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Repeated Measures ANOVA 
One-Factor Repeated Measures 

 
 
1. Types of repeated measures designs 
 

i. Each participant/unit is observed in a different treatment conditions 
 

o Example: Testing over the counter headache remedies 
 

Each participant is given four over-the-counter headache medicines: 
• Tylenol (Acetaminophen) 
• Advil (Ibuprofen) 
• Goody’s Headache Powder (??) 
• An herbal remedy (Ginkgo) 

 

Over-The-Counter 
Headache Remedies
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o If each participant takes the treatments in random order, then this design 
can be treated as a randomized block design with participant as the block 

 
  Treatment Order 
  1 2 3 4 

Block 1  A T GI GO 

 2 GO A GI T 

 3 T GO A GI 

 4 GI T GO A 

 5  GO A GI T 
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ii. Profile analysis 

Scores on a different tests are compared for each participant 
 

o Each participant completes several different scales, and the profile of 
responses to those scores is examined. 

 
 

o Example: Perceptions of a loving relationship 
 

Single male and female participants complete three scales, each designed 
to measure a different aspect of Sternberg’s (1988) love triangle: 
• Intimacy 
• Passion 
• Commitment 
Participants rate the importance of each component for a long-term 
relationship. 

 

Perceptions of Long-Term Love

2
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Intimacy Passion Commitment
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o This example has a repeated measures factor and a between-subjects 
factor. 

 
o For a profile analysis, it is highly desirable that each questionnaire is 

scaled similarly (with the same mean and standard deviation) so that the 
profile comparison is meaningful. 

 
o A common use of profile analysis is to examine the profile of MMPI 

subscale scores. 
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iii. Some aspect of each participant/unit is measured at a different times. 

 
o This use of repeated measures designs is the most common.  (In fact, 

some authors reserve the term repeated measures for this type of design, 
and refer to all three types of designs as within-subjects designs.)  

o When the research question involves modeling the trend of the change 
over time (rather than just the presence or absence of differences over 
time), this type of design is called growth-curve analysis. 

 
 

o Example: Participants play Tetris from 11pm to 8am.  Scores for each 
hour are averaged. 

 

Tetris Scores Across the Night

3000
4000
5000
6000
7000
8000

11pm 12am 1am 2am 3am 4am 5am 6am 7am

Time
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2. Advantages and Disadvantages of Repeated Measures Designs 
 

• Advantages 
o Each participant serves as his or her own control. (You achieve perfect 

equivalence of all groups / perfect blocking) 
 
o Fewer participants are needed for a repeated measures design to achieve 

the same power as a between-subjects design. (Individual differences in 
the DV are measured and removed from the error term.) 

 
o The most powerful designs for examining change and/or trends 

 
 

• Disadvantages 
 

o Practice effects 
 

o Differential carry-over effects 
 

o Demand characteristics 
 
 
 
 
3. The Paired t-test 
 

• The simplest example of a repeated measures design is a paired t-test. 
o Each subject is measured twice (time 1 and time 2) on the same variable 
o Or each pair of matched participants are assigned to one of two treatment 

levels 
 

• The analysis of a paired t-test is exactly equivalent to a one sample t-test 
conducted on the difference of the time 1 and time 2 scores (or on the 
difference of the matched pair) 
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• Understanding the paired t-test 
o Recall that for an independent samples t-test, we used the following 

formula (see p. 2-39) 
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df = n1 + n2 - 2 

 
 

o For a paired t-test, we will conduct the analysis on the difference of the 
time 1 and time 2 observations. 

 
Subject Pre-test Post-Test Difference 
  1 6 9 -3 
  2 4 6 -2 
  3 6 5 1 
  4 7 10 -3 
  5 4 10 -6 
  6 5 8 -3 
  7 5 7 -2 
  8 12 10 2 
  9 6 6 0 
  10 1 5 -4 
Average 5.4 7.4 -2 
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o First, let’s see how this analysis would differ if we “forgot” we had a 
repeated measures design, and treated it as an independent-samples 
design 

 
• We treat each of the 20 observations as independent observations 
• To analyze in SPSS, we need 20 lines of data, ostensibly one line for 

each participant 
 

 
 

T-TEST GROUPS=group(1 2) 
  /VARIABLES=dv. 

Independent Samples Test

-1.819 18 .086 -2.0000 1.09949 -4.30995 .30995
Equal variances
assumed

DV
t df Sig. (2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

t(18) = -1.82, p = .086 
 

• But this analysis is erroneous! We do not have 20 independent data 
points (18 df).   
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o Now, let’s conduct the proper paired t-test in SPSS: 
• We properly treat the data as 10 pairs of observations. 
• To conduct this analysis in SPSS, we need to enter our data differently 

than for a between-subjects design.  The data from each participant 
are entered on one line 
 

 
 
 
T-TEST PAIRS time1 time2. 

 
Paired Samples Correlations

10 .546 .102TIME1 & TIME2Pair 1
N Correlation Sig.

 
 

Paired Samples Test

-2.0000 2.40370 .76012 -3.7195 -.2805 -2.631 9 .027TIME1 - TIME2Pair 1
Mean Std. Deviation

Std. Error
Mean Lower Upper

95% Confidence
Interval of the

Difference

Paired Differences

t df Sig. (2-tailed)

 
 
 

t(9) = -2.63, p = .027
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o We could also obtain the same result by conducting a one-sample t-test 

on the difference between time 1 and time 2: 
 
COMPUTE diff = time1 – time2. 
T-TEST  /TESTVAL=0 
  /VARIABLES=diff. 
 

One-Sample Test

-2.631 9 .027 -2.0000 -3.7195 -.2805DIFF
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
 

• Both analyses give the identical results: 
t(9) = -2.63, p = .027 

 
 
 
 

o A comparison of the differences of the two analyses: 
 

 Independent 
Groups 

Repeated 
Measures 

Mean Difference -2.00 -2.00 
Standard Error 1.10 0.76 
t-value -1.82 -2.63 
p-value .086 .027 

 
• The mean difference is the same 
• Importantly, the standard error is smaller in the repeated measures 

case.  The smaller standard error results in a larger t-value and a 
smaller p-value 
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• The greater the correlation between the time 1 and the time 2 
observations, the greater the advantage gained by using a repeated 
measures design.   

 
Recall that the variance of the difference between two variables is 
given by the following formula (see p 2-38) 
 

Var(X1 − X2 ) = Var(X1) +Var(X2 ) −2Cov(X1,X2 )   (Formula 8-1) 
 
The covariance of 1X  and 2X  is a measure of the association between 
the two variables.  If we standardize the covariance (so that it ranges 
from –1 to +1), we call it the correlation between 1X  and 2X  
 

ρ12 =
Cov(X1,X2 )

Var(X1)*Var(X2 )
 

 
 

If we rearrange the terms and substitute into (Formula 8-1), we obtain a 
formula for the variance of the difference scores: 

 
Cov(X1, X2) = ρ12 * Var(X1) * Var(X2)  

Var(X1 − X2 ) = Var(X1) +Var(X2 ) −2ρ12 * Var(X1) * Var(X2 )  
 

σD
2 = σX1

2 + σX 2

2 − 2ρ12σ X1
σX 2

 
 

 
And finally, we can obtain the standard error of the difference scores: 
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⇒ If  0

21
=XXr , then the variance of the difference scores is equal to 

σX1

2 + σX 2

2  
⇒ As 

21XXr becomes greater, then the variance of the difference scores 
becomes smaller than σX1

2 + σX 2

2  
 

So the greater the correlation between time 1 and time 2 scores, the 
greater the advantage of using a paired t-test. 

 
 
 

• Some important observations concerning the paired t-test 
 

o The paired t-test is calculated on the difference scores, not on the actual 
time 1 and time 2 data points.  In fact, even sD  can be computed directly 
from the difference scores 

 
 

sD n
SSD=  
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=

−=
n
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iD DDSS
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o Individual differences in the DV are removed by taking the difference of 
the two observations. 
• (When we turn to repeated-measures ANOVA, the individual 

differences in the DV will be captured in a Sum of Squares due to 
subjects.) 

 
 

o In other words, for a repeated measures analysis, we do not care about 
variability in the DV itself (That variability is due to individual 
differences and is removed by taking a difference score).  What we do 
care about is the variability in the difference scores. 
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o An example might help clarify this issue.  Suppose we add 10 to the pre- 
and post-test scores of the first five participants 

 
 Original Data  Modified Data 
Participant Pre-

test 
Post-
Test 

Difference  Pre-
test 

Post-
Test 

Difference 

  1 6 9 -3  16 19 -3 
  2 4 6 -2  14 16 -2 
  3 6 5 -1  16 15 -1 
  4 7 10 -3  17 20 -3 
  5 4 10 -6  14 20 -6 
  6 5 8 -3  5 8 -3 
  7 5 7 -2  5 7 -2 
  8 12 10 2  12 10 2 
  9 6 6 0  6 6 0 
  10 1 5 -4  1 5 -4 
Average 5.4 7.4 -2  10.4 12.4 -2 

 
 

• We have increased the amount of individual differences in the pre- 
and post-test data, but we have not changed the difference scores. 

 
• As a result, a between-subject analysis of this data is greatly affected 

by the addition of extra noise to the data, but a within-subject analysis 
of this data is unchanged. 

 
 

  Original Data Modified Data 
Between-Subjects   t(18) = -1.82 t(18) = -0.76 
  p = .086 p = .459 
  SE = 1.10 SE = 2.64 
    
Within-Subjects  t(9) = -2.63 t(9) = -2.63 
  p = .027 p = .027 
  SE = 0.760 SE = 0.760 
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• To compute an effect-size for a paired t-test, we can use Cohen’s d 

 

D

Dd
σ

=  

 
Where Dσ  is the standard deviation of the difference scores. 
 

 
• Assumptions of the paired t-test 

 
o Normality (actually symmetry) of the difference scores 
o Participants are randomly selected from the population 

 
o Equality of variances between time 1 and time 2 scores is NOT required 

 
 

 
• Options when the normality assumption of the paired t-test is violated 

 
o Find a suitable transformation of the difference scores 

 
o Use the non-parametric Wilcoxon Signed-Rank test 

 
• Similar to the Mann-Whitney U test for independent groups 
• Tests the null hypothesis that the rank of the time 1 data is the same as 

the rank of the time 2 data 
 

i. Calculate the difference scores for each pair  
ii. (Ignore difference scores of zero) 
iii. Take the absolute value of all difference scores 
iv. Rank the absolute value of the difference scores 
v. Attach the sign (+ or –) of the difference score to each rank 
vi. Compute the test statistic, W  

Compute the sum of the positive signed ranks: +W  
Compute the sum of the negative signed ranks: −W  
 
W  = ),( −+ WWMinimum  
 

vii. Look up the tabled critical value for W  
If critWW ≤  we reject the null hypothesis 
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• For our original example data: 
 

 Original Data  Modified Data 
Participant Pre-

test 
Post-
Test 

Difference   
|D| 

Rank 
of |D| 

Signed 
Rank 

  1 6 9 -3  3 6 -6 
  2 4 6 -2  2 3 -3 
  3 6 5 1  1 1 1 
  4 7 10 -3  3 6 -6 
  5 4 10 -6  6 9 -9 
  6 5 8 -3  3 6 -6 
  7 5 7 -2  2 3 -3 
  8 12 10 2  2 3 3 
  9 6 6 0     
  10 1 5 -4  4 8 -8 
        

 
Sum of positive ranks = 4 
Sum of negative rank = 41  4=W  

 
For a two-tailed test for 10=n  and with 05.=α , 8=critW  
We reject the null hypothesis 

 
• In practice, you will probably use SPSS: 

NPAR TEST 
  /WILCOXON=time1  WITH time2 (PAIRED) 
  /STATISTICS DESCRIPTIVES. 

Ranks

2a 2.00 4.00
7b 5.86 41.00
1c

10

Negative Ranks
Positive Ranks
Ties
Total

TIME2 - TIME1
N Mean Rank Sum of Ranks

TIME2 < TIME1a. 

TIME2 > TIME1b. 

TIME1 = TIME2c. 
 

Test Statisticsb

-2.207a

.027
Z
Asymp. Sig. (2-tailed)

TIME2 - TIME1

Based on negative ranks.a. 

Wilcoxon Signed Ranks Testb. 
 

 
z = -2.21, p = .03 
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4. Analyzing paired data: An example 
 

• To investigate the effectiveness of a new method of mathematical 
instruction, 30 middle-school students were matched (in pairs) on their 
mathematical ability.  Within the pair, students were randomly assigned to 
receive the traditional mathematics instruction or to receive a new method of 
instruction.  At the end of the study, all participants took the math 
component of the California Achievement Test (CAT).  The following data 
were obtained: 

 
 Method of Instruction 
Pair Traditional New 

1 78 74 
2 55 45 
3 95 88 
4 57 65 
5 60 64 
6 80 75 
7 50 41 
8 83 68 
9 90 80 
10 70 64 
11 50 43 
12 80 82 
13 48 55 
14 65 57 
15 85 75 

 
• First, let’s check assumptions necessary for statistical testing 

o The participants who received the old and new methods of instruction are 
not independent of each other (they are matched on ability), so an 
independent samples t-test is not appropriate.  We can use a paired t-test. 

 
o The assumptions of the pair t-test are: 

• Participants are randomly selected from the population  
• Normality (actually symmetry) of the difference scores 

 
Compute diff = old - new. 
EXAMINE VARIABLES=diff 
  /PLOT BOXPLOT STEMLEAF NPPLOT. 
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15N =

DIFF

20

10

0

-10

 

Tests of Normality

.899 15 .091DIFF
Statistic df Sig.

Shapiro-Wilk

 
 
 

• There are no apparent problems with the normality assumption.  
 

o  Test the instruction hypothesis using a paired t-test. 
T-TEST PAIRS old new. 

 
Paired Samples Statistics

69.7333 15 15.77732 4.07369
65.0667 15 14.53796 3.75369

OLD
NEW

Pair
1

Mean N Std. Deviation
Std. Error

Mean

 
Paired Samples Correlations

15 .902 .000OLD & NEWPair 1
N Correlation Sig.

 
Paired Samples Test

4.6667 6.82084 1.76113 .8894 8.4439 2.650 14 .019OLD - NEWPair 1
Mean Std. Deviation

Std. Error
Mean Lower Upper

95% Confidence
Interval of the

Difference

Paired Differences

t df Sig. (2-tailed)

 
 

• We find that the new method of instruction significantly lowers math 
performance. (Good thing we did not use a one-tailed test!)  

 

68.
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68.,02.,65.2)14( === dpt  
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o We could have also analyzed these data as a randomized block design 
• (Be careful!  The data must be entered differently in SPSS for this 

analysis.) 
UNIANOVA cat  BY instruct block 
  /DESIGN = instruct block. 

Tests of Between-Subjects Effects

Dependent Variable: CAT

6281.533a 15 418.769 18.002 .000
136282.800 1 136282.800 5858.626 .000

163.333 1 163.333 7.021 .019
6118.200 14 437.014 18.787 .000

325.667 14 23.262
142890.000 30

6607.200 29

Source
Corrected Model
Intercept
INSTRUCT
BLOCK
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

R Squared = .951 (Adjusted R Squared = .898)a. 
 

 
• The test for the method instruction is identical to the paired t-test. 

02.,02.7)14,1( == pF  
 

• In this case, we also obtain a direct test for the effect of the matching 
on the math scores. 

01.,79.18)14,14( <= pF  
 

o If we are concerned about the normality/symmetry of the difference 
scores, then we can turn to a non-parametric test. 

NPAR TEST 
  /WILCOXON=old WITH new (PAIRED) 
  /STAT DESC. 

Ranks

11 9.09 100.00
4 5.00 20.00
0

15

Negative Ranks
Positive Ranks
Ties
Total

NEW - OLD
N Mean Rank Sum of Ranks

 
Test Statisticsb

-2.276a

.023
Z
Asymp. Sig. (2-tailed)

NEW - OLD

Based on positive ranks.a. 

Wilcoxon Signed Ranks Testb. 
 

 
02.,28.2 =−= pz  
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One-Factor Repeated Measures ANOVA 

 
 

• If we observe participants at more than two time-points, then we need to 
conduct a repeated measures ANOVA 

 
 
5. An Initial Example  

• Productivity of factory workers at different noise levels 
We examine the productivity of factory workers under three different 
noise levels: low, moderate, and high.  Each worker experiences each of 
the noise levels in a random order. 
 

 Noise Level  
Worker Low Moderate High Average 
   1 12 8 9 9.7 
   2 9 6 3 6.0 
   3 13 18 11 14.0 
   4 6 8 8 7.3 
   5 19 12 3 11.3 
   6 7 5 1 4.3 
   7 4 5 5 4.7 
   8 6 7 7 6.7 
   9 14 18 9 13.7 
   10 19 10 13 14.0 
Average 10.9 9.7 6.9  

 

Worker Productivity
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6. Structural model, SS partitioning, and the ANOVA table 

• What we would like to do is to decompose the variability in the DV into 
o Variability due to individual differences in the participants 

A random effect 
o Variability due to the factor (low, moderate, or high) 

A fixed effect 
 

o The effect of participants is always a random effect 
o We will only consider situations where the factor is a fixed effect 

 
• The structural model for a one-way within-subjects design 

ijijijY επαµ σ +++=  
or 

Yij = µ + α j + πσ i + απ( )σ ij
 

 
µ  = Grand population mean  

..ˆ Y=µ  
 

jα  = The treatment/time effect: 
The effect of being in level j of the factor 
Or the effect of being at time j 
∑ = 0jα    

...ˆ YY jj −=α  
 

iσπ  = The participant effect: 
The random effect due to participant i 
πσ i ~ N(0,σ π ) 

 
εij or απ( )σ ij

 = The unexplained error associated with ijY  
....ˆ YYYY jiijij +−−=ε  

 
o Note that with only one observation on each participant at each level of 

the factor (or at each time), we can not estimate the participant by 
factor/time interaction 

 
o This structural model is just like the model for a randomized block 

design, with participants as a random blocking effect 
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• Now, we can identify SS due to the factor of interest, and divide the error 

term into a SS due to individual differences in the participants, and a SS 
residual (everything we still can not explain) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Sums of squares decomposition and ANOVA table for a repeated measures 
design: 

 
Source SS df MS E(MS) F 

Treatment/Time SSA a-1 MSA 

1

2
2

−
+ ∑

a
n jα

σ ε  MSE
MSA  

Subjects SS(Subject) n-1 MS(Sub) 22
πε σσ n+  

MSE
SubMS )(  

Error SSError (a-1)(n-1) MSE 2
εσ   

Total SST N-1    
 

 

SS Total 
(SS Corrected Total) 

 

SS Within 
df = N-a 

 

SS Factor 
df=(a-1) 

 

 

SS Subjects 
df = n-1 

 

SS Residual 
Df = (a-1)(n-1) 

         = N – a – n + 1

 

SS A 
df=(a-1) 
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• Conducting the statistical tests in SPSS: 

 
o Remember, you need to have the data entered with one row per 

participant. 
 

data list free 
  /id low moderate high. 
begin data. 
1 12  8  9  
2 9  6  3  
3 13  18  11  
4 6  8  8  
5 19  12  3  
6 7  5  1  
7 4  5  5  
8 6  7  7  
9 14  18  9  
10 19  10  13 
end data. 

 
 

 
 

o When you indicate a repeated measures analysis, the following dialog 
box will open: 

 

 



10-22   2007 A. Karpinski 

 
o You need to enter the name of the repeated variable (this can be any 

label), and the number of levels of the repeated variable. 
 

 
 

 
o When you click define, you need to specify the three variables in your 

data file that correspond to the three levels of time 
 

    
 
 
 

o Or you can also use the following syntax 
 

GLM  low moderate high 
  /WSFACTOR = noise 3  
  /PRINT = DESC. 
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o  Here is the (unedited) output file: 
 
General Linear Model 
 

Within-Subjects Factors

Measure: MEASURE_1

LOW
MODERATE
HIGH

NOISE
1
2
3

Dependent
Variable

 
 
 
 
 

Descriptive Statistics

10.9000 5.38413 10
9.7000 4.87739 10
6.9000 3.84274 10

LOW
MODERATE
HIGH

Mean Std. Deviation N

 
 
 

Multivariate Testsb

.422 2.918a 2.000 8.000 .112

.578 2.918a 2.000 8.000 .112

.730 2.918a 2.000 8.000 .112

.730 2.918a 2.000 8.000 .112

Pillai's Trace
Wilks' Lambda
Hotelling's Trace
Roy's Largest Root

Effect
NOISE

Value F Hypothesis df Error df Sig.

Exact statistica. 

Design: Intercept 
Within Subjects Design: NOISE

b. 

 
 
 
 
 

Mauchly's Test of Sphericityb

Measure: MEASURE_1

.945 .456 2 .796 .947 1.000 .500
Within Subjects Effect
NOISE

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a. 

Design: Intercept 
Within Subjects Design: NOISE

b. 

 

Repeats the levels of the 
repeated measure variable 
that you entered 

Produced by the  
/PRINT = DESC command 

These are multivariate tests 
of repeated measures. We 
will ignore these tests. 

This box will help us test 
one of the key assumptions 
for repeated-measures 
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Tests of Within-Subjects Effects

Measure: MEASURE_1

84.267 2 42.133 3.747 .044
84.267 1.895 44.469 3.747 .047
84.267 2.000 42.133 3.747 .044
84.267 1.000 84.267 3.747 .085

202.400 18 11.244
202.400 17.054 11.868
202.400 18.000 11.244
202.400 9.000 22.489

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
NOISE

Error(NOISE)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 
 
 
 
 
 
 
 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

80.000 1 80.000 5.806 .039
4.267 1 4.267 .490 .502

124.000 9 13.778
78.400 9 8.711

NOISE
Linear
Quadratic
Linear
Quadratic

Source
NOISE

Error(NOISE)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 
 
 
 
 
 

Tests of Between-Subjects Effects

Measure: MEASURE_1
Transformed Variable: Average

2520.833 1 2520.833 55.949 .000
405.500 9 45.056

Source
Intercept
Error

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

The test listed under “Sphericity 
Assumed” is the omnibus repeated 
measures test of the time factor 

These are contrasts specified by 
the command “Polynomial” which 
are performed on the time variable

These are tests on the between-
subjects factors in the design (in 
this case there are none) 



10-25   2007 A. Karpinski 

 
 

• Let’s fill in a standard ANOVA table for a repeated measures design, using 
the SPSS output labeled “Tests of Within-Subjects Effects” 

 
 

Source SS df MS F p 
Noise 84.267 2 42.133 3.747 .044 
Subjects      
Error (Noise) 202.4 18 11.244   
Total      

 
o SPSS does not print a test for the random effect of subject. It also does 

not print SST. 
o We showed previously that for a one-factor repeated measures design, 

the error term for Subjects is the same as the error term for Noise.  If we 
had the SS (Subjects), we could construct the test ourselves.   

o In general, however, we are not interested in the test of the effect of 
individual differences due to subjects. 

 
 

o The noise effect compares the marginal noise means, using an 
appropriate error term [MSE(noise)] 

 
Noise Level 

Low Moderate High 
10.9 9.7 6.9 

 
H0 : µ.1 = µ.2 = µ.3
H0 :α1 = α2 = α3 = 0

 

 
F(2,18) = 3.75, p = .04 

 
We conclude that productivity is not the same at all three noise levels.  
We need to conduct follow-up tests to determine exactly how these 
means differ. 
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• Suppose we incorrectly treated the data as a between-subjects design.  We 
can compare this incorrect analysis with the correct within-subjects design. 

 
 Between-

Subjects 
Within- 
Subjects 

MSE 22.51 11.24 
F-value F(2,27) = 1.87 F(2,18) = 3.75 
p-value p=.173 p=.044 

 
o By conducting the proper within-subjects analysis, we decreased the error 

term and increased our power to detect the important noise effect. 
 

o Note: This example is only to show how a within-subjects design 
decreases the error term.  You do not get to choose between conducting a 
between-subjects or a within-subjects analysis.  Your design will 
determine the analysis. 

 
 
 
 
7. Repeated measures as a randomized block design 
 

• We can also recognize a repeated measures design as a special case of a 
randomized block design.  In this framework, the participants are a random 
blocking factor. 

 
• We previously discussed only how to analyze fixed blocking factors.  I will 

not go into the details, but SPSS can easily handle random blocks 
 

In general, you will NOT analyze a repeated measures design as a 
randomized block design. However, it is statistically valid and helps 
place this design within a (relatively) familiar framework 

 
UNIANOVA dv BY subj group  
  /RANDOM = subj 
  /DESIGN = subj group. 
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Tests of Between-Subjects Effects

Dependent Variable: DV

2520.833 1 2520.833 55.949 .000
405.500 9 45.056a

405.500 9 45.056 4.007 .006
202.400 18 11.244b

84.267 2 42.133 3.747 .044
202.400 18 11.244b

Source
Hypothesis
Error

Intercept

Hypothesis
Error

SUBJ

Hypothesis
Error

NOISE

Type III Sum
of Squares df Mean Square F Sig.

 MS(SUBJ)a. 

 MS(Error)b. 
 

 
 

o (Main) Effect of the noise level: F(2,18) = 3.75, p = .044 
• Worker productivity is affected by noise level 
• This is the exact same test result we obtained from the repeated-

measures analysis 
 

o (Main) Effect of participant: F(9,18) = 4.01, p = .006 
• Worker productivity varies by participant 
• This is the subject effect that SPSS (and most computer programs) 

does not print for a repeated-measures analysis 
 
 
 
 
8. Assumptions of a repeated measures design 
 

• For a repeated measures design, we start with the same assumptions as a 
paired t-test 
o Participants are independent and randomly selected from the population 
o Normality (actually symmetry)  

• In general, people check the normality of the scores at each 
time/treatment level. 

• Technically, this is overly restrictive, but it is sufficient. 
 
 

• Due to having more than two measurements on each participant, we have an 
additional assumption on the variances 
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o Before we delve into the details of the variance assumption, let’s look at 
the variances in a design with three repeated measures: 
• We have the variance at time 1, at time 2, and at time 3:  

Var(Time1) = σ1
2

Var(Time2) =σ 2
2

Var(Time3) =σ 3
2

 

 
• But these variances are not independent of each other.  Because the 

same person responds at time 1, at time 2, and at time 3, the responses 
of a participant at each of these times will be correlated with each 
other.  We can examine these relationships by looking at the 
covariances of the measures at each time 

 
Cov(Time1,Time2) =σ12 = ρ12σ1σ 2

Cov(Time1,Time3) =σ13 = ρ13σ1σ 3

Cov(Time2,Time3 ) = σ23 = ρ23σ2σ 3

 

 
ρij  is the correlation between measurements at time i and time j 
σ i  is standard deviation of measurements at time i 

 
• Putting all this information together, we can construct a variance-

covariance matrix of the observations: 
 

Time1 Time2 Time3

Time1 σ1
2 σ12 σ13

Time2 σ12 σ2
2 σ23

Time3 σ13 σ 23 σ 3
2

 

 
The variances of responses at each time are on the diagonal 
The covariances of responses between two times are off the diagonal 
The matrix is symmetric (the top triangle = the bottom triangle), so 

sometimes we only write half of the matrix: 
 

Time1 Time2 Time3

Time1 σ1
2

Time2 σ12 σ2
2

Time3 σ13 σ 23 σ 3
2
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o Now, we can examine the assumption of compound symmetry. 
Compound symmetry specifies a specific structure for the 
variance/covariance matrix where: 

 
• All of the variances are equal: σ1

2 =σ 2
2 = σ3

2  σ 2 
• All of the covariances are equal: σ12 =σ13 = σ23 σc  

 

2
3

2
2

2
1

321

σσσ
σσσ
σσσ

cc

cc

cc

Time
Time
Time

TimeTimeTime

 

 
• If we divide by the common variance, we can state the assumption in 

terms of the correlation between measurements at different time 
points: 

1
σ 2

1 ρ ρ
ρ 1 ρ
ρ ρ 1

 

 

 
 
 

 

 

 
 
 
 

 
 

o To have compound symmetry, we must have the correlations between 
observations at each time period equal to each other! 
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o Let’s consider an example to see how we examine compound symmetry 
in real data: 

 
 Age (Months)  
Subject 30 36 42 48 Mean 
  1 108 96 110 122 109 
  2 103 117 127 133 120 
  3 96 107 106 107 104 
  4 84 85 92 99 90 
  5 118 125 125 116 121 
  6 110 107 96 91 101 
  7 129 128 123 128 127 
  8 90 84 101 113 97 
  9 84 104 100 88 94 
  10 96 100 103 105 101 
  11 105 114 105 112 109 
  12 113 117 132 130 123 
Mean 103 107 110 112 108 

 
 
• The estimation of the fixed components of the structural model 

parameters is straightforward: 
 

Yij = µ + α j + π i + εij  
 
 

ˆ µ = X .. =108 
 
 
ˆ α j = X . j − X ..  

 
ˆ α 1 =103−108 = −5 
ˆ α 2 =107 −108 = −1 
ˆ α 3 =110 −108 = 2 
ˆ α 4 = 112 −108 = 4  
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• To look at the across-time correlation and covariance matrix, we have 
to use the CORRELATION command. 

 
CORRELATIONS 
  /VARIABLES=time1 time2 time3 time4 
  /STATISTICS XPROD. 

 
Correlations

1 .795 .696 .599
. .002 .012 .040

2068.000 1698.000 1401.000 1333.000

188.000 154.364 127.364 121.182
12 12 12 12

.795 1 .760 .466

.002 . .004 .127

1698.000 2206.000 1580.000 1072.000

154.364 200.545 143.636 97.455
12 12 12 12

.696 .760 1 .853

.012 .004 . .000

1401.000 1580.000 1958.000 1849.000

127.364 143.636 178.000 168.091
12 12 12 12

.599 .466 .853 1

.040 .127 .000 .

1333.000 1072.000 1849.000 2398.000

121.182 97.455 168.091 218.000
12 12 12 12

Pearson Correlation
Sig. (2-tailed)
Sum of Squares and
Cross-products
Covariance
N
Pearson Correlation
Sig. (2-tailed)
Sum of Squares and
Cross-products
Covariance
N
Pearson Correlation
Sig. (2-tailed)
Sum of Squares and
Cross-products
Covariance
N
Pearson Correlation
Sig. (2-tailed)
Sum of Squares and
Cross-products
Covariance
N

TIME1

TIME2

TIME3

TIME4

TIME1 TIME2 TIME3 TIME4

 
 
 

• The covariance of a variable with itself is the variance of that variable 
(the diagonal elements). The variances look reasonably similar 

σ1
2 =188.0

σ2
2 = 200.5

  
σ3

2 =178.0
σ4

2 = 218.0
 

 
• However from the correlations/covariances, we see that the 

correlations between the measurements at time four vary more.  
σ34 =168.09  σ24 = 97.46 
r34 = .85  r24 = .47 
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o In 1970, several researchers discovered that compound symmetry is 

actually an overly restrictive assumption. 
 

• Recall that for the paired t-test, we made no assumption about the 
homogeneity of the two variances. In fact, we did not use the 
variances of the time 1 and time 2 data.  However, we did compute a 
variance of the difference of the paired data. 

 
• The same logic applies to a more general repeated measures design.  

We are actually concerned about the variance of the difference of 
observations across the time periods. 

 
• Earlier, we used the following formula for the variance of the 

difference of two variables: 
σX1− X2

2 = σX1

2 + σX 2

2 − 2ρ12σ X1
σX 2

 
 

• If we have compound symmetry, then σX i

2 =σ X j

2 =σ 2  and ρij = ρ  so that 
we can write: 

σXi − X j

2 =σ 2 +σ 2 −2ρ σ σ   
 

There are no subscripts on the right side of the equation.  In other 
words, under compound symmetry the variance of the difference of 
any two variables is the same for all variables. 

 
• The assumption that the variance of the difference of all variables is a 

constant is known as sphericity.  Technically, it is the assumption of 
sphericity that we need to satisfy for repeated measures ANOVA. 

 
• If you satisfy the assumptions of compound symmetry, then you 

automatically satisfy the sphericity assumption.  However it is 
possible (but rather rare) to satisfy sphericity but not the compound 
symmetry assumption. 

 
(For you math-heads, compound symmetry is a sufficient 
condition, but not a necessary condition) 
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• Here is an example of a variance/covariance matrix that is spherical, 
but does not display compound symmetry 

 

















632
341
212

 

 
σ ij

2 =σ i
2 +σ j

2 −2σ ij  
 

σ12
2 =σ1

2 +σ 2
2 −2σ12 = 2 + 4 − 2(1) = 4  

 
σ13

2 =σ1
2 +σ 3

2 −2σ13 = 2 + 6 − 2(2) = 4  
 

σ23
2 =σ 2

2 +σ 3
2 −2σ 23 = 4 + 6 − 2(3) = 4  

 
 

• Why wasn’t sphericity listed as an assumption for the paired t-test? 
 

When you only have two repeated measures, then the assumption of 
sphericity is automatically satisfied: 
 









2
212

12
2
1

σσ
σσ  

 
With only two groups, there is only one difference of variances so this 
difference must satisfy the sphericity assumption 

 
σ12

2 =σ1
2 +σ 2

2 −2σ12 = c  
 

 
• Sphericity is difficult to check, so in practice, we tend to check the 

compound symmetry assumption. 
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• To recap, the assumptions we have to check for a repeated measures design 
are: 
o Participants are independent and randomly selected from the population 
o Normality (actually symmetry)  
o Sphericity (In practice, compound symmetry) 

• SPSS prints a few tests of sphericity, but due to the assumptions 
required of these tests, they are essentially worthless and you should 
not rely upon them at all. 

 
 

• What can I do when the compound symmetry assumption is violated? 
o Transformations are of little use due to the complicated nature of the 

variance/covariance matrix 
 

o One possibility is the non-parametric, rank-based Friedman test. The 
Friedman test is appropriate for a one-factor within-subjects design. 
(However, non-parametric alternatives are not available for multi-factor 
within-subjects designs or for designs with both within and between 
factors) 

 
• Consider n participants measured at a different times. 
• For each subject, replace the observation by the rank of the 

observation 
 

Original Data 
 Age (Months) 
Subject 30 36 42 48 
  1 108 96 110 122 
  2 103 117 127 133 

 
Ranked Data 

 Age (Months) 
Subject 30 36 42 48 
  1 2 1 3 4 
  2 1 2 3 4 

 
• Conceptually, you then perform a repeated-measures ANOVA on the 

ranked data 
• SPSS performs this test and gives a chi-square statistic and p-value 
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o In multi-factor designs, the rank-based test less useful. Thus, in many 

situations you are left with three options: 
 

• Play dumb and ignore the violation of the variance assumption.  Many 
people use this option.  Unfortunately, when the sphericity assumption 
is violated, the actual Type I error rate will be inflated 

 
• Use an adjusted test.  When the variances across groups in a oneway 

design were not equal, we used a Brown-Forsythe correction for 
unequal variances.  The BF adjustment corrected the degrees of 
freedom to correct for the unequal variances.  Two such adjustments 
exist for the repeated measures case: ˜ ε  and ˆ ε . 

 
• Reject the ANOVA approach to repeated measures altogether and go 

for a MANOVA approach.  This approach makes no assumptions on 
the variance/covariance matrix and is favored by many statisticians.  
Unfortunately, the MANOVA approach is beyond the scope of this 
class.   

 
 

• Corrected repeated measures ANOVA and when to use them: 
 

o In 1954 Box derived a measure of how far a variance/covariance matrix 
departs from sphericity, ε.   

If the data exactly satisfy the sphericity assumption, ε = 1 
If the data are not spherical, then ε < 1. 

The greater ε departs from 1, the greater the departure from 
sphericity 

 
Box also showed that it was possible to adjust a standard F-test to correct 
for the non-sphericity.   

dfNUM = ε(a −1)
dfDEN =ε(a −1)(n −1)

  a = Levels of the repeated measure variable
n = number of participants

 

 
At the time, Box did not know how to estimate ε.  Since that time, three 
estimates have been proposed. 
• The Lower-Bound Adjustment 
• Geisser-Greenhouse’s (1959) ˆ ε   
• Huynh-Feldt’s (1976) ˜ ε  
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o In 1958 Geisser-Greenhouse showed that if the repeated-measure 

variable had a levels, then ε could be no lower than 1
(a −1)

.  This is the 

lower bound estimate of ε.  SPSS prints the lower-bound estimate, but 
more recently, it has become possible to estimate ε.  Thus, the lower-
bound estimate is out-of-date and should never be used. 

 
o Geisser-Greenhouse (1959) developed a refinement of Box’s estimate of 

ε, called ˆ ε .   ˆ ε  controls the Type I error rate, but tends to be overly 
conservative by underestimating ε.  

 
o Huynh-Feldt’s (1976)  ˜ ε  slightly overestimates ε, and in some cases can 

lead to a slightly inflated Type I error rate, but this overestimate is very 
small.  

 
o In most cases, ˆ ε  and ˜ ε  give very similar results, but when they differ 

most statisticians (except Huynh & Feldt) prefer to use ˆ ε  
 
 
 

• Of the three options available in SPSS, the Geisser-Greenhouse ε̂  is the best 
bet.  Remember that ε̂  is an adjustment when sphericity is not a valid 
assumption in the data. If the data deviate greatly from being spherical, then 
it may not be possible to correct the F-test.  Here is a general rule of thumb: 

 
ε̂  > .9  The sphericity assumption is satisfied, no correction necessary 

 
.9 > ε̂  > .7 The sphericity assumption is not satisfied, use the GG ε̂  

correction 

)1)(1(ˆ
)1(ˆ

−−=
−=

nadf
adf

DEN

NUM

ε
ε

 

 
.7 > ε̂   The sphericity assumption is not satisfied, and it is violated so 

severely that correction is not possible.  You should switch to 
the MANOVA approach to repeated measures or avoid 
omnibus tests 
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• Let’s look at our age example.  By visually examining the 

variance/covariance matrix, we noticed that the data did not exhibit 
compound symmetry.  Let’s see if looking at the estimates of ε confirm our 
suspicions. 

 
Mauchly's Test of Sphericity

Measure: MEASURE_1

.243 13.768 5 .018 .610 .725 .333
Within Subjects Effect
TIME

Mauchly's W
Approx.

Chi-Square df Sig.
Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is
proportional to an identity matrix.

May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the
Tests of Within-Subjects Effects table.

a. 

 
 
DO NOT use Mauchly’s test of Sphericity.  It is not a reliable test. 
 
In this case both ˆ ε  and ˜ ε  converge to the same conclusion.  We do not 
have sphericity in this data.  We can now use ˆ ε  to construct an adjusted 
F-test. 
 
 

• To apply the ε̂  correction, we use the unadjusted F-value, however, we 
correct the numerator and denominator degrees of freedom  

 

)1)(1(ˆ
)1(ˆ

−−=
−=

nadf
adf

DEN

NUM

ε
ε

 

 
For the age data, SPSS gives us the following analyses: 
 

Tests of Within-Subjects Effects

Measure: MEASURE_1

552.000 3 184.000 3.027 .043
552.000 1.829 301.865 3.027 .075
552.000 2.175 253.846 3.027 .064
552.000 1.000 552.000 3.027 .110

2006.000 33 60.788
2006.000 20.115 99.727
2006.000 23.920 83.863
2006.000 11.000 182.364

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.
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The uncorrected test of time: F(3,33) = 3.03, p = .04 
 

610.ˆ =ε   
)11)(3(61.

)3(61.
=
=

DEN

NUM

df
df

13.20
83.1

=
=

 

 
The corrected GG test of time: F(1.83, 20.13) = 3.03, p = .075 

(The exact p-value can be obtained from SPSS, above, or EXCEL)  
 

o We fail to reject the null hypothesis and conclude that there is no 
significant difference in the DV across the four time periods. 

 
 

• As in the between-subjects case, the within-subjects ANOVA is relatively 
robust to violations of the normality assumption.  However, it is not at all 
robust to violations of sphericity.  

 
•  As we will see shortly, contrasts can be conducted without worrying about 

the sphericity assumption. Contrasts are the way to go! 
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9. Contrasts 
 

• In a repeated measures design, MSE is an omnibus error term, computed 
across all the repeated-measures.  If there are a repeated-measures, then the 
MSE is an average of (a-1) error terms! 
o The (a-1) error terms are determined by (a-1) orthogonal contrasts run on 

the a repeated-measures.  An error term specific to each contrast is 
computed.  

o The default in SPSS is to conduct polynomial contrasts on the a repeated-
measures.  

o Let’s look at an example with our age data. Here is the within-subject 
contrast table printed by default in SPSS 

 
GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 Polynomial 

 
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

540.000 1 540.000 5.024 .047
12.000 1 12.000 .219 .649

.000 1 .000 .000 1.000
1182.400 11 107.491

604.000 11 54.909
219.600 11 19.964

TIME
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

• Note that there are three separate error terms, each with 11 df 
Error (Linear) 107.491 
Error (Quad) 54.909 
Error (Cubic) 19.964 

 
• If we take the average of these three terms, we obtain the MSE with 

33 df: 
788.60

3
964.19909.54491.107

=
++  

 
Tests of Within-Subjects Effects

Measure: MEASURE_1

552.000 3 184.000 3.027 .043
2006.000 33 60.788

Sphericity Assumed
Sphericity Assumed

Source
TIME
Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.
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o The formulae for contrasts are the same as for a one-way ANOVA: 

 
 

=observedt

∑

∑
′

=
′

n
c
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Xc

j

jj

2

.
)ˆ(rerro standard

 ˆ
ψ

ψ    

 
 

SS ˆ ψ = 

∑ n
c j

2

2  ψ̂    
EMS

SSfdF
′

=′ ψ̂),1(  

 
 

• The only difference is that MSE  has been replaced by EMS ′  
 

• We have two choices for EMS ′  
 

o Use the omnibus MSE  with df = (a-1)(n-1) 
 
When the sphericity assumption is satisfied, each of the separate 

error terms should be identical.  They all estimate the true error 
variance 

In this case, using the omnibus MSE results in greater power due 
to the increased denominator degrees of freedom 

 
o Use the contrast-specific error term with df = (n-1) 

 
In practice, the loss of power due to a decrease in the degrees of 

freedom is offset by having a more accurate error term 
Due to the problems of the sphericity assumption and the 

difficulties in checking this assumption, most statisticians 
recommend you always use the contrast-specific error term 

 
 

• Unfortunately, calculating the contrast-specific error term is tedious.  I 
will provide a few different methods to avoid any hand-calculations. 
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• Understanding repeated-measures contrasts 
 

o These repeated-measures contrasts operate on the marginal repeated-
factor means, collapsing across the participants 

 
o In our infant growth example, we have four repeated measures. With four 

observations, we can conduct 3 single-df tests.  Let’s examine the 
polynomial trends: 

 
 Age (Months) 
 30 36 42 48 
Average 103 107 110 112 
Linear -3 -1 1 3 
Quad 1 -1 -1 1 
Cubic -1 3 -3 1 

 
 

30)112)(3()110)(1()107)(1()103(3ˆ =++−+−=linψ  

540

12
20

900

12
)3(

12
)1(

12
)1(

12
)3(

 30)ˆ( 2222

2

=








=
++

−
+

−linSS ψ  

 
2)112)(1()110)(1()107)(1()103(1ˆ −=+−+−+=quadψ  

 
0)112)(1()110)(3()107)(3()103(1ˆ =+−++−=cubψ  

 
 

• Computing the error term: Method 1 Using SPSS’s built-in, brand-name 
contrasts 
 
o Remember SPSS’s built-in contrasts? If your contrast of interest is one of 

those contrasts, you can ask SPSS to print the test of the contrast 
 

• Difference:  Each level of a factor is compared to the mean of the 
previous levels  

• Helmert:  Each level of a factor is compared to the mean of 
subsequent levels 

• Polynomial:  Uses the orthogonal polynomial contrasts 
• Repeated:  Each level of a factor is compared to the previous level 
• Simple:  Each level of a factor is compared to the last level  
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o The default is to report the polynomial contrasts: 
 
GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 Polynomial. 

 
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

540.000 1 540.000 5.024 .047
12.000 1 12.000 .219 .649

.000 1 .000 .000 1.000
1182.400 11 107.491

604.000 11 54.909
219.600 11 19.964

TIME
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

047.,02.5)11,1(: == pFlinψ  
649.,22.0)11,1(: == pFquadψ  

999.,00.0)11,1(: >= pFcubψ  
 

 
o But you can ask for any of the brand-name contrasts: 

 
GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 repeated. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

192.000 1 192.000 2.405 .149
108.000 1 108.000 1.183 .300

48.000 1 48.000 .802 .390
878.000 11 79.818

1004.000 11 91.273
658.000 11 59.818

TIME
Level 1 vs. Level 2
Level 2 vs. Level 3
Level 3 vs. Level 4
Level 1 vs. Level 2
Level 2 vs. Level 3
Level 3 vs. Level 4

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

15.,41.2)11,1(:21 == pFvsψ  
30.,18.1)11,1(:32 == pFvsψ  
39.,80.0)11,1(:43 == pFvsψ  
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• Computing the error term: Method 2 Using SPSS’s “special” contrast 

command 
 

o Instead of specifying a set of brand-name contrasts, you can enter a set of 
contrasts.   

o You must first enter a contrast of all 1’s 
o You then must enter (a-1) contrasts 

 
o For example, let’s ask for the polynomial contrasts using the “special” 

command: 
GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 special ( 1  1 1 1  
                                                    -3 -1 1 3 
                                                     1 -1 -1 1 
                                                    -1 3 -3 1).  
 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

10800.000 1 10800.000 5.024 .047
48.000 1 48.000 .219 .649

.000 1 .000 .000 1.000
23648.000 11 2149.818
2416.000 11 219.636
4392.000 11 399.273

TIME
L1
L2
L3
L1
L2
L3

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

L1 is the linear trend:  047.,02.5)11,1(: == pFlinψ  
L2 is the quadratic trend:  649.,22.0)11,1(: == pFquadψ  
L3 is the cubic trend:  99.,00.0)11,1(: >= pFcubψ  
 

 
o If all of your contrasts are not ortho-normalized (the set of contrasts is 

orthogonal, and the sum of the squared contrast coefficients equal 1), 
then the calculation of the SS will be disturbed, but the F-value and the 
significance test will be ok. 
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o Now, let’s consider a more complicated set of contrasts 
GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 special (1  1 1 1  
                                                   -1 -1 2 0 
                                                   -1 0 2 -1 
                                                    0 -1 2 -1)  

   
Tests of Within-Subjects Contrasts

Measure: MEASURE_1

1200.000 1 1200.000 3.689 .081
300.000 1 300.000 1.680 .221

12.000 1 12.000 .153 .703
3578.000 11 325.273
1964.000 11 178.545

864.000 11 78.545

TIME
L1
L2
L3
L1
L2
L3

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

L1 is (time 1 and time 2) vs. time 3, 08.,69.3)11,1( == pF  
L2 is (time 1 and time 4) vs. time 3, 22.,68.1)11,1( == pF  
L3 is (time 2 and time 4) vs. time 3, 70.,15.0)11,1( == pF  

 
o To use the special command, you need to remember to enter the contrast 

of all 1’s and a set of (a-1) contrasts. 
 

 
• Computing the error term: Method 3 Compute the value of the contrast as a 

new variable, and run a one-sample t-test on that variable to test for a 
difference from zero 

 
o Again, let’s start by replicating the polynomial contrasts using this 

method: 
 

compute lin = -3*time1 - time2 + time3 + 3*time4. 
compute quad = time1 - time2 - time3 + time4. 
compute cubic = -time1 +3* time2 -3*time3 + time4. 

 
T-TEST /TESTVAL=0 
  /VARIABLES=lin. 
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One-Sample Test

2.241 11 .047 30.0000 .5404 59.4596LIN
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 0

 
 

047.,24.2)11(: == ptlinψ   047.,02.5)11,1(: == pFlinψ  
 
 

o The advantage of this procedure is that you can test any contrast one-at-a-
time 

 
o This method should make intuitive sense.  When we run a contrast, we 

collapse across participants.  With this method, we create a new variable 
reflecting the value of the contrast for each participant. We then collapse 
across participants, average all contrast values, and test to see if this 
average contrast differs from zero! 

 
 
 

• So for repeated-measures designs, if we only run contrasts: 
o We can discard the sphericity assumption 
o We can run tests that are easily interpretable 

 
o The catch is that you need to have strong enough predictions that you can 

plan contrasts before looking at the data. 
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10. Planned and post-hoc tests 

• Remember that with all the controversy surrounding the assumptions for a 
repeated-measures design, you should try very hard to avoid omnibus tests 
and conduct all your analyses using single-df tests. 

 
• The logic for planned and post-hoc tests for a one-factor within-subjects 

design parallels the logic for a one-factor between-subjects design 
 

o When there are a repeated-measures, the unadjusted omnibus test has  
(a-1) dfs 

 
o If you decide to forgo the omnibus test, then you can use those (a-1) dfs to 

conduct (a-1) orthogonal, planned contrasts.   
 

I believe that in the presence of a strong theory, you may conduct (a-1) 
planned contrasts, even if they are not orthogonal. 

 
• If you first conduct the omnibus test, or if you plan more than (a-1) contrasts, 

then you need to adjust your p-values to correct for the number of tests you 
are conducting, using either the Bonferroni or Dunn-Sidák correction: 

 
 Dunn/Sidák Bonferroni 

 c
critp

1

)1(1 α−−=  
c

pcrit
α

=  

 
 

• When you conduct post-hoc tests, you need to adjust your tests using either 
Tukey’s HSD (for pair-wise comparisons), Scheffé (for complex 
comparisons), or some other appropriate correction. 

 
o To use Tukey’s HSD, compute q(1-α,a,ν) 

Where α = Experimentwise error rate 
  a  = Number of repeated-measures 
  ν  = df (error)  
 

• For single-df tests, df (error) should be (n -1), the df associated with 
the contrast-specific error estimate.  

• If a person has unwisely decided to use the omnibus MSE term, then 
the appropriate df error should be (n-1)(a-1). 
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• To determine significance at the (1-α) level,  

 

Compare tobserved  to qcrit

2
  or observedF  to ( )

2

2
critq  

 
 

o To use the Scheffé correction, compute να ,1;05.)1( −=−= aCrit FaF  
 
Where α = Experimentwise error rate 
  a  = Number of repeated-measures 
  ν  = df(error): (n -1) for a contrast-specific error estimate. 

 
Compare observedF  to critF  

 
 

• SPSS only computes post-hoc adjustments for between-subjects factors. We 
are on our own for within-subjects factors!   
o First, compute the test-statistic for the contrast using one of the previous 

methods 
o Next, compute the adjusted critical value 
o Finally, compare the observed test-statistic to the critical value to 

determine significance 
 

• As an example, let’s conduct all pairwise comparisons in the age data. I’ll 
use the simple command. To conduct all six pairwise comparisons, I need to 
run three simple commands. 

 
GLM time1 time2 time3 time4 
  /WSFACTOR = age 4 simple (1). 
GLM time1 time2 time3 time4 
  /WSFACTOR = age 4 simple (2). 
GLM time1 time2 time3 time4 
  /WSFACTOR = age 4 simple (3). 
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Tests of Within-Subjects Contrasts

Measure: MEASURE_1

192.000 1 192.000 2.405 .149
588.000 1 588.000 5.284 .042
972.000 1 972.000 5.940 .033
878.000 11 79.818

1224.000 11 111.273
1800.000 11 163.636

age
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1

Source
age

Error(age)

Type III Sum
of Squares df Mean Square F Sig.

 
 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

192.000 1 192.000 2.405 .149
108.000 1 108.000 1.183 .300
300.000 1 300.000 1.341 .271
878.000 11 79.818

1004.000 11 91.273
2460.000 11 223.636

age
Level 1 vs. Level 2
Level 3 vs. Level 2
Level 4 vs. Level 2
Level 1 vs. Level 2
Level 3 vs. Level 2
Level 4 vs. Level 2

Source
age

Error(age)

Type III Sum
of Squares df Mean Square F Sig.

 
 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

588.000 1 588.000 5.284 .042
108.000 1 108.000 1.183 .300
48.000 1 48.000 .802 .390

1224.000 11 111.273
1004.000 11 91.273
658.000 11 59.818

age
Level 1 vs. Level 3
Level 2 vs. Level 3
Level 4 vs. Level 3
Level 1 vs. Level 3
Level 2 vs. Level 3
Level 4 vs. Level 3

Source
age

Error(age)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

=critF
qcrit (1- α,a,dfe)( )2

2
=

qcrit (.95,4,11)( )2

2
=

4.26( )2

2
= 9.07 

 
 

o None of the pairwise comparisons reach statistical significance. 
 

30 Months vs. 36 Months: F(1,11) = 2.41, ns 
30 Months vs. 42 Months: F(1,11) = 5.28, ns 
30 Months vs. 48 Months: F(1,11) = 5.94, ns 
36 Months vs. 42 Months: F(1,11) = 1.18, ns 
36 Months vs. 48 Months: F(1,11) = 1.34, ns 
42 Months vs. 48 Months: F(1,11) = 0.80, ns 
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11. Effect sizes 
 

• The details for computing effect sizes for repeated measures designs have 
not been entirely worked out.  The use of different error terms for each effect 
creates from special problems for effect size calculations. 

 
• One simple, proposed measure is partial eta-squared: 

 

ˆ η (Effect )
2 =

SSeffect

SSeffect + SSErrorTermForEffect

 

 
This formula can be used for omnibus tests and for contrasts. 

 
 

• For contrasts (except maybe polynomial trends), we can also compute a d as 
a measure of the effect size, just as we did for the paired t-test. 

ψσ
ψ
ˆ

ˆ =d  but if and only if ci∑  

Where:  ψ̂ is the average value of the contrast of interest 
              ˆ σ ψ is the standard deviation of the contrast values 

 
• For all contrasts, we can also compute an r as a measure of the effect size. 

 

contrastContrast

Contrast

contrastContrast

Contrast

dfF
F

dft
t

r
+

=
+

= 2

2

ˆ  

 
• Research is still being conducted on effect sizes for repeated measures 

designs.  One of the more promising measures is generalized eta squared, ηG
2  

(see Olejnik & Algina, 2003; Bakeman, 2005). 



10-50   2007 A. Karpinski 

 
• Examples of Effect Size Calculations: 

 
o Omnibus test of the within-subject factor: 

GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 Polynomial 

Tests of Within-Subjects Effects

Measure: MEASURE_1

552.000 3 184.000 3.027 .043
552.000 1.829 301.865 3.027 .075
552.000 2.175 253.846 3.027 .064
552.000 1.000 552.000 3.027 .110

2006.000 33 60.788
2006.000 20.115 99.727
2006.000 23.920 83.863
2006.000 11.000 182.364

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 

22.
2006552

552ˆ 2 =
+

=
+

=
orTimeErrorTermFTime

Time
Time SSSS

SS
η  

 
22.,04.,03.3)33,3( 2 === ηpF  

 
• Recall that for this example, the sphericity assumption has been 

severely violated.  Thus, we should not report this test.  This 
calculation has been included to show you an example of how to 
calculate partial eta squared for the omnibus test, but it is not 
appropriate to report this test.   

• If you applied an epsilon adjustment, the effect size calculation would 
be unaffected. 
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o Polynomial Trends: Partial Eta-Squared or r 

GLM  time1 time2 time3 time4 
  /WSFACTOR = time 4 Polynomial 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

540.000 1 540.000 5.024 .047
12.000 1 12.000 .219 .649

.000 1 .000 .000 1.000
1182.400 11 107.491

604.000 11 54.909
219.600 11 19.964

TIME
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
TIME

Error(TIME)

Type III Sum
of Squares df Mean Square F Sig.

 
 
 

56.
1102.5

02.5
=

+
=

+
=

contrastContrast

Contrast
Linear dfF

F
r  

14.
1122.0

22.0
=

+
=Quadraticr  

 
 

31.
1182540

5402 =
+

=
+

=
orLinearErrorTermFLinear

Linear
Linear SSSS

SS
η  

02.
60412

122 =
+

=
+

=
corQuadratiErrorTermFQuadratic

Quadratic
Quadratic SSSS

SS
η  

 
 

31.,05.,02.5)11,1(: 2 === ηψ pFlin  
02.,65.,22.0)11,1(: 2 === ηψ pFquad  

01.,99.,00.0)11,1(: 2 <>= ηψ pFcub  
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o Pairwise Contrasts: Partial Eta-Squared or d 
GLM time1 time2 time3 time4 
  /WSFACTOR = age 4 simple (1). 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

192.000 1 192.000 2.405 .149
588.000 1 588.000 5.284 .042
972.000 1 972.000 5.940 .033
878.000 11 79.818

1224.000 11 111.273
1800.000 11 163.636

age
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1

Source
age

Error(age)

Type III Sum
of Squares df Mean Square F Sig.

 
 

18.
878192

192

2121

212
21 =

+
=

+
=

vsorErrorTermFvs

vs
vs SSSS

SS
η  

32.
1224588

5882
31 =

+
=vsη  35.

1800972
9722

41 =
+

=vsη  

 
• Thus, with a post-hoc Tukey HSD correction (see 10-48), we have: 

30 Months vs. 36 Months: 18.,,41.2)11,1( 2 == ηnsF  
30 Months vs. 42 Months: 32.,,28.5)11,1( 2 == ηnsF  
30 Months vs. 48 Months: 35.,,94.5)11,1( 2 == ηnsF  

 
Compute Cont12 = time2 - time1. 
Compute Cont13 = time3 - time1. 
Compute Cont14 = time4 - time1. 
Descriptives Variables = cont12 cont13 cont14. 

Descriptive Statistics

12 -12.00 20.00 4.0000 8.93410
12 -14.00 24.00 7.0000 10.54859
12 -19.00 30.00 9.0000 12.79204
12

Cont12
Cont13
Cont14
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

 
 

45.
934.8
4

ˆ
ˆ

21 ===
ψσ

ψ
vsd  66.

549.10
7

31 ==vsd  70.
792.12
9

41 ==vsd  

 
• Again, with a post-hoc Tukey HSD correction (see 10-48), we have: 

30 Months vs. 36 Months: 45.,,41.2)11,1( == dnsF  
30 Months vs. 42 Months: 66.,,28.5)11,1( == dnsF  
30 Months vs. 48 Months: 70.,,94.5)11,1( == dnsF  
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12.  A final example 

• A researcher is interested in the amount of daylight people are exposed to 
(She believes that exposure to daylight affects mood).  A sample of 110 
individuals, all age 60-70, recorded their daily exposure to sunlight over the 
course of a year.  The researcher computed an average daily exposure to 
sunlight (hours/day) for each of the four seasons, and wanted to test the 
following hypotheses 
o Are there any trends in exposure across the seasons? 
o Is winter the season with the lowest exposure? 
o Is summer the season with the highest exposure? 

 
• Here is a graph of the data for the first 20 participants  

o The overall average exposure is indicated with the dark blue line 

0

2

4

6

8

10

 
 

 
• Each person is observed on more than one occasion.  A one factor repeated 

measures (within-subjects) design would seem to be appropriate. 
o Participants are independent and randomly selected from the population 
o Normality (actually symmetry) 
o Sphericity 
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110110110110N =

FALLSUMMERSPRINGWINTER

14
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8

6

4
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0

-2

318

8

6037

7542
59

28

12

4
42
2
56

27302826
394256

37

   

Tests of Normality

.723 110 .000

.855 110 .000

.854 110 .000

.755 110 .000

WINTER
SPRING
SUMMER
FALL

Statistic df Sig.
Shapiro-Wilk

 
 

Mauchly's Test of Sphericity

Measure: MEASURE_1

.783 .801 .333
Within Subjects Effect
SEASON

Greenhous
e-Geisser Huynh-Feldt Lower-bound

Epsilona

Tests the null hypothesis that the error covariance matrix of the
orthonormalized transformed dependent variables is proportional to
an identity matrix.

May be used to adjust the degrees of freedom for the
averaged tests of significance. Corrected tests are displayed
in the Tests of Within-Subjects Effects table.

a. 

Correlations

1 .422 .324 .345
.422 1 .349 .190
.324 .349 1 .319
.345 .190 .319 1

WINTER
SPRING
SUMMER
FALL

WINTER SPRING SUMMER FALL

 
 
 
 
 

• The data are positively skewed 
• The data are also non-spherical 

 
 

o How should we analyze these data? 
• We could try a transformation to see if we could normalize the data 
• We could conduct Friedman’s test 
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• Let’s start with the (omnibus) Friedman non-parametric test. 

NPAR TESTS 
  /FRIEDMAN = winter spring summer fall. 

Ranks

1.91
2.88
3.13
2.08

WINTER
SPRING
SUMMER
FALL

Mean Rank

 

Test Statisticsa

110
72.264

3
.000

N
Chi-Square
df
Asymp. Sig.

Friedman Testa. 
  01.,26.72)3(2 <= pχ  

 
o We conclude that there are differences in sunlight exposure across the 

seasons. 
o The trend hypotheses cannot be tested on ranked data, but pairwise 

hypotheses can be tested with follow-up Wilcoxon Signed-Rank tests 
 

NPAR TEST 
  /WILCOXON=winter winter winter WITH spring summer fall (PAIRED). 
NPAR TEST 
  /WILCOXON= summer summer summer WITH winter spring fall (PAIRED). 

Test Statisticsb

-6.645a -7.557a -1.560a

.000 .000 .119
Z
Asymp. Sig. (2-tailed)

SPRING -
WINTER

SUMMER -
WINTER

FALL -
WINTER

Based on negative ranks.a. 

Wilcoxon Signed Ranks Testb. 
 

Test Statisticsb

-7.557a -1.568a -6.200a

.000 .117 .000
Z
Asymp. Sig. (2-tailed)

WINTER -
SUMMER

SPRING -
SUMMER

FALL -
SUMMER

Based on positive ranks.a. 

Wilcoxon Signed Ranks Testb. 
 

• These are post-hoc tests and require correction.  Our standard 
corrections all require parametric data (they use the MSE).  The only 
correction that is appropriate for non-parametric post-hoc tests is the 
Bonferroni adjustment 

Let c = the total number of possible pairwise tests = 6
2

)1(
=

−aa  

0083.
6
05.

===
c

pcrit
α  

 
• Bonferroni-adjusted post-hoc tests reveal: 

o Daily sunlight exposure is lower in the winter than in the spring 
or summer. 

o Daily sunlight exposure is higher in the summer than in the fall 
or winter. 
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• For pedagogical purposes only, let’s image that the data are normally 
/symmetrically distributed.  What would we do then? 
o We could conduct an epsilon-adjusted omnibus test, and follow it up with 

post-hoc contrasts. 
o Alternatively, we could test our hypotheses with contrasts and conduct 

additional post-hoc contrasts. 
 
 

• First, let’s consider an omnibus test 
GLM  winter spring summer fall  
  /WSFACTOR = season 4  
  /PRINT = DESC. 

Tests of Within-Subjects Effects

Measure: MEASURE_1

244.287 3 81.429 33.294 .000
244.287 2.349 104.018 33.294 .000
244.287 2.403 101.638 33.294 .000
244.287 1.000 244.287 33.294 .000
799.759 327 2.446
799.759 255.987 3.124
799.759 261.980 3.053
799.759 109.000 7.337

Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound
Sphericity Assumed
Greenhouse-Geisser
Huynh-Feldt
Lower-bound

Source
SEASON

Error(SEASON)

Type III Sum
of Squares df Mean Square F Sig.

 
 

23.
759.799287.244

287.2442 =
+

=
+

=
orSeasonErrorTermFSeason

Season
Season SSSS

SS
η  

 
o The data are not spherical, so we need to apply the Geisser-Greenhouse ε̂  

adjustment. 
23.,01.,29.33)99.255,35.2( 2 =<= ηpF  

• We conclude that there are differences in sunlight exposure across the 
seasons. 
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o Next, let’s follow-up this omnibus test with post-hoc polynomial 

contrasts (using a Scheffé correction).  There are many ways to test the 
polynomial trends.  The easiest way is to use SPSS’s built-in polynomial 
contrasts. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

15.106 1 15.106 10.412 .002
215.936 1 215.936 76.184 .000

13.245 1 13.245 4.340 .040
158.144 109 1.451
308.951 109 2.834
332.664 109 3.052

SEASON
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
SEASON

Error(SEASON)

Type III Sum
of Squares df Mean Square F Sig.

 
06.8688.2*3)109,3,95(.*3)1( ,1;05. ===−= −= FFaF aCrit να  

 

09.
144.158106.15

106.152 =
+

=
+

=
orLinearErrorTermFLinear

Linear
Linear SSSS

SS
η  

41.
951.308936.215

936.2152 =
+

=Quadraticη  04.
664.332245.13

245.132 =
+

=Cubicη  

 
• Only the linear and quadratic trends are significant 

18.,05.,41.10)109,1(: 2 =<= ηψ pFlin  
41.,05.,18.76)109,1(: 2 =<= ηψ pFquad  

04.,,34.4)109,1(: 2 == ηψ nsFcub  
 

 
• Be cautious in interpreting these trends.  Seasons are cyclical.  If we 

had started our analyses in the summer, we would obtain different 
results. 

 
 

o Looking at the data, we also want to know if  
• Is winter the season with the lowest exposure? 
• Is summer the season with the highest exposure? 

Descriptive Statistics

.7008 .96421 110
1.9573 1.95291 110
2.5885 2.58768 110
1.0428 1.43157 110

WINTER
SPRING
SUMMER
FALL

Mean Std. Deviation N
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o Pairwise post hoc tests can be obtained though the “simple” contrast 
subcommand.  
• Is winter the season with the lowest exposure? 

GLM  winter spring summer fall 
/WSFACTOR = season 4 simple (1) 
/PRINT = DESC. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

173.655 1 173.655 55.031 .000
391.987 1 391.987 65.257 .000
12.866 1 12.866 6.350 .013

343.960 109 3.156
654.740 109 6.007
220.864 109 2.026

season
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1
Level 2 vs. Level 1
Level 3 vs. Level 1
Level 4 vs. Level 1

Source
season

Error(season)

Type III Sum
of Squares df Mean Square F Sig.

 

81.6
2

)6899.3(
2

))109,4,95(.( 22

===−
qF CriticalTukey  

38.5
2

)2795.3(
2

))109,4,90(.( 22

===−
qF CriticalTukey  

 
• To compute a d effect-size for each contrast, we need to calculate the 

average value and the standard deviation of each contrast. 
COMPUTE WinSpr = spring-winter. 
COMPUTE WinSum = summer-winter. 
COMPUTE WinFall = fall-winter. 
DESC VAR = WinSpr WinSum WinFall. 

Descriptive Statistics

110 -2.19 7.67 1.2565 1.77640
110 -2.08 10.00 1.8877 2.45088
110 -3.75 5.56 .3420 1.42347
110

WinSpr
WinSum
WinFall
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

 

71.
7764.1
2565.1

ˆint ===
ψσ

ψ
ervsSpringWd    77.

45088.2
8877.1

int ==ervsSummerWd    24.
42347.1
3420.0

int ==ervsFallWd  

 
 
 

Tukey HSD post-hoc tests reveal: 
o Daily sunlight exposure is significantly lower in the winter than 

in the spring or summer, ds > .70 
o Daily sunlight exposure is marginally lower in the winter than in 

the fall, d = .24. 
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• Is summer the season with the highest exposure? 
GLM  winter spring summer fall 
/WSFACTOR = season 4 simple (3) 
/PRINT = DESC. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

391.987 1 391.987 65.257 .000
43.836 1 43.836 6.281 .014

262.820 1 262.820 41.178 .000
654.740 109 6.007
760.751 109 6.979
695.693 109 6.383

season
Level 1 vs. Level 3
Level 2 vs. Level 3
Level 4 vs. Level 3
Level 1 vs. Level 3
Level 2 vs. Level 3
Level 4 vs. Level 3

Source
season

Error(season)

Type III Sum
of Squares df Mean Square F Sig.

 

81.6
2

)6899.3(
2

))109,4,95(.( 22

===−
qF CriticalTukey  

38.5
2

)2795.3(
2

))109,4,90(.( 22

===−
qF CriticalTukey  

 
 

COMPUTE SumWin = summer-winter. 
COMPUTE SumSpr = summer-spring. 
COMPUTE SumFall = summer-fall. 
DESC VAR = SumWin SumSpr SumFall  

. 

Descriptive Statistics

110 -2.08 10.00 1.8877 2.45088
110 -5.00 10.00 .6313 2.64185
110 -3.75 10.00 1.5457 2.52636
110

SumWin
SumSpr
SumFall
Valid N (listwise)

N Minimum Maximum Mean Std. Deviation

 
 
 

77.
45088.2
8877.1

ˆint ===
ψσ

ψ
erSummervsWd   23.

64185.2
6313.0

==ringSummervsSpd   61.
52636.2
5457.1

==llSummervsFad  

 
 

Tukey HSD post-hoc tests reveal: 
o Daily sunlight exposure is significantly lower in the winter than 

in the spring or summer, ds > .60. 
o Daily sunlight exposure is marginally lower in the winter than in 

the fall, d = .23. 
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• A final approach to analyzing these data would be to test our hypotheses 
directly using contrasts (Remember – we had some!) 
o (Planned) Are there any trends in exposure across the seasons? 
o (Post-hoc) Is winter the season with the lowest exposure? 
o (Post-hoc) Is summer the season with the highest exposure? 

Descriptive Statistics

.7008 .96421 110
1.9573 1.95291 110
2.5885 2.58768 110
1.0428 1.43157 110

WINTER
SPRING
SUMMER
FALL

Mean Std. Deviation N

 
 

o Previous, we tested the polynomial trends using SPSS’s built-in 
polynomial contrasts. 

GLM  winter spring summer fall  
  /WSFACTOR = season 4 polynomial 
  /PRINT = DESC. 

Tests of Within-Subjects Contrasts

Measure: MEASURE_1

15.106 1 15.106 10.412 .002
215.936 1 215.936 76.184 .000

13.245 1 13.245 4.340 .040
158.144 109 1.451
308.951 109 2.834
332.664 109 3.052

SEASON
Linear
Quadratic
Cubic
Linear
Quadratic
Cubic

Source
SEASON

Error(SEASON)

Type III Sum
of Squares df Mean Square F Sig.

 

09.
144.158106.15

106.15ˆ 2 =
+

=
+

=
orLinearErrorTermFLinear

Linear
Linear SSSS

SS
η  

41.
951.308936.215

936.215ˆ 2 =
+

=Quadraticη   04.
664.332245.13

245.13ˆ 2 =
+

=Cubicη  

 
• Because these are planned, we do not need to apply a p-value 

correction. 
• We find evidence for significant linear, quadratic, and cubic trends 

 
09.,01.,41.10)109,1(: 2 =<= ηψ pFlin  

41.,01.,18.76)109,1(: 2 =<= ηψ pFquad  

04.,04.,34.4)109,1(: 2 === ηψ pFcub  
 

o The pairwise post hoc tests can be calculated exactly as they were in the 
previous method of data analysis (using the Tukey HSD correction). 


