Chapter 8 Factorial ANOVA: Higher order ANOVAs

1.	Three-way ANOVA	8-2
2.	Interpreting Effects	8-6
3.	Structural model & SS partitioning	8-11
4.	Contrasts	8-16
5.	Planned & Post hoc tests	8-22
6.	Analyzing Effects	8-23
7.	Effect sizes	8-33
8.	Higher-order ANOVA	8-34
9.	Examples	8-35

Page

Factorial ANOVA Higher order ANOVAs

- 1. Three-way ANOVA
 - A three-way analysis of variance has three independent variables
 - Factor A with a levels
 - \circ Factor B with *b* levels
 - Factor C with c levels
 - All of the procedures we developed for a two-way ANOVA can be extended to a three-way ANOVA. The interpretation gets more difficult and the math is messier
 - For simplicity, we will examine the simplest three way ANOVA: 2*2*2 design
 - Factor A with 2 levels
 - Factor B with 2 levels
 - Factor C with 2 levels

I will present the formulas in their general form, and will give an example of a more complex design at the conclusion

• An example of source expertise, source attractiveness, and the processing of persuasive information

High Self-Monitors								
	Strong .	Argument			Weak A	<i>Argument</i>		
Expert	Expert Source Attractive Source			Expert Source Attractive S			e Source	
4	4	4	2	3	4	5	3	
3	6	4	3	5	3	5	5	
4	3	2	4	3	5	7	6	
5	4	3	3	2	3	5	7	
2	5	5	2	6	2	6	7	
5	4	3	4	4	3	4	6	

Low Self-Monitors								
	Strong 2	Argument			Weak A	lrgument		
Expert	Source	Attractiv	ve Source	Expert Source		Attractive Source		
3	1	5	2	5	5	6	4	
5	5	4	4	6	6	4	3	
5	3	3	4	4	4	4	4	
4	4	2	3	7	6	2	2	
3	3	4	4	6	7	4	3	
2	4	6	3	7	5	5	4	

 $n_{jkl} = 12$

• Graphing three-factor ANOVA designs

Three-way interaction

• ANOVA Table for three-way ANOVA

		Sum of Squares df	Mean Square F	Sig.
Main Effects	(Combined)			
	MONITOR			
	STRENGTH			
	SOURCE			
2-Way Interactions	(Combined)			
	MONITOR * STRENGTH			
	MONITOR * SOURCE			
	STRENGTH * SOURCE			
3-Way Interactions	MONITOR * STRENGTH * SOURCE			
Model				
Residual				
Total				

- 2. Interpreting Effects
 - Interpreting main effects
 - <u>The main effect of self-monitor</u> compares the levels of self-monitoring (high vs. low) after averaging over the levels of argument strength and source of argument

Self-Monitor	Mean	Std Dev	N
High	4.10	1.40	48
Low	4.15	1.43	48
SM Effect	-0.05		

• <u>The main effect of argument strength</u> compares the levels of argument strength (strong vs. weak) after averaging over the levels of selfmonitoring and source of argument

Strength	Mean	Std Dev	N
Strong	3.63	1.12	48
Weak	4.63	1.50	48
Strength Effect	1.00		

• <u>The main effect of source of argument</u> compares the levels of source of argument (expert vs. attractive) after averaging over the levels of self-monitoring and argument strength

U	<u> </u>	<u> </u>	
Source	Mean	Std Dev	N
Expert	4.21	1.43	48
Attractive	4.04	1.40	48
Source Effect	0.17		

- Interpreting two-way interactions
 - <u>The self-monitor by strength of argument interaction</u> examines the interaction of self-monitoring (high vs. low) and strength of argument (strong vs. weak) after averaging over the levels of source of argument Is the effect of self-monitoring the same at each level of strength of argument? Is the effect of strength of argument the same at each level of self-monitoring?

		Se	lf-Monitoring
		High	Low
Strength of	Strong	3.67	3.58
Argument	Weak	4.54	4.71
Strength Effect		-0.87	-1.13
$n_{ik} = 24$			

• <u>The self-monitor by source of argument interaction</u> examines the interaction of self-monitoring (high vs. low) and source of argument (expert vs. attractive) after averaging over the levels of strength of argument

Is the effect of self-monitoring the same at each level of source of argument? Is the effect of source of argument the same at each level of self-monitoring?

		Self-Monitoring		
		High	Low	
Source of	Expert	3.83	4.58	
Argument	Attractive	4.38	3.71	
Source Effect		-0.55	0.87	
$n_{il} = 24$				

• <u>The strength of argument by source of argument interaction</u> examines the interaction of strength of argument (strong vs. weak) and source of argument (expert vs. attractive) after averaging over the levels of self-monitoring

Is the effect of strength of argument the same at each level of source of argument? Is the effect of source of argument the same at each level of strength of argument?

		Strength of Argument		
		Strong Weak		
Source of	Expert	3.79	4.63	
Argument	Attractive	3.46	4.63	
Strength	n Effect	0.33	0.00	
$n_{kl} = 24$				

- Interpreting three-way interactions
 - So far, the logic and interpretation of main effects and interactions is basically the same as the two-way design
 - Now, let's extend this logic to a three-way interaction
 - <u>The self-monitor by strength of argument by source of argument</u> <u>interaction</u> examines the interaction of self-monitoring (high vs. low) and strength of argument (strong vs. weak) and source of argument (expert vs. attractive)

The three-way interaction addresses the following questions:

- Is the strength of argument by source of argument interaction the same at each level of self-monitoring?
- Is the self-monitor by strength of argument interaction the same at each level of source of argument?
- Is the self-monitor by source of argument interaction the same at each level of strength of argument?

Let's examine each approach to the three-way interaction:

• Is the strength of argument by source of argument interaction the same at each level of self-monitoring?

$n_{jkl} = 12$		High Self-Monitor		Low Self-Monitor		
		Strength of Strong	f Argument Weak		Strength of Strong	f Argument Weak
Source	Expert	4.08	3.58		3.50	5.67
	Attractive	3.25	5.50]	3.67	3.75
Source Effe	ect	0.83	-1.92		-0.17	1.92
Difference in Source		2.75			-2.09	
Effect						

$n_{jkl} = 12$		Expert Source		Attractive Source		
		Self-monitoring		Self-monitoring		
		High	Low		High	Low
Strength	Strong	4.08	3.50		3.25	3.67
	Weak	3.58	5.67		5.50	3.75
Strength Effect		0.50	-2.17		-2.25	-0.08
Difference in Strength		2.67			-2.17	
Effect						

• Is the self-monitor by strength of argument interaction the same at each level of source of argument?

• Is the self-monitor by source of argument interaction the same at each level of strength of argument?

$n_{ikl} = 12$		Strong A	Argument		Weak Argument		
jn		Source of	Argument		Source of Argument		
		Expert	Attractive		Expert	Attractive	
Self-	High	4.08	3.25]	3.58	5.50	
Monitor	Low	3.50	3.67		5.67	3.75	
_							
Monitoring	Effect	0.58	-0.42		-2.09	1.75	
Difference in		1			-3.84		
Monitorin	g Effect						

• Each of the different ways of examining the three-way interaction will lead to the exact same analysis and conclusion. The combination you choose to present should be based on your theory/hypotheses

	Meaning
Main Effects	
А	Comparison of marginal means of Factor A, averaging over levels of B and C
В	Comparison of marginal means of Factor B, averaging over levels of A and C
С	Comparison of marginal means of Factor C, averaging over levels of A and B
Two-way	
Interactions	
A*B	Examines whether the A effect is the same at every level of B, averaging over levels of C
	Equivalently, examines whether the B effect is the same at every level of A, averaging over levels of C
A*C	Examines whether the A effect is the same at every level of C, averaging over levels of B
	Equivalently, examines whether the C effect is the same at every level of A, averaging over levels of B
B*C	Examines whether the B effect is the same at every level of C, averaging over levels of A
	Equivalently, examines whether the C effect is the same at
	every level of B, averaging over levels of A
Three-way	
Interaction	
A*B*C	Examines whether the two-way A*B interaction is the same at every level of C
	Equivalently, examines whether the two-way A*C
	interaction is the same at every level of B
	Equivalently, examines whether the two-way B*C
	interaction is the same at every level of A

• Table summarizing the meaning of effects in an A*B*C Design (Maxwell & Delaney, 1990, p 318)

- 3. Structural model & SS partitioning
 - Structural Model for a three-way ANOVA

$$Y_{ijk} = MODEL + ERROR$$
$$Y_{ijkl} = \mu + \alpha_{j} + \beta_{k} + \gamma_{l} + (\alpha\beta)_{ik} + (\alpha\gamma)_{jl} + (\beta\gamma)_{kl} + (\alpha\beta\gamma)_{ikl} + \varepsilon_{ijkl}$$

Mean Model Components:

 μ The overall mean of the scores

Main Effect Model Components:

- α_i The effect of being in level *j* of Factor A
- β_k The effect of being in level k of Factor B
- γ_l The effect of being in level *l* of Factor C

Two-way Interaction Model Components:

 $(\alpha\beta)_{jk}$ The effect of being in level *j* of Factor A and level *k* of Factor B

- $(\alpha \gamma)_{il}$ The effect of being in level *j* of Factor A and level *l* of Factor C
- $(\beta\gamma)_{kl}$ The effect of being in level k of Factor B and level l of Factor C

Three-way Interaction Model Components:

 $(\alpha\beta\gamma)_{jkl}$ The effect of being in level *j* of Factor A, level *k* of Factor B, and level *l* of Factor C

Error Components:

 ε_{ijk} The unexplained part of the score

 α_i : The effect of being in level j of Factor A

 β_k : The effect of being in level k of Factor B

$$\alpha_{j} = \mu_{\cdot j} - \mu_{\cdot \dots} \qquad \qquad \beta_{k} = \mu_{\cdot k} - \mu_{\cdot \dots}$$

$$\sum_{j=1}^{a} \alpha_{j} = 0 \qquad \qquad \qquad \sum_{k=1}^{b} \beta_{k} = 0$$

$$\gamma_{l}$$
: The effect of being in level l of Factor C
 $\gamma_{l} = \mu_{...l} - \mu_{...l}$
 $\sum_{l=1}^{c} \gamma_{l} = 0$

- $(\alpha\beta)_{jk}$ The effect of being in level j of Factor A and level k of Factor B
- $(\alpha \gamma)_{jl}$ The effect of being in level j of Factor A and level l of Factor C
- $(\alpha\beta)_{jk} = \mu_{jk} (\mu_{l} + \alpha_j + \beta_k) \qquad (\alpha\gamma)_{jl} = \mu_{jl} (\mu_{l} + \alpha_j + \gamma_l)$ $\sum_{j=1}^{a} (\alpha\beta)_{jk} = 0 \quad \text{for each level of } j \qquad \sum_{j=1}^{a} (\alpha\gamma)_{jl} = 0 \quad \text{for each level of } j$ $\sum_{k=1}^{b} (\alpha\beta)_{jk} = 0 \quad \text{for each level of } k \qquad \sum_{l=1}^{c} (\alpha\gamma)_{jl} = 0 \quad \text{for each level of } l$

 $(\beta \gamma)_{kl}$ The effect of being in level k of Factor B and level l of Factor C

$$(\beta \gamma)_{kl} = \mu_{kl} - (\mu_{kl} + \beta_{k} + \gamma_{l})$$

$$\sum_{k=1}^{b} (\beta \gamma)_{kl} = 0 \quad for \; each \; level \; of \; kl$$

$$\sum_{l=1}^{c} (\beta \gamma)_{kl} = 0 \quad for \; each \; level \; of \; l$$

 $(\alpha\beta\gamma)_{ikl}$ The effect of being in level j of Factor A, level k of Factor B, and level l of Factor C

$$(\alpha\beta\gamma)_{jkl} = \mu_{jkl} - (\mu.... + \alpha_j + \beta_k + \gamma_l + \alpha\beta_{jk} + \alpha\gamma_{jl} + \beta\gamma_{kl})$$

$$\sum_{j=1}^{a} (\alpha\beta\gamma)_{jkl} = 0 \quad \text{for each level of } j \qquad \sum_{k=1}^{b} (\alpha\beta\gamma)_{jkl} = 0 \quad \text{for each level of } k$$

$$\sum_{l=1}^{c} (\alpha\beta\gamma)_{jkl} = 0 \quad \text{for each level of } l$$

 ε_{ijkl} The unexplained part of the score

$$\begin{split} \varepsilon_{ijkl} &= Y_{ijkl} - MODEL \\ &= Y_{ijkl} - \left(\mu + \alpha_j + \beta_k + \gamma_l + (\alpha\beta)_{jk} + (\alpha\gamma)_{jl} + (\beta\gamma)_{kl} + (\alpha\beta\gamma)_{jkl}\right) \end{split}$$

- You should be able to compute and interpret each component of a threeway ANOVA model. In addition, you should be able to decompose each score into its structural model components
- Variance partitioning for a three-way ANOVA

- This SS partition only holds for balanced designs
- We showed the derivation of these SS formulas and how to compute them for the one-way and the two-way ANOVA case. The three-way formulas are extensions of these simpler formulas. You may find the formulas in any advanced ANOVA book (For example, see Kirk, 1995, p 441)
- The math works out nicely (as we would expect) so that if we take the ratio of the MS for a component of the model over the MS error, we obtain a valid test of the model component

ANOVA					
Source of Variation	SS	df	MS	F	P-value
Main effects					
Factor A	SSA	(a-1)	SSA/df _a	MSA/MSW	
Factor B	SSB	(b-1)	SSB/df _b	MSB/MSW	
Factor C	SSC	(c-1)	SSC/df _c	MSC/MSW	
Two-way Interactions					
A * B interaction	SSAB	(a-1)(b-1)	SSAB/df _{ab}	MSAB/MSW	
A * C interaction	SSAC	(a-1)(c-1)	$SSAC/df_{ac}$	MSAC/MSW	
B * C interaction	SSAB	(b-1)(c-1)	SSBC/df _{bc}	MSBC/MSW	
Three-way Interactions					
A * B * C interaction	SSABC	(a-1)(b-1)(c-1)	$SSABC/df_{abc}$	MSABC/MSW	
Model	SSBet	abc-1	SSB/df _{bet}		
Within	SSW	N-abc	SSW/df _w		
Total	SST	N-1			

• ANOVA table for three-way ANOVA

• Using SPSS

UNIANOVA dv BY monitor strength source /PRINT = DESCRIPTIVE.

Dependent Variable: DV								
	Type III Sum							
Source	of Squares	df	Mean Square	F	Sig.			
Corrected Model	72.833 ^a	7	10.405	7.916	.000			
Intercept	1633.500	1	1633.500	1242.778	.000			
MONITOR	4.167E-02	1	4.167E-02	.032	.859			
STRENGTH	24.000	1	24.000	18.259	.000			
SOURCE	.667	1	.667	.507	.478			
MONITOR * STRENGTH	.375	1	.375	.285	.595			
MONITOR * SOURCE	12.042	1	12.042	9.161	.003			
STRENGTH * SOURCE	.667	1	.667	.507	.478			
MONITOR * STRENGTH * SOURCE	35.042	1	35.042	26.660	.000			
Error	115.667	88	1.314					
Total	1822.000	96						
Corrected Total	188.500	95						

Tests of Between-Subjects Effects

a. R Squared = .386 (Adjusted R Squared = .338)

• Summary of the results:

Main Effects:	
Self-monitoring:	$F(1, 88) = 0.03, \underline{p} = .86$
Strength of Argument:	F(1, 88) = 18.26, p < .01
Source of Argument:	F(1, 88) = 0.51, p = .48
Two-way interactions: Monitoring*Strength: Monitoring*Source: Strength*Source:	F(1, 88) = 0.29, p = .60 F(1, 88) = 3.32, p = .02 F(1, 88) = 0.51, p = .48

Three-way interactions:

Monitoring*Strength*Source: F(1, 88) = 26.66, p < .01

4. Contrasts

• We can perform contrasts using the same method we developed for two-way ANOVA

$n_{jkl} = 12$		High Self-Monitor			Low Self	-Monitor
		Strength of Argument			Strength of	Argument
		Strong	Weak		Strong	Weak
Source	Expert	1	2		5	6
	Attractive	3	4		7	8
				-		

if (monitor=1 and strength=1 and source=1) group = 1. if (monitor=1 and strength=2 and source=1) group = 2. if (monitor=1 and strength=1 and source=2) group = 3. if (monitor=1 and strength=2 and source=2) group = 4. if (monitor=2 and strength=1 and source=1) group = 5. if (monitor=2 and strength=2 and source=1) group = 6. if (monitor=2 and strength=1 and source=2) group = 7. if (monitor=2 and strength=2 and source=2) group = 8.

• To test the main effect of self-monitoring:

Self-Monitoring					
High	Low				
1	-1				
$n_{j} = 48$					

$n_{jkl} = 12$		High Self-Monitor			Low Self-	Monitor
		Strength of Argument			Strength of	Argument
		Strong	Weak	_	Strong	Weak
Source	Expert	1	1		-1	-1
	Attractive	1	1		-1	-1
				-		

ONEWAY dv by group /CONT = 1 1 1 1 -1 -1 -1 -1.

Contrast Tests

	Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Self-Monitoring	1667	.93609	178	88	.859

t(88) = -.18, p = .86

• To test the main effect of strength of argument:

Strength of Argument					
Strong	Weak				
1	-1				
$n_k = 48$					

$n_{jkl} = 12$		High Self-Monitor			Low Self-	Monitor
		Strength of Argument			Strength of	Argument
		Strong	Weak		Strong	Weak
Source	Expert	1	-1		1	-1
	Attractive	1	-1		1	-1

ONEWAY dv by group /CONT = 1 -1 1 -1 1 -1 1 -1.

Contrast Tests

		Value of				
	Contrast	Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Strength	-4.0000	.93609	-4.273	88	.000

t(88) = -4.28, p < .01

• To test the main effect of source of argument:

Source of Argument					
Expert	Attractive				
1	-1				
$n_1 = 48$					

$n_{jkl} = 12$		High Self-Monitor			Low Self-	-Monitor
		Strength of Argument			Strength of	Argument
		Strong	Weak		Strong	Weak
Source	Expert	1	1		1	1
	Attractive	-1	-1		-1	-1
	Anachive	-1	-1	J	-1	-1

ONEWAY dv by group /CONT = 1 1 -1 -1 1 1 -1 -1.

Contrast Tests

		Value of				
	Contrast	Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Source	.6667	.93609	.712	88	.478

t(88) = 0.72, p = .48

• To test the monitoring by strength interaction:

$n_{jk} = 24$		Self-Mo	onitoring
		High	Low
Strength of	Strong	1	-1
Argument	Weak	-1	1

$n_{jkl} = 12$		High Self-Monitor		Low Self-	-Monitor
		Strength of Argument		Strength of	Argument
		Strong	Weak	 Strong	Weak
Source	Expert	1	-1	-1	1
	Attractive	1	-1	-1	1

ONEWAY dv by group /CONT = 1 -1 1 -1 -1 1 -1 1.

Contrast Tests

	Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Monitoring * Strength	.5000	.93609	.534	88	.595

t(88) = 0.53, p = .60

	$n_{il} = 24$	0 5		Self	-Monito	ring	-
	<u>у</u> -			High		Low	_
	Source of	Expert		1		-1	
	Argument	Attractiv	e	-1		1	
$n_{jkl} = 12$		High Self-Me	onitor			Low Sel	f-Monitor
		Strength of Ar	gument			Strength o	f Argument
_	_	Strong	Weak		F	Strong	Weak
Source	Expert	1	1		_	-1	-1
	Attractive	-1	-1			l	l
	ONEWAY dv by group /CONT = 1 1 -1 -1 -1 1 1.						
		c	ontrast Tes	sts			
		Value of			-16		
	DV	Monitoring + 2.8333	.93609	t -3.027	ar 88	Sig. (2-tailed)	
		Source					
	$t(\delta$	(88) = -3.03, p < .01					
0	To test the	strength by sourc	e intera	action:			_
	$n_{kl} = 24$			Strengt	th of Arg	gument	
				Strong		Weak	_
	Source of	Expert		1		-1	_
	Argument	Attractiv	e	-1		1	
		II. 1 0 103 /	•,			T 0 1	<u> </u>
$n_{jkl} = 12$		High Self-Monitor				Low Sel	f-Monitor
		Strength of Argument				Strength o	f Argument
G		Strong	Weak		F	Strong	Weak
Source	Expert Attractive		-l 1			<u> </u>	-l 1
	Amacuve	-1	1			-1	1

• To test the monitoring by source interaction:

ONEWAY dv by group /CONT = 1 -1 -1 1 1 1 -1 -1 1.

Contrast Tests

	Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Strength *Source	.6667	.93609	.712	88	.478

t(88) = 0.72, p = .48

• To test the monitoring by strength by source interaction:

	Low Self-Monitor
Strength of Argument S	strength of Argument
Strong Weak S	Strong Weak
Source Expert 1 -1	-1 1
Attractive -1 1	1 -1

ONEWAY dv by group /CONT = 1 -1 -1 1 -1 1 1 -1.

 We can compute all the main effect and interaction tests with contrasts because for a 2*2*2 design, all the tests are single degree of freedom tests. For more complex a*b*c designs, omnibus tests with more than 1 degree of freedom can be performed using simultaneous tests of orthogonal contrasts. • To compute these contrasts by hand, the formulas are simple generalizations of the two-way case:

$$\hat{\psi} = \sum_{l=1}^{c} \sum_{k=1}^{b} \sum_{j=1}^{a} c_{jkl} \overline{X}_{jkl} = c_{111} \overline{X}_{111} + \dots + c_{abc} \overline{X}_{abc}$$

Std error $(\hat{\psi}) = \sqrt{MSW \sum_{l=1}^{c} \sum_{k=1}^{b} \sum_{j=1}^{a} \frac{c_{jkl}^{2}}{n_{jkl}}}$

Where c_{jkl}^2 is the squared weight for each cell n_{jkl} is the sample size for each cell *MSW* is MSW from the omnibus ANOVA

- 5. Planned & Post hoc tests
 - Everything from the two-way design generalizes to the three-way design
 - Planned tests can be corrected (if necessary) using Bonferroni
 - Method for conducting post-hoc adjustments is same as for two-way design
 - Obtain observed t- or F-statistic by hand (or using SPSS, but discard printed p-value)
 - o Look up critical value and compare to observed value
 - For Tukey's HSD using marginal means: $q(1-\alpha, d, v)$ Where α = Familywise error rate d = Number of groups in the comparison v = DFw = *N*-*abc*
 - For Tukey's HSD using all cell means: $q(1-\alpha, abc, v)$ Where $\alpha =$ Familywise error rate abc = Number of cells in the design v = DFw = N-abc

Compare
$$t_{observed}$$
 to $\frac{q_{crit}}{\sqrt{2}}$ or $F_{observed}$ to $\frac{(q_{crit})^2}{2}$

- For Scheffé using marginal means: $F_{Crit} = (d-1)F_{\alpha=.05;d-1,N-abc}$
- For Scheffé using all cell means: $F_{Crit} = (a-1)(b-1)(c-1)F_{\alpha=.05;(a-1)(b-1)(c-1),N-abc}$

Compare $F_{observed}$ to F_{crit}

6. Analyzing Effects

- Maxwell and Delaney's (1990) guidelines for analyzing effects in a threefactor design are considerably more complicated than for the two-factor design (recall p 7-59)!
- The principle remains the same. You must start with the highest order significant effect. You decompose these effects into simpler effects until you have an understanding of where the significant differences lie.
- Simple (interaction) effect
 - If you have a significant three-way interaction, then you need to examine the separate two-way interactions
 - The A*B interaction at each level of C or
 - The A*C interaction at each level of B or
 - The B*C interaction at each level of A
 - **APPROACH #1**: In our example, we have a significant three-way interaction, so let's examine the source of argument by strength of argument interaction at each level of self-monitoring

$n_{_{jkl}} = 12$		High Self-Monitor		Low Self-	-Monitor
		Strength of Argument		Strength of	Argument
		Strong	Weak	Strong	Weak
Source	Expert	1	-1		
	Attractive	-1	1		

$n_{jkl} = 12$		High Self-Monitor		Low Self-	Monitor	
		Strength of Argument			Strength of	Argument
		Strong	Weak		Strong	Weak
Source	Expert				1	-1
	Attractive				-1	1

• To examine the source of argument by strength of argument interaction for *high self-monitors*:

```
ONEWAY dv by group
/CONT = 1 -1 -1 1 0 0 0 0 .
```

Contrast	Tests

		Value of				
	Contrast	Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	1	2.7500	.66191	4.155	88	.000

• To examine the source of argument by strength of argument interaction for *low self-monitors*:

ONEWAY dv by group /CONT = 0 0 0 0 1 -1 -1 1.

Contrast Tests								
	Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)		
DV	1	-2.0833	.66191	-3.147	88	.002		

• When the variances are homogeneous, these analysis can also be obtained with the MANOVA command. Note: You cannot obtain simple interaction effects with GLM

MANOVA dv BY monitor (1,2) strength(1,2) source (1,2) /DESIGN strength by source WITHIN monitor(1), strength by source WITHIN monitor(2), monitor * strength, monitor * source, monitor, strength, source.

Full Factorial Design	Simple Effects Design
Monitor	monitor
Strength	strength
Source	source
monitor * source	monitor * source
monitor * strength strength * source	monitor * strength
monitor * strength * source	source * strength WITHIN monitor (1) source * strength WITHIN monitor (2)

* * * * * * * A n a l y s	is of	Vari	ance-	- design	1 * * * * * *	*
Tests of Significance f	or DV using	UNIQUE	sums of so	luares		
Source of Variation	SS	DF	MS	F	Sig of F	
WITHIN+RESIDUAL	115.67	88	1.31			
STRENGTH BY SOURCE W	22.69	1	22.69	17.26	.000	
ITHIN MONITOR(1)	12 00	1	12 00	0 01	0.0.2	
ITHIN MONITOR (2)	13.02	T	13.02	9.91	.002	
MONITOR * STRENGTH	.38	1	.38	.29	.595	
MONITOR * SOURCE	12.04	1	12.04	9.16	.003	
MONITOR	.04	1	.04	.03	.859	
STRENGTH	24.00	1	24.00	18.26	.000	
SOURCE	.67	1	.67	.51	.478	
(Model)	72.83	7	10.40	7.92	.000	
(Total)	188.50	95	1.98			

• Because each of these separate two-way analyses are significant, we need to conduct additional follow-up tests

- For high self-monitors: We can examine the effect of source of argument within each level of strength of argument

(The main effect of source within high self-monitors and strong argument AND within high self-monitors and weak argument)

- Alternately, for high self-monitors: We can examine the effect of strength of argument within each level of source of argument (The main effect of strength within high self-monitors and expert source AND within high self-monitors and attractive source)

- These analyses should be repeated for low self-monitors

• **APPROACH #2**: Alternatively, we can examine the strength of argument by self-monitoring interaction at each level of source of argument

$n_{jkl} = 12$		High Self-Monitor		Low Self	Monitor	
		Strength of	Argument	Strength of Argument		
		Strong	Weak	Strong	Weak	
Source	Expert	1	-1	-1	1	
	Attractive					

$n_{jkl} = 12$		High Self-Monitor			Low Self-	Monitor	
		Strength of	Argument		Strength of	of Argument	
		Strong	Weak		Strong	Weak	
Source	Expert						
	Attractive	1	-1		-1	1	

 Using contrasts: ONEWAY dv by group /CONT = 1 -1 0 0 -1 1 0 0 /CONT = 0 0 1 -1 0 0 -1 1.

Contrast Tests

		Value of				
	Contrast	Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	Expert Source	2.6667	.66191	4.029	88	.000
	Attractive Source	-2.1667	.66191	-3.273	88	.002

 Using MANOVA: MANOVA dv BY monitor (1,2) strength(1,2) source (1,2) /DESIGN strength by monitor WITHIN source(1), strength by monitor WITHIN source(2), source * strength, monitor * source, monitor, strength, source.

Full Factorial Design

Simple Effects Design

monitor strength source strength * source monitor * source monitor * strength monitor * strength * source monitor strength source strength * source monitor * source

monitor * strength WITHIN source (1) monitor * strength WITHIN source (2)

* * * * Analysis of Variance -- design 1 * * * * Tests of Significance for DV using UNIQUE sums of squares DF MS F Sig of F Source of Variation SS WITHIN+RESIDUAL115.67881.31STRENGTH BY MONITOR21.33121.3316.23 .000 WITHIN SOURCE(1) STRENGTH BY MONITOR 14.08 1 14.08 10.71 .002 WITHIN SOURCE(2)

 SOURCE * STRENGTH
 .67
 1
 .67
 .51

 MONITOR * SOURCE
 12.04
 1
 12.04
 9.16

 MONITOR
 .04
 1
 .04
 .03

 STRENGTH
 24.00
 1
 24.00
 18.26

 SOURCE
 .67
 1
 .67
 .51

 .478 .003 .859 .000 .478 72.83 7 (Model) 10.40 7.92 .000 188.50 95 1.98 (Total)

• **APPROACH #3**: Alternatively, we can examine the source of argument by self-monitoring interaction at each level of strength of argument

$n_{jkl} = 12$		High Self-Monitor			Low Self-Monitor		
		Strength of	Argument		Strength of	Argument	
		Strong	trong Weak		Strong	Weak	
Source	Expert	1			-1		
	Attractive	-1			1		

$n_{jkl} = 12$		High Self	-Monitor	Low Self	-Monitor
		Strength of Strong	Argument Weak	Strength of Strong	Argument Weak
Source	Expert Attractive		1 -1		-1 1

 Using contrasts: ONEWAY dv by group /CONT = 1 0 -1 0 -1 0 1 0 /CONT = 0 1 0 -1 0 -1 0 1.

Contrast Tests

		Value of				
Co	ontrast	Contrast	Std. Error	t	df	Sig. (2-tailed)
DV Str	rong Argument	1.0000	.66191	1.511	88	.134
We	eak Argument	-3.8333	.66191	-5.791	88	.000

 Using MANOVA: MANOVA dv BY monitor (1,2) strength(1,2) source (1,2) /DESIGN monitor by source WITHIN strength(1), monitor by source WITHIN strength(2), monitor * strength, strength * source, monitor, strength, source.

Full Factorial Design	Simple Effects Design
monitor	monitor
strength	strength
source	source
strength * source	strength * source
monitor * strength	monitor * strength
monitor * source	
monitor * strength * source	<pre>> monitor * source WITHIN strength (1)</pre>
	monitor * source WITHIN strength (2)

* * * * Analysis	s of Va	rian	nce	design 1	* * * *
Tests of Significance	for DV using	UNIQUE	sums of	squares	
Source of Variation	SS	DF	MS	F	Sig of F
WITHIN+RESIDUAL	115.67	88	1.31		
MONITOR BY SOURCE WI	3.00	1	3.00	2.28	.134
MONITOR BY SOURCE WI	44.08	1	44.08	33.54	.000
THIN STRENGTH(2)					
MONITOR * STRENGTH	.38	1	.38	.29	.595
STRENGTH * SOURCE	.67	1	.67	.51	.478
MONITOR	.04	1	.04	.03	.859
STRENGTH	24.00	1	24.00	18.26	.000
SOURCE	.67	1	.67	.51	.478
(Model)	72.83	7	10.40	7.92	.000
(Total)	188.50	95	1.98		

• We should not take all three approaches; only one is necessary. The choice you make should be the one that makes the most sense for your theory/hypotheses

- For approach 3, we found
 - No significant self-monitoring by source interaction for strong messages, *F*(1,88) = 2.28, *p* = .13.
 - A significant self-monitoring by source interaction for weak messages, F(1,88) = 33.54, p < .01. We need to conduct follow-up tests to interpret this simple interaction effect. These tests are called simple, simple, main effects.

$n_{jkl} = 12$		High Self	-Monitor	Low Self-Monitor			
		Strength of	Argument	Strength of	Argument		
		Strong	Weak	 Strong	Weak		
Source	Expert		1				
	Attractive		-1				

$n_{jkl} = 12$		High Self	-Monitor	Low Self-Monitor			
		Strength of Strong	Argument Weak	Strength of Strong	Argument Weak		
Source	Expert Attractive				-1 1		

• Using Contrasts: ONEWAY dv by group /CONT = 0 1 0 -1 0 0 0 0 /CONT = 0 0 0 0 0 -1 0 1.

Contrast Tests

	Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
DV	High Monitor, Weak Message	-1.9167	.46804	-4.095	88	.000
	Low Monitor, Weak Message	-1.9167	.46804	-4.095	88	.000

• Using MANOVA MANOVA dv BY monitor (1,2) strength(1,2) source (1,2) /DESIGN source WITHIN monitor (1) WITHIN strength(1), source WITHIN monitor (2) WITHIN strength(1), source WITHIN monitor (1) WITHIN strength(2), source WITHIN monitor (2) WITHIN strength(2), monitor * strength, monitor, strength.

* *	*	*	А	n	а	1	У	S	i	S	0	f	V	а	r	i	а	n	С	е		design	1	*	*	*	*
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--------	---	---	---	---	---

Tests of Significance Source of Variation	for DV using	UNIQUE DF	sums of MS	squares F	Sig of F
Source of variation	55	DI	110	±	org or r
WITHIN+RESIDUAL	115.67	88	1.31		
SOURCE WITHIN MONITO	4.17	1	4.17	3.17	.078
R(1) WITHIN STRENGTH (1)					
SOURCE WITHIN MONITO	.17	1	.17	.13	.723
R(2) WITHIN STRENGTH (1)					
SOURCE WITHIN MONITO	22.04	1	22.04	16.77	.000
R(1) WITHIN STRENGTH (2)					
SOURCE WITHIN MONITO	22.04	1	22.04	16.77	.000
R(2) WITHIN STRENGTH (2)					
MONITOR * STRENGTH	.38	1	.38	.29	.595
MONITOR	.04	1	.04	.03	.859
STRENGTH	24.00	1	24.00	18.26	.000
(Model)	72.83	7	10.40	7.92	.000

Using GLM •

(Total)

UNIANOVA dv BY monitor strength source /EMMEANS = TABLES(monitor*strength*source) COMPARE(source) /PRINT = DESCRIPTIVE .

95

1.98

			Univ	anale resis			
Depende	ent Variable:	dv					
monitor	strength		Sum of Squares	df	Mean Square	F	Sig.
High	Strong	Contrast	4.167	1	4.167	3.170	.078
		Error	115.667	88	1.314		
	Weak	Contrast	22.042	1	22.042	16.769	.000
		Error	115.667	88	1.314		
Low	Strong	Contrast	.167	1	.167	.127	.723
		Error	115.667	88	1.314		
	Weak	Contrast	22.042	1	22.042	16.769	.000
		Error	115.667	88	1.314		

Il nivariato Tests

188.50

Each F tests the simple effects of source within each level combination of the other effects shown. These tests are based on the linearly independent pairwise comparisons among the estimated marginal means.

- If these tests are planned or post-hoc, they need to be adjusted accordingly
- An alternative to the simple effect approach is the contrast-based approach.
 - The traditional approach conducts 7 uncorrected omnibus tests, so we are allowed 7 uncorrected planned contrasts. If you have more than 7 planned contrasts, you must use the Bonferroni correction.
 - Post-hoc tests can be conducted using Tukey HSD or Scheffé to keep $\alpha_{EW} = .05$

7. Effect sizes

• Formulas for partial omega-squared and r (for contrasts only) are easily adapted to a three-factor design:

$$\hat{\omega}_{(EFFECT)}^{2} = \frac{SS(effect) - [df(effect)]MSWithin}{SS(effect) + [N - df(effect)]MSWithin}$$
$$r = \sqrt{\frac{F_{contrast}}{F_{contrast} + df_{within}}} = \sqrt{\frac{t_{contrast}^{2}}{t_{contrast}^{2} + df_{within}}}$$

• For example, to compute the proportion of variance accounted for by the three-way interaction in our persuasion example

 $\hat{\omega}_{(A^*B^*C)}^2 = \frac{SS(ABC) - [df(ABC)]MSWithin}{SS(ABC) + [N - df(ABC)]MSWithin}$ $\hat{\omega}_{(A^*B^*C)}^2 = \frac{35.042 - (1)1.314}{35.042 + [96 - 1]1.314} = .21$

$$F(1,88) = 26.66, p < .001, \omega^2 = .21$$

- 8. Higher-order ANOVA
 - The logic we developed for two- and three-factor ANOVA can be easily extended to four-factor, five-factor and even higher order ANOVAs
 - By now you have seen how the formulas generalize so that you can compute values for any order design
 - Interpretation of a three-factor ANOVA is tricky enough. Things get very hairy for higher order ANOVAs.
 - For example, a significant four-way interaction (A*B*C*D) indicates that the three way A*B*C interaction is not the same at each level of D or that the three way A*B*D interaction is not the same at each level of C or . . .
 - We saw that to graph a three-way 2*2*2 interaction, we had to graph two separate two-way interactions
 - To graph a four-way 2*2*2*2 interaction, we would have to graph four separate two-way interactions!
 - To graph a five-way 2*2*2*2 interaction, we would have to graph eight separate two-way interactions!
 - Remember when you design a study, you will need to be able to analyze, understand, and present the results. It is rare that a person can clearly present a four-way interaction in a manner that the audience can understand. Beware of conducting designs that are too complex!
 - As the number of factors increases, the number of omnibus tests increases rapidly. Because the convention is to use $\alpha = .05$ for each omnibus test, the probability of making a type one error is high for a multi-factor ANOVA

			Number of			
Number of	Main	Two-way	Three-way	Four-way	Five-way	Total Number
Factors	Effects	Interactions	Interactions	Interactions	Interactions	of tests
2	2	1				3
3	3	3	1			7
4	4	6	4	1		15
5	5	10	10	5	1	31

As a result, do not be surprised if you are asked to replicate the results of your multi-factor ANOVA.

- 9. Example: A 3*3*2 design
 - Consider an experiment comparing three types of therapy for modifying snake phobia
 - Factor A Degree of Phobia: Mild, Moderate, Severe
 - Factor B Type of Therapy: Desensitization, Implosion, Insight
 - Factor C Gender: Male, Female
 - DV = Post-test scores on the Behavioral Avoidance Test (higher scores indicate less phobia)

	Ι	Desensitization			Implosion	1		Insight				
	Mild	Moderate	Severe	Mild	Moderate	Severe	Mild	Moderate	Severe			
Females	10	12	10	15	12	6	13	11	10			
	12	9	11	12	10	7	9	7	6			
	13	10	9	14	11	5	11	8	8			
Males	16	11	12	17	14	10	16	10	11			
	14	13	11	18	13	9	12	12	10			
	17	15	13	16	12	11	14	14	9			

Treatment of Snake Phobia

• First, let's approach the analysis the traditional way:

UNIANOVA dv BY treat phobia gender /PRINT = DESCRIPTIVE.

Dependent Variable:	DV				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	368.167 ^a	17	21.657	9.356	.000
Intercept	7141.500	1	7141.500	3085.128	.000
TREAT	22.333	2	11.167	4.824	.014
PHOBIA	183.000	2	91.500	39.528	.000
GENDER	115.574	1	115.574	49.928	.000
TREAT * PHOBIA	39.333	4	9.833	4.248	.006
TREAT * GENDER	.259	2	.130	.056	.946
PHOBIA * GENDER	1.815	2	.907	.392	.679
TREAT * PHOBIA * GENDER	5.852	4	1.463	.632	.643
Error	83.333	36	2.315		
Total	7593.000	54			
Corrected Total	451.500	53			

Tests of Between-Subjects Effects

a. R Squared = .815 (Adjusted R Squared = .728)

- We have a treatment by phobia interaction, F(4, 36) = 4.25, p = .006
- We have a main effect of gender, F(1, 36) = 49.93, p < .001
 - We also have main effects for treatment and for phobia, but we should refrain from interpreting them because of the higher order interaction
 - We may interpret the main effect of gender because gender is not involved in any higher order interactions
- Let's start with the main effect of gender. This analysis reveals the effect of gender averaging across type of treatment and severity of phobia.

Gender	Mean	Std Dev	N
Female	10.04	2.52	27
Male	12.96	2.56	27
Gender Effect	-2.92		

• This analysis tells us that men show less post-test phobia than women, *averaging across type of treatment and severity of phobia*.

Because this test has only 1 df, no follow-up tests are necessary

• Now, let's turn to the treatment by phobia interaction. This analysis tells us that the main effect for treatment differs by the degree of phobia, *averaging across gender*.

Treatment of Phobia: Treatment by Phobia Interaction

Degree	of	Phobia
--------	----	--------

			Degree of Phot	oia
		Mild	Moderate	Severe
Treatment	Desens.	13.67	11.67	11.00
	Implosion	15.33	12.00	8.00
_	Insight	12.50	10.33	9.00

• To understand this interaction, we can examine the simple effect of degree of phobia within each type of treatment

		Degree of Phobia				
		Mild Moderate S		Severe		
Treatment	Desens.	13.67	11.67	11.00		
	Implosion	15.33	12.00	8.00		
	Insight	12.50	10.33	9.00		

According to Maxwell & Delaney's guidelines, we need to use the Bonferroni adjustment:

$$\alpha_{FW} = \frac{.05}{3} = 0.0167$$

• These simple effect tests will be two-degrees of freedom tests. We can not test these hypotheses with a single contrast. If we have homogeneous variances, we can use the MANOVA command.

MANOVA dv BY gender (1,2) treat(1,3) phobia (1,3) /DESIGN phobia WITHIN treat (1), phobia WITHIN treat (2), phobia WITHIN treat (3), treat * phobia *gender, gender * treat, gender * phobia, gender, treat .

* * * * A n a l y s i s	of Va	arian	nce	design 1	* * * *
Tests of Significance fo	r DV using	g UNIQUE	sums of	squares	
Source of Variation	SS	DF	MS	F	Sig of F
WITHIN+RESIDUAL	83.33	36	2.31		
PHOBIA WITHIN TREAT(1)	23.11	2	11.56	4.99	.012
PHOBIA WITHIN TREAT(2)	161.78	2	80.89	34.94	.000
PHOBIA WITHIN TREAT(3)	37.44	2	18.72	8.09	.001
TREAT * PHOBIA * GENDER	5.85	4	1.46	.63	.643
GENDER * TREAT	.26	2	.13	.06	.946
GENDER * PHOBIA	1.81	2	.91	.39	.679
GENDER	115.57	1	115.57	49.93	.000
TREAT	22.33	2	11.17	4.82	.014
(Model)	368.17	17	21.66	9.36	.000
(Total)	451.50	53	8.52		

• Simple effect of degree of phobia for participants who received desensitization treatment:

F(2,36) = 4.99, p = 0.012F(2,36) = 4.99, p < 0.05 (with Bonferroni correction)

• Simple effect of degree of phobia for participants who received implosion treatment:

F(2,36) = 34.94, p < .001F(2,36) = 34.94, p < 0.05 (with Bonferroni correction)

• Simple effect of degree of phobia for participants who received insight treatment:

F(2,36) = 8.09, p = .001F(2,36) = 8.09, p < 0.05 (with Bonferroni correction) • We have found significant simple effects of degree of phobia for participants who received desensitization, implosion or the insight treatments. These are omnibus tests, so we need to do Tukey post-hoc tests (with $\alpha = .0167$) to identify the differences.

```
if (treat=1 and phobia=1 and gender=1) group = 1....if (treat=1 and phobia=2 and gender=1) group = 2.if (treat=3 and phobia=1 and gender=2) group = 16.if (treat=1 and phobia=3 and gender=1) group = 3.if (treat=3 and phobia=2 and gender=2) group = 17....if (treat=3 and phobia=3 and gender=2) group = 18.
```

ONEWAY dv by group

		Value of				Sig.
	Contrast	Contrast	Std. Error	t	df	(2-tailed)
DV	1	-4.0000	1.75682	-2.277	36	.029
	2	-5.3333	1.75682	-3.036*	36	.004
	3	-1.3333	1.75682	759	36	.453
	4	-6.6667	1.75682	-3.795*	36	.001
	5	-14.6667	1.75682	-8.348*	36	.000
	6	-8.0000	1.75682	-4.554*	36	.000
	7	-4.3333	1.75682	-2.467	36	.019
	8	-7.0000	1.75682	-3.984*	36	.000
	9	-2.6667	1.75682	-1.518	36	.138

Contrast Tests

• For Tukey's HSD following simple effects: $q(1-\alpha,r,v)$

Where α = Familywise error rate r = Number of groups in the comparisons v = DFw = *N*-*abc* q(.9833,3,36) = 4.11

Compare
$$t_{observed}$$
 to $t_{critical} = \frac{4.11}{\sqrt{2}} = 2.91$

- We end up with the following description of an interaction:
 - There is a simple effect of degree of phobia for participants who received desensitization and for insight treatment. Tukey post-hoc tests revealed that treatment is significantly better for mild cases than severe cases.
 - There is a simple effect of degree of phobia for participants who received implosion treatment. Tukey post-hoc tests revealed mild phobic responded better than moderate phobic who responded better than severe phobics (with all pairwise differences significant)
- Remember, we also could have decompose the treatment by phobia interaction by examining the simple effect of treatment within each degree of phobia

(But this analysis is left as an exercise for the reader)

Treatment of Phobia: Treatment by Phobia Interaction

- However, notice how much easier these results would have been to explain had the treatment by phobia interaction not been significant! (We would be left with three main effects!)
- The moral of the story is that you should not just add extra factors "just to see what might happen." You want to design as concise a study as possible while still testing your hypotheses.