CHARACTERIZING GRAPHS OF ORDER N WHOSE SUM OF STRONG EFFICIENT

DOMINATION NUMBER AND CHROMATIC NUMBER IS N + 1

N.MEENA

Department of Mathematics The M.D.T. Hindu College, Tirunelveli-627 010 Tamilnadu, India. Email: Meenavidya72@gmail.com

ABSTRACT

Let $G = (V, E)$ be a graph. A subset S of $V(G)$ is called a strong (weak) efficient dominating set of G if for every $v \in V(G)$, $\big| N_s[v] \cap S \big| = 1$ ($\big| N_w[v] \cap S \big| = 1$), where $N_s(v) = \{u \in V(G): uv \in S \}$ E(G), deg u \ge deg v $\}$ and $N_w(v) = \{ u \in V(G) : uv \in E(G)$, deg v \ge deg u $\}$, $N_s[v] = N_s(v) \cup \{v\}$, $(N_w[v] = N_w(v) \cup \{v\})$. The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by $\gamma_{se}(G)$ ($\gamma_{we}(G)$). Let G be a graph on n vertices. In this paper, graphs for which the sum of strong efficient domination number and chromatic number equal to n+1 are characterized.

Key words: Strong efficient dominating sets, Strong efficient domination number and chromatic number

AMS Subject classification: (2010): 05C69

1. Introduction:

Throughout this paper, only finite, undirected and simple graphs are considered. Let $G = (V,E)$ be a graph. A subset S of V(G) of a graph G is called a dominating set of G if every vertex in $V(G) \setminus S$ is adjacent to a vertex in S [9]. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. Sampathkumar and Pushpalatha introduced the concepts of strong and weak domination in graphs [8]. A subset S of V(G) is called a strong dominating set

of G if for every $v \in V - S$ there exists a $u \in S$ such that u and v are adjacent and deg $u \ge \text{deg } v$. A subset S of V(G) is called an efficient dominating set of G if for every $v \in V(G)$, $\vert N[v] \cap S \vert =$ 1[1,2]. The concept of strong (weak) efficient domination in graphs was introduced by Meena, Subramanian and Swaminathan [4]. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every $v \in V(G)$, $N_s[v] \cap S \ = 1(\left| N_w[v] \cap S \right| = 1)$. $N_s(v) = \{ u \in V(G) \}$: uv ∈ E(G), deg(u) ≥ deg(v) }. The minimum cardinality of a strong (weak) efficient dominating set is called strong (weak) efficient domination number and is denoted by $\gamma_{se} (G)(\gamma_{we}(G))$. A graph G is strong efficient if there exists a strong efficient dominating set of G. An *n* - colouring of a graph *G* uses n colours. The chromatic number $\chi(G)$ is defined as the minimum *n* for which *G* has an n - colouring. Several authors have studied the problem of obtaining an upper bound for the sum of a domination parameter and graph theoretic parameter and characterized the extremal graphs. In [6] Paulraj Joseph J and Arumugam S proved that $\gamma + \gamma \le n$. In [5], they proved that $\gamma + \gamma \le n+1$ and characterized the classes for which the upper bound is obtained. In [7], Paulraj. Joseph and Mahadevan G characterized the classes of graphs for which the sum of complementary connected domination number and chromatic number less than or equal to $2n - 6$. Motivated by these results, an attempt has been made to find the sum of strong efficient domination number and chromatic number of a strong efficient graph. In this paper, the graphs for which the sum of strong efficient domination number and chromatic number equal to n+1 are characterized. For all graph theoretic terminologies and notations, Harary [3] is followed.

2. Main Result:

Theorem 2.1: Let G = (V, E) be a simple graph on vertices. Let $\chi(G) \ge n - 2$. $\gamma_{se}(G) + \chi(G) =$ $n + 1$ if and only if one of the following holds.

- i. $G = K_n$.
- ii. G is a split graph $G = (C, I)$, with $C(G) = K_{n-2}$ or K_{n-1} ; I, I(G) = \overline{K}_2 or K_1 and if $C(G) = K_{n-2}$ and I(G) = \overline{K}_2 then every vertex of C(G)is adjacent to one vertex of I(G), each vertex of I(G) is adjacent with at least one vertex of $C(G)$ and $N(I(G)) = C(G)$. If $C(G) = K_{n-1}$ and $I(G) = K_1$ then $N(I(G)) = \phi$.
- iii. G is a split graph $G = (C, I)$ where $C = K_{n-3}$ and $|I| = 3$. G contains an isolate which obviously belongs to I and other two vertices of I have non-empty disjoint neighbourhoods in C whose union is C.
- iv. G is a split graph $G = (C, I)$ where $C = K_{n-2}$ and both the vertices of I are isolates of G (That is $G = K_{n-2} \cup 2K_1$).

Proof: Case (i): Let $\gamma(G) = n$. Then $G = K_n$. Therefore $\gamma_{se}(G) = 1$. Hence $\gamma_{se}(G) + \gamma(G) = n + 1$.

Case (ii): Let $\chi(G) = n - 1$. Then G has a ψ partition $\Pi = \{V_1, V_2, \dots, V_{n-1}\}$. Each V_i has at least one element and hence n – 2 elements of \prod have one element each and the remaining has two elements. Therefore G contains a clique $C = K_{n-2}$ with the remaining two elements u, v being independent. Also u is adjacent to t vertices of C and v is adjacent to s vertices of C, $1 \le t$, $s \le$ $n-2$. If C has a vertex which is adjacent to both u and v then G has a full degree vertex. Hence $\gamma_{se}(G) = 1$. Thus $\gamma_{se}(G) + \chi(G) = n$, a contradiction. Therefore any vertex of C is adjacent with atmost one of u, v. Therefore G is obtained from K_{n-2} by adding two vertices u, v which are not adjacent. N(u) \cap N(v) \cap V(K_{n-2}) = ϕ . [N(u) \cap V(K_{n-2})] \cup [N(v) \cap V(K_{n-2})] = V(K_{n-2}).

Conversely if G is obtained in the above manner then $\gamma_{se}(G) + \gamma(G) = n + 1$. If N(u) $\cap V(K_{n-2}) =$ ϕ then u is an isolate and $G = K_{n-1} \cup K_1$. $\chi(G) = n - 1$, $\gamma_{se}(G) = 2$ and hence $\gamma_{se}(G) + \chi(G) = n + 1$. Therefore $\gamma_{se}(G) + \gamma(G) = n + 1$ with $\gamma(G) = n - 1$ if and only if G is a split graph, $G = (C, I)$ with $C(G) = K_{n-2}$ or K_{n-1} ; I, I(G) = \overline{K}_2 or K_1 and if $C(G) = K_{n-2}$ and I(G) = \overline{K}_2 then every vertex of $C(G)$ is adjacent to atmost one vertex of $I(G)$; each vertex of $I(G)$ is adjacent with atleast one vertex of $C(G)$ and $N(I(G)) = C(G)$. If $C(G) = K_{n-1}$ and $I(G) = K_1$ then $N(I(G)) = \emptyset$.

Case (iii): Let χ (G) = n – 2. Let Π = {V₁, V₂, ..., V_{n-2}} be a chromatic partition of G. Since each Vⁱ is non-empty, there may be exactly one set containing three elements or two sets containing two elements each with the remaining sets being singletons.

Subcase (i): Let $|V_i| = 1$, $1 \le i \le n-3$ and $|V_{n-2}| = 3$. Let $V_i = \{u_i\}$, $1 \le i \le n-3$ and $V_{n-2} = \{u_{n-2}, u_{n-1}\}$ u_{n-1} , u_n . Since \prod is a chromatic partition, $u_1, u_2, \ldots, u_{n-3}$ form a complete subgraph K_{n-3} . Every vertex u_i , $1 \le i \le n-3$ is adjacent with at least one vertex of V_{n-2} . Let $N(u_{n-2}) \cap V(K_{n-3}) = T_1$, N(u_{n-1}) ∩ V(K_{n-3}) = T₂ and N(u_n) ∩ V(K_{n-3}) = T₃. T₁ ∪ T₂ ∪ T₃ = V(K_{n-3}). If T₁ ∩ T₂ ∩ T₃ ≠ ϕ then $\gamma_{se}(G) = 1$ and $\gamma_{se}(G) + \gamma(G) = n - 1$, a contradiction.

Subsubcase (i): $T_1 \neq \emptyset$, $T_2 \neq \emptyset$ and $T_3 = \emptyset$. Then u₃ is an isolate. Let $T_1 \cap T_2 = \emptyset$. $\gamma_{se}(G) = 3$, since any γ_{se} – set of G contains a vertex of T₁ and u_{n-1}, u_n or contains a vertex of T₂ and u_{n-2}, u_n. Therefore $\gamma_{se}(G) + \gamma(G) = 3 + n - 2 = n + 1$. G is a split graph (C, I) where C is K_{n-3} and $|I| = 3$. G contains an isolate vertex which obviously belongs to I. The other two vertices of I have non-empty disjoint neighbourhoods in C whose union is C. If $T_1 \cap T_2 \neq \emptyset$, then $\gamma_{se}(G) = 2$ and hence $\gamma_{se}(G) + \gamma(G) = n$, a contradiction.

Subsubcase (ii): $T_1, T_2, T_3 \neq \emptyset$. If $T_1 \cap T_2 \neq \emptyset$, then $\gamma_{se}(G) = 2$ and hence $\gamma_{se}(G) + \gamma(G) = n$, a contradiction. Therefore T₁, T₂, T₃ are pair wise disjoint. $\gamma_{se}(G) = 3$, since any γ_{se} – set of G contains one vertex each from T_1 , T_2 , and T_3 and deg $u_i \le n - 5 <$ deg u_i for every $i \in \{n - 2,$ $n-1, n$ and for every i, $1 \le i \le n-3$. Therefore $\gamma_{se}(G) + \gamma(G) = n+1$. G is a split graph (C, I) where C is K_{n-3} and $|I| = 3$ and three vertices of I have non-empty disjoint neighbourhoods in C whose union is C.

Subsubcase (iii): $T_1 = \phi = T_2$, $T_3 \neq \phi$. In this case u_n is adjacent with every vertex u_i , $1 \leq i \leq \phi$ $n-3$. Therefore $u_1, u_2, \ldots, u_{n-3}$, u_n form a complete subgraph K_{n-2} with u_{n-1} , u_{n-2} being isolate. Therefore $\gamma_{se}(G) = 3$. Any γ_{se} – set of G contains a vertex from K_{n-2} and the two vertices u_{n-2} and u_{n-1}. Therefore $\gamma_{se}(G) + \gamma(G) = n + 1$. Hence G is a split graph (C, I) where C is K_{n-2} and I contains two vertices both of which are isolates of G.

Subcase (ii): Let $|V_i| = 1$, $1 \le i \le n-4$ and $|V_{n-3}| = |V_{n-2}| = 2$. Let $V_i = \{u_i\}$, $1 \le i \le n-4$. V_{n-3} $= \{u_{n-3}, u_{n-2}\}\$ and $V_{n-2} = \{u_{n-1}, u_n\}\$ Since $\Pi = \{V_1, V_2, \ldots, V_{n-2}\}\$ is a χ – partition, $u_1, u_2, \ldots, u_{n-4}\}$ form a complete subgraph K_{n-4} . Every u_i , $1 \le i \le n-4$ is adjacent with atleast one vertex each of V_{n-3} , V_{n-2} . Atleast one vertex of V_{n-3} is adjacent with a vertex of V_{n-2} . deg $u \ge n-5+2=n-3$ for any vertex u in K_{n-4} . deg u_{n-3}, deg u_{n-2}, deg u_{n-1}, deg u_n \leq n – 2. deg u_{n-i}, $0 \leq i \leq 3$ is equal to $n-2$ if and only if u_{n-i} is adjacent with every vertex except the one which is independent with u_{n-i} . If for one vertex in V_{n-3} and one vertex in V_{n-2} are of degree n – 2, then every vertex in K_{n-4} is of degree at least $n-3$. If u_{n-3} is of degree $n-2$, then $\{u_{n-3}, u_{n-2}\}$ is a γ_{se} – set of G provided any neighbou.r of u_{n-2} is of degree greater than deg u_{n-2} . The possible three element sets which may be γ_{se} - sets are $\{u, u_{n-3}, u_{n-2}\}$, $\{u, u_{n-3}, u_{n-1}\}$, $\{u, u_{n-3}, u_n\}$, $\{u, u_{n-2}, u_{n-1}\}$, $\{u, u_{n-2}, u_n\}$, $\{u, u_{n-1}, u_n\}$, ${u_{n-3}, u_{n-2}, u_{n-1}}$, ${u_{n-3}, u_{n-2}, u_n}$, ${u_{n-2}, u_{n-1}, u_n}$, ${u_{n-3}, u_{n-1}, u_n}$. Since u_{n-3} is of degree $n-2, u_{n-3}$ is

adjacent with every vertex of G except u_{n-2} . Therefore those sets containing u and u_{n-3} or u_{n-3} and u_{n-1} or u_{n-3} and u_n are not independent. The left out four sets are $\{u, u_{n-2}, u_{n-1}\}$, $\{u, u_{n-2}, u_n\}$, $\{u, u_{n-1}, u_n\}$ and $\{u_{n-2}, u_{n-1}, u_n\}$.

Consider $\{u, u_{n-2}, u_{n-1}\}\$. u_{n-3} is of degree $n-2$ and is strongly dominated by either u or u_{n-1}. Therefore deg u or deg u_{n-1} \geq n – 2. Since {u, u_{n-2}, u_{n-1}} is an independent set, deg u \leq n – 3 and deg $u_{n-1} \le n-3$. Therefore u_{n-3} cannot be strongly dominated by $\{u, u_{n-2}, u_{n-1}\}$. Therefore $\{u, u_{n-2}, u_{n-1}\}$ is not a strong efficient dominating set of G. There exist no strong efficient dominating set of G of cardinality 3. Therefore $\gamma_{se}(G) + \chi(G) \neq n + 1$. Hence deg $u \leq n - 3$. By the same reasoning, deg u_{n-2}, deg u_{n-1}, deg u_n \leq n – 3.

Suppose deg $u = n - 2$. The possible three element sets which may be γ_{se} – sets of G are ${u_1, u_{n-3}, u_{n-2}}$, ${u_1, u_{n-3}, u_{n-1}}$, ${u_1, u_{n-3}, u_n}$, ${u_1, u_{n-2}, u_{n-1}}$, ${u_1, u_{n-2}, u_n}$, ${u_1, u_{n-1}, u_n}$, ${u_{n-3}, u_{n-2}}$, u_{n-1} , $\{u_{n-3}, u_{n-2}, u_n\}$, $\{u_{n-2}, u_{n-1}, u_n\}$, $\{u_{n-3}, u_{n-1}, u_n\}$. Since u is of degree $n-2$, u is adjacent every vertex of G except one of u_{n-3} , u_{n-2} , u_{n-1} , or u_n . Without loss of generality, let u be not adjacent with u_{n-3} . Then u is adjacent with u_{n-2} , u_{n-1} , u_n . Those sets containing u and u_{n-2} or u_{n-1} or u_n are not independent. The left out four sets are $\{u_{n-3}, u_{n-2}, u_{n-1}\}$, $\{u_{n-3}, u_{n-2}, u_{n}\}$, $\{u_{n-2}, u_{n-1}, u_{n}\}$ and ${u_{n-3}, u_{n-1}, u_n}.$ Consider ${u_{n-3}, u_{n-2}, u_{n-1}}.$ u is of degree $n-2$ and is strongly dominated by either u_{n-2} or u_{n-1} . Therefore deg $u_{n-2} \ge n-2$ or deg $u_{n-1} \ge n-2$. Therefore $\{u_{n-3}, u_{n-2}, u_{n-1}\}$ is not an independent set. Therefore $\{u_{n-3}, u_{n-2}, u_{n-1}\}$ is not a strong efficient dominating set of G. By similar reasoning, the other three element sets are not strong efficient dominating sets of G. Therefore there exist no strong efficient dominating set of G of cardinality 3. Hence $\gamma_{se}(G)$ + $\gamma(G) \neq n + 1$. Therefore deg $u \leq n - 3$ for any u belongs to $V(K_{n-4})$. Thus deg u_{n-3}, deg u_{n-2}, deg u_{n-1}, deg u_n and deg u for any u belongs to $V(K_{n-4}) \leq n - 3$. If u_{n-3}(u_{n-2}) is adjacent with u_{n-1} and u_n then deg $u_{n-3} = n - 2$ (deg $u_{n-2} = n - 2$) a contradiction. Similarly $u_{n-1}(u_n)$ can be

adjacent with at most one of u_{n-3} , u_{n-2} . Any neighbour of u_{n-2} is in K_{n-4} . Every vertex in K_{n-4} is of degree n – 3 (Since deg u \geq n – 3 for any u in V(K_{n-4}). Also deg u \leq n – 3). If u \in T₂, then deg u $n = n - 3 > \text{deg } u_{n-2}$. Consider $S = \{u, u_{n-2}, u_n\}$. Let $v \in (V - S) \cap V(K_{n-4})$. Then v is strongly dominated by u. If deg $u_n = n - 3$, then u_n is adjacent with every vertex of K_{n-4} . v is strongly dominated by u_n , a contradiction. Thus deg $u_n \leq n-4$. Therefore u_n is not adjacent with some vertex of K_{n-4} . Let u be that vertex. Suppose this u is not adjacent with u_{n-2} . Then u is adjacent with u_{n-3} . The neighbours of u_n of degree less than or equal to deg u_n cannot be from K_{n-4} . u_{n-2} and u_{n-1} are not adjacent with u_n . Therefore only neighbours of u_n other than those in K_{n-4} is u_{n-3} . Let deg $u_{n-3} >$ deg u_n . In this case $S = \{u, u_{n-2}, u_n\}$ is a strong efficient dominating set of G. If deg $u_{n-3} \leq$ deg u_n , then u_{n-3} is strongly dominated by u and u_n . Therefore S is not a strong dominating set of G.

Case (iii): u_{n-3} is adjacent with exactly one of u_{n-1} , u_n and u_{n-2} is adjacent with exactly one u_{n-1} , u_n . If u_{n-3} and u_{n-2} are both adjacent with u_{n-1} (or both adjacent with u_n) then deg u_{n-1} (or deg u_n) is $n-2$, a contradiction.

Sub case (i): Let u_{n-3} be adjacent with u_{n-1} , u_{n-2} be not adjacent with u_{n-1} , u_{n-2} be adjacent with u_n , u_{n-3} be not adjacent with u_n . Since deg $u \le n-3$, u is adjacent exactly with one u_{n-3} , u_{n-2} and one of u_{n-1} , u_n . The possible three element sets from u, u_{n-3} , u_{n-2} , u_{n-1} and u_n are $\{u, u_{n-3}, u_{n-2}\}$, ${u_1, u_{n-3}, u_{n-1}}$, ${u_1, u_{n-3}, u_n}$, ${u_n, u_{n-2}, u_{n-1}}$, ${u_n, u_{n-2}, u_n}$, ${u_n, u_{n-1}, u_n}$, ${u_{n-3}, u_{n-2}, u_{n-1}}$, ${u_{n-3}, u_{n-1}}$ u_{n-2} , u_n }, $\{u_{n-2}, u_{n-1}, u_n\}$ and $\{u_{n-3}, u_{n-1}, u_n\}$. Nine of them are not independent. Consider $\{u, u_{n-3}, u_{n-2}, u_n\}$ u_n , deg $u = n - 3 =$ deg $u_{n-3} =$ deg $u_{n-2} =$ deg $u_{n-1} =$ deg u_n . Therefore $\{u_{n-3}, u, u_n\}$ is not a strong efficient dominating set of G. Therefore Case (iv) Sub case (i) does not arise.

Illustration: 2.2 Consider the following graph G.

http://mdthinducollege.org/hindco_journal.html Page 180

Figure 1

 $\{u_i, v_1\}$, $i = 4, 5$ and $\{u_i, v_2\}$, $i = 1, 2, 3$ are γ_{se} -sets of G. Hence $\gamma_{se}(G) = 2, \gamma(G) = 6$. Therefore $\gamma_{se}(G) + \gamma(G) = 8 = 7 + 1.$

Illustration: 2.3 Consider the following graph G.

 $\{u_i, v_2\}, 1 \le i \le 5$ and $\{v_1, v_2\}$ are strong efficient dominating sets of G. Therefore $\gamma_{se}(G) = 2$.

 $\gamma(G) = 6$. Therefore $\gamma_{se}(G) + \gamma(G) = 8 = 7 + 1$.

Illustration: 2.4 Consider the following graph G.

Figure 3

{u_i, v₂, v₃} i = 1, 2, 3 and {u_i, v₁, v₃} i = 4, 5 are γ_{se} – sets of G. Therefore $\gamma_{se}(G) = 3$. $\chi(G) = 6$. Therefore $\gamma_{se}(G) + \chi(G) = 9 = 8 + 1$.

Illustration: 2.5 Consider the following graph G.

Figure 4

 ${u_i, v_2, v_3}$ i = 1, 2, 3, ${u_5, v_1, v_2}$ and ${u_4, v_1, v_3}$ are γ_{se} – sets of G. Hence $\gamma_{se}(G) = 3$, $\chi(G) = 6$. Therefore $\gamma_{se}(G) + \chi(G) = 9 = 8 + 1$.

Illustration: 2.6 Consider the following graph G.

 $\{u_i, v_1, v_2\}, 1 \le i \le 5$ is a strong efficient dominating set of G. $\gamma_{se}(G) = 3$, $\chi(G) = 6$. Therefore $\gamma_{se}(G) + \chi(G) = 8 = 7 + 1.$

Illustration: 2.7 Consider the following graph G.

Figure 6

 ${\{u_1, v_2, v_4\}, \{u_2, v_1, v_3\}, \{u_3, v_2, v_4\}, \{u_4, v_2, v_4\}, \{u_5, v_1, v_3\}$ are γ_{se} – sets of G. Therefore $\gamma_{se}(G)$

= 3. χ (G) = 7. Thus $\gamma_{se}(G) + \chi$ (G) = 10 = 9 + 1.

Illustration 2.8 Consider the following graph G.

Figure 7

{u_i, v₃, v₄} i = 1 to 5, {v₂, v₁, v₄} are γ_{se} – sets of G. Therefore $\gamma_{se}(G) = 3$. $\chi(G) = 7$.

Thus $\gamma_{se}(G) + \chi(G) = 10 = 9 + 1$.

Illustration 2.9: Consider the following graph G.

Figure 8

 $\{u_i, v_2, v_4\}$ i = 1 to 5 are γ_{se} – sets of G. Hence $\gamma_{se}(G) = 3$. $\gamma(G) = 7$.

Thus $\gamma_{se}(G) + \gamma(G) = 10 = 9 + 1$.

.**REFERENCES**

- [1] D.W Bange, A.E.Barkauskas and P.J. Slater, Disjoint dominating sets in trees. Technical Report 78-1087J, Sandia Laboratories, 1978.
- [2] D.W Bange, A.E.Barkauskas and P.J. Slater, Efficient dominating sets in graphs, Application of Discrete Mathematics, 189 – 199, SIAM, Philadephia, 1988.
- [3] F.Harary, Graph Theory, Addison Wesley, 1969.
- [4] N.Meena, A.Subramanian and V.Swaminathan, Strong Efficient Domination Number in Graphs, International Journal of Innovative Science, Engineering & Technology, Vol.1 Issue 4, 172-177, 2014.
- [5] Paulraj Joseph J and Arumugam S, Domination and colouring in graphs, International Journal of Management and Systems, Vol. 8 No. 1, 37 – 44, 1997.
- [6] Paulraj Joseph J and Arumugam S, Domination and connectivity in graphs, International Journal of Management and Systems,Vol. 8 No. 3, 233 – 236, 1992.
- [7] Paulraj Joseph J and Mahadevan G, Complementary connected domination number and Chromatic number of a graph, Acta sciencia Indica, Vol. XXXI M, No.2, 847 – 854, 2006.
- [8] E. Sampathkumar and L. Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Math., 161: 235 – 242, 1996.
- [9] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Fundamentals of domination in graphs, Marcel Decker, Inc., New York 1998.