTOR = scale 3. /WSFACTOR = scale 3.

Each of these tests will only have »n-1 degrees of freedom (assuming
equal n per group), rather than N-a. Thus, with this approach, we lose
power and accuracy (assuming homogeneity of variance)
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e However, we can select each group separately to obtain the sum of
squares for the simple effects tests. We can then manually compute
tests for the effect of time for training and no training groups
separately using the omnibus within-subjects error term:

MS g.te (No Training oni
F (é:‘ a_l ,é\‘ N_a b_l — cale (No Training Only)
[&(a—D),&( )(b-D)] S

Scale*Subject | Training

From the full within-subjects omnibus tests we can obtain the
appropriate epsilon correction and error mean squares.
Mauchly's Test of Sphericity
Measure: MEASURE 1

Epsilon
Greenhous
Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
scale .961 1.000 .500

Tests of Within-Subjects Effects
Measure: MEASURE 1

Type Il Sum
Source of Squares df Mean Square F Sig.
scale Sphericity Assumed 2899.200 2 1449.600 61.424 .000
Greenhouse-Geisser 2899.200 1.921 1508.872 61.424 .000
Huynh-Feldt 2899.200 2.000 1449.600 61.424 .000
Lower-bound 2899.200 1.000 2899.200 61.424 .000
scale *cond  Sphericity Assumed 1051.200 2 525.600 22.271 .000
Greenhouse-Geisser 1051.200 1.921 547.091 22.271 .000
Huynh-Feldt 1051.200 2.000 525.600 22.271 .000
Lower-bound 1051.200 1.000 1051.200 22.271 .000
Error(scale)  Sphericity Assumed 849.600 36 23.600
Greenhouse-Geisser 849.600 34.586 24.565
Huynh-Feldt 849.600 36.000 23.600
Lower-bound 849.600 18.000 47.200

MS,, .
F[(.725%2),(.725%36)] = S“”eg“ Téog ot

From the within-subjects omnibus tests at each level of the between
subjects factor, we can obtain the value of epsilon, and the appropriate
numerator mean squares.

SORT CASES BY cond .

SPLIT FILE LAYERED BY cond .

GLM scale1 scale2 scale3

/WSFACTOR = scale 3.
SPLIT FILE OFF.
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Mauchly's Test of Sphericity
Measure: MEASURE 1

Epsilon
Greenhous
cond  Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
1.00  scale .864 1.000 .500
2.00  scale 776 .907 .500

Tests of Within-Subjects Effects
Measure: MEASURE _1

Type Il Sum
cond  Source of Squares df Mean Square F Sig.
1.00 scale Sphericity Assumed 232.800 2 116.400 5.046 .018
Greenhouse-Geisser 232.800 1.727 134.792 5.046 .024
Error(scale)  Sphericity Assumed 415.200 18 23.067
Greenhouse-Geisser 415.200 15.544 26.711
2.00 scale Sphericity Assumed 3717.600 2 1858.800 77.022 .000
Greenhouse-Geisser 3717.600 1.551 2396.735 77.022 .000
Error(scale)  Sphericity Assumed 434.400 18 24.133
Greenhouse-Geisser 434.400 13.960 31.117
MSSC“IE(N" Training Only) = 1 1 6400 MSScale(Tmin[ng Only) = 1 858 . 80
5 232.8 , 3717.6
nScale(NoTrainingOnly) = =- nScale(TminingOnly) = =-
232.8+849.6 3717.6 +849.6
116.40 1858.8
F[2,36] = =4.93 F[2,36] = =78.86
23.60 23.60
2 2
F(236)=4.93,p=0.0l,n" =.22 F(2,36)=78.86,p <.01,n" =.81

e We are conducting two simple effects tests, and thus, we need to

apply a p-value correction.

.05
. =——=0.025
pcrlt 2

o Conclusions:
e For the no training condition, we find a significant difference in
performance over the three subscales, F(2,36) =4.93, p <.05,7° =.22.
e For the training condition, we find a significant difference in
performance over the three subscales, F(2,36) = 78.86, p <.05,7° = .81.

e Further pairwise tests must be conducted to understand these
differences.
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7. Final thoughts

e The approach to repeated measures that we have studied is known as the
univariate approach. We assumed that all the differences of all the repeated
measures were drawn from the same population. This assumption led us to a
restrictive assumption on the covariance matrix and correlation matrix

o' o, o, o, L p p p
o, o’ o, o, p 1 p p
o, o, o o, p p 1 p
o, o, o, ©° p p p 1

e Other approaches are possible, and if omnibus tests are called for are usually
preferable. One approach is to assume that each difference of variables is
drawn from a different population. This approach is known as the
multivariate approach and leads to no assumptions on the
covariance/correlation matrix.

0-12 Op O3 Oy L pn P Pu
O, J22 Oy Oy P 1 Py Py
O On 0-32 O3y P Pu 1 py
Oy Oy Oy Gf Pis Pu P 1

e More recently, people have begun trying to model the structure of the
variance covariance matrix:

L p py Py
p 1 opopy
P P 1 p
ps Py pr 1

o This approach is complicated, but it has much appeal if you
e Have missing observations
e Have unequal spacing in your repeated measurements
e Are interested in the variance components
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8. An example: Changes in bone calcium over time (2 * 4)

e A diet/exercise treatment was developed to stop bone calcium loss in
women. A sample of older women was obtained and the women were placed
in either a control group (n = 15) or a treatment group (n = 16). Bone calcium
levels were obtained by photon absorptiometry readings of the dominant
ulna bone at the time of enrollment in the study and at one year, two year,
and three year follow-ups. Investigators were interested in:

o Whether the treatment group had less bone loss than the control group.
o Whether the rate of bone loss differs between the treatment group and the
control group.

e The following data were obtained:

Control Group Treatment Group
Baseline 1 Year 2 Year 3Year Baseline 1 Year 2 Year 3Year
87.3 86.9 86.7 75.5 83.3 85.5 86.2 81.2
59.0 60.2 60.0 53.6 65.3 66.9 67.0 60.6
76.7 76.5 75.7 69.5 81.2 79.5 84.5 75.2
70.6 76.1 72.1 65.3 754 76.7 74.3 66.7
54.9 55.1 57.2 49.0 55.3 58.3 59.1 54.2
78.2 75.3 69.1 67.6 70.3 72.3 70.6 68.6
73.7 70.8 71.8 74.6 76.5 79.9 80.4 71.6
61.8 68.7 68.2 574 66.0 70.9 70.3 64.1
85.3 84.4 79.2 67.0 76.7 79.0 76.9 70.3
82.3 86.9 79.4 774 77.2 74.0 77.8 67.9
68.6 65.4 72.3 60.8 67.3 70.7 68.9 65.9
67.8 69.2 66.3 57.9 50.3 514 53.6 48.0
66.2 67.0 67 56.2 57.3 57.0 575 515
81.0 82.3 86.8 73.9 74.3 77.7 72.6 68.0
72.3 74.6 75.3 66.1 74.0 74.7 74.5 65.7
57.3 56.0 64.7 53.0
Time
Group Baseline Year 1 Year 2 Year 3
Control 72.38 73.29 72.47 64.79 70.73
Treatment 69.23 70.66 71.18 64.53 68.90
70.75 71.93 71.81 64.65
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Bone Calcium

e First, let’s consider how we might test the hypotheses.

o Question #1: Does the treatment group have less bone loss than the
control group?

o Question #2: Is the rate of bone loss different between the treatment
group and the control group?
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e Next, let’s test all the assumptions for this model.

o Normality
EXAMINE VARIABLES= baseline year1 year2 year3 BY group
/PLOT BOXPLOT NPPLOT SPREADLEVEL

/COMPARE VARIABLES.
B baseline
90 M yeart
O year2
B year3
80—
707 Tests of Normality
Shapiro-Wilk
group Statistic df Sig.
60 baseline  Control 979 15 .961
Treatment .935 16 .289
year1 Control .964 15 .766
50 Treatment .918 16 155
year2 Control .968 15 .831
Treatment 976 16 919
o 200 year3 Control .957 15 .646
group Treatment .952 16 515

e [f we want to perform tests on the marginal group means, then we
should check normality on the marginal group means.
(Would tests on the marginal group means make sense?)

COMPUTE average = SUM(baseline,year1,year2,year3)/4.
EXAMINE VARIABLES= average BY group
/PLOT BOXPLOT SPREADLEVEL.

90.00—

80.00—

average

70.00

60.00—

Tests of Normality

Shapiro-Wilk
5000 group Statistic df Sig.
. . average Control .968 15 .827
Contel group Treaiment Treatment .950 16 497

e These data satisfy the normality assumption

11B-32 © 2007 A. Karpinski



o Homogeneity of variances / Sphericity

e Homogeneity of the variance covariance matrices
GLM baseline year1 year2 year3 BY group
/WSFACTOR = time 4 Polynomial
/PRINT = DESCRIPTIVE HOMOGENEITY.

Box's Test of Equality of Covariance Matrices

Box's M 17.926 Levene's Test of Equality of Error Variances
F 1.522 F df1 df2 Sig.
df1 10 baseline .076 1 29 .784
daf 3977.868 year1 .042 1 29 .839
. ear2 . .
Sig. 125 y 163 1 29 689
year3 .013 1 29 91
TeSt.S the null hypothesis that .the observed covariance Tests the null hypothesis that the error variance of the
matrices of the dependent variables are equal across groups. dependent variable is equal across groups.

We have no evidence that the variance/covariance matrices are different
across the two treatment groups. This assumption is satisfied. We may
average the data from the groups together to test within subject effects
(marginal time means and time by group interaction effects)

e Homogeneity of variances for between group tests.
Necessary for equal variance tests of all between group effects.

GLM baseline year1 year2 year3 BY group

/WSFACTOR = time 4 Polynomial

/PRINT = DESCRIPTIVE HOMOGENEITY. EXAMINE VARIABLES= average BY group

/PLOT BOXPLOT SPREADLEVEL.

Levene's Test of Equality of Error Variances

COMPUTE average = SUM (baseline,year1,year2,year3)/4.

- Test of Homogeneity of Variance
F df1 df2 Sig.

baseline .076 1 29 784 Levene

Statistic df1 df2 Sig.
yeart 042 1 29 839 average Based on Mean 104 1 29 9.749
year2 163 1 29 689 Based on Median 066 1 29 799
year3 .013 1 29 911 Based on Median and 066 ] 28,388 799
Tests the null hypothesis that the error variance of the with adjusted df ' ' '
dependent variable is equal across groups. Based on trimmed mean 108 1 29 745

We do not have any evidence that the variances are different across the two
groups. We may conduct all between group tests under the assumption that

the variances between groups are equal.
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e Overall sphericity (averaging over the between subjects factor).
Necessary for omnibus tests on the marginal time means and for
omnibus time*group interaction tests (Are these tests meaningful?)
GLM baseline year1 year2 year3 BY group

/WSFACTOR = time 4 Polynomial
/PRINT = DESCRIPTIVE HOMOGENEITY.

Measure: MEASURE 1

Epsilon

Greenhous
e-Geisser
911

Lower-bound
.333

Within Subjects Effect
time

Huynh-Feldt
1.000

The data are spherical. We can conduct omnibus tests for the within-subject
effect (time) or for between/within subject interactions (group*time).

e Multi-sample sphericity: sphericity within each group/treatment level
(the between subjects factor). Necessary for simple effect omnibus
tests for the effect of time for the treatment group and the effect of
time for the control group (Are these tests meaningful?)

SORT CASES BY group .
SPLIT FILE LAYERED BY group .
GLM baseline year1 year2 year3
/WSFACTOR = time 4 Polynomial
/PRINT = DESCRIPTIVE HOMOGENEITY.
SPLIT FILE OFF.

Measure: MEASURE 1

group

Within Subjects Effect

Epsilon

Greenhous
e-Geisser

Huynh-Feldt

Lower-bound

Control

time

.879

1.000

.333

Treatment

time

779

.932

.333

Within each treatment level, the data are not spherical, but the violation is
fixable. We can conduct epsilon-adjusted simple effect omnibus tests for the
within-subject effect (time) at each level of the between-subjects factor

(group).
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Time

Group Baseline Year 1 Year 2 Year 3
Control 72.38 73.29 72.47 64.79 70.73
Treatment 69.23 70.66 71.18 64.53 68.90
70.75 71.93 71.81 64.65

o Conclusions from tests of assumptions:

Tests of between subjects effects
e We may perform an omnibus test (and/or standard contrasts) on the

marginal between-subjects (group) means.

e We may perform standard simple-effects tests (in this case, contrasts)
for the effect of the between-subjects factor (group) at each level of
the within-subjects factor (time).

Tests of within subjects effects
e We may perform standard omnibus tests on the marginal within-
subjects (time) effect and on the between/within (group by time)

interaction.

e Within each group level, the data are not spherical, but the violation is
fixable. We can conduct epsilon-adjusted simple effect omnibus tests
for the within-subject effect (time) at each level of the between-
subjects factor (group).

e Question#1: Does the treatment group have less bone loss than the control

group?

o We can perform tests of the effect of group at each year. The hypotheses
about the rate of bone loss are more important — those will be our planned
tests. Thus, we will consider these four pairwise comparisons to be post-

hoc tests.

74
72

70

Bone Calcium

66

64
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o The easiest way to run these tests is as 4 separate independent samples t-

tests.
T-TEST GROUPS = group(1 2)
/VARIABLES = baseline year1 year2 year3.

Group Statistics

Std. Error

group N Mean Std. Deviation Mean
baseline  Control 15 72.3800 9.59786 2.47816
Treatment 16 69.2313 9.89186 2.47297
year1 Control 15 73.2933 9.43803 2.43689
Treatment 16 70.6563 10.02975 2.50744
year2 Control 15 72.4733 8.47884 2.18923
Treatment 16 71.1813 9.29245 2.32311
year3 Control 15 64.7867 8.68586 2.24268
Treatment 16 64.5313 9.02306 2.25577

Independent Samples Test

t-test for Equality of Means

95% Confidence
Interval of the
Mean Std. Error Difference
t df Sig. (2-tailed) | Difference | Difference Lower Upper
baseline .898 29 .376 3.14875 3.50450 | -4.01876 | 10.31626
year1 .753 29 458 2.63708 3.50362 | -4.52862 9.80278
year2 404 29 .690 1.29208 3.20186 | -5.25645 7.84062
year3 .080 29 937 .25542 3.18494 | -6.25851 6.76934
d 2*0.898 313 4 2*0.753 29 d 2*0.404 15 d 2*0.080 03
baseline \/E Yearl @ Year2 @ Year3 @

We should apply a Tukey HSD post-hoc correction to these tests. Because
none of these tests are significant, it is not necessary to do the calculations,
we can report the tests are non-significant with the Tukey HSD procedure.
However, for completeness, here is the correction:

_q(1-a829) 4.613

t it
cr \/E \/E

=3.26

Applying a Tukey HSD correction to these pairwise tests, we find:
e No evidence that the treatment and the control group differed in their
calcium bone density at baseline, #(29) =0.90,ns,d = .33.
e No evidence that the treatment and the control group differed in their
calcium bone density at the one year follow-up, #(29) =0.75,ns,d =.29.
e No evidence that the treatment and the control group differed in their
calcium bone density at the two year follow-up, #(29) = 0.40,ns,d =.15.

e No evidence that the treatment and the control group differed in their
calcium bone density at the two year follow-up, #(29) = 0.08,ns,d =.03.
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e Question #2: Is the rate of bone loss different between the treatment group
and the control group?
o We can test for:
e (Downward) polynomial trends in the control condition,
e (Downward) polynomial trends in the treatment condition,
¢ And for differences in the polynomial trends between the groups.
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o Although there are many tests here (nine), they are the key tests of the
hypotheses and we have a strong theory supporting these hypotheses.
Thus, were these my own data, [ would not apply a p-value correction to
them.

o Ifyou were to apply a correction:

e These are complex contrasts, so you could use a Scheffé correction:
3* F(a =.05,3,29) =3*2.934 = 8.802
e Alternatively, you will be conducting 9 planned contrasts, so a

Bonferroni correction could also be appropriate:

pcrit = % = 0056

¢ You can select whichever of these two methods is less conservative.
In this case, the Bonferroni correction is less conservative by a hair, so
were we to apply a correct we should use the Bonferroni correction.
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Question #2 A and B: Are there polynomial trends in the control condition?
Are there polynomial trends in the treatment condition?
o These are contrast tests within one level of the between-subjects variable.
o Method #1: Select the level of the between-subjects variable of interest
and conduct polynomial trends on that level.

SORT CASES BY group .

SPLIT FILE LAYERED BY group .

GLM baseline year1 year2 year3

/WSFACTOR = time 4 Polynomial.
SPLIT FILE OFF.

Tests of Within-Subjects Contrasts
Measure: MEASURE _1

Type Ill Sum
group Source time of Squares df Mean Square F Sig.

Control time Linear 417.720 1 417.720 40.180 .000
Quadratic 277.350 1 277.350 32.683 .000
Cubic 19.763 1 19.763 3.125 .099

Error(time) Linear 145.547 14 10.396

Quadratic 118.805 14 8.486

Cubic 88.540 14 6.324
Treatment time Linear 147.425 1 147.425 38.266 .000
Quadratic 260.823 1 260.823 241.391 .000
Cubic 31.500 1 31.500 6.050 .027

Error(time) Linear 57.790 15 3.853

Quadratic 16.208 15 1.081

Cubic 78.106 15 5.207

) 417.72 ) 277.35

nLlnear—Conti ol 4 1 772 + 145 547 nQuadratlc—Control 27735 + 1 18805

AD — % =
nCubic—Control 19.763 + 88.50 .

) _ 147425 2 __ 260823 _
ULinear—Treatment 147425 + 57790 . nQuadratic—Treatment 260823 + 16208 :
. 315
nCltbic—Treatment 3 1 5 + 78 106 :
FLinearfContm[ (1,14) = 40 1 87p < 017 772 = 74 FL[”‘?Q"*TV@”'[”1Q”[(1’15) - 3827’1) < 01’ 772 - 72
FQuadralic—Cantrol (1714) = 326&}7 < 017 772 = 70 FQuadralic—Treatment (1715) = 241 39’p < 01’ 772 - 94
FCubic—Control (1,14) = 313,p =. 109 772 =. 1 8 FCubic—Treatment (1’15) = 650’p = 03’ 772 - 29
)
/\\ 4
72 72
N P
; 68 g 68
8 66 \ # 66 \
o4 \ 64 \

Baseline Year 1 Year 2 Year 3 Baseline Year 1 Year 2 Year 3

11B-38 © 2007 A. Karpinski



o Advantages of method #1
e [tis easy to run
o Disadvantages of method #1
e Each test has fewer than (N-a) degrees of freedom. If the variances
between groups are homogeneous, then we are (voluntarily)
sacrificing accuracy and power.

o Method #2: Compute the contrast of interest. Trick SPSS into testing it
within each group separately using an error term with information from
all between-subjects groups. (This method is only appropriate if you
have equal variances between groups).

compute linear = -3*baseline + -1*year1 + 1*year2 + 3*year3.
compute quad = 1*baseline + -1*year1 + -1*year2 + 1*year3.
compute cubic = -1*baseline + 3*year1 + -3*year2 + 1*year3.

ONEWAY linear quad cubic BY group
/ICONTRAST=10
/CONTRAST=10 1
/ISTATISTICS DESCRIPTIVES HOMOGENEITY.

e What is being tested by the contrast commands?

— _1* _1%* % %
V/Linear:Control - 3 /uCantrol:Baseline + 1 /uControl:Yearl + 1 /uCantrol:YeaVZ + 3 /uCantrol:Year‘3
— _1* _1* % %
V/Linear:Treatment - 3 luTreatment:Baseline + 1 luTreatment:Yearl + 1 luTreatment:YearZ + 3 /uTreatment:Year3
Contrast #1

.1 % %k —
HO . 1 V/Linear:Cantrol + O V/Linear:Treatment - 0
HO : l//Linear:Cantrol = 0

.k _1%* % * —
HO . 3 /’lContml:Baseline + 1 IuContr()l:Yearl +1 /uCantrol:YearZ + 3 /’lCnntrol:YeaM - 0

Contrast #2
. * % —
HO . O l//Linear:Control +1 l//Linear:Treutment - 0
HO : l//Linear:Treutment = 0

.k _1* % % —
HO : 3 ﬂTreatment:Baseline + 1 luTreatment:Yearl +1 luTreatment:YearZ +3 /UTreutment:YearS - O

e By using the contrast subcommand, we obtain an error term that uses
information from both groups (and has N-a dfs).
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e Note that the assume equal variances tests have N-a dfs and that the
does not assume equal variances tests are identical to Method 1 where
we ran the contrast only on the (between-subjects) group of interest.

Contrast Tests

Value of Sig.

Contrast Contrast | Std. Error t df (2-tailed)
linear  Assume equal variances 1 -23.6000%| 3.05758 -7.719 29 .000
2 -13.5750%| 2.96049 -4.585 29 .000
Does not assume equal variances 1 -23.60002| 3.72312 -6.339 14.000 .000
2 -13.5750%| 2.19449 -6.186 15.000 .000
quad  Assume equal variances 1 -8.60002 1.11422 -7.718 29 .000
2 -8.0750%| 1.07884 -7.485 29 .000
Does not assume equal variances 1 -8.60002 1.50431 -5.717 14.000 .000
2 -8.07502 51974 -15.537 15.000 .000
cubic  Assume equal variances 1 -5.13332 2.76800 -1.855 29 .074
2 -6.27502 | 2.68011 -2.341 29 .026
Does not assume equal variances 1 -5.13332| 2.90385 -1.768 14.000 .099
2 -6.27502 2.55123 -2.460 15.000 .027

a. The sum of the contrast coefficients is not zero.

2
r= tCnntmst
2
tContrast + df;ontrasl

e Assume Equal Variance Tests e Does Not Assume Equal Variance Tests
N-a degrees of freedom Matches Method #1 output
n;-1 degrees of freedom
tLinear—Contml (29) = —772,p < .01’}’ = 82 tLinear—Control (14) = _634’p < .01,7" = 86
tQuadratic—Control (29) = _772)p < .01,r = 82 tQuadratic—Control (14) = _572’p < 'Ol’r = 84
tCubic—Contml (29) = —1 86,p = .07’}/' = 33 tCubic—Control(14) = _1 77’p =. 10,}" = 42
tLinear—Treatment (29) = —459’p < _01’}/' = 65 tLinear—Treatment (1 5) = _6' 19’p < 'Olir = 85

tQuadratic—Treatment (29) = —749’p < O 1,]/ = 81 tQuadratic—Treatment (1 5) = _15549p < O 1,1" = 97
tCubiC—Treatment (29) = —234’p = _03,;’ = 40 tCubic—Treatment (15) = _246’p = .03,]" = 53

e Which method is right? It depends!

If the variances between groups are equal, then we should pool the
error term to include information from both groups. This
procedure results in more accurate error estimates and tests with
greater power.

If the variances between groups are unequal, then we should not pool
the error term and we should only use information from the group
of interest to calculate the error term.

o Advantages of method #2

e It gives us both equal variance and unequal variance output
o Disadvantages of method #2

e More time consuming to run than method #1
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¢ Question #2 C: Are there differences in the polynomial trends between the

groups?
‘—o—ControI —a— Treatment ‘
74
72 4
g /'/\
g 70 —
2 68
o
66 -
64 , , '
Baseline Year 1 Year 2 Year 3
Linear: Treatment Linear: Control
Time Time
Group Baseline Year Year  Year Group Baseline Year Year Year
1 2 3 1 2 3
Control Control -3 -1 1 3
Treatment -3 -1 1 3 Treatment
Linear: Treatment — Linear: Control
Time
Group Baseline Year1 Year2 Year3
Control 3 1 -1 -3
Treatment -3 -1 1 3
_ % * % *
l//Linear:Treatment - _3 luTreatment:Baseline + _1 luTreatment:Yearl + 1 ﬂTreatment:Yeaﬂ + 3 luTreatment:YearS

—_*k _1* * %
l/lLinear—Control - 3 :uControI:Baseline + 1 luControl:Yearl +1 /’lControl:YearZ + 3 :uControleearS

V/Linear:Treatment—Cantrol - V/Linear:Treatment - WLinear:Cantrol

_* 1k k %
3 /uTreatment:Baseline + 1 luTreatment:Yearl + 1 luTreatment:YeaVZ + 3 /uTreatment:YearG
—1(=* 1% %k F

1( 3 /uControl:Baseline + 1 /uCantrol:Yearl + 1 /uCantrol:YearZ + 3 /uControl:Year3)

_* 1k % %
3 /uTreatment:Baseline + 1 luTreatment:Yearl + 1 luTreatment:YeaVZ + 3 /uTreatment:YearG
% %k _1* _1*
3 /uControl :Baseline + 1 luControleearl 1 luControl Year2 3 /uControl:YearS

o We can repeat this procedure for differences in the quadratic and cubic
trends
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o Method #1: Examine the interaction between the polynomial trends on

time (the repeated measures factor) and condition.
GLM baseline year1 year2 year3 BY group
/WSFACTOR = time 4 Polynomial.

Time * Group (Linear)

Time
Group Baseline Year 1 Year 2 Year 3
Control -1
Treatment 1
-3 -1 1 3
Time
Group Baseline Year 1 Year 2 Year 3
Control 3 1 -1 -3
Treatment -3 -1 1 3

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type lll Sum
Source time of Squares df Mean Square F Sig.
time Linear 534.960 1 534.960 76.296 .000
Quadratic 538.172 1 538.172 115.597 .000
Cubic 50.381 1 50.381 8.767 .006
time * group  Linear 38.903 1 38.903 5.548 .025
Quadratic .533 1 .533 115 737
Cubic .505 1 .505 .088 769
Error(time) Linear 203.337 29 7.012
Quadratic 135.013 29 4.656
Cubic 166.645 29 5.746
, 38.903 , 0.533 3
nDlﬁ"ermeInLlneai 38903 + 203337 nDlﬁ’ermeanuudmnc 0533 + 135013

0.505 y
0.505+166.645

2
nDiﬂ‘el‘nceIn Cubic —

Difference in linear trends: F(1,29) =5.55,p =.03,n> =.16
Difference in quadratic trends: F(1,29)=0.12, p =.74,7° < .01
Difference in cubic trends: F(1,29) =0.09, p =.77,n° <.01

o Advantages of method #1
e FEasy torun
o Disadvantages of method #1
e Only works (provides a I df contrast test of difference between
polynomial trends) when a=2.
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o Method #2: Compute the contrast of interest and (manually) ask for a

comparison between the treatment group and the control group.
ONEWAY linear quad cubic BY group
/CONTRAST= -1 1.

e What is being tested by the contrast command?

— _1* _1%* % %
V/Linear:Control - 3 /uCantrol:Baseline + 1 /uControl:Yearl +1 /uCantrol:YeaVZ +3 /uCantrol:Year‘3

— _1* _1%* % %
V/Linear:Treatment - 3 luTreatment:Baseline + 1 luTreatment:Yearl +1 luTreatment:YearZ +3 /uTreatment:Year3

1% k —
HO . 1 V/Linear:Control +1 V/Linear:Treatment - 0

1%k _1%* * *
HO : 1 ( 3 luControlzBaseline + 1 luControI:Yearl +1 luControleearZ +3 luControI:YearS)

k(% _1%* %k % —
+1 ( 3 luTreutment:Baseline + 1 ﬂTreatment:Yearl +1 luTreatment:YearZ + 3 IuTreatment:Year3) - 0

.Yk % _1* _Qk
HO 3 lLlControl:Baseline +1 lLlControl:Yearl + 1 lLlControl:YeaVZ + 3 /uCantrol:Year‘3

%k 1k % % —
+ 3 /uTreatmem:Baseline + 1 luTreatment:Yearl +1 luTreatment:YearZ + 3 lLlTreatment:YeaB - O

Time
Group Baseline Year 1 Year 2 Year 3
Control 3 1 -1 -3
Treatment -3 -1 1 3

e Thus, the contrast command tests for a difference in linear, quadratic,
and cubic trends between the control and treatment groups (exactly
the same as Method #1).

Contrast Tests

Value of
Contrast | Contrast | Std. Error t df Sig. (2-tailed)
linear 1 10.0250 4.25597 2.356 29 .025
quad 1 .5250 1.55093 .339 29 737
cubic 1 -1.1417 3.85290 -.296 29 .769

2
y= \/ tContrast
2
tContrast + d](contrast

2.356> 40 0.339° 06 0.296> 0
7, . = |— =, 7, e = [— =, e = [/ =,
LinearDif =115 3567 4 29 Ouaddif =49 3397 1 29 Teuneoir =10 5967 + 29
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‘ —e— Control —s— Treatment ‘

72 ’/\\

Bone Calcium

[0}
(o2}

N

Baseline Year 1 Year 2 Year 3

64

Difference in linear trends: #(29) =2.36, p =.03,7 =.40
Difference in quadratic trends: #(29) =0.34, p =.74,r =.06
Difference in cubic trends: #(29) =0.30, p =.77,r =.05

o Advantages of method #2
e Can be used to test for differences in trends when there are more than
2 between-subject groups in the factor (a>2).
e Also provides output to test the contrasts when the variance between
groups 1s not homogeneous
o Disadvantages of method #2
e More time consuming to run than method #1.

e Conclusions
o Question #2: Is the rate of calcium loss different between the treatment
group and the control group?

e Yes. There are significant linear, quadratic, and (significant or
marginally significant) cubic trends in calcium bone loss for both the
treatment and control group. These trends indicate that over time,
participants in both groups are losing calcium in their bones.
However, the linear rate of calcium bone loss is stronger in the
control group than in the treatment group. Thus, there is some
evidence that the treatment is associated with less bone loss.

o Question #1: Does the treatment group have less calcium loss than the
control group?
e No. At the same time, there were no differences in bone calcium
levels at any of the follow-up assessments.

e This example is an illustration of growth curve analysis. In growth curve
analysis, the rate/pattern of change over time is modeled and usually
compared between 2 or more groups.
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Appendix
Two Additional Between/Within Examples

9. : Effects of brain damage on memory (3 * 3)

e A neuropsychologist is exploring short-term memory deficits in brain-
damaged individuals. Patients were classified as either having left-
hemisphere damage, right-hemisphere damage, or no damage (control).

Participants viewed stimuli consisting of string of all digits, all letter,
and mixed letters and digits. The longest string that each participant could
remember in each condition is listed below:

Stimuli

Damage Digits Letters Mixed
Left Brain 6 8 5 5 6 8
8 6 7 4 5 7

7 7 7 6 4 5

Right Brain 9 7 8 8 6 8
8 7 8 6 7 7

9 9 7 8 8 7

Control 8 9 8 7 7 9
10 8 9 8 9 8

9 10 10 10 8 9

e The researcher would like to know:
o Does recall vary by type of stimuli?
o Does this difference vary by type of brain damage?

o Does recall vary by type of brain damage?
o Does this difference vary by type stimuli?

10 10

*

. 9 /
8 B —e—Left Brain 8 / —e—digit
\-//- —a— Right Brain ,/// —u— |etter
7

7 ‘\ Control - mixed
6 6

\—/"

Recall
Recall

«

digit letter mixed Left Brain  Right Brain Control
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e Tests of assumptions

o Normality: Cell means
EXAMINE VARIABLES=digit letter mixed BY damage
/PLOT BOXPLOT STEMLEAF NPPLOT
/COMPARE GROUP.

Descriptives

damage Statistic Std. Error
digit Left Brain Skewness .000 .845
Kurtosis -1.875 1.741
Right Brain  Skewness -.456 .845
Kurtosis -2.390 1.741
Control Skewness .000 .845 Tests of Normality
Kurtosis -1.875 1.741
letter Left Brain Skewness -.075 .845 Shapiro-Wilk
Kurtosis -1.550 1.741 DAMAGE Statistic df Sig.
Right Brain _ Skewness -.857 845 DIGIT Left Brain .853 6 167
Kurtosis -.300 1.741 Right Brain 775 6 .035
Control Skewness -.075 .845 Control .853 6 167
Kurtosis -1.550 1.741 LETTER Left Brain 907 6 415
mixed  Left Brain ikiwn‘ess 418 32? Right Brain 822 6 091
urtosis -.859 1.
Right Brain  Skewness .000 .845 Control - 907 6 415
Kurtosis 048 1.741 MIXED Left Brain 958 6 804
Control Skewness -.857 845 Right Brain .960 6 .820
Kurtosis -300 1.741 Control .822 6 .091
10— : zﬁZr
O mixed
o -
8_
74
6 1
5
e
T T T
Left Brain Right Brain Control
damage
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o Normality: Marginal between-subjects means
COMPUTE between = (digit + letter + mixed)/3.
EXAMINE VARIABLES=between BY damage

/PLOT BOXPLOT SPREADLEVEL.

10.00—

9.00—

between

700 . Tests of Normality
Shapiro-Wilk
6.00-] damage Statistic df Sig.
between  Left Brain .863 6 .201
: : ‘ Right Brain .873 6 .238
Left Brain Right Brain Control
damage Control .950 6 .739

Descriptives

damage Statistic Std. Error

between  Left Brain Skewness 811 .845
Kurtosis -1.029 1.741

Right Brain ~ Skewness -1.153 .845

Kurtosis 2.500 1.741

Control Skewness .000 .845

Kurtosis -1.875 1.741

e The data look relatively symmetrical

o Homogeneity of variances / Sphericity
e Homogeneity of variances for between group tests:

GLM digit letter mixed BY damage COMPUTE between = (digit + letter + mixed)/3.
/WSFACTOR = recall 3 EXAMINE VARIABLES=between BY damage
/PRINT = DESC HOMO. /PLOT BOXPLOT SPREADLEVEL.

Levene's Test of Equality of Error Variances

= pr 2 Sig. Test of Homogeneity of Variance
DIGIT 250 2 15 .782 Levene
LETTER 1.000 2 15 .391 Statistic df1 df2 Sig.
MIXED 1.250 2 15 .315 BETWEEN 1.573 2 15 .240

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

We do not have any evidence that the variances are different across the
between-subjects groups. This assumption is satisfied.

11B-47 © 2007 A. Karpinski



e Homogeneity of the variance covariance matrices
GLM digit letter mixed BY damage
/WSFACTOR = recall 3
/PRINT = DESC HOMO.

Box's Test of Equality of Covariance Matrices
Levene's Test of Equality of Error Variances

Box's M 24.372

F 1.422 F df1 df2 Sig.
df1 12 DIGIT .250 2 15 .782
df2 1090.385 LETTER 1.000 2 15 .391
Sig. .149 MIXED 1.250 2 15 .315
Tests the null hypothesis that the observed covariance Tests the null hypothesis that the error variance of the
matrices of the dependent variables are equal across groups. dependent variable is equal across groups.

We do not have any evidence that the variance/covariance matrices
are different across the three groups. This assumption is satisfied.

e Opverall sphericity (averaging over the between subjects factor):
GLM digit letter mixed BY damage
/WSFACTOR = recall 3
/PRINT = HOMOGENIETY.

Mauchly's Test of Sphericity

Measure: MEASURE_1

Epsilon
Greenhous
Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
RECALL .689 .837 .500

The data are not spherical and the violation is severe. We cannot conduct
omnibus tests for the within-subject effect (recall) or for between/within
subject interactions (recall*stimuli).
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e Multi-Sample Sphericity: Sphericity at each level of the between

subjects factor:
SORT CASES BY damage .
SPLIT FILE LAYERED BY damage .
GLM digit letter mixed
/WSFACTOR = recall 3.
SPLIT FILE OFF.

Mauchly's Test of Sphericity
Measure: MEASURE 1

Epsilon
Greenhous
damage Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
Left Brain recall .545 .581 .500
Right Brain  recall .937 1.000 .500
Control recall 571 .630 .500

The data are only spherical for patients with right brain damage. For the
other two groups, the data are not spherical and the violation is severe and
unfixable. If we want to use the same methods to test effects at each level,
then we cannot conduct simple effect omnibus tests for the within-subject
effect (recall) within each level of the between-subjects factor (stimuli).

o Conclusions from tests of assumptions:
e We may perform an omnibus test and/or standard contrasts on the
marginal between-subjects (damage) means.
e We may not perform any omnibus tests involving within-subjects
effects. Tests on the marginal within-subjects (stimuli) means or on
the between/within interaction (damage by stimuli) must use a
contrast-specific error term.

Stimuli
Damage Digits Letters Mixed
Left Brain X=700 X=567 X=583 X=6.17
Right Brain X=817 X=733 X=750 X=7.67

Control X=900 X=867 X=833 X=8.7
X=806_ X=722 X=7.22
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e Hypothesis testing:
o The researcher is basically asking for all possible tests of interest to be
conducted. We will consider all tests to be exploratory (post-hoc).

Stimuli
Damage _Digits Letters Mixed
Left Brain X=700 X=567 X=583 X=6.17
Right Brain X=817 X=733 X=750 X=7.67
Control X=9.00 X=867 X=833 X=8.67

X=806 X=722 X=7.22

o Does recall vary by type of stimuli?
e Main effect for stimuli (Within subject effect)
We cannot conduct a standard omnibus test
We will conduct pairwise tests on marginal (within-subject) stimuli
means.

o Does this difference vary by type of brain damage?
e Interaction between damage and stimuli (between by within effect)
We cannot conduct a standard interaction omnibus test
We will conduct pairwise tests on the effect of stimuli within each
level of brain damage.

o Does recall vary by type of brain damage?
e Main effect for brain damage (between subject effect)
We can conduct a standard omnibus test
We will follow this test with pairwise tests on marginal (between-
subject) brain damage means.

o Does this difference vary by type of stimuli?
e Interaction between damage and stimuli (between by within effect)
We cannot conduct a standard omnibus interaction test
We can examine the simple effect of brain damage within each
level of stimuli and follow each test with pairwise comparisons
to identify differences.
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o Does recall vary by type of stimuli?
We will conduct pairwise tests on marginal stimuli means.

Stimuli
Damage Digits Letters Mixed
Left Brain X=700 X=567 X=583 X=6.17
Right Brain X=817 X=733 X=750 X=7.67
Control X=9.00 X=867 X=833 X=8.67

| X=806 X=722 X=722

GLM digit letter mixed BY damage
/WSFACTOR = recall 3 simple (1).

GLM digit letter mixed BY damage
/WSFACTOR = recall 3 simple (2).

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Ill Sum
Source recall of Squares df Mean Square F Sig.
recall Level 2 vs. Level 1 12.500 1 12.500 10.714 .005
Level 3 vs. Level 1 12.500 1 12.500 7.353 .016
Error(recall) Level 2 vs. Level 1 17.500 15 1.167
Level 3 vs. Level 1 25.500 15 1.700

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Ill Sum
Source recall of Squares df Mean Square F Sig.
recall Level 3 vs. Level 2 .000 1 .000 .000 1.000
Error(recall) Level 3 vs. Level 2 53.000 15 3.533
) 125 ) 125 ) 0
nDigitsV.Letters - 12.5+17.5 - nDigitsV.Mixed - 12.5+255 - N Lettersv Mixed = 0+ 535 =.0

_(¢(053,15) _ (3.67)

Tukey HSD critical value: F_,= 5 == 6.747

Digits vs. Letters: F(1,15) =10.71, p <.05,n° = .42
Digits vs. Mixed: F(1,15)=7.35,p <.05,7° =.33
Letters vs. Mixed: F(1,15)=0.00,ns,n7> = 0.00
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o Does this difference in recall of types of stimuli vary by type of brain
damage?
e We want to repeat the three contrasts we just ran, but we want to look
within each level of brain damage (rather than averaging over the

types of damage).
Digits vs. Letters
St'irr.luli ' Digit-Letters
Damage Digits Letters Mixed Damage
Left Brain X=700 X=567|X=583 X=6.17 Left Brain 1.33
Right Brain X=817 X=733]1X=750 X=7.67 Right Brain  0.84
Control X=900 X=867 | X=833 X=8.67 Control 0.33

X=8.06 X=722 X=7.22

To examine these differences at each level of brain damage, we can
compute the difference of interest and use the ONEWAY command and the
CONTRAST subcommand:

Compute dig_let = digit - letter.
ONEWAY dig_let by damage

/ISTAT = DESC
/ICONT=100
/CONT=010
/CONT=001.
ANOVA
dig_let
Sum of
Squares df Mean Square F Sig.
Between Groups 3.000 2 1.500 1.286 .305
Within Groups 17.500 15 1.167
Total 20.500 17

Contrast Tests

Value of
Contrast | Contrast | Std. Error t df Sig. (2-tailed)
dig_let 1 1.3333 44096 3.024 15 .009
2 .8333 44096 1.890 15 .078
3 .3333 44096 756 15 461

q(.05/3,315) 4.473 q(.10/3,315) 3.973
t,.= = =3.163 1t = = =2.809
crit \/5 \/5 ot \5 -\5
1.33 0.833 3333

dL@ﬁBrain = 1.29 =1.03 dRightBrain = m =0.04 dContml = E =0.26

Digits vs. Letters
Left Brain: #(15)=3.02,p<.10,d =1.03
Right Brain: #(15) =1.89,ns,d = 0.64
No Damage: #1(15) = 0.76,ns,d = 0.26
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Digits vs. Mixed

St.iniluli . Digit-Mixed
Damage ' _Illglts Iéetters l\;hxed 3 Damage
Left Brain )_(= 7.00 )_(= 5.67 )_(= 5.83 )_(= 6.17 Left Brain 1.167
Right Brain | X=8.17 | X=733 | X=7.50 | X=7.67 Right Brain 0.667
Control X=900| X=867 | XxX=833 | X=8.67 Control 0.667
X=806 X=722 X=722
Compute dig_mix = digit - mixed.
ONEWAY dig_mix by damage
/ISTAT = DESC
/CONT=100
/CONT=010
/CONT=001.
ANOVA
dig_mix
Sum of
Squares df Mean Square F Sig.
Between Groups 1.000 2 .500 294 749
Within Groups 25.500 15 1.700
Total 26.500 17
Contrast Tests
Value of
Contrast Contrast | Std. Error t df Sig. (2-tailed)
dig_mix T 1.1667 53229 2.192 15 045
2 6667 53229 1.252 15 230
3 6667 53229 1.252 15 230
q(.05/3,3,15) 4.473 q(.10/3,3,15) 3.973
= = =3.163 = = =2.809
crit JE .JE crit JE .JE
1.167 0.667 .667
win=——=090 d, .. =——=051 d.,,,6=——==052
betbrain 1 303 Rightt 1.303 Conrel 1,303
Digits vs. Mixed
Left Brain: #(15)=2.19,ns,d = .90
Right Brain: #(15) =1.25,ns,d =.52
No Damage: ¢1(15) =1.25,ns,d =.52
11B-53
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Letter vs. Mixed

Stimuli , Letter-Mixed
Damage _Dagits Letters Mixed Damage
Left Brain )_(: 7.00 )_(: 5.67 )_(: 5.83 )_(: 6.17 Left Brain 0.167
Right Brain =~ X'=8.17 | X=733 X=750 | X=7.67 Right Brain 0.167
Control X=9.00 | X=8.67 X=833 | X=8.67 Control 0.333
X=806 X=722 X=7.22
Compute let_mix = letter - mixed.
ONEWAY let_mix by damage
ISTAT = DESC
/ICONT=100
/ICONT=010
/CONT =001.
ANOVA
let_mix
Sum of
Squares df Mean Square F Sig.
Between Groups 1.000 2 .500 142 .869
Within Groups 53.000 15 3.533
Total 54.000 17
Contrast Tests
Value of
Contrast Contrast | Std. Error t df Sig. (2-tailed)
let_mix 1 -.1667 76739 -.217 15 .831
2 -.1667 76739 -.217 15 .831
3 .3333 76739 434 15 .670

4(05/3,315) 4473 4(10/3,315) 3.973
t .= = =3.163 ¢t = = =2.809
crit JE .JE crit JE .JE
0.1667 333

—0'1667=0.09 d =— =0.09 d =—=0.18

LefiBrain — 1.880 RightBrain 1.880 Control 1.880

d

Letters vs. Mixed
Left Brain: ¢(15)=-0.22,ns,d =.09
Right Brain: #(15) = -0.22,ns,d =.09
No Damage: #(15) = 0.43,ns,d =18

Overall, the effects are relatively consistent within each level of brain
damage, although there is some (marginal) evidence that the advantage of
digits over letters is stronger in left-brain damaged individuals than in
control or right-brain damaged participants.
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Stimuli

Damage Digits Letters Mixed
Left Brain X=700 X=567 X=583 X=6.17
Right Brain X=817 X=733 X=750 X=767
Control X=9.00 X=867 X=833 X=867

X=806" X=722" x=722°

Note: Within each row, means with a common subscript are
significantly different from each other.

10

8 / —e— digit

§ /_/ —u— |etter
x 7 * mixed
6 |
5

Left Brain Right Brain Control

o Does recall vary by type of brain damage?
e Main effect for brain damage (between subject effect)

We will follow-up this test with pairwise tests on marginal brain
damage means.

Stimuli

Damage Digits Letters Mixed

Left Brain X=700 X=567 X=583|X=617
Right Brain X=817 X=733 X=750]X=767
Control X=9.00 X=867 X=833|]X=867

X=8.06 X=722 X=722
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GLM digit letter mixed BY damage
/WSFACTOR = recall 3
/POSTHOC = damage (TUKEY)

Tests of Between-Subjects Effects

Measure: MEASURE_1

Transformed Variable: Average

Type lll Sum
Source of Squares df Mean Square F Sig.
Intercept 3037.500 1 3037.500 | 2462.838 .000
DAMAGE 57.000 2 28.500 23.108 .000
Error 18.500 15 1.233
,72 = _ 7T =.75
57+18.5

There is a significant main effect for brain damage,
F(2,15)=23.10,p <.01,7° =.76.. Overall, recall varies by type of brain damage.

Multiple Comparisons

Dependent Variable: BETWEEN

Tukey HSD
Mean
Difference 95% Confidence Interval

() DAMAGE (J) DAMAGE (I-J) Std. Error Sig. Lower Bound | Upper Bound
Left Brain Right Brain -1.5000* .37019 .003 -2.4615 -.5385

Control -2.5000* .37019 .000 -3.4615 -1.5385
Right Brain  Left Brain 1.5000* .37019 .003 .5385 2.4615

Control -1.0000* .37019 .041 -1.9615 -.0385
Control Left Brain 2.5000* .37019 .000 1.5385 3.4615

Right Brain 1.0000* .37019 .041 .0385 1.9615

*. The mean difference is significant at the .050 level.

SPSS computes appropriate Tukey-HSD adjusted p-values.

1.5

d LefiVRight

1.110

Left-brain vs. right brain:

=——=135 d

LeftVControl

Left-brain vs. control:

=——=225d

2.5
1.110

RightVControl =

b
1.110

t(15)=4.05,p <.01,d =1.35

t(15)=6.75,p < .01,d = 2.25

=09

Right-brain vs. control: t(15) = 2.70, p = .04,d = 0.90

e These exact same tests can be conducted by manually averaging over
the within-subjects factor and conducting an ANOVA on this average
variable.

COMPUTE between = (digit + letter + mixed)/3.
ONEWAY between by damage
/POSTHOC = TUKEY.

11B-56 © 2007 A. Karpinski



o Does this difference vary by type of stimuli?
e We can examine the simple effect of brain damage within each level
of stimuli and follow each test with pairwise comparisons to identify

differences.
Stimuli
Damage Digits Letters Mixed
Left Brain X=700|X=567 | X=583| X=6.17
Right Brain X=817 | X=733 | X=750| X=7.67
Control X=9.00 | X=8.67 | X=833 | X=8.67

X=806 X=722 X=722

e To conduct simple effects within each level of stimuli, we can select
the appropriate level and run an omnibus test comparing the levels of
damage. (Note that we can select a level of stimuli because stimuli is
a within-subjects factor. For within subjects factors, we compute
error estimates based only on information involved in the
comparison).

e Simple effect of damage for digits only:
ONEWAY digit by damage
ISTAT = DESC
/CONTRAST=-110
/CONTRAST =-101
/CONTRAST = 0-11.

ANOVA

DIGIT

Sum of

Squares df Mean Square F Sig.
Between Groups 12.111 2 6.056 7.078 .007
Within Groups 12.833 15 .856
Total 24.944 17

.05 5 12.111

p.=—=.0167 p*= =.
3 12.111+12.833

There is a significant simple effect for brain damage on recall of digits
only, F(2,15)=7.08,p <.05,n° =.49. Overall, recall of digits only varies by
type of brain damage.
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Contrast Tests

Value of
Contrast | Contrast | Std. Error t df Sig. (2-tailed)
digit 1 1.1667 .53403 2.185 15 .045
2 2.0000 .53403 3.745 15 .002
3 .8333 .53403 1.560 15 139

4(05/3.315) 4473
t .= = =3.163
crit JE .JE

1.1667 2 .8333
dLefiVRight = W = 126 dLeﬁVControl = % = 216 dRightVCantml = % =Y.
Recall of digits:
Left-brain vs. right brain: ~ #(15) =2.18,ns,d =1.26
Left-brain vs. control: t(15)=3.75,p < .05,d = 2.16
Right-brain vs. control: t(15) =1.56,ns,d = 0.90
Stimuli
Damage Digits Letters Mixed
Left Brain | X=7.00 | X=567 X=583 X=6.17
Right Brain X=817 | X=733 X=750 X=767
Control | X=9.00 | X=8.67 X=833 X=8.67

X=806 X=722 X=722

10

9 |
= 81 —e— Left Brain
S —=— Right Brain
x 7 * Control

6 |

5

digit letter mixed
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e Simple effect of damage for letters only:
ONEWAY letter by damage
/STAT = DESC
/CONTRAST=-110
/CONTRAST =-10 1
/CONTRAST = 0-11.

ANOVA

LETTER

Sum of

Squares df Mean Square F Sig.
Between Groups 27.111 2 13.556 11.296 .001
Within Groups 18.000 15 1.200
Total 45.111 17

.05 , 27.111
pcr[t :—20167 77 = =.
3 27.111+18.000

There is a significant simple effect for brain damage on recall of
letters only, F(2,15)=11.30, p <.05,7° =.60. Overall, recall of letters
only varies by type of brain damage.

Contrast Tests

Value of
Contrast Contrast | Std. Error t df Sig. (2-tailed)
letter 1 1.6667 .63246 2.635 15 .019
2 3.0000 .63246 4.743 15 .000
3 1.3333 .63246 2.108 15 .052
q(05/3,315) 4.473
crit: JE = JE = 3163
1.6667 3 1.333

dLeftVRight = = 152 dLeftVContrvl =

1.095

Recall of letters:
Left-brain vs. right brain:

Left-brain vs. control:
Right-brain vs. control:

10

—5 = 274 dRightVControl =

——=1.21
1.095

t(15)=2.64,ns,d =1.52
t(15)=4.74,p <.05,d =2.74
t(15)=2.10,ns,d =1.21

. /\
8 EN

Recall

—e— Left Brain
—=#— Right Brain
Control

digit letter
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e Simple effect of damage for mixed stimuli:
ONEWAY mixed by damage
/STAT = DESC
/CONTRAST=-110
/CONTRAST =-10 1
/CONTRAST = 0-11.

ANOVA

mixed

Sum of

Squares df Mean Square F Sig.
Between Groups 19.444 2 9.722 7.415 .006
Within Groups 19.667 15 1.311
Total 39.111 17

.05 19.444
pcrit = :0167 772 = :50
3 19.444 +19.667

There is a significant simple effect for brain damage on recall of letters and
numbers, F(2,15)=7.41,p <.05,n° =.50. Overall, recall of letters only varies

by type of brain damage.
Contrast Tests
Value of
Contrast Contrast | Std. Error t df Sig. (2-tailed)
mixed 1 1.6667 .66109 2.521 15 .024
2 2.5000 .66109 3.782 15 .002
3 .8333 .66109 1.261 15 227

q(05/3,315) 4.473
‘o= 222 3163
crit 2 2
1.6667 2.5 0.8333

Ay oivrign = T1as 146 d, oo = 1145 2,18 dpigpivconror = 1145 0.73

Recall of mixed stimuli (digits and letters):
Left-brain vs. right brain: ~ ¢(15) = 2.52,ns,d =1.46

Left-brain vs. control: t(15)=3.78,p < .05,d = 2.18
Right-brain vs. control: t(15) =1.26,ns,d = 0.73
10
9
= 81 —e— Left Brain
S —=— Right Brain
4

7 \ Control
6

N~

digit letter mixed
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e Conclusions from simple effects of the effect of brain damage on
recall for each type of stimulus

Stimuli

Damage Digits Letters Mixed

Left Brain X=7.00" X=567" X=583° X=6.17°
Right Brain X=817 X=733 X=750 X=7.67°
Control X=9.00" X=867° X=833° X=867¢

X=806 X=722 X=722

Note: Within each column, means with a common subscript are
significantly different from each other.

o The simple effects and pairwise tests allow us to indirectly test the
stimuli by damage interaction. However, we never actually tested any
interaction contracts (all of our contrasts on cell means were within a
level of a factor). When the between-subjects factor has more than two
levels, testing interaction contrasts is not straightforward.
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10. Relationship between time of year and cholesterol (2 * 4)

o Example #2: The Seasons data come from a longitudinal study recently
conducted by the UMass Medical School (Merriam et al., 1999). Subjects
were volunteers recruited from the membership of a large HMO in central
Massachusetts. For some of the variables, subjects provided data during
each season of the year. The number at the end of the variable name
indicates the season: 1=winter; 2=spring; 3=summer; and 4=fall.

Participants’ total cholesterol (TC) level was measured in each of the
four seasons. The researcher would like to know if total cholesterol levels
varied season, and if this variation differed for men and women.

Descriptive Statistics

SEX Mean Std. Deviation N
TC1 Male 224.0591 40.79346 220
Female | 216.4171 42.84937 211
Total 220.3179 41.93859 431
TC2 Male 218.8182 40.11304 220
Female | 213.2204 40.43307 211
Total 216.0777 40.32061 431
TC3 Male 222.1636 41.60071 220
Female | 214.0924 41.07910 211
Total 218.2123 41.49518 431
TC4 Male 222.5182 39.90822 220
Female | 215.0948 42.98048 211
Total 218.8840 41.55878 431

Total Cholesterol by Season

226

224 \
—
222 A

B 220
7 —o— M
en

3 218
2 —l— Women
(S
= 216 =
k] /
|—

214 \-/

212

210 T T T 1

Winter Spring Summer Fall
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e Tests of assumptions

o Normality
EXAMINE VARIABLES=tc1 tc2 tc3 tc4 BY sex
/PLOT BOXPLOT NPPLOT SPREADLEVEL

/COMPARE VARIABLES.
500 Tests of Normality
200 o o Shapiro-Wilk
gg & i o . SEX Statistic df Sig.
00 ! * g TC1  Male 978 220 .002
Female .995 211 .759
200 TC2 Male 979 220 .003
L s Female 991 211 205
B o on o= ffz TC3  Male 971 220 1000
Female .994 211 .554
0 B Tcs
N= 220 220Ma|9220 220 211 21;emalzeﬂ 211 TC4 Ma'e 982 220 007
Female .988 211 .088
SEX
EXAMINE VARIABLES=tc_mean BY sex
/PLOT BOXPLOT NPPLOT SPREADLEVEL
/COMPARE VARIABLES.
400
O
8? S5
300
] Tests of Normality
100 %
Shapiro-Wilk
0 SEX Statistic df Sig.
o o TC_MEAN Male .981 220 .005
Female 994 211 634

SEX

e The data look relatively symmetrical, but there are a number of
outliers. A sensitivity analysis would be in order.
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o Homogeneity of variances / Sphericity

e Homogeneity of the variance covariance matrices

GLM tc1 tc2 tc3 tc4 BY sex

/WSFACTOR = time 4

/PRINT = DESC HOMO.

Box's Test of Equality of Covariance Matrices

Box's M
F

df1

df2

Sig.

14.276
1.413

10
876387.4
167

Tests the null hypothesis that the observed covariance

matrices of the dependent variables are equal across groups.

We do not have any evidence that the variance/covariance matrices

are different across the three groups. This assumption is satisfied.

e Homogeneity of variances for between group tests:

GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR =time 4
/PRINT = DESC HOMO.

Levene's Test of Equality of Error Variances

F df1 df2 Sig.
TC1 927 1 429 336
TC2 565 1 429 453
TC3 364 1 429 546
TC4 620 1 429 431

Tests the null hypothesis that the error variance of the
dependent variable is equal across groups.

11B-64

COMPUTE mean_tc = (tc1 + tc2 + tc3 + tcd)/4.

EXAMINE VARIABLES= mean_tc BY sex

/PLOT BOXPLOT SPREADLEVEL.

Test of Homogeneity of Variance

Levene
Statistic df1

df2

Sig.

TC_MEAN

.693 1

429

.406

We do not have any evidence that the variances are different across

the two groups. This assumption is satisfied.
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e Overall sphericity (averaging over the between subjects factor):

GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR =time 4
/PRINT = DESC HOMO.

Mauchly's Test of Sphericity

Measure: MEASURE_ 1

Epsilon
Greenhous
Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound
TIME .980 .989 .333

The data are spherical. We can conduct omnibus tests for the within-

subject effect (time) or for between/within subject interactions

(sex*time).

e Sphericity within each level of the between subjects factor:

Temporary.

select if sex = 0.

GLM tc1 tc2 tc3 tcd
/WSFACTOR = time 4.

Mauchly's Test of Sphericity

Measure: MEASURE_1

Within Subjects Effect

Epsilon

Greenhous

e-Geisser Huynh-Feldt

Lower-bound

TIME

979 .994

.333

Temporary.
select if sex = 1.

GLM tc1 tc2 tc3 tcd

/WSFACTOR = time 4.

Mauchly's Test of Sphericity

Measure: MEASURE_1

Within Subjects Effect

Epsilon

Greenhous
e-Geisser

Huynh-Feldt

Lower-bound

TIME

.952

.966

.333

Within each level of stimuli the data are spherical. We can conduct
simple effect omnibus tests for the within-subject effect (time) within
each level of the between-subjects factor (sex).

11B-65

© 2007 A. Karpinski




o Conclusions from tests of assumptions:

e We may perform an omnibus test and/or standard contrasts on the
marginal between-subjects (sex) means.

e We may perform standard omnibus tests on the marginal within-
subjects (time) effect and on the between/within (sex by time)
interaction.

e We may perform standard simple-effect omnibus tests for the effect of
the within-subjects factor (time) within each level of the between-
subjects factor (sex).

e Contrasts on the marginal within-subjects (time) means or on the
between/within (sex by time) cell means may use the omnibus error
term. However, | recommend always using a contrast-specific error
term, so all tests will use these contrast-specific error terms.

e There are a number of outliers; a sensitivity analysis should be
conducted.

e General ANOVA omnibus tests:
GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR =time 4
/PRINT = DESC HOMO.
Tests of Within-Subjects Effects
Measure: MEASURE 1
Type lll Sum

Source of Squares df Mean Square F Sig.

TIME Sphericity Assumed 3982.386 3 1327.462 5.382 .001
Greenhouse-Geisser 3982.386 2.939 1355.223 5.382 .001
Huynh-Feldt 3982.386 2.968 1341.813 5.382 .001
Lower-bound 3982.386 1.000 3982.386 5.382 .021

TIME * SEX  Sphericity Assumed 384.530 3 128.177 .520 .669
Greenhouse-Geisser 384.530 2.939 130.857 .520 .665
Huynh-Feldt 384.530 2.968 129.562 .520 .667
Lower-bound 384.530 1.000 384.530 .520 471

Error(TIME) Sphericity Assumed 317410.663 1287 246.628
Greenhouse-Geisser 317410.663 | 1260.637 251.786
Huynh-Feldt 317410.663 | 1273.235 249.295
Lower-bound 317410.663 429.000 739.885

o Omnibus tests using the within-subjects error term MS,,,,.q., /. :
e Main effect of time: F(3,1287)=5.38,p=.001
e Time by gender interaction: F(3,1287)=0.52,p= .67
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Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

Type Il Sum
Source of Squares df Mean Square F Sig.
Intercept | 82119676.7 1 | 82119676.65 |13558.029 .000
SEX 22231.744 1 22231.744 3.670 .056
Error 2598411.686 429 6056.904

o Omnibus tests using the between-subjects error term MS,, . :
e Main effect of gender: F(1,429)=3.67,p=.056

Simple effects of season within each gender:
o There are two simple effects tests (for men and for women). We need to

use an adjusted critical p-value to maintain «,,, =.05

.05
i =——=.025
pmz 2

o We want our test of season to be based on an error term containing
information from both men and women (because overall sphericity is
satisfied, we should use the omnibus within-subjects error term).

e If we select men and women separately, the error terms will only
contain information from the male and female participants,
respectively.

e However, we can select each group separately to obtain the sum of
squares for the simple effects tests. We can then manually compute
tests for the effect of time for men and women separately using the
omnibus error term:

MS.. , MS..
F(a _ 1, (N _ a)(b _ 1)) — Time(Men Only) F(a _ 1, (N _ a)(b _ 1)) — Time(Women Only)

MSTime*Sub / Sex MSTime*Sub / Sex
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o Simple effect of season for men:
Temporary.
select if sex = 0.
GLM tc1 tc2 tc3 tc4
/WSFACTOR = time 4.

Tests of Within-Subjects Effects
Measure: MEASURE _1

Type Ill Sum

Source of Squares df Mean Square F Sig.
TIME Sphericity Assumed 3214.312 3 1071.437 4.356 .005

Greenhouse-Geisser 3214.312 2.938 1093.868 4.356 .005

Huynh-Feldt 3214.312 2.983 1077.619 4.356 .005

Lower-bound 3214.312 1.000 3214.312 4.356 .038
Error(TIME)  Sphericity Assumed 161583.937 657 245.942

Greenhouse-Geisser 161583.937 643.528 251.091

Huynh-Feldt 161583.937 653.231 247.361

Lower-bound 161583.937 219.000 737.826

e We can use the SS and MS for the effect of time within men, but we
should not use the F-test. Because overall sphericity is satisfied, we
should use the omnibus within-subject error term for this simple effect
test

MS 11 rten Omiy 1071.437
F(a—1,(N —a)(b—1)) = —meen 0m) — (3,1287) = ———— =4.344, p = .0048
MSTime*Sub / Sex 246648
.05
o ===.025
pCIll 2
1071.437
F(3,1287)=————=4.344,p < .05
246.648

o There is a significant simple effect of time on total cholesterol levels
for men, F(3,1287)=4.34,p<.05.
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o Simple effect of season for women:
Temporary.
select if sex = 1.
GLM tc1 tc2 tc3 tcd
/WSFACTOR = time 4.

Tests of Within-Subjects Effects
Measure: MEASURE 1

Type Il Sum
Source of Squares df Mean Square F Sig.
TIME Sphericity Assumed 1194.775 3 398.258 1.610 .186
Greenhouse-Geisser 1194.775 2.855 418.543 1.610 .188
Huynh-Feldt 1194.775 2.898 412.266 1.610 .187
Lower-bound 1194.775 1.000 1194.775 1.610 .206
Error(TIME) Sphericity Assumed 155826.725 630 247.344
Greenhouse-Geisser 155826.725 599.467 259.942
Huynh-Feldt 155826.725 608.594 256.044
Lower-bound 155826.725 210.000 742.032
F(a-1,(N=a)b-1)) = MS e ons F(3,1287)= 398.258 1.6147,p=.1841
MSTime*Sub / Sex 246648
.05
pcrit = 7 = 025
F(3,1287)= 398.258 1.61,ns
246.648

e There is no significant simple effect of time on total cholesterol levels
for women, F(3,1287)=1.62,p<.05.
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e Simple effects of gender within each time:
o There are four simple effects tests (one for each season). We need to use
an adjusted critical p-value to maintain «,,, =.05

.05
., =——=.0125
pcrtt 4

o Simple effect of gender in winter (time 1):
GLM tc1 by sex
/PRINT = DESC.

Tests of Between-Subjects Effects

Dependent Variable: TC1

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 6289.9222 1 6289.922 3.598 .059
Intercept 20896457.5 1 | 20896457.46 |11952.558 .000
SEX 6289.922 1 6289.922 3.598 .059
Error 750013.530 429 1748.283
Total 21677027.0 431
Corrected Total 756303.452 430

a. R Squared = .008 (Adjusted R Squared = .006)

e We find no evidence for a significant simple effect of gender at time
I (winter):
F(1,429) =3.60,ns

o Simple effect of gender in spring (time 2):
GLM tc2 by sex
/PRINT = DESC.

Tests of Between-Subjects Effects

Dependent Variable: TC2

Type lll Sum
Source of Squares df Mean Square F Sig.
Corrected Model 3374.9172 1 3374.917 2.081 .150
Intercept 20103556.2 1 | 20103556.17 |12396.791 .000
SEX 3374.917 1 3374.917 2.081 .150
Error 695698.230 429 1621.674
Total 20822283.8 431
Corrected Total 699073.146 430

a. R Squared = .005 (Adjusted R Squared = .003)
e We find no evidence for a significant simple effect of gender at time

2(spring):
F(1,429) =2.08,ns
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o Simple effect of gender in summer (time 3):
GLM tc3 by sex
/PRINT = DESC.

Tests of Between-Subjects Effects

Dependent Variable: TC3

Type Ill Sum
Source of Squares df Mean Square F Sig.
Corrected Model 7016.2682 1 7016.268 4.104 .043
Intercept 20497967.4 1 | 20497967.41 |11990.563 .000
SEX 7016.268 1 7016.268 4.104 .043
Error 733379.057 429 1709.508
Total 21263152.8 431
Corrected Total 740395.325 430

a. R Squared = .009 (Adjusted R Squared =.007)

e We find no evidence for a significant simple effect of gender at time
3(summer):
F(1,429) = 4.10,ns

o Simple effect of gender in fall (time 4):
GLM tc4 by sex
/PRINT = DESC.

Tests of Between-Subjects Effects

Dependent Variable: TC4

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 5935.1682 1 5935.168 3.456 .064
Intercept 20625678.0 1 | 20625678.00 |12010.367 .000
SEX 5935.168 1 5935.168 3.456 .064
Error 736731.532 429 1717.323
Total 21391963.5 431
Corrected Total 742666.700 430

a. R Squared = .008 (Adjusted R Squared = .006)

e We find no evidence for a significant simple effect of gender at time
4(fall):
F(1,429) =3.46, ns
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e Tests of polynomial trends over time:

Season
Gender Winter Spring Summer Fall
Male 224.06 218.82 222.16 222.51
Female 216.42 213.22 214.09 216.09
220.32 216.07 218.21 218.88
o Polynomial trends on the marginal season means:
GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR = time 4
/PRINT = DESC HOMO.
Tests of Within-Subjects Contrasts
Measure: MEASURE 1
Type Ill Sum
Source TIME of Squares df Mean Square F Sig.
TIME Linear 102.937 1 102.937 .362 548
Quadratic 2583.051 1 2583.051 10.575 .001
Cubic 1296.398 1 1296.398 6.140 .014
TIME * SEX Linear 17.789 1 17.789 .063 .803
Quadratic 52.504 1 52.504 215 643
Cubic 314.237 1 314.237 1.488 223
Error(TIME) Linear 122043.560 429 284.484
Quadratic | 104784.659 429 244.253
Cubic 90582.444 429 211.148

o These are complex post-hoc tests and require a Scheffe correction:
F._=df.. . *F(05df.. .df, )=3%F(053429)=3%3.01=9.05

season?

e Linear trend in total cholesterol over seasons: F(1,429) =0.36,ns
e (Quadratic trend in total cholesterol over seasons: F(1,429) =10.58, p < .05
e (Cubic trend in total cholesterol over seasons: F(1,429) =6.14,ns
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o Next, we test if these polynomial trends differ by gender:
e These tests (linear*sex, quadratic*sex, and cubic*sex) were printed in
the previous analysis.
e These are complex post-hoc tests and require a Scheffe correction:

F = ioniser T FCO5,dSpioniions W o) = 3 ¥ F(05,3,429) =3*3.01 =9.05
Season
Linear Winter Spring Summer Fall
Male -3 -1 1 3
Female 3 1 -1 -3

There is no difference in linear trends in total cholesterol over seasons
between men and women: F(1,429) = 0.06,ns

Season
Quadratic Winter Spring Summer Fall
Male 1 -1 -1 1
Female -1 1 1 -1

There is no difference in quadratic trends in total cholesterol over
seasons between men and women: F(1,429) = 0.22,ns

Season
Cubic Winter Spring Summer Fall
Male -3 1 -1 3
Female 3 -1 1 -3

There is no difference in cubic trends in total cholesterol over seasons
between men and women: F(1,429) =1.49,ns
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e Next, we conduct repeated contrasts on the marginal time means (comparing
each level to the previous level):

GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR = time 4 repeated
/PRINT = DESC HOMO.

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Ill Sum
Source TIME of Squares df Mean Square F Sig.
TIME Level 1 vs. Level 2 7667.696 1 7667.696 17.697 .000
Level 2 vs. Level 3 1915.740 1 1915.740 4.288 .039
Level 3 vs. Level 4 198.305 1 198.305 402 527
TIME * SEX Level 1 vs. Level 2 450.076 1 450.076 1.039 .309
Level 2 vs. Level 3 658.904 1 658.904 1.475 225
Level 3 vs. Level 4 45.200 1 45.200 .092 762
Error(TIME) Level 1 vs. Level 2| 185873.819 429 433.272
Level 2 vs. Level 3| 191652.790 429 446.743
Level 3vs. Level 4 | 211850.594 429 493.824

o These are post-hoc pairwise comparisons and require a Tukey HSD
correction.
_ (4.05,4,429))  (3.633)°
crit” 2 -

=6.60

e Winter vs. Spring: F(1,429)=17.70, p < .05
e Spring vs. Summer: F(1,429) = 4.29,ns
e Summer vs. Fall: F(1,429) = 0.40,ns

e We also want to test if these repeated contrasts differ for men and women.
o Again, tests of these contrasts were provided as interaction contrasts when
we asked for the repeated contrasts.
o These are complex, interaction post-hoc tests and require a Scheffe
correction:

Fcrit: dﬂeason*sex * F(OS’ d.f:vea.sotz*sex’d.f;’rror) = 3 * F(Os’ 3’ 429) = 3 * 301 = 905
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Season

Winter vs. Spring Winter Spring Summer Fall
Male 1 -1 0 0
Female -1 1 0 0

e Difference in winter vs. spring total cholesterol levels between men
and women: F(1,429) =1.04,ns

Season
Spring vs. Summer Winter Spring Summer Fall
Male 0 1 -1 0
Female 0 -1 1 0

¢ Difference in spring vs. summer total cholesterol levels between men
and women: F(1,429) =1.48,ns

Season
Summer vs. Fall Winter Spring Summer Fall
Male 0 0 1 -1
Female 0 0 -1 1

e Difference in summer vs. fall total cholesterol levels between men and
women: F(1,429) = 0.09,ns
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o These differences in repeated contrasts between men and women can also
be conducted by computing repeated contrasts on the marginal season
means, and then testing if these contrasts differ by gender

e Step 1: Compute a contrast comparing winter to spring.

I//Winter—Spring = /’tW[nter _/'lSpring

Season
Winter vs. Spring Winter Spring Summer Fall
Male
Female

e Step 2: Test if this contrast differs by gender.
Vinteraction — Wiinter—Spring (men)— WWinter—Spring(Women)
= (/uWinter (men) = g, men))_ (IuWinter (women) — pg,... Women))
= Hyinier(MEN) =t (MmeN) = iy, (Women) + pig,., (women)

Season
Winter vs. Spring Winter Spring Summer Fall
Male 1 -1
Female -1 1

e A test of whether the difference in winter vs. spring total cholesterol
levels are equal for men and women is equivalent to a test of the
interaction contrast, H, : ¥, ..o, =0

HO : lﬂintemction = 0

HO : l//WinterfSpring (men) o l//WinterfSpring(women) =0
HO : l//Winter—Spring (mel’l ) = l//Winter—Spring (Womel’l)
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o In SPSS:

Compute t1vst2 = tc1 - tc2.
Compute t2vst3 = tc2 - tc3.
Compute t3vst4 = tc3 - tc4.

T-TEST GROUPS=sex(0 1)
/VARIABLES=t1vst2 t2vst3 t3vst4.

Independent Samples Test

Levene's Test for

Equality of Variances t-test for Equality of Means
Mean Std. Error
F Sig. t df Sig. (2-tailed) | Difference | Difference
T1VST2 Eg:f;‘;”ances 491 484 1.019 429 300 2.0442 | 2.00570
Egt”:L;’j;Laezces 1021 | 427.693 308 2.0442 | 2.00164
T2VST3 Eg:f;‘giances 856 355 1.214 429 225 24734 | 2.03664
Egt“:;:jr:mces 1217 | 426.741 224 24734 | 2.03177
T3VST4 Eg:f;\‘giances 656 418 303 429 762 6478 | 214127
Egt“:;:jr:mces 302 | 416.015 763 6478 | 2.14734

ZLcrit:de;easan*sex * F(‘OS’df;easan*sex’df;rror) = J3 * F(0593’429) :J3 * 301 = 301

e Difference in winter vs. spring total cholesterol levels between men
and women: #(429) =1.02,ns

e Difference in spring vs. summer total cholesterol levels between men
and women: #429)=1.21,ns

e Difference in summer vs. fall total cholesterol levels between men and
women: #429)=0.30,ns

o These results exactly match the results we obtain by asking for repeated
contrasts (and repeated*gender interaction contrasts) in the repeated-
measures ANOVA. Both analyses test the same hypothesis and include
gender as a between-subjects factor in the design.

o An advantage of this method is that it can be used when the variance
between the male and female (contrast) scores are not equal.
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e If we wish to conduct simple contrasts (comparing cholesterol levels at each
time point to the cholesterol levels in winter):

GLM tc1 tc2 tc3 tc4 BY sex
/WSFACTOR = tc 4 simple(1)
/PRINT = DESC HOMO.

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Il Sum
Source TIME of Squares df Mean Square F Sig.
TIME Level 2 vs. Level 1 7667.696 1 7667.696 17.697 .000
Level 3 vs. Level 1 1918.108 1 1918.108 3.468 .063
Level 4 vs. Level 1 882.930 1 882.930 1.621 .204
TIME * SEX Level 2 vs. Level 1 450.076 1 450.076 1.039 .309
Level 3 vs. Level 1 19.839 1 19.839 .036 .850
Level 4 vs. Level 1 5.148 1 5.148 .009 .923
Error(TIME) Level 2 vs. Level 1| 185873.819 429 433.272
Level 3 vs. Level 1| 237265.107 429 553.066
Level 4 vs. Level 1 | 233599.217 429 544.520

o These are post-hoc pair-wise comparisons and require a Tukey HSD
correction.
_ (¢.05,4,429))  (3.633)°
crit™ 2 -

=6.60

e Winter vs. Spring: F(1,429)=17.70,p < .05
e Winter vs. Summer: F(1,429) =3.47,ns
e Winter vs. Fall: F(1,429)=1.62,ns

e We can also test if these simple contrasts differ for men and women.
o These are complex, interaction post-hoc tests and require a Scheffe
correction:
FCI‘[t: df;eason*sex * F(OS’ df

season *sex >

df,. )=3*F(.053,429)=3*3.01=9.05
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o The tests of these contrasts were provided as interaction contrasts when
we asked for the repeated contrasts:

Season
Winter vs. Spring Winter Spring Summer Fall
Male 1 -1 0 0
Female -1 1 0 0

e Difference in winter vs. spring total cholesterol levels between men
and women: F(1,429) =1.04,ns

Season
Spring vs. Summer Winter Spring Summer Fall
Male 1 0 -1 0
Female -1 0 1 0

e Difference in winter vs. summer total cholesterol levels between men
and women: F(1,429) =0.04,ns

Season
Summer vs. Fall Winter Spring Summer Fall
Male 1 0 0 -1
Female -1 0 0 1

e Difference in winter vs. fall total cholesterol levels between men and
women: F(1,429) =0.01,ns
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o Again, differences in simple contrasts between men and women can also
be conducted by computing simple contrasts on the marginal season
means, and then testing if these contrasts differ by gender

o In SPSS:

Compute t1vst2 = tc1 - tc2.
Compute t1vst3 = tc1 - tc3.
Compute t1vst4 = tc1 - tc4.

T-TEST GROUPS=sex(0 1)
VARIABLES=t1vst2 t1vst3 t1vstd.

Independent Samples Test

Levene's Test for

Equality of Variances t-test for Equality of Means
Mean Std. Error
F Sig. t df Sig. (2-tailed) | Difference [ Difference
T1vsT2 Es::r'n‘;zﬁances 491 484 1.019 429 309 2.0442 | 2.00570
ﬁgt“:;;’j;aezces 1.021 | 427.693 308 20442 | 2.00164
T1VST3 Sg:fr;giances 153 696 -189 429 850 4292 | 2.26608
Egt“i;’j:géces -189 | 428.071 850 4292 | 2.26630
T1vST4 Eg:fr'n‘giances 018 895 097 429 923 2186 |  2.24850
ng:;;’j;igces 007 | 427.401 923 2186 | 2.24941

tcrit:de;easan*sex * F(‘OS’df;easan*sex’df;rror) = J3 * F(0573’429) :J3 * 3.01=3.01

e Difference in winter vs. spring total cholesterol levels between men
and women: #429)=1.02,ns

e Difference in winter vs. summer total cholesterol levels between men
and women: #429)=0.19,ns

e Difference in winter vs. fall total cholesterol levels between men and
women: #429)=0.01,ns
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Finally, when we look at the data, we may decide to examine some complex
contrasts on the marginal season means:

Season
Gender Winter Spring Summer Fall
Male 224.06 218.82 222.16 222.51
Female 216.42 213.22 214.09 216.09
220.32 216.07 218.21 218.88
1. Do cholesterol levels in winter differ from average
cholesterol levels in summer and fall?
Season
Winter Spring Summer Fall
2 0 -1 -1
11. Do cholesterol levels in spring differ from average
cholesterol levels in summer and fall?
Season
Winter Spring Summer Fall
0 2 -1 -1
111. Do average cholesterol levels in the winter and fall differ
from average cholesterol levels in summer and fall?
Season
Winter Spring Summer Fall

-1 1 1 -1

1v.

o We cannot test these hypotheses on the marginal means in SPSS by
computing a value reflecting this contrast (because we need to keep
gender in the analysis).

o We must enter these contrasts in the special subcommand as contrasts
coefficients on the marginal season means.

o These are complex post-hoc tests and require a Scheffe correction:
F_=df.. . *F(05df, . .df, )=3%F(053429)=3%3.01=9.05
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GLM tc1 tc2 tc3 tc4 by sex
/WSFACTOR = time 4 special (1111 20-1-1 0-211 -111-1)

Tests of Within-Subjects Contrasts

Measure: MEASURE 1

Type lll Sum
Source TIME of Squares df Mean Square F Sig.
TIME L1 5403.773 1 5403.773 3.176 .075
L2 10326.706 1 10326.706 7.505 .006
L3 10332.205 1 10332.205 10.575 .001
TIME * SEX L1 4.775 1 4.775 .003 .958
L2 1990.511 1 1990.511 1.447 .230
L3 210.014 1 210.014 215 .643
Error(TIME) L1 729878.055 429 1701.347
L2 590257.230 429 1375.891
L3 419138.635 429 977.013

e Winter vs. (Summer and Fall): F(1,429)=3.18,ns
e Spring vs. (Summer and Fall): F(1,429) =7.50,ns
e (Winter and Fall) vs. (Spring and Summer): F(1,429) =10.58, p < .05

e We also should check to test if these comparisons differ for men and women.
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F_=df, . *F(05df,. . .df. )=3%F(053429)=3%3.01=9.05
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o The tests of these contrasts were provided as interaction contrasts when
we asked for the special contrasts:

Season
L1* Sex Winter Spring Summer Fall
Male 2 0 -1 -1
Female -2 0 1 1

e Difference in winter vs. (summer and fall) total cholesterol levels
between men and women: F(1,429) =0.01,ns

Season
L2* Sex Winter Spring Summer Fall
Male 0 2 -1 -1
Female 0 -2 1 1

e Difference in spring vs. (summer and fall) total cholesterol levels
between men and women: F(1,429) =1.45,ns

Season
L3* Sex Winter Spring Summer Fall
Male -1 1 1 -1
Female 1 -1 -1 1

e Difference in (winter and fall) vs. (spring and summer) total
cholesterol levels between men and women: F(1,429) = .22,ns
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o These differences in complex interaction contrasts can also be conducted
by computing the complex contrasts on the marginal season means, and
then testing if these contrasts differ by gender

e For example, first compute a contrast comparing winter to (summer

and fall):
Witin-sumran = 2Hin ~ Mg + Har)
Season
Winter vs. Spring Winter Spring Summer Fall
Male
Female
2 -1 -1

e Next, test if this contrast differs by gender

l//interaction = WWin —SumFall ( men) - lr//W,‘n —SumFall ( wom en)
= 214y, (men) —(us,,, (men) + i, (men))) —
(244, (women) ~ (s, (women) + py,, (women)))

= 2/qu (men) _luSum (me”l) _luFall(men) +
_2ILtWin (Women) + Hsum (Women) + Hean (WOmen)

Season
Winter vs. Spring Winter Spring Summer Fall
Male 2 0 -1 -1
Female -2 0 1 1

e A test of whether the difference in winter vs. (summer and fall) total
cholesterol levels is equal for men and women is equivalent to testing
if the interaction contrast differs from zero (H, : ¥,,...cion =0)-

HO : interaction 0

HO : l//Win—SumFall(men) - WWin—SumFall(Women) = O
HO : l//Win—SumFall(men) = l//Win—SumFall(Women)
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o In SPSS:

compute t1vst34 = tc1 - (tc3 + tc4)/2.
compute t2vst34 = tc2 - (tc3 + tc4)/2.
compute t14vst23 = (tc1 + tc4)/2 - (tc2 + tc3)/2.

T-TEST GROUPS=sex(0 1)

/VARIABLES= t1vst34 t2vst34 t14vst23.

Independent Samples Test

Levene's Test for
Equality of Variances

t-test for Equality of Means

not assumed

Mean Std. Error

F Sig. t df Sig. (2-tailed) | Difference | Difference

TIVST34 Eg::r;\;zﬂances 007 934 -053 429 958 1053 | 1.98725
Faual variances 053 | 428.862 958 1053 |  1.98625

T2vsT4 Sg:j'ngiames 712 399 | -1.203 429 230 | 21495 | 1.78710
Ef,‘t” 2|S:jrrg;°es 1205 | 427915 229 | 21495 | 1.78366

T4vsT23 Sg:frln‘gﬂa”ces 743 389 464 429 643 6982 | 1.50504
Edual variances 463 | 421,550 644 6982 | 150881

tcrit:de;easan *sex * F(OS’ df;easan *sex’df;rror) = J3 * F(05’3’ 429) = J 3 * 301 = 301

¢ Difference in winter vs. (summer and fall) total cholesterol levels

between men and women: #(429) =0.05,ns

e Difference in spring vs. (summer and fall) total cholesterol levels

between men and women: #429) =1.20,ns

e Difference in (winter and fall) vs. (spring and summer) total
cholesterol levels between men and women: #429) = 0.46,ns

o These results exactly match the results we obtain by asking for special

contrasts (and special*gender interaction contrasts) in the repeated-

measures ANOVA. Both analyses test the same hypotheses and include

gender as a between-subjects factor in the design.

e Remember that our check of assumptions revealed a number of outliers. We
should conduct a sensitivity analysis to see of the outliers affected any of our

conclusions.
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