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Chapter 11A 
Multi-Factor Repeated Measures ANOVA 

Repeated Measures on Both Factors 
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Repeated Measures ANOVA 
Two-Factor Repeated Measures  

 
1. Introduction 
 

Participants take part in a training program to help them prepare for a 
standardized test.  Before the training, they take the test and scores are 
recorded for all three sub-scales of the test. After the 12-week training 
program, participants retake the test. 

 
 Pre-training  Post-training 
Participant Subscale1 Subscale2 Subscale3  Subscale1 Subscale2 Subscale3
  1 42 42 48  48 60 78 
  2 42 48 48  36 48 60 
  3 48 48 54  66 78 78 
  4 42 54 54  48 78 90 
  5 54 66 54  48 66 72 
  6 36 42 36  36 48 54 
  7 48 48 60  54 72 84 
  8 48 60 66  54 72 90 
  9 54 60 54  48 72 78 
  10 48 42 54  54 66 78 
 46.2 51.0 52.8  49.2 66.0 76.2 
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• With this design, several questions come to mind: 
o  Overall, does the training improve test scores? 

• Does training improve test scores for subscale 1? 
• Does training improve test scores for subscale 2? 
• Does training improve test scores for subscale 3? 

o Overall, is there a difference in performance on the three sub-scales? 
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• We have two repeated measures factors: 
o Pre-test and post-test scores 
o The three subscales of the test 

 
•  We can classify this design as a 2*3 repeated measures design, with 

repeated measures on both factors. 
 Subscale of test (Factor A)  
Time (Factor B) Subscale 1 Subscale 2 Subscale 3  
   Pre-test 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Post-test 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
10=n  ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 
• Everything we learned about interpreting two-way between-subjects designs 

applies here. The only difference will be the assumptions of the test, and the 
construction of the error term. 

 
 
2. Structural model, SS partitioning, and the ANOVA table 

• We will only consider the case where the factors are fixed variables.  
 

• Here is the structural model for a two-factor repeated measures design: 
σσσσ αβπβπαπαβπβαµ )()()()( +++++++= jkkjijkY  

 
o Factor A ( jα ) and Factor B ( kβ ) and the A*B interaction ( jkαβ ) are fixed 

effects 
o The Subject effect (π i) is a random effect.  Thus, all interaction terms 

involving the subject effect are also random effects 
 

o Because we have one observation per participant, we do not have enough 
information to estimate both the σαβπ )(  interaction and the within cell 
residuals )( ijkε .  
• In the randomized block design, we omitted the interaction term and 

retained the estimate of error 
• For factorial within-subjects resigns, we will omit the error term, and 

consider the information to be an estimate of the A*B*Subject 
interaction term. 

• This difference is a difference of terminology, not a sustentative 
difference. 
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o We can compute estimates for the fixed terms in the model, just as we 

have for factorial designs: 
 

µ  The overall mean of the scores 
 

jα  The effect of being in level j of Factor A 

..... µµα −= jj   0
1

=∑
=

a

j
jα  

 
kβ  The effect of being in level k of Factor B  

..... µµβ −= kk   0
1

=∑
=

b

k
kβ  

 
( ) jkαβ  The effect of being in level j of Factor A and level k of Factor B 

(the interaction of level j of Factor A and level k of Factor B) 
( ) ........ µµµµαβ +−−= kjjkjk  

( ) 0
1

=∑
=

a

j
jkαβ   for each level of j 

( ) 0
1

=∑
=

b

k
jkαβ   for each level of k 

 
o The remaining terms are random effects. 
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o What do we do with all the random effect parameters?  Let’s take a closer 
look at the σβπ )(  parameter.  To look at the Factor B * Subject effect, we 
need to collapse across Factor A 

 
Participant  

Pre-
Training 

 
Post-

Training 

Difference 

1 44 62 18 
2 46 48 2 
3 50 74 24 
4 50 72 22 
5 58 62 4 
6 38 46 8 
7 52 70 18 
8 58 72 14 
9 56 66 10 

10 48 66 18 
 50.0 63.8 13.8 

 
• The B*Subject interaction examines if the effect of B (Pre vs. Post-

training) is the same across all participants.   
 

• In other words, the B*Subject interaction is a measure of the 
variability in the B effect or how much error we have in the 
measurement of the B effect  

(And so intuitively it makes sense that we can use the B*Subject 
term as an error term when we test the B effect) 

 
• This logic extends across each of the fixed effects 

 
⇒ The A*Subject interaction measures the variability in the A effect 
 
⇒ The B*Subject interaction measures the variability in the B effect  

 
⇒ The A*B*Subject interaction measures the variability in the A*B 

interaction  
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o For a two-factor repeated measures design, we have the following SS 

decomposition. 
 
 
 
  

SS Total 
(SS Corrected Total) 

 

SS Model 
 

 

SS Error 
 

 

SS Main 
Effects 

 

SS 2-Way 
Interactions

 

SS  
A 

 

 

SS  
B 

 

 

SS  
A*B 
 

 

SS 
A*S 

 

 

SS 
B*S 

 

 

SS  
A*B*S 
 

 

SS  
Subject
 



11A-7   2007 A. Karpinski 

 
• The ANOVA table for a two-factor repeated measures design: 

 
o Remember that to construct a valid F-test for an effect, we need: 

•  The numerator to contain exactly one more term than the 
denominator 

• The extra term must correspond to the effect being tested 
 

o When these conditions hold: 
• The F-ratio will equal 1 when the null hypothesis is true (because the 

numerator and denominator will be estimating the same effects) 
• The F-ratio will be greater than 1 when the null hypothesis is false 

 
 

  Source SS df MS E(MS) F 
Factor A SSA a-1 

1−a
SSA  

1

2
22

−
++ ∑
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nb

b jα
σσ απε  )*( SAMS

MSA  

A*S 
(Factor A Error) 

SS 
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)1)(1(

)*(
−− na
SASS  
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απε σσ b+   
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SSB  
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B*S 
(Factor B Error) 

SS 
(B*S) 
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)1)(1(

)*(
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SBSS  
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A * B SSAB (a-1)(b-1) 
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SSAB  
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A*B*S 
(A*B Error) 
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)**(
−−− nba
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Subjects (S) SSS (n-1) 

1−n
SSS  

22
πε σσ ab+   

Total SST N-1    
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o For example, let’s consider the test for Factor A 

 
.........: 210 aH µµµ ===  
0...: 210 ==== aH ααα  

22
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If H0 is true: 02 =∑ jα   

Then 122
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+

=
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If H0 is false: 02 >∑ jα   
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++
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o Note that unlike the one-way within-subjects design, it is not possible to 
construct an F-test for the effect of subjects. 

 
3. Two-Factor Repeated Measures ANOVA in SPSS 
 

• Let’s see how the ANOVA looks in SPSS.   
o We need to enter the within subjects factors correctly. First, we enter the 

name and number of levels of each repeated factor. 
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o Next, we need to identify which variables go with which factors: 

 
 

(1,1) means time 1 and scale 1 ⇒ pre1 
(1,3) means time 1 and scale 3 ⇒ pre3 
(2,3) means time 2 and scale 3 ⇒ post3 
 

• If you do not identify the factors properly, you will misinterpret your 
results! 
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o Or you can enter the following syntax: 
GLM  pre1 pre2 pre3 post1 post2 post3 
  /WSFACTOR = time 2 scale 3  
  /PRINT = DESC. 

 
• Time is the first repeated factor with 2 levels 
• Scale is the second repeated factor with 3 levels 
• The order of the variables needs to be 

Time 1, Scale 1  pre1 
Time 1, Scale 2  pre2 
Time 1, Scale 3  pre3 
Time 2, Scale 1  post1 
Time 2, Scale 2  post2 
Time 2, Scale 3  post3 

 
o If we switched the order of the factors, we would need to also switch the 

order of the variables: 
GLM  pre1 post1 pre2 post2 pre3 post3 
  /WSFACTOR = scale 3 time 2  
  /PRINT = DESC. 

 
• This syntax will give us exactly the same output as the syntax above 

 
 

o Now, we can check the sphericity assumption (presumably, we already 
checked the normality assumption before starting to run the ANOVA) 

Mauchly's Test of Sphericity

Measure: MEASURE_1

1.000 1.000 1.000
.962 1.000 .500
.904 1.000 .500

Within Subjects Effect
TIME
SCALE
TIME * SCALE

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

Tests the null hypothesis that the error covariance matrix of the
orthonormalized transformed dependent variables is proportional to
an identity matrix.

 
• We get an epsilon for each effect (main effect and interactions) 
• We can use our same rules of thumb for determining if we have 

compound symmetry.  In this case, we are actually OK! 
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o Here is the SPSS ANOVA table with the epsilon-adjusted tests removed: 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

2856.600 1 2856.600 33.766 .000
761.400 9 84.600

2899.200 2 1449.600 40.719 .000
640.800 18 35.600

1051.200 2 525.600 45.310 .000
208.800 18 11.600

Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed

Source
TIME
Error(TIME)
SCALE
Error(SCALE)
TIME * SCALE
Error(TIME*SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 
 

• Each within-subjects factor is immediately followed by its appropriate 
error term 

 
Main effect of time: F(1,9) = 33.77, p < .001 

Compares 1..X = 50.0 vs. 2..X = 63.8 
 

Main effect of scale: F(2,18) = 40.72, p < .001 
Compares ..1X = 47.7 vs. ..2X = 58.5 vs. ..3X = 64.5 

 
Time by scale: F(2,18) = 45.31, p < .001 

Examines if the time effect is the same for each scale 
OR Examines if the scale effect is the same at each time 

 
 Subscale of test (Factor A)  
Time (Factor B) Subscale 1 Subscale 2 Subscale 3  
   Pre-test 

11.X = 46.2 21.X = 51.0 31.X = 52.8 1..X = 50.0 
   Post-test 

12.X = 49.2 22.X = 66.0 32.X = 76.2 2..X = 63.8 
10=n  ..1X = 47.7 ..2X = 58.5 ..3X = 64.5  

 

Test Performance

40

50

60

70

80

Scale1 Scale2 Scale3

Time

Te
st

 S
co

re

Pre
Post

 



11A-12   2007 A. Karpinski 

 
• However, the main effect for scale and the time*scale interaction are 

omnibus tests.  We previously stated that we wanted to avoid omnibus 
tests at all costs for repeated-measures designs 

 
Technically, in this case we are OK because we have spherical data 
but it is good practice to avoid omnibus tests for these designs. 
 

 
4. Contrasts and Effect Sizes 

• The formulae for tests of contrasts are the same formulae we used for one-
factor within-subjects designs. 

 
 

=observedt

∑

∑
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2  ψ̂    
EMS

SSfdF
′

=′ ψ̂),1(  

 
 

o The strongly recommended (and the SPSS) approach 
• MS ′ E  will be the contrast-specific error term (with df = n-1). 

o The alternative, use at your own risk approach relies on the data being 
spherical.  If the data are spherical, then we can use the appropriate 
omnibus error term: 
• For contrasts on the marginal Factor A means, use the omnibus Factor 

A error term, MS ′ E = MSA*S  (with df = (a-1)(n-1)). 
• For contrasts on the marginal Factor B means, use the omnibus Factor 

B error term, MS ′ E = MSB*S  (with df = (b-1)(n-1)). 
• For contrasts on the A*B cell means, use the omnibus A*B interaction 

error term, MS ′ E = MSA*B*S  (with df = (a-1)(b-1)(n-1)). 
• I recommend that you always use the contrast-specific error term. 
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o Just as for one-factor within-subjects designs, we have a number of 
options for effect sizes 

 
• Partial eta-squared is a measure of percentage of the variance 

accounted for (in the sample) that can be used for omnibus tests or 
contrasts: 

ˆ η (Effect )
2 =

SSeffect

SSeffect + SSErrorTermForEffect

 

SAA

A
A SSSS

SS

*

2ˆ
+

=η  
SBB

B
B SSSS

SS

*

2ˆ
+

=η  
SBABA

BS
BA SSSS

SS

***

*2
*ˆ

+
=η  

orContrastErrorTermFContrast

Contrast
Contrast SSSS

SS
+

=2η̂  

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

2856.600 1 2856.600 33.766 .000
761.400 9 84.600

2899.200 2 1449.600 40.719 .000
640.800 18 35.600

1051.200 2 525.600 45.310 .000
208.800 18 11.600

Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed
Sphericity Assumed

Source
TIME
Error(TIME)
SCALE
Error(SCALE)
TIME * SCALE
Error(TIME*SCALE)

Type III Sum
of Squares df Mean Square F Sig.

 
 

80.
4.7616.2856

6.2856ˆ 2 =
+

=Timeη   82.
8.6402.2899

2.2899ˆ 2 =
+

=Scaleη  

83.
8.2082.1051

2.1051ˆ 2
* =

+
=ScaleTimeη  

 
This formula can be used for omnibus tests and for contrasts. 

 
• For contrasts (except maybe polynomial trends), we can also compute a d as 

a measure of the effect size, just as we did for the paired t-test. 

ψσ
ψ
ˆ

ˆ =d  but if and only if ci∑  

Where:  ψ is the average value of the contrast of interest 
              ˆ σ ψ is the standard deviation of the contrast values 

 
• For all contrasts, we can also compute an r as a measure of the effect size. 

contrastContrast

Contrast

contrastContrast

Contrast

dfF
F

dft
t

r
+

=
+

= 2

2

ˆ  



11A-14   2007 A. Karpinski 

 
• There are four methods we can use in SPSS to test contrasts: 

o Create a new variable reflecting the value of the contrast and conduct a 
one-sample t-test on this new variable 

o Selecting only the groups of interest and running a contrast or paired t-
test on those groups  

o SPSS’s brand-name contrasts 
o SPSS’s special subcommand 

 
• Method 1: Compute a new variable for each contrast, and test if the value of 

the contrast differs from zero.  
o Let’s start by testing three of our hypotheses 

 
i. Does training improve test scores for subscale 1?  

compute diff1 = post1-pre1. 
T-TEST /TESTVAL=0 
  /VARIABLES=diff1. 

One-Sample Statistics

10 3.0000 7.61577 2.40832DIFF1
N Mean Std. Deviation

Std. Error
Mean

 
One-Sample Test

1.246 9 .244 3.0000 -2.4480 8.4480DIFF1
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 

39.0
61577.7

0.3
ˆ

ˆ ===
ψσ

ψd  
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No. The scores on sub-scale 1 
do not change significantly 
between pre- and post-test, t(9) 
= 1.25, p = .24, d = .39 
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ii. Does training improve test scores for subscale 2?  

compute diff2 = post2-pre2. 
T-TEST /TESTVAL=0 
  /VARIABLES=diff2. 

 
One-Sample Statistics

10 15.0000 10.67708 3.37639diff2
N Mean Std. Deviation

Std. Error
Mean

 
One-Sample Test

4.443 9 .002 15.00000 7.3621 22.6379diff2
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 

40.1
67708.10
15

ˆ
ˆ ===

ψσ
ψd  
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Yes. The scores on sub-scale 
2 significantly improve 
between pre- and post-test, 
t(9) = 4.44, p < .01, d = 1.40 
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iii. Does training improve test scores for subscale 3?  
compute diff3 = post3-pre3. 
T-TEST /TESTVAL=0 
  /VARIABLES=diff3. 

 
 

One-Sample Statistics

10 23.4000 6.60303 2.08806diff3
N Mean Std. Deviation

Std. Error
Mean

 
One-Sample Test

11.207 9 .000 23.40000 18.6765 28.1235diff3
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 

54.3
60303.6

4.22
ˆ

ˆ ===
ψσ

ψd  
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Yes. The scores on sub-scale 3 
significantly improve between 
pre- and post-test, t(9) = 11.21, p 
< .01, d = 3.54 
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• Method 2: Selecting the groups of interest and running paired-test on those 
groups 
o Note that this approach would not be recommended for between subjects 

designs.  However, for within-subjects designs, the default is to use a 
contrast-specific error term.  That is, we only use information from the 
groups that are involved in the contrast to construct the error term.  Thus, 
for within-subjects designs, it is acceptable to select the groups of interest 
and run a test only on those groups. 

 
T-TEST PAIRS = pre1 pre2 pre3  WITH post1 post2 post3 (PAIRED). 

Paired Samples Test

-3.00000 7.61577 2.40832 -8.44800 2.44800 -1.246 9 .244
-15.00000 10.67708 3.37639 -22.63792 -7.36208 -4.443 9 .002
-23.40000 6.60303 2.08806 -28.12352 -18.67648 -11.207 9 .000

pre1 - post1Pair 1
pre2 - post2Pair 2
pre3 - post3Pair 3

Mean Std. Deviation
Std. Error

Mean Lower Upper

95% Confidence
Interval of the

Difference

Paired Differences

t df Sig. (2-tailed)

 
 

• Scale 1, pre vs post: t(9) = 1.25, p = .24, d = .39 
• Scale 2, pre vs post: t(9) = 4.44, p < .01, d = 1.40 
• Scale 3, pre vs post: t(9) = 11.21, p < .01, d = 3.54 

 
• These analyses are identical to the previously conducted analyses on 

the difference scores we computed. 
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• Method 3: SPSS’s brand-name contrasts.  SPSS conducts contrasts on the 
marginal main effect means of the repeated measures factor, using contrast 
specific error estimates 
o Contrasts can only be specified on the marginal means.  Tests on the cell 

means are obtained by multiplying together main effect contrasts. 
o So far, we have examined the effect of training for each subscale.  Now, 

we would like to test whether: 
• The effect of training on subscale 1 is the same as the effect of 

training on subscale 2 
• The effect of training on subscale 1 is the same as the effect of 

training on subscale 3 
• The effect of training on subscale 2 is the same as the effect of 

training on subscale 3 
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GLM  pre1 pre2 pre3 post1 post2 post3 
  /WSFACTOR = time 2 Simple (1) scale 3 simple (1)  
  /PRINT = DESC. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

1904.400 1 1904.400 33.766 .000
507.600 9 56.400

1166.400 1 1166.400 38.368 .000
2822.400 1 2822.400 66.566 .000

273.600 9 30.400
381.600 9 42.400

1440.000 1 1440.000 45.000 .000
4161.600 1 4161.600 83.903 .000

288.000 9 32.000
446.400 9 49.600

scale

Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

time
Level 2 vs. Level 1
Level 2 vs. Level 1

Level 2 vs. Level 1

Level 2 vs. Level 1

Source
time
Error(time)
scale

Error(scale)

time * scale

Error(time*scale)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

o There are only two groups in the time factor, so no matter what we ask 
SPSS to do, it will give us a pairwise contrast 

 Pre-test Post test 
 

1..X = 50.0 2..X = 63.8 
Coefficients -1 +1 

 

79.
6.5074.1904

4.1904ˆ 2 =
+

=
+

=
orContrastErrorTermFContrast

Contrast
Contrast SSSS

SS
η  

 
79.,01.,77.33)9,1( 2 =<= ηpF  

 
o For the scale effect there are three groups, so we can ask SPSS to conduct 

two main effect contrasts: 
 Subscale 1 Subscale 2 Subscale 3 
 ..1X = 47.7 ..2X = 58.5 ..3X = 64.5 
Level 2 vs Level 1 -1 1 0 
Level 3 vs Level 1 -1 0 1 

 
81.

6.2734.1166
4.1166ˆ 2

12 =
+

=vsη   88.
6.3814.2822

4.2822ˆ 2
13 =

+
=vsη  

 
Level 2 vs Level 1: 81.,01.,37.38)9,1( 2 =<= ηpF  
Level 3 vs Level 1: 88.,01.,57.66)9,1( 2 =<= ηpF  
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o For the time by scale interaction there are 2 dfs, so SPSS will provide 
two follow-up tests. SPSS multiplies each of the main effect contrasts 
together to obtain interaction contrasts. 
• These are the tests we are interested in! 

 
Level 2 vs Level 1* 
  Level 2 vs Level 1 

Subscale 1 Subscale 2 Subscale 3  

  Pre-test    -1 
  Post-test    +1 
 -1 1 0  

 
Level 2 vs Level 1* 
  Level 2 vs Level 1 

Subscale 1 Subscale 2 Subscale 3 

  Pre-test 1 -1 0 
  Post-test -1 1 0 

 
• This contrast tests whether the effect of training on Subscale 1 is the 

same as the effect of training for Subscale 2 (an interaction!) 
22Pr11Pr0 : PostePosteH µµµµ −=−  

22Pr11Pr1 : PostePosteH µµµµ −≠−  
 

40
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70

Subscale 1 Subscale 2
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83.
2881440

1440ˆ 2 =
+

=Contrastη  

 
98.,01.,00.45)9,1( 2 =<= ηpF  
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• This contrast tests whether the effect of training on Subscale 1 is the 
same as the effect of training for Subscale 3  

33Pr11Pr0 : PostePosteH µµµµ −=−  

33Pr11Pr1 : PostePosteH µµµµ −≠−  
 

40
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55
60
65
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80

Subscale 1 Subscale 3

Pre-test
Post-test

 

 
 
 

90.
4466.4161
6.4161ˆ 2 =

+
=Contrastη  

 
90.,01.,90.83)9,1( 2 =<= ηpF  

 
 
 
 
 

Level 2 vs Level 1* 
  Level 3 vs Level 1 

Subscale 1 Subscale 2 Subscale 3  

  Pre-test    -1 
  Post-test    +1 
 -1 0 1  

Level 2 vs Level 1* 
  Level 3 vs Level 1 

Subscale 1 Subscale 2 Subscale 3 

  Pre-test -1 0 1 
  Post-test 1 0 -1 
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o To test whether the effect of training on Subscale 2 is the same as the 
effect of training for Subscale 3, we need to run a new command. 

GLM  pre1 pre2 pre3 post1 post2 post3 
  /WSFACTOR = time 2 Simple (1) scale 3 simple (2)  
  /PRINT = DESC. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

1904.400 1 1904.400 33.766 .000
507.600 9 56.400

1166.400 1 1166.400 38.368 .000
360.000 1 360.000 10.588 .010
273.600 9 30.400
306.000 9 34.000

1440.000 1 1440.000 45.000 .000
705.600 1 705.600 12.250 .007
288.000 9 32.000
518.400 9 57.600

scale

Level 1 vs. Level 2
Level 3 vs. Level 2
Level 1 vs. Level 2
Level 3 vs. Level 2
Level 1 vs. Level 2
Level 3 vs. Level 2
Level 1 vs. Level 2
Level 3 vs. Level 2

time
Level 2 vs. Level 1
Level 2 vs. Level 1

Level 2 vs. Level 1

Level 2 vs. Level 1

Source
time
Error(time)
scale

Error(scale)

time * scale

Error(time*scale)

Type III Sum
of Squares df Mean Square F Sig.

 
Level 2 vs Level 1* 
  Level 3 vs Level 2 

Subscale 1 Subscale 2 Subscale 3  

  Pre-test    -1 
  Post-test    +1 
 0 -1 1  

 
Level 2 vs Level 1* 
  Level 2 vs Level 1 

Subscale 1 Subscale 2 Subscale 3 

  Pre-test 0 1 -1 
  Post-test 0 -1 1 

22Pr11Pr0 : PostePosteH µµµµ −=−  

22Pr11Pr1 : PostePosteH µµµµ −≠−  
 

40
45
50
55
60
65
70
75
80

Subscale 2 Subscale 3

Pre-test
Post-test

 

 
 
 

58.
4.5186.705

6.705ˆ 2 =
+

=Contrastη  

 
58.,01.,25.12)9,1( 2 =<= ηpF  
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o Most cell mean contrasts that you would find of interest can be obtained 
by multiplying two main effect contrasts (with the exception of simple 
effect contrasts). 

 
• Method 4: SPSS’s special subcommand.  

 
o Let’s return to our original questions: 

i. Overall, does the training improve test scores? 
ii. Does training improve test scores for subscale 1? 
iii. Does training improve test scores for subscale 2? 
iv. Does training improve test scores for subscale 3? 
v. Overall, is there a difference in performance on the three sub-scales? 

This final hypothesis is an omnibus hypothesis, so we will only 
consider the first four  

 
o To use the special subcommand:  

• Treat your design as a one-factor repeated-measures design 
• Enter the appropriate coefficients in the special command 

 
GLM  pre1 pre2 pre3 post1 post2 post3 
  /WSFACTOR = factor 6 special (  1   1  1  1  1  1 
                                                       -1 -1 -1  1  1  1   
                                                       -1  0  0  1  0  0  
                                                         0 -1  0  0  1  0 
                                                         0  0 -1  0  0  1 
                                -1 -1 2   1  1 -2). 

 
 
 

• Note that contrast 6 is of no interest to us, but we must enter five 
contrasts after the row of ones. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

17139.600 1 17139.600 33.766 .000
90.000 1 90.000 1.552 .244

2250.000 1 2250.000 19.737 .002
5475.600 1 5475.600 125.587 .000
8294.400 1 8294.400 45.474 .000
4568.400 9 507.600
522.000 9 58.000

1026.000 9 114.000
392.400 9 43.600

1641.600 9 182.400

FACTOR
L1
L2
L3
L4
L5
L1
L2
L3
L4
L5

Source
FACTOR

Error(FACTOR)

Type III Sum
of Squares df Mean Square F Sig.
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

17139.600 1 17139.600 33.766 .000
90.000 1 90.000 1.552 .244

2250.000 1 2250.000 19.737 .002
5475.600 1 5475.600 125.587 .000
8294.400 1 8294.400 45.474 .000
4568.400 9 507.600
522.000 9 58.000

1026.000 9 114.000
392.400 9 43.600

1641.600 9 182.400

FACTOR
L1
L2
L3
L4
L5
L1
L2
L3
L4
L5

Source
FACTOR

Error(FACTOR)

Type III Sum
of Squares df Mean Square F Sig.

 
 

i. Overall, does the training improve test scores?   (L1) 
Yes. Averaging across the subscales, post-test scores are higher 
than pre-test scores, F(1,9) = 33.77, p < .01 

 
ii. Does training improve test scores for subscale 1?   (L2) 

No. The scores on sub-scale 1 do not change significantly 
between pre- and post-test, F(1,9) = 1.55, p = .24 

 
iii. Does training improve test scores for subscale 2?   (L3) 

Yes. The scores on sub-scale 2 are higher at post-test than at 
pre-test, F(1,9) = 19.74, p < .01 

 
iv. Does training improve test scores for subscale 3?   (L4) 

Yes. The scores on sub-scale 3 are higher at post-test than at 
pre-test, F(1,9) = 125.59, p < .01 

 

Test Performance

40

50

60

70

80

Scale1 Scale2 Scale3

Time
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Pre
Post
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• Depending on how these contrasts are conducted, you may need to adjust 

their p-values 
 

o The recommended approach is to forgo the omnibus tests, and to conduct 
three of fewer planned contrasts.  If you take this approach, no correction 
is necessary 
• If you have a large number of planned tests, you may need to apply a 

Bonferroni correction. 
 
 

o The alternative is to conduct the tests for main effects and interactions, 
and then conduct the contrasts as follow-up tests. Now, the contrasts are 
post-hoc tests. If they are pairwise, then you need to use the Tukey 
procedure; if they are complex, you need to use the Scheffé procedure to 
adjust the p-values. 

 
 

 
• To use Tukey’s HSD, compute q(1-α,a,ν) 

Where α = Familywise error rate 
  a  = Number of repeated-measures in the family 
  ν  = df(error)  
 

⇒ For single-df tests, df(error) should be (n -1), the df associated with 
the contrast-specific error estimate.  

 
⇒ To determine significance at the (1-α) level,  

 

Compare tobserved  to qcrit

2
  or observedF  to ( )

2

2
critq  

 
• To use the Scheffé correction, compute να ,;05.)( rCrit FrF ==  

Where α = Familywise error rate 
  r  = Degrees of freedom associated with the family 
  ν  = df(error), (n -1) for a contrast-specific error estimate. 

 
Compare observedF  to critF  
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o As an example, let’s consider the following question as a post-hoc test 
Does training improve test scores for subscale 2?  
 

When we tested this contrast, we found the test statistic to be: 
 F(1,9) = 19.74 

 
We need to discard the p-value and compute a Tukey adjusted critical 
value. 

q(1-α,a,ν)  with α = .05 a  = 6  ν  = 9  

q(.95,6,9) = 5.02   ( ) 60.12
2
02.5 2

==critF  

 
And so we can report the test to be significant at the 05.=α  level: 

 F(1,9) = 19.74, p < .05   
 

Test Score Improvement

40

50

60

70

80

Scale 1 Scale 2 Scale 3

Scale

Te
st

 S
co

re

Pre-test
Post-test

 
o We should have a separate variance estimate of the error bars for each 

cell 

n
s

StdError jk
2

=  

o SPSS and EXCEL are not good for plotting separate error bars for each 
cell.  The best you can do is to compute a common standard error based 
on the error term for the highest order interaction.  This error bar is 
misleading (because you did not actually use it in your analyses). If you 
plan to publish using repeated measures data, get better graphical 
software. 
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5. An Example 
 

• Consider an experiment on facial perception.  Faces vary on two 
dimensions: orientation (upright, 90° rotation, and 180° rotation) and 
distortion (none, eyes & mouth upside down, eyes whitened and teeth 
blackened).  Participants rate each of the six resulting faces on how “bizarre” 
each face looks on a 7-point scale, with higher numbers indicating more 
bizarreness.  The following data were obtained: 

 
 No Distortion Upside-Down Whitened and Blackened 
Subject 0° 90° 180° 0° 90° 180° 0° 90° 180° 
  1 1.18 2.40 2.48 4.76 4.93 3.13 5.56 4.93 5.21 
  2 1.14 1.55 1.25 4.81 4.73 3.89 4.85 5.43 4.89 
  3 1.02 1.25 1.30 4.98 3.85 3.05 4.28 5.64 6.49 
  4 1.05 1.63 1.84 4.91 5.21 2.95 5.13 5.52 5.69 
  5 1.81 1.65 1.01 5.01 4.18 3.51 4.90 5.18 5.52 
  6 1.69 1.67 1.04 5.65 4.56 3.94 4.12 5.76 4.99 
 
 

Distortion 0° 90° 180°  
  None 1.32 1.69 1.49 1.50 
  Upside-Down 5.02 4.58 3.41 4.34 
  Whitened/Blackened 4.81 5.41 5.47 5.23 
 3.72 3.89 3.46 3.69 

 

0
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Rotation

  None
  Upside-Down
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• We can solve for the (fixed) model parameters 
σσσσ αβπβπαπαβπβαµ )()()()( +++++++= jkkjijkY  

 
µ  The overall mean of the scores 

ˆ µ = 3.69 
 

jα  The effect of being in level j of Orientation 
ˆ α j =Y . j .−Y ...  

ˆ α 1 = 3.72 − 3.69 = 0.03 
ˆ α 2 = 3.89 − 3.69 = 0.20 
ˆ α 3 = 3.46 − 3.69 = −0.23 

 
kβ  The effect of being in level k of Distortion  

ˆ β k = Y ..k −Y ...  
ˆ β 1 =1.50 − 3.69 = −2.19 
ˆ β 2 = 4.34 − 3.69 = 0.65 
ˆ β 3 = 5.23 − 3.69 =1.54   

 
( ) jkαβ  The effect of being in level j of Orientation and  

level k of Distortion 
ˆ α β( ) jk = Y . jk −Y . j .−Y ..k +Y ...  

 
ˆ α β( )11 =1.32 − 3.72 −1.50 + 3.69 = −0.21
ˆ α β( )12 = 5.02 − 3.72 − 4.34 + 3.69 = 0.65
ˆ α β( )13 = 4.81− 3.72 −5.23 + 3.69 = −0.45 

. 

. 
ˆ α β( )33 = 5.47 − 3.46 − 5.23+ 3.69 = 0.47  

 
 
 

• First, we need to check assumptions 
o This design is a two-factor repeated measures design 
o Participants must be independent and randomly selected from the 

population 
o Normality/ symmetry of difference scores (but in practice normality 

within each condition) 
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EXAMINE 
  VARIABLES=nod_zer nod_90 nod_180 usd_zer usd_90 usd_180 wb_zer wb_90 wb_180 
  /PLOT BOXPLOT STEMLEAF NPPLOT 
  /COMPARE VARIABLES. 

 

Tests of Normality

.807 6 .068

.831 6 .109

.846 6 .147

.771 6 .032

.980 6 .950

.872 6 .235

.954 6 .776

.955 6 .779

.909 6 .432

NOD_ZER
NOD_90
NOD_180
USD_ZER
USD_90
USD_180
WB_ZER
WB_90
WB_180

Statistic df Sig.
Shapiro-Wilk

  

666666666N =

WB_180
WB_90

WB_ZER
USD_180

USD_90
USD_ZER

NOD_180
NOD_90

NOD_ZER

7

6

5

4

3

2

1

0

6

3

1

 
 
 
 
 
 

o Sphericity 
 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.963 1.000 .500

.932 1.000 .500

.462 .720 .250

Within Subjects Effect
ORIENTAT
DISTORT
ORIENTAT * DISTORT

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilon

 
 
 

• Sphericity is not satisfied. 
• We must either conduct only non-parametric tests or contrasts  

 
 

• Contrasts of interest (all post-hoc): 
o Are there linear (and quadratic) trends in the marginal orientation means? 
o Are there linear (and quadratic) trends in the orientation means within 

each level of distortion? 
o Are the linear (and quadratic) trends in the orientation means within each 

level of distortion different from each other? 
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• First, let’s test for linear and quadratic trends in orientation. 
 

Distortion  0° 90° 180° 
  None     
  Upside-Down     
  Whitened/Blackened     
 Linear 

Quadratic 
-1 
+1 

0 
-2 

+1 
+1 

Marginal Orientation Means

3

3.25

3.5

3.75

4

0 90 180

Orientation

Ra
tin

g 
of

 B
iz

ar
re

ne
ss

 
 

o Method 1: Use SPSS’s built-in contrasts to test main effect contrasts 
GLM nod_zer usd_zer wb_zer  nod_90 usd_90 wb_90  
         nod_180 usd_180 wb_180 
  /WSFACTOR = orientat 3 polynomial distort 3  
  /PRINT = DESCRIPTIVE. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.606 1 .606 5.772 .061
1.143 1 1.143 13.537 .014

.525 5 .105

.422 5 .084

distortorientat
Linear
Quadratic
Linear
Quadratic

Source
orientat

Error(orientat)

Type III Sum
of Squares df Mean Square F Sig.

 

54.
525.606.

606.2 =
+

=
+

=
orLinearErrorTermFLinear

Linear
Linear SSSS

SS
η  

73.
422.143.1

143.12 =
+

=Quadraticη  

 
These are complex, post-hoc tests, so a Scheffé correction is required. 

57.1178.5*2)5,2,05(.*2 === FFCrit  
56.778.3*2)5,2,10(.*2 === FFCrit  

 
Linear trend: 54.,,78.5)5,1( 2 == ηnsF  
Quadratic trend: 73.,05.,54.13)5,1( 2 =<= ηpF  
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o Method 2: Compute and test the contrasts manually 

compute lin_ori = -1*nod_zer + 0*nod_90 +1*nod_180  
                            - 1*usd_zer + 0*usd_90+ 1* usd_180  
                            - 1*wb_zer + 0*wb_90+1* wb_180. 
compute quad_ori = 1*nod_zer -2*nod_90 +1*nod_180  
                              + 1*usd_zer -2*usd_90+1* usd_180  
                              + 1*wb_zer -2*wb_90+1* wb_180. 
 
T-TEST  /TESTVAL=0 
  /VARIABLES=lin_ori quad_ori. 
 

One-Sample Statistics

6 -.7783 .79356 .32397
6 -1.8517 1.23274 .50327

LIN_ORI
QUAD_ORI

N Mean Std. Deviation
Std. Error

Mean

 
One-Sample Test

-2.402 5 .061 -.7783 -1.6111 .0545
-3.679 5 .014 -1.8517 -3.1454 -.5580

LIN_ORI
QUAD_ORI

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
 
 

These results exactly match the results obtained from using SPSS’s 
built-in main effect contrasts. 

 
 

73.
5404.2

402.2
2

2

2

2

=
+

=
+

=
contrastContrast

Contrast
linear dft

t
r  85.

5679.3
679.3

2

2

=
+

=quadr  

 
 

Linear trend: 73.,,78.5)5,1( == rnsF  
Quadratic trend: 85.,05.,54.13)5,1( =<= rpF  
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• Second, let’s test for linear and quadratic trends in orientation within each 

level of distortion. 
 

Distortion  0° 90° 180° 
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Distortion  0° 90° 180° 
  None     
  Upside-Down Linear 

Quadratic 
-1 
+1 

0 
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+1 
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Distortion  0° 90° 180° 
  None     
  Upside-Down     
  Whitened/Blackened Linear 

Quadratic 
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o Method 1: Compute and test the contrasts manually 

Compute lin_nod = -nod_zer  + 0*nod_90 + nod_180. 
Compute quad_nod = nod_zer  - 2*nod_90 + nod_180. 
 
Compute lin_usd = -usd_zer  + 0*usd_90 + usd_180. 
Compute quad_usd = usd_zer  - 2*usd_90 + usd_180. 
 
Compute lin_wb = -wb_zer  + 0*wb_90 + wb_180. 
Compute quad_wb = wb_zer  - 2*wb_90 + wb_180. 
 
T-TEST  /TESTVAL=0 
  /VARIABLES=lin_nod quad_nod lin_usd quad_usd lin_wb quad_wb . 

One-Sample Statistics

6 .1717 .81121 .33117
6 -.5817 .33030 .13484
6 -1.6083 .38039 .15529
6 -.7217 1.28395 .52417
6 .6583 .87894 .35883
6 -.5483 1.13125 .46183

LIN_NOD
QUAD_NOD
LIN_USD
QUAD_USD
LIN_WB
QUAD_WB

N Mean Std. Deviation
Std. Error

Mean

 
One-Sample Test

.518 5 .626 .1717 -.6796 1.0230
-4.314 5 .008 -.5817 -.9283 -.2350

-10.357 5 .000 -1.6083 -2.0075 -1.2091
-1.377 5 .227 -.7217 -2.0691 .6258
1.835 5 .126 .6583 -.2641 1.5807

-1.187 5 .288 -.5483 -1.7355 .6388

LIN_NOD
QUAD_NOD
LIN_USD
QUAD_USD
LIN_WB
QUAD_WB

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
 

23.
5518.0

518.0
2

2

2

2

=
+

=
+

=
contrastContrast

Contrast
stortLinearNoDi dft

t
r      89.

5314.4
314.4

2

2

=
+

=ortQuadNoDistr  

98.
5357.10

357.10
2

2

=
+

=deDownLinearUpsir   28.
5377.1

377.1
2

2

=
+

=DownQuadUpsider  

63.
5835.1

835.1
2

2

=
+

=denedBlackeLinearWhitr   47.
5187.1

187.1
2

2

=
+

=dedBlackeneQuadWhitenr  

 
o These are complex, post-hoc tests, so a Scheffé correction is required. 

56.476.20

76.2019.5*4)5,4,05(.*4

===

===

critcrit

Crit

Ft

FF
 

75.308.14

08.1452.3*4)5,4,10(.*4

===

===

critcrit

Crit

Ft

FF
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o For faces that were not distorted: There is a marginally significant 

quadratic trend such that sideways faces are rated to be most bizarre and 
deviations from 90° are less bizarre, 89.,10.,31.4)5( =<−= rpt . 

o For faces with upside-down mouths and faces: There is a linear trend in 
ratings of bizarreness such that as orientation increases, bizarreness 
decreases, 98.,05.,36.10)5( =<−= rpt  

o For faces with whitened eyes and blacked teeth:  Ratings of bizarreness 
are unaffected by orientation, 63.≤rs . 
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o Method 2: Selecting only the groups of interest and running a contrast on 
those groups  

 
• No Distortion: Linear and quadratic trends 

GLM nod_zer nod_90 nod_180  
  /WSFACTOR = orientat 3 Polynomial. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.088 1 .088 .269 .626

.338 1 .338 18.608 .008
1.645 5 .329
.091 5 .018

orientat
Linear
Quadratic
Linear
Quadratic

Source
orientat

Error(orientat)

Type III Sum
of Squares df Mean Square F Sig.

 

05.
645.108841.

08841.2 =
+

=stortionLinearNoDiη   79.
09091.338.

338.2 =
+

=noDistortioQuadraticNη  

 
• Upside-down eyes and mouths: Linear and quadratic trends 

GLM usd_zer usd_90 usd_180  
  /WSFACTOR = orientat 3 Polynomial. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

7.760 1 7.760 107.262 .000
.521 1 .521 1.896 .227
.362 5 .072

1.374 5 .275

orientat
Linear
Quadratic
Linear
Quadratic

Source
orientat

Error(orientat)

Type III Sum
of Squares df Mean Square F Sig.

 

96.
362.76.7

76.72 =
+

=deDownLinearUpsiη   27.
374.1521.

521.2 =
+

=psideDownQuadraticUη  

 
• Whitened eyes and blackened mouths: Linear and quadratic trends 

GLM wb_zer wb_90 wb_180  
  /WSFACTOR = orientat 3 Polynomial. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

1.300 1 1.300 3.366 .126
.301 1 .301 1.410 .288

1.931 5 .386
1.066 5 .213

orientat
Linear
Quadratic
Linear
Quadratic

Source
orientat

Error(orientat)

Type III Sum
of Squares df Mean Square F Sig.

 

40.
931.1300.1

300.12 =
+

=nedenedBlackeLinearWhitη   22.
066.1301.

301.2 =
+

=ckenedhitenedBlaQuadraticWη  
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• Finally, we’d like to test for differences between these trends 
o For example, does the linear trend for no distortion differ from the linear 

trend for upside-down eyes and mouth? 
 

o Method 1: Compute and test the contrasts manually 
• Linear (No distortion) vs. Linear (Up-side down) 

Distortion  0° 90° 180° 
  None Linear -1 0 +1 
  Upside-Down Opposite Linear +1 0 -1 
  Whitened/Blackened     
     

 
• Quadratic (No distortion) vs. Quadratic (Up-side down) 

Distortion  0° 90° 180° 
  None Quadratic +1 -2 +1 
  Upside-Down Opposite Quadratic -1 +2 -1 
  Whitened/Blackened     
     

 
• The syntax and output for this method is not included here. 
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o Approach 2: Use SPSS’s built-in contrasts 

• Notice that differences in trends can be obtained by examining the 
interaction between polynomial contrasts on orientation and simple 
contrasts on distortion 

 
• Linear (orientation) by None vs.Upside-down (distortion) 

Distortion 0° 90° 180°  
  None -1 0 +1 +1 
  Upside-Down +1 0 -1 -1 
  Whitened/Blackened     
 -1 0 +1  

 
• Quadratic (orientation) by None vs.Upside-down (distortion) 

Distortion 0° 90° 180°  
  None +1 -2 +1 +1 
  Upside-Down -1 +2 -1 -1 
  Whitened/Blackened     
 +1 -2 +1  

 
GLM nod_zer usd_zer wb_zer nod_90 usd_90 wb_90 nod_180 usd_180 wb_180 
  /WSFACTOR = orientat 3 Polynomial distort 3 Simple(1) 
  /PRINT = DESCRIPTIVE. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

.202 1 .202 5.772 .061

.381 1 .381 13.537 .014

.175 5 3.499E-02

.141 5 2.814E-02
145.010 1 145.010 382.927 .000
250.358 1 250.358 621.185 .000

1.893 5 .379
2.015 5 .403
9.505 1 9.505 20.243 .006
.711 1 .711 .755 .425

1.960E-02 1 1.960E-02 .082 .787
1.111E-03 1 1.111E-03 .004 .951

2.348 5 .470
4.705 5 .941
1.201 5 .240

1.338 5 .268

DISTORT

Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1

ORIENTAT
Linear
Quadratic
Linear
Quadratic

Linear

Quadratic

Linear

Quadratic

Source
ORIENTAT

Error(ORIENTAT)

DISTORT

Error(DISTORT)

ORIENTAT * DISTORT

Error(ORIENTAT*DIST
ORT)

Type III Sum
of Squares df Mean Square F Sig.

 

56.476.20

76.2019.5*4)5,4,05(.*4

===

===

critcrit

Crit

Ft

FF
 

72.308.14

08.1452.3*4)5,4,10(.*4

===

===

critcrit

Crit

Ft

FF
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• Difference in trends between no distortion and upside-down eyes and 
mouth: 

80.
348.2505.9

505.92 =
+

=LinearDiffη   02.
201.10196.

0196.2 =
+

=iffQuadraticDη  

Difference in linear trends: 80.,10.,24.20)5,1( 2 =<= ηpF  
Difference in quadratic trends: 02.,,08.0)5,1( 2 == ηnsF  

 
• Difference in trends between no distortion and whitened eyes and 

black teeth: 
13.

705.4711.
711.2 =
+

=LinearDiffη   0008.
338.100111.

00111.2 =
+

=iffQuadraticDη  

Difference in linear trends: 13.,,77.0)5,1( 2 == ηnsF  
Difference in quadratic trends: 01.,,01.0)5,1( 2 <= ηnsF  
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• To obtain differences in trends between upside-down eyes and mouth 
and whitened eyes and black teeth, we need to run another analysis: 
GLM nod_zer usd_zer wb_zer nod_90 usd_90 wb_90 nod_180 usd_180 wb_180 
  /WSFACTOR = orientat 3 Polynomial distort 3 Simple(2) 
  /PRINT = DESCRIPTIVE. 

 
Difference in linear trends: 83.,05.,18.24)5,1( 2 =<= ηpF  
Difference in quadratic trends: 01.,,04.0)5,1( 2 <= ηnsF  

0

1

2

3

4

5

6

0 90 180

Rotation

B
iz

ar
re

ne
ss   None

  Upside-Down
  Whitened/Blackened

 



11A-40   2007 A. Karpinski 

 
• All of the previous analysis examined the effect of orientation or the effect 

of orientation within each level of distortion.   
• Alternatively, we may be interested in the effect of distortion or the effect of 

distortion within each level of orientation.  The following analysis are a few 
examples of these types of contrasts 

 
 

Distortion 0° 90° 180°  
  None 1.32 1.69 1.49 1.50 
  Upside-Down 5.02 4.58 3.41 4.34 
  Whitened/Blackened 4.81 5.41 5.47 5.23 
 3.72 3.89 3.46 3.69 

 
o Within each level of orientation, let’s compare the distorted faces to the 

non-distorted control. 
compute  comp1 = usd_zer - nod_zer. 
compute  comp2 = wb_zer - nod_zer. 
 
compute  comp3 = usd_90 - nod_90. 
compute  comp4 = wb_90 - nod_90. 
 
compute  comp5 = usd_180 - nod_180. 
compute  comp6 = wb_180 - nod_180. 
 
T-TEST  /TESTVAL=0 
  /VARIABLES=comp1 to comp6. 

One-Sample Statistics

6 3.7050 .29187 .11916
6 3.4917 .71065 .29012
6 2.8850 .42505 .17353
6 3.7183 .64691 .26410
6 1.9250 .90697 .37027
6 3.9783 .82956 .33867

COMP1
COMP2
COMP3
COMP4
COMP5
COMP6

N Mean Std. Deviation
Std. Error

Mean

 
One-Sample Test

31.093 5 .000 3.7050 3.3987 4.0113
12.035 5 .000 3.4917 2.7459 4.2374
16.626 5 .000 2.8850 2.4389 3.3311
14.079 5 .000 3.7183 3.0394 4.3972

5.199 5 .003 1.9250 .9732 2.8768
11.747 5 .000 3.9783 3.1078 4.8489

COMP1
COMP2
COMP3
COMP4
COMP5
COMP6

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0
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• These are pair-wise posthoc comparisons, so a Tukey HSD correction 
is required. 

tcrit =
qcrit (.05,9,5)

2
=

6.80
2

= 4.81 

• Within each level of orientation, all distorted faces are rated as more 
bizarre than the control, non-distorted faces, all ps <.05, ds > 2.12. 

 

o We decide to follow these tests up with pair wise comparisons between 
the two distorted faces at each level of orientation. 

compute comp7 = usd_zer - wb_zer. 
compute comp8 = usd_90 - wb_90. 
compute comp9 = usd_180 - wb_180. 
T-TEST  /TESTVAL=0 
  /VARIABLES=comp7 to comp9. 

One-Sample Statistics

6 .2133 .80746 .32964
6 -.8333 .64242 .26227
6 -2.0533 .95007 .38786

COMP7
COMP8
COMP9

N Mean Std. Deviation
Std. Error

Mean

 
One-Sample Test

.647 5 .546 .2133 -.6340 1.0607
-3.177 5 .025 -.8333 -1.5075 -.1592
-5.294 5 .003 -2.0533 -3.0504 -1.0563

COMP7
COMP8
COMP9

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
• Again, a Tukey HSD correction is required. 

tcrit =
qcrit (.05,9,5)

2
=

6.80
2

= 4.81 

 
• When faces are presented upside-down, then the faces with eyes 

whitened and teeth blacked are rated as more bizarre than faces with 
up-side down eyes and mouth, 16.2,05.,29.5)5( =<= dpt  

• In other orientations (upright and 90°), there are no significant 
differences in ratings of the two distorted faces, ds < 1.29. 

 

Distortion 0° 90° 180°  
  None 1.32 1.69 1.49 1.50 
  Upside-Down 5.02 4.58 3.41 4.34 
  Whitened/Blackened 4.81 5.41 5.47 5.23 
 3.72 3.89 3.46 3.69 

 


