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Chapter 1 
Review of Basic Concepts and Descriptive Statistics 
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Review of Basic Concepts & Descriptive Statistics 

 

 
1. Concepts and definitions 
 

• What is statistics? 
o A branch of science concerned with methods for understanding and 

summarizing collections of numbers 
 

o Data (plural) 
• Observations made on the environment 
• The collection of numbers we wish to understand and summarize 

 
 
o Population 

• The complete set of data which we want to understand and summarize 
• Populations can be of any size and are completely determined by the 

researcher’s interests 
• Parameters are quantitative summary characteristics of populations 
 

o Sample 
• Part of the population which we want to understand and summarize 
• Can be any subset of the population 
• Statistics are quantitative summary characteristics of samples 

 
 Population Parameters  Sample Statistics 
  

(Greek Symbols) 
  

(Latin Symbols) 
(Greek Symbols 

with hats) 
Mean µ  X  µ̂  
Variance 2σ   2s  2σ̂  
Correlation ρ  r ρ̂  
Proportion π  p π̂  
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o Random Sample 
• A sample in which each member of the population has an equal 

chance of being included and in which the selection of one member is 
independent from the selection of all other members 

• Are more likely to be similar to the population if the samples are large 
• All of the statistical procedures we develop will assume that the 

observations are randomly sampled from the population of interest 
 
 

• Descriptive vs. Inferential Statistics 
o Descriptive –  

• Methods for describing and summarizing the data  
• Includes graphical and numerical techniques to summarize the 

distributional location (central tendency) and dispersion (variability), 
and the relationships between variables 

• Goal is data reduction 
 

o Inferential – 
• Methods for generalizing beyond the actual sample data and inferring 

properties of populations that were not observed 
• Requires the sample data to be representative of the population 
• Goal is to understand the characteristics of the population and the 

relationship between variables in the population 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Population 
Before Analysis

Population 
After Analysis

 
Data Collection 

 

Data Organization & 
Manipulation 

 
Data Interpretation 
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• Variables vs. Constants 

 
o Constant 

• A fixed number 
• A number that is the same for the entire population 
• We do not need to perform statistics on constants 
• For example: The speed of light, the number of chambers in a human 

heart 
 

o Variable 
• An attribute, characteristic, or property of some organism, object or 

event that can assume two or more values 
• Usually symbolized by an alphabetic letter toward the latter part of the 

alphabet 
• Subscripts are used to represent or stand for a unique observation on 

that variable 
 

• Types of variables 
 

o Fixed Variable 
• A variable whose value(s) are pre-selected or manipulated by the 

researcher 
• For example: Gender, condition of the experiment, or whether a 

person has been diagnosed with depression or not 
o Random Variable 

• A variable whose value(s) are determined as a result of sampling 
• For example: self-esteem scores, number of puzzles solved, shock 

level given to a confederate 
 
o Independent Variable (IV) 

• In experiments, it is the variable that is manipulated or controlled 
• An IV can be either a fixed or random variable 

 
o Dependent Variable (DV) 

• The variable that is measured, and that the experimenter is attempting 
to predict or understand 

• A DV must be a random variable 
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o Discrete (or Categorical) Variable 

• A variable that takes on a finite number of values, usually whole 
numbers 

• Ethnicity is a discrete variable 
 

o Continuous Variable 
• A variable that takes on an infinite number of values within some 

interval 
• Self-esteem scores are a continuous variable. 

 
 

• Some notational issues: Consider verbal GRE scores for 7 people 
 

o ‘N’ represents the overall sample size 
• N=7 

 
o A specific observation is represented by a lower case x.  A subscript is 

used to match the observed score with a specific participant (or unit of 
observation) 
• Because verbal GRE scores is a random variable, we do not know a 

participant’s score until we observe it.  Sometimes, it is useful to 
represent a participant’s score before we have observed its value. In 
this case, we simply use the subscripted lower case x. 
 x1 
 
And likewise we can represent the data from the entire sample: 

x1, x2,x3,x4 ,x5, x6, x7{ } 
 
Or more generally 
 x1, x2,x3,..., xN{ } 
 

• Once we observe the data, then we can replace the random variables 
with their observed values 

 
If person 1 scored a 520, we write x1 = 520  

 
And the data might look like: 
 520,590,680,750,420,630,500{ } 
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2. Research Strategies 
 

• Experimental Research 
o Involves manipulation of the fixed, independent variables and control of 

all other variables by the experimenter to determine the effects on the 
random, independent variable 

o The IV may be an organismic variable (such as gender), and therefore 
controlled, but not manipulated (called a quasi-experiment) 

o In a true experiment all IVs are manipulated by the experimenter, and the 
experimenter may make causal claims 

 
• Observational Research 

o Involves observation and measurement on one or more random variables 
without any experimental control 

o The notions of IV and DV are irrelevant 
o Definitive causal claims may never be made 

 
 

• Hallmarks of experimental designs 
o Manipulation of an independent variable 
o Control of all other variables 

 
 
 
 

   Random
Ass ignment

IV:
Level 1

IV:
Level 2

Group 1

Group 2

Equivalen ce

Measure
DV

Measure
DV

Dif fer ence ?
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3. Measurement Scales 
 

• Nominal Scale 
o Specific numbers assigned to an observation, but the numbers assigned 

are arithmetically meaningless 
o Example: Political Affiliation 

 
1. = Democrat   1. = Republican   
2. = Republican   2. = Independent 
3. = Independent  3. = Democrat 
4. = Other   4. = Other 

 
o Can not add, subtract, multiply, or divide these values 
o Also referred to as qualitative or categorical variables 

   
• Ordinal Scale 

o The numerical values have a meaningful order (or ranking) 
x1 < x2 < x3 < x4 < x5  

 
o Example: 

• Birth Order 
• Grades of Eggs (A = 1, B = 2, C = 3; D = 4) 
• Ranking of 5 favorite fruits 

o Can perform any operation that preserves the order of the variables 
o Can not make a statement about the degree of difference on an ordinal 

scale 
 

• Interval Scale 
o Equal differences on the scale have equal meaning 
o Often said to have arbitrary zero-point 
o Example: 

• Temperature 
• Calendar of years 

o Can perform any linear transformation on these variables 
• y = 12x – 6 

o Can not take ratios of values 
o We often assume that Likert scales are interval scales.  It is more likely 

that these scales approximate an interval scale 
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• Ratio Scale 
o A scale that preserves ratio of scale values 
o Often said that the zero-point is meaningful 
o Examples 

• Time 
• Length 
• Weight 
• Frequency count 

o Must be careful with transformations  
• Can only multiply by a positive number 

 
 

• Recap of Measurement Scales 
 

Nominal Scale • ♦ ♠ ∞ ∋ ÷ ♣ 
   1 2 3 4 5 6 7 
 
Ordinal Scale  
   1 2  3  4 5 6  
 
Interval Scale 
   -2 -1 0 1 2 3 4 5  
 
Ratio Scale 
    0  1 2 3 4 5 6 7 

 
• In general,  

 
o Nominal scales can be used to make comparisons of frequency 
 
o Ordinal scales can be used to make comparisons of order 

f (x) > f (y)   
 

o Interval scales can be used to make comparisons of difference 
[ f (a) − f (b)] > [ f (x) − f (y)] 

 
o Ratio scales can be used to make multiplicative statements 

f (a) = 2 f (b) 
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• Let’s consider a simple example of what may happen when we violate the 

rules of operations for measurement scales 
o Suppose we have the ages of 6 family members (3 males and 3 females) 

 
 Males Females 
 75 66 
 70 65 
 5 64 
 X M = 50 X F = 65  

 
• The females are older than the males 

 
 
 

o Now suppose we converted these data to ranks  (birth order) and tried to 
perform the same operation 

 
 Males Females 
 6 4 
 5 3 
 1 2 
 R M = 4  R F = 3  

 
• We might conclude that the males are older than the females 
• This error occurred because we attempted to make comparisons of 

difference on an ordinally scaled variable  
 
 

• See Appendix A for a second example of measurement scales gone awry. 
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4. Describing Distributions 
 

• There are four population parameters we can use to describe any 
distribution: 
o Mean – The central value about which the observations scatter 
o Variance – How far the observations scatter around the central value 
o Skewness – How symmetric the distribution is around the central value 
o Kurtosis – How far rare observations scatter around the central value 

 
• Let’s consider some common estimators of these population parameters 

 
i. Measures of Central Tendency 

 
• (Arithmetic) Mean   

o The average – the sum of n scores, divided by n 
 

Population mean:  Discrete  Continuous     

  µ      =               
xi

i=1

N

∑
N

  or ∫
−∞

∞

dxxfx ii )(  

Sample mean: 

X   =         
xi

i=1

N

∑
N

 

 
o Takes into account the numerical value of each and every observation 
o Known as the “center of gravity” of the data  

 
 

• Median 
o The score at or near the 50th percentile 
o The value above and below which 50% of the observations fall 

 
o Insensitive to extreme values in a distribution 
o Difficult to work with mathematically 
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• Mode   
o Most common value appearing in the data set 
o May be multiple modes in a data set 

 
 

• Using the mean, median, and mode, we can get a sense of the distribution of 
the data. 

 
 

ii. Measures of Variability 
 

• Variance 
o The average of the squared deviations around the mean 

 

Population Variance:  σ 2 =
(xi −µ)2∑

N
 

 
Numerator =  Sum of squares around the mean 
Denominator = Number of observations 

 
• Used only if we have a census 

 
 

Sample Variance:    s2 =
(xi − X )2∑
N −1

 

 
Numerator =  Sum of squares around the mean 
Denominator = Degrees of Freedom 

 
• If we divide by N rather than N-1, then we underestimate the true 

sample variance, and we obtain a biased estimate of the variance 
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• Standard Deviation 

o Square root of the variance 
o Places the variability measure back on the original units of measurement 

 

Population Standard Deviation: σ =
(xi −µ)2∑

N
 

 
 

Sample Standard Deviation:  s =
(xi − X )2∑
N −1

 

 
 

• Interquartile Range (IQR) or Semiquartile Range (SQR) 
 

IQR = 75th percentile – 25th percentile 
 

o Very easy to visualize and interpret 
o The interval in which the middle 50% of the data fall 

 
o Some people prefer to use the semi-quartile range, SQR, which is half of 

the IQR 
SQR =

IQR
2

 

 
• The SQR is interpreted as the typical distance of an observation from 

the median (although this is a lazy method of calculating this quality – 
a better measure is the MAD) 

 
• Median Absolute Deviation (MAD) 

o The median absolute deviations around the median 
 

MAD = Median xi − medianx{ } 
 

o In other words 
• For each value, calculate the deviation from the median 
• Take the absolute value of these deviations 
• Find the median of this set of values 
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o The MAD can be properly interpreted as the typical distance of an 
observation from the median 

 
o Some authors refer to the mean absolute deviation.  To avoid confusion, 

we will abbreviate this quantity AD 
 

AD =
xi − Medianx

i=1

N

∑
N

 

 
 

iii. Measures of Skewness 
 

• Measures of the extent to which the distribution departs from symmetry 
o Positive skew – there exists a long tail to the right of the distribution 
o Negative skew – there exists a long tail to the left of the distribution 

 
Negatively Skewed Distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

t

Positively Skewed Distribution

0

0.02

0.04

0.06

0.08

0.1

0.12

t

 
 

• Calculating a coefficient of skewness: 
 
o γ1 ratio   

γ1 =
m3

m2
32

 where  m j =
(xi − X ) j∑

N
 

 
 

m1 =
(xi − X )∑

N
 m2 =

(xi − X )2∑
N

 m3 =
(xi − X )3∑

N
 

 
 

o Interpretation: A value of zero   ⇒  Symmetry 
   Values greater than zero  ⇒ Positive Skew 
   Values less than zero ⇒ Negative Skew 
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iv. Measures of Kurtosis 

 
• Measures the relative proportion of observations in the tails of the 

distribution.  It gives us a measure of the distance from the mean of the 
extreme values of the distribution  

 
o Mesokurtic:  the kurtosis of the normal distribution 

 
o Leptokurtic – a relatively large proportion of the observations are located 

in the tails of the distribution 
 Distribution looks skinny and peaked 

 
o Platykurtic – a relatively small proportion of the observations are located 

in the tails of the distribution 
Distribution looks flat 

 
 

• To estimate Kurtosis, we use γ2 ratio: 
γ 2 =

m4

m2
2 − 3 

 
• Interpretation of γ2 ratio:  

0    ⇒  Mesokurtic 
Values greater than 0  ⇒ Leptokurtic 
Values less than zero ⇒ Platykurtic 

 
 

o Note: SPSS uses a more complex (and better) formula to compute 
measures of skewness and kurtosis, but the interpretation is the same. 

 

Kurtosis =
N(N +1)

(N −1)(N − 2)(N − 3)
xi − X 

s
 
 
  

 

4

∑ −
3(N −1)2

(N −2)(N − 3)
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• Example of a Leptokurtic distribution 

KURT1

450.0
400.0

350.0
300.0

250.0
200.0

150.0
100.0

50.0
0.0-50.0

-100.0
-150.0

-200.0
-250.0

-300.0
-350.0

5000

4000

3000

2000

1000

0

Std. Dev = 18.50  

Mean = .5

N = 5000.00

 
 

o Compared to the normal distribution, this distribution is 
• Peaked/Pointy 
• Has too many observations in the tail 
• Leptokurtic 

 
o For a normal distribution with a mean of zero and a standard deviation of 

18.5 
 

• .13742% of the observations should be beyond 3SD from the mean 
• For a sample of 5000, that comes out to 6-7 observations 
• But in this sample, there are 43 observations beyond 3SD from the 

mean 
compute outlier = 0. 
if (kurt1> 55.5)  outlier = 1. 
if (kurt1 < -55.5)  outlier = 1. 
execute. 
freq var = outlier. 

 

Descriptive Statistics

5000 -338.40 441.43 .4997 18.50169 8.405 .035 248.976 .069
5000

KURT1
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
N Minimum Maximum Mean Std. Skewness Kurtosis

OUTLIER

4957 99.1 99.1 99.1
43 .9 .9 100.0

5000 100.0 100.0

.00
1.00
Total

Valid
Frequency Percent Valid Percent

Cumulative
Percent
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• Example of a platykurtic distribution 

 
• Compared to the normal distribution, this distribution is 

⇒ Flat 
⇒ Has too few observations in the tail 
⇒ Platykurtic 

Descriptive Statistics

5000 -31.98 32.00 -.0672 18.37366 -.028 .035 -1.190 .069
5000

KURT2
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
N Minimum Maximum Mean Std. Skewness Kurtosis

KURT2

42.5
32.5

22.5
12.5

2.5-7.5
-17.5

-27.5
-37.5

-47.5

600

500

400

300

200

100

0

Std. Dev = 18.37  
Mean = -.1

N = 5000.00
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v. Obtaining descriptive statistics in SPSS 
 

• A quick primer on entering data in SPSS 
 

o You can enter data directly into the SPSS Data Editor 
 

 
 
 

o Or you can enter data in text format using SPSS syntax 
 

DATA LIST FREE 
  /country city pop. 
BEGIN DATA. 
1 1 7.78 
1 2 4.22 
. 
. 
. 
16 9 15.00 
16 10 11.13 
END DATA. 

 
o Both give the same end result, but there are many reasons to prefer the 

syntax-based method.  If you will be an SPSS user, you should be 
familiar with both methods. 
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• Example #1: Data on the population of the 10 largest cities in 16 countries 

(from 1960) 
 

o Method #1: DESCRIPTIVES 
DESCRIPTIVES VARIABLES=pop 
  /STATISTICS=MEAN STDDEV VARIANCE MIN MAX  

KURTOSIS SKEWNESS. 
 

Descriptive Statistics

160 .69 110.21 12.0680 15.84678 251.121 3.181 .192 12.824 .381
160

POP
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
N Minimum Maximum Mean Std. Variance Skewness Kurtosis

 
 

X =12.07

s2 = 251.12
s =15.85
Skew = 3.18
Kurt =12.82

 

 
 

o Method #2: EXPLORE 
EXAMINE VARIABLES=pop 
  /PLOT NONE 
  /STATISTICS DESCRIPTIVES. 

Descriptives

12.0680 1.25280
9.5937

14.5423

9.6625
7.2150

251.121
15.84678

.69
110.21
109.52

10.1425
3.181 .192

12.824 .381

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

POP
Statistic Std. Error
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o Method #3: Use EXCEL 

 
Population 

  
Mean 12.068
Standard Error 1.25279833
Median 7.215
Mode 2.49
Standard Deviation 15.8467847
Sample Variance 251.120585
Kurtosis 12.824188
Skewness 3.1805543
Range 109.52
Minimum 0.69
Maximum 110.21
Sum 1930.88
Count 160

 
 

 
• Example #2: Speeding Data  

o A police officer sets up a speed-trap in a 55mph zone.  He obtains the 
following data 

 
Speed (in MPH) 

45 52 58 65 75 
48 54 59 66 75 
49 55 60 69 79 
49 57 63 72 82 
51 58 63 74 85 

 
 

o Method #1: DESCRIPTIVES 
DESCRIPTIVES VARIABLES=mph 
  /STATISTICS=MEAN STDDEV VARIANCE  

KURTOSIS SKEWNESS. 
 

Descriptive Statistics

25 62.5200 11.35826 129.010 .380 .464 -.859 .902
25

MPH
Valid N (listwise)

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic Std. Error
N Mean Std. Variance Skewness Kurtosis
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o Method #2: EXPLORE 

EXAMINE VARIABLES=mph 
  /PLOT NONE 
  /STATISTICS DESCRIPTIVES. 

Descriptives

62.5200 2.27165
57.8315

67.2085

62.2444
60.0000
129.010

11.35826
45.00
85.00
40.00

20.0000
.380 .464

-.859 .902

Mean
Lower Bound
Upper Bound

95% Confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

MPH
Statistic Std. Error

 
 
 
 

o Method #3: Use EXCEL 
 

MPH 
  
Mean 62.52
Standard Error 2.27165138
Median 60
Mode 49
Standard Deviation 11.3582569
Sample Variance 129.01
Kurtosis -0.8589291
Skewness 0.37952576
Range 40
Minimum 45
Maximum 85
Sum 1563
Count 25

 
X = 62.52

s2 =129.01
s =11.36
Skew = 0.38
Kurt = −0.86
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5. Exploratory data analysis techniques 
 

• Exploratory data analysis is a set of techniques that graphically displays the 
data (rather than relying on numbers and statistics). 

 
• Bar graph 

o If your data are discrete, then you can create a bar graph. 
o For each level of X, the height of the bar is the number of observations at 

that level 
o In a bar graph, some people insist that the bars not touch each other (to 

highlight the fact that the DV is discrete) 
 

Bar Graph

0

1

2

3

4

5

10 9 8 7 6 5 4 3 2 1 0

Quiz Score

 
 

 
• Histogram 

o A histogram is the equivalent of a bar graph.  Technically, a bar graph is 
used for discrete data, and a histogram is used for continuous data. 

o The continuous variable must be divided into b equal ‘bins’.  A graph is 
then created that represents the number of observations that fall into the 
bin. 

o The tricky part of creating a histogram is determining the number of bins.  
• If you have too many bins, then each bin will only have one 

observation 
• If you have too few bins, then you will not have enough bins to 

represent the data. 
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o Example #1: The population of the 10 largest cities in 16 countries (in 
1960) 

 
 

• USA data only 
 

POP

80.070.060.050.040.030.020.010.0

6

5

4

3

2

1

0

Std. Dev = 21.72  

Mean = 21.7

N = 10.00

  
 
 

• World data 
 

POP

60

50

40

30

20

10

0

Std. Dev = 15.85  

Mean = 12.1

N = 160.00

  
 

• SPSS has two ways of obtaining a histogram (GRAPH and IGRAPH).  
They do not draw the same histogram! 
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o Example #2: Speeding Data (in Excel) 

 
Histogram #1

0

1

2

3

4

5

6

7

8

9

30's 40's 50's 60's 70's 80's 90's

Speed

 
 

Histogram #2

0

1

2

3

4

5

6

40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94

Speed

Histogram #3

0

1

2

3

4

5

6

38-42 43-47 48-52 53-57 58-62 63-67 68-72 73-77 78-82 83-87 88-92

Speed  
 

• Each of these histograms is of the same data, but the “bin width” is 
different. 

• From Histogram #2, we might think that the distribution is right 
skewed, but that interpretation is not supported in the other graphs. 

 
• Note that none of these are incorrect. They all accurately display the 

same data.  However, you can arrive at very different conclusions 
about the data from these graphs. Interpret histograms with caution! 
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• Boxplot (or box-and-whisker plot) 
o The boxplot is a nice graph to identify the central aspects of the data, as 

well as the extreme observations, or outliers. 
o The boxplot consists of several components: 

• The median is the measure of central tendency used for a box plot 
• The IQR forms the “box” around the median 
• Each “whisker” extends to the largest (or smallest) observation no 

more than 1.5 IQRs from the “box” 
• Observations beyond the whiskers are identified as outliers 

 
o Example #1: Population data 

 
All 16 countries     USA only 

 
 

160N =

POP

120

100

80

60

40

20

0

-20

315114241122154
132112153102152
141
101

111
151

71131

121

 
10N =

POP

100

80

60

40

20

0

131

 
 

o Example #2: Speeding data 

25N =

MPH

90

80

70

60

50

40
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• Stem-and-leaf plot 

o A stem-and-leaf plot is similar to a histogram in that you get a sense of 
the shape of the distribution 

o But for a stem-and-leaf plot, you can see the actual value of each 
observation (or at least the first two places of each observation) 

o To construct a stem-and-leaf plot 
• Convert the data into two-digit numbers (round any remaining digits) 
• Construct the stem – the left-most of the digits 

(In this case, the tens digit) 
 

STEM  LEAF 
4 
5 
6 
7 
8 

 
• Next, fill in the leaves (in this case, the tens digit) 

Each observation gets its own leaf 
 

STEM  LEAF 
4  5899 
5  12457889 
6  033569 
7  24559 
8  25 



1-26 © 2006 A. Karpinski 

 
o In SPSS, use the EXAMINE command 

EXAMINE VARIABLES=mph 
  /PLOT STEMLEAF. 

 
• Beware! SPSS will often divide stems into 2 or more steps (with the 

same stem digit) 
 

MPH Stem-and-Leaf Plot 
 Frequency    Stem &  Leaf 
 
      .00        4 . 
     4.00        4 .  5899 
     3.00        5 .  124 
     5.00        5 .  57889 
     3.00        6 .  033 
     3.00        6 .  569 
     2.00        7 .  24 
     3.00        7 .  559 
     1.00        8 .  2 
     1.00        8 .  5 
 
 Stem width:     10.00 
 Each leaf:       1 case(s) 

 
o For the population example, SPSS divided each stem into 5 stems 

EXAMINE VARIABLES=pop 
  /PLOT STEMLEAF. 

 
POP Stem-and-Leaf Plot 
 Frequency    Stem &  Leaf 
 
    18.00        0 .  000000011111111111 
    37.00        0 .  2222222222222222222222222333333333333 
    15.00        0 .  444444445555555 
    21.00        0 .  666666677777777777777 
    14.00        0 .  88888899999999 
    15.00        1 .  000000111111111 
     2.00        1 .  33 
     2.00        1 .  55 
     6.00        1 .  666667 
     2.00        1 .  88 
     5.00        2 .  00111 
     2.00        2 .  23 
     3.00        2 .  445 
    18.00 Extremes    (>=28) 
 
 Stem width:     10.00 
 Each leaf:       1 case(s) 
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6. Resistant statistics 
 

• When we collect real data, they often are not as well behaved as the data you 
find in textbook examples.  We often observe outliers – observations that are 
very different (i.e., much larger or much smaller) from the main body of the 
data.   

• One challenge we face is how to analyze data with outliers. We do not want 
our conclusions to be determined or influenced by one or two deviant 
observations. 

 
• Unfortunately, many of the statistics we use are greatly influenced by 

outliers.  For example, consider the sample mean: 
 

o Case 1: }7,6,5,4,3{  5=X  
o Case 2: }107,6,5,4,3{  25=X  

 
 

• There are several terms that are used to describe statistics:  
o A resistant statistic is a statistic that is insensitive to localized 

misbehavior in the data (such as an outlier). 
o A robust statistic is a statistic that is insensitive to departures from 

statistical assumptions required for the tests we conduct. 
 

o We have just seen that the sample mean is not resistant. 
o On the other hand, the sample median is highly resistant to outlying 

values: 
 

• Case 1: }7,6,5,4,3{   5=Median  
• Case 2: }107,6,5,4,3{  5=Median  

 
o We would like to have a set of statistics that is resistant so that we can 

accurately estimate values and model parameters regardless of the 
underlying shape and characteristics of the data. 
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• Resistant estimators of central tendency 
 

o The median is not at all influenced by extreme observations.  However, 
the median can be overly sensitive to the values of the middle one or two 
observations. 

 
o M-estimators are a class of estimators of central tendency that are 

obtained by solving the following equation for θ , the M-estimator: 

 0
1

=





 −∑

=

N

i

ix
δ

θ
ψ  (1-1) 

 
where ψ  is a function (subject to certain constraints) 

θ   is the M-estimator 
δ   is an (optional) scale estimator 

 
A more intuitive understanding of M-estimators can be obtained by re-
writing equation (1-1) as a set of weights applied to the observations 
 

 θi =
wixi

i=1

N

∑

wi
i=1

N

∑
 (1-2) 

 

• Example #1: If we let ψ =
xi −θ

δ
 
 

 
 

2

 and let δ = σ , then we need to solve: 

xi −θ
δ

 
 

 
 

2

i=1

N

∑ = 0 

 
With a little calculus, we can show X=θ̂ .  If we re-write θ  as in 
equation (1-2), we find that wi =1 for all observations 
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o The trick is to find a function ψ  that gives resistant estimators of the 

central tendency of a distribution 
 

o There are two M-estimators that have been shown to be robust and 
resilient: 
• Tukey’s bisquare estimator 
• The Huber estimator 

 
o Tukey’s bisquare estimator 

(Which Tukey denies he discovered!) 
 

• Let’s call u
xi =

−
δ

θ )(    

where θ  is the M-estimator of central tendency 
       δ  is a scale estimator (in this case the MAD) 

 
Then u  can be interpreted like a standardized score 

 
• Now we define a weight function wi  such that 

 

wi =
1−

ui
2

4.6852

 

 
  

 
 

2

0

 

 
 

  
   for   

ui ≤ 4.685

ui > 4.685
 

 
• θ̂  is the Tukey bisquare estimator.  We cannot solve for θ̂  directly – 

we must use an iterative process 
 

• To understand the Bisquare, let’s examine the weight function 
Tukey Bisquare
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o The Huber estimator 

• Again, let 
δ

θ )( −
= ix

u  with MAD=δ  

 
And define a weight function wi  such that 
 

wi =
1
1.339

ui

sign(ui)

 
 
 

  
   for   

339.1

339.1

>

≤

u

u
 

 
• θ̂  is the Huber estimator.  Again, we cannot solve θ̂  directly – we 

must use an iterative process 
 

Huber
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o Unfortunately, there is not a rule of thumb explaining when to use the 
mean, the median, the bisquare, and Huber estimators to describe the 
central tendency of a distribution.  Ideally, they should all be considered, 
along with a boxplot and/or histogram of the data. 

 
 

o In general, M-estimators are very difficult to calculate. They cannot be 
solved directly; iterative methods must be used. Luckily, SPSS will 
calculate them for us! 
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o Example #1: Speeding example 

25N =

MPH

90
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60

50

40

Histrogram #1
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EXAMINE VARIABLES=mph 
  /MESTIMATORS  HUBER(1.339) TUKEY(4.685). 

Descriptives

62.5200 2.27165
60.0000

Mean
Median

MPH
Statistic Std. Error

M-Estimators

61.5818 61.7566MPH

Huber's
M-Estimatora

Tukey's
Biweightb

The weighting constant is 1.339.a. 

The weighting constant is 4.685.b. 
 

 
 

o Example #2: Population of world’s cities example 

POP

60

50

40

30

20

10

0

Std. Dev = 15.85  

Mean = 12.1

N = 160.00

 
EXAMINE VARIABLES=pop 
  /MESTIMATORS  HUBER(1.339) TUKEY(4.685). 

Descriptives

12.0680 1.25280
7.2150

Mean
Median

POP
Statistic Std. Error

M-Estimators

7.4134 6.2263POP

Huber's
M-Estimatora

Tukey's
Biweightb

The weighting constant is 1.339.a. 

The weighting constant is 4.685.b. 
 



1-32 © 2006 A. Karpinski 

 
o I do not expect you to calculate M-estimators by hand, but you should be 

able to:  
• Explain why Bisquare and Huber estimators are more resistant to 

outliers than the sample mean 
• Explain how and why Bisquare and Huber estimators are different 

than the sample mean 
 
 
 
7. Properties of Estimators 
 

• Thus far, we have developed several measures for each of the population 
parameters. Which ones are the best? Let’s consider some desirable 
properties for any statistic 

 
• There are three desirable properties for any estimator: 

 
o Unbiasedness: We would like an estimate of the population parameter to 

be, on average, equal to the population parameter.  That is, we want our 
estimates to be correct on average 

 
o Consistency: We would like our estimates of the population parameters 

to increase in their accuracy as the size of the sample increases.  That is, 
the more data we have collected the better our estimate of the population 
parameters should be 

 
o Efficiency:  When comparing two possible estimators of a population 

parameter, we prefer the estimate with the smaller variance.  That is, we 
prefer estimates that tend to cluster around their average value to 
estimates that are more dispersed. 

 
 

• In order to evaluate these properties, we need to understand some properties 
regarding the ‘average value’ and the variance of a random variable 

 
o The ‘average value’ of a random variable is known as its expected value, 

E(X ) 
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o There are three important properties of the expectation.  Let’s let X be a 
random variable, and let a and b be constants 

 
E(a) = a  

E(aX) = aE (X)  
E(X + b) = E (X) + b  

 
or 

 
E(aX + b) = aE (X) + b  

 
• In English: 

⇒ Adding a constant to every value in the data, increases the mean by 
that constant. 

⇒ If you multiply every value in the data by a constant, you multiply 
the mean by that constant. 

 
Thus, we can easily obtain the expected value of a linear transformation 
of any random variable. 

 
 
o The amount of variability of a random variable around its expected value 

is known as its variance, Var(X)  
 

o There are three important properties of the variance.  Let’s let X be a 
random variable, and let a and b be constants 

 
Var(a) = 0 

Var(aX ) = a2Var(X ) 
Var(X + b) =Var(X ) 

or 
Var(aX + b) = a2Var(X ) 

 
• In English: 

⇒ Adding a constant to every value in the data, does not change the 
variance. 

⇒ If you multiply every value in the data by a constant, you multiply 
the variance by that constant squared. 

 
Now we can easily obtain the variance of a linear transformation of any 
random variable. 
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o With these simple formulas, you can calculate the mean and variance of 
any linear transformation (so long as you know the mean and variance of 
the original variable). 

o Note that we did not make any distributional assumptions, so you do not 
have to check any assumptions to calculate the new mean and variance. 

 
 

o For example, suppose you have temperature in degrees Fahrenheit and 
you want to convert it to degrees Celsius.  We know the following 
formula does the conversion: 

)32(
9
5

−∗= FC TT  

 
• We need to write this equation in the form of a linear transformation 

baXY +=  
 







−=

9
5*32

9
5

FC TT  

9
5

=a   
9

160
−=b  

 
• Now, we can calculate the expected value of the temperature in 

Celsius 
E(aX + b) = aE (X) + b  







 −=

9
160

9
5)( FC TETE  

9
160)(

9
5

−= FTE  

 
• If we know that the average temperature in a dataset is Fo212 , we can 

use the expected value of a linear transformation to find the average 
temperate in Celsius 

100
9

160)212(
9
5)( =−=CTE  
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o Likewise, we can also determine the variance of the Celsius scale: 
Var(aX + b) = a2Var(X ) 







 −=

9
160

9
5)( FC TVarTVar  

2
2

309.)(
9
5

FFTVar σ=





=  

 
• If we know the variance of a distribution of temperatures in 

Fahrenheit is 302 =Fσ , then we can use the variance of a linear 
transformation to find the variance of the Celsius distribution 

o26.930*309.309. 22 === FC σσ  
 

• In practice, we are most interested in estimates of the mean and the variance 
of the population (it turns out that the Normal distribution can be completely 
described using only these two parameters). So let’s find the best estimators 
of the mean and the variance. 

 
o Claim: The sample mean is an unbiased estimator of the population 

mean. 
µ=)(XE  

 

X =
x1 + x2 + ...+ xN

N
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o We could also show that the sample mean is consistent and efficient in 

normally distributed data. 
o In other words, the sample mean satisfies all the desirable properties for 

an estimator of the population mean. 
 
 

o We can also show that the sample variance is an unbiased, consistent, and 
efficient estimator of the population variance (again, in normally 
distributed data). 

 
 

• As a consequence, when we want to estimate the population mean and 
variance, we usually use the sample mean and variance. 

 
 
8. The Normal Distribution 

• The normal distribution is a 2-parameter distribution: 
o The location parameter – µ  
o The scale parameter      – σ  

 
Once these two parameters are known, the entire distribution is defined 
o Both the skewness and kurtosis coefficients are zero for a normal 

distribution 
 

Normal Distribution
Changing the Location Parameter
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• The density function of the normal distribution 
2
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2
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• Properties of the normal curve 
o 68.26% of the observations lie between σ1−  and σ1+  
o 95.44% of the observations lie between σ2−  and σ2+  

 
 
 
 

Normal Curve

-4 -3 -2 -1 0 1 2 3 4
 

 
 
 
 
 
 
 
 

σ σ σ σ σ σ 

.3413 .3413 

.1359 .1359 

.0228 .0228 
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• Standardized z-scores 

o Motivation for the use of standardized z-scores: 
Person 1: IQ of 135 on a test distributed )18,110(N  
Person 2: IQ of   95 on a test distributed )30,50(N  
Who has the higher intelligence score? 

 
• It is very difficult to answer this question because of the differences in 

the two normal distributions 
• A solution is to transform both distributions into a new distribution 

with a common mean and standard deviation 
 
 

• A standardized normal distribution has 0=µ  and 1=σ : )1,0(N  
o Also referred to as the Gaussian Distribution 
o We can easily convert a value from any normal distribution to a value on 

the standard normal curve 
 

• To convert raw normal scores into z-scores 
 

z =
xi −µ

σ
  

 
o This transformation maintains the shape of the distribution 
o Note that this is a linear transformation of the raw data 

 
 

• Using the properties of the expectation and variance of a random variable, 
we can prove that z-scores are distributed )1,0(N  

 
o Let X be any normally distributed random variable: ),(~ XXNX σµ  

 

• The z-transformation
X

Xix
z

σ
µ−

=  is a linear transformation with  

X

a
σ
1

=    and  
X

Xb
σ
µ

−=   

 
• What is the mean and variance of the z-distribution? 
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• Now we have shown that )1,0(~ NZ  
 
 
 
 
 
• To return to our IQ example: 

 
 

IQ1 =
135 −110( )

18
=1.387  IQ2 =

95 − 50( )
30

=1.50  

 
 

• Converting z-scores into percentiles 
 

o Can only be used if the data are normally distributed and have been 
converted into z-scores 

o If an observation is at the xth percentile, it means that 45% of the 
observations have a value of x less than the observation. 
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o A common Z-table 

 
  Area between Area 
 z 0 and z beyond z 
 0.00 .0000 .5000 
 0.01 .0040 .4960 
 
 1.00 .3413 .1587 
 
 1.38 .4162 .0838 
 1.39 .4177 .0823 
 
 1.50 .4332 .0668 
 
 2.00 .4772 .0228 
 
 3.00 .4987 .0013 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

o For Person A )39.1( =z , we find that his/her score is at the 91.77th 
percentile 

o For Person B )50.1( =z , we find that his/her score is at the 93.32th 
percentile 

o Be sure you can convert and interpret negative z-scores! 
 

Normal Curve

-4 -3 -2 -1 0 1 2 3 40 z

Column B 

Column C
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• Another z-score example: 
Suppose that the body weight for 18 year-old American men is normally 
distributed: )21,150(N .  One case is chosen at random from the distribution. 

 
o What is the probability that this case weighs between 145lbs and 155 lbs? 

 
• We first need to convert 145 and 155 lbs to z-scores 

( ) 2381.
21

150145
145 −=

−
=z   ( ) 2381.

21
150155

155 +=
−

=z  

 
• Next, we need to look up the probability associated with each z-value 

4052.,2381.145 =−= pz   5948.,2381.155 =+= pz  
 

• Finally, the probability we are interested in, )155145( << xp  is equal to 
)145()155( <−< xpxp  

1896.4052.5948. =−  
 

So the probability of the observation weighing between 145 and 155 
lbs is 18.96% 
 

o What is the probability that the case weighs more than 1.5 standard 
deviations from the mean (in either direction)? 

 
• We already know the z-scores, 5.11 −=z  and 5.12 +=z  

 
• Because of the symmetry of the normal distribution, we only need to 

look up the probability associated with one z-value 
0668.,5.11 =−= pz  

 
• Finally, the probability we are interested in is the probability of being 

1.5 standard deviations from the mean in either direction. So we need 
to double the p-value we obtained. 

 
So the probability of the observation weighing more than 1.5 standard 
deviations from the mean is 13.36% 
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9. Sampling Distributions 

• A sampling distribution is a distribution of all the possible values that a 
sample statistic can assume  

 
• Example #1 : X1 = a random digit 

0
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0 1 2 3 4 5 6 7 8 9

Digit

p(
X)

 
 
 

• Example #2: X2 = the number of heads in 5 tosses of a fair coin 
 
o Using the binomial theorem (see Appendix B), we can calculate the 

probability of each possible outcome: 
 

Probability of zero heads: p(0;5,.5) = .031 
Probability of one head:   p(1;5,.5) = .156 
Probability of two heads:  p(2;5,.5) = .313 
Probability of three heads:  p(3;5,.5) = .313 
Probability of four heads:  p(4;5,.5) = .156 
Probability of five heads:  p(5;5,.5) = .031 

 
 Total Probability: 1.00 

 
o And so the sampling distribution for the number of heads on 5 flips of a 

fair coin is: 

0
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# of heads

p(
X)
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• Example #3: X3 = the number of heads in 5 tosses of a biased coin with 
probability of heads equal to 0.3 

 
o Using the binomial theorem, we can again calculate the probability of 

each possible outcome: 
 

Probability of zero heads: p(0; 5,.3) = .168 
Probability of one head:   p(1; 5,.3) = .360 
Probability of two heads:  p(2; 5,.3) = .309 
Probability of three heads:  p(3; 5,.3) = .132 
Probability of four heads:  p(4; 5,.3) = .028 
Probability of five heads:  p(5; 5,.3) = .002 

 
 Total Probability:  1.00 
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• Sampling Distribution of the Mean 
o In virtually all cases we compute statistics, we are interested in making 

inferences about the mean of a distribution 
o When we collect data, we observe a sample mean, a sample variance, and 

the sample size 
o From this information (and with a few assumptions) we can calculate the 

sampling distribution of the mean.  That is, we can calculate the entire set 
of possible values the mean might assume, and the probability associated 
with each of those values 

o The sampling distribution of the mean can be thought of as the pattern of 
means that would result if we repeatedly took a random sample of size n 
from the population 

 



1-44 © 2006 A. Karpinski 

o Example #1: Let X be the role of a fair six-sided die, and let n = 2 
 

• The probability of each side occurring on any one roll is 1/6 
• Imagine drawing a sample of two from this population 
• There are 36 possible pairs of numbers for n=2 
• Let’s calculate the mean of the pairs 
• This distribution of possible means is the sampling distribution of the 

mean 
 
 
    Population Probability Distribution          Sampling Distribution of the Mean 
         (n=2) 
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• Notice that the mean of x in the population distribution is the same as 
the mean of the sampling distribution, but the variability is greatly 
decreased in the sampling distribution! 

• This is an example of the fact we previously proved – that x  is an 
unbiased estimator of µ  

• It is not true that the observed mean will always be identical to the 
population mean!! (Why?) 
 
 

• It is also the case that the variance of the sampling distribution will be 
less than (or equal to) the variance of the population.  This fact is 
known as the law of large numbers 
 

Specifically:  

σx 
2 =

σ µ
2

N
 or   σx =

σµ

N
 

 

µ = 3.5 µ = 3.5 

x x 
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• Sampling from the Normal Distribution 

 
o Theorem:  If X is distributed N(µx ,σx ) then the sampling distribution of 

the mean, x , based on random samples of size n, will also be normally 
distributed, with: 

 µx = µx  
 σx = σ x

n
   

 
o Key points: 

• If the parent distribution is normally distributed, the sampling 
distribution is normally distributed. 

• The expected mean of the sampling distribution is identical to the 
population mean. 

• The standard deviation of the sampling distribution is equal to the 
standard deviation of the population divided by the square root of the 
sample size.  This number is referred to as the standard error of the 
mean. 

(In fact, any standard deviation of a sampling distribution is 
referred to as a standard error.) 
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o Let’s consider an example of a sampling distribution from a parent 

population that is normally distributed. Let’s assume that SAT scores are 
distributed N(450, 50). 

 
 
 
 Population Sampling Distribution (n=4) 
 N(450,50) N(450,25) 

250 350 450 550 650

           
250 350 450 550 650

 
 

 
 
 
 Sampling Distribution (n=16) Sampling Distribution (n=64) 
 N(450,12.5) N(450,6.25) 

250 350 450 550 650

             
250 350 450 550 650
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• Central Limit Theorem (CLT) 
o Just when you thought it could not get any better. . . 
 
o Theorem:   If X comes from any distribution with mean = µx  and 

standard deviation = σx  then the sampling distribution of the mean, x , 
based on random samples of size n, have the following properties: 

 µx = µx  
 σx = σ x

n
 

 
AND will tend to be normally distributed as the sample size becomes 
large. 

 
o Note that the CLT applies to the hypothetical sampling distribution of 

sample means, NOT to the sample distribution of observations! 
 
 

o An example with non-normally distributed data: 
     µx =4 and σx  = 2.828     

0 4 8 12 16 20 24 28
 

 
• This distribution has what kind of skew? 
• Would its coefficient of skewness be positive or negative? 

 
(For the curious, this is a gamma distribution) 
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• Let’s start by taking random samples of size 5 (n=5) from the parent 

distribution. 
• We’ll take the mean of those samples and look at the resulting 

distribution of means. (For the super-curious, I took 50 random 
samples) 

 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

 
 

What should the mean and standard deviation of this distribution be? 
 
   Estimated    Observed    
 

µx = 4

σx = σ x

5
= 2.828

2.236
=1.265

  

µx = 3.74

σx = 1.368

 

  
 

Why the discrepancy? 
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• Now let’s take random samples of size 10 (n=10) from the parent 
distribution and look at the sampling distribution of the mean 

 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

 
What should the mean and standard deviation of this distribution be? 

 
    Estimated      Observed   

µx = 4

σx = σx

10
= 2.828

3.162
= 0.894

  
µx = 3.80

σx = 0.986
 

  
• Finally let’s take random samples of size 25 (n=25) from the parent 

distribution and look at the sampling distribution of the mean 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

 
 

   Estimated     Observed    
µx = 4

σx = σ x

25
= 2.828

5
= 0.5656

  
µx = 3.95

σx = 0.604
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o The power of the central limit theorem (CLT) is that the underlying 
distribution of whatever you are studying does NOT have to be normally 
distributed for your statistics to be normally distributed, so long as your 
sample size is large 

(Remember, if your underlying distribution is normal, then the 
sampling distribution of the mean is automatically normally 
distributed, regardless of the sample size) 

 
o A rule of thumb regarding the CLT is that you can generally count on 

normality to kick-in around n=30, but this is just an estimate, and it 
depends upon a number of factors. 

 
o By looking at the formula for the standard error of the mean, we can see 

the law of large numbers.  According to this law, the larger the sample 
size, the more likely it is that the sample mean will be close to the 
population mean.   

 
σx  = σ x

n
 

 
 
 n σx  
 1 1*σx  
 5 .447*σx  
 50 .141*σx  
 100 .1*σx  
 500 .045*σx  
 
 

• This little demonstration shows the law of large numbers – the larger 
the sample, the more likely the mean of the sample is to reflect the 
mean of the general population 

 
 

• See Appendix C for an example of how people tend to process 
information about probabilities (it’s not pretty!). 
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Chapter 1: Appendices 
 

 
A. Measurement scales gone awry: A second example  
 

• A second example highlighting the importance of measurement scales and 
how complicated this issue can become: 

 
o Imagine that four participants rate how aggressive they find each of two 

film clips: a and b 
o Each person considers the input (the film clip), processes that input, and 

arrives at a decision: 
f (a) and f (b)  

 
o What we would like to do is to average all the ratings of film a and 

compare them to the average ratings of film b 
 

f (a)∑
N

>
f (b)∑
N

 

 
• This equation represents the statement that “the average 

aggressiveness for movie a is greater than the average aggressiveness 
for movie b.” 

• Note that a and b do not have subscripts because everyone watches the 
same movie 

 
• However, we assume that each participant is using and interpreting 

the rating scale in exactly the same manner.  It seems likely that each 
person has his or her own scale: 

 
fi(a)∑
N

>
fi(b)∑
N
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• But the more plausible case presents big problems!  Imagine that 

persons 1 and 2 have the following interpretation of the rating scale 
and that we can map these interpretations onto a single scale: 

 
 

Person 1: 1 2 3   4   5 6 7 
 
Person 2: 1   2 3 4 5 6   7 
 
Combined: 1 2 3 4 5 6 7 8 9 10 11 

 
 

• Suppose that we obtain the following data on the rating scale: 
 

 Movie A Movie B 
Person 1 3 6 
Person 2 6 2 
 X a = 4.5 X b = 4   
 
Movie A is more aggressive than Movie B 

 
• But on the combined/actual scale, we obtain different results! 

 
 Movie A Movie B 
Person 1 3 10 
Person 2 8 2 
 X a = 5.5 X b = 6  
 
Movie B is more aggressive than Movie A 

 
• In statistics, we assume that the data come from meaningful/interpretable 

scales.  If not, we may misapply/misinterpret our statistics.  These types of 
issues fall under the category of measurement theory 
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B. The Binomial Theorem 
 

• The binomial theorem can be used to calculate probabilities of independent 
events whenever the outcome is dichotomous (typically referred to as a 
success or a failure). 

 
• Example #1: X2 = the number of heads in 5 tosses of a fair coin 

 
o Our goal is to list the probability of each possible outcome 
o One possible way to calculate these probabilities is to calculate them all 

by hand.   
 

• First, we need to determine the number of possible outcomes: 
 

First coin =   Heads or tails  2 outcomes 
Second coin =  Heads or tails  2 outcomes 
Third coin =  Heads or tails  2 outcomes 
Fourth coin =  Heads or tails  2 outcomes 
Fifth coin =   Heads or tails  2 outcomes 
 
2*2*2*2*2 = 32 

 
• Next, we need to list all 32 outcomes 

 
 Coin Coin Coin Coin Coin 
 1 2 3 4 5 
  

 1 H H H H H 
 2 H H H H T 
 3 H H H T H 
 4 H H H T T 
 5 H H T H H 
 6 H H T H T 
 7 H H T T H 
 8 H H T T T 
 9 H T H H H 
 10 H T H H T 
 11 H T H T H 
 12 H T H T T 
 13 H T T H H 
 14 H T T H T 
 15 H T T T H 
 16 H T T T T 

 Coin Coin Coin Coin Coin 
 1 2 3 4 5 
 
 17 T H H H H 
 18 T H H H T 
 19 T H H T H 
 20 T H H T T 
 21 T H T H H 
 22 T H T H T 
 23 T H T T H 
 24 T H T T T 
 25 T T H H H 
 26 T T H H T 
 27 T T H T H 
 28 T T H T T 
 29 T T T H H 
 30 T T T H T 
 31 T T T T H 
 32 T T T T T 
 



1-54 © 2006 A. Karpinski 

• Finally, we can tally the results and calculate the probabilities, for 
each possible outcome: 

 
Total with 0 heads =  1/32 = 0.03125  
Total with 1 head  =  5/32 = 0.15625 
Total with 2 heads =  10/32 = 0.31250 
Total with 3 heads =  10/32 = 0.31250 
Total with 4 heads =  5/32 = 0.15625 
Total with 5 heads =   1/32 = 0.03125 

 
• As you can see, this is a very tedious process that we would like to 

avoid at all costs! 
 

o An alternative is to use the Binomial Theorem to calculate each of the 
possible outcomes: 

p(x) =
N
x

 
 
  

 
 pxq N −x( ) 

 
Where  N = total number of trials 
  x = # of successes 
  p = probability of success 
  q = probability of failure (1-p) 

  

And   N
x

 
 
  

 
 =

N!
x!(N − x)!

 

 
p(0;5,.5) = .031 

 03125.03125.*1*
!5!*0

!5)5(.)5(.
0
5

)0( 50 ==







=p  

p(1;5,.5) = .156 
p(2;5,.5) = .313 
p(3;5,.5) = .313 
p(4;5,.5) = .156 
p(5;5,.5) = .031 
 

Total Probability: 1.00 
 

o The binomial theorem saves us the trouble of listing all the possible 
outcomes 
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• Example #2: A particular woman has given birth to 11 children. Assume the 

probability of having a boy and of having a girl is p = .5. 
 

a. What is the probability of having nine boys? 
• For this problem, N = 11, x = 9. p = q = .5 
 

0269.25.*00195.*5525.*00195.*
!2!*9

!11)5(.)5(.
9
11

)9( 29 ===







=p  

 
p(9;11,.5) = .0269 

 
b. What is the probability of having nine or more boys? 

• The probability of nine or more boys = 
Probability of having 9 boys + 
Probability of having 10 boys + 
Probability of having 11 boys + 
 

0269.25.*00195.*5525.*00195.*
!2!*9

!11)5(.)5(.
9
11

)9( 29 ===







=p  

 

0054.5.*00977.*115.*000977.*
!1!*10

!11)5(.)5(.
10
11

)10( 110 ===







=p  

 

0005.5.1*5.*
!0!*11

!11)5(.)5(.
11
11

)11( 1111011 ===







=p  

 
0328.0049.0054.0269.)9( =++=≥xp  

 
 

c. What is the probability of having nine or more children of the same 
gender? 
• The probability of nine children of the same gender = 

Probability of having nine or more boys + 
Probability of having nine or more girls + 

 
= .0328 + .0328 = .0656 
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• Example #3: Suppose the probability of having blue eyes is p = .35.  

Consider a sample of 15 people. 
 

a. What is the probability of three of the people having blue eyes? 
• For this problem, N = 15, x = 3. p = .35, q = .65 

1110.)65(.)35(.*455)65(.)35(.*
!3!*12

!15)65(.)35(.
3
15

)3( 123123123 ===







=p

 
 
 

b. What is the probability of three of the people NOT having blue eyes? 
• If three people do not have blue eyes, then 12 people must have 

blue eyes.  So we restate the problem as what  
• For this problem, N = 15, x = 12. p = .35, q = .65 

0004.)65(.)35(.*455)65(.)35(.*
!12!*3

!15)65(.)35(.
12
15

)3( 312312312 ===







=p

 
 
 
 
C. A Psychological Perspective on Probability  
 

• In general, people have a very poor intuitive understanding of probability 
and randomness 

 
• Law of Small Numbers 

o Small samples are assumed to be highly representative of the populations 
from which they are drawn 

o In research settings, this leads to overconfidence in results of small 
samples, and overestimation of the replicability of results. 

o Interpersonally, people think they “know” someone based on very small 
samples of behavior 

o Abelson’s second law of Statistics: Overconfidence abhors uncertainty.  
“Psychologically, people are prone to prefer false certitude to the 
daunting recognition of chance variability.” (Abelson, 1995) 
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• Gambler’s fallacy 
o After a long run of one outcome, people believe that the alternative 

outcome is more likely to occur 
• After 5 heads, a tail is more likely. . . 
• After 6 blacks in a row on the roulette wheel, people start betting on 

red with a greater frequency . . . 
• In a baseball game, when a .250 hitter goes 0 for 3, he is “due” for a 

hit in his fourth at bat 
o People think that random processes will correct themselves over the short 

haul. 
 
 

• People exhibit an insensitivity to sample size 
o An Example: A certain town is served by two hospitals. In the larger 

hospital, about 45 babies are born each day, and in the smaller hospital, 
about 15 babies are born each day.  As you know, about 50% of all 
babies are girls.  However, the exact percentage varies from day to day. 
Sometimes it may be higher than 50%, sometimes it may be lower 

      
For a period of one year, each hospital recorded the number of days on 
which more than 60% of the babies born were girls. Which hospital do 
you think recorded more such days? 

- The larger hospital  
- The smaller hospital 
- About the same (that is, within 5% of each other) 

 
Results of how participants responded: 
- The larger hospital  22%  
- The smaller hospital 22% 
- About the same   56% 

 
• But YOU know the real answer is the smaller hospital! 
• Again, in research settings, this finding suggests that researchers will 

be overconfident in results from small samples. 
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• People believe all chance events should “look random” 
o People believe that short sequences of random outcomes should be 

representative of the process that generated it. 
o Which sequence of heads and tails is more likely? 

- H-T-H-T-T-H 
- H-H-H-T-T-T 

 
o Which set of numbers is more likely to win the lottery? 

- 3,6,17,23,36,41 
- 1,2,3,4,5,6 

 
o Abelson’s first Law of Statistics: Chance is lumpy.   

 
 

• A small plug: 
Abelson, R. P. (1995). Statistics as a principled argument.  Hillsdale, NJ: 
Lawrence Erlbaum. 
 

• Abelson’s laws of Statistics 
1. Chance is lumpy 
2. Overconfidence abhors uncertainty 
3. Never flout a convention just once 
4. Don’t talk the Greek if you don’t know the English translation 
5. If you have nothing to say, say nothing 
6. There is no free hunch 
7. You can’t see the dust if you don’t move the couch 
8. Criticism is the mother of methodology 

 
 
 


