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Chapter 3 
Oneway ANOVA 
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Oneway ANOVA 
 
1. Review of the tests we have covered so far 
 

• One sample with interval scale DV 
 

o One sample z-test  
Used to compare a sample mean to a hypothesized value when the population is 
normally distributed with a known variance. 

 
o One sample t-test  

Used to compare a sample mean to a hypothesized value when the population is 
normally distributed (or large) with unknown variance. 

 
 

• Two-independent samples with interval scale DV 
 

o Two independent samples t-test 
Used to compare the difference of two sample means to a hypothesized value 
(usually zero) when both populations are normally distributed with unknown but 
equal variances. 

 
o Welch’s two independent samples t-test 

Used to compare the difference of two sample means to a hypothesized value 
(usually zero) when both populations are normally distributed with unknown 
variances that may or may not be equal. 

 
 

• Two-independent samples tests ordinal DV 
 

o Mann-Whitney U test  
A non-parametric test used to measure the separation between two sets of sample 
scores (using the rank of the observations).  Can also be used in place of the two 
independent samples t-test when the data do not satisfy t-test assumptions. 

 

• Two (or more) nominal variables  
 

o Pearson Chi-square test of independence 
A non-parametric test used to test the independence of  (or association between) 
two or more variables. 
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2. What is an Analysis of Variance (ANOVA)? 
 

Because sometimes, two groups are just not enough . . . 
 

• An Advertising Example: What makes an advertisement more memorable?  
Three conditions: 
o Color Picture Ad 
o Black and White Picture Ad 
o No Picture Ad 

 
o DV was preference for the ad on an 11 point scale 
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ANOVA

Preference for Ad

25.810 2 12.905 2.765 .090
84.000 18 4.667

109.810 20

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.
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3. Terminology in ANOVA/Experimental Design 

• Overview of Experimental Design 
 

• Terminology 
o Factor   = Independent variable 
o Level = Different amounts/aspects of the IV 
o Cell = A specific combination of levels of the IVs 

 
• A one-way ANOVA is a design with only one factor 

 
Factor A 

Level 1 Level 2 Level 3 Level 4 Level 5 
x11

x21

x31

x41

x51

 

 

x12

x22

x32

x42

x52

x62

 

x13

x23

x33

x43

x53

 

x14

x24

x34

x44

x54

 

 

x15

x25

x35

x45

 

 
 

X .1  X .2  X .3  X .4  X .5  
n1 n2  n3  n4  n5  

 
 
x ij  i = indicator for subject within level j 
 j = indicator for level of factor A 
 
 

Note that the null hypothesis is now a bit less intuitive: 
 
H0 : µ1 = µ2 = µ3 = µ4 = µ5  
H1 : Not all µi s are equal 
 
The alternative hypothesis is NOT µ1 ≠ µ2 ≠ µ3 ≠ µ4 ≠ µ5  
The null and alternative hypotheses must be: 

• mutually exclusive  
• exhaustive 

 
The overall test of this null hypothesis is referred to as the omnibus F-test. 
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• A two way ANOVA has two factors. It is usually specified as an A*B design 

A = the number of levels of the first factor 
B = the number of levels of the second factor 

 
x ijk  i = indicator for subject within level jk 
 j = indicator for level of factor A 
 k = indicator for level of factor B 

 
o Example of a 4x3 design 

 
 Factor A  
 Level A1 Level A2 Level A3 Level A4  
Level B1 X .11 X .21 X .31 X .41 X ..1 
Level B2 X .12 X .22 X .32 X .42 X ..2 
Level B3 X .13 X .23 X .33 X .43 X ..3 
 X .1. X .2. X .3. X .4. X … 
 
 

o Let’s take a closer look at cell 23 
 

x123  
x223  
x323  
. 
. 
. 

xn23  
X .23  

 
 

o And now there are multiple effects to test 
 

The effect of Factor A  H0 : µ.1. = µ.2.= µ.3. = µ.4.  
The effect of Factor B  H0 : µ..1 = µ..2 = µ..3   
The effect of the combination of Factor A and Factor B 
 
To keep things simple, we will stick to the one-way ANOVA design for as 
long as possible! 
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4. Understanding the F-distribution 
 

• Let’s take a step back and examine the sampling distribution of s2 
 

o We’ll start by making no assumptions. 
 

xi −µ = xi −µ + (X − X )    Add and subtract X  
= xi − X + X − µ
= (xi − X ) + (X − µ)

   Re-arrange terms 

 
o Now square both sides of the equation: 

[And remember from high school algebra: (a + b)2 = a2 + b2 + 2ab] 
 

(xi −µ)2 = [(xi − X ) + (X − µ)]2  
         = (xi − X )2 + (X − µ)2 + 2(xi − X )(X − µ) 

 
o This equation is true for each of the n observations in the sample.  

Next, let’s add all n equations and simplify: 

     (xi − µ)2

i=1

n

∑ = [(xi − X )2 + (X − µ)2 + 2(xi − X )(X −µ)]
i=1

n

∑  

= (xi − X )2 + (X − µ)2

i=1

n

∑ + 2(xi − X )(X −µ)
i=1

n

∑
i=1

n

∑  

 
o Note that 2 and (X −µ)  are constants with respect to summation over i.  

Constants can be moved outside of the summation 

      (xi − µ)2

i=1

n

∑ = (xi − X )2 + (X −µ)2 1
i=1

n

∑ + 2(X − µ) (xi − X )
i=1

n

∑
i=1

n

∑  

 
o We can use two facts to simplify this equation: 

1
i=1

n

∑ = n 

(xi − X )
i=1

n

∑ = 0  

 

      (xi − µ)2

i=1

n

∑ = (xi − X )2 + n(X −µ)2 + 0
i=1

n

∑  
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o Next, let’s divide both sides of the equation by σ 2 
(xi − µ)2

i=1

n

∑
σ 2 =

(xi − X )2

i=1

n

∑
σ 2 +

n(X −µ)2

σ 2  

 
o And then rearrange the terms 

xi −µ
σ

 
 
 

 
 
 

2

i=1

n

∑ =
1

σ 2 (xi − X )2

i=1

n

∑ +
(X − µ)
σ n

 

 
  

 

 
  

2

  (eq. 3-1)  

 
o Up to this point, we have made no assumptions about X. To make 

additional progress, we now have to make a few assumptions 
• X is normally distributed.  That is X ~ N(µ,σ )  
• Each xi  in the sample is independently sampled 

 

o First, let’s consider the left side of eq. 3-1: ∑
=







 −n

i

ix
1

2

σ
µ   

σ
µ−ix

 is the familiar form of a z-score 

Hence ∑
=







 −n

i

ix
1

2

σ
µ  is the sum of n squared z-scores 

 
• From our review of the Chi-square distribution we know that 

o One squared z-score has a chi-square distribution with 1df 
o The sum of N squared z-scores have a chi-square distribution 

with N degrees of freedom 
 

• Now we can say the left hand side of eq 3-1 has a Chi-square 
distribution 

( ) 2

1 1

2
2

~ n

n

i

n

i
i

i z
x

χ
σ

µ∑ ∑
= =

=





 −  
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o Next, let’s consider (X − µ)
σ n

 

 
  

 

 
  

2

  

• We know that the sampling distribution of the mean for data sampled 
from a normal distribution is also normally distributed: 

X ~ N µ,
σ
n

 
 
 

 
 
  

 

• Hence, (X −µ)
σ n

 is also a z-score 

 

• (X − µ)
σ n

 

 
  

 

 
  

2

 is a single squared z-score.  But squared z-scores follow a 

chi-square distribution. So we know that (X − µ)
σ n

 

 
  

 

 
  

2

~ χ1
2  

 
 

o Putting the pieces together, we can rewrite eq. 3-1 as 
 

χn
2 ~ 1

σ 2 (xi − X )2

i=1

n

∑ + χ1
2

χn
2 − χ1

2 ~
1

σ 2 (xi − X )2

i=1

n

∑
 

 
 

o Because of the additivity of independent chi-squared variables, this 
equation simplifies to: 

 

χn−1
2 ~

1
σ 2 (xi − X )2

i=1

n

∑  

 
 

o Now let’s divide both sides of the equation by n-1 
 

χn−1
2

n −1
~

1
σ 2

(xi − X )2

i=1

n

∑
n −1
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o We recognize ˆ σ 2 and substitute it into the equation 
 

χn−1
2

n −1
~

1
σ 2 ˆ σ 2 

 
o Rearranging, we finally obtain: 

 

ˆ σ 2 ~
σ 2χ n−1

2

n −1
 

 
• In other words, with the assumptions of normality and independence, ˆ σ 2 has 

a chi-squared distribution.  (But notice, σ 2 must be known!) 
 
 
• Sampling Distribution of the Variance 

o Assumption: X is drawn from a normally distributed population:   
X ~ N(µX ,σX ) 
  

Then for a sample of size n: 
ˆ σ 2 ~

σ x
2χ n−1

2

n −1
  

 
 

o Facts about the Chi-square distribution: 
( ) nE n =2χ  

( ) nVar n 22 =χ  
 

o We can use these facts to check if ˆ σ 2 is an unbiased and consistent 
estimator of the population variance.  

 
• What is the expected value of ˆ σ 2? 

 

E( ˆ σ 2) = E
σ 2χ n−1

2

n −1

 

 
  

 

 
   

   ( )2
1

2

1 −−
= nE

n
χσ  

   )1(
1

2

−
−

= n
n
σ  

   2σ=          ˆ σ 2 is an unbiased estimator of 2σ  
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• What is the variance of the sampling distribution of ˆ σ 2? 
 

Var( ˆ σ 2 ) = Var
σ 2χn−1

2

n −1

 

 
  

 

 
   

   ( )2
1

22

1 −







−

= nVar
n

χσ  

   
( )

)1(2
1 2

4

−
−

= n
n
σ  

   ( )1
2 4

−
=

n
σ          ˆ σ 2 is a consistent estimator of 2σ  

 
o Example #1:  

Suppose we have a sample n=10 from X ~ N(0,4)  σ 2 =16[ ] 
 

ˆ σ 2 ~
σ x

2χ n−1
2

n −1
=

16χ9
2

9
=1.778* χ 9

2  

 

E( ˆ σ 2) =σ 2 =16   Var( ˆ σ 2 ) =
2σ 4

n −1( )
=

2 *256
9

= 56.889 

 
 

Simulated Sampling Distribution of the
Variance  (n=10)

0
0.05
0.1

0.15
0.2

1 5 9 13 17 21 25 29 33 37

Sample Variance
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o Example #2: 

Suppose we have a sample n=5 from X ~ N(0,1)  σ 2 =1[ ] 
 

ˆ σ 2 ~
σ x

2χ n−1
2

n −1
=

1χ4
2

4
= .25* χ 4

2  

 

E( ˆ σ 2) =σ 2 =1  Var( ˆ σ 2 ) =
2σ 4

n −1( )
=

2 *1
4

= .50 

 
Simulated Sampling Distribution

of the Variance (n=5)

0
0.05
0.1

0.15
0.2

0.2 0.8 1.4 2 2.6 3.2 3.8 4.4

Sample Variance

 

 
In this simulated distribution: 
 

538.
988.

2 =

=

σ

µ  

 

 
o Example #3: 

Suppose we have a sample n=30 from X ~ N(0,1)  σ 2 =1[ ] 
 

ˆ σ 2 ~
σ x

2χ n−1
2

n −1
=

1χ29
2

29
=

χ 29
2

29
 

 

E( ˆ σ 2) =σ 2 =1  Var( ˆ σ 2 ) =
2σ 4

n −1( )
=

2 *1
29

= .0690 

 
 

Simulated Sampling Distribution
 of the Variance (n=30)

0
0.1
0.2
0.3

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

Sample Variance

 

 
 
In this simulated distribution: 
 

0581.
9995.

2 =

=

σ

µ
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• Confidence intervals to make inference about σ 2 

o As an interesting aside, we can use the equation for the sampling 
distribution of the variance to construct confidence intervals around the 
population variance (and to can make inferences about σ 2) if  X is 
normally distributed with known variance. Let’s construct a 90% 
confidence interval around 2σ : 

 

Lower bound: 
1

)05(.2
1

2

−
−

n
nχσ

   Upper bound: 
1

)95(.2
1

2

−
−

n
nχσ

 

 
Where χn−1

2 ( p) is the critical chi-square value with n-1 dfs and with p 
area to the left of the critical value (NOTE: EXCEL uses area to the 
right of the critical value). 

 
o Example #1: Suppose we draw a random sample of size 13 (n = 13) from 

a normally distributed population with 342 =σ . Then for a 90% CI 
around σ 2: 

Lower bound: 34 ∗ χ12
2 (.05)

12
=

34 ∗5.23
12

=14.81 

Upper bound: 34 ∗ χ12
2 (.95)

12
=

34 ∗21.03
12

= 59.57     

 
• We are 90% confident that if the sample is drawn from the known 

population, the interval (14.81, 59.57) will cover the true value of σ 2 
 

• Because the chi-squared distribution is not symmetric, this confidence 
interval will not be symmetric 

|34 – 14.81| = 19.19  |34 – 59.57| = 25.57 
 
o Example #2: Suppose we draw a random sample of size 30 (n = 30) from 

a normally distributed population with σ 2 = 4 . Then to obtain a 95% CI 
around σ 2: 

Lower bound: 4 ∗ χ29
2 (.025)
29

=
4 ∗16.05

29
= 2.21 

Upper bound: 4 ∗ χ29
2 (.975)
29

=
4 ∗ 45.72

29
= 6.31    

• Thus under the null hypothesis, we are 95% confident that interval 
(2.21, 6.31) will cover the true value of σ 2 
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• Remember, our goal was to derive the F-distribution, so let’s keep going! 

 

o We just derived that ˆ σ 2 ~
σ 2χ n−1

2

n −1
 when x is sampled independently from a 

normal distribution.  If we were to draw two independent samples, from 
two different normally distributed populations, then we would have: 

ˆ σ 1
2 ~

σ1
2χ n1 −1

2

n1 −1
 and     ˆ σ 2

2 ~
σ 2

2χ n2−1
2

n2 −1
 

 
o We could take the ratio of these two variance estimates 
 

ˆ σ 1
2

ˆ σ 2
2 ~

σ1
2χ n1 −1

2

n1 −1
σ 2

2χ n2−1
2

n2 −1

 

 
o We’ll make one additional assumption to simplify this equation.  Let’s 

assume that the variances of the two populations are equal.  
 

σ1
2 =σ 2

2  
 

Then  

s1
2

s2
2 =

ˆ σ 1
2

ˆ σ 2
2 ~

χn1−1
2

n1 −1
χn2 −1

2

n2 −1

 

 
• This ratio of chi-squared distributions divided by their degrees of 

freedom is the F distribution with parameters n1-1 and n2-1 
 

2

2
1

2

21

2

2
1

1

2
1

21

2

1

2

1

),(

:generally moreor 
1

1
)1,1(

ν
χ

ν
χ

νν

χ

χ

ν

ν

=

−

−
=−−

−

−

F

n

n
nnF

n

n
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• The F-distribution is a ratio of two chi-squared distributions (divided by 
their degrees of freedom) 

 

F(ν1,ν 2) =
χν1

2 ν1

χν 2
2 ν2

 

 
• The F-distribution can be used for testing whether two unknown population 

variances are equal by taking the ratio of two sample variances from these 
populations 

 
• Thus, one use of a F-ratio is to test the equality of two population variances 

(Note this test is always one-tailed). 
 

H0 : σMin
2 ≥ σMax

2  
H1: 22

MaxMin σσ <  
 

F(dflarger ,dfsmaller) =
slarger

2

ssmaller
2    dflarger = nlarger −1 dfsmaller = nsmaller −1 

 
o Example: Do the variances of IQ scores for schizophrenics and manic-

depressives differ?  A sample of 31 schizophrenics was found to have 
ss

2 =148 and a sample of 101 manic-depressives was found to have 
smd

2 = 302 . 
 

• We must assume that IQ scores are normally distributed in both 
populations, and that observations were independently sampled from 
each of the populations 

 

F =
slarger

2

ssmaller
2 =

smd
2

ss
2 =

302
148

= 2.04  

 
df = nmd −1,ns −1( ) 

= 101−1,31−1( )
= 100,30( )

 

 
 

• Looking up the associated p-value, we find for F(100,30), p = .0139 
Reject H0  at α = .05 
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• A more common use of the F is to test the equality of two or more 
population means (and we’ll see why this is an appropriate use of the F-test 
in just a bit!) 

 
 

• Let’s recap the assumptions we made while deriving the F-test: 
o Both populations are normally distributed. 
o Both populations have a common variance. 
o Both samples were drawn independently from each other. 
o Within each sample, the observations were sampled randomly and 

independently of each other. 
 

• Fun facts about the F-distribution 
o It is positively skewed. 
o The mode is always less than 1. 
o If the numerator and the denominator degrees of freedom are both large, 

then the F-distribution approximates a normal distribution. 
o The distribution of this ratio was discovered by R.A. Fisher in 1924 and 

was given the label F in his honor. 
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  F(2,15)      F(10,15) 

 
  
  F(2,60)       F(15,60) 
 

 
 
 
5. Three ways to understand ANOVA 

• A generalization of the t-test 
• The structural model approach 
• The variance partitioning approach 
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ANOVA as a generalization of the t-test 

• Let’s consider the familiar case of a two group analysis 
• Example: Suppose that two brands of soda are being compared.  Participants 

are randomly assigned to try one soda.  They rate five questions about that 
soda on 5-point scales, with higher numbers indicating greater liking.   

 
 Soda P Soda C 

15 13 
 18 15 
 12 11 
 15 17 
 17 12 
 14 13 

 19 
 21 
 16 
 
 

t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1 Variable 2
Mean 16.33333 13.5
Variance 7.5 4.7
Observations 9 6
Pooled Variance 6.423077  
Hypothesized Mean Difference 0  
df 13  
t Stat 2.121179  
P(T<=t) two-tail 0.053705  
t Critical two-tail 2.160368   
   

 

ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 28.9 1 28.9 4.499401 0.053705 4.667186 
Within Groups 83.5 13 6.423077    
       
Total 112.4 14         
       

 
 
Using an independent samples t-test, we find:  t(13)=2.12, p = .054 
Using an ANOVA, we find:    F(1,13)=4.50, p = .054 
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o Note that the p-values of these two tests are identical and that the value of 

the t-test squared equals the value of the F-test 
 (2.12)2 = 4.50 
 

• In general, the following relationship holds between the t and F tests: 
t(a) = b, p = c ⇔ F (1,a) = b2, p = c  

 
o In other words, ANOVA can be thought of as a generalization of the 

independent samples t-test.   
• For the case of two-groups, ANOVA is identical to the independent 

samples t-test.   
• For the case of more than two groups, ANOVA is a generalization of 

the same analysis. 
 

o In this general case, the null hypothesis is: 
 

H0 : µ j = µ  for all j 
 
 
 

The structural model approach to ANOVA 
 

• It is easiest to consider this approach with an example.  Let’s consider a 
program to lower blood pressure.  Participants are assigned to one of four 
groups: drug therapy, biofeedback, diet, and a combination treatment.  
Below are systolic blood pressures (SBP) after two weeks of treatment.  The 
research hypothesis is that a combination of treatments will be more 
effective than each of the individual treatments. 

 
 

Condition 
Drugs Biofeedback Diet Combo 

84 81 98 91 
95 84 95 78 
93 92 86 85 

104 101 87 80 
80 108 94 81 
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• Always remember to look at the data first! 

EXAMINE VARIABLES=sbp BY group 
  /PLOT BOXPLOT. 

 

5555N =

combodietbiofeedbackdrug

120

110

100

90

80

70

 
 

 
 

 
 

o The grand mean is Y = 89.85 .  This is an unbiased estimate of the true 
population mean, µ  

 

Descriptives

Systolic Blood Pressure

5 91.2000 9.4710 4.2356 79.4402 102.9598
5 93.2000 11.3446 5.0735 79.1138 107.2862
5 92.0000 5.2440 2.3452 85.4887 98.5113
5 83.0000 5.1478 2.3022 76.6081 89.3919

20 89.8500 8.6223 1.9280 85.8146 93.8854

Drug
Biofeedback
Diet
Combo
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean



3-20 © 2006 A. Karpinski 

• Suppose that we did not know which group a participant was in, but we still 
wanted to estimate his/her SBP. Our best guess at this person’s SBP would 
be the grand mean, Y  and any deviation from the mean in that person’s 
score would be unexplained, or error in our simple prediction. 
 

Yij = µ + εij  
Yij = 89.85 + εij  

 
 
εij  denotes the unexplained part of the score associate with the ith person 

in the jth group (or the error in the model).   
 

o This is the simplest model we can develop to explain SBP scores.  It is 
sometimes called the reduced model (because it does not contain all the 
information we have about the participants; we have not included group 
into the model). 

 
 

• We can improve our prediction of SBP scores if we know the treatment 
condition of the participant by using the group mean. 
 

444

333

222

111

ii

ii

ii

ii

Y
Y
Y
Y

εµ
εµ
εµ
εµ

+=
+=
+=
+=

  

44

33

22

11

00.83
00.92
20.93
20.91

ii

ii

ii

ii

eY
eY
eY
eY

+=
+=
+=
+=

 

 
o We can rewrite the effect of each group as a deviation from the grand 

mean 
Y 1 = ˆ µ + ˆ α 1 

91.20 = 89.85 + ˆ α 1 
ˆ α 1 =1.35 

 
o Across all groups, SBP scores average 89.85. But for those people in the 

drug therapy group, SBP scores are, on average, 1.35 units higher than 
the overall mean.   
 
• 1α̂  is interpreted as the specific effect of the drug therapy on SPB 

scores, relative to the other conditions 
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o For a one-way ANOVA, the group effects are easy to calculate: 

...ˆ YY jj −=α  
 
 

• There is a constraint placed on the ˆ α js such that they must sum to 
zero: 

ˆ α j∑ = 0 

 
 
• Thus, we can write a participant’s score as a grand mean, a treatment 

effect, and participant-specific error: 
Yij = µ + α j + εij  

 
µ  The overall mean of the scores 

jα  The effect of being in level j 

ijε  The unexplained part of the score 
 

• This model is sometimes called the full model (because it takes into 
account all the information in the design). 

 
 

o From a structural model perspective, we can state the null hypothesis as 
the lack of group effects: 

H0 :α j = 0 for all j 
 
 
 
o Using the structural model, we can decompose each observation into its 

component parts: 
 
 

µ  The overall mean of the scores  89.85 
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jα  The effect of being in level j 

...ˆ 11 YY −=α  = 91.2 – 89.85 = 1.35  
...ˆ 22 YY −=α  = 93.2 – 89.85 = 3.35 
...ˆ 33 YY −=α  = 92.0 – 89.85 = 2.15 
...ˆ 44 YY −=α  = 83.0 – 89.85 = -6.85 

 
Note that ∑ =

j
i 0α  

 
ijε  The unexplained part of the score 

 
11111 .Yye −=  =   84 – 91.2 =   -7.2 

12121 .Yye −=  =   95 – 91.2 =    3.8 

13131 .Yye −=  =   93 – 91.2 =    1.8 

14141 .Yye −=  = 104 – 91.2 =  12.8 

15151 .Yye −=  =   80 – 91.2 = -11.2 
Note that ∑ =

i
ie 01  

 
21212 .Yye −=  =   81 – 93.2 = -12.2 

22222 .Yye −= =   84 – 93.2 =   -9.2 

23232 .Yye −= =   92 – 93.2 =   -1.2 

24242 .Yye −= = 101 – 93.2 =    7.8 

25252 .Yye −= = 108 – 93.2 =  14.8 
Note that ∑ =

i
ie 02  

31313 .Yye −=  =   98 – 92.0 =    6.0 

32323 .Yye −= =   95 – 92.0 =    3.0 

33333 .Yye −=  =   86 – 92.0 =   -6.0 

34343 .Yye −=  =   87 – 92.0 =   -5.0 

35353 .Yye −=  =   94 – 92.0 =    2.0 
Note that ∑ =

i
ie 03  

 
41414 .Yye −=  =   91 – 83.0 =    8.0 

42424 .Yye −= =   78 – 83.0 =   -5.0 

43434 .Yye −= =   85 – 83.0 =    2.0 

44444 .Yye −= =   80 – 83.0 =   -3.0 

45454 .Yye −= =   81 – 83.0 =   -2.0 
Note that ∑ =

i
ie 04  

 
Note that ∑∑ =

i
ij

j

e 0  

 
o We have decomposed each participant’s score into a grand mean, a 

treatment effect, and participant-specific error: 
Yij = µ + α j + εij  

 

00.285.685.89
20.735.185.89

54

11

−−=
−+=

y
y
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• An Aside: This method of estimating the population parameters is referred to 

as the “method of least squares.”  Let’s see why! 
 
o  From the structural model approach, we obtained 

Yij = µ + α j + εij  
 

o We can rewrite this equation: 
εij =Yij −µ −α j  

εij =Yij − (µ + α j)  
εij =Yij −µ j  

 
• Where εij  is the residual / error / unexplained part of the DV 

Yij  is the observed score 
µ j  is the expected score 

 
• Residual = observed score – expected score 
 
 
 

o A desirable property of any fitted model is to have the smallest possible 
errors.  But how do we define “smallest average error”? 

 
• Averaging the actual residuals would not work; the positive and 

negative residuals would cancel each other. 
 

• Taking the average absolute value of the residuals is possible, but 
messy mathematically. 

 
• It can be shown that if we define the residual to be (Yij − model) , then 

(Yij − model)2  are the squared residuals.  When the cell mean, jY . , is 
used as the model, the squared residuals are smaller than they would 
be if any other model were to be used.  Thus, the cell mean is called 
the least squares estimate of jµ  
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The variance partitioning approach 

• Let’s start by examining the formula for the estimate of the variance 

Var(Y ) =
(Yi −Y )2∑
N −1

 

 
Var(Y ) =

SS
df

 

 
• From the two-independent samples t-test we can see spooled

2  fits nicely into 
this formula: 

spooled
2 =

(n1 −1)s1
2 + (n2 −1)s2

2

(n1 −1) + (n2 −1)
 

 

spooled
2 =

SS1 + SS2

(n1 + n2 −2)
 

 
spooled

2 =
SS from group means

df
 

 
• In a more general case, to obtain an estimate of the variance, one takes the 

sum of squared deviations from each group mean (the numerator), and 
divides by the total number of subjects minus the number of groups (the 
denominator)  

 

)...(
...

21

212

annn
SSSSSS

s
a

a
general −++

+++
=  
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• The idea behind variance partitioning is to divide the total variability in the 

sample into two parts:  
o Variance due to the factor (the IV) 
o Variance that is unexplained (not due to the factor) 

 
• Let’s start by examining the formula for the estimate of the variance 

Var(Y ) =
(Yi −Y )2∑
N −1

 

 
Var(Y ) =

SS
df

 

 
• Now, let’s try to partition the total variability in the data into two parts we 

can interpret. 
 

SST =  (yij − y ..)2

i

n

∑
j

a

∑  

 (yij − y . j + y . j − y ..)2

i

n

∑
j

a

∑  

[(y . j − y ..) + (yij − y . j)]
2

i

n

∑
j

a

∑  

(y . j − y ..)2

i

n

∑
j

a

∑ + (yij − y . j )
2

i

n

∑
j

a

∑ + 2(y . j − y ..)
i

n

∑
j

a

∑ (yij − y . j)  

 
o As we have done before, we can pull out the constants 

(y . j − y ..)2 1
i

n

∑
j

a

∑ + (yij − y . j )
2

i

n

∑
j

a

∑ + 2 (y . j − y ..) (yij − y . j)
i

n

∑
j

a

∑  

 
o We note that  

(y . j − y ..) = 0
j

a

∑  and   1
i

n

∑ = n 

 
 

SST= n (y . j − y ..)2

j

a

∑ + (yij − y . j)
2

i

n

∑
j

a

∑  

SST =   SSB     + SSW 
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SST= n (y . j − y ..)2

j

a

∑ + (yij − y . j)
2

i

n

∑
j

a

∑  

SST =   SSB     + SSW 
 

n (y . j − y ..)2

j

a

∑  is the sum of squares between groups (SSB) 

SSB is the variation of all the group means around the grand 
mean (intergroup variability) 

 

(yij − y . j)
2

i

n

∑
j

a

∑  is the sum of squares within groups (SSW) 

SSW is the variation of all the individual observations around 
their group mean, the generalization of spooled

2  (intragroup 
variability) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

SS Total 
(SS Corrected Total) 

 

SS Between 
(SS Model) 

 

SS Within 
(SS Error) 
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• Thus far, we have computed sums of squares, not variances.  Remember that 

an estimate of a variance is given by   
Var(Y ) =

SS
df

 

 
o Let’s construct a variance estimate from each of the components we 

derived: 
 

ˆ σ Between
2 =

SSB
dfb

,  where dfb = number of groups – 1 

ˆ σ Between
2 =

SSB
a −1

 

 
ˆ σ Within

2 =
SSW
dfw

,  where dfw = (number of groups)*(n for each group minus 1) 

ˆ σ Within
2 =

SSW
a(n −1)

=
SSW
N − a

 

 
 

o In ANOVA terminology, an estimate of the variance is called the mean 
square 

 
MSB =

SSB
a −1

  MSW =
SSW

a(n −1)
 

 
 

o An F-test is obtained by taking the ratio of two variances.  Let’s create 
and F-test with our two variance components 

 

F(dfb ,dfw ) =
MSB
MSW

=
SSB

a −1
SSW

a(n −1)
 

 
How should we interpret this test? 
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• The denominator, MSW, is a measure of variability within each group 
around its mean.  In other words, MSW tells us how much of the total 
variability is due to error. 

SSW = (yij − y . j )
2

i

n

∑
j

a

∑  

 
• The numerator, MSB, is a measure of variability in the group means.  

In other words, MSB tells us how much of the total variability is due 
to differences in group means. 

SSB = n (y . j − y ..)2

j

a

∑  

 
• Suppose the null hypothesis is true and the group means are actually 

identical to each other in the population. In this case, 
o We will observe some differences in the group means, but these 

differences will be entirely due to error.   
o MSW and MSB will be different estimators of the same 

quantity: error. 
o The F-test should be near 1, because the numerator and 

denominator are estimating the same quantity. 
 

• Suppose the alternative hypothesis is true and the group means are 
actually different from each other in the population. In this case, 

o We will observe some differences in the group means and these 
differences will be due to error + true differences in the 
population group means.   

o MSW and MSB will be estimating of the different quantities. 
o The F-test should be greater than 1, because the numerator is 

estimating the same quantity as the denominator PLUS the true 
group effects. 

 
 

o From a variance partitioning perspective, we can state the null hypothesis 
that MSB and MSW are estimates of the same error (because there are no 
group effects for MSB to detect): 

 
H0 : MSB = MSW  
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Relating the structural model and the variance partitioning approaches 
• From the structural model approach, we obtained 

Yij = µ + α j + εij  
 
We defined εij  as the residual: 

εij =Yij −µ j  
 
        

• It can be shown that Var(ε ij) = MSW  
o Intuitively, this relationship should make a lot is sense.  The residuals are 

due to error and MSW is a measure of the variance of random error. 
o A rigorous proof is tedious, and complicated, so let’s settle for an 

intuitive proof and an example [the curious can tune into Kirk (1995) pp. 
91-92] 

Var(ε ij) =
(ε ij −ε )2

i=1

n

∑
j =1

a

∑
df

 

=
(ε ij − 0)2

i=1

n

∑
j=1

a

∑
df

 

=
(Yij −Y . j)

2

i=1

n

∑
j=1

a

∑
df

 

=
SSW
df

 

=
SSW

a(n −1)
= MSW  

 

 
o Let’s return to our blood pressure example. Here is the ANOVA on the 

raw scores for reference 
 
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 322.95 3 107.65 1.58 0.23 3.24
Within Groups 1089.6 16 68.1    
Total 1412.55 19         
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o Let’s create a new data set of residuals by subtracting the group mean 
from each observed score 

If (group=1) sbp_e = sbp – 91.2. 
If (group=2) sbp_e = sbp – 93.2. 
If (group=3) sbp_e = sbp – 92.0. 
If (group=4) sbp_e = sbp – 83.0. 

 

DrugE BiofeedbackE DietE ComboE 

-7.2 -12.2 6 8 
3.8 -9.2 3 -5 
1.8 -1.2 -6 2 
12.8 7.8 -5 -3 
-11.2 14.8 2 -2 

 
 

o Descriptive statistics on the residuals 
 

Residuals 

  
Mean 0.00
Standard Error 1.69
Median 0.30
Standard Deviation 7.57
Sample Variance 57.35
Minimum -12.20
Maximum 14.80
Sum 0.00
Count 20.00

 
 

• From the ANOVA table, we found MSW = 68.1 
• From the analysis of the residuals, we found Var(ε ij) = 57.35 

 
o But for the analysis of residuals, the variance was computed using N-1 in 

the denominator; we need the denominator to be N-r.  So, we have to 
multiply the Var(ε ij)  by a correction factor: 

 
Var(ε ij) ∗

N −1
N − 4

= 57.35 *
19
16

= 68.10 = MSW  

TaDa! 
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o Just for fun, let’s run an ANOVA on the residuals.  What do you think 
will happen? 

 
ANOVA       
Source of Variation SS df MS F P-value F crit 

Between Groups 0.00 3 0.00 0.00 1.00 3.24
Within Groups 1089.6 16 68.1    
Total 1089.6 19         

 
 

o Why is the MSB zero? 
 
 
 

• To recap, we have just demonstrated that the variance of the residuals of the 
ANOVA model is equal to the MSW.  Because the residuals are often thought 
of as errors, the MSW is sometimes called the Mean Square Error (MSE).  In 
other words, the MSW is an unbiased estimate of the true error variance of the 
model, σε

2 
E(MSW ) = σε

2  
 
• Let’s return to the second variance component we derived: MSB 

o We can also derive the expected value of the MSB.  However, again this 
is tedious and rather unenlightening, so we’ll skip to the main result: 

E(MSB) = σε
2 +

niα i
2∑

a −1
 

niαi
2∑

a −1
 is a measure of the variability of the treatment effects 
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o If the null hypothesis is true: 

• Under the null hypothesis, all treatment effects are zero, α j = 0 for all j, 
and the MSB also estimates 2

εσ  
E(MSB) = σε

2  

F =
MSB
MSE

=
σε

2

σε
2 =1 

 
• Putting MSB and MSW together, the F-statistic with df1 = a-1 and df2 = 

N-a is a ratio of variances estimating the same quantity. 
 
o If the null hypothesis is false: 

• Under the alternative hypothesis, at least one of the treatment effects 
is not zero, and  

E(MSB) = σε
2 +

niα i
2∑

a −1
 

F =
MSB
MSW

=
σε

2 +
niα i

2∑
a −1

σε
2 >1  

 
• When the null hypothesis is true, the MSB/MSW ratio has an F-

distribution with df1 = a-1 and df2 = N-a 
 

o To recap: 
• When the null hypothesis is true, MSB has a chi-squared distribution 

and the F-test, the ratio of two independent chi-squared variables, 
follows an F-distribution. 

• When the null hypothesis is false, MSB no longer follows a chi-
squared distribution.  The F-test now follows a non-central F-
distribution. 

 
 

• A quick return to the t-test 
o I claim that spooled

2 from the t-test is exactly equal to MSW from an ANOVA 
on two groups. 

 
o Why? 
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• Let’s start with the formula for spooled
2  from the two-independent samples t-

test: 

spooled
2 =

(n1 −1)s1
2 + (n2 −1)s2

2

(n1 −1) + (n2 −1)
 

 

spooled
2 =

SS1 + SS2

(n1 + n2 −2)
 

 

df
SSs pooled

groupeach  within 2 =  

 
o Thus, when there are two groups, MSWs pooled =2  

 
 
6. A recap of the F-test 

• We have now found two uses of the F-test 
 

• We can use the F-test to examine if the population variances of two 
independent samples are equal. 

 
H0 : σMin

2 ≥ σMax
2  

H1: 22
MaxMin σσ <  

F(dflarger ,dfsmaller) =
slarger

2

ssmaller
2    dflarger = nlarger −1 dfsmaller = nsmaller −1 

 
 

• We can also use the F-test to examine if the population means of two or 
more groups are equal 

 
H0 : µ1 = µ2 = ...= µa  
H1 : Not all µi s are equal 

 

F(dfb ,dfw ) =
MSB

MSW
=

SSB
a −1

SSW
a(n −1)

  dfb = a −1 dfw = a(n −1) 

 
• These tests examine different hypotheses, are set-up differently, and result in 

very different conclusions!  Be sure not to confuse these two different uses 
of the F-test!!! 
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7. Completing the one-way ANOVA table 
 

• The results of a one-way analysis of variance are almost always displayed in 
a table similar to the following: 

 
 

ANOVA      
Source of Variation SS df MS F P-value 

Between Groups SSB a-1  SSB/dfb MSB/MSW 
Within Groups SSW N-a  SSW/dfw   
Total SST=SSB+SSW N-1       

 
• The p-value listed is the p-value associated with F(a-1,N-a). Although you 

should know how to determine if an observed F is significant based on 
tabled F-values, in general, it is better to look up exact p-values with a 
computer program. 

 
• This table provides a nice summary of 

o The decomposition of SST into SSB and SSW 
o The decomposition of degrees of freedom 
o The pooled error variance (MSW) 

 
• Here is the ANOVA table from the blood pressure example. 

 
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 322.95 3 107.65 1.58 0.23 3.24
Within Groups 1089.6 16 68.1    
Total 1412.55 19         

 
o What is the null hypothesis? Should it be retained or rejected? 

 
 

• Be able to fill in a partially completed ANOVA table (assuming equal n) 
 
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 64.2 3   
Within Groups 52.3    
Total  39         
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8. Confidence Intervals in ANOVA 
• Remember a confidence interval is determined by: 

Estimate ± Critical Value  *  Std Error( ) 
 

• For the one-sample t-test, we obtained the following formula: 









∗±

n
stx critobs  

  
• We need three parts: 

o The Estimate 
o The Standard Error 
o The Critical Value 

 
 

• Let’s determine the parts of the confidence interval for ANOVA 
o The Estimate 

This is the easy part: we can use the cell mean 
 

o The Standard Error 
Our estimate of the variance is MSW 
For n, we should use nj, the cell size for the mean of interest 

jn
MSW  

 
o The Critical Value 

We are computing an interval around a single mean, so we can use the 
critical value of the t-distribution or of the F-distribution: 

 
We can use a t-statistic:    tcrit (dfw )  
Or we can use an F-statistic: ),1( Wcrit dfF  

 
o Putting it all together: 
 











∗±

j
Wcritj n

MSWdftx )(.  
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o Returning to the blood pressure example, to construct a 95% CI: 
• For the drug group X 1 = 91.20,n1 = 5, MSW = 68.10  

 
• Find tcrit : from EXCEL we find that t.05 / 2(16) = 2.12 

 









∗±

5
10.6812.220.91  or  ( )69.312.220.91 ∗±   

(83.38, 99.03) 
 
 

Effect of Treatment on SPB

80
82
84
86
88
90
92
94
96

Drugs Biofeedback Diet Combination

Treatment

Error bars represent + 1 Std Error
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9. Effect sizes in ANOVA 
• Extending g: δ  

o Remember that for the two groups situation 
g =

X 1 − X 2
σ pooled

 

 
o In the ANOVA case, we have MSW instead of σ pooled

2  

g~ =
X 1 − X 2

MSW
 

 
o One possibility is to report a d value for each pair of means, but this is 

cumbersome.  A more workable approach is to report the effect size of 
the range of group means 

MSW
XX MINMAX −

=δ  

 
o To interpret δ: 

δ =   .25 small effect size 
δ =   .75 medium effect size 
δ = 1.25 large effect size 

 
 

• Cohen’s f 
o Another approach is to calculate the standard deviation of the group 

means, ˆ σ m , and compare it to the within-group standard deviation. 

a

XX
r

j
j

m

∑
=

−
= 1

2..).(
σ̂  

 
o Then a standardized effect size measure would be given by 

MSW
f m

e

m σ
σ
σ ˆ
ˆ
ˆ

==  

 
o Interpretation of f (for the multi-group case) is the same as the 

interpretation of d (in the two group case): 
f = .10 small effect size 
f = .25 medium effect size 
f = .40 large effect size 
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• Eta Squared ( 2η ) aka R2 
o A measure of the proportion of the variance accounted for by the effect 

η2 =
SSBetween

SSBetween + SSWithin
=

SSBetween
SSTotal

 

 
o Compared to the reduced model (a model with the grand mean only), 

what percent of the variance is explained by the factor? 
o It is equivalent to the correlation between the predicted scores (from the 

full model) means and the observed scores 
 

o 2η is based on the specific sample  from which it was calculated and can 
not be generalized to the population (It overestimates the true variance 
accounted for).  Because 2η  is biased, and there are better measures 
available, you should not report 2η .  Unfortunately, this is the only 
measure of effect size that SPSS computes. 

 
• Omega Squared( 2ω ) 

o An alternative measure of the proportion of variance that corrects the 
positive bias of 2η  

 
ˆ ω 2 =

SSBetween − (a −1)MSWithin
SSTotal + MSWithin

 

  
o Interpretation of 2ω : 

2ω   = .01  small effect size 
2ω   = .06  medium effect size 
2ω   = .15  large effect size 

 
• Summary: 

o f is best measure to use to capture effect size 
o 2ω  is the best measure to use to discuss the percentage of variance 

accounted for 
o However, with more then two groups, it is very difficult to interpret these 

values.  What is the effect? Why is the effect large?   
o Many wise people have suggested that effect sizes should not be reported 

for omnibus tests. 
o ?? Why can’t we report an r effect size for ANOVA?? 
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• Let’s examine each of these measures with our blood pressure example: 

 

23.1
1.68
832.93

=
−

=
−

=
MSW

XX MINMAXδ  

 

σm =
(µ. j − µ..)2

j=1

r

∑
a

=
(91.2 − 89.85)2 + (93.2 − 89.85)2 + (92 −89.85)2 + (83 −89.85)2

4
= 4.02  

f =
ˆ σ m

MSW
=

4.02
68.1

= .49 

 

228.
60.108995.322

95.3222 =
+

=η  

 
ω2 =

SSBetween − (a −1)MSWithin
SSTotal + MSWithin

=
322.95 − (3)68.1
1412.55 + 68.1

= .08  
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10. ANOVA in SPSS 
• Data entry 

o Data must be entered with the condition in one column and the dependant 
variable in a second column. 

 
DATA LIST FREE 
  /group sbp. 
BEGIN DATA. 
1 84 
1 95 
. 
. 
4 80 
4 81 
END DATA. 
 
VARIABLE LABELS 
  group 'Experimental Condition' 
  sbp 'Systolic Blood Pressure'. 
 
VALUE LABELS 
  group 1 'Drug'  
            2 'Biofeedback'  
            3 'Diet' 
            4 'Combo'. 
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• Using ONEWAY 

ONEWAY sbp BY group 
  /stat=descriptives. 

Descriptives

Systolic Blood Pressure

5 91.2000 9.47101 4.23556 79.4402 102.9598 80.00 104.00
5 93.2000 11.34460 5.07346 79.1138 107.2862 81.00 108.00
5 92.0000 5.24404 2.34521 85.4887 98.5113 86.00 98.00
5 83.0000 5.14782 2.30217 76.6081 89.3919 78.00 91.00

20 89.8500 8.62234 1.92801 85.8146 93.8854 78.00 108.00

Drug
Biofeedback
Diet
Combo
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

Minimum Maximum

 
ANOVA

Systolic Blood Pressure

322.950 3 107.650 1.581 .233
1089.600 16 68.100
1412.550 19

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 

F(3,16) =1.58, p = .23 
 
 

o With ONEWAY SPSS gives us a confidence interval for 
X 1 = (79.44,102.95)  

o We previously computed this CI to be X 1 = (83.38,99.03). Why the 
difference from what we previously computed? 

 
o Suppose you had a sample of n=5 with 1X  = 91.20 and s2 = 89.68.  How 

would you construct a 95% CI? 
 

• Find tcrit: from EXCEL we find that t.05 / 2(4) = 2.78 

    







∗±

5
68.8978.220.91  or  ( )235.4*78.220.91 ±   

(79.42, 102.97) 
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o We did not use s2 for the group; we used MSW as our estimate of the 

variance.   
• But to conduct an ANOVA, we MUST assume that the variances of 

all the groups are equal.   
• If this assumption is satisfied, then MSW is an estimate of the 

variance of group 1 and it is based on a larger sample than s1
2.  By the 

Law of Large numbers, MSW should be a better estimate of the 
variance than s1

2 
 

o SPSS ONEWAY, however, does NOT use a pooled variance estimate 
(using information from all the groups) to construct the confidence 
intervals.  Instead, it uses only the information from the particular 
experimental group to construct the confidence interval.  

 
o In other words, when you run an ANOVA, and the assumptions of an 

ANOVA are upheld, then you SHOULD NOT use the confidence 
intervals computed by SPSS ONEWAY (but you can use 
GLM/UNIANOVA). 
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• Using UNIANOVA/GLM 

UNIANOVA sbp  BY group 
  /EMMEANS = TABLES(group). 

 
Tests of Between-Subjects Effects

Dependent Variable: Systolic Blood Pressure

322.950a 3 107.650 1.581 .233 .229
161460.450 1 161460.450 2370.932 .000 .993

322.950 3 107.650 1.581 .233 .229
1089.600 16 68.100

162873.000 20
1412.550 19

Source
Corrected Model
Intercept
GROUP
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Partial Eta
Squared

R Squared = .229 (Adjusted R Squared = .084)a. 
 

Experimental Condition

Dependent Variable: Systolic Blood Pressure

91.200 3.691 83.376 99.024
93.200 3.691 85.376 101.024
92.000 3.691 84.176 99.824
83.000 3.691 75.176 90.824

Experimental Condition
Drug
Biofeedback
Diet
Combo

Mean Std. Error Lower Bound Upper Bound
95% Confidence Interval

 
 

• Note that these Confidence Intervals are correct (assuming that the 
homogeneity of variances assumption is satisfied).  You CAN use 
UNIANOVA to obtain valid CIs. 

• To obtain these confidence intervals, you must ask for a table of 
expected means; descriptives does not output confidence intervals . 

 
 
 

• Oneway ANOVA in EXCEL is not recommended 
o EXCEL can be useful in some circumstances, but it is very limited in its 

capabilities 
 
 

• All procedures give identical results for the omnibus F-test. 
F(3,16) =1.58, p = .23 
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11. Two more examples 

• Example #1:  Age and car-buying (Neter, 1996, Ex 16.13) 
An organization wanted to investigate the effect of the car owner’s age on 
the amount of cash offered to buy a used car.  All “car owners” took a 
medium priced six year old car to 36 randomly selected dealers in the 
region.  Here is a list of the offers received (in the hundreds): 

 
Young Middle Elderly 

23 20 28 27 23 21 
25 23 27 30 20 20 
21 19 27 38 25 19 
22 22 29 27 21 20 
21 19 26 26 22 22 
22 21 29 29 23 21 

 
 

o Step 1: Exploratory Data Analysis: Look at the data 
 

• Side-by-Side Boxplots  
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• Side-by-Side Histrograms  

(Use Interactive Graphs in SPSS) 

1

2

3

4

C
ou

nt

Young Middle

Elderly

20.00 22.00 24.00 26.00 28.00

Amount of offer for the used car

1

2

3

4

C
ou

nt

 
 

• Look at the descriptive statistics 
EXAMINE VARIABLES=price BY age.  

Descriptives

21.5000 .50000
21.5000

3.000
1.73205

2.5000
.315 .637
.234 1.232

27.7500 .37183
27.5000

1.659
1.28806

2.0000
.249 .637

-1.000 1.232
21.4167 .48396
21.0000

2.811
1.67649

2.7500
.729 .637
.434 1.232

Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis
Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis
Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis

Age
Young

Middle

Elderly

Amount of offer
for the used car

Statistic Std. Error
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EXAMINE VARIABLES=price. 

Descriptives

23.5556 .56265
22.5000

11.397
3.37592

6.0000
.427 .393

-1.186 .768

Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis

Amount of offer
for the used car

Statistic Std. Error

 
 
 

o Step 2: Set-up the Hypothesis Test and Conduct the Analysis 
 
H0 : µ1 = µ2 = µ3  
H1 : Not all µi 's  are equal 
 
Use α=.05 

 
ONEWAY price BY age 
  /STAT=DESC. 

Descriptives

Amount of offer for the used car

12 21.5000 1.73205 .50000 20.3995 22.6005
12 27.7500 1.28806 .37183 26.9316 28.5684
12 21.4167 1.67649 .48396 20.3515 22.4819
36 23.5556 3.37592 .56265 22.4133 24.6978

Young
Middle
Elderly
Total

N Mean Std. Deviation Std. Error Lower Bound Upper Bound

95% Confidence Interval for
Mean

 
ANOVA

Amount of offer for the used car

316.722 2 158.361 63.601 .000
82.167 33 2.490

398.889 35

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 

F(2,33) = 63.60, p < .01 
 
 

• Reject null hypothesis & conclude that not all age groups received the 
same cash offers for the car.
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o Step 3: Calculate Confidence Intervals and Effect Sizes 

 
• Confidence Intervals: 

 
Use SPSS: 

UNIANOVA price  BY age 
  /EMMEANS = TABLES(age). 

Age

Dependent Variable: Amount of offer for the used car

21.500 .456 20.573 22.427
27.750 .456 26.823 28.677
21.417 .456 20.490 22.343

Age
Young
Middle
Elderly

Mean Std. Error Lower Bound Upper Bound
95% Confidence Interval

 
 
Or calculate them by hand: 
 











∗±

j
Wcritj n

MSWdftx )(.  

 
tcrit (33)= 2.0345 for α = .05, two-tailed 
MSW   = 2.490 
nj         = 12 for all j 

 

Youth:  







∗±

12
490.20345.25.21    (20.57, 22.43) 

Middle:  







∗±

12
490.20345.275.27   (26.82, 28.68) 

Elderly:  







∗±

12
490.20345.24167.21   (20.49, 22.34) 
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• Effect Sizes:   

 

99.3
490.2

42.2172.27
=

−
=

−
=

MSW
XX MINMAXδ  

 

σm =
(µ. j − µ..)2

j=1

r

∑
a

=
(21.5 − 23.56)2 + (27.75 − 23.56)2 + (21.42 −23.56)2

3
= 2.965 

88.1
490.2

965.2
===

MSW
f mσ

 

 

794.
889.398
722.3162 ==η  

 
ω2 =

SSBetween − (a −1)MSWithin
SSTotal + MSWithin

=
316.722 − (2)2.49

398.889 + 2.49
= .777  

 
     
   F(2,33) = 63.60, p < .01, f = 1.88 
 
 

Age Discimination in Used Car Prices

20

22

24

26

28

30

Young Middle Old

Age

Error bars represent + 1 Std Error
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• Example #2: Susceptibility to Hypnosis (Kirk, 1995, Exercise 5.4) 
 A researcher wanted to design instructions to maximize hypnotic 
susceptibility. Thirty-six hypnotically naive participants were randomly 
assigned to one of four groups: 
o Group 1: Programmed active information 
o Group 2: Active information 
o Group 3: Passive information 
o Group 4: Control group: no information 
All participants then completed the Stanford Hypnotic Susceptibility Scale.  
The following data were observed: 

 
Group 1 Group 2 Group 3 Group 4 

4 10 4 4 
7 6 6 2 
5 3 5 5 
6 4 2 7 
10 7 10 5 
11 8 9 1 
9 5 7 3 
7 9 6 6 
8 7 7 4 

    
 

o Step 1: Exploratory Data Analysis: Looking at the data 
• Scatterplot of Group by DV and Side-by-Side Boxplots 

Experimental Condition
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• Examine Descriptive Statistics 

Descriptives

7.4444 .76578
7.0000
5.278

2.29734
4.0000

.092 .717
-.828 1.400

6.5556 .76578
7.0000
5.278

2.29734
4.0000

-.092 .717
-.828 1.400

6.2222 .81271
6.0000
5.944

2.43812
3.5000

-.131 .717
.040 1.400

4.1111 .63343
4.0000
3.611

1.90029
3.0000

-.202 .717
-.490 1.400

Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis
Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis
Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis
Mean
Median
Variance
Std. Deviation
Interquartile Range
Skewness
Kurtosis

Experimental Condition
Prog Active Info

Active Info

Passive Info

No Info

Hypnotic
Susceptability Scale

Statistic Std. Error
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• Side-by-Side Histograms  

0.0
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1.0

1.5

2.0
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1.0

1.5
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C
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Hypnotic Susceptability Scale

 
 

o Step 2: Set-up the Hypothesis Test and Conduct the Analysis 
 
H0 : µ1 = µ2 = µ3 = µ4  
H1 : Not all µi 's  are equal 
 
Use α=.05 
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ONEWAY shsc BY group 
 /STAT=DESC. 

ANOVA

Hypnotic Susceptability Scale

53.861 3 17.954 3.571 .025
160.889 32 5.028
214.750 35

Between Groups
Within Groups
Total

Sum of
Squares df Mean Square F Sig.

 
 
 

F(3,32) = 3.57, p = .025 
 
 

o Step 3: Calculate Confidence Intervals and Effect Sizes 
• Confidence Intervals: 











∗±

j
Wcritj n

MSWdftx )(.  

 
tcrit (32)  = 2.0369 for α = .05, two-tailed 
MSW    = 5.028 
nj           = 9 for all j 

 

PAI:    







∗±

9
028.50369.2444.7    (5.92, 8.97) 

Active Info:   







∗±

9
028.50369.2556.6    (5.03, 8.08) 

Passive Info:  







∗±

9
028.50369.2222.6    (4.70, 7.75) 

Control:     







∗±

9
028.50369.2111.4    (2.59, 5.63) 

 
Experimental Condition

Dependent Variable: Hypnotic Susceptability Scale

7.444 .747 5.922 8.967
6.556 .747 5.033 8.078
6.222 .747 4.700 7.745
4.111 .747 2.589 5.634

Experimental Condition
Prog Active Info
Active Info
Passive Info
No Info

Mean Std. Error Lower Bound Upper Bound
95% Confidence Interval
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• Effect Sizes:   

 

48.1
028.5

111.4444.7
=

−
=

−
=

MSW
XX MINMAXδ  

 

σm =
(µ. j − µ..)2

j=1

r

∑
a

      = (7.44 −6.08)2 + (6.56 −6.08)2 + (6.22 − 6.08)2 + (4.11− 6.08)2

4
=1.223

 

 

55.
028.5

223.1
===

MSW
f mσ

 

 

251.
750.214
861.532 ==η  

 
 

ω2 =
SSBetween − (a −1)MSWithin

SSTotal + MSWithin
=

53.861− (3)5.028
214.75 + 5.028

= .176 

 
   

   F(3,32) = 3.57, p = .025, f = .55 
 

Susceptibility to Hypnosis
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Error Bars Represent 95% Confidence Intervals
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12. Power in ANOVA 
 

• Three approaches to power 
o Post-hoc power 
o Power analysis to determine sample size for a t-test 
o Power analysis to determine sample size in ANOVA 

 
• A quick review of statistical power 

 
        Decision 
State of the world Reject 

Null Hypothesis 
Fail to Reject 

Null Hypothesis 
      Null Hypothesis  
      TRUE 

 

    Type 1 Error 
        Probability = α 

    Correct Decision         
        Probability = 1 - α 

      Null Hypothesis 
      FALSE 

 

    Correct Decision    
        Probability = 1 – β 
        (POWER) 

    Type 2 Error 
        Probability = β 

 
o Power is the ability to detect a difference that is present 
o Because power concerns a difference that is present, all power 

calculations take place under the alternative hypothesis 

Crit Val

µ0 µ1

-Crit Val

Power

1-β
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• Post-hoc power 
o After you conduct a statistical test, you can compute its power. 
o In practice, this is a relatively pointless exercise: 

• If you reach statistical significance, then you must have had a large 
enough sample to detect the effect, and your power will be high. 

• If you did not reach statistical significance, then you must not have 
had a large enough sample to detect the effect, and your power will be 
low 

• Thus, post-hoc power will correlate strongly with the significance 
level 

• Unfortunately, this type of power is what SPSS gives you when you 
ask for power. 

 
o Calculating post-hoc post lays the framework for the concepts we will 

use for a power analysis to plan sample size, so it is enlightening to see 
how power is calculated after the data is collected. 
• See Appendix A for details on how to calculate post-hoc power in 

cases where you have are one or two independent samples. 
 
 

• A more common use of a power analysis is to plan the sample size before 
running a study so that the study will have sufficient power. 

 
• Power analysis to determine sample size for a two-sample t-test 

o A common power benchmark is 1− β = .80 so that 80% of the time an 
effect is present our study will detect it. 

 
o Cohen (1998) has provided tables that simplify the process of 

determining the necessary sample size for a test.  To use his tables, you 
need to specify 
• α  The Type I error rate 
•  Whether you will conduct a one-tailed or two tailed test 
• d   Cohen’s effect size 

 
o We generally set 05.02 =α , so that quantity is known in advance  
o Thus, we need to estimate d in order to determine the sample size for 

1− β = .80.  
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o To determine sample size: 
• Set 05.02 =α  (usually) 
• Estimate the effect size (d) you will find in your study 
• Use charts and tables to look up the sample size necessary to obtain 

the desired power – usually 1− β = .80 
• CAUTION: Cohen’s tables provide the necessary sample size per 

group to achieve the desired power.  For a two-sample t-test, you must 
double the tabled value. 

 
o Example #1: Suppose we want to find a small effect (d = .2) with 

05.02 =α  and 1− β = .80 
• Yikes! We need 393 per group for a total sample of N = 786 

 
o Example #2: Suppose we want to find a small effect (d = .2), but we are 

willing to settle for 60% power. (α = 0.05 and 1− β = .60) 
• We still need 246 per group for a total sample of N = 492 

 
o Example #3: Suppose we want to find a medium effect (d = .5) with 

α = 0.05 and 1− β = .80 
• Now we *only* need 64 per group for a total sample of N = 128 

 
 

• Power analysis to determine sample size for a oneway ANOVA 
 

o In this case, we need to estimate/know the following information: 
• α  The Type I error rate 
• u The degrees of freedom in the numerator of the F-test  

a-1 
• f The standardized effect size 

 
• Again, Cohen’s tables provide the necessary sample size per group to 

achieve the desired power.  For an ANOVA design, you must 
multiply the tabled value by the number of groups. 

 
 

o Example #1: Suppose we want to find a small effect (f = .10) with 
α = 0.05 for a two-group design (u = 1) with 80% power. 
• We find that n = 393.  Thus, we require a sample of N = 786 
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o Example #2: Suppose we want to find a medium effect (f = .25) with 
α = 0.05 for a five-group design (u = 4) with 80% power. 
• We find that n = 39.  Thus, we require a sample of N = 195 

 
o Example #2: Suppose we want to find a medium effect (f = .25) with 

α = 0.05 for a five-group design (u = 4), but we are willing to settle for 
50% power. 
• Now, we find that n = 21.  Thus, we require a sample of N = 105. (But 

with this sample, we would only have a 50% chance of detecting a 
medium sized effect!) 

 
• For different types of analyses, a power analysis to determine sample size 

boils down to the same procedure: You must estimate some sort of effect 
size and then use this information to determine the necessary sample size for 
a given level of power. 

 
 

• Words of caution about power analyses: 
o Be realistic about your assumptions! Small changes in your assumptions 

can result in large changes in the necessary sample 
o All these calculations assume equal n per cell.  In general it is unwise to 

plan a study with unequal n.  However, if you know in advance that the 
sample sizes will be unequal, you should take that information into 
account in your power analysis 

o These power analyses only determine the sample size to detect an 
omnibus effect.  If you do not care about the omnibus effect, then 
different procedures should be used. 

 
• I am NOT a fan of power analyses. 

o If the estimates for a power analysis are off, the estimated sample size 
will be off, sometimes dramatically. 

o Frequently people attempt to conduct a power analyses when they have 
too little information.  In these cases, a pilot study should be conducted. 

o Pilot studies can be beneficial in determining necessary sample size, and 
in refining the manipulation/materials to decrease error and increase the 
effect size. 

 
• Power analyses are required for all grant proposals, so you need to be 

familiar with them.  
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Appendix 
 
A. Post-Hoc Power Analyses 
 

• A Post-hoc power analysis is the process of determining the power of a 
statistical test after you have collected the data and conducted the test.   

 
• To calculate the power of a test, we need three pieces of information: 

o The raw effect size  
o The standard error (the variability of the sampling distribution) 
o The alpha level (which we use to determine the location of the critical 

value, determined under the null hypothesis, in the alternative hypothesis 
distribution 

 
 

Crit Val

µ0 µ1

-Crit Val

Power

1-β
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• The three step procedure to calculating post-hoc power: 

o Step #1: Under the H0 curve, find the critical value, critX , in the units of 
the original scale, associated with critical value of the test statistic. 

 
o Step #2: Switch to the H1 curve, and identify the z-score associated critX . 

 
o Step #3: Under the H1 curve, find the p-value associated with the z-score 

and determine the power of the test. 
 

 
• Example #1: one-sample t-test (TV viewing example, p. 2-30) 

o X obs = 22.53 µ0 = 21.22  
o s = 2.85 
o  n = 50 df = 49 
o For two-tailed test with α = .05, tcrit = ±2.00957  
 
o Step #1: Find critX  (the value of X  exactly associated with tcrit ) under the 

null hypothesis curve 

n
s

Xt µ−
=    

 

+

50
84.2

22.2100957.2 −
=

X   critX  = 20.378 and critX  = 22.027 

 
 

o Step #2: Find the z-score associated with the appropriate critX  under the 
alternative hypothesis curve 

 
• What do we know about the H1 curve 

o We know its mean: X obs = 22.53 
o We know its standard deviation: s

n
= .4016 

o We know its approximate shape: it approximates a normal curve 
o H1 ~ N X obs,

s
n

 
 
 

 
 
  or N(22.53,.4016)  
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• Using this information, we can find the z-score associated with 
appropriate critX  for a N(22.53,.4016)  curve: 

 

25.1

50
84.2

53.22027.22
−=

−
=

−
=

n
s

XX
z obscrit  

 
 

o Step #3: Find the p-value associated with the z-score and determine the 
power of the test  

For z = -1.2523, p = .1052 
 

• Interpret p (draw curves!) 
In this case, estimated power = 1-.1052 = 0.8947 
 

 
 

• For example #1, when we calculate post-hoc power in this manner, we are 
only approximating the power because we have made a key simplification: 

 
o We have assumed that the alternative hypothesis distribution is normally 

distributed (we used z-tables to determine the area under its curve). 
 

o Actually, the alternative hypothesis distribution follows a non-central t-
distribution.  The non-central t-distribution has two parameters: 

ν  = degrees of freedom 
δ   = non-centrality parameter 

 
 

We can use SPSS UNIVANOVA to calculate the exact observed power. 
 
 

• Example #2 (revisited) 
o First, let’s subtract the null hypothesis from the data, so that the null 

hypothesis becomes 0:0 =µH  
compute t_hour = hours - 21.22. 
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o Now, we can use UNIANOVA to test if the mean differs from zero (that 

is, to conduct a one-sample t-test examining differences from zero), and 
we can ask for the observed power: 

 
UNIANOVA t_hour 
  /PRINT = OPOWER. 

 
Tests of Between-Subjects Effects

Dependent Variable: T_HOUR

85.439 1 85.439 10.529 .002 10.529 .889
397.629 49 8.115
483.068 50
397.629 49

Source
Intercept
Error
Total
Corrected Total

Type III Sum
of Squares df Mean Square F Sig.

Noncent.
Parameter

Observed
Powera

Computed using alpha = .050a. 
 

 
• Note that our estimate of the power was close 

Estimated power = 0.895 
Actual power = 0.889 
 

• SPSS also prints the non-centrality parameter for the non-central F-
distribution 

ˆ φ =10.529 
 
Note:  φ  is the non-centrality parameter of the F-distribution 
 δ is the non-centrality parameter of the t-distribution 
 
 

• Understanding the non-centrality parameter 

δ =
µ1 −µ2

2
n

σ
= d

n
2

  φ =

(µi − u)2∑
a

σ
n

=
σm

σ
n

= f n  

 
o The non-centrality parameter depends on 

• The difference between the population means 
• The population variance 
• The sample size 

 
 


