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Repeated Measures ANOVA
Two-Factor Repeated Measures

1. Introduction

Participants take part in a training program to help them prepare for a
standardized test. Before the training, they take the test and scores are
recorded for all three sub-scales of the test. After the 12-week training
program, participants retake the test.

Pre-training Post-training
Participant Subscalel Subscale2 Subscale3 Subscalel Subscale2 Subscale3
1 42 42 48 48 60 78
2 42 48 48 36 48 60
3 48 48 54 66 78 78
4 42 54 54 48 78 90
5 54 66 54 48 66 72
6 36 42 36 36 48 54
7 48 48 60 54 72 84
8 48 60 66 54 72 90
9 54 60 54 48 72 78
10 48 42 54 54 66 78
46.2 51.0 52.8 49.2 66.0 76.2
Test Performance Test Performance
80 80

g 70 4 —e— Scalet g 70 /./. e—Pro

g 60 /. —l— Scale2 ‘w_ 60 —m— Post

2 50 "’”6 Scale3 § 50 | '40———‘

40 : 40 ‘ ‘
Pre Post Scale1 Scale2 Scale3
Time Time

With this design, several questions come to mind:
o Overall, does the training improve test scores?
e Does training improve test scores for subscale 1?
e Does training improve test scores for subscale 2?
e Does training improve test scores for subscale 3?
o Overall, is there a difference in performance on the three sub-scales?
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e We have two repeated measures factors:

o Pre-test and post-test scores
o The three subscales of the test

We can classify this design as a 2*3 repeated measures design, with
repeated measures on both factors.

Subscale of test (Factor A)

Time (Factor B) Subscale 1 Subscale 2 Subscale 3
Pre-test X., =462 X.,,=51.0 X.,=52.8 X..,=50.0
Post-test X.,=49.2 X.,,=66.0 X.,=76.2 X..,=63.8
n=10 X..=47.7 X.,.=585 X.,.=64.5

Everything we learned about interpreting two-way between-subjects designs

applies here. The only difference will be the assumptions of the test, and the
construction of the error term.

2. Structural model, SS partitioning, and the ANOVA table
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We will only consider the case where the factors are fixed variables.

Here is the structural model for a two-factor repeated measures design:
Y

w =ura;+p+m, +(af), +(an), +(pr), +(afr),
o Factor A («,) and Factor B ( 8,) and the A*B interaction (ef,,) are fixed
effects

o The Subject effect (,) is a random effect. Thus, all interaction terms
involving the subject effect are also random effects

o Because we have one observation per participant, we do not have enough
information to estimate both the (afr)_ interaction and the within cell
residuals (¢;,).

e In the randomized block design, we omitted the interaction term and
retained the estimate of error

e For factorial within-subjects resigns, we will omit the error term, and
consider the information to be an estimate of the A*B*Subject
interaction term.

e This difference is a difference of terminology, not a sustentative
difference.
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o We can compute estimates for the fixed terms in the model, just as we
have for factorial designs:

U The overall mean of the scores

a;  The effect of being in level j of Factor A

QA= M= [ Z“} =0
Jj=1

B,  The effect of being in level k of Factor B
b

By =ty — ... Zﬂk =0
k=1

(@B),, The effect of being in level j of Factor A and level k of Factor B

(the interaction of level j of Factor A and level k of Factor B)
(aﬁ)jk =M — M By T U

a

Z(aﬂ )jk =0 foreach level of j

j=1
b
Z(a,b’ ) « =0 foreach level of k
k

=1

o The remaining terms are random effects.
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o What do we do with all the random effect parameters? Let’s take a closer
look at the (Br), parameter. To look at the Factor B * Subject effect, we

need to collapse across Factor A

Participant Difference
Pre- Post-
Training  Training
1 44 62 18
2 46 48 2
3 50 74 24
4 50 72 22
5 58 62 4
6 38 46 8
7 52 70 18
8 58 72 14
9 56 66 10
10 48 66 18
50.0 63.8 13.8

e The B*Subject interaction examines if the effect of B (Pre vs. Post-
training) is the same across all participants.

¢ In other words, the B*Subject interaction is a measure of the
variability in the B effect or how much error we have in the
measurement of the B effect
(And so intuitively it makes sense that we can use the B*Subject
term as an error term when we test the B effect)
o This logic extends across each of the fixed effects
= The A*Subject interaction measures the variability in the A effect

= The B*Subject interaction measures the variability in the B effect

= The A*B*Subject interaction measures the variability in the A*B
interaction
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o For a two-factor repeated measures design, we have the following SS

decomposition.
SS Total
(SS Corrected Total)
SS Model SS Error

SS Main SS 2-Way SS SS SS SS
Effects Interactions A*S B*S A*B*S Subject
SS SS SS

A B A*B
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e The ANOVA table for a two-factor repeated measures design:

o Remember that to construct a valid F-test for an effect, we need:
e The numerator to contain exactly one more term than the
denominator
e The extra term must correspond to the effect being tested

o When these conditions hold:

e The F-ratio will equal 1 when the null hypothesis is true (because the
numerator and denominator will be estimating the same effects)

e The F-ratio will be greater than 1 when the null hypothesis is false

Source SS df MS E(MS) F
Factor A SSA a-1 SSA b o MSA
~ o’ +bo’ + ! "
a-1 R MS(A*S)
A*S SS  (a-1)(n-1) SS(A*S) ol +bol
(Factor A Error) ( 4 * S) m
Factor B SSB b-1 SSB ) ) ”az B MSB
bh—1 O'E-I-aO'ﬁ”-i-? MS(B*S)
B*S SS  (b-1)(n-1) SS(B*S) o’ +ac?,
(Factor B Error) (B * S) m
A*B SSAB  (a-1)(b-1) SSAB i > af’ MSAB

@-Db-1) Tt Sy MS(A*B*S)

RS SS  (a-1)(b-1)  SS(A*B*S) O} + O
(A*B Error) (A*B*S) *(n-1) (a—=D(bB-1D)(n-1)

Subjects (S) SSS (n-1) SSS ol +abo’

T

Total SST N-1

11A-7 © 2007 A. Karpinski



o For example, let’s consider the test for Factor A

Hy:p,=p,=..=u,
Hy:a,=a,=..=a,=0

nby a’
MSA ol +bo’ + Z !

F,[(a=-1),(a=-1)(n-1)]= MS(A*S) = - +bo_2a—1

If Hy is true: Zaf =0
2+b 2
Then F, = 2¢ " 2Zar

2
o, +bo,,

If H, is false: Zaf >0

anaf
a-—1

o"g2 +b0'§”

2 2
o, +bo, +
>1

Then F, =

o Note that unlike the one-way within-subjects design, it is not possible to
construct an F-test for the effect of subjects.

3. Two-Factor Repeated Measures ANOVA in SPSS

e Let’s see how the ANOVA looks in SPSS.
o We need to enter the within subjects factors correctly. First, we enter the

name and number of levels of each repeated factor.

Repeated Measures Define Fack El
"dithin-Subject Factar Mame: || | Define I

Murmber of Lewvels: I Fleset
Bese

fdd | tirme(] Cancel
zcalel3)
Charige | Help
Hemu:wel heagure >

el
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o Next, we need to identify which variables go with which factors:
: Repeated Measures =l

®|d Wdithin-Subjects Wanables  [time,zcale]: ok |
@ pre
T Baste

& pre2 _?_h,z} —l
= i =y
r post] _ (2

_ 7122 Cancel |
@ post? 5
& post3 Help |

Between-Subjects Factar(z]:

LCovariates:

Hodel... | CDﬂtlaStS...l Flats... | Postﬂoc...l Save.. | Options...

(1,1) means time 1 and scale 1 =  prel
(1,3) means time 1 and scale3 =  pre3
(2,3) means time 2 and scale 3 =  post3

e Ifyou do not identify the factors properly, you will misinterpret your
results!

i Repeated Measures

Help

X|
®id | Within-Subjects Wariables  [time.scale):
prel[1.1] ﬂl
pre2(1.2)
pread[1.3] Beset |
postl[2.1]
post2(2.2) Cancel|
pozt3[2.3) |

Between-Subjects Factor(s]:

Covvariates:

Model... Enﬂtrasts...l Plats... | Pzt Hoe... Save... Optiohg...
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Or you can enter the following syntax:
GLM pre1 pre2 pre3 post1 post2 post3
/WSFACTOR = time 2 scale 3
/PRINT = DESC.

e Time is the first repeated factor with 2 levels
e Scale is the second repeated factor with 3 levels
e The order of the variables needs to be

Time 1, Scale 1 prel
Time 1, Scale 2 pre2
Time 1, Scale 3 pre3
Time 2, Scale 1 postl
Time 2, Scale 2 post2
Time 2, Scale 3 post3

If we switched the order of the factors, we would need to also switch the

order of the variables:
GLM pre1 post1 pre2 post2 pre3 post3
/WSFACTOR = scale 3 time 2
/PRINT = DESC.

e This syntax will give us exactly the same output as the syntax above

Now, we can check the sphericity assumption (presumably, we already
checked the normality assumption before starting to run the ANOVA)
Mauchly's Test of Sphericity
Measure: MEASURE_1

Epsilon

Greenhous
Within Subjects Effect | e-Geisser Huynh-Feldt | Lower-bound

TIME 1.000 1.000 1.000
SCALE .962 1.000 .500
TIME * SCALE .904 1.000 .500

Tests the null hypothesis that the error covariance matrix of the
orthonormalized transformed dependent variables is proportional to
an identity matrix.

e We get an epsilon for each effect (main effect and interactions)
e We can use our same rules of thumb for determining if we have
compound symmetry. In this case, we are actually OK!
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o Here is the SPSS ANOVA table with the epsilon-adjusted tests removed:

Tests of Within-Subjects Effects

Measure: MEASURE_1

Type lll Sum

Source of Squares df Mean Square F Sig.
TIME Sphericity Assumed 2856.600 1 2856.600 33.766 .000
Error(TIME) Sphericity Assumed 761.400 9 84.600

SCALE Sphericity Assumed 2899.200 2 1449.600 40.719 .000
Error(SCALE) Sphericity Assumed 640.800 18 35.600

TIME * SCALE Sphericity Assumed 1051.200 2 525.600 45.310 .000
Error(TIME*SCALE) Sphericity Assumed 208.800 18 11.600

e Each within-subjects factor is immediately followed by its appropriate

error term

Main effect of time: F(1,9) = 33.77, p < .001

Compares X..,=50.0 vs. X..,=63.8

Main effect of scale: F(2,18) = 40.72, p < .001
Compares X..=47.7vs. X.,.=58.5vs. X.,.=64.5

Time by scale: F(2,18) = 45.31, p <.001
Examines if the time effect is the same for each scale
OR Examines if the scale effect is the same at each time

Subscale of test (Factor A)

Time (Factor B) Subscale 1 Subscale 2 Subscale 3
Pre-test X., =462 X.,,=51.0 X.,=52.8 X..,=50.0
Post-test X.,=49.2 X.,,=66.0 X.,=76.2 X..,=63.8
n=10 X..=477 X.,.=585 X.,.=645
Test Performance
80
S 70 /./'
3 60 —o—Pre
- ’4‘_’_‘ —— Post
2 50
40 ‘ ‘
Scale1 Scale2 Scale3
Time
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e However, the main effect for scale and the time*scale interaction are
omnibus tests. We previously stated that we wanted to avoid omnibus
tests at all costs for repeated-measures designs

Technically, in this case we are OK because we have spherical data
but it is good practice to avoid omnibus tests for these designs.

4. Contrasts and Effect Sizes
e The formulae for tests of contrasts are the same formulae we used for one-
factor within-subjects designs.

p _ v _ 2.X,
orsered standard error'() o2
MSE") —-
n
) A
~ v ’ SS(//
SSy= FQ,dfy=——
v c? SE MSE'

o The strongly recommended (and the SPSS) approach
o MSE' will be the contrast-specific error term (with df = n-1).

o The alternative, use at your own risk approach relies on the data being
spherical. If the data are spherical, then we can use the appropriate
omnibus error term:

e For contrasts on the marginal Factor A means, use the omnibus Factor
A error term, MSE'= MS,., (with df= (a-1)(n-1)).

e For contrasts on the marginal Factor B means, use the omnibus Factor
B error term, MSE'= MS,., (with df = (b-1)(n-1)).

e For contrasts on the A*B cell means, use the omnibus A*B interaction
error term, MSE'= MS,.,., (With df = (a-1)(b-1)(n-1)).

e [ recommend that you always use the contrast-specific error term.
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o Just as for one-factor within-subjects designs, we have a number of
options for effect sizes

e Partial eta-squared is a measure of percentage of the variance
accounted for (in the sample) that can be used for omnibus tests or

contrasts:
;72 _ SSe..ffecf
(Effect) —
S S effect + SSErrorTermForEﬂ’ect
proa_ S e SSh e SSse
4~ B~ A*B T
SS, + S8 SS, + SS pu SS g +SS upes
ﬁ 2 _ SS Contrast
Contrast —
SS Contrast + SSErrorTermForContrast
Tests of Within-Subjects Effects
Measure: MEASURE_1
Type Il Sum
Source of Squares df Mean Square F Sig.
TIME Sphericity Assumed 2856.600 1 2856.600 33.766 .000
Error(TIME) Sphericity Assumed 761.400 9 84.600
SCALE Sphericity Assumed 2899.200 2 1449.600 40.719 .000
Error(SCALE) Sphericity Assumed 640.800 18 35.600
TIME * SCALE Sphericity Assumed 1051.200 2 525.600 45.310 .000
Error(TIME*SCALE) Sphericity Assumed 208.800 18 11.600
o _ 28566 _ o oo 28992 o
Ntime = - N scatle = -
2856.6+761.4 2899.2 + 640.8
A2 1051.2
M time*Scate =

1051.2+208.8
This formula can be used for omnibus tests and for contrasts.

e For contrasts (except maybe polynomial trends), we can also compute a d as
a measure of the effect size, just as we did for the paired t-test.

i=2 but if and only if Y Jc|

A

o,

Where: i is the average value of the contrast of interest
6,,1s the standard deviation of the contrast values

e For all contrasts, we can also compute an » as a measure of the effect size.

2
f _ \/ tContrast _ \/ FContrast
2
tContrast + df;ontrast FContmst + df;ontrast
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e There are four methods we can use in SPSS to test contrasts:

Create a new variable reflecting the value of the contrast and conduct a
one-sample t-test on this new variable
Selecting only the groups of interest and running a contrast or paired t-
test on those groups

SPSS’s brand-name contrasts
SPSS’s special subcommand

O

O

@)
@)

e Method 1: Compute a new variable for each contrast, and test if the value of
the contrast differs from zero.
o Let’s start by testing three of our hypotheses

80

1. Does training improve test scores for subscale 1?
compute diff1 = post1-pre1.
T-TEST /TESTVAL=0

IVARIABLES=diff1.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean
DIFF1 10 3.0000 7.61577 2.40832
One-Sample Test
Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper
DIFF1 1.246 9 244 3.0000 -2.4480 8.4480
62 _ 74 3.0

f = =0.
6, 7.61577

Test Performance

70 -
60
50

Test Score

40

——Pre
—— Post

11A-14

Scale1

Scale2

Time

Scale3

No. The scores on sub-scale 1
do not change significantly

between pre- and post-test, #9)
=1.25p=.24,d= .39
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ii. Does training improve test scores for subscale 2?7
compute diff2 = post2-pre2.
T-TEST /TESTVAL=0
IVARIABLES=diff2.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean
diff2 10 15.0000 10.67708 3.37639

One-Sample Test

Test Value = 0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper
diff2 4.443 9 .002 15.00000 7.3621 22.6379
T 15

-2 -1.40
6, 10.67708

Test Performance
Yes. The scores on sub-scale

o %0 2 significantly improve
§ ;g | /p/. —e—Pre between pre- and post-test,
- = post 19 =4.44,p<.01,d=140
© 50 -
[t
40 ‘ ‘
Scale1 Scale2 Scale3
Time
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ii1. Does training improve test scores for subscale 3?

compute diff3 = post3-pre3.
T-TEST /TESTVAL=0
/VARIABLES=diff3.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean
diff3 10 23.4000 6.60303 2.08806

One-Sample Test

Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper
difi3 11.207 9 000 | 23.40000 | 18.6765 | 28.1235
AW 22.4
d=Y - =2 __354
o, 6.60303
Test Performance
80 ~ Yes. The scores on sub-scale 3
2 79 | significantly improve between
3 60 . ——Pre | pre- and post-test, #(9) = 11.21, p
- —m—Post| <.01,d=3.54
o 50
[t
40
Scale1 Scale2 Scale3
Time
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Method 2: Selecting the groups of interest and running paired-test on those

groups

o Note that this approach would not be recommended for between subjects
designs. However, for within-subjects designs, the default is to use a
contrast-specific error term. That is, we only use information from the
groups that are involved in the contrast to construct the error term. Thus,
for within-subjects designs, it is acceptable to select the groups of interest
and run a test only on those groups.

T-TEST PAIRS = pre1 pre2 pre3 WITH post1 post2 post3 (PAIRED).

Paired Samples Test

Paired Difference

95% Confidence
Interval of the

Std. Error Difference

Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)

Pair 1
Pair 2
Pair 3

pre1 - post1 -3.00000 7.61577 2.40832 | -8.44800 2.44800 -1.246 9 244
pre2 - post2 | -15.00000 10.67708 3.37639 | -22.63792 -7.36208 -4.443 9 .002
pre3 - post3 | -23.40000 6.60303 2.08806 | -28.12352 | -18.67648 -11.207 9 .000

11A-17

e Scale 1, pre vs post: #9)=1.25,p=.24,d=.39
e Scale 2, pre vs post: #9)=4.44,p<.01,d=1.40
e Scale 3, pre vs post: #9)=11.21, p < .01, d = 3.54

e These analyses are identical to the previously conducted analyses on
the difference scores we computed.
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e Method 3: SPSS’s brand-name contrasts. SPSS conducts contrasts on the
marginal main effect means of the repeated measures factor, using contrast
specific error estimates
o Contrasts can only be specified on the marginal means. Tests on the cell
means are obtained by multiplying together main effect contrasts.
o So far, we have examined the effect of training for each subscale. Now,
we would like to test whether:
e The effect of training on subscale 1 is the same as the effect of
training on subscale 2
e The effect of training on subscale 1 is the same as the effect of
training on subscale 3
e The effect of training on subscale 2 is the same as the effect of
training on subscale 3

80
75
70
65
60
55
50
45
40
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70

65 B
60
55 —o— Pre-test
—8— Post-test
45
40
Subscale 1 Subscale 2
80
/ 75 —
70
VA 65 -
/ —&— Pre-test 60 —&— Pre-test
/ —#— Post-test 55 —#— Post-test
,// — 50 o—°
45
40
Subscale 1 Subscale 3 Subscale 2 Subscale 3
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GLM pre1 pre2 pre3 post1 post2 post3
/WSFACTOR = time 2 Simple (1) scale 3 simple (1)
/PRINT = DESC.

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Il Sum

Source time scale of Squares df Mean Square F Sig.
time Level 2 vs. Level 1 1904.400 1 1904.400 33.766 .000
Error(time) Level 2 vs. Level 1 507.600 9 56.400
scale Level 2 vs. Level 1 1166.400 1 1166.400 38.368 .000

Level 3 vs. Level 1 2822.400 1 2822.400 66.566 .000
Error(scale) Level 2 vs. Level 1 273.600 9 30.400

Level 3 vs. Level 1 381.600 9 42.400
time * scale Level 2 vs. Level 1 Level 2 vs. Level 1 1440.000 1 1440.000 45.000 .000

Level 3 vs. Level 1 4161.600 1 4161.600 83.903 .000
Error(time*scale) Level 2 vs. Level 1 Level 2 vs. Level 1 288.000 9 32.000

Level 3 vs. Level 1 446.400 9 49.600

o There are only two groups in the time factor, so no matter what we ask
SPSS to do, it will give us a pairwise contrast

Pre-test Post test
X.,=50.0 X.,= 638
Coefficients -1 +l
ﬁz — SSContrast — 19044 =
Contrast SS + SS 19044 + 5076

Contrast ErrorTermForContrast

F(1,9)=33.77,p<.01,° =.79

o For the scale effect there are three groups, so we can ask SPSS to conduct
two main effect contrasts:

Subscale 1 Subscale 2 Subscale 3

X..=47.7 X.,.=585 X.,.=645

Level 2 vs Level 1 -1 1 0
Level 3 vs Level 1 -1 0 1
a2 1166.4 a2 2822.4
772\/31 = = 81 773vsl = =.
1166.4+273.6 2822.4+381.6
Level 2 vs Level 1: F(1,9) = 38.37, p <.01,n> = .81
Level 3 vs Level 1: F(1,9) =66.57, p < .01,772 =.88
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o For the time by scale interaction there are 2 dfs, so SPSS will provide
two follow-up tests. SPSS multiplies each of the main effect contrasts
together to obtain interaction contrasts.

e These are the tests we are interested in!

Level 2 vs Level 1* Subscale 1  Subscale 2 Subscale 3
Level 2 vs Level 1

Pre-test -1
Post-test +1
-1 1 0
Level 2 vs Level 1* Subscale 1 Subscale 2 Subscale 3
Level 2 vs Level 1
Pre-test 1 -1 0
Post-test -1 1 0

e This contrast tests whether the effect of training on Subscale 1 is the
same as the effect of training for Subscale 2 (an interaction!)

HO : luPrel - lLlPostl = /’lPreZ - /uPOSZZ
Hl : luPrel - ILIP()SZI #* /’lPreZ - /uPostZ

70

65 A

60 > 1440

55 ¢ Pre-test 77Contrast = 1440 288 =.
—&— Post-test +

_

50 —
— F(1,9)=45.00, p <.01,n° = .98

45

40

Subscale 1 Subscale 2
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Level 2 vs Level 1* Subscale 1  Subscale 2  Subscale 3
Level 3 vs Level 1

Pre-test -1
Post-test +1
-1 0 1
Level 2 vs Level 1* Subscale 1 Subscale 2 Subscale 3
Level 3 vs Level 1
Pre-test -1 0
Post-test 1 0 -1

e This contrast tests whether the effect of training on Subscale 1 is the
same as the effect of training for Subscale 3
Ho t ooy = Hpost = Hpres = Hposss
Hy t oy = Hpost # Hpres = Hpogss

80
75

70 /
65 / 2 4161.6

/ —&— Pre-test 77C0ntrast TV
60 —m— Post-test 4161.6 + 446

55

/
50 ,// F(1,9) =83.90, p < .01, 7> =.90

45
40

Subscale 1 Subscale 3
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o To test whether the effect of training on Subscale 2 is the same as the

effect of training for Subscale 3, we need to run a new command.

GLM pre1 pre2 pre3 post1 post2 post3
/WSFACTOR = time 2 Simple (1) scale 3 simple (2)

/PRINT = DESC.

Measure: MEASURE 1

Tests of Within-Subjects Contrasts

80
75

70

65

./

HO : luPrel - lLlPostl = /’lPreZ - /uPOSZZ
Hl : luPrel - ILIP()SZI #* /’lPreZ - /uPostZ

60

55

—&— Pre-test

—ll— Post-test

50

-«

45
40
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Subscale 2 Subscale 3

2 705.6

Contrast

705.6+518.4

Type Il Sum
Source time scale of Squares df Mean Square F Sig.
time Level 2 vs. Level 1 1904.400 1 1904.400 33.766 .000
Error(time) Level 2 vs. Level 1 507.600 9 56.400
scale Level 1 vs. Level 2 1166.400 1 1166.400 38.368 .000
Level 3 vs. Level 2 360.000 1 360.000 10.588 .010
Error(scale) Level 1 vs. Level 2 273.600 9 30.400
Level 3 vs. Level 2 306.000 9 34.000
time * scale Level 2 vs. Level 1 Level 1 vs. Level 2 1440.000 1 1440.000 45.000 .000
Level 3 vs. Level 2 705.600 1 705.600 12.250 .007
Error(time*scale) Level 2 vs. Level 1 Level 1 vs. Level 2 288.000 9 32.000
Level 3 vs. Level 2 518.400 9 57.600
Level 2 vs Level 1* Subscale 1  Subscale 2 Subscale 3
Level 3 vs Level 2
Pre-test -1
Post-test +1
0 -1 1
Level 2 vs Level 1%* Subscale 1 Subscale 2 Subscale 3
Level 2 vs Level 1
Pre-test 0 -1
Post-test 0 -1

F(1,9)=12.25,p <.01,7> =.58
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o Most cell mean contrasts that you would find of interest can be obtained
by multiplying two main effect contrasts (with the exception of simple
effect contrasts).

e Method 4: SPSS’s special subcommand.

o Let’s return to our original questions:

1. Overall, does the training improve test scores?

i1. Does training improve test scores for subscale 1?

i11. Does training improve test scores for subscale 2?

iv. Does training improve test scores for subscale 3?

v. Overall, is there a difference in performance on the three sub-scales?
This final hypothesis is an omnibus hypothesis, so we will only
consider the first four

o To use the special subcommand:
e Treat your design as a one-factor repeated-measures design
e Enter the appropriate coefficients in the special command

GLM pre1 pre2 pre3 post1 post2 post3
/WSFACTOR = factor 6 special ( 1

11
-1-1
00

-1 0
0-1

-12

« Note that contrast 6 is of no interest to us, but we must enter five
contrasts after the row of ones.
Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type Il Sum
Source FACTOR | of Squares df Mean Square F Sig.
FACTOR L1 17139.600 1 17139.600 33.766 .000
L2 90.000 1 90.000 1.552 244
L3 2250.000 1 2250.000 19.737 .002
L4 5475.600 1 5475.600 125.587 .000
L5 8294.400 1 8294.400 45.474 .000
Error(FACTOR) L1 4568.400 9 507.600
L2 522.000 9 58.000
L3 1026.000 9 114.000
L4 392.400 9 43.600
L5 1641.600 9 182.400
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Tests of Within-Subjects Contrasts
Measure: MEASURE_1

Type lll Sum
Source FACTOR | of Squares df Mean Square F Sig.
FACTOR L1 17139.600 1 17139.600 33.766 .000
L2 90.000 1 90.000 1.552 244
L3 2250.000 1 2250.000 19.737 .002
L4 5475.600 1 5475.600 125.587 .000
L5 8294.400 1 8294.400 45.474 .000
Error(FACTOR) L1 4568.400 9 507.600
L2 522.000 9 58.000
L3 1026.000 9 114.000
L4 392.400 9 43.600
L5 1641.600 9 182.400
i. Overall, does the training improve test scores? (L1)

Yes. Averaging across the subscales, post-test scores are higher
than pre-test scores, F(1,9) = 33.77, p < .01

ii. Does training improve test scores for subscale 1? (L2)
No. The scores on sub-scale 1 do not change significantly
between pre- and post-test, F(1,9) = 1.55,p = .24

i11. Does training improve test scores for subscale 2? (L3)
Yes. The scores on sub-scale 2 are higher at post-test than at
pre-test, £(1,9) =19.74, p < .01

iv. Does training improve test scores for subscale 3? (L4)
Yes. The scores on sub-scale 3 are higher at post-test than at
pre-test, F(1,9) = 125.59, p < .01

Test Performance

80

S 70 /./'
——
3 60 Pre
2 é‘_’_‘ —m— Post
g 50
40 ; ‘
Scale1 Scale2 Scale3
Time
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e Depending on how these contrasts are conducted, you may need to adjust
their p-values

o The recommended approach is to forgo the omnibus tests, and to conduct
three of fewer planned contrasts. If you take this approach, no correction
1S necessary
e If you have a large number of planned tests, you may need to apply a

Bonferroni correction.

o The alternative is to conduct the tests for main effects and interactions,
and then conduct the contrasts as follow-up tests. Now, the contrasts are
post-hoc tests. If they are pairwise, then you need to use the Tukey
procedure; if they are complex, you need to use the Scheffé procedure to
adjust the p-values.

e To use Tukey’s HSD, compute ¢(/-aa,v)
Where «= Familywise error rate
a = Number of repeated-measures in the family
v = df(error)

= For single-df tests, df(error) should be (n -1), the df associated with
the contrast-specific error estimate.

= To determine significance at the (/-a) level,

(qcrit )2

to ———

C Omp arc to observed 2

bserved

QCrit
to =& or
2

e To use the Scheffé correction, compute F,,, = (r)F,_s,.,

Where o= Familywise error rate
r = Degrees of freedom associated with the family
v = df(error), (n -1) for a contrast-specific error estimate.

to F

crit

Compare F,

bserved
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o As an example, let’s consider the following question as a post-hoc test

Test Score

Does training improve test scores for subscale 2?

When we tested this contrast, we found the test statistic to be:
F(1,9)=19.74

We need to discard the p-value and compute a Tukey adjusted critical
value.
q(l-a,a,v) with o= .05 a==6 v =9

2
4(.95,6,9)=5.02 F _(509) =12.60

crit

(=}

[\

And so we can report the test to be significant at the « =.05 level:
F(1,9)=19.74, p < .05

Test Score Improvement

80
70
60 | —o— Pre-test
—#— Post-test
50 3
40
Scale 1 Scale 2 Scale 3
Scale

o We should have a separate variance estimate of the error bars for each

11A-26

cell

2
S .

StdError = |-~
n

SPSS and EXCEL are not good for plotting separate error bars for each
cell. The best you can do is to compute a common standard error based
on the error term for the highest order interaction. This error bar is
misleading (because you did not actually use it in your analyses). If you
plan to publish using repeated measures data, get better graphical
software.
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5. An Example

e Consider an experiment on facial perception. Faces vary on two
dimensions: orientation (upright, 90° rotation, and 180° rotation) and
distortion (none, eyes & mouth upside down, eyes whitened and teeth
blackened). Participants rate each of the six resulting faces on how “bizarre”
each face looks on a 7-point scale, with higher numbers indicating more
bizarreness. The following data were obtained:

No Distortion Upside-Down Whitened and Blackened
Subject 0° 90° 180° 0° 90° 180° 0° 90° 180°
1 1.18 2.40 2.48 4.76 4.93 3.13 5.56 4.93 5.21

1.14 1.55 1.25 4.81 4.73 3.89 4.85 5.43 4.89
1.02 1.25 1.30 4.98 3.85 3.05 4.28 5.64 6.49
1.05 1.63 1.84 491 5.21 2.95 5.13 5.52 5.69
1.81 1.65 1.01 5.01 4.18 3.51 4.90 5.18 5.52
1.69 1.67 1.04 5.65 4.56 3.94 4.12 5.76 4.99

AN N kAW

Distortion 0° 90° 180°
None 1.32 1.69 1.49 1.50
Upside-Down 5.02 4.58 341 4.34
Whitened/Blackened 4.81 541 5.47 5.23
3.72 3.89 3.46 3.69
6
/ 3

4 \-
—&— None

3 —#— Upside-Down
—&— Whitened/Blackened

0 90 180

Rotation
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e We can solve for the (fixed) model parameters
Yy =u+a,+p, +r, +(apf), +(ar), +(pr), +(apfr),

u The overall mean of the scores
[1=3.69

a,  The effect of being in level j of Orientation

A

a, :Y._/..—I_/...
a, =3.72-3.69 =0.03
a,=3.89-3.69=0.20

a,=3.46-3.69=-0.23

B.  The effect of being in level & of Distortion
) Bo=Y. —Y..
B =150-3.69=-2.19

A

B, =434-3.69=0.65

A

By =523-3.69=1.54

(@B),, The effect of being in level j of Orientation and

level & o_f Disgortio_n 3
@B), =Y ;=Y. =Y. +Y..

(@p),,=1.32-3.72-1.50+ 3.69=-0.21
(@p),=5.02-3.72-4.34 +3.69 =0.65
(@p),=4.81-3.72-523+3.69 =—0.45

(@p),, =5.47-3.46—5.23+ 3.69=0.47

e First, we need to check assumptions
o This design is a two-factor repeated measures design
o Participants must be independent and randomly selected from the
population
o Normality/ symmetry of difference scores (but in practice normality
within each condition)
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EXAMINE
VARIABLES=nod_zer nod_90 nod_180 usd_zer usd_90 usd_180 wb_zer wb_90 wb_180
/PLOT BOXPLOT STEMLEAF NPPLOT

/COMPARE VARIABLES.
7
Tests of Normality
6
Shapiro-Wilk %o ? ;
Statistic df Sig. 5 = ﬁ i
NOD_ZER 807 6 .068
NOD_90 831 6 109 * :
NOD_180 846 6 147 3
USD_ZER 771 6 032 *
USD_90 980 6 950 : — E
USD_180 872 6 235 1 i @
WB_ZER 954 6 776
WB_90 955 6 779 S i T S e -
WB_1 80 909 6 432 NOD?ZET\IODigONODJ 83SD72ERUSD790USDJSSNBiZERWBigO WB_180

o Sphericity

Mauchly's Test of Sphericity

Measure: MEASURE_1

Epsilon
Greenhous
Within Subjects Effect e-Geisser Huynh-Feldt | Lower-bound
ORIENTAT .963 1.000 .500
DISTORT .932 1.000 .500
ORIENTAT * DISTORT 462 .720 .250

e Sphericity is not satisfied.
e We must either conduct only non-parametric tests or contrasts

e Contrasts of interest (all post-hoc):

@)
@)

11A-29

Are there linear (and quadratic) trends in the marginal orientation means?
Are there linear (and quadratic) trends in the orientation means within
each level of distortion?

Are the linear (and quadratic) trends in the orientation means within each
level of distortion different from each other?
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e First, let’s test for linear and quadratic trends in orientation.

Distortion 0° 90° 180°
None
Upside-Down
Whitened/Blackened
Linear -1 0 +1
Quadratic +1 -2 +1

Marginal Orientation Means

4
0n
0
[}
g 3.751
&
N
m 351
s
_g’ 3.25
g
3 . .
0 90 180
Orientation

o Method 1: Use SPSS’s built-in contrasts to test main effect contrasts
GLM nod_zer usd_zer wb_zer nod 90 usd 90 wb 90
nod_180 usd_180 wb_180
/WSFACTOR = orientat 3 polynomial distort 3
/PRINT = DESCRIPTIVE.

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type Ill Sum
Source orientat distort of Squares df Mean Square F Sig.
orientat Linear .606 1 .606 5.772 .061
Quadratic 1.143 1 1.143 13.537 .014
Error(orientat) Linear 525 5 .105
Quadratic 422 5 .084
772 _ SSLinear _ 606 _ 54
Linear — - e
SSLinear + SSErrorTermForLinear 606 + 525
, 1.143
Nowadratic = T+ 0 i< —
Quadratic 1 143 + 422

These are complex, post-hoc tests, so a Scheffé correction is required.
F.. =2%F(052,5) =2%578=11.57
F.. =2%F(102,5)=2%3.78=17.56

)

Linear trend: F(1,5)=5.78,ns,n° = .54
Quadratic trend:  F(1,5)=13.54, p <.05,7° =.73
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o Method 2: Compute and test the contrasts manually
compute lin_ori =-1*nod_zer + 0*nod_90 +1*nod_180
- 1*usd_zer + 0*usd_90+ 1* usd_180
- 1*wb_zer + 0*wb_90+1* wb_180.
compute quad_ori = 1*nod_zer -2*nod_90 +1*nod_180
+ 1*usd_zer -2*usd_90+1* usd_180
+ 1*wb_zer -2*wb_90+1* wb_180.

T-TEST /TESTVAL=0
/NVARIABLES=lin_ori quad_ori.

One-Sample Statistics

Std. Error

N Mean Std. Deviation Mean
LIN_ORI 6 -.7783 79356 .32397
QUAD_ORI 6 -1.8517 1.23274 .50327

One-Sample Test

Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper
LIN_ORI -2.402 5 .061 -.7783 -1.6111 .0545
QUAD_ORI -3.679 5 .014 -1.8517 -3.1454 -.5580

These results exactly match the results obtained from using SPSS’s
built-in main effect contrasts.

 Conas 2.402° 3.679°
linear — 2 o = > = 73 rquad = PP = 85
ZLC()Vltrust + dfcantrast 2404 + 5 3679 + 5
Linear trend: F(1,5)=5.78,ns,r =.73

Quadratic trend:  F(1,5) =13.54, p <.05,7 = .85
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e Second, let’s test for linear and quadratic trends in orientation within each
level of distortion.

Distortion 0° 90° 180°
None Linear -1 0 +1
Quadratic +1 -2 +1

Upside-Down
Whitened/Blackened

\- —e— None

—— Upside-Down
—&— Whitened/Blackened

Bizarreness
w

0 90 180
Rotation
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Distortion 0° 90° 180°

None
Upside-Down Linear -1 0 +1
Quadratic +1 -2 +1
Whitened/Blackened
6
5 4
4 4
§ —&o— None
3 —B— Upside-Down
g —A— Whitened/Blackened
2
14
0 T T
0 90 180
Rotation
Distortion 0° 90° 180°
None
Upside-Down
Whitened/Blackened Linear -1 0 +1
Quadratic +1 -2 +1
6
5 4
4

\- —&— None

—— Upside-Down
—&— Whitened/Blackened

Bizarreness
w

’/‘\0

0 90 180
Rotation

11A-33 © 2007 A. Karpinski



o Method 1: Compute and test the contrasts manually
Compute lin_nod = -nod_zer + 0*nod_90 + nod_180.
Compute quad_nod = nod_zer - 2*nod_90 + nod_180.

Compute lin_usd = -usd_zer + 0*usd_90 + usd_180.
Compute quad_usd = usd_zer - 2*usd_90 + usd_180.

Compute lin_wb =-wb_zer + 0*wb_90 + wb_180.
Compute quad_wb =wb_zer - 2*wb_ 90 + wb_180.

T-TEST /TESTVAL=0
/VARIABLES=lin_nod quad_nod lin_usd quad_usd lin_wb quad_wb .

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean

LIN_NOD 6 A717 .81121 33117

QUAD_NOD 6 -.5817 .33030 13484

LIN_USD 6 -1.6083 .38039 15529

QUAD_USD 6 -7217 1.28395 52417

LIN_WB 6 .6583 .87894 .35883

QUAD_WB 6 -.5483 1.13125 46183

One-Sample Test
Test Value = 0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper

LIN_NOD 518 5 .626 A717 -.6796 1.0230
QUAD_NOD -4.314 5 .008 -.5817 -.9283 -.2350
LIN_USD -10.357 5 .000 -1.6083 -2.0075 -1.2091
QUAD_USD -1.377 5 227 -7217 -2.0691 .6258
LIN_WB 1.835 5 126 .6583 -.2641 1.5807
QUAD_WB -1.187 5 .288 -.5483 -1.7355 .6388

té'ontrast 05182 23 43142 89
T istort = =. 7, stort Al 5 - =-
LinearNoDistort / émtmst + d fcommst 0 5 1 82 +5 QuadNoDistort 43 1 42 15
103577 1.3772
rLinearUpsideDown = m =.98 rQuadUpsideDown = m =.28
1.835° 1.1872
erearWhitenedBlacked = m = 63 rQuadWhitenedBlackened = m - 47

o These are complex, post-hoc tests, so a Scheffé correction is required.
F,, =4*F(0545)=4%519=20.76  F, =4*F(104,5)=4%352=14.08

ri

t,y =~/F,. =/20.76 = 4.56 t, =~/F,, =~/14.08 =3.75
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o For faces that were not distorted: There is a marginally significant
quadratic trend such that sideways faces are rated to be most bizarre and
deviations from 90° are less bizarre, #(5) =—4.31,p <.10,7 =.89.

o For faces with upside-down mouths and faces: There is a linear trend in
ratings of bizarreness such that as orientation increases, bizarreness
decreases, #(5)=-10.36, p <.05,7 = .98

o For faces with whitened eyes and blacked teeth: Ratings of bizarreness
are unaffected by orientation, rs <.63.

—&— None
—— Upside-Down
—&— Whitened/Blackened

Bizarreness
w

/\0

0 90 180

Rotation
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o Method 2: Selecting only the groups of interest and running a contrast on
those groups

e No Distortion: Linear and quadratic trends
GLM nod_zer nod_90 nod_180
/WSFACTOR = orientat 3 Polynomial.
Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type Il Sum

Source orientat of Squares df Mean Square F Sig.
orientat Linear .088 1 .088 .269 .626

Quadratic .338 1 .338 18.608 .008
Error(orientat) Linear 1.645 5 .329

Quadratic .091 5 .018

) 08841 ) 338
nLinearNuDistortion - 08841+1.645 - nQuudraticNoDisturtian - 338 +.09091 -

e Upside-down eyes and mouths: Linear and quadratic trends
GLM usd_zer usd 90 usd_180
/WSFACTOR = orientat 3 Polynomial.

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Type lll Sum
Source orientat of Squares df Mean Square F Sig.
orientat Linear 7.760 1 7.760 107.262 .000
Quadratic 521 1 521 1.896 227
Error(orientat)  Linear .362 5 .072
Quadratic 1.374 5 275
) _ 16 g ) - ) S
nLinearUpsideDown - 776+ 362 e UQuadraticUpsideDown - 521+1.374 -

e Whitened eyes and blackened mouths: Linear and quadratic trends
GLM wb_zerwb 90 wb_180
/WSFACTOR = orientat 3 Polynomial.
Tests of Within-Subjects Contrasts
Measure: MEASURE _1

Type lll Sum
Source orientat of Squares df Mean Square F Sig.
orientat Linear 1.300 1 1.300 3.366 126
Quadratic .301 1 .301 1.410 .288
Error(orientat) Linear 1.931 5 .386
Quadratic 1.066 5 213
) 1300 ) __30 )
77LinearWhitenedBluckened - 1 300 + 1 93 1 - nQuudraticWhitenedBluckened - 301 + 1066 e
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e Finally, we’d like to test for differences between these trends
o For example, does the linear trend for no distortion differ from the linear
trend for upside-down eyes and mouth?

o Method 1: Compute and test the contrasts manually
e Linear (No distortion) vs. Linear (Up-side down)

Distortion 0° 90° 180°
None Linear -1 0 +1
Upside-Down Opposite Linear +1 0 -1
Whitened/Blackened

e (Quadratic (No distortion) vs. Quadratic (Up-side down)

Distortion 0° 90° 180°
None Quadratic +1 -2 +1
Upside-Down Opposite Quadratic -1 +2 -1
Whitened/Blackened

e The syntax and output for this method is not included here.

2

—&— None
—— Upside-Down
—&— Whitened/Blackened

Bizarreness
w

<— >

0 90 180
Rotation
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o Approach 2: Use SPSS’s built-in contrasts
e Notice that differences in trends can be obtained by examining the
interaction between polynomial contrasts on orientation and simple
contrasts on distortion

e Linear (orientation) by None vs.Upside-down (distortion)

Distortion 0° 90° 180°
None -1 0 +1 +1
Upside-Down +1 0 -1 -1
Whitened/Blackened
[ -1 0 +1 |

e (Quadratic (orientation) by None vs.Upside-down (distortion)

Distortion 0° 90° 180°
None +1 -2 +1 +1
Upside-Down -1 +2 -1 -1
Whitened/Blackened
| +1 2 +1 |

GLM nod_zer usd_zer wb_zer nod_90 usd_90 wb_90 nod_180 usd_180 wb_180
/WSFACTOR = orientat 3 Polynomial distort 3 Simple(1)
/PRINT = DESCRIPTIVE.

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

Type [l Sum
Source ORIENTAT DISTORT of Squares df Mean Square F Sig.
ORIENTAT Linear .202 1 202 5.772 .061
Quadratic .381 1 .381 13.537 .014
Error(ORIENTAT) Linear 175 5 3.499E-02
Quadratic 41 5 2.814E-02
DISTORT Level 2 vs. Level 1 145.010 1 145.010 382.927 .000
Level 3 vs. Level 1 250.358 1 250.358 621.185 .000
Error(DISTORT) Level 2 vs. Level 1 1.893 5 379
Level 3 vs. Level 1 2.015 5 403
ORIENTAT * DISTORT Linear Level 2 vs. Level 1 9.505 1 9.505 20.243 .006
Level 3 vs. Level 1 711 1 711 .755 425
Quadratic Level 2 vs. Level 1 1.960E-02 1 1.960E-02 .082 787
Level 3 vs. Level 1 1.111E-03 1 1.111E-03 .004 .951
Error(ORIENTAT*DIST Linear Level 2 vs. Level 1 2.348 5 470
ORT) Level 3 vs. Level 1 4.705 5 941
Quadratic  Level 2 vs. Level 1 1.201 5 .240
Level 3 vs. Level 1 1338 5 268

Fre

 =4*F(0545)=4%5.19=20.76 F,, =4*F(104,5)=4%352=14.08

t., =+F,, =~20.76 =456 t,, =+F,, =~14.08=3.72
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¢ Difference in trends between no distortion and upside-down eyes and

mouth:
) 9505 . _ 0196
Tineardif = 50542348 Towdraicdy = 010641201
Difference in linear trends: F(1,5)=20.24,p <.10,n> = .80

Difference in quadratic trends: F(1,5) = 0.08,ns,7” =.02

e Difference in trends between no distortion and whitened eyes and

black teeth:
, 11 , 00111
=T =13 e =——————— = 0008
T = 31154705 Towaraicor =50 111+1.338
Difference in linear trends: F(1,5)=0.77,ns,n*> = .13

Difference in quadratic trends: F(1,5) = 0.01,ns,7° <.01

6

6 s //@

5]
| ®<
4
?
E —o— None

—— None g, Nore
31 —®— Upside-Down £ —#— Upside-Down

—4— Whitened/Blackened &

—&— Whitened/Blackened

I >

Rotation Rotation

e To obtain differences in trends between upside-down eyes and mouth

and whitened eyes and black teeth, we need to run another analysis:
GLM nod_zer usd_zer wb_zer nod_90 usd_90 wb_90 nod_180 usd_180 wb_180
/WSFACTOR = orientat 3 Polynomial distort 3 Simple(2)
/PRINT = DESCRIPTIVE.

Difference in linear trends: F(1,5)=24.18,p <.05,n° = .83
Difference in quadratic trends: F(1,5) = 0.04,ns,7° <.01

/‘__—‘7

5
4 ®<-
—— None

g3 —#— Upside-Down

—&— Whitened/Blackened

Rotation
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e All of the previous analysis examined the effect of orientation or the effect
of orientation within each level of distortion.

e Alternatively, we may be interested in the effect of distortion or the effect of
distortion within each level of orientation. The following analysis are a few
examples of these types of contrasts

Distortion 0° 90° 180°
None 1.32 1.69 1.49 1.50
Upside-Down 5.02 4.58 3.41 4.34
Whitened/Blackened 481 5.41 5.47 5.23
3.72 3.89 3.46 3.69

o Within each level of orientation, let’s compare the distorted faces to the

non-distorted control.
compute comp1 =usd_zer - nod_zer.
compute comp2 =wb_zer - nod_zer.

compute comp3 =usd_90 - nod_90.
compute comp4 =wb_90 - nod_90.

compute comp5 =usd_180 - nod_180.
compute comp6 =wb_ 180 - nod_180.

T-TEST /TESTVAL=0
/VARIABLES=comp1 to comp6.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean

COMP1 6 3.7050 29187 11916

COMP2 6 3.4917 71065 .29012

COMP3 6 2.8850 42505 17353

COMP4 6 3.7183 .64691 .26410

COMP5 6 1.9250 .90697 .37027

COMP6 6 3.9783 .82956 .33867

One-Sample Test
Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference Lower Upper

COMP1 31.093 5 .000 3.7050 3.3987 4.0113
COMP2 12.035 5 .000 3.4917 2.7459 4.2374
COMP3 16.626 5 .000 2.8850 2.4389 3.3311
COMP4 14.079 5 .000 3.7183 3.0394 4.3972
COMP5 5.199 5 .003 1.9250 9732 2.8768
COMP6 11.747 5 .000 3.9783 3.1078 4.8489

11A-40 © 2007 A. Karpinski



e These are pair-wise posthoc comparisons, so a Tukey HSD correction
is required.

q.,(0595) 6.80
t. = = =4.81
crit JE JE
e Within each level of orientation, all distorted faces are rated as more
bizarre than the control, non-distorted faces, all ps <.05, ds > 2.12.

o We decide to follow these tests up with pair wise comparisons between

the two distorted faces at each level of orientation.
compute comp7 = usd_zer - wb_zer.
compute comp8 = usd_90 - wb_90.
compute comp9 = usd_180 - wb_180.
T-TEST /TESTVAL=0
/VARIABLES=comp7 to comp9.

One-Sample Statistics

Std. Error
N Mean Std. Deviation Mean

COMP7 6 2133 .80746 .32964

COMP8 6 -.8333 .64242 26227

COMP9 6 -2.0533 .95007 .38786

One-Sample Test
Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) [ Difference Lower Upper

COMP7 .647 5 .546 .2133 -.6340 1.0607
COMP8 -3.177 5 .025 -.8333 -1.5075 -.1592
COMP9 -5.294 5 .003 -2.0533 -3.0504 -1.0563

e Again, a Tukey HSD correction is required.
_ qcrit (057955) _ 680 _ 4 81

L. = = -
crit JE JE

e When faces are presented upside-down, then the faces with eyes
whitened and teeth blacked are rated as more bizarre than faces with
up-side down eyes and mouth, #(5)=5.29, p <.05,d =2.16

¢ In other orientations (upright and 90°), there are no significant
differences in ratings of the two distorted faces, ds < 1.29.

Distortion 0° 90° 180°
None 1.32 1.69 1.49 1.50
Upside-Down 5.02 4.58 3.41 4.34
Whitened/Blackened 481 5.41 5.47 5.23
3.72 3.89 3.46 3.69
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