
6-1 © 2006 A. Karpinski 

Chapter 6 
Planned Contrasts and Post-hoc Tests for one-way ANOVA 
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Planned Contrasts and Post-hoc Tests 
 for one-way ANOVA 

 
 
 

First, a cautionary note about playing the p-value game. 
 
 
 
1. The problem of multiple contrasts 
 

• Contrasts give you the flexibility to perform many different tests on your 
data 

 
• Imagine that you plan to conduct 85 contrasts on your data. 

o A Type 1 error is the probability of rejecting the null hypothesis when the 
null hypothesis is true.   

o If we set α=.05, then if the null hypothesis is true, just by chance alone 
we will commit 4-5 Type 1 errors 

25.485*05. =  
o However, we have no way of knowing which 4-5 test results are errors! 

 
• This number of Type 1 errors seems wrong to many people.   

Perhaps we should not think of controlling α at the level of the 
individual contrast, but at the level of the entire experiment. 

 
 
 
2. Types of Type 1 Error rates  
 

• As a discipline, we have decided that it is very important to maintain the 
probability of a Type 1 error at .05 or smaller 

 
• Per-comparison (PC) error rate 

o The probability of committing a Type 1 error for a single contrast 
 

contrastsnumber of 
nt significaed falselysts declar of contraThe number

PC =α  
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• Family-wise (FW) error rate  

o Consider a two-way ANOVA with Factor A and Factor B.  You can 
conduct a set of contrasts on the Factor A cell means and on the Factor B 
cell means. 

o We consider the set of contrasts on Factor A as one family of contrasts, 
and the set of contrasts on Factor B as a second family of contrasts. 

o The family-wise (FW) error rate is the probability of committing a Type 
1 error for an entire family of contrasts 

 

familiesnumber of 
nificantalsely sigdeclared f

 contrast  least onees with at of familiThe number

FW =α  

 
• Experiment-wise (EW) error rate 

o The probability of committing at least one Type 1 error over an entire 
experiment 

 

sexperimentnumber of 
nificantalsely sigdeclared f

st one contra at least ments with of experiThe number

EW =α  

 
o For one-way ANOVA designs, there is only one family and so the EWα  

equals FWα  
 
 

• Which α should we be concerned about? 
o One convention is to use the same α for a family of contrasts as was used 

to test the omnibus null hypothesis for that family   
• That is, if you use α = .05 for the omnibus test, then the probability of 

making a type one error on the entire set of contrasts on that factor 
should be FWα =.05 

• In other words, this convention is to control the family-wise error rate 
 



6-4 © 2006 A. Karpinski 

 
o A second convention is to control EWα  at 5% 

• The experiment seems to be a better conceptual unit than the family 
• Most statisticians agree that we should be more concerned about the 

experiment-wise error rate 
 

o If you control FWα =.05, then for  a two factor ANOVA there are three 
families of contrasts you have  
• Tests on Factor A     FWα =.05 
• Tests on Factor B     FWα =.05 
• Tests on the interaction between A and B  FWα =.05 
      Then EWα  > .05 

 
o In a sense isn’t this all pretty silly? 

• Should journal editors require article-wise error rates? 
• Maybe have journal volume-wise error rates? 
• Perhaps we can have department-wise error rates? 
• The super conscientious researcher might consider a career-wise error 

rate 
 
 
 

• Some additional terminology: 
o The entire reason for monitoring the Type I error rate is to make sure EWα  

(or FWα ) are equal to  .05 
 

o If EWα  < .05, then the statistical test is said to be conservative 
• We will make fewer Type I errors than we are “allowed” 
• But this will also result in a decrease in power 

 
o If EWα  > .05, then the statistical test is said to be liberal 

• We will make more Type I errors than we are “allowed” 
• The whole point of monitoring the error rate is to avoid this case 
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• How much of a difference does it make? 
o In general, we do not know when we make a Type I error.  Thus, the 

following are hypothetical in which we know when a Type I error has 
been made. 

 
i. An example 
o Suppose that a one-way ANOVA is replicated 1000 times. In each 

experiment 10 contrasts are tested.   
o Suppose a total of 90 Type 1 Errors are made, and at least one Type 1 

Error is made in 70 of the experiments 
 

αPC =
90

10 *1000
= .009 

 
07.

1000
70

=== EWFW αα  

 
 

ii. Calculating error rates 
o How do we calculate a family-wise error rate?   

 

familiesnumber of 
nificantalsely sigdeclared f

 contrast  least onees with at of familiThe number

FW =α  

 
o We are interested in the probability of at least one Type 1 Error over a set 

of contrasts.   
 

o Let’s conduct c independent contrasts, each with PCα  =.05  
 

  tests)c allin result  test false oneleast P(at =FWα  
 tests)c allin  results test false P(no  1 −=  

=1  −  

P (no false result in test 1) *  
P (no false result in test 2) *
. . .                                      *  
P (no false result in test c)

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 

=1  −  1−αPC( ) *  1−α PC( )*...* 1−α PC( )[ ] 
( )c

PC1   1 α−−=  
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o In our case we have PCα =.05 
( )c

FW 05.1   1 −−=α  
 

o The family-wise error rate will depend on the number of contrasts we run 
in that family 

 
 # of tests              FW Type 1 error rate 
 2 .098 
 3 .143 
 5 .226 
 10 .401 
 15 .537 
 20 .642 

 
o Even a relatively small number of contrasts can result in a very inflated 

family-wise error rate! 
 
 
 
 
It turns out that it is even more complicated than just controlling the family-wise or 
experiment-wise error rate 
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3. Planned contrasts vs. Post hoc contrasts 

• Planned contrast 
o A contrast that you decided to test prior to an examination of the data 
o Sometimes called a priori tests 
o These comparisons are theory driven 
o Part of a strategy of confirmatory data analysis 

 
• Post-hoc test 

o A contrast that you decide to test only after observing all or part of the 
data 

o Sometimes called a posteriori tests 
o These comparisons are data driven 
o Part of an exploratory data analysis strategy 

 
• Is there really any difference between a planned contrast and a post-hoc 

contrast? 
o An investigator runs an experiment with four levels: A, B, C, D. 
o Experimenter 1 

• Before the study is run, Experimenter 1 has the following hypothesis:  

22
4321 µµµµ +

=
+  

 
o Experimenter 2 

• Experimenter 2 has no real hypotheses (?!?) 
• After running the study, the following data are observed: 

 
Group 

A B C D 
2.0 1.5 5.0 6.0 

 
• Now Experimenter 2 decides to test the following hypothesis: 

22
4321 µµµµ +

=
+  
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o Are Experimenter 1 and Experimenter 2 testing the same hypothesis? 

 
o Imagine that a different set of data was observed: 

Group 
A B C D 

2.0 5.0 1.5 6.0 
 

o How would that change the analyses conducted by Experimenter 1 and 
Experimenter 2? 
• Experimenter 1 had an a priori hypothesis, and would still want to test 

this hypothesis: 

22
4321 µµµµ +

=
+  

 
• But Experimenter 2 had no a priori hypothesis.  He/she will look at 

the new data and decide to test 

22
4231 µµµµ +

=
+  

 
• Experimenter 2’s choice of contrast is determined by the ordering of 

the cell means.  Thus, the hypothesis that Experimenter 2 is actually 
testing is: 

22
)1(max(max))1(min(min) −+ +

=
+ µµµµ

 

 
o Imagine that the null hypothesis is true and that all differences in means 

are due to chance.   
 

• Experimenter 1’s true α rate will be .05 
• Experimenter 2’s comparisons capitalize on the chance variation in 

the data.  As a result, the probability of committing a Type 1 error rate 
will be much greater than .05 

 
• Put another way, when we conduct our statistical tests, we construct 

hypothetical sampling distributions.  The sampling distributions for 
the following two hypotheses will be very different: 

 

22
4231 µµµµ +

=
+   

22
)1(max(max))1(min(min) −+ +

=
+ µµµµ
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4. Planned contrasts 

Let us first consider the situation where you have a set of planned contrasts 
• We do not need to worry about the role of chance in determining our 

contrasts 
• We may need to worry about inflated experiment-wise error rates 

 
 

• Bonferroni Correction (Sometimes called Dunn’s test [1961]) 
o If we are going to perform c orthogonal contrasts, then we simply divide 

our EWα  into c parts 

c
EW

PC
α

α =  

 
o In most cases, we will want to set 05.=EWα  

cPC
05.

=α  

 
o The details of how to apply this correction will follow shortly 

 
• Dunn/Sidák Correction (1967) 

o The Bonferroni turns out to be slightly too conservative  
o A second approach is based on our previous calculations of FWα  

( )c
PCEW αα −−= 1   1  

 
o We would like to control the FWα , so let’s solve for PCα  

( )c
PCEW αα −−= 1   1  

( ) EW
c

PC αα    11 −=−  
c

EWPC αα    11 −=−  
c

EWPC αα    11 −−=  
 

o This can also be written as ( )cEWPC

1
   11 αα −−=  

 
o In most cases, we will want to set 05.=FWα  

( )cPC

1
95.1−=α  
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• Using either the Dunn/Sidák or Bonferroni correction, what should be used 
as PCα  to keep 05.=EWα ? 

 
  Dunn/Sidák Bonferroni 

 # of tests c
1

)1(1 α−−  α/c 
 3 .0170 .0167 
 5 .0102 .0100 
 10 .0051 .0050 
 15 .0034 .0033 
 20 .0026 .0025 
 25 .0021 .0020 
 50 .0010 .0010 
 100 .0005 .0005 
 
 

o To maintain 05.=EWα , you need to use this modified critical p-value 
 

o If you have 10 contrasts of interest 
• Test the contrasts using ONEWAY or UNIANOVA to obtain the 

exact pobserved  
• Use the corrected pcrit  to determine significance 

For c = 10, use pcrit = .005  
• If pobserved < pcrit  then report the test significant at 05.=EWα  

 
 

• Miscellaneous notes on both procedures 
o All of our calculations have been based on independent (orthogonal) 

contrasts.  These adjustments can be used for non-orthogonal contrasts 
and they will be conservative (they will overcorrect) 

 
o If you have unequal variances in your groups, you can use the unequal 

variance test for contrasts and then apply these corrections. 
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o For these procedures, we divide 05.=EWα  into c equal parts 

• Statistically, there is no reason why you have to use equal divisions of 
EWα .  All that is required is that the three parts sum to 05.=EWα  

 
• If you are testing 3 contrasts with 05.=EWα , then you could use the 

following pcrit 
1ψ   PCα = .03 

2ψ   PCα = .01 

3ψ   PCα = .01 
 

• If 1ψ  is more important than 2ψ  and 3ψ , then this unequal splitting of 
EWα  gives you more power to detect a difference for 1ψ  

• The catch is that you must decide how to divide 05.=EWα  before 
looking at the data  

• Although this unequal splitting of EWα  is statistically legal, there is not 
a chance you could get this method by a journal editor 

 
 
 
 

• Arguments against the need to correct for a small number of planned 
contrasts 
o The omnibus F-test is equal to the average of a-1 orthogonal contrasts 

(where a is the number of groups) 
o Some behavioral statisticians have argued that if you have a-1 orthogonal 

contrasts, there is no need to correct the α-level (and some have extended 
this argument to apply to a-1 non-orthogonal contrasts) 

 
o The (ignored) multi-factor ANOVA problem: For  a two factor ANOVA 

there are three families of contrasts you have   
• Tests on Factor A     FWα =.05 
• Tests on Factor B     FWα =.05 
• Tests on the interaction between A and B  FWα =.05 

 
As a result, EWα  > .05 
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o The story of Bonehead and Bright (with thanks to Rich Gonzalez) 
• Two researchers want to examine 4 treatments.  Specifically, they 

want to compare Treatment A to Treatment B, and Treatment C to 
Treatment D 

 
• Bonehead designs two studies 

Study 1: Treatment A vs. Treatment B 
Study 2: Treatment C vs. Treatment D 

Bonehead conducts t-tests to compare the treatments in each study 
 

• Bright designs one study so that he/she can compare all four 
treatments.  He/she tests the key hypotheses using contrasts 

 
 Treatment 
 A B C D 
ψ1 1 -1   
ψ2    1 -1 

 
But now reviewers scream that Bright has conducted two contrasts so 
the overall Type I error rate will be greater than .05.  They demand 
that Bright use a Bonferroni correction. 
 
Why should Bright be penalized for designing a better study? 
 

o Thus, if you conduct a small number of planned contrasts (no more than 
a-1), I believe that no p-value correction is necessary.   

 
• This issue is still relatively controversial (After all, the experiment-

wise Type 1 Error rate will be greater than .05 if you use no 
correction). 

• However, I believe that you should be rewarded for having strong 
hypotheses and for planning to conduct tests of those hypotheses. 

• Do not be surprised if you encounter a reviewer who requests a 
Bonferroni correction for any planned contrast.  Be prepared to argue 
why no correction is necessary 

 
• If you have more than a-1 planned contrasts, then most people will 

think you are fishing and will require you to use a Bonferroni 
correction 
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• Planned contrasts in SPSS 
o SPSS has a “Bonferroni” and a “Sidak” option under post-hoc tests 

(even though these tests are not post-hoc tests!) 
o These procedures are only good for if you plan to conduct all possible 

pair-wise comparisons.   
o Your theory should allow you to make more specific hypotheses than all 

pairwise comparisons.  Hence, SPSS will be of little help. 
o In general, we must correct the p-values by hand. 

 
• Example: The effect of strategy training on memory 

Independent samples of six-year-olds and eight-year-olds are obtained.  
Half of the children in each group are randomly assigned to a memory-
strategy training condition while the other half serve as a control. 

 
In advance the experimenter wants to test the following contrasts: 

Six-year-olds Eight-year-olds  
 
 

Training 
µ6T 

Control 
µ6C 

Training 
µ8T 

Control 
µ8C 

ψ1 1 -1   
ψ2    1 -1 
ψ3  .5 -.5 .5 -.5 

 
o Approach 1 

• Conduct the omnibus F-test 
• If non-significant, then stop 
• If significant, then you can test the three hypothesized contrasts 
• There is no justification for this approach 

 
o Approach 2   (Andy’s preference) 

• Skip the omnibus F-test 
• Directly test the planned contrasts, using 05.=PCα  
• You are rewarded for planning a small number of contrasts and do not 

have to correct the p-values 
 

o Approach 3 
• Skip the omnibus F-test 
• Directly test the planned contrasts using a Bonferroni correction 
• This approach keeps αEW ≤ .05 



6-14 © 2006 A. Karpinski 

 
• Now suppose that we run the study and obtain the following data: 

 
Six-year-olds Eight-year-olds 

Training 
µ6T 

Control 
µ6C 

Training 
µ8T 

Control 
µ8C 

6 5 6 3 
5 3 9 7 
7 1 9 6 
5 5 4 3 
3 3 5 4 
4 4 6 7 

5.0 3.5 6.5 5.0 
 

6666N =

GROUP

8 - Control8 - Training6 - Control6 - Training

M
E

M
O

R
Y

10

8

6

4

2

0

 
 

o Approach 1: Conduct the omnibus F-test 
 
ONEWAY memory BY cond 
  /STAT DESC. 

ANOVA

MEMORY

27.000 3 9.000 2.951 .057
61.000 20 3.050
88.000 23

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 

Using this approach, we would stop and never get to test our 
hypothesis! 
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o Approach 2: Go directly to uncorrected planned contrasts 

ONEWAY memory BY group 
  /CONT 1 -1 0 0 
  /CONT 0 0 1 -1  
  /CONT .5 -.5 .5 -.5. 

Contrast Tests

1.5000 1.00830 1.488 20 .152
1.5000 1.00830 1.488 20 .152
1.5000 .71297 2.104 20 .048

Contrast
1
2
3

Assume equal variancesMEMORY

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
We find a significant result for contrast 3: the comparison of control 
vs. treatments across both age groups. 
 

 
o Approach 3: Go directly to corrected planned contrasts 

ONEWAY memory BY group 
  /POSTHOC = BONFERRONI SIDAK ALPHA(.05). 

Multiple Comparisons

Dependent Variable: MEMORY

1.5000 1.00830 .915 -1.4514 4.4514
-1.5000 1.00830 .915 -4.4514 1.4514

.0000 1.00830 1.000 -2.9514 2.9514
-1.5000 1.00830 .915 -4.4514 1.4514
-3.0000* 1.00830 .045 -5.9514 -.0486
-1.5000 1.00830 .915 -4.4514 1.4514
1.5000 1.00830 .915 -1.4514 4.4514
3.0000* 1.00830 .045 .0486 5.9514
1.5000 1.00830 .915 -1.4514 4.4514

.0000 1.00830 1.000 -2.9514 2.9514
1.5000 1.00830 .915 -1.4514 4.4514

-1.5000 1.00830 .915 -4.4514 1.4514
1.5000 1.00830 .629 -1.4418 4.4418

-1.5000 1.00830 .629 -4.4418 1.4418
.0000 1.00830 1.000 -2.9418 2.9418

-1.5000 1.00830 .629 -4.4418 1.4418
-3.0000* 1.00830 .044 -5.9418 -.0582
-1.5000 1.00830 .629 -4.4418 1.4418
1.5000 1.00830 .629 -1.4418 4.4418
3.0000* 1.00830 .044 .0582 5.9418
1.5000 1.00830 .629 -1.4418 4.4418

.0000 1.00830 1.000 -2.9418 2.9418
1.5000 1.00830 .629 -1.4418 4.4418

-1.5000 1.00830 .629 -4.4418 1.4418

(J) GROUP
6 - Control
8 - Training
8 - Control
6 - Training
8 - Training
8 - Control
6 - Training
6 - Control
8 - Control
6 - Training
6 - Control
8 - Training
6 - Control
8 - Training
8 - Control
6 - Training
8 - Training
8 - Control
6 - Training
6 - Control
8 - Control
6 - Training
6 - Control
8 - Training

(I) GROUP
6 - Training

6 - Control

8 - Training

8 - Control

6 - Training

6 - Control

8 - Training

8 - Control

Bonferroni

Sidak

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*.  
 
However, SPSS uses c = {all possible pairwise contrasts!} 
Because SPSS is of no help, we must resort to hand calculation 
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• We are conducting 3 contrasts, so we use c = 3 

 
  Dunn/Sidák Bonferroni 

 # of tests c
1

)05.1(1 −−  .05/c 
 3 .0170 .0167 

 
• Compare the observed p-value to these adjusted p-values.  We report 

the test as being significant or not at the αEW = .05 level. 
• For post p-value correction we will not be able to compute exact, 

adjusted p-values.  We will only be able to report if they tests are 
significant or not. 

 
• However, for with the Bonferroni and Dunn/Sidák  procedures, 

adjusted p-values may be estimated: 
 
 Estimated experiment-wise adjusted p-value 
 
 Bonferroni Dunn/ Sidák 

 
3
adj

unadj

p
p =  ( )cadjunadj pp

1
11 −−=  

 

152.,488.1)20(:ˆ1 == ptψ  
3

152. adjp
=  ( )3

1
11152. adjp−−=  

critobs pp =>= 0167.152.  456.=adjp  390.=adjp  
 

152.,488.1)20(:ˆ 2 == ptψ  
critobs pp =>= 0167.152.  456.=adjp  390.=adjp  

  

048.,104.2)20(:ˆ 3 == ptψ  
3

048. adjp
=  ( )3

1
11048. adjp−−=  

pobs = .048 > .0167 = pcrit  144.=adjp  137.=adjp  
 
 

• We report that with a Bonferroni correction, ˆ ψ 1 ˆ ψ 2 , and 3ψ̂  are not 
statistically significant, 13.>all p's   
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• Bonferroni and Dunn/Sidák 95% confidence intervals 
o We need to compute an adjusted critical value 

 














± ∑

i

i
justedcriticalad n

c
MSW * dfwt

2

)(ψ̂  

 
o Bonferroni  tcritical adjusted = t α =

.05
c

,df = dfw = N − a
 
 
 

 
 
  

( ) 613.220,0167. ==== dftt djustedcritical a α  
 

o Dunn/Sidák  tcritical adjusted = t α = [1− (1− .05)
1
c ],df = dfw = N − a

 

 
  

 

 
   

( ) 603.220,0170. ==== dftt djustedcritical a α  
 

 
(These adjusted t-values can be obtained from EXCEL) 

 
 

 
 Bonferroni Dunn/Sidák 
 

1ψ̂  













± ∑

i

i
justedcriticalad n

c
MSW * dfwt

2

)(ψ̂  













± ∑

i

i
justedcriticalad n

c
MSW * dfwt

2

)(ψ̂  

 
















 +±

6
1

6
105.3613.250.1  *  

















 +±

6
1

6
105.3603.250.1  *  

 635.250.1 ±  625.250.1 ±  
 ( )14.4 ,14.1−  ( )12.4 ,12.1−  

 

3ψ̂  
















 +++±

6
25.

6
25. 

6
25.

6
25.05.3613.250.1  *  

















 +++±

6
25.

6
25. 

6
25.

6
25.05.3603.250.1  *  

 860.150.1 ±  856.150.1 ±  
 ( ).363 ,36.0−  ( ).363 ,36.0−  
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5. Pairwise Post-hoc tests 
 

• See Kirk (1995) for a nice review of all of these procedures and more! 
[He covers 22 procedures!] 

 
• The Bonferroni and Dunn/Sidák corrections are not post-hoc tests  

o They control the multiple comparison problem 
o They do not directly address the data-driven comparison problem 

 
o A modification of these methods can be used for pairwise post-hoc tests 

• You must let C = the total number of possible pairwise comparisons 
• If you have a groups, then 

C =
a(a −1)

2
 

• If any of the following conditions apply, you must use C =
a(a −1)

2
 

i. All pairwise comparisons are to be tested 
ii. The original intent was to test all pairwise comparisons, but 

after looking at the data, fewer comparisons are actually tested 
iii. The original intent was to compare a subset of all possible 

pairwise comparisons, but after looking at the data, one or 
more additional pairwise comparisons are also to be tested 

 
o So long as C =

a(a −1)
2

, the Bonferroni and Dunn/Sidák corrections can be 

used in a post-hoc manner. 
• Technically, these methods are not post-hoc corrections.  In this case 

they can be used for all pairwise comparisons. 
• But the Bonferroni and Dunn/Sidák corrections are too conservative 

and less powerful than other techniques that have been developed 
specifically to test all pairwise comparisons 

 
 



6-19 © 2006 A. Karpinski 

 
• The stop-light approach to post-hoc tests 

o The traditional approach to post-hoc tests is to use the omnibus F-test as 
a post-hoc traffic signal 
• If the omnibus test is significant, then you have a green light to 

conduct follow-up post-hoc tests 
• If the omnibus test is not significant, then you have a red light. STOP! 

You are not allowed to proceed with post-hoc tests 
 
o This line of thought applies to some post-hoc tests, but not all of them. 

Some researchers (and statisticians) have mistakenly generalized this 
traffic signal approach to all post hoc tests. 

 
 
 

i. Fisher’s LSD [Least Significant Difference] (1935) 
o One of the first attempts to solve the multiple comparison problem 
o Fisher developed an approximate solution to this problem based on the 

omnibus traffic signal mentality 
o He reasoned that if the omnibus test is significant at the .05 level, then 

EWα  is preserved at the .05 level.  Thus a significant omnibus test allows 
you to perform all follow-up contrasts using uncorrected t-tests 

o This test is sometimes called the “protected t-test” 
• Step 1: Perform omnibus F-test.  

If significant, then proceed to Step 2. 
If not significant, then stop. 

• Step 2: Compare all means using uncorrected pairwise contrasts..  
 

o Unfortunately, this test does not control EWα , and tends to be too liberal.  
The LSD procedure keeps αEW ≤ .05 only if there are three or fewer 
groups in the design.  For larger designs, the LSD should be avoided. 
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o An example of why Fisher’s LSD is not valid 

 
 
 
 
 

o You should not use this test and should be very suspicious of anyone 
how does use it (unless there are only three groups in your design).  It is a 
historical relic that has been replaced by more appropriate tests 

 
 

ii. Tukey’s HSD (Honestly Significant Difference) [1953] 
o I’ll present the Tukey-Kramer (1956) test for use when the sample sizes 

are unequal  
o Tukey realized the problem of post-hoc tests had to do with comparisons 

being determined by the rank ordering of the cell means 
 

o For a pairwise contrast, we have the following formula: 

tobserved =
X i - X j  

MSW 1
ni

+ 1
n j

 

 
 
 

 

 
 
 

 

 
o But in the case of a post hoc comparison, means are selected for 

comparison based on their ranks 
tPairwise Maximum =

X MAX - X MIN  

MSW
1

nMAX

+
1

nMIN

 

 
  

 

 
  

 

 
• In any dataset, the largest t we can observe is given by tPairwise Maximum .   
• If we could determine some critical value (CRIT) such that under the 

null hypothesis, tPairwise Maximum > CRIT only 5% of the time, then because 
no contrast can be larger than tPairwise Maximum , we will have found a CRIT 
that will keep EWα = .05 

• Tukey’s insight was to determine a sampling distribution related to 
tPairwise Maximum  called the studentized range, q   

 
q = 2t  



6-21 © 2006 A. Karpinski 

 
o Critical values for the studentized range are given the Appendix of most 

advanced ANOVA books 
o Using the studentized range, we can be sure that under the null 

hypothesis the largest comparison we could observe will be significant 
5% of the time 

o For pairwise comparisons less than the Min vs. the Max, the probability 
of a Type 1 error is less than .05. 

o In this manner we can control EWα for the set of all possible pairwise 
contrasts. 

o Tukey’s HSD keeps EWα = .05 for the largest pairwise contrast, and is 
conservative for all other comparisons. 

 
 

o Implementing Tukey’s HSD procedure by hand 
 

• Calculate tobserved for any/all pairwise comparisons of interest 
• Look up the critical value q(1-α,a,ν) 

Where α = Familywise error rate 
  a  = Number of groups 
  ν  = DFw = N-a 
 

• Compare tobserved  to qcrit

2
 

 
• Note: Because EXCEL (and most other programs) do not compute 

studentized range p-values, we can not compute exact Tukey adjusted 
p-values. 

 
 

o Implementing Tukey’s HSD in SPSS 
ONEWAY dv BY iv 
 /POSTHOC = TUKEY ALPHA(.05). 

 
The p-values are exact Tukey-adjusted p-values 
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o What to do when the population variances are unequal 

Dunnett’s T3 procedure (1980) 
• Compute the unequal variances test (with its adjusted degress of 

freedom) for all pairwise contrasts  
• Estimate the Dunnett’s T3 critical value, q(1-α,a,ν), for the unequal 

variances test result  
Where α = Familywise error rate 
  a  = Number of groups 
 ν  = the variance-adjusted df 

 
• Compare )(adjustedobservedt  to qcrit

2
 

 
• SPSS’s Dunnett’s T3 procedure is not much help because it does not 

output the adjusted degrees of freedom, so you do not have enough 
information to report the adjusted tests! 

 
 

 
o An example of Tukey’s HSD 

 
• Suppose we would like to examine all pairwise comparisons in the 

memory-training example. 
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• Step 1: Calculate tobserved for any/all pairwise comparisons of interest 

For simplicity, I will select two pairwise contrasts, but we are 
allowed to conduct all pairwise contrasts. 

 

CT 881 : µµψ −   tobserved =
X i - X j  

MSW 1
ni

+ 1
n j

 

 
 
 

 

 
 
 

=
6.5 - 5.0 

3.05
1
6

+
1
6

 
 
 

 
 
 

=1.50 

 

CT 682 : µµψ −   98.2

6
1

6
105.3

 .53-.56

11

 -
=







 +

=











+

=

ji

ji
observed

nn
MSW

XX
t  

 
 

• Step 2: Look up the critical value q(1-α,a,ν) 
Where α = Experiment-wise error rate 
  a  = Number of groups 
  ν  = DFw = N-a 

 
q(1-α,a,ν) = q(.95,4,20) = 3.96 
  

qcrit

2
= 80.2

2
96.3

=  

 
 
• Step 3: Compare tobserved  to qcrit

2
 

 

CT 881 : µµψ −   tobs =1.50 < 2.80 =
qcrit

2
  Fail to Reject H0 

 

CT 682 : µµψ −   
2

80.298.2 crit
obs

q
t =>=   Reject H0 
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o Tukey 95% confidence intervals 

• We need to compute an adjusted critical value 
 

























+±

ji
justedcriticalad nn

MSW * t 11ψ̂  

 
 tcritical adjusted =

q α,a,dfw( )
2

 

 
tcritical adjusted =

q .05,4,20( )
2

=
3.96

2
= 2.80 

 
  
 
 

CT 881 : µµψ −  
























+±

ji
justedcriticalad nn

MSW * t 11ψ̂   

 
















 +±

6
1

6
105.380.250.1  *   

 823.250.1 ±   
 ( ).324 ,32.1−   

 
 

CT 682 : µµψ −  
























+±

ji
justedcriticalad nn

MSW * t 11ψ̂  

 2.98 ± 2.80 * 3.05
1
6

+
1
6

 
 
 

 
 
 

 

 
  

 

 
    

 823.200.3 ±   
 0.16, 5.80( )  

  
 



6-25 © 2006 A. Karpinski 

 
o An example of Tukey’s HSD using SPSS 

ONEWAY memory BY group 
  /POSTHOC = TUKEY. 

Multiple Comparisons

Dependent Variable: MEMORY
Tukey HSD

1.5000 1.00830 .463 -1.3222 4.3222
-1.5000 1.00830 .463 -4.3222 1.3222

.0000 1.00830 1.000 -2.8222 2.8222
-1.5000 1.00830 .463 -4.3222 1.3222
-3.0000* 1.00830 .035 -5.8222 -.1778
-1.5000 1.00830 .463 -4.3222 1.3222
1.5000 1.00830 .463 -1.3222 4.3222
3.0000* 1.00830 .035 .1778 5.8222
1.5000 1.00830 .463 -1.3222 4.3222

.0000 1.00830 1.000 -2.8222 2.8222
1.5000 1.00830 .463 -1.3222 4.3222

-1.5000 1.00830 .463 -4.3222 1.3222

(J) GROUP
6 - Control
8 - Training
8 - Control
6 - Training
8 - Training
8 - Control
6 - Training
6 - Control
8 - Control
6 - Training
6 - Control
8 - Training

(I) GROUP
6 - Training

6 - Control

8 - Training

8 - Control

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
MEMORY

Tukey HSDa

6 3.5000
6 5.0000 5.0000
6 5.0000 5.0000
6 6.5000

.463 .463

GROUP
6 - Control
6 - Training
8 - Control
8 - Training
Sig.

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 6.000.a. 

 
 

o This table gives homogeneous subsets of means using the Tukey 
procedure 

CTC 866 µµµ ==   TCT 886 µµµ ==  
 

From these homogeneous sets, we can conclude that  
TC 86 µµ ≠  
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o An example of Dunnett’s T3 procedure with unequal variances. 

• Returning to the Bank Starting Salary Data (see 4-45) 
• We determined that these data satisfied the normality assumption, but 

violated the homogeneity of variances assumption 
• Now we decide to conduct all post-hoc pairwise comparisons 
 
• The unequal variances version of Tukey’s HSD is the Dunnett’s T3 

test.  Let’s see what happens when SPSS conducts the T3 procedure 
 

ONEWAY salbeg BY jobcat 
  /POSTHOC = T3. 

Multiple Comparisons

Dependent Variable: BEGINNING SALARY
Dunnett T3

254.98 156.819 .256 -73.26 583.21
-297.16 294.407 .249 -682.20 87.88

-4222.54* 245.408 .000 -5169.67 -3275.41
-7524.93* 273.079 .000 -9206.23 -5843.62

-254.98 156.819 .256 -583.21 73.26
-552.14* 304.697 .001 -930.97 -173.31

-4477.52* 257.663 .000 -5422.16 -3532.87
-7779.90* 284.143 .000 -9459.89 -6099.92

297.16 294.407 .249 -87.88 682.20
552.14* 304.697 .001 173.31 930.97

-3925.38* 358.432 .000 -4886.27 -2964.49
-7227.76* 377.916 .000 -8916.14 -5539.39
4222.54* 245.408 .000 3275.41 5169.67
4477.52* 257.663 .000 3532.87 5422.16
3925.38* 358.432 .000 2964.49 4886.27

-3302.39* 341.131 .000 -5165.13 -1439.65
7524.93* 273.079 .000 5843.62 9206.23
7779.90* 284.143 .000 6099.92 9459.89
7227.76* 377.916 .000 5539.39 8916.14
3302.39* 341.131 .000 1439.65 5165.13

(J) EMPLOYMENT
CATEGORY
OFFICE TRAINEE
SECURITY OFFICER
COLLEGE TRAINEE
EXEMPT EMPLOYEE
CLERICAL
SECURITY OFFICER
COLLEGE TRAINEE
EXEMPT EMPLOYEE
CLERICAL
OFFICE TRAINEE
COLLEGE TRAINEE
EXEMPT EMPLOYEE
CLERICAL
OFFICE TRAINEE
SECURITY OFFICER
EXEMPT EMPLOYEE
CLERICAL
OFFICE TRAINEE
SECURITY OFFICER
COLLEGE TRAINEE

(I) EMPLOYMENT
CATEGORY
CLERICAL

OFFICE TRAINEE

SECURITY OFFICER

COLLEGE TRAINEE

EXEMPT EMPLOYEE

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
 

 
• No adjusted Dfs 
• It also appears that the standard errors and confidence intervals are 

wrong (They assume equal variances)! 
• Because the standard errors are wrong, you cannot compute the 

adjusted t-value, AND the adjusted degrees of freedom are not 
reported! 
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• An alternative is to calculate the T3 procedure by hand 
 
• First calculate all pairwise contrasts (or all pairwise contrasts of 

interest) using the unequal variance method 
 

ONEWAY salbeg BY jobcat 
  /CONT -1 1 0 0 0 
  /CONT -1 0 1 0 0 
  /CONT -1 0 0 1 0 
  /CONT -1 0 0 0 1 
  /CONT 0 -1 1 0 0 
  /CONT 0 -1 0 1 0 
  /CONT 0 -1 0 0 1 
  /CONT 0 0 -1 1 0  
  /CONT 0 0 -1 0 1  
  /CONT 0 0 0 -1 1.  

 
Contrast Tests

-254.98 116.528 -2.188 345.880 .029330
297.16 133.369 2.228 68.848 .029142

4222.54 323.084 13.069 46.034 .000000
7524.93 562.514 13.377 32.443 .000000
552.14 130.812 4.221 62.580 .000080

4477.52 322.037 13.904 45.424 .000000
7779.90 561.913 13.845 32.304 .000000
3925.38 328.506 11.949 48.356 .000000
7227.76 565.645 12.778 33.127 .000000
3302.39 637.613 5.179 49.749 .000004

Contrast
1
2
3
4
5
6
7
8
9
10

Does not assume equal
variances

BEGINNING SALARY

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 

•  Next look up the critical value on the studentized range table,  
q(1-α,a,ν) 

 α = Familywise error rate 
  a = Number of groups 

ν = the variance adjusted degrees of freedom 
 

      Critical q Critical t Observed t 
 
Group 1 vs. Group 2: df = 345.88   3.87 2.73 2.188 ns 
Group 1 vs. Group 3: df = 68.848   3.97 2.81 2.228 ns 
Group 1 vs. Group 4: df = 46.034   4.02 2.84 13.07 * 
Group 1 vs. Group 5: df = 32.443   4.09 2.89 13.38 * 
 
 

•  Compare the Critical t to the Observed t 
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iii. Dunnett’s test (1955) 

o Used to compare each of the cell means with a control group mean  
o and when the cell sizes are equal 
o and when the variances are equal across all groups 

 
o Under these very specific conditions, Dunnett’s test controls FWα  

 
o To conduct Dunnett’s test 

• Calculate the standard t-test to compare a group mean to the control 
group 

• Look up Dunnett critical values in a table to determine significance 
(for example, see Kirk, 1995, Table E.7).  Confidence intervals can 
also be constructed using Dunnett critical values 

 
o Or in SPSS  

• To compare all groups to the last group 
ONEWAY dv BY iv 
  /POSTHOC = DUNNETT. 

• To compare all groups to the bth group 
ONEWAY dv BY iv 
  /POSTHOC = DUNNETT (b). 

• The p-values are exact Dunnett-adjusted p-values 
 

o It is fine to use this procedure so long as you use it in the appropriate 
conditions. Modifications have been proposed for use when: 
• The variance of the control group differs from the other variances 

(Dunnett, 1964) 
• The sample sizes are not all equal (Hochberg & Tamhane, 1987) 
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iv. Comparing Pairwise Post-Hoc Tests (dfw = 12) 

 
Number of groups Critical Value 

 Per-
Comparison

Dunnett Tukey Bonferroni

    2 2.18 2.18 2.18 2.18 
    3 2.18 2.50 2.67 2.78 
    4 2.18 2.68 2.96 3.14 
    5 2.18 2.81 3.19 3.43 
    6 2.18 2.90 3.37 3.65 

 
 

v. (Student) Newman-Keuls (SNK) test [1939/1952] 
o (Unfortunately) a somewhat popular test among psychologists 
o Used for pairwise comparisons 
o Here’s the logic for the SNK test 

• Tukey controls the EWα for the largest possible pairwise comparison 
• But for most pairwise comparisons, Tukey is too conservative 
• Let’s develop a correction that is sensitive to different levels of 

comparison 
⇒ For means that are farthest apart, use a large critical value 
⇒ For means that are closer together, use a smaller critical value 

 
o An example: Suppose we have 6 groups 

Let’s rank the groups from smallest to largest 
 

µ(1) µ(2) µ(3) µ(4) µ(5) µ(6) 

 
• If we were to do a Tukey comparison, we would calculate tobserved  for 

any/all pairs of interest, and compare the tobserved  to q α,a,dfw( )
2

 where a 

= number of groups = 6 
  
• But suppose I want to compare µ(2) to µ(5).  Let’s imagine that µ(1) and 

µ(6) never existed.  Then to compare µ(2) to µ(5), we would use a critical 
value of q α,a,dfw( )

2
 where a = 4. 
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• For the SNK procedure, the critical value we use is determined NOT 
by the number of total groups, but by the number of “steps” between 
the means of interest   

 
 Steps between CRIT Steps between CRIT 

 Means  Means          
 1 ( )

2
,2, dfwq α  4 ( )

2
,5, dfwq α  

 2 ( )
2
,3, dfwq α  5 ( )

2
,6, dfwq α  

 3 ( )
2
,4, dfwq α   

 
For means 1 step apart: ( )

2
,2, dfwq α  

 This is equivalent to CRIT for Fisher’s LSD test  
For means a-1 steps apart: q α,a,dfw( )

2
 

 This is equivalent to CRIT for Tukey’s HSD test 
 

o Although this method sounds appealing, it fails to control EWα  (In fact, it 
is impossible to calculate the exact EWα  for SNK).  For this reason, most 
statisticians will not recommend SNK 

o It is also not possible to construct SNK confidence intervals  
 

o To implement SNK in SPSS 
ONEWAY memory BY group 
 /POSTHOC = SNK ALPHA(.05). 

MEMORY

Student-Newman-Keulsa

6 3.5000
6 5.0000 5.0000
6 5.0000 5.0000
6 6.5000

.318 .318

GROUP
6 - Control
6 - Training
8 - Control
8 - Training
Sig.

N 1 2
Subset for alpha = .05

Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 6.000.a. 

 
• You do not get a significance test for each pair of means, only a list of 

homogeneous subsets 
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vi. REGWQ  
• The REGWQ test is a modification of the SNK that maintains the 

experiment-wise error rate at .05 or less. 
 

o REGWQ was developed by Ryan (1959) and modified by Einot & 
Gabriel (1975) and then again by Welsh (1977).  Its critical value is 
based on the studentized range, or Q distribution. 

o Some authors refer to this procedure as the modified Ryan test. 
o It modifies the α  level used to compute critical values for the SNK 

procedure 
 

For means a-1 steps apart: q α,a,dfw( )
2

 

 
For means s steps apart:  q ′ α ,s+1,dfw( )

2
 

 
    Where  s = 1 , 2, . . ., a-1 
      ′ α =1− (1−α )

s
a  

 
 

o In general, the REGWQ procedure results in computing a critical q value 
with a fractional alpha value.  Unless you have access to a computer 
program to calculate exact studentized range values, it is not possible to 
compute this test by hand. 

 
o When variances are equal and cell sizes are equal, simulations have 

shown that the REGWQ procedure keeps αEW ≤ .05 and is more powerful 
than Tukey’s HSD. 

 
• (Because we lack the tools to compute this test by hand and check 

SPSS’s calculations, we will not use the REGWQ procedure in this 
class.  I present it because it is a valid option and you may want to use 
it in your own research) 
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• To give you an idea how out-of-control post hoc testing can be, Tukey 

proposed a compromise between the Tukey’s HSD and SNK procedures, 
called Tukey’s B 

 
o Without any theoretical reason, for Tukey’s B, you average the critical 

values from the Tukey’s HSD and SNK procedures 
 

Critical value for Tukey’s B = 

q α,a,dfw( )
2

+
q α, t,dfw( )

2
2

 

 
Where α = Experiment-wise error rate 
  a  = Number of groups 

t  = Number of steps + 1 
ν  = DFw = N-a 

 
o You should never use Tukey’s B! I only present it as a demonstration of 

how some post-hoc test have been developed with no theoretical 
background. 

 
 
6. Complex Post-hoc tests 
 

i. Scheffé (1953) 
• This test is an extension of the Tukey test to all possible comparisons  
• The Scheffé test uses a modification of F distribution, so we will switch to 

compute F-tests of contrast  
 
• For the Tukey HSD test, we found the sampling distribution of MaximumPairwiseF   
• But now we want to control the EWα for all possible comparisons 
• We need to find the sampling distribution of MaximumF , which represents the 

largest possible F value we could observe for any contrast in the data, either 
pairwise or complex 
 

• In any data set, we can find a contrast with the sum of squares of the largest 
possible contrast MAXψ̂  equal to the sum of squares between 

SSBSS MAX =ψ  
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• Recall that the F-test of a contrast is given by the following formula: 

MSW
SSC

dfw
SSW

dfc
SSC

dfwF ==),1(  

 
• Now for MAXψ̂  we have 

MSW
SSB

MSW
SSCF MAX

Maximum ==  

 
For any data set, formula gives the F value for the largest possible 
contrast! 

  
• To find the sampling distribution MaximumF , we can use the fact that  

MSB =
SSB
a −1

 

 
And then with a bit of algebra . . .  

 
SSB = (a −1)MSB  

 
 

FMaximum ~
SSB

MSW
=

(a −1)MSB
MSW

= (a −1)Fα=.05;a−1,N− a  

 
 

• By using (a −1)Fα= .05;a−1,N− a  as a critical value for the significance of a contrast, 
we guarantee EWα =.05, regardless of how many contrasts we test, even after 
having looked at the data (given that all the assumptions of the F-test have 
been met) 

 
• There is a direct, one-to-one correspondence between the test of significance 

of the null hypothesis and the Scheffé test for a contrast 
o If the omnibus F is significant, then there exists at least one contrast that 

is significant using the Scheffé test 
o If the omnibus F is not significant, then it is impossible to find a 

significant contrast using the Scheffé test 
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• Scheffé 95% confidence intervals 

o We need to compute an adjusted critical value 
 

ˆ ψ ± tcriticaladjusted  * MSW
c j

2

n jj =1

a

∑
 

 
  

 

 
  

 

 

 
  

 

 

 
  
 

 
 tcritical adjusted = (a −1)F (.05;a −1,Dfw)  

 
 
• Unfortunately, we cannot use SPSS for Scheffé contrasts 

o The “SCHEFFE” option in SPSS only tests pairwise comparisons 
o The Tukey HSD will always be more powerful than Scheffé to test 

pairwise comparisons 
 
Number of groups Critical Value 

(dfw = 30) 
 Per-

Comparison
Tukey Scheffé 

    2 4.17 4.17 4.17 
    3 4.17 6.09 6.63 
    4 4.17 7.41 8.77 
    5 4.17 8.41 10.76 
    6 4.17 9.25 12.67 

 
o For complex comparisons, we will have to use hand calculations to 

determine significance using the Scheffé procedure 
o We can use ONEWAY to find observedt  or observedF  for the contrast, but we’ll 

have to look-up the critical value and determine significance on our own. 
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• Using Scheffé for planned contrasts 

o We previously determined that a Bonferroni correction could be used 
when you have more than a-1 planned contrasts 

o With enough comparisons, the Bonferroni correction is actually more 
conservative than the Scheffé correction 
 

Number of Planned 
Comparisons 

Critical Value 
(a=4, dfw = 30) 

 Bonferroni 
)30,1;/05(. CF  

Scheffé 
)30,3;05(.3F  

    1 ** ** 
    2 ** ** 
    3 ** ** 
    4 7.08 8.76 
    5 7.56 8.76 
    6 8.01 8.76 
    7 8.35 8.76 
    8 8.64 8.76 
    9 8.94 8.76 
  10 9.18 8.76 

 
o For all planned pairwise comparisons, Tukey is also an option! 

 
 
 

• Example #1: The Memory Training experiment 
o The omnibus F-test is not significant 

• No contrasts will be significant using the Scheffé procedure 
 

ANOVA

MEMORY

27.000 3 9.000 2.951 .057
61.000 20 3.050
88.000 23

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.
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• Example #2: Treatment of Agoraphobia 
o Twenty-four participants are randomly assigned to one of five conditions 

for treatment of agoraphobia: a control group, psychodynamic treatment, 
behavioral treatment, Drug A, or Drug B.  The following are post-test 
scores on a fear scale (lower scores indicate more fear) 

 
 

Control Psycho Behav Drug A Drug B 
5 3 6 8 6 
3 7 9 5 4 
2 6 9 7 2 
4 5 4 5 3 
3 3 5 3 5 
1 5 6 5 3 

3.0 4.83 6.5 5.5 3.83 
 
 

66666N =

GROUP

Drug BDrug ABehavioralPsychoControl

FE
A

R

10

8

6

4

2

0

 
 

ANOVA

FEAR

45.200 4 11.300 3.998 .012
70.667 25 2.827

115.867 29

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.
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o After looking at the data, you decide to make the following comparisons: 
 

543211 4 µµµµµψ ++++−=   Control vs. Others 

54322 µµµµψ −−+=  Drug vs. Non-Drug Treatment 

4313 2 µµµψ −−=  Two best treatments vs. Control 
 

ONEWAY fear BY group 
  /CONTRAST= -4 1 1 1 1 
  /CONTRAST= 0 1 1 -1 -1 
  /CONTRAST= -2 0 1 1 0 
  /POSTHOC = SCHEFFE ALPHA(.05). 

 
 

o SPSS’s useless Scheffé output: 
Multiple Comparisons

Dependent Variable: FEAR
Scheffe

-1.8333 .97068 .483 -5.0578 1.3911
-3.5000* .97068 .028 -6.7245 -.2755
-2.5000 .97068 .191 -5.7245 .7245

-.8333 .97068 .944 -4.0578 2.3911
1.8333 .97068 .483 -1.3911 5.0578

-1.6667 .97068 .576 -4.8911 1.5578
-.6667 .97068 .975 -3.8911 2.5578
1.0000 .97068 .897 -2.2245 4.2245
3.5000* .97068 .028 .2755 6.7245
1.6667 .97068 .576 -1.5578 4.8911
1.0000 .97068 .897 -2.2245 4.2245
2.6667 .97068 .144 -.5578 5.8911
2.5000 .97068 .191 -.7245 5.7245

.6667 .97068 .975 -2.5578 3.8911
-1.0000 .97068 .897 -4.2245 2.2245
1.6667 .97068 .576 -1.5578 4.8911

.8333 .97068 .944 -2.3911 4.0578
-1.0000 .97068 .897 -4.2245 2.2245
-2.6667 .97068 .144 -5.8911 .5578
-1.6667 .97068 .576 -4.8911 1.5578

(J) GROUP
Psycho
Behavioral
Drug A
Drug B
Control
Behavioral
Drug A
Drug B
Control
Psycho
Drug A
Drug B
Control
Psycho
Behavioral
Drug B
Control
Psycho
Behavioral
Drug A

(I) GROUP
Control

Psycho

Behavioral

Drug A

Drug B

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

The mean difference is significant at the .05 level.*. 
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o First compute the value of the contrast and the observedF  

 
Contrast Tests

8.6667 3.06956 2.823 25 .009
2.0000 1.37275 1.457 25 .158
6.0000 1.68127 3.569 25 .001
8.6667 2.71211 3.196 9.158 .011
2.0000 1.42205 1.406 18.691 .176
6.0000 1.60208 3.745 12.875 .002

Contrast
1
2
3
1
2
3

Assume equal variances

Does not assume equal
variances

FEAR

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 
 

667.8ˆ1 =ψ   969.7=observedF  
000.2ˆ 2 =ψ  123.2=observedF  
000.6ˆ 3 =ψ  738.12=observedF  

 
 

o Look up =critF (a −1)Fα= .05;a−1,N− a  
α = 0.05 
a =     5 
N = 30 

 
759.2)25,4(05. =F  

035.11759.2*4 ==critF  
 

 
o Compare observedF  to critF  in order to determine significance 

 
1ψ̂   Fail to reject null hypothesis 

2ψ̂  Fail to reject null hypothesis 

3ψ̂  Reject null hypothesis 
 

What are our conclusions? 
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o Calculate 95% confidence intervals 

ˆ ψ ± tcriticaladjusted  * MSW
c j

2

n jj =1

a

∑
 

 
  

 

 
  

 

 

 
  

 

 

 
  
 

 
 tcritical adjusted = (a −1)F (.05;a −1,Dfw)  

32.3035.11 ==djustedcritical at  
 

 

 















 ++++±

6
1

6
1

6
1

6
1

6
16827.232.3667.8  *  

16.10667.8 ±  
( )83.18,49.1−  

 

000.2ˆ 2 =ψ  















 ++++±

6
1

6
1

6
1

6
1

6
0827.232.3000.2  *  

558.4000.2 ±  
( )56.6,56.2−  

 

000.6ˆ 3 =ψ  















 ++++±

6
0

6
1

6
1

6
0

6
4827.232.3000.6  *  

582.5000.6 ±  
( )58.11,42.0  

 
 

o To get out of the mindset that p-values are everything, do not forget to 
also report a measure of effect size! 

 
 

ii. The Brown-Forsythe (1974) test 
• The Brown-Forsythe (1974) modification of the Scheffé test that can be used 

with unequal variances 
• Use output from the “variances unequal” line of the ONEWAY command 

(with an adjusted test statistic and an adjusted degrees of freedom) and 
proceed with the Scheffé correction in a standard way 
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7. Conclusions 

Which test do I use? A rough guideline 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Modifications of these procedures are necessary when variances are unequal.

  
   

 

     

Scheffé 

 
 

 

 
No     Tukey or 

Bonferroni
Yes 

    Scheffé or 
Bonferroni 

No 

No 
Correction 



6-41 © 2006 A. Karpinski 

 
8. Examples 
 

• You want to examine energy use in one-bedroom apartments as a function of 
the day of the week. You find 35 one-bedroom apartments and measure the 
energy use in each apartment on a randomly determined day.  

 
Day of the Week 

Sunday Monday Tuesday Wednesday Thursday Friday  Saturday
8.25 5.12 5.32 8.00 6.97 7.65 7.86 
8.26 4.81 4.37 6.50 6.26 5.84 7.31 
6.55 3.87 3.76 5.38 5.03 5.23 5.87 
8.21 4.81 4.67 6.51 6.40 6.24 6.64 
6.69 4.67 4.37 5.60 5.60 5.73 6.03 

 
o Before the study was run, you decided to look for polynomial trends in 

energy use. 
 

5555555N =

DAY

Saturday
Friday

Thursday
Wednesday

Tuesday
Monday

Sunday

E
N

E
R

G
Y

9

8

7

6

5

4

3

26

16

13

11

8

6

 
 
 
 

o A closer inspection of the assumptions reveals all OK  
(for n’s of 5)
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Sunday
Monday

Tuesday
Wednesday

Thursday
Friday

Saturday

day

4.00

5.00

6.00

7.00

8.00

en
er

gy

AA

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A A

A

 
 

o Because we planned the analysis, we can test the orthogonal polynomial 
contrasts without correction. 

 
ONEWAY energy BY day 
  /POLYNOMIAL= 5.  (ONEWAY can only test up to the 5th order)  
 

ANOVA

ENERGY

36.633 6 6.106 9.461 .000
.692 1 .692 1.072 .309

12.391 1 12.391 19.201 .000
12.584 1 12.584 19.501 .000

8.713 1 8.713 13.502 .001
.059 1 .059 .091 .765

2.195 1 2.195 3.401 .076
18.069 28 .645
54.702 34

(Combined)
ContrastLinear Term
ContrastQuadratic

T ContrastCubic Term
Contrast4th-order

T Contrast
Deviation

5th-order

Between
Groups

Within Groups
Total

Sum of
Squares df Mean Square F Sig.
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:ˆ linearψ  t(28) =1.03, p = .309 001., 2 <ω  

:ˆ quadraticψ  t(28) = 4.38, p < .001 212., 2 =ω  
:ˆ cubicψ   t(28) = 4.42, p < .001 216., 2 =ω  

:ˆ 4thψ   t(28) = 3.67, p = .001 146., 2 =ω  
:ˆ 5thψ   t(28) = 0.30, p = .765 001., 2 <ω  
:ˆ 6thψ   t(28) =1.84, p = .076 027., 2 =ω  

 
 

o If we had done a Bonferroni-type correction,  
 
  Dunn/Sidák Bonferroni 

 # of tests c
1

)05.1(1 −−  .05/c 
 6 .0085 .0083 

 
• And our interpretation would not change. 

 
 
o After looking at the data, we decide to look for polynomial trends only 

during the weekdays 
 

 
• We should not do the following: 

 
select if day >1 and day < 7. 
ONEWAY energy BY day 
   /POLYNOMIAL= 4. 

 
• Why? 
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ONEWAY energy BY day 
   /cont = 0 -2 -1 0 1 2 0 
   /cont = 0 2 -1 -2 -1 2 0 
   /cont = 0 -1 2 0 -2 1 0 
   /cont = 0 1 -4 6 -4 1 0. 

 
Contrast Tests

4.5180 1.13606 3.977 28 .000
-1.7580 1.34420 -1.308 28 .202
-1.6260 1.13606 -1.431 28 .163
6.9820 3.00573 2.323 28 .028

Contrast
1
2
3
4

Assume equal variancesENERGY

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 
 

• But now, these are post hoc tests and we need to apply the Scheffé 
correction. 

 
o Look up =critF (a −1)Fα= .05;a−1,N− a  

α = 0.05 
a =     7 
N = 35 

 
Fcrit = 6* 2.445 = 14.67  
tcrit = 6* 2.445 = 3.83 

 
• Using a Scheffé correction, we find 

 
:ˆ linearψ  05.,00.4)28( <= pt  

:ˆ quadraticψ  nst ,31.1)28( =  
:ˆ cubicψ   nst ,43.1)28( =  

:ˆ 4thψ   t(28) = 2.32,ns  
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o We also decide to compare all days to Tuesday: 

 
 
ONEWAY energy BY day 
   /posthoc=tukey. 
 

Multiple Comparisons

Dependent Variable: ENERGY
Tukey HSD

-3.0940 .50806 .000 -4.7056 -1.4824
-.1580 .50806 1.000 -1.7696 1.4536

-1.9000 .50806 .013 -3.5116 -.2884
-1.5540 .50806 .064 -3.1656 .0576
-1.6400 .50806 .044 -3.2516 -.0284
-2.2440 .50806 .002 -3.8556 -.6324

(J) DAY
Sunday
Monday
Wednesday
Thursday
Friday
Saturday

(I) DAY
Tuesday

Mean
Difference

(I-J) Std. Error Sig. Lower Bound Upper Bound
95% Confidence Interval

 
 
 

q(1-α,a,ν) = q(.95,7,28) = 4.48 
  

 

2
crit

crit
q

t = = 17.3
2
48.4

=  (for comparison to tobs) 

 
• Sunday  t(28) = 6.09, p < .001 
• Monday  t(28) = 0.31, p = .999 
• Wednesday  t(28) = 3.74, p = .013 
• Thursday  t(28) = 3.06, p = .064 
• Friday  t(28) = 3.23, p = .044 
• Saturday  t(28) = 4.42, p = .002 

 
 
 
 

o In your manuscript be consistent: report all contrasts as Fs or report them 
all as ts.
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• A return to our Bank starting salary data 

 
o Before the study was run I decided to compare all groups to the office 

trainee 
 
 

324127136227N =

EMPLOYMENT CATEGORY

EXEMPT EMPLOYEE
COLLEGE TRAINEE

SECURITY OFFICER
OFFICE TRAINEE

CLERICAL

B
E

G
IN

N
IN

G
 S

A
LA

R
Y

30000

20000

10000

0

2

140

404

403

54

112

 
 

o After looking at the data I want to compare 
• All adjacent pairs 
• (Clerical + Office trainee + Security officer) to 

o College Trainee 
o Exempt Employee 
o (College Trainee + Exempt Employee) 
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o We previously determined that the variances were not equal in this data, 

and we will need to take that fact into account. 
 

o Before the study was run (Planned contrasts) 
• I decided to compare all groups to the office trainee 
• We have (a-1) = 4 comparisons, so no correction is necessary 

(Note that many would say to use Bonferroni or Dunnett) 
 

ONEWAY salbeg BY jobcat 
  /CONTRAST= -1  1  0  0  0 
  /CONTRAST= -1 0 1 0 0 
  /CONTRAST= -1 0 0 1 0 
  /CONTRAST= -1 0 0 0 1. 

 
 

Contrast Tests

-254.98 156.819 -1.626 458 .105
297.16 294.407 1.009 458 .313

4222.54 245.408 17.206 458 .000
7524.93 273.079 27.556 458 .000
-254.98 116.528 -2.188 345.880 .029
297.16 133.369 2.228 68.848 .029

4222.54 323.084 13.069 46.034 .000
7524.93 562.514 13.377 32.443 .000

Contrast
1
2
3
4
1
2
3
4

Assume equal variances

Does not assume equal
variances

BEGINNING SALARY

Value of
Contrast Std. Error t df Sig. (2-tailed)

 
 

• We can simply report the “Does not assume equal variances” results 
 

• Some might argue that we should use a Bonferroni correction 
 
  Dunn/Sidák Bonferroni 

 # of tests c
1

)05.1(1 −−  .05/c 
 4 .0127 .0125 

 
Compare the observed p-value to these adjusted p-values, or compute 
adjusted p-values 
 
Contrasts 3 and 4 remain significant at the α=.05 level 
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o After looking at the data I want to compare 

• All adjacent pairs 
• (Clerical + Office trainee + Security officer) to 

o College Trainee 
o Exempt Employee 
o (College Trainee + Exempt Employee) 

 
 

)0,0,1,1,0(ˆ1 −=ψ   [We have already tested  )0,0,0,1,1(− ] 
)0,1,1,0,0(ˆ 2 −=ψ  
)1,1,0,0,0(ˆ 3 −=ψ  

)0,3,1,1,1(ˆ 4 −−−=ψ  
)3,0,1,1,1(ˆ 5 −−−=ψ  
)3,3,2,2,2(ˆ 6 −−−=ψ  

 
• For Contrasts 1-3, we can use Dunnett’s T3 (pairwise tests with 

unequal variances) 
• For Contrasts 4-6, we can use the Brown-Forsythe modification of the 

Scheffe test (complex tests with unequal variances) 
 

ONEWAY salbeg BY jobcat 
  /CONTRAST= 0  -1  1  0  0 
  /CONTRAST= 0  0  -1  1  0 
  /CONTRAST= 0 0 0 -1 1 
  /CONTRAST= -1 -1 -1 3 0 
  /CONTRAST= -1 -1 -1 0 3 
  /CONTRAST= -2 -2 -2 3 3. 

 
Contrast Tests

552.14 304.697 1.812 458 .071
3925.38 358.432 10.952 458 .000
3302.39 341.131 9.681 458 .000

12625.43 749.105 16.854 458 .000
22532.60 830.832 27.121 458 .000
35158.03 1206.461 29.141 458 .000

552.14 130.812 4.221 62.580 .000
3925.38 328.506 11.949 48.356 .000
3302.39 637.613 5.179 49.749 .000

12625.43 948.444 13.312 42.235 .000
22532.60 1675.675 13.447 31.542 .000
35158.03 1938.017 18.141 52.405 .000

Contrast
1
2
3
4
5
6
1
2
3
4
5
6

Assume equal variances

Does not assume equal
variances

BEGINNING SALARY

Value of
Contrast Std. Error t df Sig. (2-tailed)
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• Determine the T3 critical value: q(1-α,a,ν) 

 
 α = Familywise error rate 

  a = Number of groups 
ν = the variance adjusted degrees of freedom 

 
 

1ψ̂  tobs(62.58) = 4.22 tcritical adjusted =
q .05,5,62.58( )

2
≈

3.98
2

= 2.81 

2ψ̂  tobs(48.36) =11.95 tcritical adjusted =
q .05,5,48.36( )

2
≈

4.01
2

= 2.84  

3ψ̂  tobs(49.75) = 5.17 tcritical adjusted =
q .05,5,49.75( )

2
≈

4.01
2

= 2.84  

 
 

• Determine the Brown-Forsythe critical value 
 

α = .05  a = 5  tcrit = (a −1)Fα= .05;a−1,dfw  
 

 
4ψ̂  tobs(42.23) =13.31  tcrit = 4F(4,42.23) = 10.37 = 3.22 

5ψ̂  tobs(31.54) =13.45  tcrit = 4F(4,31.54) = 10.71 = 3.27 

6ψ̂  tobs(52.40) =18.14  tcrit = 4F(4,52.40) = 10.20 = 3.19 
 
 
 

• All 6 contrasts are significant at α = .05. 
 
When reporting the final results, convert all test statistics to ts or Fs. 


