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Review of Basic Concepts: 
Review of Hypothesis Testing 

 
 
1.   Logic of Hypothesis Testing 
 

• Because of random variability in the data, the parameters we estimate from 
the data will never match the population parameters exactly (see 1-48 and 1-
49) 

 
• This fact presents a problem for us. Consider the speeding example. Suppose 

we want to know if, on average, people in this sample are speeding.  In our 
sample of 25, we found the average speed to be 62.5 MPH.  Although this 
number is larger than 55 MPH, there are two reasons why this sample mean 
could be larger than 55MPH 

 
o The true value speed in the population is greater than 55 MPH.  In other 

words, we sampled from a distribution that had a mean value of speed 
greater than 55.   
• If this is the case, then we should conclude that on average this 

population of drivers violates the speed limit 
• If we repeated the sampling process, it is likely we would again find a 

sample mean greater than 55MPH 
 

o A second possibility is that we sampled from a distribution that had a 
mean value of speed equal to or less than 55, but because of the random 
variability in the sampling process, we happened to obtain a sample with 
an average speed of 62.5 MPH.   
• If this is the case the population of drivers does not, on average, 

violate the speed limit 
• Our findings are not due to sampling from a population of speeders, 

but are due to random chance 
• If we repeated the sampling process, it is likely we would find a 

sample mean near 55 MPH  
 

• Hypothesis Testing is the process of performing a statistical test to determine 
the likelihood that the estimate/association was seen by chance alone 
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• The statistical hypothesis vs. the research hypothesis 
 

o The research hypothesis represents the rationale of a study and specifies 
the kinds of information required to support that hypothesis 

o To evaluate the research hypothesis statistically, the researcher must form 
a set of statistical hypotheses 
• It is the statistical hypotheses that are assessed and evaluated in the 

statistical analysis.  We use the outcomes of the statistical hypotheses 
to evaluate and refine the research hypothesis 

• The statistical hypothesis establishes a set of mutually exclusive and 
exhaustive hypotheses about the true value of the parameter in 
question 

 
• The null and alternative hypotheses 

o The starting point of any statistical hypothesis is the null hypothesis  
o The null hypothesis is the statement that the observed data do not differ 

from what would be expected on the basis of chance alone 
 

• Example 1: You collect speed data to determine if drivers are 
violating the speed limit 

55:0 ≤MPHH µ  
 

• Example 2: You investigate if a GRE prep class improves GRE scores 
by giving people a GRE test before the class and comparing the result 
to a GRE after the class 

afterbefore GREGREH µµ =:0  

Or more generally, 
21

:0 TimeTimeH µµ =  
 

•  Example 3: You design a study to compare two new drugs to a no 
drug control 

DrugBDrugAControlH µµµ ==:0  

Or more generally, 
mGroupGroupH µµ == ...:

10  
 

•  Example 4: You measure self-esteem and depression scores to see if 
they are related to each other 

0:0 =ρH  
 



2-4 © 2006 A. Karpinski 

o For each null hypothesis, you must have a corresponding alternative 
hypothesis.  The null and alternative hypotheses must be: 
• Mutually exclusive (no outcome can satisfy both the null and 

alternative hypotheses) 
• Exhaustive (every possible outcome must satisfy either the null or 

alternative hypothesis) 
 

• As a result, once you specify the null hypothesis, the alternative 
hypothesis is automatically determined 

 
 

• Example 1: Speeding example 
55:0 ≤MPHH µ  
55:1 >MPHH µ  

 
 

• Example 2: GRE example 
afterbefore GREGREH µµ =:0  

afterbefore GREGREH µµ ≠:1  

Or more generally, 
21

:0 TimeTimeH µµ =  

21
:1 TimeTimeH µµ ≠  

 
•  Example 3: New drug example 

DrugBDrugAControlH µµµ ==:0  
:1H At least one iµ differs from the other means 

 
Or more generally, 

mGroupGroupH µµ == ...:
10  

:1H At least one iµ differs from the other means 
 

• Example 4: Self-esteem and depression 
0:0 =ρH  
0:1 ≠ρH  

 
o Be sure to always state the null and alternative hypotheses in terms of the 

population parameters, ρσµ ,, , and NOT the sample statistics, rsX ,,  
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• The Logic of the Null Hypothesis Test 
 

o All hypothesis testing starts with the assumption that the null hypothesis 
is true. It is the hypothesis of no association, or that the groups came 
from the same underlying distribution. 

 
o There are three possible explanations for any differences that might be 

observed: 
1. An all systematic factors explanation 
2. An all chance explanation 
3. A chance + systematic factors explanation 

 
• But an all systematic explanation never happens 
• We are left to choose between a chance explanation and a chance + 

systematic factors explanation 
• The null hypothesis test examines the viability of the all chance 

explanation.   
⇒ If differences in the data can be accounted for by a random 

process, we fail to reject the null hypothesis (Note that we are not 
saying that the null hypothesis is correct – just that we do not have 
enough evidence to eliminate this possibility)  

⇒ If an all chance explanation cannot explain the data, then we reject 
the null hypothesis, and we conclude that there must be some 
systematic factor at work.   

 
• The statistical hypothesis test gives us no information as to what the 

systematic factor might be. It could be the experimenter’s 
manipulation, or a naturally occurring association/difference between 
the groups. It is up to the researcher to identify a plausible systematic 
factor.  It is at this point that we must relate the statistical hypothesis 
to our research hypothesis. 

 
• See Abelson’s (1995) ESP example 
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• How confident do we have to be that the null hypothesis is false before we 

reject it? 
o Suppose a shady fellow gives you a coin, and you want to test if the coin 

is biased toward heads 
o We can convert this research hypothesis to a statistical hypothesis 

H0 : ΠHeads ≤ .5  
H1 : Π Heads > .5 

 
o Suppose we flip the coin one time and get a heads. Are we confident that 

the coin is biased toward heads? 
 

• No! If the null hypothesis is true, then the coin had a 50% probability 
of coming up heads. If we rejected the null hypothesis then when the 
null hypothesis is correct, we would be wrong 50% of the time! 

 
 

o Suppose we flip the coin two times and get two heads. Are we confident 
that the coin is biased toward heads? 

 
• We can use the binomial theorem to determine the probability of 

observing two heads in two coin tosses 
 

( )xNx pp
x
N

xp −−







= 1)(  

 
Where  N = total number of trials 
  x = # of successes  
  p = probability of success 
  

25.)5;.2;2(
50.)5;.2;1(
25.)5;.2;0(

=
=
=

p
p
p

 

 
• If the null hypothesis is true, then the coin had a 25% probability of 

coming up heads on both tosses. If we rejected the null hypothesis 
then when the null hypothesis is correct, we would be wrong 25% of 
the time! 
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o Suppose we flip the coin three times and get three heads. Are we 

confident that the coin is biased toward heads? 
 

125.)5;.3;3(
375.)5;.3;2(
375.)5;.3;1(
125.)5;.3;0(

=
=
=
=

p
p
p
p

 

 
• If the null hypothesis is true, then the coin had a 12.5% chance of 

coming up heads on all three tosses. If we rejected the null hypothesis 
then when the null hypothesis is correct, we would be wrong 12.5% of 
the time.  I’d still feel a bit uneasy about rejecting the null hypothesis 
in this case 

 
o Suppose we flip the coin four times and get four heads. Are we confident 

that the coin is biased toward heads? 
 

0625.)5;.4;4(
25.)5;.4;3(
375.)5;.4;2(
25.)5;.4;1(
0625.)5;.4;0(

=
=
=
=
=

p
p
p
p
p

 

 
• If the null hypothesis is true, then the coin had a 6.25% chance of 

coming up heads on all four tosses. If we rejected the null hypothesis 
then when the null hypothesis is correct, we would be wrong 6.25% of 
the time.   

• Perhaps that might be good enough for us to conclude that the coin is 
biased.  However, the scientific convention has been that when the 
null hypothesis is true you need to have a probability of .05 or less so 
that the observed result (or a more extreme result) could be due to 
chance alone 
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o Suppose we flip the coin nine times. How many heads would we have to 
observe to be confident that the coin is biased toward heads? 

 

2461.)5;.9;4(
1641.)5;.9;3(
0703.)5;.9;2(
0176.)5;.9;1(
0020.)5;.9;0(

=
=
=
=
=

p
p
p
p
p

 

0020.)5;.9;9(
0176.)5;.9;8(
0703.)5;.9;7(
1641.)5;.9;6(
2461.)5;.9;5(

=
=
=
=
=

p
p
p
p
p

 

 
• If the null hypothesis is true (the coin is fair), then the probability of 

observing 8 or 9 heads in 9 coin flips is: 
0195.0020.0176.)9  8( =+=== xorxp  

 
• If the null hypothesis is true (the coin is fair), then the probability of 

observing 7 or more heads in 9 coin flips is: 
0898.0020.0176.0703.)9  8  7( =++==== xorxorxp  

 
• Thus, we would need to observe 8 or more heads (out of nine tosses) 

to reject the null hypothesis and conclude that the coin is biased 
toward heads 

 
 

• Some terminology regarding hypothesis testing: 
 

o α  (the alpha level or the significance level)  
• The probability of rejecting the null hypothesis when the null 

hypothesis is true 
• Also known as a Type I error 
• By convention, usually 05.=α  

 
o p-value (or probability value) 

• The probability of observing an outcome as extreme as (or more 
extreme than) the observed value, if the null hypothesis is true   

• If α≤p  then we reject the null hypothesis 
• If α>p  then we retain the null hypothesis  

(or we fail to reject the null hypothesis) 
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o A one-tailed vs. a two tailed hypothesis test 
• A one-tailed hypothesis test specifies a direction of the effect: 

H0 : ΠHeads ≤ .5  
H1 : Π Heads > .5 

 
• A two-tailed hypothesis test is non-directional: 

H0 : ΠHeads = .5  
H1 : Π Heads ≠ .5 

 
• Our coin-tossing example was an example of a one-tailed test.  We 

only examined one tail of the distribution (the possibility that the coin 
was biased toward heads) 

 
• We could have tested a two-tailed hypothesis (the possibility that the 

coin was biased): 

2461.)5;.9;4(
1641.)5;.9;3(
0703.)5;.9;2(
0176.)5;.9;1(
0020.)5;.9;0(

=
=
=
=
=

p
p
p
p
p

 

0020.)5;.9;9(
0176.)5;.9;8(
0703.)5;.9;7(
1641.)5;.9;6(
2461.)5;.9;5(

=
=
=
=
=

p
p
p
p
p

 

 
For a one tailed test, we only looked at the biased toward heads end of 
the distribution: 

0195.) 8( =≥xp  
0898.)7( =≥xp  

 
For a two tailed test, we would also need to consider the possibility 
that the coin was biased toward tails: 

0039.) 9  0( =≥≤ xandxp  
0390.) 8  1( =≥≤ xandxp  
1797.) 7  2( =≥≤ xandxp  

 
• In science, there is a very strong preference toward two-tailed tests.  It 

is important that you know how to conduct and interpret one-tailed 
tests, but in practice most statistical tests will be two-tailed. 
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• The general procedure of the null hypothesis test: 

o State the null and alternative hypotheses 
o Specify α  and the sample size  
o Select an appropriate statistical test 

(Note that all of the preceding steps should be conducted BEFORE collecting 
data!) 
 

o Compute the test statistic based on the sample data 
o Determine the p-value associated with the statistic 
o Make the decision by comparing the p-value to α  
o Report your results (ALWAYS including effect sizes) 
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•  Types of errors in hypothesis testing 

 
        Decision 
State of the world Reject 

Null Hypothesis 
Fail to Reject 

Null Hypothesis 
      Null Hypothesis  
      TRUE 

 

    Type 1 Error 
        Probability = α 

    Correct Decision         
        Probability = 1 - α 

      Null Hypothesis 
      FALSE 

 

    Correct Decision    
        Probability = 1 – β 
        (POWER) 

    Type 2 Error 
        Probability = β 

 
 

o Interpretation of the p value – What does it mean to say p = .04?   
Which statement is true? 
 
i. The probability that there is no difference between the groups is .04 
ii. Assuming that the null hypothesis is true, the probability we would 

have observed a difference this large (or larger) is .04 
 
• Option 1 is P(H0 | rejection) 
• Option 2 is P(rejection | H0 ) 
 
 
• Option 2 is the correct statement (The p-value is calculated under the 

assumption that the null hypothesis is true). Do not get confused! 
 
 
• For an excellent discussion of issues regarding interpretation of p-

values, and the use of confidence intervals and effect sizes, see: 
 

Cohen, J. (1994). The earth is round (p < .05).  American 
Psychologist, 49, 997-1003. 
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• Determining α and 1-β from the sampling distributions: 

 
 

 
 

 
 
 

 

Crit Val

µ0 µ1

-Crit Val

α/2

Probability 
of aType 1 
Error

α/2

 
 

 

H0 H1 

Sampling 
Distribution: 
H0 True 

Sampling 
Distribution: 
H1 True 

Critical Value for 
Rejecting H0 

µ0 µ1
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Crit Val

µ0 µ1

-Crit Val

Probability 
of aType 2 
Error

β

 
 
 

Crit Val

µ0 µ1

-Crit Val

Power

1-β
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• The power of a test can be increased by 

o Increasing the distance between 0µ and 1µ  (effect size)  
o Decreasing the standard deviation of the sampling distributions           

(Usually by increasing the sample size, but also by decreasing σ) 
o Increasing the probability of a Type 1 error (α ) 
 

Significance test ∝ effect size * sample size (N) 
 

 
• Of course, knowing that you had low power after you ran the test does little 

good . . .  
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2. One sample z-test 

• In our previous discussion of the z-scores, we examine probability (or 
percentile) of an individual score. 
o But we may also want to know if a mean from a sample drawn from a 

known population differs from that population mean? 
o The test used to answer this question is known as the one sample z-test of 

population mean difference 
 

• Note that in this question, the sample is drawn from a known population.  In 
other words, before the data were collected, we already knew the distribution 
of the population.  In order to use a z-test: 
o The population must be normally distributed  
o The population parameters must be known in advance of the study 
o The observations must be independent and randomly drawn from the 

population 
 

 
• In general, any test statistic will have the form: 

 

errorstandard
expectedobservedtestobs

−
=  

 
o In this case, we are testing if an observed sample mean is equal to a 

known population value.  Thus, the observed value is the observed 
sample mean, X , and the expected value is the known population value, 
µ  

 
o For the denominator of the test, we need to calculate the standard error of 

the observed sample mean. But we have already done so! We know that 
the estimated standard error of a sample mean is 

NX

σσ =  

 
o Putting both pieces together, we arrive at the test statistic for the one-

sample z-test: 

N

Xzobs σ
µ−

=  
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• Example 1: National norms for a high school proficiency test are distributed 
)16,75(N . A random sample of 120 high school seniors has a mean 

proficiency score of 72.5 ( 5.72=obsX ). Do these sample scores differ 
significantly from the overall population mean (use 05.=α )? 

 
o In advance, we know the population has a )16,75(N  distribution.  We wish 

to compare the mean of one sample to the known population mean, and 
the observations are independent. Thus, the one sample z-test is 
appropriate. 

 
 

• Example 1a: First, let’s conduct a one tailed test that the sample of high-
school seniors have a lower score than the national average. 

 
o State Null and Alternative Hypotheses 

H0 : µ ≥ 75
H1 : µ < 75

 

 
o Specify α and the sample size 

α = .05 120=N  
 
 

o Compute the test statistic zobs  based on the sample data  
 

71.1
46.1

5.2

120
16

755.72
−=

−
=

−
=

−
=

N

Xzobs σ
µ  

 
o Calculate the p-value, obsp , using the z-table or EXCEL 

0436.=p  
 

o Make decision by comparing p-value to the α  level 
α==<= critobs pp 05.0436.   

 
Reject null hypothesis 
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o Alternatively, rather than computing an exact p-value, we could have 
looked up the critical value zcrit  using the z-table 

zcrit = −1.64  
 

o Make decision by comparing the observed z-score to the critical z-score 
critobs zz =−<−= 64.171.1   

 
Reject null hypothesis 

 
 

o Conclude that this sample of high school seniors has significantly lower 
scores than the population of high school seniors. 

 
 
 
 

o Note 1: Either method of determining significance will result in the exact 
same decision.  With computers, it is easy to calculate exact p-values and 
they should always be reported. 

 
o Note 2: Now it is up to us, as the researchers, to figure out (and clearly 

specify) WHY this sample of high school seniors differed from high 
school seniors in general 
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• Example 1b: A one-tailed test – take 2 

Suppose that before the data were collected, we had hypothesized that the 
scores from this sample of high school seniors would be higher than the 
national average 
 
o State Null and Alternative Hypotheses 

H0 : µ ≤ 75
H1 : µ > 75

 

 
o Specify α and the sample size 

α = .05 120=N  
 

o Compute the test statistic zobs  based on the sample data  
zobs =

72.5 − 75
16
120

=
−2.5
1.46

= −1.71 

 
o Calculate the p-value, obsp , using the z-table or EXCEL 

9564.=obsp  
 

o Make decision by comparing p-value to the α  level 
α==>= critobs pp 05.9564.  

Fail to reject / Retain null hypothesis 
 
 

o Alternatively, rather than computing an exact p-value, we could have 
looked up the critical value zcrit  using the z-table 

64.1=critz  
 

o Make decision by comparing the observed z-score to the critical z-score 
critobs zz =<−= 64.171.1   

 
Fail to reject / Retain null hypothesis 

 
 

o Conclude that we do not have enough evidence to claim that this sample 
of high school seniors is higher than the population of high school 
seniors. 
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• Example 1c: A two-tailed test 

Suppose that before the data were collected, we had hypothesized that 
the scores from this sample of high school seniors differed from the 
overall population mean (use α = .05)? 

 
 

o State Null and Alternative Hypotheses 
H0 : µ = 75
H1 : µ ≠ 75

 

 
o Specify α and the sample size 

α = .05 120=N  
 

o Compute the test statistic zobs  based on the sample data  
 

zobs =
72.5 − 75

16
120

=
−2.5
1.46

= −1.71 

 
o Calculate the p-value, obsp , using the z-table or EXCEL 

0436.)( =< obszzp  
0436.)( =−> obszzp   0872.=obsp  

 
o Make decision by comparing p-value to the α  level 

α==>= critobs pp 05.0872.  
Fail to reject / Retain null hypothesis 

 
o Alternatively, we could calculate the two-tailed critical value zcrit using 

the z-table (For two-tailed test, we need the area beyond the critical value 
to be equal to .025)  

zcrit =1.96  
 

o Make decision 
critobs zz =<= 96.171.1   

Fail to reject / Retain null hypothesis 
 

o Conclude that we do not have enough evidence to claim that this sample 
of high school seniors differs from the population of high school seniors. 
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• Summary Table 

 
 Two-tailed Test 

H1 : µ ≠ 75 
One-tailed Test 

H1 : µ < 75 
One-tailed Test 

H1 : µ > 75 
N 120 120 120 
α .05 .05 .05 
zobs -1.71 -1.71 -1.71 
p-value .0872 .0436 1-.0436 
Decision Fail to Reject Reject Fail to Reject 

 
 

o This table illustrates why people are skeptical of one-tailed tests! 
 
 

• A review of the difference between a one tailed and two tailed test: 
 

One-tailed Test

t(Crit)

.05

 
 

One-tailed Test

t(obs)

.124

 
p = .124    Need to double one-tailed p-value 

 p = .248 
 

 
 

Two-tailed Test

t(Crit)

.025

-t(Crit)

.025

Two-tailed Test

t(obs)

.124.124

-t(obs)
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• Example 1d: A two-tailed test with a larger sample 
Suppose that rather than having a sample of size 120, we had a sample of 
size 160 

 
o State Null and Alternative Hypotheses 

H0 : µ = 75
H1 : µ ≠ 75

 

 
o Specify α and the sample size 

α = .05 160=N  
 

o Compute the test statistic zobs  based on the sample data  
 

zobs =
72.5 − 75

16
160

=
−2.5
1.26

= −1.98 

 
o Calculate the p-value, obsp , using the z-table or EXCEL 

0239.)( =< obszzp  
0239.)( =−> obszzp   0478.=obsp  

 
o Make decision by comparing p-value to the α  level 

α==<= critobs pp 05.0478.  
Reject null hypothesis 

 
o Alternatively, we could calculate the two-tailed critical value zcrit using 

the z-table (For two-tailed test, we need the area beyond the critical value 
to be .025)  

zcrit =1.96  
 

o Make decision 
critobs zz =>= 96.198.1   

Reject null hypothesis 
 

o Conclude that this sample of high school seniors has significantly 
different scores than the population of high school seniors. 
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• Summary Table 
 

 Two-tailed Test 
H1 : µ ≠ 75 

Two-tailed Test 
H1 : µ ≠ 75 

Raw effect size -2.5 -2.5 
N 120 160 
α .05 .05 
zobs -1.71 -1.98 
p-value .0872 .0478 
Decision Fail to Reject Reject 

 
 

• The p-value is a function of the difference between means AND the sample 
size.  

• Wouldn’t it be nice if we had a measure that did not depend on the sample 
size? 

 
• Standardized effect sizes: 

o A common standardized measure of effect size: Cohen’s d 
 

In general, d =
M1 − M2

σ pooled

 

 

For a one-sample z-test, d =
X −µ

σ
 

 
o To interpret d: 

d=0.20  small effect  
d=0.50 medium effect 
d=0.80 large effect  

 
 

o Cohen’s d is independent of sample size.  In other words, increasing the 
sample size will not (in general) affect d. 
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o Examples 1a-1c: 

• One-sample test with N = 120 
 (Directionality of test does not matter) 

d =
x − µ
σ

=
72.5 − 75

16
= .16 

 
o Example 1d 

• One-sample test with N = 160 

d =
x − µ
σ

=
72.5 − 75

16
= .16 

 
• This example would be a “small” effect size 

The sample mean is 0.16 standard deviations below the mean of 
the population 

 
o An alternative way to interpret d scores 

 
  Percentage of people in Group1  
 Effect Size d who would be below the average 
  person in Group 2/the population 

 0.0 50% 
0.1 54% 
0.2 58% 
0.3 62% 
0.4 66% 
0.5 69% 
0.6 73% 
0.7 76% 
0.8 79% 
0.9 82% 
1.0 84% 
1.2 88% 
1.4 92% 
1.6 95% 
1.8 96% 
2.0 98% 
2.5 99% 
3.0    99.9% 
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• An introduction to confidence intervals (CIs) 

o A problem with hypothesis testing is that people tend to only report the 
point estimates (the estimates of the means).  As a reader (and even as the 
researcher), it can be very easy to forget that there is a distribution of 
scores with variability 

o Constructing CIs is one way to display the variability in the data  
 

o In general, a CI is determined by 
   

( )EstimatetheofErrorStandardValueCriticalEstimate     * ±  
 

o How did we arrive at this formula? Let’s develop some intuition about 
this formula 

 
• For a z-test, we have the following formula for our test statistic: 

N

Xzobs σ
µ−

=  

 
• Or more generally, the statistic is of the form 

estimateoferrorStandard
NullEstimatetestobs    

−
=  

 
 

• At the exact point of rejection, the observed test statistic will equal the 
critical value 

estimateoferrorStandard
NullEstimatetestcrit    

−
=  

 
• But for a two-tailed test, the critical value can be positive or negative 

 

estimateoferrorStandard
NullEstimatetestcrit    

−
=+  

estimateoferrorStandard
NullEstimatetestcrit    

−
=−  
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• Now let’s rearrange some terms 

 

estimateoferrorStandard
NullEstimatetestcrit    

−
=+  

estimateoferrorStandard
NullEstimatetestcrit    

−
=−  

 
( ) ( )EstimatetheofErrorStandardValueCriticalNullEstimate     * +−  

and 
( ) ( )EstimatetheofErrorStandardValueCriticalNullEstimate     * −−  

 
• We can combine these two formula to obtain the general formula for a 

confidence interval 
 

( ) ( )EstimatetheofErrorStandardValueCriticalNullEstimate     * ±−  
 

In many cases, the null value is equal to zero, so the equation is 
frequently written omitting the null value: 
 

( )EstimatetheofErrorStandardValueCriticalEstimate     * ±  
 

o Interpreting the CI can be tricky! 
• The standard interpretation of a )%1( α−  CI is that )%1( α−  of such 

intervals under repeated sampling contain the population mean 
• The confidence interval is treated as random, changing from sample to 

sample, and µ  is a fixed value 
 

• There is a connection between the CI and the hypothesis test.  The 
hypothesis test is identical to checking whether the confidence 
interval includes the value of the null hypothesis. 

• BEWARE! Constructing one-tailed CIs can be tricky! 
 

• But in a sense, the CI is more informative than the hypothesis test.  
With a hypothesis test, it is easy to lose a sense of the possible 
variability of the parameter estimate.  With a CI, information about 
the variability of the estimate is easily accessible. 

• For any hypothesis test, you should always present some display of 
the variability in the data.  A CI is one of the more common ways to 
do so. 
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o Example 1a: 

• One-sample, two-tailed hypothesis with N = 120 
zcrit =1.96  

 

( ) )36.75,64.69(86.25.7246.196.15.72 ⇒±⇒∗±⇒







∗±

N
zX critobs

σ  

 
OR 
 

( ) ( ) ( ) )36.0,36.5(86.25.246.196.1755.720 −⇒±−⇒∗±−⇒







∗±−

N
zX critobs

σµ

 
 

• Interpretation of CIs: 
 

The first CI provides a CI around the sample mean.  This interval 
includes the null hypothesis 75=µ , which indicates we fail to reject 
the null hypothesis. 

 
The second CI provides a CI around the difference between the 
sample mean and the population mean.  This interval includes zero, 
indicating that zero is a possible value for the difference.  Thus, we 
fail to reject the null hypothesis. 

 
 

o Example 1d: 
• One-sample, two-tailed hypothesis with N = 160 

96.1=critz  
 

( ) )97.74,03.70(47.25.7226.196.15.72 ⇒±⇒∗±⇒







∗±

N
zX critobs

σ  

 
• This interval does NOT include the null hypothesis 75=µ , which 

indicates we reject the null hypothesis 
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• z-tests: A Final word 
o What if we were not certain that the population had a normal distribution 

(but we still knew its mean and variance)? 
• The central limit theorem comes to the rescue!  Because of the CLT, 

the sampling distributions of the mean will tend to be normal when 
the sample size gets large. 

• In these cases, the z-test can be used as an approximation to make 
inferences about the population parameters based on the sample 
statistics drawn from populations that may or may not be normal. 

 
 

o In order to use the z-test, we must know the population variances in 
advance 

 
o Unfortunately, we do not always know the variance of the underlying 

population distribution a priori.  In these cases, we will have to estimate 
these values from the data and rely on different hypothesis tests. 
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3. One sample t-test 
 

• The z-test is used when the data are known to come from a normal 
distribution with a known variance. But in practice, we often have no way of 
knowing the population parameters in advance.  Thus we have to rely on 
estimates of the population parameters, and the t-test. 

 
• The logic of a one-sample t-test 

o Now we need to estimate both the population mean and the population 
variance 

o We already proved that the sample mean is an unbiased estimator of the 
population mean 

X=µ̂  
 

o And we determined the formula for an unbiased estimate of the sample 
variance: 

( )
1

ˆ
2

22

−

−
== ∑

N
Xx

s iσ  

 
o From our discussion on sampling distributions, we know that estimating 

the variance is not enough; we need an estimate of variance of the 
sampling distribution of the mean.   When the variance was known, we 
found: 

σX 
2 =

σ 2

N
  or  

NX

σ
σ =  

 
• Now we have an estimator of the standard deviation of a sampling 

distribution (the standard error). So let’s substitute that estimator into 
the equation: 

 

( )

N
N

Xx

N

i

X
1ˆˆ

2

−

−

==

∑
σσ  
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• Putting all of this information together, we can construct a test statistic 

similar to the one sample z-test, but for use in cases where the 
variance must be estimated from the data 

N

Xt
σ

µ
ˆ
−

=    

 
o But this test no longer follows a standard normal distribution, particularly 

for small samples. W. S. Gossett discovered this problem in the early 
1900’s.  Gossett found a new family of distributions called the t-
distribution. 

o It can be shown that (under certain conditions): 
 

 n)distibutio  theoferror  standard  thecalledusually (    
ondistributi sampling  theofdeviation  standard estimated

parameter  population expected -parameter  population of estimate~t  

 
o Fun facts about the t-distribution: 

• It is leptokurtic 
• As ∞→N , the t-distribution approaches a )1,0(N  distribution 
• Here is the density function of the t: 

2
1

2

1

2

2
1

)(

+
−









+













 +

Γ
=

ν

νννπ

ν
i

i
x

xf  

• Note that the t distribution depends only on one parameter, ν.  This 
single parameter is called the degrees of freedom of the test.  In most 
of the cases that will interest us, 1−= nν  or 2−= nν  

 
• In the case of a one-sample t-test, 1−= nν  
• From the point forward, we will refer to ν  as df (degrees of freedom) 

 
 
• In order to use the one sample t-test: 

o The population must be normally distributed  
o The population variance is not known in advance 
o The observations are independent and randomly drawn from the 

population 
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• Just as for the z-test, we can compute effect sizes and construct confidence 

intervals. 
 

o To compute the effect size, we can again use Cohen’s d or a modification 
of Cohen’s d, called Hedges’s g.  For Cohen’s d, we use the actual 
population standard deviation; for Hedges’s g, we use the estimated 
population standard deviation: 

g =
X − µ

ˆ σ 
  d =

X − µ
σ

 

 
• We cannot compute d directly, because we do not know σ .  But we 

can compute d from g: 
 

d = g N
df

= g N
N −1

 

 
• What’s the difference between d and g? 

⇒ g is descriptive: It describes effect size of the sample 
⇒ d is inferential: It describes the effect size of the population 

 
⇒ However, interpretation of d and g is the same. 

 
 
 

o For a confidence interval, we can compute a t-critical value based on the 
alpha level and the appropriate degrees of freedom.  Rearranging the 
formula for the t-test, we obtain a confidence interval around the mean: 









∗±

N
tX critobs

σ̂  

 
or we can obtain a CI around the difference between the sample mean 
and the (null) hypothesized value 

( ) 







∗±−

N
tX critobs

σµ
ˆ  
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• TV viewing example: In 1995, there were several studies showing that the 

average American watched 21.22 hours of television per week.  A researcher 
wants to determine if TV viewing has changed.  50 Americans were 
randomly sampled, and the following data were obtained on average hours 
spent watching television:  

 
Hours of TV viewing 

21.96 19.38 23.69 26.11 18.82 
22.81 21.98 25.79 21.67 24.35 
28.18 18.69 21.23 18.37 25.60 
23.87 25.11 24.23 20.90 19.51 
22.65 20.90 21.20 28.04 16.77 
25.39 26.89 21.61 20.14 20.75 
23.81 21.74 23.68 23.80 21.40 
18.36 24.12 25.40 23.36 26.46 
20.20 20.82 21.11 20.76 23.16 
22.69 24.51 25.21 24.50 14.68 

 
Based on these data, can we claim that television viewing patterns have 
changed since 1995? 

 
• Step 1: Up to this point, we have always known the distribution of the 

population in advance. Now, we must look at the data to make sure that our 
assumptions of the distribution are valid 
 
Always look at the data before jumping into the hypothesis test! 
Assumptions we need to check include 
o Are the data normally distributed (or at least symmetrical)? 
o Are there any outliers? 

 
EXAMINE VARIABLES=hours 
  /PLOT BOXPLOT HISTOGRAM. 
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Descriptives

22.5272 .40286
21.7176

23.3368

22.5792
22.6700

8.115
2.84866

14.68
28.18
13.50

3.6975
-.294 .337
.103 .662

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

HOURS
Statistic Std. Error

 
 
 

o It turns out that the t-test is relatively robust to violations of normality.  
In other words, the t-values and the p-values we obtain from the test are 
relatively accurate even if the data are not normally distributed 

o However, the t-test is NOT robust to violations of symmetry.  If the data 
are not distributed symmetrically around the mean, then the t-values and 
p-values will be biased 

 
o Thus, we need to check if the data are symmetrical around the mean 

• Is the boxplot symmetrical? 
Is the median in the center of the box? 
Do the whiskers extend equally in each direction? 

• Does the histogram look symmetrical? 
• Is the mean approximately equal to the median? 
• Is the coefficient of skewness relatively small? 

 
o We should also be on the look out for outliers – observations that fall far 

from the main distribution of the data.  We would not like our 
conclusions to be influenced by one point, (or a small number of points).  
We should not toss out the outliers, but we do need to keep track of them 

 
o In this case, the distribution appears to satisfy all assumptions 

 



2-33 © 2006 A. Karpinski 

 
• Step 2: Once we have examined the data, and only then, can we conduct the 

hypothesis test 
o State Null and Alternative Hypotheses 

22.21:
22.21:

1

0

≠
=

µ
µ

H
H   

 
o Specify α and the sample size 

α = .05 50=n  
 

o Compute the test statistic tobs  based on the sample data  
 

25.3
403.
31.1

50
85.2

22.2153.22
==

−
=obst   

 
o Calculate the p-value, obsp , based on the appropriate degrees of freedom 

using the t-table or EXCEL 
df = n −1= 49 

[ ] 0010.25.3)49( =>tp  
[ ] 0010.25.3)49( =−<tp   0021.=obsp  

 
o Make decision by comparing p-value to the α  level 

α==<= critobs pp 05.0021.  
Reject null hypothesis 
 

Americans watch more TV per week now than they did in 1995 
 

o Alternatively, we could calculate the two-tailed critical value critt  using 
the t-table.  We need to use a two-tailed criteria ( 025.=α  in each tail) 
with the appropriate degrees of freedom, df = n −1= 49 

01.2=critt  
 

o Make decision 
critobs tt =>= 01.225.3   

Reject null hypothesis 
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o Calculate an effect size 
 

g =
X − µ

ˆ σ 
=

X − µ
s

=
22.53− 21.22

2.85
= .46  

 

d = .46 50
49

= .47 

 
o Create confidence intervals 

 

)34.23,72.21(810.53.22
50
85.201.253.22

ˆ
⇒±⇒








∗±⇒








∗±

N
tX critobs

σ  

 
 

• Using SPSS for a one-sample t-test 
o To use SPSS for a one-sample t-test, we need to have our data entered in 

a single column. 
 

data list free 
 /hours. 
Begin data. 
21.96   
22.81   
. . .  
23.16   
14.68 
End data. 
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o In the SPSS syntax, we need to specify the DV (hours) and the null 

hypothesized value, 22.21:0 =µH  
 
T-TEST  /TESTVAL=21.22 
  /VARIABLES=hours. 

 
One-Sample Statistics

50 22.5272 2.84866 .40286HOURS
N Mean Std. Deviation

Std. Error
Mean

 
One-Sample Test

3.245 49 .002 1.3072 .4976 2.1168HOURS
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 21.22

 
 

t(49) = 3.25, p = .002, d = .47 
 
 

• SPSS computes CIs around the difference between the sample mean 
and the hypothesized value.  If you want a CI around the sample 
mean, you need to add the (null) hypothesized value to each endpoint 
of the CI 

 
(21.72, 23.34) 
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• Example #2: A return to the speeding data. Are people violating the speed 
limit? 

 
EXAMINE VARIABLES=mph 
  /PLOT BOXPLOT HISTOGRAM. 
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Descriptives

62.5200 2.27165
57.8315

67.2085

62.2444
60.0000
129.010

11.35826
45.00
85.00
40.00

20.0000
.380 .464

-.859 .902

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

MPH
Statistic Std. Error

 
 
 

• All looks fine to proceed with our hypothesis test 
 

o State Null and Alternative Hypotheses (in this case, a one-tailed 
hypothesis) 

55:
55:

1

0

>
≤

µ
µ

H
H   

 
o Specify α and the sample size 

α = .05 25=n  
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o Compute the test statistic tobs  based on the sample data  

 
T-TEST /TESTVAL=55 
/VARIABLES=mph. 

One-Sample Statistics

25 62.5200 11.35826 2.27165MPH
N Mean Std. Deviation

Std. Error
Mean

 
One-Sample Test

3.310 24 .003 7.5200 2.8315 12.2085MPH
t df Sig. (2-tailed)

Mean
Difference Lower Upper

95% Confidence
Interval of the

Difference

Test Value = 55

 
 
 

o Calculate the p-value, obsp .  SPSS gives us a two-tailed test of 
significance.  We need to adjust the p-value so that it reflects the one-
tailed probability 
• We can look up a one-tailed p-value for 310.3=t  and df = 24  in 

EXCEL 
• Or we can divide the two-tailed p-value in half 
• Both methods will give the same results 

 
t(24) = 3.31, p = .0014 
 

o Make decision by comparing p-value to the α  level 
α==<= critobs pp 05.00141.  

Reject null hypothesis 
 

At this location, people drive faster than the speed limit.  
 

o In general, we do not calculate confidence intervals for one-tailed tests, 
but we still need to calculate the effect size 

 

g =
x − µ

ˆ σ 
=

62.52 − 55
11.36

= .66  d = g N
df

= .66 25
24

= .67  

 
t(24) = 3.31, p = .001, d = .67 
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4.  Two independent samples t-test 

• Now, we would like to compare the means of two independent groups when 
we do not know the population variance in advance.  Let’s use something we 
already know to help us solve this problem: 
 

t ~
estimate of population parameter - expected population parameter 

estimated standard deviation of the sampling distribution
    (usually called the standard error of the distribution) 

 

 
( ) ( )

( )
 )X-X oferror  standard  thecalledusually (                    

X-X ofon distributi sampling  theofdeviation  standard estimated
X-X~

21

21

2121 µµ −−t   

 
• We need to describe the sampling distribution of 21 X-X  

o From probability theory we know that the variance of the difference of 
two variables is: 

)X,X()XVar()XVar()X-XVar( 212121 cov2−+=  
 

o To make our life much simpler, let’s make two assumptions 
1. Assume 1X  and 2X  are independent 

 
02121 )+X)+Var(X)=Var(X-XVar(  
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2. Assume ( ) ( )21 XVarXVar =  (Homogeneity of variances) 
 

( ) ( )
21

21 n
XVar

n
XVar)=X-XVar( +  

        







+=

21

11)(
nn

XVar  

 
o This equation does not look so bad. But we will have to remember these 

two assumptions we made! 
 

o To compute the estimate of ( )XVar , we can combine (or pool) the 
individual estimates of ( )1XVar  and ( )2XVar : 

 

)1()1(
)1()1(

)(
21

2
22

2
11

−+−
−+−

=
nn

snsn
XVar  

 

)1()1(
)1()1(

21

2
22

2
11

−+−
−+−

=
nn

snsn
s pooled  

 

)2( 21

21

−+
+

=
nn

SSSS
s pooled  

 
o Now we have a test statistic we can work with: 
 

21

21

11
     

   

nn
s

XX
estimateoferrorstd

estimatet

pooled

obs

+

−
=

=

 

 
df = n1 + n2 − 2 
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o The reason for such great detail is to highlight the importance of the 
assumptions for the two-sample t-test: 
• Observations are normally distributed in both population 1 and 

population 2 (or at least symmetrically distributed) 
• The variances of the two populations are unknown, but equal 

(Equality of variances) 
• The observations are independent and randomly drawn from the 

population 
• The sample of observations from population 1 is independent from the 

sample of observations from population 2 
 
 

o Effect sizes for a two-independent sample t-test 
• Just like for the one-sample test, we have a choice between Cohen’s d 

and Hedges’s g:  

g =
X 1 − X 2
spooled

   d =
X 1 − X 2

σ
 

 
g =

2t
N

   d =
2t
df

 

 
• For a two-sample test, we can also use r as a measure of effect size: 

r =
t

t 2 + df
  r =

d
d2 + 4

 

 
⇒ r is interpreted a correlation coefficient – the correlation 

between the IV and the DV 
⇒ Rules of thumb for interpreting r 

r = .1  small effect 
r = .3  medium effect 
r = .5  large effect 

 
⇒ In general, I find the interpretation of d or g to be more 

straightforward than r.  All are commonly accepted; you should 
use the measure you understand and can interpret best. 

 
• All effect size formulae perform optimally with equal n and 

homogeneous variances.  Adjustments are available for these other 
situations (see Rosethal, Rosnow, & Rubin, 2000) 
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o You may also wish to construct confidence intervals  
 

• Recall the confidence interval is: 
 

( )EstimatetheofErrorStandardValueCriticalEstimate     * ±  
 











+∗±−

21
21

11
nn

stXX pooledcrit  

 
 

• Example #1: A sleep deprivation example:  To investigate the effect of sleep 
deprivation on memory, a psychologist studies 24 individuals.  12 
participants in the normal sleep group receive a normal amount of sleep (8 
hours) before going to the lab, while the 12 participants in the sleep 
deprivation group are only allowed 5 hours of sleep.  All participants are 
then given a recall task. 

  
 

Control Sleep Deprived 
55 58 48 55 
43 45 38 40 
51 48 53 49 
62 54 58 50 
35 56 36 58 
48 32 42 25 
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o Step 1: Look at data and check assumptions. We need to check if: 

• Each group is normally/symmetrically distributed 
• If the variances of the two groups are equal 

 
EXAMINE  VARIABLES=memory BY group 
  /PLOT BOXPLOT HISTOGRAM. 

NORMAL

60.055.050.045.040.035.030.0

3.5

3.0

2.5

2.0

1.5

1.0

.5

0.0

Std. Dev = 9.06  
Mean = 48.9

N = 12.00

  NO_SLEEP

60.055.050.045.040.035.030.025.0

5

4

3

2

1

0

Std. Dev = 9.78  
Mean = 46.3

N = 12.00
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2.001.00
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Descriptives

48.9167 2.61539
43.1602

54.6731

49.1296
49.5000
82.083

9.05999
32.00
62.00
30.00

12.2500
-.601 .637
-.255 1.232

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

GROUP
1.00MEMORY

Statistic Std. Error

Descriptives

46.0000 2.89200
39.6348

52.3652

46.5000
48.5000
100.364

10.01817
25.00
58.00
33.00

16.0000
-.697 .637
.048 1.232

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

GROUP
2.00MEMORY

Statistic Std. Error

 
 
 

o We will develop some more refined checks of these assumptions in the 
near future, but for now, all appears satisfactory. 

(There may be some concern about the slight negative skew of both 
distributions, but it is not sufficient enough to be troublesome.) 
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• Now, we can conduct our significance test: 
o State Null and Alternative Hypotheses 

SDC

SDC

H
H

µµ
µµ

≠
=

:
:

1

0  or 
0:
0:

1

0

≠−
=−

SDC

SDC

H
H

µµ
µµ  

 
o Specify α and the sample size  

05.=α  12=Cn  12=SDn   
 
 

o Compute the test statistic based on the sample data 
( )

SDC
pooled

SDC
obs

nn
s

XX
t

11
0

+

−−
=  

 
• In SPSS, we need to specify the IV (group) and the DV (memory) 

T-TEST GROUPS=group 
  /VARIABLES=memory. 
 

Group Statistics

12 48.9167 9.05999 2.61539
12 46.0000 10.01817 2.89200

GROUP
1.00
2.00

MEMORY
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

.256 .618 .748 22 .462 2.9167 3.89922 -5.16982 11.00315

.748 21.781 .462 2.9167 3.89922 -5.17453 11.00786

Equal variances
assumed
Equal variances
not assumed

MEMORY
F Sig.

Levene's Test for
Equality of Variances

t df Sig. (2-tailed)
Mean

Difference
Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

• We determined that the variances of the two groups were equal, so we 
read the “equal variances assumed” line: 

 
46.,75.0)22( == pt  
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• To compute the t-statistic by hand, we need to calculate the pooled 

estimate of the standard deviation 
 

5509.9
22

02.10)11(06.9)11(
)1()1(
)1()1( 22

21

2
22

2
11 =

+
=

−+−
−+−

=
nn

snsn
s pooled  

 
( ) ( ) 748.0

899.3
92.2

12
1

12
15509.9

00.4692.48
11

==
+

−
=

+

−
=

SDC
pooled

SDC
obs

nn
s

XX
t  

 
• If the null hypothesized value is not zero, then you will need to adjust 

the observed t-statistic by hand (SPSS assumes the null hypothesis is 
that the two means are equal).  Alternatively, you can use EXCEL, 
which allows you to enter a null value. 

 
t-Test: Two-Sample Assuming Equal Variances 
   

  Variable 1Variable 2
Mean 48.91667 46
Variance 82.08333 100.3636
Observations 12 12
Pooled Variance 91.22348 
Hypothesized Mean Difference 0 
df 22 
t Stat 0.748013 
P(T<=t) one-tail 0.231187 
t Critical one-tail 1.717144 
P(T<=t) two-tail 0.462374 
t Critical two-tail 2.073875  
   

 
Using EXCEL also gives you the pooled variance, 2

pooleds , which we 
can use to compute the effect size g. 

 
o Make decision 

α==>= critobs pp 05.462.  
)22(07.2748.)22( critobs tt =<=  

 
Fail to reject null hypothesis 
Conclusion? 
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o Create confidence intervals of the difference 
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)00.11,17.5()899.3*074.2(92.2 −⇒±  

 
• This CI matches the CI from SPSS 

 
 

o Calculate effect size 
 

g =
X 1 − X 2
spooled

=
2.92
9.55

= .306  r =
.748

.7482 + 22
= .157 

 306.
24
748.*22

===
N
tg  

 
o Now that we have data (with unknown population parameters), we 

should ALWAYS present a graphical display of the data and that graph 
should ALWAYS display the variability in the data   

 
 

o You have two (or three) choices of how to display the variability in the 
data 
• The mean displayed in the center of the confidence interval 
• The mean + 2 standard errors of the mean 

 
• Some people (but not SPSS) prefer  

The mean + 1 standard error of the mean 
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• In SPSS 

 
GRAPH /ERRORBAR( CI 95 ) 
    =memory by group. 
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GRAPH/ERRORBAR (STERROR 2)   
    =memory by group. 
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o Should you graph two standard error bars or half-widths of confidence 

intervals?  

Standard error of the mean           = 
21

11*2
nn

s pooled +  

Confidence interval half-width     = 
21

11
nn

st pooledcrit +∗  

 
• As the degrees of freedom get larger, for a two-tailed test with 05.=α , 

96.1⇒critt . 
• Thus for large samples, the two produce nearly identical results. 

 
• Use of standard errors is most common.  Regardless of your 

preference, be sure to label your error bars! 
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• SPSS’s graphs tend to be ugly and of non-journal quality.  You should 
be familiar with a graphing program to produce journal quality graphs 
(for the most part, EXCEL is sufficient). 

 

Amount of Recall by 
Experimental Condition

35

40

45

50

55

60

Normal Sleep Deprived

Experimental Group

R
ec

al
l

 
   Error bars represent + 2 standard errors 

 
 
 
5. Comparing two group means when assumptions are violated 
 

• The Two-sample t-test when things go wrong!  
Recall the assumptions of the two sample t-test: 
o Observations are normally distributed (or at least symmetrically 

distributed) 
o Equality of variances 
o Independence of observations and populations 

 
• What we need to look for in our data are: 

o Normally distributed data (or symmetric data) 
o Equality of variances 
o Outliers 
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• Exploratory Data Analysis (EDA) techniques to test assumptions – statistical 
tests can wait: 
o To check for normality/symmetry 

• Examine mean and median 
• Coefficients of skewness and kurtosis   
• Histograms (should be performed for each group!) 
• Boxplots 

o To check for equality of variances 
• Boxplots 
• Scatter plots 

o To check for outliers 
• Boxplots 
• Histograms 
• Scatter plots 

 
o We have already examined all of these except for the scatterplot 

GRAPH 
  /SCATTERPLOT(BIVAR)=group WITH memory . 
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• Example #1: A simulation of the effect of outliers’ asymmetry on estimates 
of the mean:  

 
Let )1,2(~1 NX  and Let )9,6(~2 NX  
 
Let Y =  1X  with probability ε−1  

  2X  with probability ε  
 
Let ε   =  .00 (no outliers) 

.01 (  2 outliers per 200) 
  .025 (  5 outliers per 200) 
  .05 (10 outliers per 200) 
  .10 (20 outliers per 200) 
 
Let n=200 and Let α = .05 
Calculate Y and a CI for Y  
 

    Confidence Coverage 
 ε  ˆ µ  (Should be 95%) 

 0.00 2.00042 95.3 
 0.01 2.04088 91.5 
 0.025 2.09849 82.7 
 0.05 2.20703 56.3 
 0.10 2.29815 18.5 

 
How would this affect a more realistic sample size of 30? 

 
For ε  =  .00 (no outliers)   → no outliers 

.01 (  2 outliers per 200) → 0.3 outliers per 30 
  .025 (  5 outliers per 200) → 0.75 outliers per 30 
  .05 (10 outliers per 200) → 1.5 outliers per 30 
  .10 (20 outliers per 200) → 3.0 outliers per 30  
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• Example #2: A data-based example of the effect of an outlier: 

 
Group 1 Group 2 

3 2 
4 3 
5 4 
4 3 
3 2 
4 3 
5 4 
4 3 
3 2 
4 11 

 
o Group 1 is always 1 unit larger than Group 2 except for one observation 

 
o First, let’s look at the data: 

EXAMINE  VARIABLES=DV  BY group 
   /PLOT BOXPLOT. 

 

1010N =

GROUP

2.001.00

D
V
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Descriptives

3.9000 .23333
3.3722

4.4278

3.8889
4.0000

.544
.73786

3.00
5.00
2.00

1.2500
.166 .687

-.734 1.334
3.7000 .84393
1.7909

5.6091

3.3889
3.0000

7.122
2.66875

2.00
11.00

9.00
2.0000

2.725 .687
7.991 1.334

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis
Mean

Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

GROUP
1.00

2.00

DV
Statistic Std. Error

 
 

• Not only do we have a problem with an outlier, but as is often the case, 
outliers lead to other problems as well 
o The variances of the two groups are very different 

ˆ σ 1
2 = 0.544  122.7ˆ 2

2 =σ  
o Group 2 has a strong positive skew (is non-symmetrical) 

 
 
 

• When good data go bad, what can we do? 
o Check the data 
o Ignore the problem 
o Transform the variable 
o Perform a test that does not require the assumption 
o Use a non-parametric test 
o Use robust estimators of the mean and variance 
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• Option 1: Check the data 

o Make sure that the outlier is a true data point and not an error 
 

• Option 2: Ignore the outlier/heterogeneity  
T-TEST GROUPS=group 
  /VARIABLES=DV. 

Group Statistics

10 3.9000 .73786 .23333
10 3.7000 2.66875 .84393

GROUP
1.00
2.00

DV
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

.228 18 .822 .2000 .87560 -1.63956 2.03956
Equal variances
assumed

DV
t df Sig. (2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

t(18) = .23, p = .82 
 

This is not a very wise choice! 
 
 
 

• Option 3: Transform the variable  
o We will cover the details of transformation in the context of ANOVA 

 
 



2-53 © 2006 A. Karpinski 

 
• Option 4: Perform a test that does not require the assumption:  Welch’s 

separate variance two sample t-test 
o Similar to the two-sample t-test, but does not make the “simplifying” 

homogeneity of variance assumption 
o Computation is similar to t-test with 2 exceptions 

• No pooling to estimate the variance 
• Degrees of freedom are “adjusted” to take into account the unequal 

variances 
 

2

2
2

1

2
1

21

n
s

n
s

XX
tobs

+

−
=   

 

)1)(1()1(
)1)(1(

2
1

2
2

21

cncn
nn

df
−−+−

−−
=  

 

2

2
2

1

2
1

1

2
1

n
s

n
s

n
s

c
+

=  

 
o Notes:  

• If n1 = n2 , then Welch’s t will equal the uncorrected t  (but the degrees 
of freedom of the tests may be different) 

• If n1 = n2  and if s1 = s2 , then Welch’s t will give the exact same result as 
the uncorrected t. 

 
• Welch’s t provides an unbiased estimate, but it is less efficient than 

the uncorrected t-test (and this has slightly less power).  However, if 
the population variances are unequal, the uncorrected t-will give a 
biased result.   

• Given that we can never be sure that variances are equal, it would be 
reasonable to recommend always using Welch’s t-test.  The slight 
decrease in power when the variances are equal will be offset by the 
fact that the test will always give unbiased results and will maintain 
the true alpha rate near .05. 
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o Luckily SPSS will do the dirty work for you! 
 

T-TEST GROUPS=group 
  /VARIABLES=DV. 

Independent Samples Test

.228 18 .822 .2000 .87560 -1.63956 2.03956

.228 10.368 .824 .2000 .87560 -1.74160 2.14160

Equal variances
assumed
Equal variances
not assumed

DV
t df Sig. (2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

t(10.37) = .228, p = .824 
 

In this case, we have more problems than unequal variances.  We still 
require normality/symmetry for this test.  So in this case, the Welch’s 
t-test is not a very good option either! 

 
 

• Option 5: Perform a non-parametric test 
 

o In general, non-parametric tests: 
• Make no assumptions about the distribution of the data 
• Reduce the effect of outliers and heterogeneity of variance 
• Are not as powerful as parametric alternatives when the assumptions 

of the parametric tests are satisfied 
• Can be used for ordinal data 

 
o By definition, non-parametric tests to not estimate population parameters 

• There are no estimates of variance/variability 
• There are no confidence intervals 
• There are generally fewer measures of effect size available 

 
 

o Mann-Whitney U test (Wilcoxon Rank-Sum test) 
• Equivalent to performing the independent samples t-test on the ranks 

of the data (instead of the raw data) 
• Not as powerful as the t-test (because it ignores the interval nature of 

the data)  



2-55 © 2006 A. Karpinski 

 
RANK VARIABLES=dv. 
 

From      New 
variable  variable  Label 
--------  --------  ----- 
 
DV        RDV       RANK of DV 

 
T-TEST GROUPS=group 
  /VARIABLES=rdv. 

Group Statistics

10 12.80000 4.385582 1.386843
10 8.20000 6.033241 1.907878

GROUP
1.00
2.00

RANK of DV
N Mean Std. Deviation

Std. Error
Mean

 
Independent Samples Test

1.950 18 .067 4.60000 2.358672 -.355386 9.555386
Equal variances
assumed

RANK of DV
t df Sig. (2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

95% Confidence
Interval of the

Difference

t-test for Equality of Means

 
 

• On the ranked data, we find a marginally significant effect such that 
the scores of group 1 are larger than the scores of group 2, t(18) = 1.95, 
p = .067. 

 
• The Mann-Whitney U test can be performed directly in SPSS 

NPAR TESTS M-W = dv by group (1,2). 

Ranks

10 12.80 128.00
10 8.20 82.00
20

GROUP
1.00
2.00
Total

DV
N Mean Rank Sum of Ranks

  

Test Statisticsb

27.000
82.000
-1.821

.069

.089
a

Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Exact Sig. [2*(1-tailed
Sig.)]

DV

Not corrected for ties.a. 

Grouping Variable: GROUPb. 
 

 
 

U = 27.00, p = .089 
 

• These two methods give nearly identical results.  However, you should 
report the results of the U test and not the t-test on the ranks. 

• The outlier does not influence this test very much. This test would be a 
reasonable option to analyze this data without tossing the outlier. 
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• Option 6: (For exploratory purposes only) Use estimates of central tendency 

and variability that are robust 
 

Central tendency  Median 
       M-estimators 
 

Variability   IQR 
Median Absolute Deviation (MAD) 

 
EXAMINE  VARIABLES=DV  BY group 
   /MESTIMATORS  HUBER(1.339) TUKEY(4.685). 

 
 

M-Estimators

3.8546 3.8675
3.0377 2.8810

GROUP
1.00
2.00

DV

Huber's
M-Estimatora

Tukey's
Biweightb

The weighting constant is 1.339.a. 

The weighting constant is 4.685.b. 
 

Descriptives

3.9000
4.0000
1.2500
3.7000
3.0000
2.0000

Mean
Median
Interquartile Range
Mean
Median
Interquartile Range

GROUP
1.00

2.00

DV
Statistic

 
 

 
We need to compute MAD by hand (or in EXCEL) 
MAD1 = Med x1i − Medx1{ }  MAD2 = Med x2i − Medx2{ } 

 
 Group 1 Group2 Pooled 
Median 4.0 3.0  
  IQR 1.25 2.0 1.625 
    
M(Tukey) 3.8675 2.8810  
M(Huber) 3.8546 3.0377  
  MAD 0.5 1 0.75 
 

To pool the variability estimates, we can adapt the formula for pooleds   

)1()1(
)1()1(

21

2
22

2
112

−+−
−+−

=
nn

snsns pooled  

 

   
)1()1(
)1()1(

21

2211

−+−
−+−

=
nn

MADnMADnMADpooled  
)1()1(
)1()1(

21

2211

−+−
−+−

=
nn

IQRnIQRn
IQRpooled  
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21

21

11
     

   

nn
s

XX
estimateoferrorstd

estimatet

pooled

obs

+

−
=

=

 

 
• Let’s construct some tests using our robust estimators 
• Test 1: Use median and IQR 

K1obs (18) =
Med1 − Med2

.74 * IQRpooled
1
n1

+
1

n2

=
1.0

.5367
=1.86   

 
• Test 2: Use Tukey Biweight and MAD 

K2obs (18) =
TukeyM1 − TukeyM2

MADpooled
1
n1

+
1
n2

=
0.9865
.3354

= 2.941  

 
• Test 3: Use Huber estimator and MAD 

K3obs (18) =
HuberM1 − HuberM2

MADpooled
1
n1

+
1
n2

=
0.8298
.3354

= 2.474  

 
• If we assume that each of these tests follow an approximate t-

distribution, we can compute p-values. 
K1(18) =1.85, p = .08
K2(18) = 2.94.p = .009
K3(18) = 2.47, p = .024

 

 
 

• “It is better to have an approximate solution to the right answer than 
the correct solution to the wrong answer.” – John Tukey 

• These tests should be used for exploratory purposes only.  The details 
of these tests have not been completely worked out.  However, robust 
methods are gaining a foothold and it is likely that robust tests similar 
to these will be popular in the future. 

 
o Importantly, in none of these solutions did we toss the “bad” data point. 
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6.  Pearson Chi-square test of independence 
 

• A non-parametric test used when dependent variable is categorical 
(measured on a nominal scale) 

• It is a test of the independence of the levels of 1 or more factors when all the 
factors are nominal. 
o We calculate the frequencies we would have observed in each cell if the 

factors and factor levels were independent – the frequencies expected 
under the assumption of independence. 

o We compare the observed frequencies to the expected frequencies: 

χ 2 =
fobserved − fexpected( )2

fexpectedCells
∑  

 
• The Chi-square test follows a Chi-square distribution. 
• The only assumption is that data be independently sampled from the 

population. 
 

 
• A one factor Chi-square test of independence 

o A one factor Chi-square test is relatively rare 
o Tests if the observed frequencies are equally distributed over the levels of 

the factor 
 

• Example #1: It has been suggested that admission to psychiatric hospitals 
may vary by season.  One hospital admitted 100 patients last year with the 
following distribution: 

 
 Season 
 Spring Summer Fall Winter 

Observed 30 40 20 10 
 

 Do hospital admissions vary by season? 
 

o State Null and Alternative Hypotheses 
:0H  Hospital admission is independent of season 
:1H  Hospital admission is NOT independent of season 
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o Compute the test statistic based on the sample data 

• We have the observed frequencies 
• We need to compute the expected frequencies under the null 

hypothesis.  (That is, the frequencies we would have observed if 
hospital admissions were independent of season) 

 
If hospital admissions were independent of season, then hospital 
admissions would be distributed equally over the 4 seasons 
 

25
4

100
===

a
Nfe  

 
Where N  is the total number of observations 
   a   is the number of levels of the factor 

 
 Season 
 Spring Summer Fall Winter 

Expected 25 25 25 25 
Observed 30 40 20 10 

 
• Now we can compute the test statistic 

χ 2 =
fobserved − fexpected( )2

fexpectedCells
∑  

1−= adf  
 

χ 2 =
fobserved − fexpected( )2

fexpected

=
30 −25( )2

25Cells
∑ +

40 −25( )2

25
+

20 − 25( )2

25
+

10 − 25( )2

25
= 20  

31 =−= adf  
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• To determine significance, we can: 

 
Look up the significance level using EXCEL  

α==<= critobs pp 05.00017.  
χ 2(3) = 20, p < .001 

 
Or look up the critical value using a Chi-square table with 05.=α  

χ 2
obs(3) = 20 > 7.81 = χ 2

crit (3)  
χ 2(3) = 20, p < .05  

 
 

We reject the null hypothesis and conclude that hospital admission 
varies by season.   
 
Note that our test is not focused enough to permit a more specific 
conclusion. For example, we cannot state that admissions are greater 
in the fall than in the winter. 

 
 

• A two factor Chi-square test of independence 
o A two factor Chi-square test is the most common application of the Chi-

square test. 
o Tests if the observed frequencies are independent across the levels of the 

factor 
 
 

• Example #2: Belief in the Afterlife 
o A researcher wondered if belief in an afterlife differed by gender.  She 

obtained a random sample of 1091 individuals and with the following 
data: 

 
Observed Counts 

 Belief in Afterlife  
Gender Yes No  
  Females 435 147  
  Males 375 134  
    

 
Does belief in an afterlife vary by gender? 
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o State Null and Alternative Hypotheses 
:0H  Belief in an afterlife is independent of gender 
:1H  Belief in an afterlife is NOT independent of gender 

 
o Now, we need to compute the observed frequencies under the null 

hypothesis (the assumption of independence).   
 

• Step 1: Calculate the Row and Column totals 
 Belief in Afterlife  
Gender Yes No  
  Females 435 147 582 
  Males 375 134 509 
 810 281 1091 

 
• Calculate the Expected Cell Frequencies if the data were independent: 
 Belief in Afterlife  
Gender Yes No  
  Females   582 
  Males   509 
 810 281 1091 

 

N
lColumnTotaRowTotalfe

*
=  

 
• Expected frequencies: 
 Belief in Afterlife  
Gender Yes No  
  Females 432 150 582 
  Males 378 131 509 
 810 281 1091 

 
 

o Now calculate Pearson Chi-square statistic 

 χ 2 =
fobserved − fexpected( )2

fexpectedCells
∑  

)1)(1( −−= badf  
 

a = Number of levels of the first factor 
b = Number of levels of the second factor 
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• 
Expected
Observed  

 Belief in Afterlife  
Gender Yes No  
  Females 

432
435  150

147   

  Males 
378

375  131
134   

    
 

 

χ 2 =
fobserved − fexpected( )2

fexpected

=
9

432
+

9
150

+
9

378Cells
∑ +

9
131

= .173 

  = 0.173 
 
df  =  (# of rows – 1)(# of columns – 1)  
     = 1 

 
 

• To determine significance, 05.=α , we can: 
 

Look up the significance level using EXCEL  
χ 2(1) = 0.17, p = .68  

α==>= critobs pp 05.677.  
 

Or look up the critical value using a Chi-square table with 05.=α  
χ 2

obs(1) = 0.173 < 3.84 = χ 2
crit (1)  

χ 2(1) = 0.17, p > .05  
 
 

We retain the null hypothesis. There is not sufficient evidence to 
conclude that belief in an afterlife varies by gender.   
 

 
 
WARNING: Be careful of round-off error when calculating Chi-square tests 
by hand! 
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• Example #3: Favorite sport 
Imagine that you read an article claiming that 300 men and 250 women were 
interviewed.  Of the men, 55% said that baseball was their favorite sport, 
while 30% of the women said that baseball was their favorite sport.  You 
think – hmmm, I wonder if this is a significant difference.  

 
0H = The proportion of people who state baseball is their favorite sport is equal 

among men and women 
1H  = The proportion of people who state baseball is their favorite sport is NOT 

equal among men and women 
 
Or 

 
0H = Rating baseball as one’s favorite sport is independent of one’s gender 

1H  = Rating baseball as one’s favorite sport is NOT independent of one’s gender 
 
 
 

o Step 1: Convert the data into count form for a contingency table 
 

.55*300 = 165 men said baseball was their favorite sport 
300-165 = 135 men said baseball was NOT their favorite sport 
 
.30*250 = 75 women said baseball was their favorite sport 
250-75   = 175 women said baseball was NOT their favorite sport 

 
Observed 
 Baseball Favorite?  
Gender Yes No  
  Females 75 175  
  Males 165 135  
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o Step 2: Determine the expected frequencies under the null hypothesis, 
and then calculate the test-statistic.  Let’s skip the hand calculations and 
proceed to use SPSS. 

 
Yucky method 
• We have n=550, so we need to enter 550 rows of data 

 
Simple method 
• Enter one row for each cell and the count in that cell 

0 0 175 
0 1 75 
1 0 135 
1 1 155 

 
Column 1:   0 = Female 
  1 = Male 
Column 2:  0 = No, baseball is not my favorite sport  
  1 = Yes, baseball is my favorite sport 
Column 3:   Count associated with the specific cell 

 
DATA LIST FREE 
  /gender baseball count. 
BEGIN DATA. 
0 0 175 
0 1 75 
1 0 135 
1 1 165 
END DATA. 

 
VALUE LABELS       
    gender  0 'Female' 1 'Male'  
    /baseball  0 'No' 1 'Yes' . 
EXECUTE. 

 
• The trick is to weight the analysis by the cell counts 

 
WEIGHT BY count . 
CROSSTABS 
  /TABLES=gender  BY baseball 
  /STATISTIC=CHISQ. 
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GENDER * BASEBALL Crosstabulation

Count

175 75 250
135 165 300
310 240 550

Female
Male

GENDER

Total

No Yes
BASEBALL

Total

 
Check this table to make sure you have entered the data 
correctly! 

Chi-Square Tests

34.652b 1 .000
33.643 1 .000
35.213 1 .000

.000 .000

34.589 1 .000

550

Pearson Chi-Square
Continuity Correctiona

Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)
Exact Sig.
(2-sided)

Exact Sig.
(1-sided)

Computed only for a 2x2 tablea. 

0 cells (.0%) have expected count less than 5. The minimum expected count is
109.09.

b. 

 
• Read line labeled ‘Pearson’ or ‘Pearson Chi-square’ 

χ 2(1) = 34.65, p < .01 
 

• Reject null hypothesis and conclude that the proportion of people who 
rate baseball as their favorite varied by gender. 

 
 

o Compute the effect size of the two-way chi-square test, phi 

φ =
χ 2

N
 

 
A small effect   φ = .10 
A medium effect  φ = .30 
A large effect  φ = .50 

 
 

25.
550

652.34
==φ  

 
χ 2(1) = 34.65, p < .01,φ = .25  
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o What can go wrong in a chi-square test: 

• The χ 2 statistic only has a chi-square distribution if the expected cell 
sizes are “large” where cell sizes > 5 are considered large. 

• For a 2*2 table, the solution for small cell sizes is to use Fisher’s exact 
test (It is based on exact probabilities calculated from the 
hypergeometric distribution)  

 
 

• Extending the Chi-square beyond a 2*2: 
 

o Consider a 2*3 example: Gender and Party Affiliation 
 

 Party Affiliation  
Gender Democrat Independent Republican  
  Female 279 73 225  
  Male 165 47 191  
     

 
:0H  Party affiliation is independent of gender 
:1H  Party affiliation varies by gender 

 
 

o Calculate expected frequencies, based on the null hypothesis 
 

 Party Affiliation  
Gender Democrat Independent Republican  
  Female 279 

(261.4) 
73 

(70.7) 
225 

(244.9) 
577 

  Male 165 
(182.6) 

47 
(49.3) 

191 
(171.1) 

403 

 444 120 416 980 
 

N
lColumnTotaRowTotalfe

*
=  

 

χ 2 =
Observed − Expected( )2

Expected
= 7.010∑   

df  =  (# of rows – 1)(# of columns – 1) 
       =  (3-1)(2-1) =2 
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CROSSTABS 
  /TABLES=gender  BY party 
  /STATISTIC=CHISQ. 

 

χ 2(2) = 7.01, p = .03 
 

o For any table larger than 2*2, use a modified φ, called Cramer’s phi, Cφ , 
to measure the effect size of 2X  

 

)1(

2

−
=

LNC
χφ 08.

)12(980
01.7

=
−

=   

 
Where L = min(# rows, # of columns) 

 
χ 2(2) = 7.01, p = .03,φC = .08  

 
o Reject null hypothesis and conclude that party affiliation varies by 

gender.  But we cannot say how it varies – only that it varies. To make 
more specific claims, we have to conduct follow-up tests. 

 
 

Chi-Square Tests

7.010a 2 .030
7.003 2 .030

6.758 1 .009

980

Pearson Chi-Square
Likelihood Ratio
Linear-by-Linear
Association
N of Valid Cases

Value df
Asymp. Sig.

(2-sided)

0 cells (.0%) have expected count less than 5. The
minimum expected count is 49.35.

a. 
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• Follow-up #1: Do males and females differ in their propensity to be either a 

Democrat or Republican? 
 
 Party Affiliation  
Gender Democrat Republican  
  Females 279 225  
  Males 165 191  
    

 
o For this table, we omit the people who indicated that they were 

Independent 
 
 

• Follow-up #2: Does the number of independents and non-independents 
differ for Males and Females? 

 
 Party Affiliation  
 
Gender 

 
Independent 

Non-Independent 
(Democrat + Republican) 

 

  Females 73 504  
  Males 47 356  
    

 
 
o For this table, we combine Democrats and Republicans into a single 

column 
 
 
 

• When we conduct these follow-up analyses, we will be able to make more 
focused conclusions. 
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Chapter 2: Appendix 
 
A. Interesting and useful facts about the Chi-square distribution 
 

• A squared standardized z-score is distributed χ 2(1) 
 

If ),(~ σµNY  then over repeated sampling (y −µ)2

σ 2 = χ 2 (1) 

 
• Suppose y1 and y2 are drawn independently from Y. 

 

 Then z1
2 =

(y1 −µ)2

σ 2  and z2
2 =

(y2 − µ)2

σ 2  

 
 and over repeated sampling, z1

2 + z2
2 = χ 2(2)  

 
 

• In general, for n independent observations from a normal population, the 
sum of the squared standardized values for the observations has a chi-square 
distribution with n degrees of freedom 

 

If zi
2 =

(yi −µ)2

σ 2  

Then )(2

1

2 nz
n

i
i χ=∑

=

 

 
• If a random variable, Y1, has a chi-square distribution with ν1 degrees of 

freedom, and an independent random variable Y2, has a chi-squared 
distribution with ν2 degrees of freedom, then the new random variable 
formed from the sum of Y1 and Y2 has a chi-square distribution with ν1 + ν2 
degrees of freedom. 
 

If Y1 ~ χ 2 (ν1)  and Y2 ~ χ 2 (ν 2) 
 
Then Y1 + Y2 ~ χ 2 (ν1 +ν 2) 

 
In other words, χ 2(ν1) + χ 2 (ν 2) = χ 2 (ν1 +ν 2) 
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o Chi-Square df=2     Chi-Square df=5 

 
 
 

o Chi-Square df=10    Chi-Square df=20 
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